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Abstract. We consider the problem by K. Cieliebak, H. Hofer, J. Latschev,
and F. Schlenk (CHLS) that is concerned with finding a minimal generating
system for (symplectic) capacities on a given symplectic category. We show
that under some mild hypotheses every countably Borel-generating set of (nor-
malized) capacities has cardinality bigger than the continuum. This appears
to be the first result regarding the problem of CHLS, except for a result by
D. McDuff, stating that the ECH-capacities are monotonely generating for the
category of ellipsoids in dimension 4.

Under the same mild hypotheses we also prove that almost no normalized
capacity is domain- or target-representable. This provides some solutions to
two central problems by CHLS.

In addition, we prove that every finitely differentiably generating system of
symplectic capacities on a given symplectic category is uncountable, provided
that the category contains a one-parameter family of symplectic manifolds that
is “strictly volume-increasing” and “embedding-capacity-wise constant”. It fol-
lows that the Ekeland-Hofer capacities and the volume capacity do not finitely
differentiably generate all generalized capacities on the category of ellipsoids.
This answers a variant of a question by CHLS.
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1. Introduction and main results

1.1. The Problems. Let m, k ∈ N0 := {0, 1, . . .}. We define Ωm,k to be the
following category:

• Its objects are pairs (M,ω), where M is a manifold1 of dimension m, and
ω is a differential k-form on M .
• Its morphisms are embeddings2 that intertwine the differential forms.

Recall that a subcategory C ′ of a category C is called isomorphism-closed iff every
isomorphism of C starting at some object of C ′ is a morphism of C ′.3

Definition 1. A weak (m, k)-(differential) form category is a subcategory C =
(O,M) of Ωm,k 4, such that if (M,ω) ∈ O and a ∈ (0,∞) then (M,aω) ∈ O. We
call such a C a (m, k)-form-category iff it is also isomorphism-closed.

A (weak) symplectic category (in dimension 2n) is a (weak) (2n, 2)-form-category
whose objects are symplectic manifolds.

Examples 2 ((weak) (m, k)-form-category).

(i) Let M be a diffeomorphism class of smooth manifolds of dimension m. The
full subcategory of Ωm,k whose objects (M,ω) satisfy M ∈ M, is a (m, k)-
form-category.

(ii) Let (M,ω) be an object of Ωm,k. We define OM,ω to be the set of all pairs
(U, ω|U), where U ranges over all open subsets of M . We defineMM,ω to be
the set of all triples

(
U, V, ϕ|U

)
, where U and V range over all open subsets

of M and ϕ over all isomorphisms of (M,ω), such that ϕ(U) ⊆ V . Hence the
morphisms between two objects are the restrictions of global form-preserving
diffeomorphisms. The pair OpM,ω :=

(
OM,ω,MM,ω

)
is a weak (m, k)-form-

category, which is not isomorphism-closed, hence not a (m, k)-form-category.

Remark 3 (isomorphism-closedness). Symplectic categories were first defined in
[CHLS07, 2.1. Definition, p. 5]. In that definition isomorphism-closedness is not
assumed. However, this condition is needed in order to avoid the following set-
theoretic issue in the definition of the notion of a symplectic capacity on a given
symplectic category C.

1In this article “manifold” refers to a smooth (C∞) real finite-dimensional manifold. It is
allowed to be disconnected and to have boundary.

2By an embedding we mean an injective smooth immersion with continuous inverse. We do
not impose any condition involving the boundaries of the two manifolds.

3In particular, it ends at some object of C′.
4Here O and M denote the classes of objects and morphisms of C, respectively.
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This article is based on ZFC, the Zermelo-Fraenkel axiomatic system together
with the axiom of choice. A category is a pair consisting of classes of objects and
morphisms. Formally, in ZFC there is no notion of a “class” that is not a set. The
system can handle a “class” that is determined by a wellformed formula, such as
the “class” of all sets or the “class” of all symplectic manifolds, by rewriting every
statement involving the “class” as a statement involving the formula.

However, it is not possible in ZFC to define the “class” of all maps between two
classes, even if the target class is a set. In particular, it is a priori not possible to
define the “class” of all symplectic capacities on a given symplectic category. Our
assumption that C is isomorphism-closed makes it possible to define this “class”
even as a set, see below.

We now define the notion of a (generalized) capacity on a given (m, k)-form-
category. Let S be a set. By |S| we denote the (von Neumann) cardinality of S,
i.e., the smallest (von Neumann) ordinal that is in bijection with S. For every

pair of sets S, S ′ we denote by S ′S the set of maps from S to S ′. For every pair
of cardinals α, β 5 we also use βα to denote the cardinality of βα. Recursively, we
define i0 := N0, and for every i ∈ N0, the cardinal ii+1 := 2ii .6

We denote by Bm
r (B

m

r ) the open (closed) ball of radius r around 0 in Rm, and

B := B2n
1 , Z2n

r := B2
r × R2n−2, Z := Z2n

1 .

We equip B2n
r and Z2n

r with the standard symplectic form ωst. Let C = (O,M)
be a (m, k)-form-category. We define the set

(1) O0 :=
{

(M,ω) ∈ O
∣∣The set underlying M is a subset of i1.

}
.

Definition 4. A generalized capacity on C is a map

c : O0 → [0,∞]

with the following properties:

(i) (monotonicity) If (M,ω) and (M ′, ω′) are two objects in O0 between which
there exists a C-morphism, then

c(M,ω) ≤ c(M ′, ω′).

(ii) (conformality) For every (M,ω) ∈ O0 and a ∈ (0,∞) we have

c(M,aω) = a c(M,ω).

Assume now that k = 2, m = 2n for some integer n, and that O0 contains some
objects B0, Z0 that are isomorphic to B,Z. Let c be a generalized capacity on C.
We call c a capacity iff is satisfies:

(iii) (non-triviality) c(B0) > 0 and c(Z0) <∞.7

We call it normalized iff it satisfies:

(iv) (normalization) c(B0) = c(Z0) = π.8

5i.e., cardinalities of some sets
6i (bet) is the second letter of the Hebrew alphabet.
7These conditions do not depend on the choices of B0, Z0, since c is is invariant under iso-

morphisms by monotonicity.
8In [CHLS07, 2.1. Definition, p. 5] only the condition c(B) = 1 is imposed here (in the

context of a symplectic category). Our first main result, Theorem 15, holds even with our
stronger definition.
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We denote by

Cap(C), NCap(C)
the sets of generalized and normalized capacities on C. If C is a symplectic cate-
gory then we call a (generalized/ normalized) capacity on C also a (generalized/
normalized) symplectic capacity.

Example 5 (embedding capacities). Let C = (O,M) be a (m, k)-form-category
and (M,ω) an object of Ωm,k. We define O0 as in (1) and the domain-embedding
capacity for (M,ω) on C to be the map

cM,ω := cCM,ω : O0 → [0,∞],

cM,ω(M ′, ω′) := sup
{
c ∈ (0,∞)

∣∣∃Ωm,k-morphism (M, cω)→ (M ′, ω′)
}
.(2)

For brevity we also just call this the embedding capacity for (M,ω). We define the
target-embedding capacity for (M,ω) on C to be the map

cM,ω := cM,ω
C : O0 → [0,∞],

cM,ω(M ′, ω′) := inf
{
c ∈ (0,∞)

∣∣ ∃Ωm,k-morphism (M ′, ω′)→ (M, cω)
}
.(3)

These are generalized capacities.9 Assume that k = 2 and m = 2n for some n.
We define the Gromov width on C to be

(4) w := πcCB,ωst
.

If B,Z ∈ O, then by Gromov’s nonsqueezing theorem the Gromov width is a
normalized capacity.

Capacities on the category of all symplectic manifolds of a fixed dimension were
introduced by I. Ekeland and H. Hofer in [EH89, EH90]. They measure how much
a given symplectic manifold does not embed into another one. For an overview over
symplectic capacities we refer to [CHLS07, Sch18, Sch05] and references therein.

Remarks. • Cap(C) and NCap(C) are indeed sets, since O0 is a set.

• Heuristically, let us denote by C̃ap(C) the “subclass” of “[0,∞]O” consisting
of all “maps” satisfying (i,ii) above. Formally, the restriction from O to

O0 induces a bijection between C̃ap(C) and Cap(C).10 This means that our
definition of a generalized capacity corresponds to the intuition behind the
usual “definition”. Here we use isomorphism-closedness of C. Compare to
Remark 3.

9In the definition on p. 13 in [CHLS07] (M,ω) is assumed to be an object of C, and the
morphisms in the definitions of the embedding capacities are asked to be C-morphisms. However,
in [CHLS07, Example 2, p. 14] the definition is applied with a (M,ω) that is not an object of C.
In order to make that example work, one needs to allow for Ωm,k-morphisms in the definition of
the embedding capacities.

10This follows from the fact that every object of Ωm,k is isomorphic to one whose underlying
set is a subset of i1, and the assumption that C is isomorphism-closed. To prove the fact, recall
that by definition, the topology of every manifold M is second countable. Using the axiom of
choice, it follows that its underlying set has cardinality ≤ i1. This means that there exists
an injective map f : M → i1. Consider now an object (M,ω) of Ωm,k. Pushing forward the
manifold structure and ω via a map f , we obtain an object of Ωm,k isomorphic to (M,ω), whose
underlying set is a subset of i1. This proves the fact.
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• Isomorphism-closedness of C implies that there is a canonical bijection
between Cap(C) and the set of generalized capacities that we obtain by
replacing O0 by any subset of O that contains an isomorphic copy of each
element of O. Such a set can for example be obtained by replacing i1 in
(1) by any set of cardinality at least i1.

11 This means that our definition
of Cap(C) is natural.

Let f : [0,∞]` → [0,∞]`
′
be a function. We call it homogeneous iff it is positively

1-homogoneous, i.e., iff f(ax) = af(x) for every a ∈ (0,∞) and x ∈ [0,∞]`.12

We equip [0,∞]` with the partial order given by x ≤ y iff xi ≤ yi for every
i ∈ {1, . . . , `}. We call f monotone iff it preserves this partial order. As pointed
out by K. Cieliebak, H. Hofer, J. Latschev, and F. Schlenk (CHLS) in [CHLS07], if
`′ = 1, f is homogeneous and monotone, and c1, . . . , c` are generalized capacities,
then f ◦(c1, . . . , c`) is again a generalized capacity. Homogeneity and monotonicity
are preserved under compositions.

Examples. The following functions are homogoneous and monotone:

• maximum, minimum
• For every a ∈ [0,∞)` and p ∈ R \ {0} the function

fa,p(x) := p

√√√√∑̀
i=1

aix
p
i .

13

In the case a =
(
1
`
, . . . , 1

`

)
, p = 1 the function fa,p is the arithmetic mean,

and in the case a =
(
1
`
, . . . , 1

`

)
, p = −1 it is the harmonic mean.

• For every p ∈ [0,∞)` satisfying
∑`

i=1 pi = 1 the function

x 7→
∏̀
i=1

xpii .

In the case p =
(
1
`
, . . . , 1

`

)
this is the geometric mean.

Let G be a subset of Cap(C). By a finite homogeneous monotone combina-
tion of G we mean an expression of the form f ◦ (c1, . . . , c`)|O0, where ` ∈ N0,
f : [0,∞]` → [0,∞] is homogeneous and monotone, and c1, . . . , c` ∈ G. We de-
fine the set CHLS-generated by G to be the set of all maps c : O0 → [0,∞] that
are the pointwise limit of a sequence of finite homogeneous monotone combina-
tions of G. Since pointwise limits preserve homogeneity and monotonicity, the set
CHLS-generated by G, consists again of generalized capacities.

In [CHLS07, Problem 5, p. 17] a generating system for the (generalized) symplec-
tic capacities on C is defined to be a subset G of Cap(C) 14, whose CHLS-generated

11This follows from an argument as in the last footnote.
12Here we use the convention a · ∞ :=∞ for every a ∈ (0,∞).
13Here we use the conventions ∞+ a =∞ for every a ∈ [0,∞], ∞p =∞ for every p > 0, and

0p :=∞ and ∞p := 0 for every p < 0.
14CHLS use the common definition of a symplectic capacity that does not deal with the set-

theoretic issue mentioned in Remark 3. In particular, they do not explicitly state that G should
be a subset of Cap(C) (which is a subset of [0,∞]O0), but presumably they implicitly ask for
this.
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set is the whole of Cap(C). They also propose more restrictive notions of “gener-
ation”, for example one in which the only allowed combining functions f are the
maximum and minimum.

The set CHLS-generated by G is obtained by combining capacities in a lot of
ways. One may therefore expect that few capacities suffice to generate all the
other capacities. It is tempting to even look for a generating set of capacities that
is minimal, in the sense that none of its subsets is generating. This problem was
posed by CHLS:

Problem 6 ([CHLS07], Problem 5, p.17). For a given symplectic category C, find
a minimal generating system G for the (generalized) symplectic capacities on C.

A concrete instance of this problem is the following.

Question 7. Does there exist a countable15 (minimal) generating system for the
capacities on a given symplectic category C?

To our knowledge, up to now, Problem 6 has been completely open, except for
a result by D. McDuff, which states that the ECH-capacities are generating in a
weaker sense for the category of ellipsoids in dimension 4, see Theorem 28 below.16

Our first main result, Theorem 15 below, answers Question 7 in the negative
for a weak notion of a “generating system”, in dimension at least 4. The the-
orem states that under some mild hypotheses on C the cardinality of the set of
generalized (or normalized) capacities is i2. Its last part implies that a set of
[0,∞]-valued functions of cardinality at most i1 countably Borel-generates a set
of cardinality at most i1 in the sense of Definition 14 below.

As an immediate consequence, every countably Borel-generating system for
Cap(C) (or NCap(C)) has cardinality bigger than the continuum. See Corollary
16 below.

Countable Borel-generation is a weak notion of generation. In particular, it is
weaker than the notion of generation proposed by CHLS after [CHLS07, Problem
5, p. 17], in which only the maximum and minimum are allowed as combining
functions. Compare to Remarks 13 and 18 below. Hence Corollary 16 makes a
statement about many systems of capacities.

This corollary diminishes the hope of finding manageable generating systems of
(generalized) symplectic capacities.

Our first main result also has immediate applications to two questions that
CHLS prominently posed as Problems 1 and 2 in their article [CHLS07]. To
explain these problems, let n ∈ N and C = (O,M) be a symplectic category in
dimension 2n.

Definition 8 (representability). Let c be a capacity on C. We call c domain-/
target-representable iff there exists a symplectic manifold (M,ω), for which c =
cM,ω/ c = cM,ω. We call it connectedly target-representable iff there exists a
connected symplectic manifold (M,ω), for which c = cM,ω.

15By this we mean finite or countably infinite.
16There are of course some trivial cases in which Question 7 is easy, e.g. the case in which

there are only finitely many C-isomorphism classes.
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Remark. By definition, the topology of a manifold is second countable. Without
this condition every capacity would be target-representable, if all objects of C are
connected, see [CHLS07, Example 2, p. 14].

