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Abstract. A process discovery algorithm aims to construct a model
from data generated by historical system executions such that the model
describes the system well. Consequently, one desired property of a pro-
cess discovery algorithm is rediscoverability, which ensures that the algo-
rithm can construct a model that is behaviorally equivalent to the orig-
inal system. A system often simultaneously executes multiple processes
that interact through object manipulations. This paper presents a frame-
work for developing process discovery algorithms for constructing models
that describe interacting processes based on typed Jackson Nets that use
identifiers to refer to the objects they manipulate. Typed Jackson Nets
enjoy the reconstructability property which states that the composition
of the processes and the interactions of a decomposed typed Jackson Net
yields a model that is bisimilar to the original system. We exploit this
property to demonstrate that if a process discovery algorithm ensures
rediscoverability, the system of interacting processes is rediscoverable.

1 Introduction

Business processes are fundamental to a wide range of systems. A business pro-
cess is a collection of activities that, when performed, aims to achieve a business
objective at an organization. Examples of business processes are an order-to-cash
process at a retailer, a medical assessment process at a hospital, or a credit check
process at a bank. Business processes are modeled using process modeling lan-
guages, such as Petri nets, and used for communication and analysis purposes [1].
Petri nets provide a graphical representation of the flow of activities within a
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Fig. 1. A retailer system of three interacting processes.

process and can be used to model various types of concurrent and sequential
behavior [18].

A process discovery algorithm aims to automatically construct a model from
data generated by historical process executions captured in an event log of the
system, such that the model describes the system well. A desired property of a
discovery algorithm is rediscoverability. This property states that if a system S,
expressed as a model M , generates an event log L, then a discovery algorithm
with the rediscoverability property should construct M from L. In other words,
the algorithm can reverse engineer the model of the system from the data the
model has generated. Only a few existing algorithms guarantee this property.
For example, if the model is a block-structured workflow net, and the event log
is directly-follows complete, then the α-Miner algorithm [22] can rediscover the
net that generated the event log. Similarly, again under the assumption that
the event log is directly-follows complete, Inductive Miner [16] can rediscover
process trees without duplicate transitions, self-loops, or silent transitions.

Most existing process discovery algorithms assume that a system executes
a single process [4]. Consequently, an event log is defined as a collection of
sequences where a sequence describes the execution of a single process instance.
However, many information systems, such as enterprise resource planning sys-
tems, do not satisfy this assumption. A system often executes multiple interact-
ing processes [11,23]. For example, consider a retailer system that executes three
processes: an order, product, and customer management process, as depicted
in Fig. 1. These processes are intertwined. Specifically, only available products
may be ordered, and customers can only have one order at a time. Consequently,
events do not belong to a single process but relate to several processes. For
instance, consider an event e in some event log that occurred as transition G
was executed for some customer c and created a new order o in the system. Event
e relates to the customer process instance c and the order process instance o.
Traditional process discovery techniques require event e to be stored in multiple
event logs and generate multiple models, one for each process [7].

A different approach is taken in artifact or object-centric process dis-
covery [5,17] and agent system discovery [20,21]. In object-centric process
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Fig. 2. The framework for rediscoverability of systems of interacting processes.

discovery, instead of linking each event to a single object, events can be linked
to multiple objects stored in object-centric event logs [9]. Existing object-centric
discovery algorithms project the input event log on each object type to create
a set of “flattened” event logs. For each event log, a model is discovered, after
which these models are combined into a single model [5]. In general, flattening is
lossy [7], as in this step, events can disappear [5], be duplicated (convergence) [3],
or lead to wrong event orders (divergence) [3]. In agent system discovery, instead
of interacting objects, a system is viewed as composed of multiple autonomous
agents, each driving its processes that interact to achieve an overall objective of
the system [20]. An agent system discovery algorithm proceeds by decomposing
the input event log into multiple event logs, each composed of events performed
by one agent (type) and an event log of interactions, and then discovering agent
and interaction models and composing them into the resulting system [21].

In this paper, we study under what conditions projections in event logs can
guarantee rediscoverability for interacting processes, represented as typed Jack-
son Nets, a subclass of typed Petri nets with identifiers [19,23]. The class of typed
Jackson Nets is inspired by Box Algebra [10] and Jackson Nets [14], which are
(representations of) block-structured workflow nets that are sound [2] by con-
struction [16]. As we demonstrate, typed Jackson Nets exhibit a special property:
they are reconstructable. Composing the projections of each type is insufficient
for reconstructing a typed Jackson Net. Instead, if the subset-closed set of all
type combinations is considered, the composition returns the original model of
the system. We show how the reconstructability property can be used to develop
a framework for rediscoverability of typed Jackson Nets using traditional process
discovery algorithms. The framework builds upon a divide and conquer strategy,
as depicted in Fig. 2. The principle idea of this strategy is to project an event
log L generated by some model M of the system onto logs L1, . . . , Ln. Then,
if these projected event logs satisfy the conditions of a process discovery algo-
rithm, composition of the resulting models D1, . . . , Dn into model D′ should
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rediscover the original model of the system. In this framework, we show that
every projected event log is also an event log of the corresponding projected
model. Consequently, if a process discovery algorithm guarantees the rediscov-
erability of projected models, then the composition operator for typed Jackson
Nets can be used to ensure the rediscoverability of the original system.

The next section presents the basic notions. In Sect. 3, we introduce typed
Jackson Nets, which, as shown in Sect. 4, are reconstructable. We define a frame-
work for developing discovery algorithms that guarantee rediscoverability in
Sect. 5. We conclude the paper in Sect. 6. Full proofs of the lemmata and theo-
rems can be found in [8].

2 Preliminaries

Let S and T be two possibly infinite sets. The powerset of S is denoted by
P(S) = {S′ | S′ ⊆ S} and |S| denotes the cardinality of S. Two sets S and T are
disjoint if S ∩ T = ∅, with ∅ denoting the empty set. The cartesian product of
two sets S and T , is defined by S × T = {(a, b) | a ∈ S, b ∈ T}. The generalized
cartesian product for some set S and and sets Ts for s ∈ S is defined as Πs∈STs ={
f : S → ⋃

s∈S Ts | ∀s ∈ S : f(s) ∈ Ts

}
. Given a relation R ⊆ S × T , its range

is defined by rng(R) = {y ∈ T | ∃x ∈ S : (x, y) ∈ R}. Similarly, the domain of
R is defined by dom(R) = {x ∈ S | ∃y ∈ T : (x, y) ∈ R}. Restricting the domain
of a relation to a set U is defined by R|U = {(a, b) ∈ R | a ∈ U}.

