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Using Evolutionary Algorithms to Target Complexity
Levels in Game Economies

Katja Rogers , Vincent Le Claire, Julian Frommel , Regan Mandryk , and Lennart E. Nacke

Abstract—Game economies (GEs) describe how resources in
games are created, transformed, or exchanged: They underpin
most games and exist in different complexities. Their complex-
ity may directly impact player difficulty. Nevertheless, neither
difficulty nor complexity adjustment has been explored for GEs.
Moreover, there is a lack of knowledge about complexity in GEs,
how to define or assess it, and how it can be employed by automated
adjustment approaches in game development to target specific
complexity. We present a proof-of-concept for using evolutionary
algorithms to craft targeted complexity graphs to model GEs. In a
technical evaluation, we tested our first working definition of com-
plexity in GEs. We then evaluated player-perceived complexity in a
city-building game prototype through a user study and confirmed
the generated GEs’ complexity in an online survey. Our approach
toward reliably creating GEs of specific complexity can facilitate
game development and player testing but also inform and ground
research on player perception of GE complexity.

Index Terms—Complexity, evolutionary algorithm (EA), game
economy (GE), genetic programming.

I. INTRODUCTION

ECONOMIC systems are the foundation of many games.
They can materialize as economic challenges (stemming

from moving resources either physically between places or
conceptually between owners) or as rule sets governing “cre-
ation, consumption, and exchange of quantifiable” tangible
(e.g., gold) or intangible (e.g., popularity) resources in inter-
nal economies [1]. Resource-based economic systems exist in
genres ranging from first-person shooters (e.g., health points or
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ammunition) to racing games (e.g., in-game currencies to buy
or upgrade cars). However, game economies (GEs) are partic-
ularly prominent in the city/base-building genre and resource
management games, in which the player’s primary challenge
stems from producing and managing resources. For example, in
Factorio [2], players begin with coal, copper ore, iron ore, and
stone as raw resources. Next, players can produce subsequent
resources via machines such as furnaces or refineries, often while
using other resources as fuel. GEs can be elaborate systems,
consisting of many resources and complex interactions between
them [1], [3], and the design of GE parameters is likely to
influence the game’s complexity and difficulty. However, de-
veloping economies for games—or adjusting existing ones to
achieve desired difficulty or progression—is complex, because
game designers have little guidance on how to design GEs for a
specific game complexity or difficulty.

The games research community has a history of supporting
game designers to achieve specific goals through algorithmic
tools. From procedurally generated levels [4], terrains [5], oppo-
nents [6], and narratives [7], through tailored game difficulty [8]
and dynamic difficulty adjustment (DDA) [9], algorithms have
been effectively used to support game design in a variety of
genres. However—to the best of our knowledge-GEs have been
omitted in this discourse. To facilitate game development and
advance research into complexity preferences among players
of infrastructure-building games, we suggest that procedural
generation of GEs can be used to target and assess specific
complexity levels. Our research aims to provide an initial ex-
ploration of how to assess complexity in GEs, how to generate
them technically, and how to target specific complexities. This
exploration will enable future work to investigate designed and
perceived complexity within GEs, and how game difficulty and
player experience is affected.

In this article, we present a technical prototype that uses
evolutionary algorithms (EAs) to create GEs with targeted
complexity as a proof of feasibility. Thus, we provide a first
proposition—with our implementation—of what complexity
might mean in the context of GEs. We performed a techni-
cal evaluation of the algorithms to compare different com-
plexity measures and conducted a user study (n = 28) to
examine perceived complexity in a prototype city-building
game. Finally, we further validated the prototype’s underly-
ing GEs and investigated how complexity is perceived and
preferred in infrastructure-building games through an online
survey with 737 complete responses. Our contributions are as
follows:
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1) Implementation of a system that uses EAs to target spe-
cific complexity of GEs and a technical evaluation of the
system-produced complexity.

2) A player study on perceived complexity when the gener-
ated GEs are deployed in a city-building game prototype.

3) An online survey of how complexity is generally perceived
in infrastructure-building games and for the system-
produced GEs specifically.

Our research presents a proof-of-concept for developing GEs
with targeted complexity using EAs. A system that can reliably
create GEs of specific complexity will facilitate game devel-
opment, user testing, and player-customized gameplay. Further,
this provides the foundation for systematic complexity research
in GEs and aims to spark discussion on how complexity in GEs
complements or contrasts with game difficulty.

II. BACKGROUND AND RELATED WORK

Adams defined GEs as systems in which resources are moved
between owners [1]. Based on this definition, any quantifiable
game resource is part of a game’s internal economy, from re-
sources with object representation in the game to less tangible
ones such as health points [10]. For this research, we focus
on games that prominently feature the GE (i.e., infrastructure-
building games). Generally, these games include elements that
actively produce or spawn resources (e.g., mines) or resources
that can be collected throughout the game environment (e.g.,
foraging mechanics). Other game elements allow players to craft
new resources through the destruction or loss of other resources
(e.g., creating copper plates from copper ore).