Question 9 (target-representability, [CHLS07], p. 14, Problem 1). Which (gen-
eralized) capacities on C are connectedly target-representable?17

Question 10 (domain-representability, [CHLS07], p. 14, Problem 2). Which (gen-
eralized) capacities on C are domain-representable?18

In particular, one may wonder about the following:

Question 11. Is every generalized capacity connectedly target-representable?

If the answer to this question is “yes”, then this simplifies the study of capacities,
since we may then identify every capacity with some symplectic manifold that
target-represents it.

Apart from some elementary examples, up to now, the answers to Questions
9,10, and 11 appear to be completely unknown. In order to answer Question 11
negatively, it seems that we need to understand all symplectic embeddings from
objects of C to all connected symplectic manifolds. At first glance this looks like
a hopeless enterprise.

The following application of the first main result may therefore come as a sur-
prise. Namely, under some mild hypotheses the answer to Question 11 is “no”. In
fact, it remains “no”, even if we ask the question only for normalized capacities
and drop the word “connectedly”. Perhaps all the more unexpectedly, almost no
normalized capacity is target-representable. By this we mean that the set target-
representable normalized capacities has strictly smaller cardinality than the set of
all normalized capacities (and both are infinite). Similarly, almost no normalized
capacity is domain-representable. See Corollary 17 below. This provides some
answers to Questions 9,10, and 11.

Consider now Problem 6 in the more general context in which C = (O,M)
is only a weak (m, k)-form-category. In order to take care of the set-theoretic
problems mentioned above, we assume that C is small, i.e., that O is a set. In this
setting we define the notion of a (generalized) capacity as in Definition 4, with O0

replaced by O.

Example (Ekeland-Hofer capacities). For every object (M,ω) of Ωm,k we define
the weak (m, k)-form-category OpM,ω as in Example 2(ii). Hence O consists of the
topology (= set of all open subsets) of M , andM of all restrictions of global form-
preserving diffeomorphisms. Consider the case in which k = 2 and (M = V, ω) is
a symplectic vector space.19 Let i ∈ N0. The i-th Ekeland-Hofer capacity cEHi is a
capacity on OpV,ω, which is defined as a certain min-max involving the symplectic

action, see [EH89, EH90] or [CHLS07, p. 7]. The capacity cEH1 is normalized; the
other Ekeland-Hofer capacities are not normalized.

17In [CHLS07] this question is asked, based on the definition of the embedding capacities on
p. 13 in that article. However, [CHLS07, Example 2, p. 14] suggests that CHLS are interested
in this question with the modified definition given in Example 5. Compare to footnote 9.

18A remark similar to footnote 17 applies.
19Hence m is even.
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The Ekeland-Hofer capacities are hard to compute. Their values are known for
ellipsoids and polydisks, see [EH90, Proposition 4, p. 562] and [EH90, Proposition
5, p. 563].

Let (V, ω) be a symplectic vector space. Recall that a (bounded, open, full)
ellipsoid in V is a set of the form p−1((−∞, 0)), where p : V → R is a quadratic
polynomial function whose second order part is positive definite. We equip each
ellipsoid E with the restriction of ω to E. Consider the important full subcategory
EllV := EllV,ω of OpV,ω, consisting of ellipsoids. The objects of EllV are uniquely
determined by the Ekeland-Hofer capacities, up to isomorphism, see [CHLS07,
FACT 10, p. 27]. Therefore the following question seems natural:

Question 12 ([CHLS07], Problem 15, p.28). Do the Ekeland-Hofer capacities
together with the volume capacity form a generating system of the set of all gen-
eralized20 capacities on the category of ellipsoids EllV ?21

In the case dimV = 4 this question was answered negatively by D. McDuff, see
[McD09, Corollary 1.4].

Our second main result answers Question 12 in the negative in dimension at
least 4, provided that we interpret “generating” to mean “finitely-differentiably
generating”. (See Definition 21 below.) In fact, every finitely-differentiably gener-
ating system on the category of ellipsoids is uncountable, see Corollary 26 below.

1.2. Main results: Theorem 15 (cardinalities of the set of capacities
and of the generated set) and Theorem 24 (uncountability of every
generating set under a very mild hypothesis). To state our first main result,
we need the following. Let (X, τ) be a topological space. Recall that the (τ -)Borel
σ-algebra of X is the smallest σ-algebra containing the topology of X. We call its
elements (τ -)Borel sets.

Remark 13 (Borel sets). Consider the real line X = R. The axiom of choice
(AC) implies that there exist subsets of R that are not Lebesgue-measurable,
hence not Borel-measurable. However, all subsets occurring in practice are Borel.
Furthermore, for any concretely described subset of R, it appears to be difficult
to prove (using AC) that it is indeed not Borel-measurable.22

Let now (X, τ) and (X ′, τ ′) be topological spaces. A function f : X → X ′ is
called (τ, τ ′)-Borel-measurable iff the pre-image under f of every τ ′-Borel set in
X ′ is a τ -Borel set.23 In particular, every continuous function is Borel-measurable.
Borel-measurability is preserved under composition. It is preserved under point-
wise limits of sequences if X ′ is metrizable. This yields many examples of Borel-
measurable functions. In fact, all functions occurring in practice are Borel-measurable.

20In the paper the question is stated without the word “generalized”, but from the discussion
that precedes the question it is clear that the authors ask it for generalized capacities.

21One needs to include the volume capacity, since the Ekeland-Hofer capacities do not generate
this capacity in the sense of [CHLS07], see [CHLS07, Example 10, p. 28].

22An example of such a subset A was provided by N. Luzin. It can be obtained from [Kec95,
Exercise (27.2), p. 209] via [Kec95, Exercise (3.4)(ii), p. 14]. This set is Σ1

1-analytic, see [Kec95,
Definitions (22.9), p. 169, (21.13), p. 156]. It follows from a theorem by Souslin, [Kec95, (14.2)
Theorem, p. 85] and the definition of Σ1

1-analyticity that A is not Borel.
23This happens if and only if the pre-image under f of every element of τ ′ is a τ -Borel set.



GENERATING SYSTEMS FOR SYMPLECTIC CAPACITIES 9

Let S, S ′ be sets. We denote

S ′
S

:=
{

function from S to S ′
}
.

For every subset G ⊆ S ′S we denote by

(5) evG : S → S ′
G
, evG(s)(u) := u(s),

the evaluation map. If (X, τ) is a topological space then we denote by τS the
product topology on XS.

Definition 14 (countably Borel-generated set). Let S be a set, (X, τ) a topological
space, and G ⊆ XS. We define the set countably (τ -)Borel-generated by G to be

〈G〉 :=
{
f◦evG0

∣∣G0 ⊆ G countable, f : XG0 → X: (τG0 , τ)-Borel-measurable
}
⊆ XS.

For every subset F ⊆ XS we say that G countably (τ -)Borel-generates at least F
iff F ⊆ 〈G〉.

We denote by intS the interior of a subset S of a topological space. Let V be a
vector space, S ⊆ V , A ⊆ R, and n ∈ N0. We denote AS :=

{
av
∣∣ a ∈ A, v ∈ S}.

In the case A = {a} we also denote this set by aS. We call S strictly starshaped
around 0 iff [0, 1)S ⊆ intS. For every i ∈ {1, . . . , n} we denote by pri : V n =
V × · · · × V → V the canonical projection onto the i-th component. For every
multilinear form ω on V we denote

ω⊕n :=
n∑
i=1

pr∗i ω.

For every r ∈ (1,∞) we define the closed spherical shell of radii 1, r in Rm to be

Shmr := B
m

r \Bm
1 .

We equip Shr := Sh2nr with the standard symplectic form ωst. The first main
result of this article is the following.

Theorem 15 (cardinalities of the set of (normalized) capacities and of the gen-
erated set). The following statements hold:

(i) Let k, n ∈ {2, 3, . . .} with k even, and C = (O,M) be a (kn, k)-form-category.
Then the cardinalitiy of Cap(C) equals i2, provided that there exist
• a (real) vector space V of dimension k,
• a volume form Ω on V ,24

• a nonempty compact submanifold K of V n (with boundary) that is strictly
starshaped around 0,
• a number r ∈

(
1, kn
√

2
)
,

such that defining Ma := (r + a)K \ intK and equipping this manifold with
the restriction of Ω⊕n, we have

Ma tM−a ∈ O, ∀a ∈ (0, r − 1). 25

24By this we mean a nonvanishing top degree skewsymmetric form.
25Here A t B denotes the disjoint union of two sets A,B. This can be defined in different

ways, e.g. as the set consisting of all pairs (0, a), (1, b), with a ∈ A, b ∈ B, or alternatively pairs
(1, a), (2, b). Based on this, we obtain two definitions of the disjoint union of two objects of
Ωkn,k. The disjoint union defined in either way is isomorphic to the one defined in the other
way. Since we assume C to be isomorphism-closed, the above spherical shell condition does not
depend on the choice of how we define the disjoint union.
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(ii) Let n ∈ {2, 3, . . .} and C = (O,M) be a (2n, 2)-form-category that contains
the objects B and Z. The cardinality of NCap(C) equals i2, provided that
there exists r ∈

(
1, 2n
√

2
)

satisfying

(6) Shr−a t Shr+a ∈ O, ∀a ∈ (0, r − 1).

(iii) Let S be a set and (X, τ) a separable metrizable topological space. If a subset
of XS has cardinality at most i1, then the set it countably τ -Borel-generates
has cardinality at most i1.

This result has the following immediate application. We define O0 as in (1),
and τ0 to be the standard topology on [0,∞], w.r.t. which it is homeomorphic to
the interval [0, 1].

Corollary 16 (cardinality of a generating set). (i) Under the hypotheses of The-
orem 15(i) every subset of [0,∞]O0 that countably τ0-Borel-generates at least
Cap(C) has cardinality (strictly) bigger than i1.

(ii) Under the hypotheses of Theorem 15(ii) every subset of [0,∞]O0 that count-
ably τ0-Borel-generates at least NCap(C) has cardinality (strictly) bigger than
i1.

These statements hold in particular for C given by the category of all symplectic
manifolds of some fixed dimension, which is at least 4. This answers Question 7
negatively for this category.

Another direct consequence of Theorem 15 is the following. We say that almost
no element of a given infinite set has a given property iff the subset of all elements
with this property has smaller cardinality than the whole set.

Corollary 17 (representability). Under the hypotheses of Theorem 15(ii) almost
no normalized capacity on C can be domain- or target-represented.

It follows that under the hypotheses of Theorem 15(ii) there are as many nor-
malized capacities that can be neither domain- nor target-represented, as there
are normalized capacities overall (namely i2). This provides some answers to
Questions 9,10, and 11.

Proof of Corollary 17. The set of isomorphism classes of 2n-dimensional manifolds
together with 2-forms has cardinality i1. This follows from Corollary 57 below.
The image of this set under the map [(M,ω)] 7→ cM,ω is the set of all domain-
representable capacities. It follows that at most i1 normalized capacities can be
domain-represented. A similar statement holds for target-representation. The
statement of Corollary 17 now follows from Theorem 15(ii). �

The proof technique for Corollary 16 can potentially also be used to show that
certain sets of capacities do not recognize morphisms, see Remark 20 below.

Remarks.

• As Corollary 16 holds for (kn, k)-form categories with k even and n ≥ 2,
the fact that generating systems of capacities are large, is not a genuinely
symplectic phenomenon.
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• The proof of Theorem 15(ii) shows that the cardinality of the set of discon-
tinuous normalized capacities is i2. This improves the result by K. Zehmisch
and the second author that discontinuous capacities exist, see [ZZ13].26

• The statements of Theorem 15(i,ii) and thus of Corollary 16 hold in a more
general setting, see Theorem 42 and Proposition 43 below. In particular,
let V,Ω be as in Theorem 15(i), j ∈ {1, 2, . . .}, and for each a ∈ R let Ma

be the complement of j disjoint open sets in some compact submanifold
of V n. The cardinality of Cap(C) equals i2, provided that Ma tM−a ∈ O
27 for every a, the volumes of the open sets are all equal (also for different
a), the volume of each Ma is small enough and strictly increasing in a, and
each Ma is 1-connected.
• Morally, Corollary 16 implies that every generating set of capacities has as

many elements as there are capacities. More precisely, we denote by ZF
the Zermelo-Fraenkel axiomatic system, and ZFC := ZF + AC. We claim
that ZFC is consistent with the statement that under the hypotheses of
Theorem 15(i) every subset of [0,∞]O0 that countably Borel-generates at
least Cap(C) has the same cardinality as Cap(C) (namely i2)

28.
To see this, assume that the generalized continuum hypothesis (GCH)
holds. This means that for every infinite cardinal α there is no cardinal
strictly between α and 2α. In particular, there is no cardinal strictly be-
tween i1 and i2 = 2i1 . Hence under the hypotheses of Theorem 15(i) by
Corollary 16(i) every subset of [0,∞]O0 that countably Borel-generates at
least NCap(C) has cardinality at least i2. By Theorem 15(i) this equals
the cardinality of Cap(C). Since GCH is consistent with ZFC 29, the claim
follows.

Remark 18 (comparison of different notions of generating systems). Let C be
a symplectic category and G a generating system of symplectic capacities on C
in the sense of [CHLS07, Problem 5, p. 17] (see p. 5), with the extra condition
that each combining function f : [0,∞]n → [0,∞] is Borel-measurable. Then G
countably Borel-generates Cap(C). (See Definition 14.)30 This holds in particular
if G is a generating system in the more restrictive sense proposed by CHLS after
[CHLS07, Problem 5, p. 17], in which only the maximum and minimum are allowed
as combining functions.

26The proof of [ZZ13, Theorem 1.2] actually shows that the spherical shell capacities used
in that proof are all different. This implies that the set of discontinuous normalized symplectic
capacities has cardinality at least i1.

27In particular we assume here that Ma is a smooth submanifold of V n.
28provided that ZF is consistent
29provided that ZF is consistent
30To see this, let c ∈ Cap(C). We choose a sequence of combining functions and capacities in

G as in the definition of generating system in [CHLS07, Problem 5, p. 17]. We define G0 to be
the set of all these capacities. Each combining function gives rise to a Borel-measurable function
from [0,∞]G0 to [0,∞]. Its restriction to the image of evG0 is measurable w.r.t. the σ-algebra
induced by the Borel σ-algebra. By assumption the sequence of these restrictions converges
pointwise. The limit f is again measurable. Since its target space is [0,∞], an argument involving
approximations by simple functions shows that f extends to a Borel-measurable function on
[0,∞]G0 . Hence G0 and f satisfy the conditions of Definition 14, as desired.
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Definition 14 relaxes the conditions in the definition of a generating system in
the sense of [CHLS07] in two ways:

• The combining functions are allowed to depend on countably many vari-
ables, i.e., elements of the generating system, not just on finitely many
variables.
• The assumption that the combining functions are homogeneous and mono-

tone is omitted.

Let C be a (m, k)-form category and G ⊆ Cap(C). We say that G recognizes
morphisms iff for each pair of objects (M,ω), (M ′, ω′) of C the following holds.
Assume that c(M,ω) ≤ c(M ′, ω′), for every c ∈ G. Then there exists a C-morphism
from (M,ω) to (M ′, ω′). CHLS asked the following as a central question in the
case in which C is a symplectic category and G = Cap(C) (see [CHLS07, Question
1, p. 20]):

Question 19. Does G recognize morphisms?