A multiset m over S is a mapping of the form m : S → N, where N =
{0, 1, 2, . . .} denotes the set of natural numbers. For s ∈ S, m(s) ∈ N denotes
the number of times s appears in multiset m. We write sn if m(s) = n. For
x 	∈ S, m(x) = 0. We use S⊕ to denote the set of all finite multisets over S and
overload ∅ to also denote the empty multiset. The size of a multiset is defined
by |m| =

∑
s∈S m(s). The support of m ∈ S⊕ is the set of elements that appear

in m at least once: supp (m) = {s ∈ S | m(s) > 0}. Given two multisets m1 and
m2 over S: (i) m1 ⊆ m2 iff m1(s) ≤ m2(s) for each s ∈ S; (ii) (m1 + m2)(s) =
m1(s)+m2(s) for each s ∈ S; and (iii) if m1 ⊆ m2, (m2−m1)(s) = m2(s)−m1(s)
for each s ∈ S.

A sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S. If n > 0
and σ(i) = ai, for 1 ≤ i ≤ n, we write σ = 〈a1, . . . , an〉. The length of a sequence
σ is denoted by |σ|. The sequence of length 0 is called the empty sequence, and
is denoted by ε. The set of all finite sequences over S is denoted by S∗. We write
a ∈ σ if there is 1 ≤ i ≤ |σ| such that σ(i) = a and supp (σ) = {a ∈ S | ∃1 ≤ i ≤
|σ| : σ(i) = a}. Concatenation of two sequences ν, γ ∈ S∗, denoted by σ = ν · γ,
is a sequence defined by σ : {1, . . . , |ν| + |γ|} → S, such that σ(i) = ν(i) for
1 ≤ i ≤ |ν|, and σ(i) = γ(i − |ν|) for |ν| + 1 ≤ i ≤ |ν| + |γ|. Projection of
sequences on a set T is defined inductively by ε|T = ε, (〈a〉 · σ)|T = 〈a〉 · σ|T if
a ∈ T and (〈a〉 · σ)|T = σ|T otherwise. Renaming a sequence with an injective
function r : S → T is defined inductively by ρr(ε) = ε, and ρr(〈a〉 · σ) =
〈r(a)〉 ·ρr(σ). Renaming is extended to multisets of sequences as follows: given a
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multiset m ∈ (S∗)⊕, we define ρr(m) =
∑

σ∈supp(m) σ(m) · ρr(σ). For example,
ρ{x�→a,y �→b}(〈x, y〉3) = 〈a, b〉3.

A directed graph is a pair (V,A) where V is the set of vertices, and A ⊆ V ×V
the set of arcs. Two graphs G1 = (V1, A1) and G2 = (V2, A2) are isomorphic,
denoted by G1 � G2, if a bijection b : V1 → V2 exists, such that (v1, v2) ∈ A1

iff (b(v1), b(v2)) ∈ A2.
Given a finite set A of (action) labels, a (labeled) transition system (LTS)

over A is a tuple ΓA = (S,A, s0,→), where S is the (possibly infinite) set of
states, s0 is the initial state and → ⊂ (S × (A ∪ {τ}) × S) is the transition
relation, where τ 	∈ A denotes the silent action [13]. In what follows, we write
s

a−→ s′ for (s, a, s′) ∈→. Let r : A → (A′ ∪ {τ}) be an injective, total function.
Renaming Γ with r is defined as ρr(Γ) = (S,A\A′, s0,→′) with (s, r(a), s′) ∈→′

iff (s, a, s′) ∈→. Given a set T , hiding is defined as ĤT (Γ) = ρh(Γ) with h :
A → A ∪ {τ} such that h(t) = τ if t ∈ T and h(t) = t otherwise. Given a ∈ A,
p a q denotes a weak transition relation that is defined as follows: (i) p a q

iff p( τ−→)∗q1
a−→ q2(

τ−→)∗q; (ii) p τ q iff p( τ−→)∗q. Here, ( τ−→)∗ denotes the reflexive
and transitive closure of τ−→.

Let Γ1 = (S1, A, s01,→1) and Γ2 = (S2, A, s02,→2) be two LTSs. A relation
R ⊆ (S1 × S2) is called a strong simulation, denoted as Γ1 ≺R Γ2, if for every
pair (p, q) ∈ R and a ∈ A ∪ {τ}, it holds that if p

a−→1 p′, then there exists
q′ ∈ S2 such that q

a−→2 q′ and (p′, q′) ∈ R. Relation R is a weak simulation,
denoted by Γ1 �R Γ2, iff for every pair (p, q) ∈ R and a ∈ A ∪ {τ} it holds that
if p

a−→1 p′, then a = τ and (p′, q) ∈ R, or there exists q′ ∈ S2 such that q a
2 q′

and (p′, q′) ∈ R. Relation R is called a strong (weak) bisimulation, denoted by
Γ1 ∼R Γ2 (Γ1 ≈R Γ2) if both Γ1 ≺ Γ2 (Γ1 �R Γ2) and Γ2 ≺R−1 Γ1 (Γ2 �R−1 Γ1).
Given a strong (weak) (bi)simulation R, we say that a state p ∈ S1 is strongly
(weakly) rooted (bi)similar to q ∈ S2, written p ∼r

R q (correspondingly, p ≈r
R q),

if (p, q) ∈ R. The relation is called rooted iff (s01, s02) ∈ R. A rooted relation is
indicated with a superscript r.

