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Abstract

A prominent strand of work in formal semantics investigates the ways in which human
languages quantify the elements of a set, as when we say All A are B, Few A are B, and
so on. Building on a growing body of empirical studies that shed light on the meaning
and the use of quantifiers, we extend this line of work by computationally modelling how
human speakers textually describe complex scenes in which quantitative relations play
an important role. To this end, we conduct a series of elicitation experiments in which
human speakers were asked to perform a linguistic task that invites the use of quantified
expressions. The experiments result in a corpus, called qtuna, made up of short texts
that contain a large variety of quantified expressions. We analyse qtuna, summarise
our findings, and explain how we design computational models of human quantifier use
accordingly. Finally, we evaluate these models in accordance with qtuna.

1. Introduction

The aim of this paper is to propose and evaluate computational models of human speakers’
use of quantification in the description of visual scenes.

Quantified noun phrases are studied in different research traditions. Much work has
been done by formal semanticists, often building on the idea that the prime function of a
noun phrase is to express quantitative relations between sets of individuals. The study of
Generalised Quantifiers, as it is often called, can be understood as an attempt to understand
the huge variation in quantifier patterns: not only we can say things of the form “All A are
B” and “All except two A are B”, but also “Most A are B” and “Few A are B”, which are
not expressible in First-Order Predicate logic. Quantifiers can also play other logical roles,
for instance when we say “There are (some/few/etc.) A”, where the quantifier has only one
set argument (namely A). Clearly, a speaker who describes a situation by using quantified
noun phrases faces a large range of options, many of which express different propositions.

Human use of quantifiers has been studied intensively since Barwise and Cooper (1981);
an overview of work in this “logical” tradition can be found in Peters and Westerst̊ahl
(2006). A more empirical strand of work asks how human speakers produce and comprehend
quantified Noun Phrases, focusing on properties of one particular quantifier (Lidz, Pietroski,
Halberda, & Hunter, 2011; Kotek, Sudo, & Hackl, 2015), or differences between small sets
(e.g., pairs) of quantifiers (Moxey & Sanford, 1993; Geurts & Nouwen, 2007; Zajenkowski
& Szymanik, 2013; Solt, 2016; Lappin, 2000), focusing on quantifiers in a fixed sentence
position (e.g., the position Q in the sentence “Q of the circles are round”).
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In recent years, many areas of human behaviour have been “simulated” using computer
programs, including human memory, logical reasoning, and so on (see e.g., Sun (2008)),
resulting in a methodological paradigm sometimes referred to as computational modelling.
This paradigm has been extended to human language production as well (e.g., van Deemter
(2016)). In the spirit of this line of work, we want to construct a computational model
of human quantifier use. Unlike process models, which characterise the manner in which
humans perform a given task, our models merely characterise the input-output behaviour
between scenes perceived and descriptions uttered. Models of this kind are known as product
models (Sun, 2008). Product models often focus on predicting how a human speaker would
verbally describe a given visual scene without claiming that the steps that our algorithms
take resemble processing steps undertaken in the human mind; in other cases, they focus on
producing outputs that are optimal for hearers or readers.1 The models presented in this
paper will be evaluated both in terms of the extent to which the descriptions they produce
are perceived to resemble human-produced descriptions, and, especially, in terms of their
utility for human readers.

We consider our models to be a valuable addition to those computational models that
focus on interpreting natural language because the former embodies an insight into what
utterance is most appropriate in a given situation: thus, the model embodies an understand-
ing of expressive choice. In a nutshell, why do we say what we say?, addressing both the
strategic aspect of this question (i.e., What information do we express? ) and the tactical
aspect (i.e., How do we express it? ). The expressive choice is the defining challenge of the
research field of Natural Language Generation (e.g. Gatt and Krahmer (2018)).

Given that modelling the full range of speakers’ use of quantifiers is an extremely am-
bitious goal, we focus on simple situations, where there is only a limited range of objects
to talk about, and a limited range of things to say about them, embedded in a simple com-
municative setting that minimises the role of such “complicating” factors as background
knowledge and expectations that the speakers or hearers may have about the domain. To
build a good model of language use, one needs to know:

1. What utterances, including what quantified expressions, are likely to be uttered by a
speaker in a given situation?

2. If a given quantified expression is uttered, what information does it convey?

Aspects of these questions have been addressed before. For instance, Yildirim, Degen,
Tanenhaus, and Jaeger (2013) investigated speakers’ use and hearers’ interpretation of the
quantifiers “some” or “many”. Herbelot and Vecchi (2015) looked at “no”, “all”, “most”,
“some”, and “few”. Sorodoc, Lazaridou, Boleda, Herbelot, Pezzelle, and Bernardi (2016)
focused on “no”, “some”, and “all”.

Building on evidence that hearers interpret quantifiers probabilistically (Yildirim et al.,
2013; Degen & Tanenhaus, 2011; van Tiel, 2014), works such as Franke (2014) and Qing
(2014) built probabilistic speaker models for these two quantifiers, i.e., some and many,
based on Bayesian pragmatics (Frank & Goodman, 2012). All these works focus on very
limited sets of quantifiers, and on a given sentence pattern, where the task focused on the
meaning and use of a quantifier in a given position in the sentence.

1. For further discussion of these perspectives, see van Deemter (2016), particularly Chapter 16.1.
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To the best of our knowledge, there have been no attempts to model computationally
how a wider range of quantifiers are used by human speakers, let alone in a setting that
allows unlimited choice of sentence patterns (instead of having to choose from a list of
options). 2

To get a glimpse of the challenge, consider a table with four coffee cups, three of which
are red and one is white. Each of the following expressions describes this scene truthfully:

(1) a. There are some red cups on the table.
b. At least three cups are red.
c. Fewer than four cups are red.
d. All the red objects are coffee cups.
e. Three of the four cups are red.

Each of these sentences could be uttered felicitously in some contexts. For example, (1-a)
might make a fine answer to the question, Is the table empty now? However, as a descrip-
tion of the scene as a whole (e.g., answering the question, Can you tell me what’s on the
table? ), (1-e) would probably be more effective. An early computational investigation of
the question of what quantifiers are called for in a given situation proposed the principle
of informativity (Creaney, 1996). This principle asserted that the speaker should always
choose the logically strongest expression that holds true in a given situation. Although the
idea of looking at the logical strength of an expression makes sense3, Creaney’s idea runs
into difficulties over pairs of expressions that are logically independent of each other, such
as the pair of (1-b) and (1-c), where each of the two expressions conveys some information
that the other one does not. Examining the evidence, we suspect that no single “principle”
can tell us what makes the best description of a visual scene and that a radically different,
more empirically guided approach is called for, to inform the generation algorithm. The
present paper offers such an approach.

To obtain more insight into these issues, we decided to study situations in which the
sentence patterns are not given in advance, and where speakers are free to describe a visual
scene in whatever way they want, using as many sentences as the speaker chooses, and using
any sentence pattern that they choose. The present setup also has the advantage of leaving
the decision of whether or not to use a quantifier to the speaker herself/himself. Last but
not least, it permits the use of quantifiers of all possible logical types. The resulting setup
has the advantage of allowing participants to use language in a more natural way than in
earlier experiments: just as speakers do in daily life, they utter sequences of self-constructed
sentences; this kind of set-up is thought to be more suitable for investigating real language
use than when speakers are given more artificial tasks.

For this purpose, we conducted a series of elicitation experiments, in which each partici-
pant was asked to produce descriptions of visual scenes. For example, for the scene presented
in Figure 1, a participant in our experiment might say “Half of the objects are blue squares,

2. Barr, van Deemter, and Fernández (2013) elicited noun phrase patterns of the form “the square with Q
dots/dashes/etc”; though this gave the authors a range of different quantifiers, the sentence pattern was
once again fixed; moreover, the paper does not attempt a computational model. More recently, Pezzelle,
Steinert-Threlkeld, Bernardi, and Szymanik (2018) formalised quantifier selection task based on a cloze
test, asking models to predict which quantifier is used in a given context.

3. See the Greedy Algorithm of our section 3.3, which makes use of a similar idea.
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Figure 1: An example scene in qtuna with 4 objects. Other scenes contain 9 and 20
objects.

the other half are circles in both colours.” For want of a better name, we call such a stretch
of text a Quantified Description. This elicitation experiment yielded a data-text corpus that
we call qtuna. We believe that this corpus will be a source of inspiration for researchers
in various research areas, including students of Generalised Quantifiers (in the intersection
of Linguistics and Logic) and psychologists interested in human language production. The
present paper concentrates on a different use of this data-text corpus: Based on an analysis
of this corpus we designed two rule-based “Quantified Description Generation” algorithms,
which mimic the types of quantified descriptions that human speakers use in any given
situation; a rule-based approach was chosen because it allows us to link with the theoretical
literature on quantification, and with computational models of other linguistic phenomena.
We then evaluated our algorithms and found that these work rather well, both in terms of
describing scenes in the qtuna corpus and in terms of describing scenes of different sizes
(i.e., domain sizes not occurring in the corpus).

The plan of the paper is as follows. Section 2 introduces the qtuna experiment and
offers an analysis of the corpus. Section 3 motivates and describes our algorithms. Section 4
offers evaluations of its output, based on both expert judgements and scene reconstructions.
Section 5 puts our results in context and discusses their merits and limitations. 4

2. Building and Learning from a Corpus of Quantified Descriptions

Computational modelling of language production usually starts from building corpora of ex-
pressions elicited from human participants. A representative line of work focuses on corpora
of referring expressions, such as gre3d (Viethen & Dale, 2008) and tuna (Gatt, van der
Sluis, & van Deemter, 2007; van Deemter, Gatt, Sluis, & Power, 2012). These corpora
were used for evaluating the “humanlikenesss” of the expressions produced by computa-
tional models (i.e., the degree to which the latter resemble human-produced expressions).
In our study of quantification, we broadly follow the methodology developed in the tuna
project, which has been widely adopted, for example as the basis for a series of Shared

4. The qtuna dataset and the corresponding materials are available at: https://github.com/a-quei/

qtuna. The code for our quantified description generation algorithms is available at: https://github.

com/a-quei/quantified-description-generation.
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Figure 2: An example scene from the tuna experiment, where the subjects were asked to
describe the object in the red window given the other objects as context.

Task Evaluation Campaigns (Belz & Gatt, 2007). The resulting corpus was also extended
to other languages, including Dutch (Koolen, Gatt, Goudbeek, & Krahmer, 2011), Ger-
man (Howcroft, Vogels, & Demberg, 2017) and Mandarin (van Deemter, Sun, Sybesma, Li,
Chen, & Yang, 2017). In tuna, each subject was given a scene like the one in Figure 2, and
asked to produce a description (i.e., referring expression) that singles out the object in the
red window from all other objects in the scene. We decided to use a similar methodology
but adapt the method to the study of quantification.

In order to understand how people use quantification, we conducted the qtuna experi-
ment, which led to the qtuna5 corpus. In this section, we explain how the experiment was
set up and how the resulting corpus was analysed. An initial introduction and analysis of
this experiment can be found in Chen, van Deemter, Pagliaro, Smalbil, and Lin (2019b).