Despite the prevalence of GEs, there has been little research
focusing on this formal game design aspect and its player experi-
ence effects. Lehdonvirta and Castronova [11] published a book
on virtual economies, noting that the most common objectives of
including economy design in a game are content creation, user
attraction (e.g., via a free and a purchasable currency), and mon-
etization. Drachen et al. have noted that GEs differ in complexity,
operation, and design [3]. An earlier paper by Lehdonvirta [12]
stated that GEs often get more complex than developers can eas-
ily oversee, describing the design of GEs as an “art [that] is still
evolving.” Dormans presented the machinations framework to
describe the flow of game resources through diagrams that map
the structure of GEs [13]. Following the machinations frame-
work and the prior work of Adams, different game elements
modify the number or ownership of game resources: Sources,
drains, converters, and traders. Sources handle resource creation,
drains their destruction, converters change resources into others,
and traders swap resource ownerships. More recently, Stephens
and Exton have explored inflation (and its mitigation) in virtual
economies [14].

A. Difficulty and Complexity

GEs are inherently tied to game difficulty [1], [15]. When
games feature a shortage of required resources or require a
complex supply chain of resources to craft new ones, play-
ers must learn how to manage the resources they own and
produce carefully. Particularly in complex GEs, shortages, or
over-abundance of resources at any point along the supply chain

can unbalance players’ carefully managed virtual economy. The
more involved management required from players by complex
GEs thus results in higher difficulty.

In general, games try to provide progression in difficulty and
challenge (i.e., through increasingly difficult game levels). This
is commonly ascribed to flow theory [16], [17]. To reach flow in
game design, a players’ (increasing) skill level should roughly
match the (increasing) challenge level afforded by the game. Do-
ing this helps to avoid player boredom or frustration detrimental
to player retention [18]. Much research has investigated diffi-
culty adjustment effects on player experience [9], [19]. Player
skill that roughly matches game challenges coincides with re-
duced frustration [20] and greater feelings of control and im-
mersion [21]. These effects are linked to player enjoyment [22],
[23]. Prior studies on difficulty adjustment occasionally yield
outliers who feel frustration in low-challenge scenarios and
boredom in the high-challenge scenarios [24]. These outliers are
explained through individual player motivation differences [25].
Further, when game difficulty adjustments are not designed
subtly, players can be dissatisfied by their achievements [26],
[27].

Complexity in games has been explored from multiple angles.
It has been presented as a continuum ranging from “casual” to
requiring complex understanding, and shown to influence tuto-
rial impact [28]. But specific types of complexity have also been
considered, e.g., focusing on visual [29] or computational [30],
[31] complexity. Further, Bowman has suggested that games
can “vary in their cognitive, emotional, physical, and social
complexity,” thereby impacting how demanding they are [32].
To our knowledge, neither difficulty nor complexity adjustment
has been applied to GEs.

B. Adjustment with EAs

There is an extensive academic precedence for the use of EAs
with the goal of adapting game difficulty [7] (outside the purview
of GEs). EAs begin with an initial population of candidates
as solutions to an optimization problem (e.g., generating game
levels that fulfill certain criteria) [33]. This population of can-
didates is then exposed to evolution as follows: The candidates
are evaluated based on a fitness function (FF): In our example,
fitness entails a certain degree of diversity and difficulty for
the game level content. The candidates that achieve the worst
result based on this evaluation are deleted and replaced by new
candidates, which are generally produced through mutation and
recombination of existing (well-ranked) candidates. The new set
of candidates forms the next generation of the population.

Togelius et al. presented a taxonomy of the game elements for
which evolutionary (and related) algorithms have been used for
content generation; their survey showed that content generation
has been applied in a wide variety of game content types, ranging
from game rules, to game items and narratives [7]. Even after
specifying our review of the literature to the use of EAs with
the goal of difficulty adjustment, there are many examples. EAs
have been used prominently toward evolving game strategies
for more challenging and entertaining opponents and nonplayer
characters [6], [34]. Game levels have been evolved for specific
complexity [4], as have tracks in a racing game [8]. The closest
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relevant prior work has looked at procedural generation of game
mechanics or rules [35], e.g., key elements like unit types [36].
However, despite the prevalence of GEs, neither difficulty nor
complexity adjustment has yet been approached in the context
of GEs, through EAs or otherwise.

III. TARGETING COMPLEXITY IN A CITY-BUILDING GAME

In this work, we aim to generate GEs through EAs. By
designing these to target specific complexity, we automate the
generation of GEs to facilitate (offline) authoring and testing
(and better-suited complexity may also improve player experi-
ence). In addition to our EA that creates GE graphs of specified
complexity, we thus implemented a city-building game proto-
type as a testbed.

A. Evolutionary Graph Generation

For our prototype, we consider GEs as graphs. In graphs,
terminology consists of nodes (or vertices) and edges. GEs have
the following two kinds of nodes: 1) products, which represent
the resources existing in the virtual economy; 2) producers,
which represent game elements that manufacture resources, i.e.,
they are connected to a product node via an edge. The edges
of the GE thus describe the dynamic flow of resources within
the GE. Producers can exist as farms, i.e., producing resources
without the depletion of other resources (no input edges); or they
can exist as factories, which use up resources to produce new
ones (input as well as output edges). Based on this model, we
designed and implemented an EA to create GE graphs with the
goal of a specific complexity.