Remark 20 (generation and recognition of morphisms). Suppose the following:

(*) Every set that monotonely generates in the sense of the definition on p. 16
below, has cardinality bigger than i1.

Let G be a set of cardinality at most i1. Then G does not recognize morphisms.
Hence the answer to Question 19 is “no”. To see this, observe that by our as-
sumption (*) the set G does not monotonely generate. Therefore, by Proposition
59 below, it does not recognize morphisms.

By Corollary 16, under the hypotheses of Theorem 15(i), condition (*) is sat-
isfied with “monotonely generates” replaced by “countably τ0-Borel-generates”.
Therefore potentially, the proof technique for Corollary 16 may be adapted, in
order to provide a negative answer to Question 19 under suitable conditions on C
that do not involve (*).

Our second main result provides a condition that morally speaking, is weaker
than those of Theorem 15(i,ii), and under which every generating set of capaci-
ties is still uncountable. Here we use the following more restrictive meaning of
“generating”.

Definition 21 (Finitely differentiably generating set). Let S be a set, and F ,G ⊆
[0,∞]S. We say that G finitely-differentiably generates at least F iff the following
holds. For every F ∈ F there exists a finite subset G0 ⊆ G and a differentiable
map f : [0,∞]G0 → [0,∞], such that F = f ◦ evG0.31

Let now k, n ∈ N := {1, 2, . . .} and (M,ω) be an object of Ωkn,k. We call ω
maxipotent iff ω∧n = ω ∧ · · · ∧ ω does not vanish anywhere.

Remark 22 (maxipotency and nondegeneracy). Let V be a (real) vector space
and k ∈ N. We call a k-linear form ω on V nondegenerate iff interior multiplication
with ω is an injective map from V to the space of (k−1)-linear forms. Let k, n ∈ N
and assume that dimV = kn. We call a skewsymmetric k-form ω on V maxipotent

31Here we view [0,∞] as a compact 1-dimensional manifold with boundary. Its Cartesian
power is a manifold with boundary and corners. The map f is only assumed to be differentiable
one time, with possibly discontinuous derivative.
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iff ω∧n 6= 0. Every maxipotent form on V is nondegenerate. The converse holds if
and only if k = 1, k = 2, or n = 1.

Let (M,ω) be a maxipotent object of Ωkn,k. We equip M with the orientation
induced by ω∧n and define

(7) Vol(M) := Vol(M,ω) :=
1

n!

∫
M

ω∧n.

Remark 23 (volume). Assume that k is odd. Then we have ω ∧ ω = 0, and
therefore Vol(M,ω) = 0 in the case n ≥ 2.

Our second main result is the following.

Theorem 24 (uncountability of every generating set under a very mild hypoth-
esis). Let C = (O,M) be a small32 (kn, k)-form-category. Then every subset of
Cap(C) that finitely differentiably generates (at least) Cap(C), is uncountable, pro-
vided that there exists an interval A of positive length and a function M : A→ O,
such that

Ma := M(a) is maxipotent for every a ∈ A,(8)

Vol ◦M is continuous and strictly increasing,(9)

cMa(Ma′) = 1,∀a, a′ ∈ A : a ≤ a′.(10)

Remarks.

• Condition (8) ensures that the volume of each Ma is well-defined. Hence
condition (9) makes sense.
• Condition (10) means that M is “embedding-capacity-wise constant”, in

the sense that the composition of the map
{

(a, a′) ∈ A2
∣∣ a ≤ a′

}
3

(a, a′) 7→ (Ma,Ma′) with the “embedding capacity map” (X,X ′) 7→ cX(X ′)
is constant.
• Assume that there exists a function M satisfying (8,9). Then we have
n > 0. If n ≥ 2, then k is even. This follows from Remark 23. Assume
that there exists a function satisfying (8,9,10). Then we have k > 0. If each
Ma is compact, then n 6= 1. This follows from Moser’s isotopy argument.

Example 25. Let n ≥ 2 and A be an interval of positive length. We denote by
U the set of all open subsets of R2n that contain B2n

1 and are contained in Z2n
1 .

We equip each element of U with the restriction of the form ωst. Let M : A→ U
be an increasing map in the sense that a ≤ a′ implies that M(a) ⊆ M(a′). If M
also satisfies (9) then it satisfies all conditions of Theorem 24. The inequality “≤”
in condition (10) follows from Gromov’s nonsqueezing theorem.

Corollary 26 (uncountability of every generating set for ellipsoids). Let V be a
symplectic vector space of dimension at least 4. Then every subset of Cap(EllV )
that finitely-differentiably generates Cap(EllV ), is uncountable.

Proof. This follows from Theorem 24 and Example 25 by considering the ellipsoids

Ma :=

{
x =

(
x1, . . . , xn

)
∈ R2n = (R2)n

∣∣∣∣ n−1∑
i=1

‖xi‖2 +
‖xn‖2

a
< 1

}
,

32A category is called small iff the objects and the morphisms form sets.
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for a ∈ A := [1,∞). Here ‖ · ‖ denotes the Euclidean norm on R2. Our hypothesis
n ≥ 2 guarantees that the inequality “≤” in (10) holds. �

In particular, the Ekeland-Hofer capacities together with the volume capacity
do not finitely-differentiably generate the set of all generalized capacities on EllV .
This provides a negative answer to the variant of Question 12, involving the notion
of finite-differentiable generation.

Remark. The hypotheses of Theorems 15(i) and 24 do not imply each other.
However morally, the hypotheses of Theorem 15(i) are more restrictive than those
of Theorem 24. On the other hand, Theorem 15 directly implies Corollary 16, the
conclusion of which is stronger than that of Theorem 24.

1.3. Ideas of the proofs. The idea of the proof of Theorem 15(i) is the following.
Recall the definition (2) of the embedding capacity cM := cM,ω. We choose/ define
V,Ω, K, r,Ma as in the hypothesis of the theorem. We define Wa := Ma tM−a.
For each A ∈ P((0, r − 1)) 33 we define

cA := sup
a∈A

cWa .

This is a symplectic capacity, satisfying

cA(Wa) = 1, ∀a ∈ A,(11)

supa∈(0,r−1)\A cA(Wa) < 1.(12)

The second statement follows from an argument involving the helicity of an exact
k-form on a manifold of dimension kn − 1. (To build some intuition, see the
explanations on p. 21 and the Figures 1,2,3.) Helicity generalizes contact volume.
It is related to the volume induced by an exact k-form on an kn-manifold via
a variant of Stokes’ Theorem. The conditions (11,12) imply that cA 6= cA′ if
A 6= A′ ∈ P((0, r − 1)). Since the cardinality of P((0, r − 1)) equals i2, it follows
that the cardinality of Cap(C) is at least i2.

On the other hand, we denote by S the set of equivalence classes of symplectic
manifolds. This set has cardinality i1. Since Cap(C) can be viewed as a subset of
[0,∞]S, it has cardinality at most i2, hence equal to i2.

A refined version of this argument shows Theorem 15(ii), i.e., that |NCap(C)| =
i2. For this we normalize each capacity cA, by replacing it by the maximum of
cA and the Gromov width.

The proof of Theorem 15(iii) is based on the fact that the set of Borel-measurable
maps from a second countable space to a separable metrizable space has cardinality
at most i1. The proof of this uses the following well-known results:

• Every map f with target a separable metric space is determined by the
pre-images under f of balls with rational radii around points in a countable
dense subset.
• The σ-algebra generated by a collection of cardinality at most i1 has itself

cardinality at most i1. The proof of this uses transfinite induction.

33Here P(S) denotes the power set of a set S.
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The idea of the proof of Theorem 24 is to exploit the fact that every monotone
function on an interval is differentiable almost everywhere. It follows that for
every countable set G of symplectic capacities, there exists a point a0 ∈ A at
which the function a 7→ c(Ma) is differentiable, for every c ∈ G. On the other
hand, our hypotheses imply that the map a 7→ cMa0

(Ma) is not differentiable at
a0. It follows that G does not finitely differentiably generate cMa0

.

Remark (helicity). In [ZZ13] K. Zehmisch and F. Ziltener used helicity to show
that the spherical capacity is discontinuous on some smooth family of ellipsoidal
shells. This argument is related to the proof of Theorem 15(i,ii).

1.4. Related work. In this subsection we recall a result by D. McDuff, which
states that the ECH-capacities are monotonely generating for the category of
ellipsoids in dimension 4. On ellipsoids, these capacities are given by the following.
Let n, j ∈ N0. We define the map

N n
j : [0,∞)n → [0,∞),

N n
j (a) := min

{
b ∈ [0,∞)

∣∣∣∣∣ j + 1 ≤ #

{
m ∈ Nn

0

∣∣∣∣∣m · a =
n∑
i=1

miai ≤ b

}}
.

Remark. The sequence
(
N n
j (a)

)
j∈N0

is obtained by arranging all the nonnegative

integer combinations of a1, . . . , an in increasing order, with repetitions.

We define the ellipsoid

E(a) :=

{
x =

(
x1, . . . , xn) ∈ R2n = (R2)n

∣∣∣∣∣
n∑
i=1

‖xi‖2

ai
< 1

}
.

(Here ‖ · ‖ denotes the Euclidean norm on R2.) We equip this manifold with the
standard symplectic form.

Let (V, ω) be a symplectic vector space. We denote by OV,ω the set of all open
ellipsoids in V , equipped with the restriction of ω, byMV,ω the set of all symplectic
embeddings between elements of OV,ω, and ELLV,ω := (OV,ω,MV,ω). For every
j ∈ N0 we define the map

(13) cV,ωj : OV,ω → [0,∞),

by setting cV,ωj (E) := N n
j (a), where a ∈ [0,∞)n is such that E is affinely sym-

plectomorphic to E(a). This number is well-defined, i.e., such an a exists (see
[MS98, Lemma 2.43]) and N n

j (a) does not depend on its choice. The latter is
true, since if E(a) and E(a′) are affinely symplectomorphic, then a and a′ are
permutations of each other. (See [MS98, Lemma 2.43].) The following result is
due to M. Hutchings.

Theorem 27. If dimV = 4 then for every j ∈ N0 the map cV,ωj is a generalized
capacity.

Proof. Homogeneity follows from the definition of N n
j . Monotonicity was proved

by M. Hutchings in [Hut11, Proposition 1.2, Theorem 1.1]. �

Remark. cV,ωj is the restriction of the j-th ECH-capacity to ELLV,ω, see [Hut11,
Proposition 1.2].
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D. McDuff proved that the set of all cV,ωj (with j ∈ N0) monotonely generates
all generalized capacities. To explain this, let S, S ′ be sets. We fix (0,∞)-actions
on S and S ′ and call a map f : S → S ′ (positively 1-)homogeneous iff it is (0,∞)-
equivariant. We equip the interval (0,∞) with multiplication and let it act on the
extended interval [0,∞] via multiplication.

Recall that a preorder on a set S is a reflexive and transitive relation on S.
We call a map f between two preordered sets monotone (or increasing) if it pre-
serves the preorders, i.e., if s ≤ s′ implies that f(s) ≤ f(s′). Let (S,≤) be a
preordered set. We fix an order-preserving (0,∞)-action on S. We define the set
of (generalized) capacities on S to be

(14) Cap(S) :=
{
c ∈ [0,∞]S

∣∣ c monotone and (0,∞)-equivariant
}
.

We equip the set [0,∞]S with the preorder

x ≤ x′ ⇐⇒ x(s) ≤ x′(s), ∀s ∈ S.
Let G ⊆ Cap(S). We say that G monotonely generates iff for every c ∈ Cap(S)
there exists a monotone function F : [0,∞]G → [0,∞], such that c = F ◦ evG. We
say that G homogeneously and monotonely generates iff the function F above can
also be chosen to be homogeneous.

Remark. The set G monotonely generates if and only if it homogeneously and
monotonely generates. The “only if”-direction follows by considering the mono-
tonization (see p. 46 below) of the restriction of F as above to im(evG). Here we
use that every c ∈ Cap(S) is homogeneous, and thus F | im(evG) is homogeneous,
as well as Remark 60 below.

Let (V, ω) be a symplectic vector space. Recall the definition (13) of the capacity

cV,ωj . The next result easily follows from D. McDuff’s solution of the embedding
problem for ellipsoids in dimension 4.

Theorem 28 (monotone generation for ellipsoids in dimension 4). If dimV =

4 then the set of all cV,ωj (with j ∈ N0) monotonely generates (the generalized
capacities on the category of ellipsoids ELLV,ω).

This theorem provides a positive answer to the variant of Question 7 with “gen-
erating” in the sense of CHLS replaced by “monotonely generating”. Monotone
generation is (possibly nonstrictly) weaker than generation in the sense of CHLS,
since the pointwise limit of monotone functions is monotone. To deduce the theo-
rem from McDuff’s result, we characterize monotone generation in terms of almost
order-recognition, see Section B.

1.5. Organization of this article. In Section 2 we formulate Theorem 42, which
states that the cardinality of the set of (normalized) capacities is i2 for every
(kn, k)-form-category containing a suitable family of objects (Wa, ωa)a∈A0 . This
result generalizes Theorem 15(i,ii). A crucial hypothesis is the following. We
denote by Ia the set of connected components of the boundary of Wa, and I :=
(Ia)a∈A0 . Then the collection of boundary helicities associated with (Wa, ωa)a∈A0

is an I-collection. We introduce the notions of helicity and of an I-collection in
this section. We also state Proposition 43, which provides sufficient criteria for
the helicity hypothesis of Theorem 42.
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In Sections 3 and 4 we prove Theorem 42 and Proposition 43. Section 5 contains
the proof of Theorem 15(iii), which states that every set of cardinality at most i1

countably Borel-generates a set of cardinality at most i1.
Section 6 is devoted to the proof of our second main result, Theorem 24, stating

that every finitely differentiably generating set of capacities is uncountable under
some very mild hypothesis.

In Section A we prove an auxiliary result, which state that the set of diffeomor-
phism classes of manifolds has cardinality i1. We also show that the same holds
for the set of all equivalence classes of (M,ω), where M is a manifold and ω a
differential form on M .

Finally, in Section B we deduce Theorem 28 (monotone generation for ellipsoids)
from McDuff’s characterization of the existence of symplectic embeddings between
ellipsoids.

1.6. Acknowledgments. The authors would like to thank Felix Schlenk for shar-
ing his expertise on symplectic capacities. We also thank Urs Frauenfelder for an
interesting discussion, Timofey Rodionov and Jǐŕı Spurný for their help with a
question about Baire and Borel hierarchies, and Asaf Karagila for his help with a
question about aleph and bet numbers.

2. Proof of Theorem 15(i,ii) (cardinality of the set of capacities)

In this section we prove Theorem 15(i,ii), based on a more general result, Theo-
rem 42 below. That result states that the set of (normalized) capacities on a given
(kn, k)-category C has cardinality i2, provided that C contains a suitable family
of objects (Wa, ωa)a∈A0 . A crucial hypothesis is that the collection of boundary
helicities associated with (Wa, ωa)a∈A0 , is an I-collection.