A weighted Petri net is a 4-tuple (P, T, F,W ) where P and T are two disjoint
sets of places and transitions, respectively, F ⊆ ((P × T ) ∪ (T × P )) is the flow
relation, and W : F → N

+ is a weight function. For x ∈ P ∪ T , we write
•x = {y | (y, x) ∈ F} to denote the preset of x and x• = {y | (x, y) ∈ F} to
denote the postset of x. We lift the notation of preset and postset to sets element-
wise. If for a Petri net no weight function is defined, we assume W (f) = 1 for
all f ∈ F . A marking of N is a multiset m ∈ P⊕, where m(p) denotes the
number of tokens in place p ∈ P . If m(p) > 0, place p is called marked in
marking m. A marked Petri net is a tuple (N,m) with N a weighted Petri net
with marking m. A transition t ∈ T is enabled in (N,m), denoted by (N,m) [t〉
iff W ((p, t)) ≤ m(p) for all p ∈ •t . An enabled transition can fire, resulting
in marking m′ iff m′(p) + W ((p, t)) = m(p) + W ((t , p)), for all p ∈ P , and
is denoted by (N,m) [t〉 (N,m′). We lift the notation of firings to sequences.
A sequence σ ∈ T ∗ is a firing sequence iff σ = ε, or markings m0, . . . ,mn

exist such that (N,mi−1)[σ(i)〉(N,mi) for 1 ≤ i ≤ |σ| = n, and is denoted
by (N,m0)[σ〉(N,mn). If the context is clear, we omit the weighted Petri net
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Fig. 3. An example block-structured WF-net. Each block corresponds to a node in
the Jackson type (p1; (t1; (((p2; ((t2 + t3) ; p3))#t4) ; (t5; p4)))). As example, the choice
between transitions t2 and t3 corresponds to the node (p2; ((t2 + t3) ; p3)) .

N . The set of reachable markings of (N,m) is defined by R(N,m) = {m′ |
∃σ ∈ T ∗ : m[σ〉m′}. The set of all possible finite firing sequences of (N,m) is
denoted by L(N,m0) = {σ ∈ T ∗ | m[σ〉m′}. The semantics of a marked Petri net
(N,m) with N = (P, T, F,W ) is defined by the LTS ΓN,m = (P⊕, T,m0,→) with
(m, t,m′) ∈→ iff m[t〉m′. A Petri net N = (P, T, F,W ) has underlying graph
(P ∪ T, F ). Two Petri nets N and N ′ are isomorphic, denoted using N � N ′,
if their underlying graphs are.

A workflow net (WF-net for short) is a tuple N = (P, T, F,W, in, out) such
that: (i) (P, T, F,W ) is a weighted Petri net; (ii) in, out ∈ P are the source and
sink place, respectively, with •in = out• = ∅; (iii) every node in P ∪ T is on a
directed path from in to out . N is called k-sound for some k ∈ N iff (i) it is
proper completing, i.e., for all reachable markings m ∈ R(N, [ink]), if [outk] ⊆ m,
then m = [outk]; (ii) it is weakly terminating, i.e., for any reachable marking
m ∈ R(N, [ink]), the final marking is reachable, i.e., [outk] ∈ R(N,m); and (iii)
it is quasi-live, i.e., for all transitions t ∈ T , there is a marking m ∈ R(N, [in])
such that m[t〉. The net is called sound if it is 1-sound.

3 Typed Jackson Nets to Model Interacting Processes

In this section, we introduce typed Jackson Nets as subclass of typed Petri nets
with identifiers. We show that this class is a natural extension to Jackson Nets,
which are representations of block-structured workflow nets. Typed Jackson Nets
are identifier sound and live by construction.

3.1 Jackson Nets

Whereas WF-nets do not put any restriction on the control flow of activities,
block-structured WF-nets divide the control flow in logical blocks [15]. Each
“block” represents a single unit of work that can be performed, where this unit of
work is either atomic (single transition), or one involving multiple steps (multiple
transitions). An example block-structured WF-net is shown in Fig. 3. The main
advantage of block-structured WF-nets, is that the block-structure ensures that
the WF-net is sound by definition [14–16]. In this paper, we consider Jackson
Types and Jackson Nets [14]. A Jackson Type is a data structure used to capture
all information involved in a single execution of a WF-net.
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Definition 1 (Jackson Type [14]). The set of Jackson Types J is recursively
defined by the following grammar:

J ::= A p | (
A p;

(J t;A p
))

J t ::= A t | (J t;
(J p;J t

)) | (J t + J t
)

J p ::= A p | (J p;
(J t;J p

)) | (J p ‖ J p) | (J p#J t
)

where A = A p ∪ A t = {a, b, c, . . .} denotes two disjoint sets of atomic types
for places and transitions, resp., and symbols ; , ‖,+,# stand for sequence, par-
allelism, choices, and loops. 	

A Jackson Net is a Petri net where each place has an assigned Jackson Type.
The class of Jackson Nets is obtained by recursively applying generation rules,
starting from a singleton net with only one place. These generation rules are
similar to those defined by Murata [18] and preserve soundness [14]. Thus, any
Jackson Net is sound by construction.

Definition 2 (Jackson Net [14]). A WF-net N = (P, T, F, in, out) is called a
Jackson Net if it can be generated from a single place p by applying the following
five generation rules recursively:

J1: p ↔ (p1; (t; p2)) J4: p ↔ (p1 ‖ p2)
J2: t ↔ (t1; (p1; t2)) J5: t ↔ (t1 + t2)
J3: p ↔ (p#t)

We say that N is generated by p. 	

As shown in [14], Jackson Nets are completely determined by Jackson Types,
and vice versa.

3.2 Petri Nets with Identifiers

Whereas WF-nets describe all possible executions for a single case, systems typ-
ically consist of many interacting processes. The latter can be modeled using
typed Petri nets with identifiers (t-PNIDs for short) [23]. In this formalism, each
object is typed and has a unique identifier to be able to refer to it. Tokens carry
vectors of identifiers, which are used to relate objects. Variables on the arcs are
used to manipulate the identifiers.

Definition 3 (Identifiers, Types and Variables). Let I , Λ, and V denote
countably infinite sets of identifiers, type labels, and variables, respectively. We
define:

– the domain assignment function I : Λ → P(I), such that I(λ1) is an infinite
set, and I(λ1) ∩ I(λ2) 	= ∅ implies λ1 = λ2 for all λ1, λ2 ∈ Λ;

– the id typing function typeI : I → Λ s.t. if typeI(id) = λ, then id ∈ I(λ);
– a variable typing function typeV : V → Λ, prescribing that x ∈ V can be

substituted only by values from I(typeV(x)).
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When clear from the context, we omit the subscripts of type. We lift the type
functions to sets, vectors, and sequences by applying the function on each of its
constituents. 	