2.1 Eliciting Quantified Descriptions

As discussed in the previous section, we wanted to find out how a broad range of quantified
NPs is used as part of a wider communicative task. Instead of showing our subjects a
scene and asking them how they would explain to a hearer how many circles are red (e.g.,
“many.”), we asked them to describe the scene as a whole. We made the scenes complex
enough that one simple quantified expression (QE) would never suffice. Scenes came in
different sizes; we use the variable N to represent the size, i.e., the number of objects in a
given scene.

Each participant was presented with a series of abstract visual scenes of a certain size
(measured by the number of objects contained in it). Instead of using realistic photographs,
we decided to use synthetic visual scenes because this makes it easy to construct and modify
the scenes where necessary (see Pezzelle and Fernández (2019) and Testoni, Pezzelle, and
Bernardi (2019)). Each scene contains N objects, each of which is either a circle or a square
in either blue or red. Our instructions to participants (see Figure 4) asked participants to

5. The name of qtuna is a variant of tuna, where q stands for quantification.

171



Chen & van Deemter

(a) (b)

Figure 3: Examples from (a) the N = 4 experiment; (b) the N = 9 experiment.

try to produce a quantified description that would allow a reader to reconstruct the scene
modulo location (i.e., to reconstruct the scene except for the location of each object), thus
ensuring a focus on quantitative information only. Pilot experiments had taught us that
without the “modulo” clause, many participants would focus on location to such an extent
that it led to a large reduction in the number of different quantifiers used (e.g. producing
descriptions that say “From left to right, we see ...”).

2.1.1 Domain Size

To find out how domain size impacts the use of quantifiers, we conducted three different
elicitation experiments, with domain sizes (N) of 4, 9, and 20 respectively, each containing
10 different scenes, yielding three sub-corpora. Figure 3(a) and Figure 3(b) show two
example scenes from the N = 4 and the N = 9 experiment respectively.

2.1.2 Experiment Design

Designing a workable set of instructions for participants proved to be a challenging task, so
we decided to start with a series of pilot experiments before conducting the real experiment.
Apart from the requirement of avoiding participants from mentioning the location of each
object, we also needed to discourage them from performing what we called enumeration as
different kinds of objects in the scene are listed one by one. This had happened frequently in
some of our pilot experiments, causing only a small range of (mostly existential) quantifiers
to be used. For example, a scene like Figure 3(a) was described as follows:

(2) There are two blue squares, one red square, and one red circle.

Although these descriptions are perfectly legitimate, they do not contain a wide range of
quantifier patterns. To ensure that descriptions fulfilled a concrete purpose, we also wanted
to encourage descriptions that are logically “complete”, by which we mean that participants
should do their best to produce a description that allows readers to reconstruct the situation
in all respects except the location of the objects.

In an early pilot experiment, we tried to encode the above requirements explicitly in
the instructions, saying things like, do not use numerals when describing the situation and
do not describe the location of objects. However, this did not work well, because many
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We’d like you to describe each situation in one or more grammatically correct English sen-
tences. (...)

1 Based on your description, a reader will try to “reconstruct” the situation. We use the
word “reconstruct” loosely here because the only thing that matters is the different types
of objects that the sheet contains. Therefore, please do not say *where* in the grid a
particular object is located (e.g., “top left”, “in the middle”, “on the diagonal”).

2 Each object is a circle or a square, and either red or blue. Your reader knows this.

3 Please do not “enumerate” the different types of objects. For example, do not say
“There is a red circle, two blue circles, and ...”.

4 Every situation contains four objects. Your reader knows this in advance, and he/she
will take this information into account when interpreting your description.

Figure 4: The sketch of how an instruction looks like, taking N = 4 as an example.

subjects still used enumerations and locations. After a number of pilots, we decided to omit
these explicit rules. Instead, we asked subjects to avoid enumeration as much as possible
and added two examples in the instructions, explaining how one of them would allow a
reader to reconstruct the situation whereas the other did not. 6 Figure 4 depicts what
the instruction for the N = 4 experiment looks like. The avoidance of enumeration may
have diminished the ecological validity (Schmuckler, 2001) of our findings somewhat, but
we believe that this is more than outweighed by the increased richness of the resulting
descriptions.

Each object has two attributes: shape and colour. Both of these two attributes have two
different values, so there were 4 possible combinations of attributes, i.e., blue square, blue
circle, red square and red circle. Since there were at least 4 objects (in N = 4 experiment)
in each scene, the number of attribute combinations can vary from one (i.e., all the objects
are the same) to four. In our experiment, we ensured that all these variations are presented
(i.e., there were scenes with 4, 3, 2, and 1 number of attribute combinations). In addition,
we took care to balance shape and colour. For example, in the N = 4 experiment, from the
set of scenes where there are 2 combinations, we selected one in which the two combinations
differ in terms of colour (2 red squares and 2 blue squares) and one in which they differ in
shape (2 red circles and 2 red squares).

Furthermore, instead of placing the objects in a grid (as was done in our earliest pilots),
we ended up placing objects in a more random layout as in Figure 3(a) and Figure 3(b).
The changes that we made on the basis of our pilots proved to be very effective for letting
speakers produce descriptions that meet the requirements spelt out above, leading to a
richly varied set of quantified descriptions.

6. For instance, in the N = 4 experiment, the two examples are:

(i) There are equally many circles as squares. All squares are blue. Half the circles are blue.

(ii) Half of the objects are blue squares.
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2.2 The QTUNA Corpus

Our experiments yielded three sub-corpora corresponding to the three scene sizes. In this
section, we introduce the corpus and its annotation.

2.2.1 Basic Statistics

Participants in our elicitation experiments were students at the computing science depart-
ment of Utrecht University. Descriptions from 66, 63, and 58 participants respectively were
collected for the three experiments. We manually filtered out all descriptions from subjects
who showed a misunderstanding of the task: 1) writing gibberish; 2) describing the scene
by enumerating the objects in it; or 3) describing the scene by expressing locations (e.g., “..
at the bottom right corner of the screen”). The resulting corpus contains 656, 380, and 378
valid descriptions for the three domain sizes, which contain 1401, 638, and 543 quantified
expressions.

2.2.2 Annotating the Corpus

Since we want to design algorithms that mimic how people use quantifiers, we needed to
annotate the descriptions in the corpus with their semantic representations.

To extract useful information from the qtuna corpus, we designed a new annotation
scheme, which records quantifier patterns and the ways in which these patterns were filled.
Recall that quantified expressions express relations between sets (Section 1). Following Bar-
wise and Cooper (1981), we annotated the quantified expressions in a form in which each
n-ary quantifier is a function Q that takes a number of set terms as arguments. For example,
a quantified expression with a binary quantifier can be written as: Q(A,B).

To keep the annotation task – and the later construction of the generation algorithm –
manageable, we made a few simplifications. For example, we took the view that all and
every in all/every object(s) are/is red express the same quantifier. Table 1 lists the top-10
most frequently used quantifiers and their frequencies in our corpus. In our annotations,
A,B, ... are arbitrary sets. BS,BC,RS,RC,R,B,C and S stand for blue square, blue circle,
red square, red circle, red object, blue object, circle and square set, respectively. O refers
to the set of all objects in a situation. 7 For example, for the quantified expression

(3) All objects are red squares,

our annotation says All(O,RS). More annotation examples can be found in Table 2.

Anaphors were replaced by their corresponding antecedents. For example, the descrip-
tion:

(4) Most of the objects are blue. Half of them are squares.

was labelled as Most(O,B) ∧Half(B,S).

Two kinds of ambiguity appear when annotating qtuna. One is anaphoric ambiguity.
For example, the pronoun them in the description (4) can refer to all the objects or only
the blue objects. The other is syntactic ambiguity. For instance, in

7. There are also notations for second-order sets, which will be discussed later.
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Notation Surface Form(s)
Example Quantified

Expression(s)
Frequency

N=4 N=9 N=20 Total

all all; every; each All A are B. / All of the A
are B.

436 147 91 674

most most Most A are B. / Most of
the A are B.

27 63 56 146

more more There are more A than B. 67 23 37 127

half 50%; half Half of A are B. 76 12 15 103

equal equivalent;
equal/same
number

There are/is the same
number of A and B.

72 8 23 103

some some There are some A. / Some
A are B.

2 30 66 98

majority majority A majority of A are B. /
The majority of A are B.

24 23 14 61

only only There are only A. / Only A
are B.

38 13 4 55

half-rest half ..., the
other half ...;
half ..., the
rest/remaining
...

Half of A are B, and the
other half are C.

38 0 5 43

more-half more than half More than half of the A are
B.

28 1 3 32

Table 1: Top-10 most frequently occurring quantifiers with English examples and frequen-
cies in the three qtuna sub-corpora.

N Description Meaning

4 There are 4 squares. All objects are blue. ∃=4(S) ∧All(O,B)

9 Most of the items are red circles, but there
are a couple of blue squares.

Most(O,RC) ∧ ∃≥2(BS)

20 All the objects in the picture are circles
and the majority of them are blue.

All(O,C) ∧Majority(O,B)

Table 2: List of example descriptions from the qtuna corpus, with their annotations. N
indicates scene size (i.e., the total number of objects in the scene).

(5) Half objects are red squares and circles.

“red” can be a modifier of either “sequares” or “squares and circles”. When annotating such
cases we chose a “charitable” approach: if one interpretation causes a given description to be
correct and logically complete and another causes it to be correct but logically incomplete,
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then annotation sides with the former. This approach was chosen for all kinds of ambiguities
that we encountered in our annotation work.

2.3 Hypotheses

First of all, we wanted to see how much variation in linguistic descriptions the scenes of the
qtuna experiments would permit, and how much variation there was between speakers. We
were curious what quantifiers and quantifier patterns would be used and how these would
be expressed linguistically; knowing this is also essential for the computational models that
we were to develop later.

Following our pilot experiments, we also wanted to know how much information speakers
conveyed: How often did speakers under-specify (i.e., when they did not say enough to allow
a hearer to reconstruct the scene), over-specify (i.e., offer more information than necessary),
and how often did they use vague quantifiers, such as “a few ...”, and “many”, that lack crisp
borderlines? What information would be expressed explicitly and what information would
be left implicit (i.e., left to be inferred by the reader). Furthermore, we were interested in
knowing how the fact that one attribute (e.g., shape) is more easily expressed as a noun
than the other (e.g., colour) affects its use in quantified descriptions. Given that most scenes
require several quantified expressions for their logically complete description, we were also
interested in what order quantifiers tended to appear in a description. Therefore, we set
out to address the following questions:

When do people use vague quantifiers? People frequently use vague quantifiers, such
as many, some, and most (see e.g. Moxey and Sanford (1993) and Sorensen (2022)). We
wanted to see how the proportion of vague quantifiers in our corpora changes with scene
size. The larger a domain, the harder it is to see at a glance how many objects there are in
each of its set-theoretic regions (e.g., A, B, A ∪ B, A ∩ B, A− B, B − A, and the domain
O of objects as a whole). We therefore, hypothesised (H1) that, as the domain size (N)
increases, more vague quantifiers appear.

How often do speakers describe a scene completely and correctly? We say a
description is complete if the scene described is the only one (modulo location) from all
possible scenes of the same size that fits the description, given the background assumptions
conveyed in the instructions to participants (i.e., that there are only circles and squares,
and that they can only be red or blue). Since producing a complete description requires
much more work (or, sometimes, is impossible) in a larger domain, we hypothesised that
larger domains give rise to a smaller proportion of complete descriptions than smaller ones
(H2).