We also state Proposition 43, which provides sufficient conditions for this hy-
pothesis to be satisfied.

2.1. (Boundary) helicity of an exact differential form. In this subsection
we introduce the notion of helicity of an exact form, and based on this, the notion
of boundary helicity.

Let k, n ∈ N0 be such that n ≥ 2, N a closed34 (kn − 1)-manifold, O an
orientation on N , and σ an exact k-form on N .

Definition 29 (helicity). We define the helicity of (N,O, σ) to be the integral

(15) h(N,O, σ) :=

∫
N,O

α ∧ σ∧(n−1),

where α is an arbitrary primitive of σ, and
∫
N,O

denotes integration over N
w.r.t. O.

We show that this number is well-defined, i.e., it does not depend on the choice
of the primitive α. Let α and α′ be primitives of σ. Then α′ − α is closed, and
therefore

(α′ − α) ∧ σ∧(n−1) = (−1)k−1d
(
(α′ − α) ∧ α ∧ σ∧(n−2)

)
.

34This means compact and without boundary.
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Here we used that n ≥ 2. Using Stokes’ Theorem and our assumption that N has
no boundary, it follows that∫

N,O

(α′ − α) ∧ σ∧(n−1) = 0.

Therefore, the integral (15) does not depend on the choice of α.

Remark 30 (case k odd, case n = 1). The helicity vanishes if k is odd. This
follows from the equality

α ∧ (dα)n−1 =
1

2
d
(
α∧2 ∧ (dα)n−2

)
,

which holds for every even-degree form α, and from Stokes’ Theorem. The helicity
is not well-defined in the case n = 1. Namely, in this case dimN = k − 1, and
therefore every (k−1)-form is a primitive of the k-form 0. Hence the integral (15)
depends on the choice of a primitive.

Remark 31 (orientation). Denoting by O the orientation opposite to O, we have

h(N,O, σ) = −h(N,O, σ).

Remark 32 (rescaling). For every c ∈ R we have

h
(
N,O, cσ

)
= cnh

(
N,O, σ

)
.

This follows from a straight-forward argument.

Remark 33 (naturality). Let N and N ′ be closed (kn − 1)-manifolds, O an
orientation on N , σ an exact k-form on N , and ϕ : N → N ′ a (smooth) embedding.
We denote

ϕ∗(N,O, σ) :=
(
ϕ(N), ϕ∗O,ϕ∗σ

)
(push-forwards of the orientation and the form). A straight-forward argument
shows that

h
(
ϕ∗
(
N,O, σ

))
= h(N,O, σ).

Remark 34 (helicity of a vector field). In the case k = 2 and n = 2 the integral
(15) equals the helicity of a vector field V on a three-manifold N , which is dual to
the two-form σ, via some fixed volume form. See [AK98, Definition 1.14, p. 125].
This justifies the name “helicity” for the map h.

The helicity of the boundary of a compact manifold equals the volume of the
manifold. This is a crucial ingredient of the proofs of the main results and the
content of the following lemma. Let M be a manifold, N ⊆ M a submanifold,
and ω a differential form on M . We denote by ∂M the boundary of M , and

(16) ωN := pullback of ω by the canonical inclusion of N into M .

If O is an orientation on M and N is contained in ∂M , then we define

(17) ON := OM
N := orientation of N induced by O.

Let k, n ∈ N0, such that n ≥ 2, (M,O) be a compact oriented (smooth) manifold
of dimension kn and ω an exact k-form on M .
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Lemma 35 (volume = helicity). The following equality holds:∫
M,O

ω∧n = h
(
∂M,O∂M , ω∂M

)
.

Remark. The left hand side of this equality is n! times the signed volume of M
associated with O and ω.

Proof of Lemma 35. Choosing a primitive α of ω, we have

ω∧n = d
(
α ∧ ω∧(n−1)

)
,

and therefore, by Stokes’ Theorem,∫
M,O

ω∧n =

∫
∂M,O∂M

α ∧ ω∧(n−1) = h(∂M,O∂M , ω∂M).

This proves Lemma 35. �

This lemma has the following consequence. We denote

IM :=
{

connected component of ∂M
}
.

Definition 36 (boundary helicity). We define the boundary helicity of (M,O, ω)
to be the map

hM := hM,O,ω : IM → R, hM,O,ω(i) := h
(
i, Oi, ωi

)
,

Corollary 37 (volume = helicity). The following equality holds:∫
M,O

ω∧n =
∑
i∈IM

h
(
i, Oi, ωi

)
.

Proof. This directly follows from Lemma 35. �

2.2. I-collections. An I-collection is collection f = (fa)a∈A0 of real-valued func-
tions with finite domains, such that the supremum of a certain set of numbers is
less than 1. The set consists of all numbers C for which A∪B is nonempty, where
A and B are certain sets of partitions, which depend on f and C. I-collections will
occur in the generalized main result, Theorem 42 below. Namely, one hypothesis
of this result is that the boundary helicities of a certain collection of manifolds
and forms, are an I-collection.

Definition 38. Let I and I ′ be finite sets. A (I, I ′)-partition is a partition P of
the disjoint union I t I ′, such that

(18) ∀J ∈ P : |J ∩ I| = 1.

Let f : I → R, f ′ : I ′ → R, and C ∈ (0,∞). For every J ⊆ I t I ′ we define

(19)
∑

J,f,f ′,C
:= −C

∑
i∈J∩I

f(i) +
∑

i′∈J∩I′
f ′(i′).

A (f, f ′, C)-partition is a (I, I ′)-partition P such that

(20)
∑

J,f,f ′,C
≥ 0, ∀J ∈ P .

Definition 39. Let I+, I−, I ′ be finite sets. We denote I := I+tI−. A
(
I+, I−, I ′

)
-

partition is a partition P of I t I ′ with the following properties:
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(a) There exists a unique element of P that intersects both I+ and I− in exactly
one point.

(b) All other J ∈ P intersect I in exactly one point.

Let f± : I± → R, f ′ : I ′ → R, and C ∈ (0,∞). We denote by f := f+ t f− : I →
R the disjoint union of functions.35 A (f+, f−, f ′, C)-partition is a (I+, I−, I ′)-
partition satisfying (20).

Remark 40. Every (I+, I−, I ′)-partition P satisfies

|P| = |I| − 1.

Let A0 be an interval and I a collection of finite sets indexed by A0, i.e., a map
from A0 to the class of all finite sets. We denote Ia := I(a). Let f =

(
fa : Ia →

R
)
a∈A0

be a collection of functions. We define

(21) Cf
0 := sup

{
C ∈ (0,∞)

∣∣ ∃a, a′ ∈ A0 : a > a′, ∃
(
fa, fa′ , C

)
-partition

}
,

Cf
1 := sup

{
C ∈ (0,∞)

∣∣ ∃a, a′ ∈ A0 ∩ (0,∞) : a < a′,(22)

∃
(
fa, f−a, fa′ , C

)
-partition

}
.

Here we use the convention that sup ∅ := 0.

Definition 41 (I-collection). We call f an I-collection iff the following holds:

Cf
0 < 1,(23)

Cf
1 < 1.(24)

Remark. The condition of being an I-collection is invariant under rescaling by
some positive constant.

2.3. Cardinality of the set of capacities in a more general setting, suf-
ficient conditions for being an I-collection, proof of Theorem 15(i,ii).
Theorem 15(i,ii) is a special case of the following more general result. We call
a k-form ω on a kn-manifold maxipotent iff ω∧n = ω ∧ · · · ∧ ω does not vanish
anywhere. 36In this case we denote

Oω := orientation on M induced by ω∧n.

Recall that B,Z denote the unit ball and the standard symplectic cylinder, ωst

the standard symplectic form, cM,ω the embedding capacity for (M,ω) as in (2),
and w the Gromov width.

Theorem 42 (cardinality of the set of (normalized) capacities, more general set-
ting). The following holds:

(i) Let k, n ∈ {2, 3, . . .} with k even, and C = (O,M) be a (kn, k)-form-category.
Then the cardinality of Cap(C) equals i2, provided that there exist an inter-
val A0 around 0 of positive length, and a collection (Ma, ωa)a∈A0 of objects
of Ωkn,k, such that for every a ∈ A0, Ma is nonempty, compact, and 1-
connected,37 ωa is maxipotent and exact, and the following holds:
(a) (Wa, ηa) := (Ma tM−a, ωa t ω−a) ∈ O, for every a ∈ A0 ∩ (0,∞).

35This is the function defined by f(i) := f±(i) if i ∈ I±.
36See Remark 22 for the relation between maxipotency and nondegeneracy.
37This means connected and simply connected.
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(b) We denote by Ia the set of connected components of ∂Ma, and I :=
(Ia)a∈A0. The collection of boundary helicities f :=

(
hMa,Oωa ,ωa

)
a∈A0

is

an I-collection.
(ii) Let n ∈ {2, 3, . . . , } and C = (O,M) be a symplectic category that contains

the objects B and Z. Then the cardinality of NCap(C) equals i2, provided
that there exist A0 and (Ma, ωa)a∈A0 as in (i), such that also the following
holds:
(a) supa∈A0

w(Ma, ωa) < 1
(b) supa∈A0

cMa,ωa(Z, ωst) ≤ π

We will prove this theorem in Section 3. The idea of the proof is to consider
the family of capacities

cA := sup
a∈A

cWa,ηa , A ∈ P
(
A0 ∩ (0,∞)

)
.

Hypothesis (ib) implies that there exists c0 < 1 such that for all a 6= a′ ∈ (0,∞)
and c ≥ c0, the pair (Wa, cηa) does not embed into (Wa′ , ηa′). See the explanations
below. It follows that

sup
{
cA(Wa, ηa)

∣∣ a ∈ A0 ∩ (0,∞) \ A
}
< 1, ∀A.

Since also cA(Wa, ηa) = 1, for every a ∈ A, it follows that

cA 6= cA′ , if A 6= A′.

Since the cardinality of P((0,∞)) equals i2, it follows that the cardinality of
Cap(C) is at least i2. On the other hand, we denote by S the set of equivalence
classes of symplectic manifolds. This set has cardinality i1. Since Cap(C) can be
viewed as a subset of [0,∞]S, it has cardinality at most i2, hence equal to i2.

A refined version of this argument shows that |NCap(C)| = i2. For this we
normalize each capacity cA, by replacing it by the maximum of cA and the Gro-
mov width. Hypothesis (iia) guarantees that the modified capacities are still all
different from each other. Hypothesis (iib) guarantees that they are normalized.

To understand the reason why no big multiple of (Wa, ηa) embeds into (Wa′ , ηa′),
consider the case in which each Ma is a spherical shell in a symplectic vector
space, with inner radius 1 and outer radius r + a for some fixed r > 1. Assume
that (Ma, cωa) embeds into (Ma′ , ωa′) in such a way that the image of the inner
boundary sphere of Ma wraps around the inner boundary sphere of Ma′ . By
Corollary 37 (Stokes’ Theorem for helicity) and Remark 31 the difference of the
helicities of these spheres equals the enclosed volume on the right hand side. Since
this volume is nonnegative, it follows that c ≥ 1. Using our hypothesis (ib) that
the collection of boundary helicities is an I-collection, it follows that a ≤ a′.

It follows that if a > a′ then no multiple of Wa (symplectically) embeds into
Wa′ in such a way that the inner boundary sphere of Ma wraps around one of
the two inner boundary spheres of Wa′ . Figure 1 illustrates this. In contrast with
this, Figure 2 shows a possible embedding. In this case our helicity hypothesis
(ib) implies that the rescaling factor is small.

If a < a′ then Ma embeds into Ma′ (without rescaling). However, there is not
enough space left for M−a. See Figure 3.
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Figure 1. If a > a′ then no multiple of the red spherical shell Ma

(symplectically) embeds into the blue shell Ma′ in such a way that
the inner boundary sphere of the red shell wraps around the inner
boundary sphere of the blue shell, since our helicity hypothesis (ib)
forces the rescaling factor to be at least 1.

Figure 2. A possible embedding of (Wa, cηa) into (Wa′ , ηa′) in the
case a > a′. The constant c needs to be small (even if a is close to
a′), since the volume of the hole enclosed by the image of Ma equals
minus c times the helicity of the inner boundary sphere of Ma. Here
we use again our helicity hypothesis (ib).
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Figure 3. An attempt for an embedding of Wa into Ma′ in the case
a < a′ (without rescaling). The image of M−a overlaps itself, since
there is not enough space left in Ma′ .

In the proof of Theorem 15(i) we will use the following sufficient criterion for
condition (ib) of Theorem 42. For every finite set S and every function f : S → R
we denote

(25)
∑

f :=
∑
s∈S

f(s).

Let A0 be an interval, I := (Ia)a∈A0 a collection of finite sets, and f =
(
fa : Ia →

R
)
a∈A0

a collection of functions. We define the disjoint unions of I and f to be⊔
I :=

⊔
a∈A0

Ia :=
{

(a, i)
∣∣ a ∈ A0, i ∈ Ia

}
,⊔

f :
⊔
I → R,

⊔
f(a, i) := fa(i).

Proposition 43 (sufficient conditions for being an I-collection). The collection f
is an I-collection if there exists ` ∈ N0, such that the following holds:

(i) For all a ∈ A0 we have

|Ia| = `,(26)

fa ≥ −1,(27)

f−1a (−1) 6= ∅,(28)

|f−1a ((0,∞))| = 1,(29) ∑
fa ≤ 1.(30)

(ii) For all a, a′ ∈ A0 we have

(31)
∑

fa >
∑

fa′ , if a > a′.

(iii) We have

(32) sup
(

im
(⊔

f
)
∩ (−∞, 0]

)
< −1 + inf

a∈A0

∑
fa.
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If ` ≥ 4 then we have

(33) sup
⊔

f < 2 inf
(

im
(⊔

f
)
∩ (0,∞)

)
+ 1.

Remark. The conditions (28,29) imply that ` ≥ 2.

We will prove this proposition in Section 4.

Proof of Theorem 15(i,ii). (i): We choose V,Ω, K, r as in the hypothesis. We
define

ω := Ω⊕n.

Since by hypothesis, k is even and Ω is a volume form, the form ω is maxipotent,
i.e., ω∧n is a volume form. We denote by O the orientation on V n induced by this
form. Since by hypothesis, K is nonempty and strictly starshaped around 0, its
interior contains 0. It follows that

C :=

∫
K,O

ω∧n > 0.38

By hypothesis, we have

(34) a1 := min
{
r − 1,

kn
√

2− r
}
> 0.

We choose a0 ∈ (0, a1) and define A0 := [−a0, a0]. For every a ∈ A0 we define

Ma := (r + a)K \ intK,(35)

ωa := C−
1
nω
∣∣Ma,(36)

Ia :=
{

connected component of ∂Ma

}
,(37)

I := (Ia)a∈A0 .

The form ωa is well-defined, since C > 0. We check the hypotheses of Theorem
42(i). Let a ∈ A0. The set Ma is compact. Since K is strictly starshaped around
0, Ma is a smooth submanifold of V n that continuously deformation retracts onto
∂K. The manifold ∂K is homeomorphic to the sphere Skn−11 . Since by hypothesis
k, n ≥ 2, this sphere is 1-connected. Hence the same holds for Ma. The form Ω is
exact. Hence the same holds for ω and thus for ωa.