In a t-PNID, each place is annotated with a label, called the place type. A
place type is a vector of types, indicating types of identifier tokens the place can
carry. Similar to Jackson Types, we use [p, λ] to denote that place p has type
α(p) = λ. Each arc is inscribed with a multiset of vectors of identifiers, such
that the type of each variable coincides with the place types. If the inscription
is empty or contains a single element, we omit the brackets.

Definition 4 (Typed Petri net with identifiers). A typed Petri net with
identifiers (t-PNID) N is a tuple (P, T, F, α, β), where:

– (P, T, F ) is a classical Petri net;
– α : P → Λ∗ is the place typing function;
– β : F → (V∗)⊕ defines for each arc a multiset of variable vectors s.t.

α(p) = type(x) for any x ∈ supp (β((p, t))) and type(y) = α(p′) for any
y ∈ supp (β((t, p′))) where t ∈ T , p ∈ •t, p′ ∈ t•. 	

A marking of a t-PNID is the configuration of tokens over the set of places.
Each token in a place should be of the correct type, i.e., the vector of identifiers
carried by a token in a place should match the corresponding place type. The
set C(p) defines all possible vectors of identifiers a place p may carry.

Definition 5 (Marking). Given a t-PNID N = (P, T, F, α, β), and place p ∈
P , its id set is C(p) =

∏
1≤i≤|α(p)| I(α(p)(i)). A marking is a function m ∈

M (N), with M (N) = P → (Λ∗)⊕, such that m(p) ∈ C(p)⊕, for each place p ∈ P .
The set of identifiers used in m is denoted by Id(m) =

⋃
p∈P rng(supp (m(p)))

The pair (N,m) is called a marked t-PNID. 	

To define the semantics of a t-PNID, the variables need to be valuated with
identifiers.

Definition 6 (Variable sets [23]). Given a t-PNID N = (P, T, F, α, β), t ∈ T
and λ ∈ Λ, we define the following sets of variables:

– input variables as In(t) =
⋃

x∈β((p,t)),p∈•t rng(supp (x));
– output variables as Out(t) =

⋃
x∈β((t,p)),p∈t• rng(supp (x));

– variables as Var(t) = In(t) ∪ Out(t);
– emitting variables as Emit(t) = Out(t) \ In(t);
– collecting variables as Collect(t) = In(t) \ Out(t);
– emitting transitions as EN (λ) = {t | ∃x ∈ Emit(t) ∧ type(x) = λ};
– collecting transitions as CN (λ) = {t | ∃x ∈ Collect(t) ∧ type(x) = λ};
– types in N as type(N) = {�λ | ∃p ∈ P : �λ ∈ α(p)}. 	

A valuation of variables to identifiers is called a binding. Bindings are used
to inject new fresh data into the net via variables that emit identifiers, i.e., via
variables that appear only on the output arcs of that transition. Note that in
this definition, freshness of identifiers is local to the marking, i.e., disappeared
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identifiers (those fully removed from the net through collecting transitions) may
be reused, as it does not hamper the semantics of the t-PNID.

Definition 7 (Firing rule for t-PNIDs). Given a marked t-PNID (N,m)
with N = (P, T, F, α, β), a binding for transition t ∈ T is an injective function
ψ : V → I such that type(v) = type(ψ(v)) and ψ(v) 	∈ Id(m) iff v ∈ Emit(t).
Transition t is enabled in (N,m) under binding ψ, denoted by (N,m)[t, ψ〉 iff
ρψ(β(p, t)) ≤ m(p) for all p ∈ •t. Its firing results in marking m′, denoted by
(N,m)[t, ψ〉(N,m′), such that m′(p) + ρψ(β(p, t)) = m(p) + ρψ(β(t, p)). 	

The firing rule is inductively extended to sequences. A marking m′ is reachable
from m if there exists η ∈ (T × (V → I))∗ such that (N,m)[η〉(N,m′). We
denote with R(N,m) the set of all markings reachable from m for (N,m). We
use L (N,m) to denote all possible firing sequences of (N,m), i.e., L (N,m) =
{η | (N,m)[η〉} and Id(η) =

⋃
(t,ψ)∈η rng(ψ) for the set of identifiers used in η.

The execution semantics of a t-PNID is defined as an LTS that accounts for all
possible executions starting from a given initial marking. We say two t-PNIDs
are bisimilar if their induced transition systems are.

Definition 8. Given a marked t-PNID (N,m0) with N = (P, T, F, α, β), its
induced transition system is ΓN,m0 = (M(N), (T × (V → I)),m0,→) with

m
(t,ψ)−−−→ m′ iff (N,m) [t, ψ〉 (N,m′). 	

Soundness properties for WF-nets typically consist of proper completion,
weak termination, and quasi-liveness [6]. Extending soundness to t-PNIDs gives
identifier soundness [23]. In t-PNIDs, each object of a given type “enters” the
system through an emitting transition, binding it to a unique identifier. Identifier
soundness intuitively states that it should always be possible to remove objects
(weak type termination), and that once a collecting transition fires for an object,
there should be no remaining tokens referring to the removed object (proper type
completion).

Definition 9 (Identifier Soundness [23]). Let (N,m0) a marked t-PNID and
λ ∈ Λ some type. (N,m0) is λ-sound iff it is

– Proper λ-completing, i.e., for all t ∈ CN (λ), bindings ψ : V → I and
markings m,m′ ∈ R(N,m0), if m[t, ψ〉m′, then for all identifiers id ∈
rng(ψ|Collect(t)) ∩ Id(m) and type(id) = λ, it holds that id 	∈ Id(m′)1;

– Weakly λ-terminating, i.e., for every m ∈ R(N,m0) and identifier id ∈ I(λ)
such that id ∈ Id(m), there exists a marking m′ ∈ R(N,m) with id 	∈ Id(m′).

If it is λ-sound for all λ ∈ type(N), then it is identifier sound. 	

3.3 Typed Jackson Nets

In general, identifier soundness is undecidable for t-PNIDs [23]. Similar as Jack-
son Nets restrict WF-nets to blocks, typed Jackson Nets (t-JNs) restrict t-PNIDs
1 Here, we constrain ψ only to objects of type λ that are only consumed.
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to blocks, while guaranteeing identifier soundness and liveness. For t-JNs, we dis-
allow multiplicity on arcs and variables, i.e., β(f)(v) ≤ 1 for all f ∈ F and v ∈ V,
and imply a bijection on variables and identifier types. This prevents place types
like λ = 〈x, x〉. Assuming a Gödel-like number on types (cf. [14]), place types and
arc inscriptions can be represented as sets. Similar as Jackson Types describe
Jackson Nets, we apply a notation based on Jackson Types to denote typed
Jackson Nets.