A challenge for testing this hypothesis is that speakers frequently rely on inference when
describing a scene. Consider

(6) Half of the objects are blue.

We will take such inferences to be part of the meaning of the sentence. So, given our
background assumptions about the domain, we will take (a) to imply that the other two
objects are red.

A more difficult challenge is that even simple quantified (English) expressions can har-
bour a considerable amount of ambiguity and vagueness. The ambiguity of most and many
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is well-attested (Lidz et al., 2011; Zajenkowski & Szymanik, 2013; Kotek et al., 2015; Solt,
2016; Lappin, 2000), but even apparently simple quantifiers such as all and some are not
always clear when we realise that their correspondence with the classical quantifiers ∀ and
∃ is imperfect. For instance, if I say “some A are B”, can I be taken to convey that there is
more than one A? Do I imply that some A are not B? These issues are widely acknowledged
(e.g., Peters and Westerst̊ahl (2006)), but far from resolved. To show that subtle nuance
can matter, consider the following example from our size-4 pilots:

(7) Everything is blue. Most things are square.

If most simply means “more than half”, then this description is incomplete, because it does
not rule out the possibility that all objects are square. But if most means “more than half,
but not all”, then the description completely describes a scene with 3 blue squares and 1
blue circle.

Given the huge complexities stemming from ambiguous and vague quantifier words,
we decided to simplify matters somewhat. Most importantly, when we tested descriptions
for completeness and correctness, during annotation, we pretended that each quantified
expression is associated with exactly one meaning and that this meaning is never vague but
always crisp (i.e., without borderline cases). For example, “Some circles are red” was taken
to mean that at least 2 circles are red.

Since describing larger scenes requires more work, the task itself is harder than when
describing smaller scenes, so counting and other mistakes become more likely. We, therefore,
expect (H3) that, in larger domains, there are more descriptions that convey incorrect
information. Information is considered to be incorrect if it is not true with respect to the
scene. For example, the description all objects are blue is incorrect if it describes a situation
in which one object is red.
Are larger scenes described more elaborately? Since there is more to describe in
a large domain than in a small one, we expected (H4) that participants produce longer
descriptions in larger scenes.
Left-to-right order of quantified expressions. Recall that most descriptions in the
qtuna corpus consist of multiple quantified expressions. In pilot studies, speakers tended
to employ two discourse structures. The first starts by describing the whole scene, e.g., “all
objects are blue”, followed by a more detailed statement, e.g., “half of them are squares”.
A second, more frequent, discourse structure cuts the set of objects into two parts, each of
which is described separately.

We decided to focus on the second discourse structure, hypothesising that the most
important information tends to be stated first (H5).

Most commonly, a scene is described using a succession of two quantified expressions,
each of which has two set arguments; that is, each has the form Q(A,B) (i.e., the most
common form of quantification). Such quantifiers can be understood as being “about” the
intersection of the two arguments (i.e., about A ∩ B). Hypothesis (H5) says that the first
of the two quantified expressions is usually “about” a larger set than the second. (For
instance, “3/4 of A are B, 1/4 are C ” is much more frequent than “1/4 A are C, 3/4 are
B”.) Sometimes, the second quantified expression is left implicit. For instance, this happens
in “3/4 of A are B”. H5 covers this “implicit” variant as well, predicting that “3/4 of A
are B” is much more frequent than “1/4 A are C ”.
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N = 4 N = 9 N = 20

Quantified Descriptions 656 380 378
Quantified Expressions 1401 638 543

Vague Quantifiers 57 201 234
Complete Descriptions 610 175 23
Incomplete Descriptions 46 205 355
Wrong Descriptions 7 12 47

Larger Part First 123 145 99
Smaller Part First 72 54 10

Table 3: The number of quantified descriptions, quantified expressions, incomplete descrip-
tions, vague quantifiers, and wrong descriptions in each sub-corpus of qtuna.

Are there any differences between the use of colour and shape? Given the well-
documented primacy of colour over the shape in referring expression (e.g., Pechmann (1989)
and van Deemter et al. (2012)), we expected to see that colour and shape play different
roles in quantified expressions as well. Based on our pilot experiments, in which colour
was often realised as an adjective, we hypothesised that (H6), in k-ary (k > 1) quantified
expressions8, shape occurs more often in the former argument places (i.e., the A position
in the quantified expression: Q of A are B) and colour in later positions. For example, we
expected to see more expressions like “all circles are red” than ones like “all blue objects
are circular”.

2.4 Hypothesis Testing

We tested the hypotheses introduced in Section 2.3. H1 asserts that vague quantifiers
appear more frequently in larger scenes. In accordance with common practice (e.g., Kenney
and Smith (1996)), we understand a quantifier to be vague if it permits so-called borderline
cases (i.e., cases in which it is unclear whether the quantified expression is true or false)9.
We counted the number of quantified expressions that use vague quantifiers (e.g., many
and few).10 The number of quantified expressions was compared with the total number of

8. k-ary quantified expressions are ones whose quantifier relates k sets
9. Concretely, we treat the following quantifiers we found in the corpus as vague quantifiers: many, some,

a lot of, lots of, most, few, a few, slightly more, slightly more than half, a small amount of, majority,
minority, about half, roughly the same amount, amost all, almost half, many more, almost a quarter, and
several.

10. A quantifier like most was always counted as vague, despite the fact that it might acquire a precise
meaning when N=4 (because when we say that most of a set of four 4 A are B, we can arguably only
mean that three of the four A are B.
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(a) (b)

Figure 5: The length of descriptions with respect to the domain size by means of (a) the
number of quantified expressions; (b) the number of words.

quantified expressions, as listed in Table 3. The trend hypothesised in H1 was confirmed
(p < .001, adjusted p < .00111) also by a binary logistic regression analysis.12

In order to test the second hypothesis H2, we annotated each description in qtuna
for being complete or not. Annotating for completeness was about whether the situation
can be fully reconstructed based on a description. This was decided by the meaning of its
quantified expressions and recall that, in this study, each expression is associated with a
single meaning. Completeness annotation was performed by two annotators (the authors of
this paper). Where disagreements occurred, the annotators discussed their initial judgement
and made a final decision together. In this way, we found 46, 205 and 355 incomplete
descriptions from 656, 380 and 378 descriptions of the three sub-corpus respectively table 3.
As one can see, incompleteness frequencies appear to grow with scene size. Fewer than
1/10 descriptions in N = 20 sub-corpus are complete, most of which come from scenes with
only one property combination (i.e., all the objects in a scene look alike) or two property
combinations. We conducted a binary logistic regression analysis (setting completeness as
the outcome variable and domain size as the predictor) on the annotated data. The result
shows our hypothesis H2 to be confirmed (p < .001, adjusted p < .001).

For the third hypothesis H3, we annotated, for each description, whether it is correct
or incorrect (a “wrong” description). If the property was debatable, it was considered to
be correct. Such cases often occur with colour terms, for example, the colour of a red circle
was sometimes described as orange; since only red and blue were permitted, there was no
confusion possible, so we considered such descriptions to be correct. We found 7, 12 and 47
wrong descriptions for the three scene sizes. The high proportion of correctness (minimally
92.3% for N = 20) indicates that most of our participants understood the instructions, yet
it suggests an overall association between the domain size and the error frequency, which
is confirmed by a binary logistic regression analysis (setting correctness as the outcome
variable and domain size as the predictor; p < .001, adjusted p < .001).

11. Adjusted p is the p-value obtained by applying Bonferroni correction, where the p-value is multiplied by
6 as there are 6 hypotheses.

12. If we had decided to count most as a precise (i.e., non-vague) quantifier when used in the N=4 domain,
then this would have further strengthened the support for H1.
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To test H4, we also calculated the length of each description, as defined by both the
number of quantified expressions (Figure 5(a)) and the number of words (Figure 5(b)) in
the description. The results show the opposite of what we expected, that is, the length of
descriptions decreased. A plausible explanation may lie in the fact that speakers produced
fewer complete descriptions in larger domains, as in H2: after all, when a task is made
more complicated (in this case, because we move from smaller to larger scenes), the effect
can be that participants try less hard to perform the task perfectly (i.e., they lower their
standards).

Regarding our last two Hypotheses, we counted the number of descriptions that describe
the larger part of a scene first (i.e., descriptions like 3/4 of A are B, 1/4 are C or 3/4 of
A are B), and those that describe the smaller part first (i.e., descriptions like 1/4 of A
are B, 3/4 are C or 1/4 of A are B), the numbers for each N being shown in Table 3.
This confirmed the hypothesis H5 by a Chi-squared test (χ2(2, N = 503) = 27.29, p < .001,
adjusted p < .001). In a similar way, we then counted the number of descriptions that place
shape in the first argument while placing the colour in the latter argument (i.e., descriptions
like all circles are blue), and the number of descriptions that order the two attributes the
other way around (e.g., all blue objects are circular). As for shape, 489 descriptions used
it in the first argument place and 121 in the second; for colour, those two numbers are
112 and 514 respectively. Consequently, a Chi-square test confirms this hypothesis H6

(χ2(1, N = 1236) = 479.59, p < .001, adjusted p < .001).

2.5 Post-hoc Observations Regarding the QTUNA Corpus

We also made a number of post-hoc observations, to be distinguished from the earlier-listed
hypotheses, which were formulated before we saw the data of the experiment.

Task difficulty. The task of producing correct and complete descriptions of the scenes
that make up our experiments is not always easy. In fact, we were surprised to see that
speakers managed so often to perform this task successfully (see Table 3), producing a range
of quantifier uses that surpassed our expectations in its variety as well.

3-ary Quantifiers. Besides binary quantifiers, we found a substantial number of 3-ary
quantifiers. One class of examples is “half ..., the other half ...”, “one ..., the rest ...”, “half
..., the rest ...” and so on. Note that an expression such as (8-a) should not be confused
with (8-b).

(8) a. Half of A are B, the other half are C
b. Half of A are B and half of A are C

In (8-b), the sets A and B can have a non-empty intersection, but 3(a) means that 1
2 of As

are B, and (A−B) ⊆ C.

Higher Order Quantifiers. We found a remarkable number of “higher-order” quantifiers,
where quantification is not over objects but over sets of objects. For example, the word
“both” in the following example quantifies over the set of colours:
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(9) Half of the objects are in both colours.

Frequent examples of higher-order quantification can be found in descriptions of a situation
in N = 4 sub-corpus where all the objects are different. Many subjects used the descriptions
equivalent to (10).

(10) All possible objects are shown.

This description quantifies over elements of the Cartesian product of the colour set and the
shape set (i.e., Some(O,BS) ∧ Some(O,BC) ∧ Some(O,RS) ∧ Some(O,RC)).

Descriptions that Rely on Implicit Information. This paper describes a set of ex-
periments, each of which assumes a small and precisely defined domain of possibilities (e.g.
scenes of N objects with only two attributes (shape and colour), each of which has only
two possible values). In these cases, one can frequently infer more than is said explicitly by
considering the complementary relationship of two values of one attribute. For example, if
a subject says:

(11) Half of the objects are blue,

one can infer that the other half of the objects are red. Descriptions of this kind were
marked as logically complete descriptions despite the appearance of incompleteness.