Condition (ia) is satisfied by our hypothesis and the rescaling property for a
(kn, k)-form-category. We show that the collection of boundary helicities

(38) f :=
(
fa := hMa,Oωa ,ωa

)
a∈A0

satisfies (ib). We check the hypotheses of Proposition 43. Let s ∈ (0,∞). We
denote by Os the orientation on ∂(sK) induced by O and sK. By Lemma 35 we
have

(39) h
(
∂(sK), Os, ω∂(sK)

)
=

∫
sK,O

ω∧n = Cskn.

For every connected component i of ∂Ma we denote by Oi the orientation of i
induced by O,Ma. Using (39,36) and Remarks 32,31, we obtain

(40) h (i, Oi, (ωa)i) =

{
(r + a)kn, for i = ∂

(
(r + a)K

)
,

−1, for i = ∂K.

38Here we view V n as a manifold and ω as a differential form on it.
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Here we used that the orientation of ∂K induced by O and Ma is the opposite of
O1. It follows that
(41)∑

fa :=
∑
i∈Ia

fa(i) = −1+(r+a)kn ∈
[
−1+(r−a0)kn,−1+(r+a0)

kn
]
, ∀a ∈ A0.

Since a0 < a1 ≤ r − 1, we have −1 + (r − a0)
kn > 0. Hence by (41), we have

infa∈A0

∑
fa > 0. Using (40), it follows that condition (32) is satisfied.

Since a0 < a1 ≤ kn
√

2−r, we have −1+(r+a0)
kn < 1. Using (41), it follows that

supa∈A0

∑
fa < 1. Hence inequality (30) is satisfied. The collection f also satisfies

the other hypotheses of Proposition 43. Applying this proposition, it follows that
f is an I-collection. Hence condition (ib) is satisfied.

Therefore, all hypotheses of Theorem 42(i) are satisfied. Applying this theo-
rem, it follows that the cardinality of Cap(C) equals i2. This proves Theorem 15(i).

To prove (ii), assume that the hypotheses of this part of the theorem are sat-
isfied. We choose r ∈

(
1, 2n
√

2
)

satisfying (6). We define V := R2, Ω to be the

standard area form on R2, K := B
2n

1 , and a1 as in (34). We choose a0 ∈ (0, a1),
and define A0 := [−a0, a0] and (Ma, ωa) as in (35,36). The tripel (V,Ω, K) sat-
isfies the conditions of part (i) of Theorem 15. Hence by what we proved above,

the collection (Ma, ωa) =
(
Shr+a, C

− 1
nωst

∣∣Ma

)
, a ∈ A0, satisfies the conditions of

Theorem 42(i).
We check the condition (iia). We define Ia and fa as in (37,38). For every

a ∈ A0 we have ∫
Ma

ω∧na =
∑

fa (by Corollary 37)

= −1 + (r + a)2n (by (41)),

≤ −1 + (r + a0)
2n.

Since
∫
B
ω∧nst = πn, it follows that

w(Ma, ωa) ≤ n
√
−1 + (r + a0)2n.

Using the inequalities a0 < a1 ≤ 2n
√

2− r, it follows that

sup
a∈A0

w(Ma, ωa) ≤ n
√
−1 + (r + a0)2n < 1.

Hence condition (iia) is satisfied.
We check (iib). Let a ∈ A0. Then we have r + a ≥ r − a0 > r − a1 ≥ 1. Hence

denoting s := r+a+1
2

, the shell Shr+a contains the sphere S2n−1
s . Using skinny

nonsqueezing ([SZ12, Corollary 5, p. 8]) and the inequalities n ≥ 2, s > 1, it
follows that (Ma, bωa) does not symplectically embed into Z for any b ≥ 1. Hence
(iib) holds.

Therefore, all hypotheses of Theorem 42(ii) are satisfied. Applying this part of
the theorem, it follows that the cardinality of NCap(C) equals i2. This proves
Theorem 15(ii). �
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3. Proof of Theorem 42 (cardinality of the set of capacities,
more general setting)

As mentioned, the idea of proof of Theorem 42 is that our helicity hypothesis
(ib) and Stokes’ Theorem for helicity imply that for a 6= a′ only small multiples
of (Wa, ηa) embed into (Wa′ , ηa′). The idea behind this is that every embedding
ϕ of Ma into Ma′ gives rise to a partition of the disjoint union of the sets of
connected components of ∂Ma and ∂Ma′ . The elements of this partition consist
of components that lie in the same connected component of the complement of
ϕ(IntM). Here IntM denotes the interior of M as a manifold with boundary, and
we identify each component of ∂Ma with its image under ϕ.

Stokes’ Theorem for helicity implies that the inequality (20) is satisfied. To-
gether with a similar argument in which we consider embeddings of Wa into Ma′ , it
follows that the partition satisfies the conditions of Definitions 38,39. Combining
this with our helicity hypothesis (ib), it follows that indeed only small multiples
of Wa embed into Wa′ .

Lemmata 46 and 48 below will be used to make this argument precise. To
formulate the first lemma, we need the following.

Remark 44 (pullback of relation). Let S ′, S be sets, R a relation on S, and
f : S ′ → S a map. Denoting by × the Cartesian product of maps, the set

R′ := f ∗R := (f × f)−1(R)

is a relation on S ′. If R is reflexive/ symmetric/ transitive, then the same holds
for R′.

Let X be a topological space. We define

(42) CX :=
{

path-connected subset of X
}

and the relation ∼X on CX by

(43) A ∼X B :⇐⇒ ∃ continuous path starting in A and ending in B.

This is an equivalence relation.
Let M and M ′ be topological manifolds of the same dimension, and ϕ : M →M ′

a topological embedding, i.e., a homeomorphism onto its image. We denote by
Int(M) and ∂M the interior and the boundary of M as a manifold with boundary.
We denote

I := IM :=
{

connected component of ∂M
}
, I ′ := IM ′(44)

P := M ′ \ ϕ(Int(M)).(45)

We define

Φ : P(M)→ P(M ′), Φ(A) := image of A under ϕ,

Ψ : I t I ′ → P(P ), Ψ := Φ on I, Ψ := id on I ′,

∼ϕ:= Ψ∗ ∼P ,
Pϕ := partition of I t I ′ associated with ∼ϕ .
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Remark 45 (partition induced by embedding). For every path-component P0 of
P we define

Jϕ(P0) := Ψ−1(P(P0))(46)

=
{
i ∈ I

∣∣Φ(i) ∈ P(P0)
}
t (I ′ ∩ P(P0)).

The map
Jϕ :

{
path-component P0 of P : Jϕ(P0) 6= ∅

}
→ Pϕ

is well-defined and a bijection.

For every field F and i ∈ N0 we denote by Hi(M ;F ) the degree i singular
homology of M with coefficients in F .

Lemma 46 (partition associated with an embedding). Assume that M,M ′ are
compact, M ′ is connected, ∂M ′ 6= ∅, and that there exists a field F , for which
H1(M

′;F ) vanishes. Then the following holds:

(i) If M is nonempty and connected then Pϕ is a (IM , IM ′)-partition.
(ii) If M consists of precisely two connected components M+ and M− then Pϕ

is a
(
IM+ , IM− , IM ′

)
-partition.

Recall that the first statement means that condition (18) is satisfied, i.e., |J ∩ IM | = 1
for every J ∈ Pϕ. The idea of proof of the inequality ≤ 1 is the following. Each
J corresponds to a path-component P0 of the complement of ϕ(IntM). Suppose
that there exists J that intersects IM in at least two points i0, i1 (= components
of ∂M). Then there is a path in P0 joining ϕ(i0) and ϕ(i1). By connecting this
path with a path in ϕ(M) with the same endpoints, we obtain a loop in M ′ that
intersects i0 and i1 in one point each. See Figure 4.

Figure 4. The blue region is the image of M under ϕ, and the
red and green regions are the path-components of the complement
of ϕ(IntM). The red region contains the images of two connected
components i0, i1 of the boundary of M . The yellow loop intersects
these images in one point each.

Hence the algebraic intersection number of this loop with i0 equals 1. In partic-
ular, it represents a nonzero first homology class. Hence the hypothesis that the
first homology of M ′ vanishes, is violated. It follows that |J ∩ IM | ≤ 1.
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In order to make this argument precise one needs to ensure that the algebraic
intersection number equals the “näıve intersection number”. For simplicity, we
therefore use an alternative method of proof, which is based on a certain Mayer-
Vietoris sequence for singular homology. We need the following.

Remark 47 (embedding is open, boundary). We denote by ∂XS the boundary
of a subset S of a topological space X. Let M,M ′ be topological manifolds of the
same dimension n, and ϕ : M → M ′ an injective continuous map. By invariance
of the domain, in every pair of charts for IntM and M ′, the map ϕ sends every
open subset of Rn to an open subset of Rn. It follows that the set ϕ(IntM) is
open in M ′. This implies that

ϕ(∂M) ⊆ ∂M
′
ϕ(IntM),

and if M is compact, then equality holds.
Suppose now that M is nonempty and compact, ∂M = ∅, and M ′ is connected.

Then M ′ has no boundary, either. To see this, observe that ϕ(M) is compact,
hence closed in M ′. Since M = IntM , as mentioned above, ϕ(M) is also open.
Since M ′ is connected, it follows that ϕ(M) = M ′. Since in every pair of charts
for M and M ′, ϕ sends every open subset of Rn to an open subset of Rn, it follows
that ∂M ′ = ∅.

Proof of Lemma 46. Assume that M,M ′ are compact, M 6= ∅, M ′ is connected,
and ∂M ′ 6= ∅. We denote

I := IM , I ′ := IM ′ , P := M ′ \ ϕ(Int(M)),

and by k the number of connected components of M .

Claim 1. We have

(47) |Pϕ| = |I|+ 1− k.

Proof of Claim 1. Let P0 be a path-component of P .

Claim 2. P0 intersects ϕ(∂M).

Proof of Claim 2. By Remark 47 we have ∂M 6= ∅. Since by hypothesis, M ′ is
connected, there exists a continuous path x′ : [0, 1] → M ′ that starts in P0 and
ends at ϕ(∂M). Since M is compact, the same holds for ∂M , and hence for
ϕ(∂M). Hence the minimum

t0 := min
{
t ∈ [0, 1]

∣∣x′(t) ∈ ϕ(∂M)
}

exists. By Remark 47 the set ϕ(IntM) is open in M ′. It follows that x′(t0) 6∈
ϕ(IntM), and hence x′([0, t0]) ⊆ P = M ′\ϕ(IntM). (In the case t0 = 0 this holds,
since x′(0) ∈ P0 ⊆ P .) It follows that x′(t0) ∈ P0. Since also x′(t0) ∈ ϕ(∂M), it
follows that P0 ∩ ϕ(∂M) 6= ∅. This proves Claim 2. �

Claim 2 implies that the set Jϕ(P0) (defined as in (46)) is nonempty. Hence by
Remark 45 we have

(48)
∣∣{path-component of P

}∣∣ = |Pϕ|.



GENERATING SYSTEMS FOR SYMPLECTIC CAPACITIES 29

By M. Brown’s Collar Neighbourhood Theorem [Bro62] (see also [Con71, Theorem,
p. 180]) there exists an open subset V of M and a (strong) deformation retraction
h of V onto ∂M . We define

A := ϕ(M), B := M ′ \ ϕ(M \ V ).

Extending ϕ ◦ ht ◦ ϕ−1 : ϕ(V ) → ϕ(V ) by the identity, we obtain a map h′ :
[0, 1] × B → B. Since by Remark 47, the restriction of ϕ to IntM is open, the
map h′ is continuous, and therefore a deformation retraction of B onto P .

We choose a field F as in the hypothesis, and denote by Hi singular homology
in degree i with coefficients in F . Since P is a deformation retract of B, these
spaces have isomorphic H0. Combining this with (48), it follows that

|Pϕ| =
∣∣{path-component of P

}∣∣
= dimH0(P )

= dimH0(B).(49)

The interiors of A and B cover M ′. Therefore, the Mayer-Vietoris Theorem implies
that there is an exact sequence

. . .→ H1(M
′)→ H0(A ∩B)→ H0(A)⊕H0(B)→ H0(M

′)→ 0.

Since by hypothesis, H1(M
′) = 0, it follows that

(50) dimH0(B) = dimH0(A ∩B) + dimH0(M
′)− dimH0(A).

Since A ∩ B = ϕ(V ) and ϕ is a homeomorphism onto its image, we have H0(A ∩
B) ∼= H0(V ). Since V deformation retracts onto ∂M , we have H0(V ) ∼= H0(∂M),
hence H0(A ∩ B) ∼= H0(∂M). Since ∂M is a topological manifold, its path-
components are precisely its connected components. Recalling the definition (44)
of I, it follows that

(51) dimH0(A ∩B) = |I|.
Since by hypothesis M ′ is connected, we have

(52) dimH0(M
′) = 1.

Since A := ϕ(M), we have H0(A) ∼= H0(M), and therefore

dimH0(A) = k.

Combining this with (49,50,51,52), equality (47) follows. This proves Claim 1. �

Remark 45 and Claim 2 imply that every element of Pϕ intersects I.
We prove (i). Assume that M is connected. Then by Claim 1, we have
|Pϕ| = |I|. It follows that |J ∩ I| = 1, for every J ∈ Pϕ. Hence Pϕ is a
(I, I ′)-partition. This proves (i).

Assume now that M± are as in the hypothesis of (ii). By Claim 1 we have
|Pϕ| = |I| − 1. Since every element of Pϕ intersects I, it follows that there exists
a unique J0 ∈ Pϕ, such that |J0 ∩ I| = 2, and

(53) |J ∩ I| = 1, ∀J ∈ Pϕ \ {J0}.
By Remark 45 there exists a unique path-component P0 of P , such that J0 =
Jϕ(P0).



30 DUŠAN JOKSIMOVIĆ AND FABIAN ZILTENER

Claim 3. We have

J0 ∩ I− 6= ∅ 6= J0 ∩ I+.

Proof of Claim 3. We denote by P+
0 the path-component of M ′ \ϕ(Int(M+)) con-

taining P0. Assume by contradiction that P+
0 ∩ ϕ(M−) = ∅. Then we have

P+
0 = P0, Jϕ|M

+

(P+
0 ) = Jϕ(P0) = J0, J0 ∩ I = J0 ∩ I+.

Since |J0 ∩ I| = 2, we obtain a contradiction with (i), with I, ϕ replaced by
I+, ϕ|M+. Hence we have

P+
0 ∩ ϕ(M−) 6= ∅.

It follows that there exists a continuous path x′ : [0, 1] → M ′ \ ϕ(Int(M+)) that
starts at P0 and ends at ϕ(M−). Since M is compact, the same holds for ϕ(M−).
Hence the minimum

t0 := min
{
t ∈ [0, 1]

∣∣x′(t) ∈ ϕ(M−)
}

exists. By Remark 47 the set ϕ(IntM−) is open. It follows that x′(t0) 6∈ ϕ(IntM−),
hence x′([0, t0]) ⊆ P , and therefore

(54) x′(t0) ∈ P0.