Definition 10 (Typed Jackson Net). A t-PNID N is a typed Jackson Net if
it can be generated from a set of transitions T ′ by applying any of the following six
generation rules recursively. If N is generated from a singleton set of transitions
(i.e., |T ′| = 1), N is called atomic.

R1 Place Expansion: [p, λ] ↔ ([p1, λ] ; (t1; [p2, λ]))

p

ν

ν

ν

ν
p1

t

p2

ν

ν

μ μ
ν

ν

R2 Transition Expansion: t ↔ (t1; ([p, λ] ; t2)), with Var(t) ⊆ λ

t
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ν3

ν4
t1

p

t2

ν1

ν2

μ μ
ν3
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R3 Place Duplication: (t1; ([p, λ] ; t2)) ↔ (t1; (([p, λ] ‖ [p′, λ′]) ; t2)),
with λ′ ∩ Emit(p•) = ∅
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R4 Transition Duplication: t ↔ (t + t′)
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R5 Self Loop Addition: [p, λ] ↔ ([p, λ] #t)
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R6 Identifier Introduction: t ↔ (t 	 (N1, [p, λ] , N2)), with (N1; ([p, λ] ;N2)) a
t-JN and λ ∩ Var(t) = ∅

t
ν1

ν2

ν3

ν4
t

p

t1 t2

ν1

ν2

μ μ

μ μ

ν3

ν4

	

An example t-JN is given in Fig. 1. Starting with the product process, tran-
sitions C and D can be reduced using rule R2. The resulting transition is
a self-loop transition, and can be reduced using R5, resulting in the block
(E 	 (A, product , B)). This block can be reduced using R6, leaving transition
E. Transition E is again a self-loop, and can be reduced using R5. The block
containing transitions H, J , L O, N and K can be reduced to a single place by
applying rules R1, R2 and R5 repeatedly. The remaining place is a duplicate
place with respect to place p, and can be reduced using R3. Applying R2 on G
and Z results in the block (G 	 (T, customer , V )), which can be reduced to the
transition G. Hence, the net in Fig. 1 is an atomic t-JN.

Theorem 1 (Identifier Soundness of typed Jackson Nets [23]). Given a
t-JN N , then N is identifier sound and live. 	

4 Decomposability of t-JNs

t-PNIDs specify a class of nets with explicitly defined interactions between
objects of different types within one system. However, sometimes one may want
to focus only on some behaviors exhibited by a given set of object types, by
extracting a corresponding net from the original t-PNID model. We formalize
this idea below.

Definition 11 (Type projection). Let N = (PN , TN , FN , α, β) be a t-PNID
and Υ ⊆ Λ be a set of identifier types. The type projection of Υ on N is a
t-PNID πΥ (N) = (PΥ, TΥ, FΥ, αΥ, βΥ), where:

– PΥ = {p ∈ P | Υ ⊆ α(p)};
– TΥ = {t ∈ T | (•t ∪ t•) ∩ PΥ 	= ∅};
– FΥ = F ∩ ((PΥ × TΥ) ∪ (TΥ × PΥ));
– αΥ(p) = Υ, for each p ∈ PΥ;
– βΥ(f) = β(f)|type−1

V (Υ), for each f ∈ ((PΥ × TΥ) ∪ (TΥ × PΥ)). 	

With the next lemma we explore a property of typed Jackson nets that,
in a nutshell, shows that t-JNs are closed under the type projection. This also
indirectly witnesses that t-JNs provide a suitable formalism for specifying and
manipulating systems with multiple communicating components.

Lemma 1. If N = (PN , TN , FN , α, β) is a t-JN, then πΥ (N) is a t-JN as well,
for any Υ ⊆ typeΛ(N). 	



48 D. Barenholz et al.

Fig. 4. Although both N and M are t-JNs, their composition is not

Proof. (sketch) Let us assume for simplicity that N is atomic. Then, using rules
from Definition 10, N can be reduced to a single transition. Starting from this
transition, one can construct a t-JN following the net graph construction from
Definition 11 using the same rules (but the identifier introduction one), proviso
that arc inscriptions are always of type Υ. Then, it is easy to check that the
constructed net is indeed the type projection of Υ on N . �

We define next how t-PNIDs can be composed and show that t-JNs are not
closed under the composition.

Definition 12 (Composition). Let N = (PN , TN , FN , αN , βN ) and
M = (PM , TM , FM , αM , βM ) be two t-PNIDs. Their composition is defined by:

N � M = (PN ∪ PM , TN ∪ TM , FN ∪ FM , αN ∪ αM , βN ∪ βM )

	It is easy to see that the composition of two t-JNs does not automatically
result in a t-JN. Consider nets in Fig. 4. It is easy to see that both N and M
can be obtained by applying R2 from Definition 10. However, their composition
cannot be reduced to a single transition by consecutively applying rules from
Definition 10.

A more surprising observation is that composing type projections of a t-
JN may not result in a t-JN. Take for example the net from Fig. 5. Both its
projections on {λ1} and {λ2} are t-JNs. However, bringing them together using
the composition operator results in a t-PNID that is not t-JN: indeed, since the
“copies” of place p appear in three places, and all such copies have same pre-
and post-sets (and only differ by their respective types), it is impossible to apply
identifier elimination rule R6 from Definition 10.

As one may observe from the above example, the only difference between
[pxy, 〈λ1, λ2〉] and its copies px and py is in their respective types, whereas the
identifiers carried by px and py are always contained in pxy, and thus both px and
py can be seen as subsidiary with respect to pxy. We formalize this observation
using the notion of minor places: a place p is minor to some place q if both p
and q have identical pre- and post-sets, and the type of q subsumes the one of p.



There and Back Again 49

Fig. 5. Composition of the projections on {λ1}, {λ2} and {λ1, λ2} on the t-JN
(a; [p, 〈x, y〉]; (b||c); [q, 〈x, y〉]; d). Here, type assignments are as follows: α(px) = α(qx) =
λ1, α(py) = α(qy) = λ2 and α(p) = α(q) = λ1λ2.