We chose genetic programming as the EA underlying our
prototype graph generation, as it uses tree structures as repre-
sentations for individual solutions (as opposed to binary or real
number representation) [33]. This is well suited to generating
graphs, as trees are a subset of graphs, i.e., undirected, connected,
and acyclic graphs [37]. Further, to accommodate multiple end
products as the game objective, we included a needs node as a
root element to represent the final goal; we thus consider rooted
trees as directed graphs [38]. GEs can easily be represented by
a tree structure, with the minor constraint that they do not allow
cycles within them.

1) Fitness Function: FFs drive the EA toward a specific goal
by ranking individual solutions (i.e., in this case, GEs in tree
form) of each evolutionary generation. This essentially defines
what should be considered complexity in GEs. Given the lack
of prior research regarding complexity and GEs, there were no
indications for which attributes of GEs to target to author specific
complexities. Intuitively, one might focus on the number of
nodes of a given graph, or its depth. In a GE considered as a
tree or graph, the depth would refer to the maximum number of
edges from the root node to the graph’s leaves. However, we aim
to take into account aspects such as weighted edges, as well.

To do so, we propose the following FF (Extended Recursive
Weighted-Edges, or ERWE) as a first working definition of
complexity in a GE, expressed as positive integers: Complex-
ity is calculated recursively over all nodes, but the function
uses constants to weigh output amounts differently than input
amounts. Products’ complexity is defined as the complexity of

their producer. Farms’ complexity is the weighted output

cout ∗ o (1)

with o as the number of resources produced by the farm per
minute, and cout as the constant used to weigh outputs. Factory
complexity is defined as follows:

Iw + Ow + Csum (2)

where weighted input Iw is

Iw = cin ∗ (i − 1) (3)

with i as the number of input resources per minute1 and cin as
the constant used to weigh inputs. The weighted output Ow is
defined in the same way as a farm’s complexity, see (1). Further,
Csum is the sum complexity of all input nodes as recursively
calculated using this method. The root node is treated as a factory
node with no output. Based on pretesting, we used cin = 2 and
cout = 10. The final fitness score is the difference between the
calculated and target complexity.

The ERWE fitness function represents our first “best” approx-
imation of complexity. Yet we do not assert this as the best
measure of complexity for this scenario; instead, it is a rough
estimate to explore the viability of this approach.

The following steps are applied onto an initial population of
randomly generated trees (called individuals in EA terminol-
ogy), until either a tree of the exact target complexity is reached,
or a generation-based threshold is exceeded.

2) Parental Selection: After measuring fitness, the individ-
uals are ranked by their fitness values. We tested the following
four methods (chosen because they are simple and commonly
used) to select parents for each generation from this ranking.

1) Best: The two individuals in each generation with the
highest fitness (i.e., their complexity is closest to the target
complexity) are selected as parents.

2) Random: Two individuals are chosen randomly with equal
probabilities.

3) Best and random: The first individual has the highest
fitness, the second is chosen randomly.

4) Fitness proportional method: Like a roulette wheel, this
method [33] assigns to individuals a probability that cor-
responds to its fitness; individuals with higher fitness are
more likely to be chosen.

This gave us a basic sampling of selection methods of various
degrees of selection pressure. The Best method is essentially
a truncation-style method (only the two highest-ranking in-
dividuals are chosen as parents), representing a variant with
higher selection pressure [39]. Random in contrast represents
a tournament-style variant with uniform probability distribution
(any individual may be chosen), as a variant with lower selec-
tion pressure strength [39]. Both are also for example used in
fitness approximate approaches to evolutionary computing [40].
The combined Best and random, and the Fitness proportional
method represent variants with moderate selection pressure.

1The −1 in the weighted input Iw ensures that a minimal factory is not more
complex than a minimal farm.
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Fig. 1. Left: City-building game prototype GenProcity was developed for gameplay using the generated GEs. Right: GenProcity shows players the GE for each
product (a gameplay video provided online: https://youtu.be/QWn-dIMOzkU).

3) Crossover, Mutation, and Replacement: Crossover opera-
tion was performed by randomly choosing a producer or product
node of one parent through a reservoir sampling algorithm [41].
Then, a random node of the same type in the other parent is
chosen with the same algorithm.2 The selected node in the first
parent is replaced by the subtree starting from the randomly
chosen node in the second parent to create a new child tree. With
a specific probability (5%), the EA also performs a mutation
operation on the newly created child tree. This is applied by
replacing a randomly chosen node of the child tree with a
randomly created subtree (using the same random generation
method used for the initial population).

A single new individual or child (“incremental” survival
selection [39]) is thus created from the selected parents either
by crossover, or crossover and mutation. It is then evaluated
by the complexity function and compared to the existing trees.
The worst individual (rated farthest from the target complexity)
is then replaced by the new child tree if the latter has a better
fitness (“replace-worst” replacement strategy [33]).