On the other hand x′(t0) ∈ ϕ(M−) ⊆ ϕ(IntM−), and therefore

x′(t0) ∈ ∂M
′
ϕ(IntM−) = ϕ(∂M−).

Here we used Remark 47. Combining this with (54), it follows that P0∩ϕ(∂M−) 6=
∅, and therefore J0 ∩ I− 6= ∅.

An analogous argument shows that J0 ∩ I+ 6= ∅. This proves Claim 3. �

By Claim 3 and (53) Pϕ is a
(
I+, I−, I ′

)
-partition. This proves (ii) and com-

pletes the proof of Lemma 46. �

The second ingredient of the proof of Theorem 42 is the following. Let k, n ∈
N0 with n ≥ 2, M,M ′ be compact (smooth) manifolds of dimension kn, ω, ω′

exact maxipotent k-forms on M,M ′, c ∈ (0,∞), and ϕ : M → M ′ a (smooth)
orientation preserving embedding that intertwines cω and ω′. We denote by O,O′

the orientations of M,M ′ induced by ω, ω′. Recall Definitions 29,36 of (boundary)
helicity.

Lemma 48 (helicity inequality). Condition (20) holds with P = Pϕ, f = hM,O,ω,
f ′ = hM ′,O′,ω′, and C := cn.

The reason for this is that the left hand side of (20) is the volume of the path-
component of the complement of ϕ(IntM), determined by J . To make this precise,
we need the following.

Remark 49. Let X and X ′ be topological spaces and f : X → X ′ be continuous.
Recall the definitions (42,43) of CX and ∼X .

(i) The map

f∗ : CX → CX′ , f∗(A) := f(A),

is well-defined. Furthermore, we have

f∗ × f∗(∼X) ⊆∼X′ .
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(ii) Assume that X = X ′ and for every x ∈ X there exists a continuous path
from x to f(x). Then for every pair A,B ∈ CX we have

f∗(A) ∼f(X) f∗(B)⇒ A ∼X B.

This follows from transitivity of ∼X .

Proof of Lemma 48. LetM,O, ω,M ′, O′, ω′, c, ϕ be as in the hypothesis. We define
I = IM , I

′ = IM ′ as in (44). Consider first the case in which

(55) ϕ(∂M) ∩ ∂M ′ = ∅.

Then the set

P := M ′ \ ϕ(IntM)

is a smooth submanifold of M ′. Let i ∈ I. We denote î := ϕ(i). We define OM
N as

in (17), and abbreviate

Oi := OM
i , Oî := (O′)P

î
.

Recall that O denotes the orientation opposite to O. Since ϕ intertwines O,O′,
and P, ϕ(M) lie on opposite sides of î, we have

(56) (ϕ|i)∗Oi = (ϕ|i)∗Oi = Oî.

Recall the definition (16) of ωN . Since ϕ intertwines cω, ω′, we have

(57) (ϕ|i)∗cωi = ω′
î
.

We have

− cnh(i, Oi, ωi) = cnh(i, Oi, ωi) (by Remark 31)

= h
(
i, Oi, cωi

)
(by Remark 32)

= h
(

(ϕ|i)∗
(
i, Oi, cωi

))
(by Remark 33)

= h
(̂
i, Oî, ω

′
î

)
(using î = ϕ(i), (56,57)).(58)

Let P0 be a path-component of P . We define J := Jϕ(P0) as in (46). Using
hM,O,ω(i) = h(i, Oi, ωi) and (58), we have

− cn
∑
i∈J∩I

hM,O,ω(i) +
∑

i′∈J∩I′
hM ′,O′,ω′(i

′)

=
∑
î∈IP0

hP0,O′|P0,ω′|P0 (̂i)

=

∫
P0,O′|P0

ω′
n

(using Corollary 37)

≥ 0.

Hence the statement of Lemma 48 holds in the case (55).
Consider now the general situation. Let (Ki, ri)i∈I be a collection, where for

each i ∈ I, Ki is a compact connected neighbourhood of i that is a (smooth)
submanifold of M (with boundary), and ri : Ki → i is a continuous retraction,
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such that the sets Ki, i ∈ I, are disjoint. We denote by int(Ki) the interior of Ki

in M . We define

M̃ := M \
⋃
i∈I int(Ki),

ϕ̃ := ϕ|M̃,

Ĩi := IKi
\ {i}, ∀i ∈ I, Ĩ := IM̃ .

We define

(59) ˜ : P(I t I ′)→ P
(
Ĩ t I ′

)
, J̃ := (J \ I) ∪

⋃
i∈J∩I

Ĩi.

The set M̃ is a submanifold of M , and

(60) ϕ̃(∂M̃) ∩ ∂M ′ = ∅.

Claim 1.

(61) P ϕ̃ = P̃ϕ :=
{
J̃
∣∣ J ∈ Pϕ}.

Proof of Claim 1. We define

P̃ := M ′ \ ϕ(Int(M̃)), r : P̃ → P,

by setting

r :=

{
ϕ ◦ ri ◦ ϕ−1 on ϕ(Ki), with i ∈ I,
r = id on M ′ \ ϕ(M).

Since the sets Ki are disjoint, the map r is well-defined. Since by hypothesis,
ϕ is an embedding between two manifolds of the same dimension, the map r is
continuous. Let i ∈ I. Since Ki is path-connected and ri is a retraction onto the
subset i of Ki, the hypotheses of Remark 49(ii) are satisfied with f = r. Applying

this remark, it follows that for every pair Ã, B̃ of path-connected subsets of P̃ we
have

Ã ∼P̃ B̃ ⇐⇒ r(Ã) ∼r(P̃ )=P r(B̃).

This implies that if i0, i1 ∈ I, ĩk ∈ Ĩik , for k = 0, 1, and i′0, i
′
1 ∈ I ′ then

ĩ0 ∼ϕ̃ ĩ1 ⇐⇒ i0 ∼ϕ i1, i′0 ∼ϕ̃ i′1 ⇐⇒ i′0 ∼ϕ i′1, ĩ0 ∼ϕ̃ i′0 ⇐⇒ i0 ∼ϕ i′0.
Equality (61) follows. This proves Claim 1. �

We abbreviate
hM := hM,O,ω.

Recall the definition (19). Using (60), by what we already proved, condition (20)

holds with I replaced by Ĩ, P := P ϕ̃, f := hM̃ , f ′ := hM ′ , and C := cn. Using
Claim 1, it follows that

(62)
∑

J̃ ,h
M̃
,hM′ ,c

n
≥ 0, ∀J ∈ Pϕ.

We denote by ∂XS the boundary of a subset S of a topological space X. For every
i ∈ I Remark 31 and Lemma 35 imply that

hM̃(∂MKi) = −hKi
(∂MKi)

= hM(i)−
∫
Ki

ω∧n,(63)
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where the integral is w.r.t. the orientation O|Ki. Let J ∈ Pϕ. Recalling the
definition (59) of ˜ and using (63), we have∑

ĩ∈J̃∩Ĩ

hM̃ (̃i) =
∑
i∈J∩I

(
hM(i)−

∫
Ki

ω∧n
)
.

Combining this with (62) and recalling the definition (19), it follows that∑
J,hM ,hM′ ,c

n
≥ −cn

∑
i∈J∩I

∫
Ki

ω∧n.

Since this holds for every choice of (Ki)i∈I , it follows that
∑

J,hM ,hM′ ,c
n ≥ 0. Hence

condition (20) holds with P := Pϕ, f := hM , f ′ := hM ′ , and C := cn. This proves
Lemma 48. �

Remark (helicity inequality). Under the hypotheses of this lemma, the set M ′ \
ϕ(Int(M)) need not be a submanifold of M ′, since ϕ(∂M) may intersect ∂M ′.

This is the reason for the construction of M̃ in the proof of this lemma.

We are now ready for the proof of Theorem 42.

Proof of Theorem 42. Assume that there exist A0, (Ma, ωa)a∈A0 as in the hypoth-
esis of (i). Let a ∈ A0 ∩ (0,∞). We define

(Wa, ηa) := (Ma tM−a, ωa t ω−a) .
Since by our hypothesis (ia) (Wa, ηa) ∈ O, the capacity cWa,ηa makes sense. Let
A ∈ P

(
A0 ∩ (0,∞)

)
. Recall the definition (1) of O0. We define the map

cA := sup
a∈A

cWa,ηa : O0 → [0,∞].

If k = 2 and the ball B lies in O, then we define the map c̃A : by

(64) c̃A := max {cA, w} : O0 → [0,∞].

The maps cA and c̃A are generalized capacities on C.

Claim 1. (i) The map P
(
A0 ∩ (0,∞)

)
3 A 7→ cA ∈ Cap(C) is injective.

Assume now that the hypotheses of Theorem 42(ii) are satisfied.
(ii) The map P

(
A0 ∩ (0,∞)

)
3 A 7→ c̃A ∈ Cap(C) is injective.

(iii) For every A ∈ P
(
A0 ∩ (0,∞)

)
the capacity c̃A is normalized.

Proof of Claim 1. We denote

hM := hM,O,ω, fa := hMa , f := (fa)a∈A0 ,

and define Cf
0 , C

f
1 as in (21,22). Let a 6= a′ ∈ A0 ∩ (0,∞), and c ∈ (0,∞), such

that there exists a C-morphism ϕ from (Wa, cηa) to (Wa′ , ηa′).
Case A: There exist such a ϕ and b ∈ {a,−a}, b′ ∈ {a′,−a′}, such that b > b′

and ϕ(Mb) ⊆Mb′ . We denote

M := Mb, ω := ωb, M ′ := Mb′ , ω′ := ωb′ , I := IM , I ′ := IM ′ .

Let d ∈ A0. By hypotheses Md is nonempty, compact, and 1-connected. Since by
hypothesis n ≥ 2 > 0 and ωd is maxipotent and exact, we have ∂Md 6= ∅. Hence
the hypotheses of Lemma 46(i) are satisfied. Applying this lemma, it follows that
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Pϕ is a (I, I ′)-partition. By Lemma 48 the set Pϕ is a
(
hM , hM ′ , c

n
)
-partition. It

follows that

(65) cn ≤ Cf
0 .

Consider now the case that is complementary to Case A. Then a < a′ and
there exists a morphism ϕ from (Wa, cηa) to (Wa′ , ηa′), such that ϕ(Wa) ⊆ Ma′ .
Lemmata 46(ii) and 48 imply that Pϕ is a

(
hMa , hM−a , hMa′

, cn
)
-partition. It

follows that cn ≤ Cf
1 . Combining this with (65), in any case we have

cn ≤ C := max
{
Cf

0 , C
f
1

}
.

It follows that

sup
{
c ∈ (0,∞)

∣∣ ∃a 6= a′ ∈ A0 ∩ (0,∞)∃ morphism (Wa, cηa)→ (Wa′ , ηa′)
}

≤ n
√
C

<1 (using our hypothesis (ib) and Definition 41).

It follows that

(66) cA(Wa′ , ηa′) < 1, ∀A ∈ P
(
A0 ∩ (0,∞)

)
, a′ ∈ A0 ∩ (0,∞) \ A.39

Let A 6= A′ ∈ P
(
A0∩(0,∞)

)
. Assume first that A′\A 6= ∅. We choose a′ ∈ A′\A.

Since cA′(Wa′ , ηa′) ≥ 1,40 inequality (66) implies that cA 6= cA′ . This also holds in
the case A \ A′ 6= ∅, by an analogous argument. This proves statement (i).

We prove (ii). Combining inequality (66) with our hypothesis (iia), we have

c̃A(Wa′ , ηa′) < 1, ∀A ∈ P
(
A0 ∩ (0,∞)

)
, a′ ∈ A0 ∩ (0,∞) \ A.

Hence an argument as above shows that the map P
(
A0 ∩ (0,∞)

)
3 A 7→ c̃A is

injective. This proves (ii).

We prove (iii). Let A ∈ P
(
A0 ∩ (0,∞)

)
. By our definition (64) we have

(67) π = w(B) ≤ c̃A(B).

Since B symplectically embeds into Z, we have cM,ω(B) ≤ cM,ω(Z) for every
symplectic manifold (M,ω) of dimension 2n. It follows that

(68) c̃A(B) ≤ c̃A(Z).

Our hypothesis (iib) and Gromov’s Nonsqueezing Theorem imply that c̃A(Z) ≤ π.
Combining this with (67,68), it follows that c̃A is normalized. This proves (iii)
and therefore Claim 1. �

Claim 1(i) implies that

(69) |Cap(C)| ≥
∣∣P(A0 ∩ (0,∞)

)∣∣ = i2,

39A priori map c := cA is only defined on the set O0. For a general (M,ω) ∈ O we define
c(M,ω) := c(M0, ω0), where (M0, ω0) is an arbitrary object of O0 isomorphic to (M,ω).

40In fact equality holds, but we do not use this.
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where in the second inequality we used our hypothesis that A0 is an interval of
positive length. On the other hand, by Corollary 57 in the appendix the set O0

has cardinality at most i1. It follows that

|Cap(C)| ≤
∣∣[0,∞]O0

∣∣ ≤ ii1
1 = i2.

Combining this with (69), the statement of Theorem 42(i) follows.
The statement of Theorem 42(ii) follows from an analogous argument, using

parts (ii,iii) of Claim 1. This completes the proof of Theorem 42. �

4. Proof of Proposition 43 (sufficient conditions for being an
I-collection)

Proof of Proposition 43. Let I = (Ia), f = (fa) be as in the hypothesis. To sim-
plify notation, we canonically identify the collection f with its disjoint union⊔
f :
⊔
I → R.

Claim 1. Let a, a′ ∈ A0. If a > a′ then for every partition P of Ia t Ia′ there
exists J ∈ P, such that

(70)
∑
i∈J∩Ia

f(i) >
∑

i′∈J∩Ia′

f(i′).

Proof of Claim 1. This follows from hypothesis (31). �

By hypothesis (26) there exists k, such that |Ia| = k + 1, for every a ∈ A0. By
hypothesis (29) for every a ∈ A0 the set f−1a ((0,∞)) contains a unique element
pa. Hypotheses (30,27) imply that

(71) f(pa) ≤ k + 1, ∀a ∈ A0.

Recalling the notation (25), we have

inf
a∈A0

∑
fa > 0, (using (32,28))(72)

f(pa) > 1, ∀a ∈ A0 (using (72,28)).(73)

Claim 2. If k = 1 or 2 then the inequality (33) holds.

Proof. For every a ∈ A0 we have

f(pa) =
∑

fa −
∑

n∈Ia\{pa}

f(n)

≥ inf
b

∑
fb + 1− (k − 1) sup

(
im(f) ∩ (−∞, 0]

)
(using (28))

> k + (2− k) inf
b

∑
fb (using (32))

≥ k (using that k = 1 or 2, and (72)).

Using (71), it follows that (33) holds. This proves Claim 2. �

We now check the conditions (23,24) of Definition 41.

Condition (23): Let a, a′ ∈ A0 be such that a > a′, C ∈ (0,∞) and P be
a
(
fa, fa′ , C

)
-partition. If C ≥ 1 then Claim 1 implies that condition (20) in

Definition 38 with I := Ia, I
′ := Ia′ is violated. It follows that C < 1.