3. Designing Algorithms for Generating Quantified Descriptions

We aim to design a generation algorithm to construct a “product model” (see section 1) that
is able to perform the same task as was given to the participants in the qtuna experiments.
Thus, we build explainable rule-based models that are inspired by our findings in Section 2.4.
For two reasons, we decided not to consider deep learning approaches at this stage. The
main reason is the opaqueness of such models, which makes them inherently unattractive
as “product models”. Secondly, as explained in section 2, the qtuna corpus was built
using a controlled elicitation experiment. The idea was to carefully select a relatively
small set of inputs, for each of which a considerable amount of data is collected (e.g., in
qtuna, we collected data from more than 60 participants). Experience with other areas
of computational modelling suggests that this can help us understand human behaviour,
but the resulting corpus is unsuitable for training and evaluating neural models. It needs a
large corpus that has a wide coverage of all kinds of input scenes.

The qtuna scene description task involved scenes of three sizes (N = 4, N = 9, and
N = 20). However, we do not want our generation algorithm to be limited to these scene
sizes: we want them to perform well on all scenes within a certain range of sizes. We did
not target scenes sized lower than 4 because we suspected that these involve quantification
in very different ways, with a greater focus on exact numbers for example (see the exten-
sive literature on “subitizable” sets, from Kaufman, Lord, Reese, and Volkmann (1949)
onwards). Scenes in which there are more objects than can be counted in a few seconds
were similarly beyond the scope of this study because they are likely to involve guesswork
and estimation on the part of the hearer, which is not our present focus. In other words,
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Figure 6: The target scene as one among many possible scenes (N = 4).

our modelling efforts focus on “mid size” domains, leaving the study of extremely small and
extremely large scenes for later research.

Since our speakers were asked to produce quantified descriptions that are correct (i.e.,
truthful) and complete (i.e., giving as much information as can reasonably be expected), it
seemed reasonable to design our algorithms with these objectives in mind. In this section, we
introduce algorithms that endeavour to meet the correctness and completeness requirements
as well as they can. Later on, we will evaluate our algorithms based on these two criteria
and based on a comparison with the descriptions produced by human speakers as well.

To this end, akin to how we annotated the correctness and completeness of quantified
descriptions in qtuna (see Section 2.3), the algorithms need to model the meaning of each
quantified expression. Recall that we pretended each quantified expression is associated
with exactly one crisp meaning. The algorithms follow exactly the same simplification. For
example, when a generation algorithm decides whether to use “most” as part of a description
of a given scene, the algorithm will make this decision based on the meaning representation
that we have associated with this word.

Below, we introduce the fundamental idea behind our algorithm, and we sketch a pipeline
architecture for producing quantified descriptions, all the way from a scene to a small text.
We then propose two quantified description generation algorithms, which are evaluated in
Section 4. Earlier versions of these algorithms were introduced in Chen, van Deemter, and
Lin (2019a).

3.1 “Referring” to a Scene

The basic idea behind both our generation algorithms is to regard the production of a
quantified description as an attempt to identify, within the set of all possible scenes, what
specific scene we are looking at. In other words, the idea is to view the task of our partic-
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Figure 7: The pipeline of how we generate a quantified description based on a given scene. It
consists of three steps: (1) pre-processing, (2) generating a quantified description
in logic form, and (3) surface realization.

ipants as – very broadly – analogous to the task of referring to an object by ruling out all
other objects.

Let us unpack this idea a little further, deliberately opting to use terminology familiar
from work on referring expressions, in order to emphasise what the two problems have
in common (despite the substantial differences, which will be discussed below). Let’s call
the scene that the algorithm aims to describe the target scene. Given a certain scene size
and domain assumptions provided to our participants (i.e., what colours and shapes are
permitted), the algorithm can compute how many possible scenes of this size there are.
For example (as shown in Figure 6), if the target scene (N = 4) has two blue squares
and two blue circles, then possible “distractor” scenes include a scene with 4 blue squares,
a scene with 4 red squares, and so on. Generation algorithms operate by accumulating
propositions that are true of the target scene but false of at least one distractor scene. For
instance, if one says “all objects are blue”, then this is true of the target scene but it will
“remove” many other scenes, including the scene consisting of 4 red squares, for instance.
The algorithm repeats this step until a stopping criterion is met. In simple situations, a
reasonable stopping criterion is that all distractor scenes have been removed, though as we
shall see, this idea cannot always be upheld. Let us see how these ideas can be made precise.

3.2 Generation Pipeline

Natural language generation (NLG) systems often use a pipeline architecture in which the
content of the generated text is determined before its linguistic form (e.g., Reiter and Dale
(2000)). We constructed our quantified description generation pipeline in line with this
setup: the quantified description generation algorithms introduced in this section are re-
sponsible for determining the content of the description (i.e., essentially a logical form),
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which is then turned into its linguistic form, which is a process known as Linguistic Reali-
sation or Surface Realisation in NLG. As explained below, in order to extract the required
information from the given scenes, an extra pre-processing module was inserted at the
beginning of the pipeline.

Concretely, the generation pipeline consists of 3 components: a pre-processor, a quan-
tified description generator (which runs a generation algorithm, see sections 3.3. and 3.4
below), and a surface realiser. As shown in Figure 7, given a target scene s, with its do-
main knowledge Kd (which records, among other things, how many objects and how many
possible properties there are, as will be detailed later), the pre-processor calculates what
kinds of distractors there are and constructs a set S of all possible scenes. The system then
calls a generation algorithm to construct a description D containing a set of L quantified
expressions. We write D = {ql(v)}Ll=1, where q(·) is a quantified pattern with quantifier
q (e.g., the all quantifier with two arguments can be written All(·, ·)) and v is a property
tuple. If v is capable of filling the slots of a quantified pattern q(·), we say that the pattern
q(·) accepts v, and we write q(v). The generation algorithm makes a selection from a set of
quantified patterns Q, based on the common knowledge Kc (i.e., meanings of all quantifiers)
defined on Q. Finally, with a set of logical forms D, a simple template-based surface realiser
(Section 3.5) is employed to map the logical form D into actual natural language text.

This generation system requires two types of knowledge:

Domain Knowledge. This is the list of all possible attributes and their possible values,
with which the pre-processor could compute what distractors there are, and thus
construct the set S. This knowledge is stored as a set of key-value pairs. For exam-
ple, matching the current experimental setting of qtuna, its domain knowledge is
{SHAPE : [square, circle],COLOUR : [red, blue]}.

Common Knowledge. This is a body of knowledge that corresponds to the quantified
patterns in Q. For a quantified pattern q(·), this knowledge base includes the meaning
of the quantified pattern and a set of possible property tuples that could be assigned to
v. The meaning of a quantified pattern has two parts: its semantics and its pragmat-
ics. For example, the semantics of All(A,B) asserts that [[A]] ⊆ [[B]]. The pragmatics
says that [[A]] is not empty. Determining the semantics and pragmatics of each English
quantifier term is difficult in general, but the qtuna corpus allowed us to choose defi-
nitions that match the majority usage in that corpus. The reason why we distinguish
between semantics and pragmatics will become clear in the following section. Table 4
lists the quantifiers we considered in the current version of the quantified description
generation algorithm. We decided to use only the most frequent quantifiers. Note
that, since we assign each quantifier a precise (i.e., non-fuzzy) meaning, which causes
quantifiers like some and a few to have exactly the same meaning, we chose the most
frequent one among the quantifiers with the same meaning. Quantifiers like few and
many, which have attracted a lot of attention from researchers, are not included in our
system since they have extremely low frequency in our corpus (that is, few appears 2
times and many 13 times).
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Quantifier Semantics Pragmatics Quantifier Semantics Pragmatics

All(A, B) [[A]] ⊆ [[B]] [[A]] 6= ∅ Fewer(A, B) |[[A]]| < |[[B]]| [[A]] 6= ∅
Only(A) [[A]] = [[O]] - Equal(A, B) |[[A]]| = |[[B]]| [[A]] 6= ∅
Half(A, B) |[[A]] ∩ [[B]]| [[A]] 6= ∅ Most(A, B) |[[A]] ∩ [[B]]| -

= |[[A]]− [[B]]| > |[[A]]− [[B]]|
Some(A, B) |[[A]] ∩ [[B]]| ≥ 2 |[[A]]| > |[[B]]| Half-rest(A, B, B’) |[[A]]| = 2|[[B]]| =

2|[[B′]]|
-

Some(A) |[[A]]| ≥ 2 |[[O]]| > |[[A]]| Minority(A, B) |[[A]]| > 2|[[B]]| -
Only-1(A) |[[A]]| = 1 - All-Comb(O) All property

combinations
appear.

-

More(A, B) |[[A]]| > |[[B]]| [[B]] 6= ∅

Table 4: List of quantifiers used in our quantified description generation system and their
meanings.

3.3 A Greedy Algorithm

As said, we view the quantified description generation task as a task of ruling out distractor
scenes. One can view this as a search problem, namely, the problem of finding a set of
quantified expressions that removes all (or as many as possible) distractors. This search
can be performed by means of a greedy algorithm: working iteratively, this algorithm keeps
selecting (and including into the quantified description) quantified expressions that jointly
rule out the largest possible number of distractor scenes.

We sketch the greedy algorithm for quantified description generation (abbreviated as
qdg-greedy) in Algorithm 1. The algorithm takes a target scene s, a set S of all possible
scenes with the same domain as s (calculated by the pre-processor), a set of quantified
patterns Q with their corresponding meanings (stored in Kc) as inputs, and outputs a set
D of quantified expressions in logical form.

The algorithm initialises the description D as an empty set, then inserts quantified ex-
pressions q(v)s iteratively into D. During each iteration, qdg-greedy pluralises the q(v);
by this we mean adding a plural marker where necessary – namely whenever a property ap-
pears multiple times in the target scene s (e.g., Some(S,R) acquires a plural marker if there
is more than one red square in the scene. For example, suppose the quantified expression
is All(S,R) (meaning that all the squares are red) and the target scene contains two red
squares; the expression is pluralised as All(〈S, pl〉, 〈R, pl〉) indicating that multiple squares
in the target scene are red, in which, from now on, each argument is represented as a tuple
and pl stands for plural while sg stands for singular. Pluralisation serves two purposes. The
first is to determine the pragmatics of q(v), which is then used for deciding how many dis-
tractors are left after selecting a certain quantified expression. For instance, the plurality of
All(〈S, pl〉, 〈R, pl〉) could rule out distractors that contain only one red square. The second
purpose is to decide the surface form of the quantified expression in English, as detailed in
Section3.5. The algorithm then calls the function FindBestQuantifiedExpression (line
4) to choose the quantified expression that rules out the most distractors from all possible
quantified expressions. Specifically, FindBestQuantifiedExpression checks, for each pos-
sible quantified expression q(v), whether this expression fits the target scene based on the
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Algorithm 1 The Greedy Algorithm for Generating Quantified Descriptions

Input: A target scene s, a set S of all possible scenes, a set of quantified patterns Q, the
common knowledge Kc defined on Q.

