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A B S T R A C T

In recent years, a range of Neural Referring Expression Generation (REG) systems have been
built and they have often achieved encouraging results. However, these models are often
thought to lack transparency and generality. Firstly, it is hard to understand what these neural
REG models can learn and to compare their performance with existing linguistic theories.
Secondly, it is unclear whether they can generalise to data in different text genres and different
languages. To answer these questions, we propose to focus on a sub-task of REG: Referential
Form Selection (RFS). We introduce the task of RFS and a series of neural RFS models built on
state-of-the-art neural REG models. To address the issue of interpretability, we probe these RFS
models using probing classifiers that consider information known to impact the human choice
of Referential Forms. To address the issue of generalisability, we assess the performance of RFS
models on multiple datasets in multiple genres and two different languages, namely, English
and Chinese.

. Introduction

Referring Expression Generation (REG) is one of the main stages of the classic Natural Language Generation (NLG) pipeline (Reiter
nd Dale, 2000; Krahmer and van Deemter, 2012; van Deemter, 2016).1 REG is not only of practical value for practical NLG (Reiter,
017) (including applications with computer vision (Mao et al., 2016), and robotics (Fang et al., 2015) for example), but can also
e used as a tool for expressing and testing theories of human language use (van Deemter, 2016).

REG includes one-shot REG and REG-in-context. The one-shot REG task involves finding a set of attributes to single out a referent
rom a set of distractors. This task seeks to identify a referent in a single shot, disregarding its linguistic context (Krahmer and
an Deemter, 2012). Unlike one-shot REG, REG-in-context takes the linguistic context of an expression into consideration: REG-in-
ontext involves generating appropriate referring expressions (REs) to refer to a referent at different points in the discourse (Belz
nd Varges, 2007). In this work, we focus on the latter task, REG-in-context, with the aim of addressing some key problems of
urrent REG-in-context models, namely their lack of interpretability and generalisability.

Classic REG-in-context is usually a two-step procedure. First, the form of the RE (i.e., the referential form, henceforth, RF) is
etermined, which is also called the task of Referential Form Selection (RFS). For instance, when referring to Joe Biden at a given
oint in the discourse, the first step is to decide whether to use a proper name (‘‘Joe Biden’’), a description (‘‘the president of the USA’’),
demonstrative (‘‘this person’’) or a pronoun (‘‘he’’). The second step is to determine the content of the RE, choosing between different
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1 The complete NLG pipeline is often thought to contain six stages: document planning, document structuring, lexical choice, aggregation, REG, and linguistic
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ways in which a given form can be realised. For instance, to generate a description of Joe Biden, one needs to decide whether to
mention only his job (e.g., The president entered the Oval Office.), or to mention the country as well (e.g., The president of the United
States arrived in Cornwall for the G7 Summit.)

In early studies, computational linguists have often linked REG to linguistic theories. For example, Henschel et al. (2000)
investigated the impact of three linguistic features namely recency, subjecthood, and discourse status on pronominalisation. The
same holds for feature-based models (Belz et al. (2010)) where models are trained on linguistically encoded data.

In the last 10 years, neural networks have become popular for tackling Natural Language Processing (NLP) tasks, and REG is no
exception. A number of neural network-based REG models have been proposed (Castro Ferreira et al., 2018a; Cao and Cheung, 2019;
Cunha et al., 2020; Same et al., 2022), generating REs in an End2End manner without any feature engineering. These models tend
to follow the sequence-to-sequence framework (Sutskever et al., 2014), where there is an encoder for encoding the given discourse,
and a decoder responsible for generating REs using the encoded information. Models were assessed on a benchmark dataset called
webnlg. Evaluation results suggested that these neural methods perform well. However, we argue that previous work has three major
shortcomings. These concern, briefly, the relative opacity of many of the models used, the choice of corpora on which the models
are based, and the focus on a small number of languages.

1. Lack of Interpretability. As is the case with many uses of neural networks in NLP, the opacity of these models can make it
hard to understand any shortcomings of the models and to improve them further. Moreover, from a theoretical perspective, where
the goal is to develop models of human behaviour (Vicente and Wang, 1998; Sun, 2008), neural models are only of interest insofar
as they are explainable. After all, reference has been studied for a long time and from many different theoretical angles (Ariel, 1990;
Gundel et al., 1993; Brennan, 1995; Arnold and Griffin, 2007; Fukumura and van Gompel, 2011; Kibrik et al., 2016; von Heusinger
and Schumacher, 2019; Same and van Deemter, 2020), but to the extent that NeuralREG models are opaque (i.e., not explainable),
it is difficult to compare these models with the findings and insights from these earlier studies. Consequently, models are unable to
benefit from earlier insights and, conversely, earlier theories are unable to benefit from any successes achieved by neural models.