B. City-Building Game Prototype

In order to test evolutionary graph generation of GEs within
an actual game, we required a simple infrastructure-building
game. We implemented a game prototype called GenProcity (see
Fig. 1), using Unity 5.3, to be played with a desktop computer
and mouse. In the game, the player acts as a city planner with
the objective of fulfilling the needs of the city’s inhabitants
by producing certain products. Given an initial capital, players
spend their virtual currency to build factories and farms, in order
to produce the required resources. Fig. 1 illustrates how players
are informed of the individual GEs of each product in the game
(i.e., a subset of the aggregated GE). Players essentially recreate
the full GE generated at the game start until they either succeed
to satisfy all inhabitant needs, or exceed the time limit (35 min).

A naming algorithm was implemented to assign names to
products based on a knowledge base that contained information
about names of products, and names of corresponding producers.
The names are thus assigned based on the size of the individual
subset GEs of end products, taking into account the number of
input products and the number of producers.

2This selection always succeeds because even the minimal tree has one node
of each type.

IV. EVALUATION

The resulting prototype was subjected to a technical eval-
uation in order to compare the above described complexity
functions (and parental selection method) in terms of runtime
and accuracy. It should be noted that we did not aim to discover
the best complexity function from this technical evaluation.
Rather, we aimed to explore the viability of using the algorithm
based on the ERWE FF for online in-game generation of GEs.
ERWE represents a first attempt to define complexity in GEs in
terms of tree width and height, while also incorporating input
and output weights as well as input amounts. Yet, this can impact
speed, and thus needs technical evaluation. If it performs poorly,
more naive approaches (e.g., based on number of nodes, number
of producers, or maximum depth) should be used due to the
expected advantage in speed. Subsequently, we conducted a user
study in order to investigate whether GEs developed to be of
different complexity were also perceived as such by players.

A. Technical Evaluation

We compared the ERWE fitness/complexity functions with
four parental selection methods for evolutionary generation
of graphs targeting four different target complexities (1x4x4).
Target complexity values were chosen to reflect the most simple
possible GE (10), a moderately simple GE (30), a moderately
complex GE (50), and a very complex GE (200). Each of these
1 × 4 × 4= 16 configurations were run 100 times, with an initial
population size of 10. The number of products at the root node,
and input edges for each factory were allowed to range from 1
to 4. The weight of each input, and the weight of each output
were allowed to range from 1 to 3. A maximum threshold of
1000 generations was applied.

We focus our reporting on the results in terms of runtime (in
milliseconds), and how often it found the exact target complex-
ity. As shown in Fig. 2, the average EA run time with this FF
ranged from 48.83 ms for the most simple target complexity, to
614.74 ms for the very complex target complexity.

The worst case runtime of the EA with the ERWE FF was
roughly 600 ms, i.e., 0.6 s. This is slower than advised for
systems aiming to ensure that users perceive system reactions
as instantaneous (0.1 s), but still within the range for not unduly
interrupting users’ flow of thought (1 s) [42], [43]. It should
thus support the generation of GEs within a duration acceptable
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Fig. 2. Mean results for the ERWE complexity function in terms of runtime (left axis, in units of 10 ms), generations created (right axis, diamond notation with
vertical label), and how often the optimal solution was found; the graph shows results for the four complexity values (10, 30, 50, 200), and all four parental selection
methods.

TABLE I
GENERATED COMPLEXITIES WERE CONSISTENTLY VERY CLOSE TO THE

TARGET FOR THE ERWE TEST RUNS

for supporting rapid playtesting. In aiming for the exact target
complexity, ERWE showed only modest success at first glance,
getting progressively worse with higher complexity targets. For
the simplest complexity target, 91%–100% of test runs found the
exact target complexity of 10 (across the different choices for
parental selection). For the moderately simple complexity (30),
this ranged between 81% and 90%. This decreased to 11%–20%
for the moderately complex target, and 27% –56% for the most
complex target (a larger target may be more difficult). In the
last two cases, the best percentages of exact solutions found
(20% and 56%, respectively) occurred with Fitness proportional
method parental selection, perhaps better avoiding local minima.
Yet overall we note the average complexity value of all test runs’
fittest final candidate produced via ERWE: The mean complexity
of the final GEs is consistently very close (likely indistinguish-
ably so) to the target, see Table I. Hence, while the data suggests
that for higher complexities (50 and 200), the algorithm did not
always reach the exact optimum, for our practical purposes the
difference between target and final complexity is minor enough
to likely be imperceptible. In summary, we found that genetic
programming using our ERWE FF can successfully and within
a reasonable time produce GEs of the targeted complexity.

B. User Study: Perceived Complexity in Prototype

After the technical evaluation to determine the viability of
using the EA for online generation of GEs, we conducted a user
study to explore player perception of the measure of complexity

defined through ERWE . Our goal was to investigate whether
players actually perceived GEs generated with higher com-
plexity values as more complex when embedded in gameplay,
explored through a between-subject design.