Output: A quantified description D of s that uses conjunctions of single or multiple q(v).
1: D := {}
2: while S 6= {s}, and |D| < δ do
3: q(v) := Pluralise(q(v), s)
4: q(v) := FindBestQuantifiedExpression(s,S,Q,Kc)
5: if q(v) = ∅ then
6: break
7: D := D ∪ {q(v)}
8: S := {s′ ∈ S : q(v) is true for s′}

meaning (including both semantics and pragmatics) of q(v) defined in Kc. If yes, it calcu-
lates the number of distractors that can be ruled out by only using q(v)’s semantics. We call
the number of distractors that a quantified expression q(v) rules out in a given situation the
Discriminatory Power of q(v). The FindBestQuantifiedExpression function will return
the quantified expression with the highest discriminatory power. If none of the candidate
quantified expressions has discriminatory power, then the function returns an empty set.

To see why only the semantics, and not the pragmatics, of a quantified expression,
is used for computing discriminatory power (i.e., for deciding whether to include a given
quantified expression into the quantified description) consider, by way of an example, the
expression All(C,B) (i.e., All circles are blue). Its semantics says (see Table 4) that the set
of circles is a subset of the set of blue objects, and its pragmatics says, among other things,
that there exists at least one circle. If the pragmatics of the expression contributed to its
discriminatory power, then the algorithm would end up adding this quantified expression
to a description even when the quantified expression’s sole contribution is the (pragmatic)
requirement that at least one object is a circle – as would happen when other quantified
expressions, previously added to D (for example, All(O,B)), already ensure that the set of
circles is a subset of the set of blue objects.13 Additionally, as listed in Table 4, a number
of quantifiers have the same pragmatics. So, if the pragmatics was taken into account when
the algorithm determines the discriminatory power of a quantified expression, then some
very different quantified expressions would end up having the same discriminatory power.
To us at least, it was surprising to see that the distinction between semantic and pragmatic
information – which although it is fairly commonplace in linguistics can feel a bit artificial
in some computational settings – had such concrete practical relevance for present purposes.

Line 5 of the algorithm checks whether q(v) is empty. If it is, then the algorithm
concludes the while loop (line 6). If q(v) is not empty, it is added to D (line 7) and the
distractor scenes are removed from S based on both semantics and pragmatics of q(v).
Line 2 of the Algorithm 1 talks about the Stop Criteria. Generation terminates when all
distractors are removed from S or the length of the generated description D reaches an

13. If plurality is also treated as a part of pragmatics, then the pragmatics of the quantified expression
All(〈C, pl〉, 〈B, pl〉) says that there are at least two circles. This would exacerbate the above effect.
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Algorithm 2 The Incremental Algorithm for Generating Quantified Descriptions

Input: A target scene s, a set S of all possible scenes, a set of quantified patterns Q, the
common knowledge Kc defined on Q, a Quantifier Preference Order defined on Q, a set
of all possible property tuples in the domain V, and a property preference order defined
on V.

Output: A quantified description D of s that uses conjunctions of single or multiple q(v).
1: D := {}
2: for each q in Q (in order of the Quantifier Preference Order) do
3: for each v in V such that q accepts v (in order of the Property Preference Order)

do
4: q(v) := Pluralise(q(v), s)
5: if q(v) is true for s, and D 6|= q(v) then
6: D := D ∪ {q(v)}
7: S := {s′ ∈ S : q(v) is true for s′}
8: Until S = {s} or |D| ≥ δ

upper bound δ. The idea of setting an upper bound comes from the observation that, in
qtuna, descriptions were remarkably constant across domain sizes (see H4).

Note that in line 4 of this algorithm, the FindBestQuantifiedExpression is likely to
find multiple quantified expressions that have the same discriminatory power (i.e., several
“best” expressions). Instead of trying to choose intelligently (and in order to increase
the variation in generated quantified descriptions), the FindBestQuantifiedExpression

randomly returns one of these “best” expressions.

3.4 An Incremental Algorithm

We have seen that the Greedy algorithm iteratively selects the quantified expressions that
have the highest discriminatory power. From a cognitive viewpoint, however, there could
be thought to be something slightly suspect about an algorithm that needs to perform
such a complicated calculation: alter all, FindBestQuantifiedExpression has to check,
for each quantifier pattern and all its possible values, how many scenes would be ruled
if these were selected. Moreover, when we examined the qtuna dataset more closely, we
found that some quantifiers patterns are far more frequent than others, and some choices
of properties to fill a given pattern are far more frequent than others. For example, akin to
what H5 indicates, we found that if all fits in any of the properties in a scene, subjects tend
to use all to construct a quantified expression. Building on these observations, a natural
idea would be to compose an ordered sequence of quantifiers, and an ordered sequence
of fillers (i.e., property tuples), reflecting the different degrees of “popularity” of different
quantifiers and different fillers. The algorithm can then make use of this ordered sequence
to determine in what order to consider the different types of expressions for inclusion in the
generated description. Analogous to the “preference orders” of attributes (like colour, size,
etc.) that are employed in the generation of referring expressions (as proposed in Dale and
Reiter (1995)), one would ultimately like to understand the reasons behind these preference
orders, for instance in terms of codability (see van Deemter (2016, chapter 3) for discussion).
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Lacking such a deep understanding for the moment, we considered the following two types
of sequences14:

Quantifier Sequence. Inspired by the fact that some quantifiers occur more frequently
than other quantifiers (as shown in Figure 4), quantified expressions that use frequent
quantifiers like all, half or most should have high priority (i.e., they should occur
early in the Preference Order).

Property Sequence. Analysis of qtuna (see H6) suggested that, for patterns of the form
All(A,B), the first argument, A, is more often a SHAPE property, whereas B is more
often a COLOUR. For example, the algorithm should prefer the property tuple (S,R)
over (R,S).

The algorithm incrementally generates the description by considering possible quantifiers
and fillers one by one, starting at the top of the sequence, and working its way from the top
of the preference order downwards. Given the analogy with the incremental algorithm for
referring expressions generation (Dale & Reiter, 1995), we call the algorithm the incremental
algorithm (abbreviated as qdg-ia). Likewise, we will speak of the Quantifier Preference Or-
der (instead of quantifier sequence) and the Property Preference Order (instead of Property
Sequence).

Note that in addition to the inputs of the qdg-greedy algorithm, as shown in Algo-
rithm 2, qdg-ia require two pre-defined preference orders introduced above. Given these
inputs, the qgd-ia algorithm will go through all the quantified patterns Q in the order
of quantifier preference order. In each iteration, for the selected quantified pattern q(·),
qdg-ia will test all possible property tuples accepted by that pattern in the order of prop-
erty preference order. Recall that the information which q(·) accepts which property tuple
can be found in Kc. The algorithm then calls the Pluralize function on the quantified
expression, which is the same manipulation done by qdg-greedy.

Line 5 of Algorithm 2 involves some important deviations from Dale and Reiter’s algo-
rithms. Here, our algorithm first tests whether q(v) is correct as a quantified expression
for s; the test is performed by using both its semantics and pragmatics. Subsequently, the
algorithm tests whether q(v) does not follow from the description D (i.e., D 6|= q(v)) 15,
ensuring that q(v) rules out one or more further scenes (i.e., it is not logically superfluous).
Crucially, the latter test uses only the semantics of q(v), not the pragmatics. In the case
of the present algorithm, the different roles of semantic and pragmatic information (in this
case: the information provided by the plural form) is possibly even more striking than in
the case of the Greedy algorithm. For example, suppose we want to generate a quantified
description for a scene that consisting 2 blue squares and 2 blue circles, and the quantifier
all has the highest priority in the quantifier preference order. In its first iteration, the algo-
rithm produces a quantified expression like “all objects are blue”. In the second iteration, if
the pragmatics was used for validation, the algorithm could add “all circles are blue”, whose
semantics contributes no new information at all, but whose pragmatics (i.e., the claim that

14. Further details of both the Quantifier Sequence and the Property Sequence are given below.
15. Logical consequence is implemented by calculating the set of scenes that are removed by a given expres-

sion (or set of expressions). Thus, D |= q(v) means that the set of distractor scenes removed by q(v) is
a subset of the set of distractor scenes removed by D.

188



Computational Modeling of Quantifier Use

there are at least two circles) rules out all those distractor scenes that contain less than two
circles (which would cause it to pass the second test of line 5). The resulting description,
“All objects are blue and all circles are blue and ...” (which can be made logically complete
by adding “... and there are squares”) would sound strange because, intuitively, the second
clause is logically redundant given the first.16

Once the above two conditions have been validated, q(v) is appended at the end of the
description and the scenes for which q(v) is not true are removed from S. Both semantics
and pragmatics are used for removing such distractors. The generation terminates according
to the same criteria as the qdg-greedy algorithm.

As for the design of preference orders, we started with testing the following settings,
once again based on the analysis of the corpus. The quantifier preference order is a linear
preference order, namely:

All(·, ·) � Everything(·) � Only(·) � Half(·, ·) � Half-rest(·, ·, ·) � Equal(·, ·) �
Most(·, ·) � More(·, ·) � Minority(·, ·) � Fewer(·, ·) � Some(·, ·) � Some(·) �
Only-1(·).

The second-order quantifier All-comb (see Table 4) is only applicable to a small number of
scenes but is used very frequently for those scenes. Therefore, although it has a relatively
low overall frequency across the whole corpus, we still assign it a high priority.17 The
property preference order was designed by following some constraints, for example, SHAPE
properties have higher priorities in the first argument places and compounded properties
(e.g., RS and BC) are more preferred than singular properties (e.g., R, C, and B).

However, when we ran the algorithm, we found that some quantified patterns that have
low preference are never chosen by the algorithm, causing the generated descriptions to only
use a very limited set of patterns. For example, the pattern All(·, ·) has a higher preference
than the pattern Only(·), and consequently the latter is never chosen, because its meaning
is covered by the former. (For example, the meaning of “there are only squares” is covered
by that of “all objects are squares”.) To increase variety, we introduced a probability θ with
which the qdg-ia performs a one-off re-ordering move; for the work reported in this paper,
we set θ to 0.1. Re-ordering was not performed across the entire preference order, but only
within certain groups of quantifiers that have high meaning overlap with each other. To be
precise, we used the following partitioning of the Preference Order of quantifiers (each {·}
represents a partition):

All-Comb �
{All(·, ·) � Everything(·) � Only(·)} �
{Half(·, ·) � Half-rest(·, ·, ·) � Equal(·, ·)} �
{Most(·, ·) � More(·, ·) � Minority(·, ·) � Fewer(·, ·)} �
{Some(·, ·) � Some(·)} � Only-1(·).

16. These observations might have applications in other areas of language use as well, for instance, Gricean
conversational implicatures (Grice, 1975). Imagine the Gricean scenario in which an academic referent
“praises” one of his students for having nice handwriting (implying that the student is academically
inept and should not be hired). Our observations suggest that it would be odd for this academic to
make the same utterance as part of a conversation in which the student’s handwriting had already been
favourably commented upon.

17. A � B means that A follows B in the preference order.
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Once the algorithm has decided to conduct a one-off move, the order of quantifiers within
that part are re-ordered at random.