Definition 13 (Minor places). Let N = (PN , TN , FN , α, β) be a t-PNID. A
place p ∈ P is minor to a place q ∈ P iff the following holds:

– •p = •q, p• = q• and α(p) ⊂ α(q);
– β((t, p)) = β((t, q))|type−1(α(p)), for each t ∈ •p;
– β((p, t)) = β((q, t))|type−1(α(p)), for each t ∈ p•.

	

We show next that minor places can be added or removed without altering
the overall behavior of the net.

Lemma 2. Let N = (P, T, F, α, β) be a t-PNID with initial marking m0 s.t.
m0(p) = m0(q) = ∅, for p, q ∈ P , where p is minor to q. Let N ′ = (P \{p} , T, F \
({(p, t)|t ∈ p•} ∪ {(t, p)|t ∈ •p}), α, β) be a t-PNID obtained by eliminating from
N place p. Then ΓN,m0 ∼r ΓN ′,m0 . 	

Proof. (sketch) It is enough to define a relation Q ⊆ R(N,m0) × R(N ′,m0) s.t.
(m,m′) ∈ Q iff m(r) = m′(r), for r ∈ P \ {p}, and m(p)(id) = m′(q)(id), for all
id ∈ C(p), and |m(p)| = |m′(q)|. Then the lemma statement directly follows from
the firing rule of t-PNIDs and that pre- and post-sets of p and q coincide. �

Let us now address the reconstructability property. In a nutshell, a net is
reconstructable if composing all of its type projections returns the same net.
This property is not that trivial to obtain. For example, let us consider singleton
projections (that is, projections π{λ} (N) obtained for each λ ∈ typeΛ(N)) of
the net in Fig. 6. It is easy to see that such projections “ignore” interactions
between objects (or system components). Thus, the composition of the singleton
projections π{λ1} (N) and π{λ2} (N) from Fig. 6 does not result in a model that
merges px and py in one place as the composition operator cannot recognize
component interactions between such projections. This is reflected in Fig. 6d.

To be able to reconstruct the original model from its projections (or at least
do it approximately well), one needs to consider a projection reflecting compo-
nent interactions. In the case of the net from Fig. 6a, its non-singleton projection
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Fig. 6. t-PNID N (6a), its singleton projections and their composition

Fig. 7. Adding the projection π{λ1,λ2} (N) reflecting interactions to the composition
results in the original net N modulo places minor to p (such as px and py).

π{λ1,λ2} (N) is depicted in Fig. 7a. Now, using this projection we can obtain a
composition (see Fig. 7b) that closely resembles N . Notice that, in this compo-
sition, copies of the interaction place p appear three times as places px, py and
pxy, respectively. It is also easy to see that places px and py are minor to pxy,
and α(p) = α(pxy) witnesses that π{λ1,λ2} (N) is the maximal projection defined
over types of N s.t. the correct type of p is “reconstructed”. This leads us to
the following result stipulating the reconstructability property of typed Jackson
nets.

Theorem 2. Let N = (P, T, F, α, β) be a t-JN. Then ΓN,∅ ∼r ΓN ′,∅, where
N ′ =

⊎

∅⊂Υ⊆typeΛ(N)

πΥ (N). 	

Proof. (sketch) The proof immediately follows from the next observation. Among
all possible projections, for each place p ∈ P there exists a projection πΥ (N)
such that α(p) = Υ. This also means that πΥ (N) contains p and that all other
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projections πΥ′ (N) with Υ′ ⊂ Υ will at most include the minors of p. Following
Definition 12, it is easy to see that the composition of all the projections yields
a t-JN identical to N modulo additional place minors introduced by some of
the projections. Showing that the obtained net is bisimilar to N can be done by
analogy with Lemma2. �

Notice that the above result can be made stronger if all the additional minors
(i.e., minors that were not present originally in N) are removed using reduction
rules from Definition 10. For simplicity, given a t-PNID N with the set of places
P , we denote by �P � the set of its minor places.

Corollary 1. Let N be a t-JN and N ′ is as in Theorem2. Then (N, ∅) �
(N ′, ∅), if �P � = �P ′�, where P and P ′ are respectively the sets of places of N
and N ′. 	

The above result can be obtained by complementing the proof of Theorem 2 with
a step that applies finitely many t-JN reduction rules to all the minor places that
are in N ′ and not in N .

5 A Framework for Rediscoverability

In the previous section, we showed that t-JNs enjoy the reconstructability prop-
erty: given a t-JN, a composition of all its (proper) type projections yields a
t-JN that is strongly bisimilar to the original one.2

In this section, we propose a framework to rediscover systems of interacting
processes that rely on this property. The framework builds upon a divide and
conquer strategy [21]. The first step of the approach is to divide the event logs
over all possible projections. For this, we translate the notion of event logs to
event logs of interacting systems, and show that if these event logs are generated
by a t-JN, projections on these event logs have a special property: the projected
event log can be replayed by the projected net. In other words, there is no distinc-
tion between the projection on the event log, or that the projected net generated
the event log. This observation forms the basis of the proposed framework for
rediscoverability. In the second step, we conquer the discoverability problem of
the system of interacting processes by first discovering a model for each of the
projections, and then composing these projections into the original system. If the
event log and discovery algorithm guarantee the defined properties, composition
yields rediscoverability.

5.1 Event Logs and Execution Traces

In process discovery, an event log is represented as a (multi)set of sequences of
events (called traces), where each sequence represents an execution history of a

2 Such nets are also isomorphic if minor places of the composition are removed by
consecutively applying the reduction rules from Definition 10.
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Table 1. Firing sequence for the t-PNID in Fig. 1

transition x y z
A p1

A p2

T c1

G o1 c1

C p1

E p2 o1

transition x y z
T c2

H o1

L o1

J o1

B p2

O o1

transition x y z
D p1

V c2

K o1

Z o1 c1

V c1

B p1

process instance. Traditional process discovery assumes the process to be a WF-
net. Consequently, each trace in an event log should correspond to a sequence of
transition firings of the workflow net. If this is the case, the event log is said to
be generated by the WF-net. We generalize this notion to marked Petri nets.

Definition 14 (Event Log). Given a set of transitions T , a set of traces L ⊆
T ∗ is called an event log. An event log L is generated by a marked Petri net
(N,m) if (N,m)[σ〉 for all σ ∈ L, i.e., L ⊆ L(N,m0). 	