1) Stimuli: Based on the technical evaluation, two graphs
were generated using ERWE as the complexity function and
Best as parental selection. One graph was generated for the target
complexity of 100 (for the study context termed low complexity)
and one for a target complexity of 175 (high complexity), based
on pilot testing for average game durations. Example graphs
are shown in Fig. 3, but they were generated in-game for each
participant, i.e., the exact complexity value will have differed
slightly. Gameplay was restricted to a maximum of 35 min, but
could end earlier if players won before this (i.e., completed the
full GE).

2) Measures: Given a lack of standardized questionnaires
for complexity, we used custom seven-point Likert scale items
to explore general enjoyment, and whether the GEs had been
comprehensible, complex, and whether many steps or semifin-
ished products had been required to create end products (for item
wording, see Fig. 4). We also logged whether players won the
game, i.e., managed to build the full GE to satisfy the inhabitants’
needs within the allotted duration.

3) Participants and Procedure: Participants (n = 28) were
recruited via bill-board postings, mailing lists, and several Face-
book groups in a university setting (21 male, 7 female, 0 nonbi-
nary). On average, participants were 23 years old (M = 23.11,
SD= 5.01). Participants were divided evenly into the groups low
complexity (11 male, 3 female) and high complexity (10 male,
4 female).

After consent procedures, participants were asked to fill out a
pregame questionnaire assessing demographic background and
gaming habits. They were then asked to play the game (with
the GE set to their randomly assigned condition) for 35 min,
or until they won. Subsequently, they were asked to fill out a
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Fig. 3. Examples (a) and (b) were generated with our EA, using ERWE. The graphs are “played” from right to left (direction of the gray arrow); players build
farms and factories (green building shapes; farms have no input node) until they reach the end goal, i.e., the leftmost root node. Weighted edges indicate how often
nodes are produced in a certain time frame, e.g., one unit of the right-most resources (orange rectangles) in (b) is produced every 20 s by the right-most farms. The
calculation of the exact complexity for both examples (96 and 176, respectively) is illustrated in the supplementary materials. In the user study, comparable graphs
were generated; these exact graphs were employed in the survey.

Fig. 4. Study participants’ responses (here: overall) were largely positive, if indicating that the GEs were not overly complex. The statements regarding requirements
for producing an end product differed significantly between conditions (see Fig. 5).

post-game questionnaire on their game experience. Remunera-
tion consisted of 5 EUR and sweets. Each study session took
between 45–60 min.

4) Results of User Study: Regarding gaming habits with
infrastructure-building games, 39% of participants reported
playing this kind of game at least once a month; 18% reportedly
played at least once a week (detailed responses are in the
supplementary materials). On a seven-point Likert scale (1 =
strongly disagree, 7 = strongly agree), participants reported
roughly neutral values for being experienced in the playing
of infrastructure-building games (Mdn = 4, IQR = 3–5), but
more positive values for enjoying playing them (Mdn = 6,
IQR = 4–6.25). We present the overall results for participants
across both conditions in Fig. 4. Participants in both conditions
enjoyed the game and indicated that they felt immersed. In-
dependent t tests revealed no significant differences between
the two conditions for the question regarding enjoyment, or
immersion. An independent t test and a Wilcoxon rank sum test
indicated no significant difference in perceived complexity or
comprehensibility between conditions, respectively. However,
there was a significant difference for the statements that end
products required many steps to produce, t(24.91) = −2.16,
p <0.05, r = 40. The ratings here were higher for the high
complexity (Mdn = 4, IQR = 3.25–5) than the low complexity
condition (Mdn = 2.5, IQR = 2–4). The same emerged for the
high complexity (Mdn= 4, IQR= 4–5.75) versus low complexity

condition (Mdn = 2.5, IQR = 2–4) with regards to end prod-
ucts requiring many semifinished products, t(25.99) =−2.52,
p < 0.05, r = 0.44. This is illustrated in Fig. 5.

There was a clear difference in gameplay, 85.71% of partic-
ipants playing with low complexity won, while only 14.29% of
participants won in the high complexity condition. Binary logis-
tic regression showed the complexity condition was a significant
predictor of game outcome, χ2 (1) = 10.01, p < 0.001.

5) User Study: Summary and Discussion: The results show
no difference between the two groups in players’ rating of the
complexity of their GE. Nevertheless, the high complexity condi-
tion resulted in significantly higher agreement for the statement
that many steps or semifinished products had been required to
produce end products compared to the low complexity condition.
Further, there was a significant difference in win rates, implying
a greater difficulty inherent to the high complexity condition.

These two factors (the different win rates and perceived differ-
ence in steps required) suggest that the difference in complexity
between the two GEs did persist when embedded in gameplay.
However, it is possible that neither GE was considered highly
complex, i.e., the graphs were simply too close in complexity
values. It is possible that players would have determined a
difference in complexity if confronted with a direct comparison
of the GEs. However, it is also possible that the concept of
complexity is difficult to grasp in the context of GEs, whereas
“many steps” is more tangible.
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Fig. 5. GEs differed significantly in the number of steps and interim products required to create end products.

Finally, it should be noted that despite the difference in
winning rates and the perceived difference in required steps,
there was no difference in reported enjoyment.