3.5 Surface Realisation

Surface Realisation is typically the last stage in an NLG pipeline, where abstract structures
are turned into concrete sentences. In the present case, Surface Realisation turns the logical
forms produced by the Greedy and Incremental algorithm into actual stretches of English
text. Though this is not the stage of the pipeline on which our computational model focuses,
it cannot be omitted because, without Surface Realisation, it would be much more difficult
for human judges to evaluate the output of the algorithm: people are used to interpreting
and judging text, not abstract representations.

Our system uses a simple template-based surface realiser (see e.g. (van Deemter, Theune,
& Krahmer, 2005) for comparison with other types of Linguistic Realisation). For each
quantified pattern, there is a specific template. For example, for All(·, ·), we have a template:

(12) All of 〈ARGUMENT-1〉 〈COPULA〉 〈ARGUMENT-2〉

where 〈COPULA〉 will be realised into is or are depending on the plurality of the first argu-
ment of the generated quantified expression that uses this pattern. When filling these slots
with chosen properties, some simple syntactic and morphological operations are employed.
For example, if a COLOR property takes the first place of a quantified pattern, a noun is
appended to package it into a noun phrase (i.e., red → red object). If a property has a
plural suffix, the surface form of the property is mapped into its plural form. A number
of further constraints, specific to particular quantified patterns, were also encoded in the
realiser.

The present work has focused on the way in which speakers use a variety of quantifiers,
which is why Linguistic Realisation of sentences and texts was kept simple and could be
improved in many ways. One significant limitation of the way in which the abstract patterns
generated by the algorithms of the previous sections are put into words is that our wordings
do not use anaphora yet. This is despite the occurrence of many different types of anaphoric
expressions in our corpus, for example as when a quantified expression is followed by “Half
of them are red” (see also section 2.2.2). Anaphoric patterns were particularly prevalent in
quantified expressions with 3-ary quantifiers, for example as in “Half of the objects are red,
the other half are blue”. Using anaphora judiciously without creating unwanted ambiguities
is quite doable in general, but the topic is not without its problems (e.g., Kamp and Reyle
(2013, Chapter 4)). We expect that, by addressing these issues, future Linguistic Realisation
modules will be able to produce even more human-like descriptions of the scenes on which
we are focusing.

4. Evaluating the Generated Quantified Descriptions

Although our algorithms were informed by extensive elicitation experiments, we wanted
to gain additional insights into the quality of generated descriptions though some further
experiments. We were especially curious how “human-like” the generated descriptions are,
and how correct and informative.
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Previous studies on evaluating the human-likeness of a computational language produc-
tion model tend to use corpus-based evaluation: the model generates outputs (e.g., sentences
or logical forms) and these outputs are compared with a corpus using a similarity measure
(e.g., van Deemter et al. (2012)), such as DICE (Dice, 1945) or BLEU (Papineni, Roukos,
Ward, & Zhu, 2002). However, there are two insurmountable problems with using such a
methodology in the present situation.

First, the quality of a quantified description cannot easily be measured automatically.
Consider the quantified expression Few(O,S) once again. Suppose the target scene is a
situation in which 5 out of 20 objects are squares; then is it correct to say that Few(O,S),
or does this underestimate the number of squares? And if Few(O,S) is all that is said about
the proportion of objects being squares, is this sufficiently informative or not? We are not
aware of any metric that would give us reliable answers to these questions. Therefore,
we decided not to use corpus-based evaluation, but to conduct two evaluation studies: a
human judgement study (i.e., asking expert human judges to rate the generated quantified
descriptions) and a scene reconstruction study (i.e., asking human subjects to reconstruct
the input scenes given the generated quantified descriptions).

Second, since we designed our algorithms based on the qtuna corpus, it would be in-
sufficient to evaluate them on the same corpus again, since this would fail to distinguish
between training and test data. (Borrowing terminology from machine learning, it would
risk letting the model over-fit the corpus.) To avoid this problem, we selected our experi-
mental materials not only from our qtuna corpus but also from scenes that do not appear
in qtuna.

Concretely, we divided the evaluation experiments into experiment A and experiment
B. For experiment A, we randomly selected 3 or 4 scenes from each of the 3 sub-corpora of
qtuna to construct a set of, in total, 10 scenes, each of which was paired with 3 descrip-
tions: one by qdg-ia, one by qdg-greedy, and one selected at random from our corpus.
A number of example scenes, paired with their descriptions, are listed in Table 5. For ex-
periment B, we focused on three new domain sizes namely N = 6, N = 10, and N = 16.
For each of these, we sampled 6 scenes, each of which was paired with 2 descriptions: one
by qdg-greedy and one by qdg-ia. Finally, we have 66 scene-description pairs ready to
be evaluated.

To assess the quality of each description, we used two different methods: a method
based on quality judgements by human experts, and a task-based method in which readers
were asked to reconstruct the scenes that are described.

Baseline. To put the performance of our algorithms in a broader context, we also tested a
variant of qdg-ia-random of qdg-ia where, instead of using the preference order of qdg-
ia, attributes are chosen in random order (Table 5). The resulting outputs are strikingly
unnatural. For example, given the mechanism of the incremental algorithm, some quantifiers
(e.g., “some”, “more”) are more likely to be repeatedly chosen than others (e.g., “all”,
“half”). For example, for the quantifier “all”, it is impossible for the expression “All squares
are red” to be true if the expression “All squares are blue.” has been generated, while, for
the quantifier “some”, the description “Some squares are red. Some squares are blue.” can
be true. If such quantifiers rank high in the preference order used by qdg-ia-random,
the algorithm may use the same quantifier again and again. Since the resulting QDs are
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Scene Model Description

BS:2
RS:2
BC:0
RC:0

Human All the objects are squares and half of them is blue.
qdg-ia Every object is square. There are equally many blue squares and red

squares.
qdg-greedy Half of the objects are blue squares, the rest are red squares.
qdg-ia-random Some objects are red squares. Some objects are blue squares.

BS:2
RS:2
BC:5
RC:0

Human Two objects are red squares. Two objects are blue squares and the
remainder is blue.

qdg-ia Every circle is blue. Half of the squares are blue. More than half of the
objects are blue circles.

qdg-greedy Half of the squares are red, the rest are blue. Most of the objects are
blue circles.

qdg-ia-random A minority of the objects are red squares. A minority of the objects
are blue squares. Less than half of the objects are squares. A minority
of the objects are red. Less than half of the blue objects are squares.

BS:9
RS:2
BC:8
RC:1

Human There is a mixture of squares and circles. Most of them are blue. Some
of them are red.

qdg-ia All possible objects are shown. A minority of the objects are red
squares. Less than half of the objects are blue circles. Less than half of
the objects are blue squares. Less than half of the objects are circles.

qdg-greedy All possible objects are shown. A minority of the objects are red
squares. Less than half of the objects are blue circles. Less than half of
the objects are blue squares. Less than half of the objects are circles.

qdg-ia-random There are fewer blue circles than blue squares. There are fewer red
squares than blue circles. There are fewer circles than squares. More
than half of the circles are blue. A majority of the red objects are
squares.

Table 5: Examples of quantified descriptions produced by humans, by qdg-ia, and by qdg-
greedy. The numbers in the Scene column represent the number of objects of
each type (e.g., the first scene consists of two blue squares and two red squares).

often unwieldy (see Table 5), we decided not to make qdg-ia-random part of our formal
evaluation in the following two sections.

4.1 Evaluation Using Human Judgments

Settings. We recruited 4 annotators, academics from Utrecht University, none of whom
had been involved in our research. Two were young lecturing staff in computational linguis-
tics and two were senior lecturing staff in computational logic and formal argumentation.
All 66 scene-description pairs (from both experiments A and B) were put together and ran-
domly allocated to our four judges. Each of them judged 33 scene-description pairs. Thus,
each scene-description pair was judged by two judges and was judged from three aspects:
correctness, completeness, and naturalness.

However, correctness and completeness of a description is not an “all or nothing” affair,
especially when larger domains are involved, which frequently give rise to descriptions that
contain vague quantifiers. The same is true for the perceived naturalness of the description.
As is often done in Natural Language Generation (Gatt & Krahmer, 2018), we used a
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Model Naturalness Informativity Correctness

Experiment A
Human 3.45 4.05 4.6
qdg-ia 2.9 3.95 4.55
qdg-greedy 3.65 3.8 4.8

Experiment B
qdg-ia 3.5 3.78 4.47
qdg-greedy 3.44 3.97 4.22

Table 6: Average scores for each algorithm and for human-produced descriptions, by natu-
ralness, informativity, and correctness as annotated by our four human judges.

gradable scale. Judges were asked three Likert-scaled questions in each case: 1) Naturalness:
On a scale of 1-5, how likely do you think it might be that this description was uttered by
a human? [1=very unlikely, 5=very likely]; 2) Informativity: On a scale of 1-5, do you
believe the description is as informative as it can be expected to be? [1=description is not
even nearly informative enough, 5=description gives as much information as is possible]; 3)
Correctness: On a scale of 1-5, how correctly do you consider this description to be? [1=the
description is not ad all correct, 5=everything the description says is correct]. Note that
when judges make judgments the words naturalness, informativity and correctness were
invisible. In addition, our instructions said “Please note that we are mainly interested in
the logic of how people describe the scene, and less in the details of the wording, so please
disregard minor syntax errors and typos”. Because in experiment A, the first question was
asked about a human-produced description as well as two algorithm-generated descriptions,
this setup allowed us to perform what is essentially a Turing Test. The other two questions
offered invaluable formative evaluation.

On the basis of the nature of the task and the algorithms of quantified description pro-
duction, we formulated a number of evaluation hypotheses: 1) Humans perform better at
naturalness than qdg-ia and qdg-greedy (EH1); 2) Both algorithms perform better at
informativity and correctness than humans because both of them were explicitly designed
to optimise informativity and correctness (EH2); 3) qdg-ia performs better at naturalness
than qdg-greedy (EH3). We reasoned that, in referring expression generation, the incre-
mental algorithm offered greater human-likeness than the greedy algorithm (Dale & Reiter,
1995; van Deemter et al., 2012), so why should things be different this time?

Results. Table 6 shows the scores from the judges. Both algorithms scored well over 3
in all except one cell, confirming our impression that the descriptions tended to be of very
respectable quality.

As for our evaluation hypotheses, our first evaluation hypothesis, EH1, was rejected:
in terms of naturalness, qdg-greedy performed well above expectation, gaining a slightly
better score than the human speakers, although the difference did not reach significance
(using a paired t-test: t = −0.4972, p = .6220). qdg-ia had a lower score, but this also
did not amount to a significant difference from human speakers (t = 1.1133, p = .2726); the
difference between qdg-ia and qdg-greedy was significant (t = −1.6310, p = .1111).
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Though “no difference” results always need to be approached with caution, the rejection
of EH1 might be interpreted as our algorithm passing a limited kind of Turing test, focusing
on a limited type of language use, of course, since it suggests that the perceived quality of
the algorithm was indistinguishable from human speakers. In an effort to understand the
low naturalness performance of qdg-ia, we had a closer look at the cases where qdg-ia had
particularly low scores. We found that these almost always contained vague quantifiers (e.g.,
few, most), where the semantic and pragmatic definitions of which our algorithms made use
were especially tentative. Moreover, vague quantifiers were used disproportionally often in
the scenes of Experiment A, and far less in the scenes of Experiment B; accordingly, the
qdg-ia scored much better on naturalness in Experiment B. We surmise that a possible
reason for the low naturalness performance of qdg-ia is that the semantics of the vague
quantifiers in Kc is not as accurate as it could have been. For instance, the currently-used
semantics of most is the same as that of more than half, which is a precise quantifier.
The effect of using more accurate, empirically based, definitions of vague quantifiers, which
requires further comprehension experiments, will be investigated in further work.