We denote by J0 the unique element of P containing pa.
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Claim 3. We have pa′ ∈ J0.

Proof of Claim 3. By Definition 38 we have |J0∩ Ia| = 1. It follows that J0∩ Ia =
{pa}. Therefore, by condition (20) applied to J := J0, we have

Cf(pa) ≤
∑

i′∈J0∩Ia′

f(i′).

Since Cf(pa) > 0 and pa′ is the only point in Ia′ at which f is positive, Claim 3
follows. �

Claim 4. We have f−1a′ (−1) ⊆ J0.

Proof of Claim 4. Let J ∈ P \ {J0}. By (18) the set J ∩ Ia consists of a unique
element i. Hypothesis (27) and the inequality C < 1 imply that Cf(i) > −1.
Combining this with (20), it follows that

(74)
∑

i′∈J∩Ia′

f(i′) > −1.

Since J and J0 are disjoint, Claim 3 implies that pa′ 6∈ J . Therefore, (74) implies
that J ∩ Ia′ ∩ f−1(−1) = ∅. Since this holds for every J ∈ P \ {J0}, and P covers
Ia′ , it follows that Ia′ ∩ f−1(−1) ⊆ J0. This proves Claim 4. �

Claims 3,4 and hypothesis (28) imply that |J0∩Ia′| ≥ 2. Since |Ia| = |Ia′ | = k+1
and pa ∈ J0 ∩ Ia, it follows that

(75)
∣∣(Ia t Ia′) \ J0∣∣ ≤ 2k − 1.

The condition (18) implies that
∣∣P \ {J0}∣∣ = |Ia| − 1 = k. Since the elements of

P \ {J0} are disjoint and their union is contained in
(
Ia t Ia′

)
\ J0, using (75), it

follows that there exists J1 ∈ P \ {J0} satisfying |J1| ≤ 1. Since |J1 ∩ Ia| = 1, it
follows that

(76) J1 ∩ Ia′ = ∅.
The facts J1 6= J0, and that pa lies in J0 and is the only point of Ia at which
f is positive, imply that

∑
i∈J1∩Ia f(i) ≤ sup

(
im(f) ∩ (−∞, 0]

)
. Using (76) and

recalling the definition (19), it follows that

(77)
∑

J1,fa,fa′ ,C
≥ −C sup

(
im(f) ∩ (−∞, 0]

)
.

Summing up the inequality (20) over all J ∈ P \ {J1} and adding (77), we obtain

−C
∑

fa +
∑

fa′ ≥ −C sup
(

im(f) ∩ (−∞, 0]
)
.

It follows that

C
(
− sup

(
im(f) ∩ (−∞, 0]

)
+ inf

a

∑
fa

)
≤
∑

fa′

≤ 1 (using hypothesis (30)).

Combining this with hypothesis (32), it follows that Cf
0 < 1. Hence f satisfies (23).

Condition (24): Let a, a′ ∈ (0,∞), such that a < a′, C ∈ (0,∞) and P be a(
fa, f−a, fa′ , C

)
-partition. We denote by J0 ∈ P the unique element that contains

pa. We will show that P and J0 look like in Figure 5.
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Figure 5. The dots in the first row constitute the set Ia, which
contains the point pa, and similarly for I−a and Ia′ . The blue and
black sets denote the elements of the partition P . We show below
that except for pa, the blue set J0 also contains p−a, pa′ , and an
element of Ia′ at which f takes on the value −1. Note that J0
intersects both Ia and I−a in exactly one point, and that the other
elements of P intersect Ia t I−a in exactly one point.

Claim 5. We have pa′ , p−a ∈ J0.

Proof of Claim 5. We show that pa′ ∈ J0. Conditions (a,b) of Definition 39 with
I± := I±a imply that J0 ∩ I±a is empty or a singleton. Combining this with the
fact that pa ∈ J0, hypothesis (27), and (73), we obtain∑

i∈J0∩(IatI−a)

f(i) > 0.

Using condition (20) with J = J0, it follows that pa′ ∈ J0.
To show that p−a ∈ J0, let J ∈ P \ {J0}. Since pa′ ∈ J0, it does not lie in J . It

follows that
∑

i′∈J∩Ia′
f(i′) ≤ 0. Using (20) with I = Ia t I−a, it follows that

(78)
∑

i∈J∩(IatI−a)

f(i) ≤ 0.

Conditions (a,b) of Definition 39 with I± := I±a imply that J ∩ I±a is empty or
a singleton. Using hypothesis (27) and (78), it follows that J ∩ I−a is empty or
consists of one element i, satisfying f(i) ≤ 1. Using (73), it follows that p−a 6∈ J .
Since this holds for every J ∈ P \ {J0}, it follows that p−a ∈ J0. This proves
Claim 5. �

Claim 6. We have C < 1.

Proof of Claim 6. By Remark 40 we have |P| = 2k+ 1. Since |Ia′ | = k+ 1, k ≥ 1,
and the elements of P are disjoint, it follows that there exists J1 ∈ P , such that

(79) J1 ∩ Ia′ = ∅.
Claim 5 implies that J1 6= J0, and hence that pa, p−a 6∈ J1. By Definition 39(b)
we have

(80) J1 ∩ Ia t I−a = {n}, for some point n.

By (32) we have

(81) f(n) < −1 + inf
b∈A0

∑
fb.
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Denoting ∑
J

:=
∑

i∈J∩(IatI−a)

f(i),
∑′

J
:=

∑
i′∈J∩Ia′

f(i′),

we have

1 ≥
∑

fa′ (using 30)

=
∑
J∈P

∑′

J

=
∑
J∈P

(
−C

∑
J

+
∑′

J

)
+ C

∑(
fa + f−a

)
≥ −C

∑
J1

+
∑′

J1
+2C inf

b∈A0

∑
fb (using (20) with J ∈ P \ {J1})

> C

(
1 + inf

b∈A0

∑
fb

)
(using (80,81,79)).

Using (72), it follows that C < 1. This proves Claim 6. �

Claim 7. We have f−1a′ (−1) ⊆ J0.

Proof of Claim 7. Let J ∈ P \ {J0}. By Claim 5 we have p−a ∈ J0. Since also
pa ∈ J0, by Definition 39(b), it follows that

∣∣J ∩ (Ia t I−a)
∣∣ = 1. Using hypothesis

(27) and (20), it follows that∑
i′∈J∩Ia′

f(i′) ≥ −C

> −1 (by Claim 6).(82)

By Claim 5 we have pa′ ∈ J0. Hence this point does not lie in J . Therefore, (82)
implies that J ∩ Ia′ ∩ f−1(−1) = ∅. Since this holds for every J ∈ P \ {J0}, and
P covers Ia′ , it follows that Ia′ ∩ f−1(−1) ⊆ J0. This proves Claim 7. �

Claim 5 and Definition 39(a) imply that J0 ∩
(
Ia t I−a

)
= {pa, p−a}, and there-

fore,

(83)
∑

i∈J0∩
(
IatI−a

) f(i) = f(pa) + f(p−a).

Claim 7 and hypothesis (28) imply that∑
i′∈J0∩Ia′

f(i′) ≤ f(pa′)− 1.

Combining this with (83) and (20) with J = J0, it follows that

C(f(pa) + f(p−a)) ≤ f(pa′)− 1.

It follows that

C ≤ f(pa′)− 1

f(pa) + f(p−a)

≤ supb f(pb)− 1

2 infb f(pb)

< 1 (using (33)).
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Here in the case k = 1 or 2 we use Claim 2. It follows that Cf
1 < 1. Hence f

satisfies (24). This completes the proof of Proposition 43. �

5. Proof of Theorem 15(iii) (cardinality of a generating system)

The proof of Theorem 15(iii) is based on the following lemma. For every set S
we denote by P(S) its power set. For every subcollection C ⊆ P(X) we denote by
σ(C) the σ-algebra generated by C. It is given by

σ(C) :=
⋂

Aσ-algebra on X: C⊆A

A.

A measurable space is a pair (X,A), where X is a set and A a σ-algebra on
X. Let (X,A), (X ′,A′) be measurable spaces. A map f : X → X ′ is called
(A,A′)-measurable iff f−1(A′) ∈ A, for all A′ ∈ A′. We denote

M(A,A′) :=
{

(A,A′)-measurable map: X → X ′
}
.

Lemma 50 (cardinality of the set of measurable maps). Let X,X ′ be sets and
C ⊆ P(X), C ′ ⊆ P(X ′) be subcollections. Assume that |C| ≤ i1, |C ′| ≤ i0 = ℵ0,
and

(84) ∀x′ ∈ X ′ :
⋂

C′∈C′:x′∈C′
C ′ = {x′}.

We define A := σ(C), A′ := σ(C ′). Then M(A,A′) has cardinality at most i1.

For the proof of this lemma we need the following.

Lemma 51 (cardinality of σ-algebra). Let X be a set and C ⊆ P(X) be a subcol-
lection of cardinality at most i1. Then σ(C) has cardinality at most i1.

The proof of this lemma is based on the following. Let S be a set, F : P(S)→
P(S), such that

(85) A ⊆ F (A), ∀A ∈ P(S).

Let A ∈ P(S). We define 〈F,A〉, the set generated by F,A, to be the smallest
fixed point of F containing A. This is the set given by

〈F,A〉 =
⋂{

B ∈ P(S)
∣∣A ⊆ B = F (B)

}
.41

Lemma 52 (cardinality of generated set). The set 〈F,A〉 has cardinality at most
i1, if the following conditions are satisfied:

(a) F is monotone, i.e., B ⊆ C implies that F (B) ⊆ F (C).
(b) |A| ≤ i1.
(c) If |B| ≤ i1 then |F (B)| ≤ i1, for every B ∈ P(S).
(d) If B ∈ P(S) satisfies

(86) F (C) ⊆ B, ∀ countable subset C ⊆ B,

then B is a fixed point of F .

41This intersection is well-defined, since the collection of all admissible B is nonempty. It
contains B = S.
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Proof of Lemma 52. We denote by ω1 the smallest uncountable (von Neumann)
ordinal, i.e., the set of countable ordinals. We define A0 := A, and using transfinite
recursion, for every α ≤ ω1, we define

(87) Aα :=

{
F (Aβ), if α = β + 1,⋃
β<αAβ, if α 6= 0 is a limit ordinal.

(A limit ordinal is an ordinal for which there does not exist any ordinal β for which
α = β + 1.)

Claim 1. We have

〈F,A〉 ⊆ Aω1 .

Proof of Claim 1. Since A0 ⊆ Aω1 , it suffices to show that Aω1 is a fixed point of
F .

Claim 2. Condition (86) is satisfied with B = Aω1.

Proof of Claim 2. Let C ⊆ Aω1 be a countable subset. The definition (87), condi-
tion (85), and transfinite induction imply that for every pair α, β of ordinals, we
have

(88) α ≤ β ⇒ Aα ⊆ Aβ.

We choose a collection (αc)c∈C of countable ordinals, such that c ∈ Aαc , for every
c ∈ C. The ordinal

α := sup
c∈C

αc :=
⋃
c∈C

αc

is countable, and therefore less than ω1. For every c ∈ C, we have αc ≤ α, and
thus by (88), Aαc ⊆ Aα. It follows that C ⊆ Aα, and therefore,

F (C) ⊆ F (Aα) (using (a))

= Aα+1 (using (87))

⊆ Aω1 (using α + 1 < ω1 and (88)).

This proves Claim 2. �

By this claim and (d) the set Aω1 is a fixed point of F . This proves Claim 1. �

For every ordinal α we denote by P (α) the statement “|Aα| ≤ i1”.

Claim 3. The statement P (α) is true for all α ≤ ω1.

Proof of Claim 3. We prove this by transfinite induction. Let α ≤ ω1 and assume
that the statement holds for all β < α. If α = 0 then P (0) holds by our hypothesis
(b). If α = β + 1 for some β then P (α) holds by (87) and our hypothesis (c). If
α 6= 0 is a limit ordinal, then P (α) holds by (87), our induction hypothesis, and
the fact |α| ≤ |ω1| ≤ i1. This completes the inductive step. Claim 3 now follows
from transfinite induction. �

Lemma 52 follows from Claims 1 and 3. �

Proof of Lemma 51. This follows from Lemma 52 with

S := P(X), A := C, F (D) :=
{⋃
E
∣∣∣ E ⊆ D countable

}
∪
{
X \ E

∣∣E ∈ D}.
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To see that (d) holds, let B = D ∈ P(S) be such that (86) holds. It suffices to
show that D is closed under countable unions and complements. Let E ⊆ D be a
countable subcollection. We have⋃

E ∈ F (E)

⊆ D (using (86)).

Hence D is closed under countable unions. Let now E ∈ D. We have

X \ E ∈ F ({E})
⊆ D (using (86)).

Hence D is closed under complements. It follows that D is a fixed point of F .
This proves (d) and completes the proof of Lemma 51. �

Proof of Lemma 50. Recall that for every pair of sets S, S ′ we denote by S ′S the
set of maps from S to S ′. Let f ∈ M(A,A′) and x′ ∈ X ′. Our hypothesis that
|C ′| ≤ ℵ0 and (84) imply that the set {x′} is a countable intersection of elements of
C ′. Hence it lies in A′. It follows that f−1(x′) ∈ A. The following map is therefore
well-defined:

ι :M(A,A′)→ AX′ , ι(f)(x′) := f−1(x′).

We define the map

ϕ :M(A,A′)→ AC′ , ϕ(f)(C ′) := f−1(C ′),

ψ : AC′ → AX′ , ψ(A)(x′) :=
⋂

C′∈C′:x′∈C′
A(C ′).

Our hypothesis |C ′| ≤ ℵ0 implies that ψ(A)(x′) is a countable intersection of
elements of A, hence an element of A. It follows that ψ is well-defined. For every
f ∈M(A,A′) and x′ ∈ X ′, we have

ι(f)(x′) = f−1(x′)

= f−1

( ⋂
C′∈C′:x′∈C′

C ′

)
(by (84))

=
⋂

C′∈C′:x′∈C′
f−1(C ′)

=
(
ψ(ϕ(f))

)
(x′).

Hence the equality ι = ψ◦ϕ holds. Since ι is injective, it follows that ϕ is injective.
Our hypothesis that |C| ≤ i1 and Lemma 51 imply that

∣∣A = σ(C)
∣∣ ≤ i1. Since

|C ′| ≤ ℵ0, it follows that
∣∣AC′∣∣ ≤ i1. Since ϕ maps M(A,A′) to AC′ , it follows

that
∣∣M(A,A′)

∣∣ ≤ i1. This proves Lemma 50. �

In the proof of Theorem 15(iii) we will also use the following.

Remarks 53.

(i) Every countable product of second countable topological spaces is second
countable.

(ii) Let (X, τ) be a topological space and B a basis of τ . Then the following
inequality holds:

|τ | ≤ 2|B|
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Proof of Theorem 15(iii). Let G0 be a countable subset of XS. We equip XG0 with
the product topology τG0 . We define AG0 ,A to be the Borel σ-algebras of τG0 , τ .

Claim 1. The set M(AG0 ,A) has cardinality at most i1.