V. EXPLORATORY ONLINE SURVEY

To explore our questions about complexity of GEs in a
broader sense, and regarding our generated GEs in particular,
we conducted an online survey via Reddit. With this survey, we
investigated the following: How is the complexity of two com-
parable generated graphs (Fig. 3) perceived when both graphs
are presented in comparison to each other? Further, we targeted
information to situate the generated GEs in relation to those in
similar existing commercial games: How complex are GEs in
existing city-building games? With the goal of eventually being
able to target specific existing games, how does complexity of
the generated GEs compare to that of existing games?3

A. Measures

The survey began with questions to assess participants’ de-
mographic background, as well as their favorite game, and
corresponding gaming habits. Most subsequent questions then
referred to the entered favorite game.

Next, we used an example to introduce participants to the
concept of GEs, and the terms producer and product. Given
this example, we asked participants to confirm the existence
of products and producers in their favorite game, and to name
examples. This also functioned as a check to see whether par-
ticipants had read and understood our introduction to GEs and
their components.

We next showed participants two generated GEs (Fig. 3).
We asked participants to rate their complexity (five-point Likert
scale from 1 = not at all complex to 5 = extremely complex).
We also asked whether they thought they would enjoy this
complexity in gameplay (e.g., I would enjoy the GE complexity
in example A, 1 = strongly disagree, 5 = strongly agree).

3The survey also targeted players’ game audio habits (omitted for scope).

Participants were then asked to rate how the GEs in their favorite
game—on average, or the least and most complex occurring
ones—compared to the example. Answer options here consisted
of less complex than A/more complex than B, roughly as complex
as A/B, and more complex than A but less complex than B.
After this, we also asked participants to estimate their confidence
regarding having understood the concept of GEs on a five-point
Likert scale (1 = strongly disagree, 5 = strongly agree).

B. Survey Preparation: Targeting Subreddits

We prepared our survey by collecting a list of games with
infrastructure-building mechanics, based on games tagged with
Building, City-Building, and Base-Building on the Steam web-
site.4 Based on this list, we looked up subreddits with a the-
matic focus on these specific games,5 as well as more general
games-focused subreddits. Recruitment was always preceded
by checking subreddit guidelines; the final list of subreddits in
which the survey was promoted was constrained by the subreddit
moderators’ response and permission to post. If the moderators
approved, we posted our survey link as a Reddit text post. A
total of 19 subreddits allowed recruitment, consisting mainly of
subreddits focusing on specific games, as well as one general
subreddit (i.e., /r/BaseBuildingGames).

C. Participants and Procedure

We recruited participants from the 19 subreddits. Renumer-
ation consisted of being invited to take part in a draw for one
of five vouchers worth 25 USD on Amazon.com (or equivalent
on.ca, .co.uk, or.de, subject to the participant’s choice).

A total of 1517 responses were recorded; removal of incom-
plete datasets left us with 737 completed responses.6 Participants
were 26 years old on average (IQR= 21–30), and predominantly

4e.g., [Online]. Available: http://store.steampowered.com/search/?tags=7332
5We also contacted forum moderators (e.g., for Factorio [2], Dwarf

Fortress [44], Settlers [45], and SimCity [46]) but received no response.
6Completed for the purposes of this survey; 20 participants opted out of

supplying their email address for the draw.
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TABLE II
COMPLEXITY VALUES AND MENTIONS IN PARENTHESIS ARE BASED ON

POST-EXCLUSION RESPONSES

male (634 participants, 86.02%). 75 participants (10.18%) iden-
tified as female, and 10 (1.36%) as nonbinary7. Participants
ranged from a variety of 52 different countries: The majority
were from the USA (42.20%), Germany (9.50%), U.K. (8.68%),
or Canada (7.06%)—all other countries represented less than 3%
of the participant sample. Reported employment status was sim-
ilarly diverse: Most were employed in highly varied occupations
(44.50%), were in school, training, or university (38.31%), or
selfemployed (6.24%).

D. Results

We began by confirming that participants were confident in
understanding the explanation of GEs (Mdn = 4, IQR = 4–5).

1) Favorite Games: Based on textual analysis, the favorite
games listed were coded to group games of the same series,
and correct typographical mistakes. Responses listing multiple
games or games that could not be identified were removed from
analysis. The remaining list consists of 42 different games.
Table II lists the ten most commonly mentioned games along
with their mean reported complexity.

2) Products and Producers: We used these questions in part
as a manipulation check to the reported confidence in under-
standing GEs. 86.84% of participants confirmed the existence
of products in their favorite game. The remainder denied the
existence of products in their favorite games, even though the
reported games clearly do have products (e.g., Cities: Skylines
[47]), and were thus removed from analysis. Producers without
input products, i.e., farms, reportedly existed in 68.25% of
reported favorite games, and 78.83% of participants reported
producers with one or more input products (i.e., factories).
Again, the remainder incorrectly reported no such elements in
their favorite game, and was assumed to have not properly read
or not fully understood the introduction to GEs. After these
additional exclusions, the dataset consisted of 455 responses;
the following reports are based on this subset of the data.