2. Choice of Corpora. All previous work was tested on a benchmark dataset called webnlg (Gardent et al., 2017; Castro Ferreira
et al., 2018b). This dataset was originally built for generating text from RDF triples (namely, RDF-to-Text Generation). Its data was
extracted from DBpedia2 and its texts are mostly formal descriptions of a set of triples. Therefore, webnlg may not reflect the everyday
use of REs. For example, 85% of its REs are first-mentions, and 71% of them are proper names (see Section 4.2). We believe that
this makes webnlg an unfortunate choice of corpus for assessing REG-in-context systems.

3. Exclusive Focus on Western European Languages. Speakers of different languages adopt different referring mecha-
nisms (Walker et al., 1994; Prasad, 2003). The difference between speakers of East Asian languages (e.g. Chinese and Japanese) and
speakers of Western European languages (e.g. English and Dutch; Newnham (1971)) has attracted particular attention. For example,
theoretical linguists (Huang, 1984) have argued that East Asian languages rely more heavily on context than Western European
languages, and, as a result, speakers of East Asian languages frequently use Zero Pronouns (ZPs), i.e. REs that contain no words and
are resolved solely based on their context (see Chen and van Deemter (2020), Chen et al. (2018), Chen and van Deemter (2022),
Chen (2022) for empirical testing and computational modelling). Consider the following question in Chinese: ‘‘ ’’
(nǐ kànjiàn bı̌ěr le mā; Have you seen Bill?). A Chinese speaker can reply ‘ ’’ (∅ kànjiàn ∅ le; ∅ saw ∅.) where the two ∅ are
ZPs referring to the speaker himself/herself and ‘‘Bill’’ respectively. Therefore, the question of whether the state-of-the-art (SOTA)
NeuralREG models work on other languages, especially East Asian languages, is still unanswered.

To address the first issue (lack of interpretability), we introduce a series of probing tasks. As a probing task, a diagnostic classifier
is trained on representations from the model and its performance tells us how well these representations encode the information
associated with the task. Probing is a well-established method for analysing whether the latent representations of a model encode
specific information. This approach has been widely used for analysing models in machine translation (Belinkov et al., 2017),
language modelling (Giulianelli et al., 2018), relation extraction (Alt et al., 2020), and so on. Probing experiments have also been
used to a lesser extent to analyse models of coreference resolution (Sorodoc et al., 2020), showing that language models capture
morphosyntactic information and, to some extent, semantico-referential aspects of anaphora.

Our focus is on the encoding of linguistic features by neural RE models, and since most reference production studies in the
linguistic tradition focus on the task of RF choice, we will address the same task, referred to here as RFS. The RFS task is defined as
follows: given a text whose REs have not yet been generated, and given the intended referent for each of these REs, the RFS task is
to develop an algorithm that finds the proper RF from a set of K candidate RFs. RFS is a classification problem, i.e., the algorithm’s
task is to select a referential class from a set of given classes. For example, in the case of a pronominalisation task, there are two
classes, pronominal and non-pronominal forms (K=2), and the RFS task is to decide which form to use.

To tackle RFS, we adapt the SOTA NeuralREG models of Castro Ferreira et al. (2018a). We propose a strong baseline that uses
only a single encoder (while Castro Ferreira et al. (2018a) used multiple encoders). Additionally, we leverage pre-trained word
embeddings (e.g., GloVe) and language models (e.g., BERT).

Regarding the second issue (i.e., the choice of corpora), we first assess and probe RFS models on the webnlg corpus. We find that
many experimental results are not in line with what linguistic theories suggest. We study this issue further in combination with the
third issue (exclusive focus on Western European languages) by building a realistic multilingual dataset from the ontonotes corpus
consisting of REs from various genres and in both English and Chinese. We evaluate and probe RFS models on this new dataset and
compare the results across different corpora (i.e., webnlg and ontonotes) and different languages (i.e., English and Chinese).

2 https://www.dbpedia.org/
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Table 1
An example data from the webnlg corpus. In the delexicalised text, every entity is underlined.