Our analysis of the second evaluation hypothesis, EH2, shows some of the hidden dif-
ficulties of the description task that our algorithms solve. Human speakers, and both of
our algorithms, all performed similarly well in terms of informativity and correctness (in
terms of informativity, human/qdg-ia has t = 0.2439, p = .8087 and human/qdg-greedy
has t = 0.5903, p = .5585; in terms of correctness, human/qgd-ia has t = 0.1305, p = .8968
and human/qdg-greedy has t = −0.6016, p = .5510). To understand why, we decided to
separately calculate the average informativity score for those descriptions in experiment B
that were logically complete (i.e., the algorithm stopped when S = {s}). For this reduced
set of descriptions, the average scores for qdg-ia and qdg-greedy were a mere 3.88 and
4.1, instead of the score that one might expect, namely 5. One possible explanation is that
our algorithms judged the logical correctness and completeness of these descriptions by
taking both their semantics and their pragmatics into account (as discussed in Sections 3.3
and 3.4), which is something our judges may have disagreed with. Alternatively, judges
may sometimes have had a lapse of concentration.

The last evaluation hypothesis, EH3, was also rejected, as there was no significant
difference between the naturalness performance of qdg-ia and qdg-greedy (Experiment
A: t = −1.6310, p = .1111; Experiment B: t = 0.1656, p = .8690). This may be because the
preference order that we proposed for quantified patterns has much higher complexity than
that of properties (or attributes) in the task of referring expression generation. In particular,
the number of quantifiers is considerable, and, because of our “one-off” re-ordering move,
our preference order of quantifiers was not linear. It is possible that a different preference
order would have led to better results for qdg-ia, but it seems equally possible that the
idea of using a preference order to determine the choice of quantifier patterns – on which
the Incremental Algorithm is based – is simply not on the right track, and that a simpler
“greedy” approach leads to results that are equally good.

4.2 Evaluation Using Scene Reconstruction

Settings. We recruited 20 undergraduate students from Utrecht University 13 of whom
major in Artificial Intelligence; the other 7 study a variety of other subjects. The descrip-
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tions in experiment A were randomly allocated to all participants. Each description was
used for reconstructing the paired scene four times (i.e., by four participants). The descrip-
tions in experiment B were allocated in the same way, except that each pair was assigned
twice instead of four times. Each participant reconstructed a total of 8 or 9 scenes.

Given a description and the domain size of the paired scene, we demanded each partici-
pant to write down the number of objects (i.e., the number of BS, RS, BC, and RC) in the
scene by asking “please tell us about a scene that could be described by the description”. We
chose to ask participants to write numbers instead of drawing scenes, in order to encourage
them to disregard the location of each object in the scene. Participants had not seen any of
the qtuna scenes before, which makes the reconstruction task become tough. Therefore,
before starting, we provided each participant with two examples to show them what the
reconstructed scenes might look like. In addition, considering that some descriptions have
multiple possible corresponding scenes, we told participants: “In those cases, please choose
an answer (number) that you consider to be consistent with the description”.

Given the above settings and the hypotheses of the human judgement study, we for-
mulated two evaluation hypotheses. Firstly, we hypothesised that reconstructions based on
descriptions generated by qdg-ia and qdg-greedy are more similar to the input scenes
than those produced by humans (EH4). We expected this because these algorithms, espe-
cially the qdg-greedy are designed to be as logically complete as possible. Since the more
complete the generated descriptions are, the easier for them to be reconstructed. Secondly,
we hypothesised that descriptions produced by qdg-ia let readers reconstruct scenes more
accurately than qdg-greedy (EH5).

Similarity between Reconstructions. A key part of our analysis is the metric that
we used to measure the similarity between the reference scene and a reconstructed scene.
Given a reference scene and a reconstructed scene, we care about how many “swaps” are
needed to convert one into the other. Concretely, we propose the SWAP metric, which
takes the absolute differences between the cardinalities of each of the four types of object
in the reference scene and in the reconstructed scene, takes the sum of these, then divides
that sum by 2 times the domain size.

For instance, suppose the reference scene is: {BS : 2,RS : 1,BC : 0,RC : 1}, where
each number represents the cardinality of the relevant type of object. Suppose one of the
reconstructed scenes is: {BS : 2,RS : 1,BC : 1,RC : 0}. Then

SWAP =
|2− 2|+ |1− 1|+ |0− 1|+ |1− 0|

2× 4
= 1/4. (1)

The lower the SWAP score, the lower the better the reconstruction, with 0 as a minimum
and 1 as a maximum.

Results. Table 7 reports the SWAP score for both experiments A and B. We analyse
these results, focusing on our hypotheses first. The SWAP scores in experiment A show
that hypothesis EH4 is only confirmed for the smallest domain size (N = 4) while for larger
domain sizes, qdg-ia generates less reconstructable descriptions than our human speakers.
When domain size is small, precise (i..e, non-vague) quantifiers tend to be used (c.f., sec-
tion 2). Consequently, our algorithms always generate logically complete descriptions, so
they enjoy low SWAP scores (i.e., high reconstructability). Conversely, when domain size
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Model N=4 N=9 N=20 All

Experiment A
Human 8.33 6.25 15 9.86
qdg-ia 0 11.81 18.33 10.05
qdg-greedy 2.08 8.33 15 8.47

Model N=6 N=10 N=16 All

Experiment B
qdg-ia 1.39 10 10.42 7.27
qdg-greedy 1.39 8.33 7.81 5.84

Table 7: Average SWAP(%) for each algorithm and for human-produced descriptions. N
represents the domain size.

becomes larger, then logical completeness becomes less and less achievable (cf., section 2),
and a larger number of vague quantifiers are used. Consequently, the SWAP scores go up,
so the reconstructability of descriptions produced by human speakers and algorithms goes
down.

As for our hypothesis EH5, by looking at results from both experiments A and B, its
null hypothesis is retained; in fact, the data go in the opposite direction, since descriptions
generated by the qdg-greedy have better reconstructability than qdg-ia. One possible
explanation is that qdg-ia may have generated less complete quantified descriptions than
qdg-greedy (since qdg-greedy always looks at quantified expressions that have the
highest discriminatory power). In other words, when readers were simply reading these
descriptions together with paired scenes (i.e., in the human judgement study), this difference
may not be have been noticed (note that qdg-ia had a similar level of informativity as qdg-
greedy), the difference may have been “enlarged” in the reconstruction experiments.

Besides, from results in Table 7, we also found that when focusing on hard cases (i.e.,
Experiment A), reconstructability decreases with the increase of domain size. In contrast,
when we use randomly selected scenes (i.e., Experiment B), although differences between
small and large domains exist, it appears that if the domain size is large enough, then no
significant difference exists (i.e., there is no significant difference between the SWAP score
when N = 9 and when N = 20).

4.3 Discussion

We have reported two evaluation studies. Although our algorithms were designed to pro-
duce quantified descriptions that are logically complete, in the human judgement study, the
algorithm-produced quantified descriptions did not receive a higher informativity score than
human-produced ones. A similar phenomenon occurs in experiment A of the reconstruction
study. The only exception is the smallest domain (N = 4), where algorithm-generated de-
scriptions had better reconstructability than human-generated ones. A possible explanation
is that, given a task that is as demanding as the one in our experiments, in all situations
except the simplest ones, so many obstacles can get in the way of a proper understanding
of the descriptions that the logical completeness that human-produced descriptions might
suffer from is overwhelmed by these obstacles. For example, if a logically perfect description
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is expressed by means of a syntactically ambiguous structure, then both reconstructability
and correctness and informativity are bound to suffer.

Comparing the two algorithms, the greedy algorithm has slightly higher reconstructabil-
ity scores than the incremental algorithm. In line with this, in Experiment B of the human
judgement study, qdg-greedy had slightly higher informativity than qdg-ia. Yet qdg-
greedy was not significantly judged to be more informative than qdg-ia (t = −0.6026, p =
.5487).

5. General Discussion

In this paper, we have reported on an elicitation experiment in which human speakers de-
scribe geometrical scenes. The resulting corpus, called qtuna, was annotated and analysed.
18 We then proposed two generation algorithms that aim to mimic the language production
behaviour recorded in the corpus, understood as what is known in the computational mod-
elling community as a product model, that is, a model that focuses on the relation between
inputs and outputs without any claims about the manner in which this is done (see section
1 for explanation). We then evaluated these algorithms, looking at scenes of a variety of
sizes, including scenes that contained a number of objects not seen in the corpus. Our
evaluations suggest that our algorithms produce descriptions that are both natural (i.e.,
human-like) and useful.

Computational models of language use can offer a wealth of insight into the choices that
human speakers and writers make when they use language. Let us take stock to see what
lessons may be drawn from our computational modelling exercise.

5.1 Quantified Descriptions and Referring Expressions

Computational models of the production of referring expressions have been studied widely
(Dale & Reiter, 1995; Dale & Viethen, 2009; van Deemter et al., 2012; Krahmer & van
Deemter, 2012; van Gompel, van Deemter, Gatt, Snoeren, & Krahmer, 2019; Chen & van
Deemter, 2020; Same, Chen, & Van Deemter, 2022). They aim to mimic how human
speakers use referring expressions to single out a referent for a hearer. For example, given
a scene such as Figure 2, a participant could say “the large sofa” or “the large right-facing
sofa”. Each of these expressions lets readers identify the target reference from the context.

Quantification is not reference, of course. Nonetheless, it is illuminating to compare the
two phenomena and, in fact, the algorithmic approach we have chosen to model quantifi-
cation resembles some algorithms originally discussed in Dale and Reiter (1995), where a
referring expression is constructed by accumulating properties (e.g., COLOUR, SIZE) one by
one, each of which is thought to “remove” from consideration a set of “distractor objects”,
that is, potential referents that differ from the target referent in one or more respects. We
have emphasized this similarity by using terms familiar from referring expression generation
(e.g., “target”, “removing distractors”, “preference order” and so on). In a nutshell,

- In the generation of both referring expressions and quantified descriptions, the task
can be viewed as a step-wise addition of descriptive information that narrows down

18. On a different note, following on qtuna, we recently conducted a similar study in Mandarin Chinese.
Please see Chen (2022) and Chen and van Deemter (2022) for more details.
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an initial set of possibilities (a set of possible referents in one case, and a set of scenes
in the other case) to a small set – typically a singleton set.

- In both situations, the “narrowing down” metaphor gives rise to a range of possible
algorithms. In each case, for instance, a “greedy” algorithm might proceed by always
adding the information that most effectively reduces the size of the current set of
possibilities. In other words, the notion of discriminatory power, which is crucial for
models of reference, looms large in the modelling of quantification as well.