3) Perceived Complexity in Favorite Games: Complexity
values for participants’ favorite game were roughly neutral
(Mdn= 3, IQR= 2–3), with expected high values for enjoyment,

7This included transsexual or genderfluid gender identities, but also facetious
answers like “Dwarf” and “Yamamoto class battleship.”

Mdn= 4.00, IQR= 4–5. Kendall’s tau showed a significant pos-
itive correlation between perceived complexity and enjoyment
thereof, z = 10.59, p < 0.001, r = 0.43 (moderate effect).

4) Perceived Complexity of Generated GEs: Neither of the
two GEs was perceived as particularly complex, however, the
low complexity GE (Mdn = 2, IQR = 1–2) was perceived as less
complex than the high complexity GE (Mdn = 3, IQR = 2–3).
A Wilcoxon signed rank test showed that this difference was
significant, V = 3230.5, p < 0.001, with an effect size of r =
0.71. In terms of expected enjoyment, both had the same median
(Mdn = 4), but the low complexity version had a lower in-
terquartile range (IQR = 3–4) than the high complexity version
(IQR = 4–4). A Wilcoxon signed rank test showed that this
difference was also significant, V = 3610 p < 0.001, albeit with
a smaller effect size, r = −0.28.

5) Comparison of Complexity: In comparison to the com-
plexity in the example GEs, participants were asked to consider
and rate the average GE, as well as the least and most complex
GEs occurring in their favorite game. In terms of average GE
in their favorite game, most participants judged it to be either
roughly as complex as the low complexity graph (31.65%) or
less complex than the low complexity graph (24.52%). For the
least complex GE in their games, 80% of participants judged this
less complex than the low complexity graph. The most complex
occurring GE, however, was estimated roughly as complex as
the high complexity graph (17.58%) or more so (45.27%) by
most participants.

E. Survey Discussion

The results show that the participants did perceive a difference
in complexity between the two generated GEs. As such, while
the difference between the two was not overly pronounced, the
survey validates the results of our prior technical evaluation and
user study: The EA appears to generate graphs that are broadly
perceived as of different complexity.

Participants did indicate that they would enjoy both versions,
but the high complexity version more so, although this difference
was much less pronounced in terms of effect size. This supports
the small positive correlation found between complexity and
enjoyment of complexity in relation to participants’ favourite
game. However the smaller effect sizes also point toward the ex-
istence of players who enjoy GEs with lower perceived complex-
ity, in line with related work on pottering and idle games [48],
[49].

The results comparing the complexity of participants’ favorite
games provides a rough estimation of how complex average
GEs in these games are, which is roughly or less complex
than the generated low complexity graph. The large majority
of participants also indicated that the least complex GE was
less complex than the low complexity graph; presumably, this
refers to tutorial levels or early stage GEs in participants’ games.
Finally, the most complex GEs in participants’ games are judged
to be as complex as the generated high complexity graph or more
so; presumably this indicates progressing levels of difficulty
within these games.
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VI. OVERALL SUMMARY AND DISCUSSION

We focus our discussion on the viability of using an EA to
generate GEs of specified complexity, our working definition
of complexity, and finally lessons learned on how complexity
might be perceived by players.

A. Technical Viability

Our implementation of an EA works to produce graphs, and
the technical evaluation showed that the runtime for this graph
creation is within roughly 0.6 s. As such, it could even be used
for online generation within active gameplay, if this is conducted
at loading time or between levels. While the exact target com-
plexity was not always reached, the average final complexities
are sufficiently close to this mark. Future work will have to
explore optimization for the parameters of this EA (e.g., other
fitness-proportionate selection methods like tournament [33]).
Further, it should be noted that our current iteration does not
support cycles within the graphs (in terms of gameplay, this
could mean recycling resources via an earlier producer of the
GE). This kind of feature is not possible without switching to a
different type of EA (that does not use trees).

B. Defining Complexity

For this work, we used the ERWE FF, which worked well as a
first example for measuring complexity. The function includes
many parameters which could likely be optimized in future
work to improve player experience of the resulting GEs. For
example, the constants cin and cout currently more strongly
weigh output products. In future work, we can explore the
use of different values in actual gameplay, e.g., setting these
constants to equally weigh number of input edges and output
weights, or to emphasize the input edges. Further, it may be
interesting to develop a different FF for GEs that is able to
provide more nuanced aspects of complexity such as weighted
edges or selection methods that avoid local minima. In general,
however, the findings support the use of EAs in generating GEs
for targeting specific complexity, using our working definition.
This sets the foundation for automated adjustment of complexity
in GEs, leaving further optimization for future work.

C. Perception of Complexity

The perception of complexity in GEs appears to be more
difficult when there is no direct comparison, as in our user study.
We suspect that this aspect may be easier for players when the
graphs are obvious outliers, i.e., very complex or very simple.
However, it is also possible that GEs need more pronounced
complexity differences to enable such distinction. Especially
when embedded in gameplay, players’ perception of the GE
may be altered or obscured by extraneous scaffolding in terms
of teaching game tutorials, and planning next steps. Moreover,
Denisova et al.’s work on perceived challenge has suggested a
potential “invisible complexity” construct in games [50], that
can derive from the management of game resources. Our results
show that a difference was perceived in terms of low-level
characteristics like required steps and interim products, but not

in overall perceived game complexity. It is possible that our
adjustments of GEs were thus part of this “invisible complexity.”