Each sequence in a single process event log assumes to start from the initial
marking of the WF-net. A marked t-PNID, instead, represents a continuously
executing system, for which, given a concrete identifier, exists a single observable
execution that can be recorder in an event log. Thus, event logs are partial
observations of a larger execution within the system: an event log for a certain
type captures only the relevant events that contain identifiers of that type, and
stores these in order of their execution. Since each transition firing consists of a
transition and a binding, a t-PNID firing sequence induces an event log for each
set of types Υ. Intuitively, this induced event log is constructed by a filtering
process. For each possible identifier vector for Υ we keep a firing sequence. Each
transition firing is inspected, and if its binding satisfies an identifier vector of Υ,
it is added to the corresponding sequence.

Definition 15 (Induced Event Log). Let (N,m0) be a marked t-PNID.
Given a non-empty set of types Υ ⊆ typeΛ(N), the Υ-induced event log of a fir-
ing sequence η ∈ L(N,m0) is defined by: LogΥ(η) = {η|i | i ∈ (Id(η)∩ I(Υ))|Υ|},
where η|i is inductively defined by (1) ε|i = ε, (2) (〈(t, ψ)〉 · η)|i = 〈(t, ψ)〉 · η|i if
supp(i) ⊆ rng(ψ), and (3) (〈(t, ψ)〉 · η)|i = η|i otherwise. 	

Different event logs can be induced from a firing sequence. Consider, for
example, the firing sequence of the net from Fig. 1 represented as table in
Table 1. As we cannot deduce the types for each of the variables from the
firing sequences in Table 1, we assume that there is a bijection between vari-
ables and types, i.e., that each variable is uniquely identified by its type,
and vice-versa. Like that, we can create an induced log for each variable, as
the type and variable name are interchangeable. For example, the x-induced
event log is Log{x} = {〈A,E,B〉 , 〈A,C,D,B〉}, and the z-induced event log is
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Log{z} = {〈T,G,Z, V 〉 , 〈T, V 〉}. Similarly, event logs can be also induced for
combinations of types. In this example, the only non-empty induced event logs
on combined types are Log{y,z} = {〈G,Z〉} and Log{x,y} = {〈E〉}.

As the firing sequence in Table 1 shows, transition firings (and thus also
events) only show bindings of variables to identifiers. For example, for firing G
with binding y �→ o1 and z �→ c1, it is not possible to derive the token types of
the consumed and produced tokens directly from the table. Therefore, we make
the following assumptions for process discovery on t-PNIDs:

1. There are no “black” tokens: all places carry tokens with at least one type,
and all types occur at most once in a place type, i.e., all places refer to at
least one process instance.

2. There is a bijection between variables and types, i.e., for each type exactly
one variable is used.

3. A Gödel-like number G is used to order the types in place types, i.e., for any
place p, we have G (α(p)(i)) < G (α(p)(j)) for 1 ≤ i < j ≤ |α(p)| and p ∈ P .

5.2 Rediscoverability of Typed Jackson Nets

Whereas traditional process discovery approaches relate events in an event log
to a single object: the process instance, object-centric approaches can relate
events to many objects [12]. Most object-centric process discovery algorithms
(e.g., [5,17]) use a divide and conquer approach, where “flattening” is the default
implementation to divide the event data in smaller event logs. The flattening
operation creates a trace for each object in the data set, and combines the traces
of objects of the same type in an event log. As we have shown in Sect. 4, single-
ton projections, i.e., those just considering types in isolation, are insufficient to
reconstruct the t-JN that induced the object-centric event log. A similar observa-
tion is made for object-centric process discovery (cf. [3,5,7]): flattening the event
data into event logs generates inaccurate models. Instead, reconstructability can
only be achieved if all possible combinations of types are considered. Hence, for
a divide and conquer strategy, the divide step should involve all possible combi-
nations of types, i.e., each interaction between processes requires their own event
log. In the remainder of this section, we show that if all combinations of types are
considered, flattening is possible, and traditional process discovery algorithms
can be used to rediscover a system of interacting processes.

For a system of interacting processes, we consider execution traces, i.e., a
firing sequence from the initial marking. Like that, event logs for specific types
or combinations of types are induced from the firing sequence. The projection of
the system on a type or combinations of types, results again in a t-JN. Similarly,
if we project a firing sequence of a t-JN N on a set of types Υ, then this projection
is a firing sequence of the Υ-projection on N . The property follows directly from
the result that t-JN N is weakly simulated by its Υ-projection.

Lemma 3. Let N be a t-JN, and let Υ ⊆ typeΛ(N). Then ĤU (ΓN,∅) �r

ΓπΥ(N),∅, with U = TN \ TΥ. 	



54 D. Barenholz et al.

Fig. 8. Framework for rediscoverability of typed Jackson Nets. Model M generates an
event log L. Log projections L1 . . . Ln are generated from projected nets M1 . . . Mn.
Discovery algorithm disc results in nets D1 . . . Dn, isomorphic to M1 . . . Mn, which can
be composed in D′. D′ is isomorphic to M ′ and thus to M .

Proof. (sketch) Let NΥ = Υ|N = (PΥ, TΥ, FΥ, αΥ, βΥ). We can define a rela-
tion Q ⊆ M (N) × M (πΥ (N)) s.t. Q(m)(p)(a|I(Υ)) = m(p)(a) if p ∈ PΥ and
Q(m)(p) = m(p) otherwise. The rooted weak bisimulation of Q follows directly
from the firing rule of t-PNIDs. �

As the lemma shows, projecting a firing sequence yields a firing sequence for
the projected net. A direct consequence of the simulation relation is that, no
matter whether we induce an event log from a firing sequence on the original
net, or induce it from the projected firing sequence, the resulting event logs are
the same.

Corollary 2. Let (N,m0) be a marked t-PNID. Given a set of types Υ ⊆
typeΛ(N). Then LogΥ(η) = LogΥ(πΥ (η)). 	

Hence, it is not possible to observe whether an induced event log stems from
the original model, or from its projection. Note that the projection may exhibit
more behavior, so the reverse does not hold. In general, not any induced event
log from the projection can be induced from the original model.