Proof of Claim 1. Our assumption that τ is separable and metrizable, implies that
it is second countable. Hence by Remark 53(i), the same holds for τG0 . Hence by
Remark 53(ii), we have

(89) |τG0| ≤ 2ℵ0 = i1.

We haveAG0 = σ(τG0). Since τ is separable, there exists a countable τ -dense subset
A of X. We define C to be the collection of all open balls with rational radius
around points in A. Since A is dense, every element of τ is a union of elements of
C. Since A is countable, the set C is countable. It follows that A = σ(τ) = σ(C).
Since τ is separable and metrizable, the condition (84) with C ′ replaced by C is
satisfied. Using (89), it follows that the hypotheses of Lemma 50 are satisfied with
C, C ′ replaced by τG0 , C. Applying this lemma, it follows that

∣∣M(AG0 ,A)
∣∣ ≤ i1.

This proves Claim 1. �

Let G be a subset of XS of cardinality at most i1. By Definition 14 the set
countably Borel-generated by G is given by

〈G〉 :=
{
f ◦ evG0 | G0 ⊆ G countable, f ∈M(AG0 ,A)

}
.

The set of all countable subsets of G has cardinality at most iℵ01 = i1. Using
Claim 1, it follows that

|〈G〉| ≤ i2
1 = i1.

This proves Theorem 15(iii). �

6. Proof of Theorem 24 (uncountability of every generating set
under a very mild hypothesis)

Proof of Theorem 24. Let C = (O,M), A,M be as in the hypothesis. W.l.o.g. we

may assume that A is open. Our hypothesis (9) implies that the map Vol
1
n ◦M :

A → R is continuous and strictly increasing. Hence it is injective with image Ã
given by an interval. We define

M̃ := M ◦
(

Vol
1
n ◦M

)−1
: Ã→ O.

Let ã0 ∈ Ã. We define
gã0 := cM̃ã0

◦ M̃ : Ã→ R.

Claim 1. This map is not differentiable at ã0.

Proof of Claim 1. We have

Vol
1
n ◦M̃ = id.

It follows that

(90) gã0(ã) ≤ ã

ã0
, ∀ã ∈ Ã ∩ (0, ã0).

Our hypothesis (10) implies that

gã0(ã) = 1, ∀ã ∈ Ã ∩ [ã0,∞).
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Combining this with (90), it follows that gã0 is not differentiable at ã0. This proves
Claim 1. �

Let now G be a countable subset of Cap(C). Let c ∈ G. The inequality “≥” in our
hypothesis (10) implies that the map c ◦M is increasing. It follows that the same

holds for c ◦ M̃ . Therefore, by Lebesgue’s Monotone Differentiation Theorem the

map c ◦ M̃ is differentiable42 almost everywhere, see e.g. [Tao11, p. 156, Theorem

1.6.25]. Since G is countable, it follows that the set of all points in Ã at which the

function c ◦ M̃ is differentiable, for every c ∈ G, has full Lebesgue measure. Since

A has positive length, the same holds for Ã. It follows that there exists a point

ã0 ∈ Ã at which c ◦ M̃ is differentiable, for every c ∈ G.
Let G0 be a finite subset of G, and f : [0,∞]G0 → [0,∞] a differentiable function.

We define evG0 as in (5). Since c ◦ M̃ is differentiable at ã0 for every c ∈ G0, the

same holds for the map evG0 ◦M̃ : Ã → [0,∞]G0 . It follows that the composition

f ◦ evG0 ◦M̃ is differentiable at ã0. Using Claim 1, it follows that

f ◦ evG0 ◦M̃ 6= gã0 = cM̃ã0
◦ M̃,

and therefore that f ◦ evG0 6= cM̃ã0
. Hence G0 does not finitely differentiably

generate cM̃ã0
. This proves Theorem 24. �

Appendix A. Cardinality of the set of equivalence classes of pairs
of manifolds and forms

In this section we prove that the set of diffeomorphism types of smooth manifolds
has cardinality at most i1. We also prove that the same holds for the set of all
equivalence classes of pairs (M,ω), where M is a manifold, and ω is a differential
form on M . We used this in the proof of Theorem 42, to estimate the cardinality
of the set of (normalized) capacities from above.

In order to deal with certain set-theoretic issues, we explain how to make the
class of all diffeomorphism types a set. Let A,B be sets and S : A → B a map.
Let a ∈ A. We denote Sa := S(a). Recall that in ZFC “everything” is a set, in
particular Sa. Recall also that the disjoint union of S is defined to be⊔

S :=
{

(a, s)
∣∣ s ∈ Sa}.

We denote

Hn :=
{
x ∈ Rn

∣∣xn ≥ 0
}
.

Let S be a set. By an atlas on S we mean a subset

A ⊆
⊔

U∈P(S)

(Hn)U ,

such that ⋃
(U,ϕ)∈A

U = S,

42in the usual sense
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for every (U,ϕ) ∈ A the map ϕ is injective, and for all (U,ϕ), (U ′, ϕ′) ∈ A the set
ϕ(U ∩ U ′) is open (in Hn) and the transition map

ϕ′ ◦ ϕ−1 : ϕ(U ∩ U ′)→ Hn

is smooth. We call an atlas maximal iff it is not contained in any strictly larger
atlas. By a (smooth finite-dimensional real) manifold (with boundary) we mean a
pair M = (S,A), where S is a set and A is a maximal atlas on S, such that the
induced topology is Hausdorff and second countable. We denote by i1 the (von
Neumann) cardinal 2i0=ℵ0 , and by ∼ the diffeomorphism relation on

(91) M0 :=
{

(S,A)
∣∣S ⊆ i1, (S,A) is a manifold

}
.

This means that M ∼ M ′ iff M and M ′ are diffeomorphic. We define the set of
diffeomorphism types (of manifolds) to be

M :=
{
∼ -equivalence class

}
.

Remarks 54 (diffeomorphism types).

• The above definition overcomes the set theoretic issue that the “set” of
diffeomorphism classes of all manifolds (without any restriction on the
underlying set) is not a set (in ZFC).
• Every manifold M is diffeomorphic to one whose underlying set is a subset

of i1. To see this, note that using second countability and the axiom
of choice, the set underlying M has cardinality ≤ i1. This means that
there exists an injective map f : M → i1. Pushing forward the manifold
structure via f , we obtain a manifold whose underlying set is a subset of
i1, as claimed.
• By the last remark, heuristically, there is a canonical bijection between M

and the “set” of diffeomorphism classes of all manifolds.
• One may understand M in a more general way as follows. LetM be a set

consisting of manifolds, such that every manifold is diffeomorphic to some
element of M. For example, let S be a set of cardinality at least i1 and
defineM to be the set of all manifolds whose underlying set is a subset of
S. The set M is in bijection with the set of all diffeomorphism classes of
elements of M.

Proposition 55. The set M has cardinality at most i1.

In the proof of this result we will use the following.

Remark 56 (Whitney’s Embedding Theorem). Let n ∈ N0 and M be a (smooth)
manifold of dimension n. There exists a (smooth) embedding of M into R2n+1

with closed image. To see this, consider the double M̃ of M , which is obtained by
gluing two copies of M along the boundary. By Whitney’s Embedding Theorem

there exists an embedding of M̃ into R2n+1 with closed image, see e.g. [Hir94,
2.14. Theorem, p. 55]43. Composing such an embedding with one of the two

canonical inclusions of M in M̃ , we obtain an embedding of M into R2n+1 with
closed image, as desired.

43In this section of Hirsch’s book manifolds are not allowed to have boundary. This is the

reason for considering M̃ , rather than M .
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Proof of Proposition 55. We define

M :=
⊔
m∈N0

{
submanifold of Rm

}
.

Claim 1. We have |M| ≤ i1.

Proof. Let n,m ∈ N0. The topological space N0 ×Hn is separable. Since |Rm| ≤
i1, it follows that

(92)
∣∣C(N0 ×Hn,Rm

)∣∣ ≤ i1.

Let n ∈ N0 and (m,M) ∈ M, such that M is of dimension n. Since M is second
countable, there exists a surjective map ψ : N0 × Hn → M whose restriction to
{i}×Hn is an embedding, for every i ∈ N0. It follows that M lies in the image of
the map

C
(
N0 ×Hn,Rm

)
→ P(Rm), f 7→ im(f).

Combining this with (92), it follows that |M| ≤ i1. This proves Claim 1. �

Let n ∈ N0. We choose an injection α : R2n+1 → i1, and consider the pushfor-
ward map

α∗ :M→M, α∗(S,A) :=
[
α(S), α∗A

]
.

Remark 56 implies that this map is surjective. Using Claim 1, it follows that
|M| ≤ i1. This proves Proposition 55. �

We define M0 as in (91),

Ω(M) :=
{

differential form on M
}
,

Ω0 :=
⊔
M∈M0

Ω(M),

the equivalence relation ≈ on Ω0 by

(M,ω) ≈ (M ′, ω) :⇐⇒ ∃ diffeomorphism ϕ : M →M ′ : ϕ∗ω′ = ω,

and Ω := Ω0/ ≈ .

Remark. Philosophically, this is the “set” of all equivalence classes of pairs
(M,ω), where M is an arbitrary manifold and ω is a differential form on M .
The above definition makes this idea precise.

Corollary 57. The set Ω has cardinality at most i1.

Proof of Corollary 57. If M,M ′ are manifolds and ϕ : M → M ′ is a diffeomor-
phism then

(93) ϕ∗ : Ω(M ′)→ Ω(M) is a bijection.

We denote by Π : Ω0 → Ω and π : M0 → M the canonical projections, and by
f : Ω0 → M0, f((M,ω)) := M , the forgetful map. We define F : Ω → M to be
the unique map satisfying F ◦ Π = π ◦ f . Let M ∈ M. Choosing M ∈ M, we
have

F−1(M) = Π
(
(F ◦ Π)−1(M)

)
= Π

(
(π ◦ f)−1(M)

)
= Π

(
f−1(M)

)
(using that π−1(M) =M)

= Π
(
f−1(M) = Ω(M)

)
(using (93)).(94)
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Since M is separable and |TM | ≤ i1, we have |C(M,TM)| ≤ i1. Using Ω(M) ⊆
C(M,TM), (94), and Proposition 55, it follows that∣∣∣∣∣Ω =

⋃
M∈M

F−1(M)

∣∣∣∣∣ ≤ i2
1 = i1.

This proves Corollary 57. �

Remark. Let n ≥ 2. Then the set of diffeomorphism types of manifolds of
dimension n has cardinality equal to i1. To see this, we choose a countable set
M of nondiffeomorphic connected n-manifolds. The map

{0, 1}M 3 u 7→
⊔

M∈M:u(M)=1

M ∈ {n-manifold}

is injective. Hence the set of diffeomorphism types of manifolds of dimension n
has cardinality ≥ i1. Combining this with Proposition 55, it follows that this
cardinality equals i1, as claimed.

Appendix B. Proof of Theorem 28 (monotone generation for
ellipsoids)

Theorem 28 follows from McDuff’s characterization of the existence of sym-
plectic embeddings between ellipsoids, and the fact that monotone generation is
equivalent to almost order-recognition. To explain this, let (S,≤) be a preordered
set. We fix an order-preserving (0,∞)-action on S. We define the order-capacity
map c≤ : S × S → [0,∞] by

c≤(s, s′) := sup
{
a ∈ (0,∞)

∣∣ as ≤ s′
}
.

Remark 58. For every s ∈ S the map c≤(s, ·) is a capacity, as defined in (14).

Let G ⊆ Cap(S). We call G almost order-recognizing (or almost order-reflecting)
iff for all s, s′ ∈ S the following holds:

c(s) ≤ c(s′), ∀c ∈ G ⇒ c≤(s, s′) ≥ 1.

Remark. A map f between two preordered sets is called order-reflecting if f(s) ≤
f(s′) implies that s ≤ s′. The set G is almost order-reflecting iff its evaluation
map is “almost” order-reflecting, in the sense that evG(s) ≤ evG(s

′) implies that
for every a0 ∈ (0, 1) there exists an a ∈ [a0,∞), such that as ≤ s′.

Proposition 59 (characterization of monotone generation). The set G mono-
tonely generates if and only if it is almost order-recognizing.

In the proof of this result we use the following. Let (X,≤), (X ′,≤′) be pre-
ordered sets, X0 ⊆ X, and f : X0 → X ′. We define the monotonization of f to
be the map F : X → X ′ given by

F (x) := sup
{
f(x0)

∣∣x0 ∈ X0 : x0 ≤ x
}
.

Remarks 60 (monotonization).

(i) The map F is monotone.
(ii) If X and X ′ are equipped with order-preserving (0,∞)-actions and f is ho-

mogeneous, then its monotonization is homogeneous.
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(iii) If f is monotone then it agrees with the restriction of F to X0.

Proof of Proposition 59. “⇒”: Assume that G monotonely generates. Let s, s′ ∈ S
be such that c(s) ≤ c(s′), for every c ∈ G. This means that

(95) evG(s) ≤ evG(s
′).

By Remark 58 and our assumption there exists a monotone function F ∈ [0,∞]G,
such that

cs := c≤(s, ·) = F ◦ evG .

We have

1 ≤ cs(s) (since ≤ is reflexive and hence s ≤ s)

= F ◦ evG(s)

≤ F ◦ evG(s
′) (using (95) and monotonicity of F )

= cs(s
′).

Hence G is almost order-reflecting. This proves “⇒”.

To prove the implication “⇐”, assume that G is almost order-recognizing. Let
c0 ∈ Cap(S).

Claim 1. For every pair of points s, s′ ∈ S, satisfying evG(s) ≤ evG(s
′), we have

c0(s) ≤ c0(s
′).

Proof. Since c(s) ≤ c(s′), for every c ∈ G, by assumption, we have cs(s
′) ≥ 1. Let

a0 ∈ (0, 1). It follows that there exists a ∈ [a0,∞), such that as ≤ s′. It follows
that

a0c0(s) ≤ ac0(s) = c0(as) ≤ c0(s
′).

Since this holds for every a0 ∈ (0, 1), it follows that c0(s) ≤ c0(s
′). This proves

Claim 1. �

We define f : im(evG)→ [0,∞] by setting f(x) := c0(s), where s is an arbitrary
point in ev−1G (x) ⊆ S. By Claim 1 this function is well-defined, i.e., it does not
depend on the choice of s. It satisfies

(96) f ◦ evG = c0.

It follows from this equality and Claim 1 that f is monotone. By Remark 60(i,iii)
and equality (96) the monotonization F of f is a monotone function on [0,∞]G

that satisfies F ◦evG = c0. This proves “⇐” and completes the proof of Proposition
59. �

Proof of Theorem 28. We equip the set of ellipsoids in (V, ω) with the preorder
E ≤ E ′ iff there exists a symplectic embedding of E into E ′. By [McD11, Theorem

1.1] the condition cV,ωj (E) ≤ cV,ωj (E ′), for all j ∈ N0, implies that aE symplectically

embeds into E ′, for all a ∈ (0, 1). This means that the set of all cV,ωj (with j ∈ N0) is
almost order-recognizing. Hence by Proposition 59 this set monotonely generates.
This proves Theorem 28. �
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