We found a significant positive correlation between complex-
ity and enjoyment in the online survey, which—assuming that
higher complexity implies greater challenge—is in line with
related work on enjoyment of challenge in games [16], [51],
[52]. However, it should be noted that less complex games are
also highly popular, as shown by related work and our online
survey [48], [49]. Interestingly, regardless of perceived com-
plexity, the generated GEs were perceived as equally enjoyable,
both by players in the user study, and by participants rating
their expectations in the online survey. Given the differences in
perceived complexity of survey participants’ favorite games (i.e.,
presumably, as considered favorites—and based on the ratings—
enjoyable), we ascribe this enjoyment to the sample of players in
the user study. Despite the found correlation between complexity
and enjoyment, players’ enjoyment of the games mentioned in
the online survey were high even with low perceived complexity.
It should be noted that these games incorporate more game
mechanics than just building infrastructure; as such, players
may place a greater importance on these other aspects (combat
mechanics are also often found in these games, e.g., Dwarf
Fortress [44] and Stardew Valley [53]). Yet in general, this shows
that while many players greatly enjoy complex GEs, there is a
noticeable number of popular games with simpler GEs. Whether
this enjoyment is then still based on challenge outside of the GEs
will be the subject of future work.

Overall, we conclude that, regardless of perceived complexity,
the generated GEs did lead to a difference in terms of gameplay
complexity (i.e., the number of steps required, and influencing
the odds of winning or losing), and thus also achieved difficulty
adjustment. Further, we note that most criticism of difficulty
adjustment cautions against the use of overt modification to
gameplay [26], [27]. With this approach of adjusting GE com-
plexity, the difference was clearly subtle. It may thus be able
to avoid players feeling as though their achievements mean less
because the system helped them by providing an easier level.

D. Limitations

Our FF ERWE was derived from discussions and consider-
ations between the first two authors, and can only claim to be
a first working example of GE complexity. Other alternatives
may prove more appropriate in future work. For example, we ac-
knowledge that our representation of economic complexity does
not cover concepts like supply/demand, competition between
producers of the same resource, trading economies, or inflation.
Some of these concepts could be represented through an adjusted
FF, however others (e.g., requiring the above mentioned cycles)
would necessitate switching away from genetic programming.
Regardless, it suits our objective of showing initial technical
feasibility. Further, both the user study and online survey seem
to confirm that while the difference between the two GEs was not
stark, it did exist in the sense that it was able to target different
complexities.

For our user study, we note several limitations: Our sample
size was not large, especially for a between-subjects design, and
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participants were mostly male. Future research could explore
potential individual differences in complexity preferences, to
provide a better picture of relevant factors. Moreover, we did
not employ standardized questionnaires for complexity percep-
tion, as these do not yet exist. Such will be needed to reduce
subjectivity in evaluating GE complexity. Further, comparing
economies drawn from the games in Table II would be a great
angle for in-game comparisons in future work.

Finally, our online survey on Reddit consisted of a strongly
male leaning sample. We also note that despite our checks
for participants being confident in their understanding of GEs,
and being able to apply the concept to their favorite games,
it is possible that some ill-intentioned answers remained in the
sample and constitute bias (e.g., facetious responses). Generally,
results must be considered in light of our comparison being
between an abstract GE visualization and a GE embedded in
a game. Additionally, participants’ favorite games employ GEs
to support gameplay differently, e.g., win conditions that do not
relate to an end product. Future studies will have to be conducted
for a more direct comparison.

VII. CONCLUSION

In this work, we showed that EAs can be used to generate
GEs. We explored how viable this approach was for use in online
generation regarding runtime. We presented a first FF to define
complexity in GEs, which can be built upon to optimize player
experience and understand complexity in future work. Our user
study showed that our EA implementation allows authoring GEs
of specific complexity. Tested within a city-building game, we
created GEs that players perceived as significantly different in
the required steps and interim products, and that impacted the
odds of winning the game.

The results further suggest that rating complexity is difficult
without direct comparison. Alternatively, complexity may re-
quire larger differences when embedded in a game (because
participants of the online survey perceived the complexity dif-
ference outside of gameplay). This difficulty in perceiving differ-
ences in complexity within gameplay may facilitate using GEs
for complexity adjustment to target difficulty or challenge—
avoiding issues of too obvious game adjustments.

Our results further show that many players in this genre enjoy
complex GEs, supporting literature on the connection between
challenge and enjoyment. However, it also provides evidence
for low complexity of GEs in games still coinciding with high
enjoyment. Future work will have to explore whether this en-
joyment is derived from the low complexity itself, or whether
players find enjoyment in other challenging game mechanics
apart from the GE.

In summary, this research provides a first proof-of-concept
toward developing GEs via EAs with targeted complexity. The
results support the possibility of reliably creating GEs of specific
complexity to facilitate game development and user testing.
Further, it lays the foundation for research on player-perceived
GE complexity in games and informs our understanding of GE
complexity.
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