In general, a projection does not need to be an atomic t-JN (that is, a t-JN
that can be reduced by applying rules from Definition 10 to a single transition).
However, if the projection is atomic, then its structure is a transition-bordered
WF-net: a WF-net that, instead of having source and sink places, has a set of
start and finish transitions, such that pre-sets (resp., post-sets) of start (resp.,
finish) transitions are empty. The closure of a transition-bordered WF-net is
constructed by adding a new source place i so that each start transition consumes
from i, and a new sink place f so that each finish transition produces in f .

Lemma 4. Let N be a t-JN and πΥ (N) = (PΥ, TΥ, FΥ, αΥ, βΥ) for some Υ ⊆
typeΛ(N) such that πΥ (N) is atomic. Let η ∈ L(N, ∅) be a firing sequence.
Then LogΥ(η) is generated by (NΥ, ∅) with NΥ = (PΥ ∪ {i, f}, TΥ, FΥ{(i, t) |
•t = ∅} ∪ {(t, f) | t• = ∅}). 	
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Proof. (sketch) Let σ ∈ LogΥ(η). By construction, each firing sequence in
LogΥ(η) has some corresponding identifier vector that generated the sequence.
Assume �υ ∈ I |Υ| is such a vector for σ.

Observe that for any transition t ∈ T if •t = ∅, Emit(t) ∩ Υ 	= ∅, and
similarly, if t• = ∅, Collect(t) ∩ Υ 	= ∅. As N is identifier sound, only •σ(1) = ∅
and σ(|σ|)• = ∅. Define relation R = {(M,m) | ∀p ∈ P : M(p)(υ) = m(p)} and
U = {(t, ψ) | υ 	⊆ rng(ψ)}, i.e., U contains all transitions that do not belong to
σ. Then R is a weak simulation, i.e., ĤU (ΓN,∅) �r

R ΓNΥ,∅ and thus (NΥ, ∅)[σ〉. �

Given a set of types Υ, if its projection is atomic, the projection can be
transformed into a workflow net, and for any firing sequence of the original net,
this WF-net can generate the Υ-induced event log. Suppose we have a discovery
algorithm disc that can rediscover models, i.e., given an event log L that was gen-
erated by some model M , then disc returns the original model. Rediscoverability
of an algorithm requires some property Pdisc(M) on the generating model M ,
and some property Qdisc(L,M) on the quality of event log L with respect to the
generating model M . In other words, P (M) and Q(L,M) are premises to con-
clude rediscoverability for discovery algorithm disc. For example, α-miner [22]
requires for P (M) that model M is well-structured, and for Q(L,M) that event
log L is directly-follows complete with respect to model M . Similarly, Inductive
Miner [16] requires the generating model M to be a process tree without silent
actions or self-loops (P (M)), and that event log L is directly-follows complete
with respect to the original model M (Q(L,M)).

Definition 16 (Rediscovery). An algorithm disc can rediscover WF-net W =
(P, T, F, in, out) from event log L ⊆ T ∗ if Pdisc(W ) and Qdisc(L,W ) imply
disc(L) � W . 	

Thus, suppose there exists a discovery algorithm disc that is – under con-
ditions P and Q – able to reconstruct a workflow model given an event log. In
other words, given an event log L generated by some model M , disc returns
a model that is isomorphic to the generating model. Now, suppose we have a
firing sequence η of some t-JN N , and some projection Υ. Then, if P (πΥ (N)),
and Q(LogΥ(η), πΥ (N)), then disc returns a model that is isomorphic to the
closure of πΥ (N), as disc only returns WF-nets. With disc we denote the model
where the source and sink places are removed, i.e., disc � πΥ (N). Then, as
shown in Fig. 8, if we discover for every possible combination of types, i.e., the
subset-closed set of all type combinations, a model that is isomorphic to the
type-projected model, then the composition results in a model that is bisimilar
to the original model.

Theorem 3 (Rediscoverability of typed Jackson Nets). Let N be a
t-JN, and let η ∈ L(N, ∅) without minor places. Let disc be a discov-
ery algorithm with properties P and Q that satisfy Definition 16. If for
all ∅ ⊂ Υ ⊆ typeΛ(N) the Υ-projection is atomic and satisfies condi-
tions P (πΥ (N)) and Q(LogΥ(η)), πΥ (N)), then ΓN,∅ � ΓN ′,∅ with N ′ =⊎

∅⊂Υ⊆typeΛ(N) disc(LogΥ(η)).
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Proof. (sketch) Let ∅ ⊂ Υ ⊆ typeΛ(N) be a set of types in N . Since P (πΥ (N))
and Q(LogΥ(η)), πΥ (N))the closure of πΥ (N) and disc(LogΥ(η)) are isomor-
phic. From the closure, places in and out exist with •in = ∅ = out•. As the
nets are isomorphic, we have Υ|N � disc(LogΥ(η)). Combining the results
gives

⊎
∅⊂Υ⊆typeΛ(N) disc(LogΥ(η)) �

⊎
∅⊂Υ⊆typeΛ(N) πΥ (N). The statement

then follows directly from Corollary 1. �

6 Conclusion

In this paper, we studied typed Jackson Nets to model systems of interacting
processes, a class of well-structured process models describing manipulations
of object identifiers. As we show, this class of nets has an important property
of reconstructability. In other words, the composition of the projections on all
possible type combinations returns the model of the original system. Ignoring the
interactions between processes results in less accurate, or even wrong, models.
Similar problems occur in the discovery of systems of interacting processes, such
as object-centric process discovery, where event logs are flattened for each object.

This paper provides a formal foundation for the composition of block-
structured nets, and uses this to develop a framework for the discovery of systems
of interacting processes. We link the notion of event logs used for process discov-
ery to system executions, and show that it is not possible to observe whether an
event log is generated by a system of interacting processes, or by a projection of
the system. These properties form the key ingredients of the framework. We show
under what conditions a process discovery algorithm (that guarantees rediscov-
erability) can be used to discover the individual processes and their interactions,
and how these can be combined to rediscover a model of interacting processes
that is bisimilar to the original system that generated the event logs.

Although typed Jackson Nets have less expressive power than formalisms like
Object-centric Petri nets [5], proclets [11] or interacting artifacts [17], this paper
shows the limitations and potential pitfalls of discovering interacting processes.
This work aims to lay formal foundations for object-centric process discovery.
As a next step, we plan to implement the framework and tune our algorithms
to discover useful models from industrial datasets.
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