- In both cases, the effect of adding information must be understood in the context
of the Common Ground of the speaker and hearer. When the speaker is unsure as
to what the hearer knows (e.g., what the initial set of possibilities is), for example,
the question can arise of whether it is practically feasible – in a reasonable time, and
using a description that is not too lengthy or complicated – to reduce the initial set
of possibilities to a singleton set. In the realm of reference, for example, Kutlak,
van Deemter, and Mellish (2016) model a situation in which the aim of a referring
expression is not to uniquely pick out one single referent. Below we will discuss similar
situations in the realm of quantification.

These similarities should not close our eyes to the important differences that exist between
the two tasks. Firstly, in the most often studied versions of the reference task (see e.g. the
start of section 2), distractors are concrete objects, which are observed by the speaker and
the hearer; in our quantification task, the distractors are a set of possible scenes, only one
of which is observable, namely the target scene. This makes our quantification task much
more abstract than most versions of the reference task. In our generation system, this is
reflected by the stage in which the pre-processor computes the set S of all possible scenes
from the properties that are given.

Secondly, in the reference task, properties (such as red) take the place that quantified
expressions have in the quantification task. Quantified expressions are much more com-
plicated than properties, hence the distinction between choosing a pattern p(·) (line 2 of
Algorithm 2) and choosing a value v to fill the pattern (line 3).

Thirdly, the algorithms proposed in the present paper have had to find a way to take both
the semantics and pragmatics of quantifier patterns into account. In a nutshell, semantics
is about literal meaning whereas pragmatics is about other ways in which language use
can convey information. That said, the distinction between semantics and pragmatics is
much debated within Theoretical Linguistics, and the precise boundary between the two
is notoriously difficult to draw (Levinson, 1983). The way in which this distinction works
in relation to reference is relatively well understood, but the distinction has proved to be
much harder to deal with in connection with quantification because if semantic information
is lumped together with pragmatic information, our algorithms tend to generate descriptions
that are unnecessarily unwieldy (see our explanation in section 3.3). Whether the solution
embodied in our algorithms generalises to other types of pragmatic information is a question
for further research.
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5.2 Representing the meanings of quantifiers

Our generation algorithms embody specific assumptions concerning the meaning of each
quantifier. For example, when an algorithm adds the quantified expressions All circles
are blue to a description, we assume that “All A are B” means [[A]] ⊆ [[B]] ∧ [[A]] 6= ∅;
consequently, our algorithms remove from the set S all those scenes for which this logical
conjunction does not hold true. Although we have done our best to choose representations
of quantifier meaning that is consistent with both the Linguistics literature and the way in
which quantifiers are used in our corpus, we cannot claim yet to have found the optimal
representation in each case. For example, various authors (Moxey & Sanford, 1993; Nouwen,
2010) have pointed out that human quantifier use is guided not only by raw numbers of
objects alone but by (speakers’ and) hearers’ expectations about the number as well; for
example, a child in The Netherlands who has seen 10 animals on a given day may say she
has seen many elephants (if that’s what they were) but a few cows (if that’s what they
were). Although the geometrical scenes on which we have focused in this paper have sought
to minimise these issues, there is surely a lot of progress to be made; in fact, it is perhaps
remarkable that our algorithms work as well as our evaluation suggests they do.

A class of quantifiers where this disclaimer is particularly opportune are “vague” quan-
tifiers, that is, quantifiers where there can exist borderline cases in which it is debatable
whether or not the quantifier applies; cases in point are quantifiers like “many”, “few”,
“all except a few”, and so on. In all these cases, the set-up of our generation algorithms
forces us to use a crisp cut-off point – deciding, for example, that Many A are B is true if
less than 20% of A are B, and false otherwise. Although this contradicts received wisdom
about the meaning of these quantifiers, our evaluation in section 4 suggests that, for the
type of generation task at hand, our algorithms “get away” with this simplification. While
this outcome gives rise to interesting questions – Could an NLG algorithm that models
vague expressions as if they were crisp pass the Turing test? – we believe that it would
be interesting to experiment with alternative assumptions that do more justice to what is
known about these quantifiers.

For instance, one could represent the meaning of quantifiers probabilistically (Moxey
& Sanford, 1993), or using a version of Fuzzy Logic. In both cases, the representations in
question would tell us to what extent a given quantified expression is applicable in a given
situation: let’s call this its degree of applicability. Such a move could even benefit quantifiers
that linguists generally consider to be crisp. For example, Degen and Tanenhaus (2011)
and van Tiel (2014) pointed out that, when reading quantified expressions like Some of A
are B, readers’ acceptability is lower than 1 (though often higher than 0) if the target set is
either too small or too large. A similar approach is taken in the Bayesian quantifier models
of (Frank & Goodman, 2012), Franke (2014) and Qing (2014, Chapter 4), which are learned
from experimental data. The resulting non-crisp meaning representations could be fed into
our generation algorithms in a number of ways. For example, in the Incremental Algorithm
of section 3.4, the choice of the next quantified description to be included in the description
(which was done in lines 2 and 3 of Algorithm 2) could be made on the basis of the degree
of applicability of the expression in combination with its preference degree. It would be
interesting to see whether, as a result of this move, the quality of the resulting quantified
descriptions (as measured by evaluation studies such as the one reported in section 3) will
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improve. Since the present paper focuses on the production of a wide range of quantifiers
rather than on sophisticated models for specific quantifiers, this exploration was left for
future research.

5.3 Ecological Validity

As discussed in Section 1, previous studies on the production of quantified expressions, in
both cognitive science (Yildirim et al., 2013; Herbelot & Vecchi, 2015) and computational
linguistics (Barr et al., 2013)), asked speakers to pick a quantifier from a listed set of
quantifiers; speakers were asked to base their choice of quantifier on a given sentence pattern,
where the quantifier itself was the only thing that was left open. Our own experiments, by
contrast, gave much more freedom to speakers, who could use any sentence pattern they liked
(and hence any arguments for the quantifier as well), as well as any quantifier they wished
to utter. Moreover, speakers were not restricted to uttering only one sentence; instead,
they could produce a small discourse consisting of any number of sentences, containing any
number of quantifiers. We believe that this makes our study the most ecologically valid
study of its kind to date.

Our study inherits one limitation from previous studies. Like previous studies, we used
artificial scenes, which showed arbitrary arrangements of abstract shapes (instead of, say,
holiday snaps). We believe that this limitation can be overcome in future research that
could use a similar setup based on realistic scenes (e.g. photographs of people gathering
around a table); such scenes may also contain many more objects than the ones in the
present study, thereby raising interesting new research questions (see more discussion in
Section 5.4.3).

Our study may also possess a shortcoming that was not inherited from its predecessors
but that was necessitated by our wish to study a wide range of quantifiers. A sequence of
pilot experiments suggested to us that the best way to ensure this was to discourage the
use of enumerations because otherwise the corpus would have been dominated by a family
of highly uniform expressions, all of which are of the form n A are B (e.g., as in “There
are 3 blue circles”; see Section 2 for explanation). Although this may have compromised
ecological validity to some extent, we believe that this is a price worth paying for the richness
of the resulting qtuna corpus.

5.4 Open Questions and Future Work

The work on which we have reported here gives rise to a number of questions that are
waiting to be explored.

5.4.1 How Efficiently Do Speakers Use Quantification?

Speakers in our corpus were frequently less than optimally “efficient” in their use of quan-
tification, saying more than was strictly necessary for describing the scene. An extreme
example is the quantified description for the scene in Figure 8 where some speakers use
as many as three quantifiers (i.e., “Half the objects are squares. Half the squares are red.
Half the circles are red.”), whereas others use only one (i.e., “All possible combinations are
shown.”) Another type of example arises when a scene of size N = 4 can be described by
saying “There are red circles and blue squares.” (using two plural noun phrases), in which
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Figure 8: A scene of domain size N = 4 from qtuna.

case the description “There are two red circles and two blue squares.” could be regarded
as inefficient. Investigating the mechanisms that allow speakers to be maximally efficient –
and the conditions under which these mechanisms are actually deployed – is a rich area for
further research. Once again, there is an analogy here with research on the production of re-
ferring expression, where researchers have studied under what circumstances speakers tend
to “over-specify” a referent. For example, when referring to the target object in Figure 2,
many speakers say “the big red sofa” although either red or sofa is a superfluous property.
This includes both experimental works (e.g., Pechmann (1989), Engelhardt, Bailey, and
Ferreira (2006), Engelhardt, Demiral, and Ferreira (2011) and Koolen et al. (2011)), and
computational work (e.g., Dale and Reiter (1995), van Gompel et al. (2019) and Degen,
Hawkins, Graf, Kreiss, and Goodman (2020)). Perhaps the main question raised by these
phenomena is whether speakers are “inefficient” because they cannot help themselves, or
to help the reader understand the description (i.e., Bell (1984) and Coupland and Jaworski
(2008)). Analogous questions regarding quantification have yet to be answered.

5.4.2 How to Capture Variation in the Corpus?

Substantial differences between speakers are known to exist in many other areas of language
production (e.g., Horton and Keysar (1996), Holden, Van Orden, and Turvey (2009), Gibbs
and Van Orden (2012), van Deemter (2016)). Such differences are likely to affect all the
issues discussed in this paper. One approach would be to investigate how key properties
of the descriptions vary between different types of speakers, looking at differences in level
or type of education for example. A different approach would be to design a probabilistic
generator, which generates all the different types of descriptions that are seen in the corpus
but takes into account their frequencies. The degree of fit between such a probabilistic
model and the corpus could be measured using the generalisation criterion methodology
of Busemeyer and Wang (2000), analogous to the probabilistic modelling of reference in van
Gompel et al. (2019).

5.4.3 How to Quantify Over More Challenging Types of Scenes?

The scenes on which this paper has focused are relatively simple. How does quantification
work if the domain size is further increased? For example, one might expect to find that,
similar to the finding of this paper, the participants would produce even more vague quanti-
fiers, more incompleteness, and so on. Scenes could also be populated by more naturalistic
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objects, standing in more naturalistic situations (e.g. a person walking a dog). Evidently,
naturalistic scenes permit many more than 2 attributes, each of which will tend to have
more than 2 values, and so on. Naturalistic scenes threaten to undermine one of our ideas
on which our algorithm rests, namely to start computing the set of all possible scenes (i.e.,
constructing S), and to work by chipping away from that set. Suppose one wants to describe
the people in a football stadium, saying something like:

(13) Nearly everyone in the stadium was wearing the Liverpool colours.

It is unclear what were all the possibilities that this description is trying to rule out since it is
difficult to determine all the things people might be wearing. Furthermore, it seems likely
that the aim of the utterance is to state that the situation in the stadium runs counter
to normal expectations – an aspect of quantification that has been noted widely in the
literature (Moxey & Sanford, 1993) but was not covered by our models so far.

One possible solution is to abandon the idea of starting from the complete set of all pos-
sibilities, starting instead from a suitably sized sample of possible scenes, possibly gleaned
from other football matches in the same stadium, proceeding as before in other ways (e.g.,
terminating when all distractor scenes from the sample have been ruled out). Note that this
approach would be sensitive to constraints and statistical regularities that the speaker and
hearer are attuned to. For instance, the sample would tend to bear out the regularity that
if one’s left shoe is brown then so is one’s right shoe. More interestingly, a large-enough
sample of scenes could go a long way towards embodying our “normal expectations” re-
garding the outfits that people in stadiums normally wear, including the expectation that
the Liverpool colours do not normally dominate to such an extent.
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