Triples:
(AWH_Engineering_College, country, India)
(Kerala, leaderName, Kochi)
(AWH_Engineering_College, academicStaffSize, 250)
(AWH_Engineering_College, state, Kerala)
(AWH_Engineering_College, city, ‘‘Kuttikkattoor’’)
(India, river, Ganges)

Text: AWH Engineering College is in Kuttikkattoor, India in the state of
Kerala. The school has 250 employees and Kerala is ruled by Kochi. The
Ganges River is also found in India.

Delexicialised Text:
Pre-context: AWH_Engineering_College is in ‘‘Kuttikkattoor’’ , India in the
state of Kerala .
Target Entity: AWH_Engineering_College
Post-context: has 250 employees and Kerala is ruled by Kochi . The Ganges
River is also found in India .

In Section 2, we summarise the background of our study. We then list our research questions and expectations in Section 3. In
ection 4, we formally define the task of RFS and describe our datasets (webnlg and ontonotes). In Section 5, we describe how we
dapted NeuralREG models to the RFS task and we report on their performance. In Section 6, we introduce our probing tasks and
robing classifiers, and report the probing results of each RFS model on two datasets. In Section 7, we compare the results across
ifferent corpora and different languages.

. Background

.1. REG-in-context

Given a text whose REs have not yet been generated, and given the intended referent for each of these REs, the REG-in-
ontext task is to build an algorithm that generates all these REs (Belz and Varges, 2007). This task has attracted many research
fforts; for instance, the GREC shared tasks (Belz et al., 2010) sparked a plethora of feature-based solutions for the task (Hendrickx
t al., 2008; Greenbacker and McCoy, 2009). More recently, this task has been formulated into a format that goes together well
ith deep learning. Castro Ferreira et al. (2018a) introduced the End2End REG task, built a corresponding dataset based on
ebnlg (Castro Ferreira et al., 2018b), and constructed NeuralREG models.

The webnlg corpus was originally designed to assess the performance of NLG systems (Gardent et al., 2017). Each sample in
his corpus corresponds to an item in a knowledge base described by a Resource Description Framework (RDF) triple (Table 1).
astro Ferreira et al. (2018a) and Castro Ferreira et al. (2018b) enriched and delexicalised the corpus to fit the REG-in-context task.

Table 1 shows a text created from an RDF, and its corresponding delexicalised version. Taking the delexicalised text in this
able as an example, given the entity AWH_Engineering_College, the REG-in-context task chooses an RE based on that entity and its
re-context (‘‘AWH_Engineering_College is in ‘‘Kuttikkattoor’’, India in the state of Kerala.’’) and its post-context (‘‘has 250 employees and
erala is ruled by Kochi. The Ganges River is also found in India.’’).

.2. Linguistic factors that impact the choice of RFs

Languages display a large inventory of expressions for referring to entities (von Heusinger and Schumacher, 2019). In linguistics,
speaker’s realisation choice is associated with the prominence (i.e., activation of mental representations in the listener’s mind)

f a referent at a particular point in the discourse: attenuated forms such as pronouns are often used to refer to highly prominent
eferents, while richer forms such as descriptions and proper names are used to refer to less prominent ones (Ariel, 1990; Gundel
t al., 1993; von Heusinger and Schumacher, 2019). A large body of research has tried to assess the influence of different features
odulating the prominence of a referent. In the following, we only talk about factors we use in our probing experiments, and do not
iscuss factors such as animacy (Fukumura and van Gompel, 2011), competition (Arnold, 2010), and coherence relations (Kehler
t al., 2008).
Referential status or givenness has been widely discussed in the literature (see Chafe (1976), Prince (1981)). When a new character

s introduced into the discourse, the chance that this happens by means of a pronoun is very low. Pronouns are reserved for
eferring to previously introduced (i.e., ‘‘given’’) referents. Recency, another well-studied cue, is defined as the distance between
he target referent and its coreferring antecedent. If a referent is not too far from its antecedent, reduced forms are typically
sed to refer to it. There are also intra-clausal cues such as grammatical role (Brennan, 1995) and thematic role (Arnold, 2001)

which impact the prominence status of referents. For instance, the subject of a sentence is more prominent than the object.
Discourse-structural features affect the organisational aspects of discourse, which in turn can influence the prominence of referents.
Centering-based theories (Grosz et al., 1995) often use the notion of local focus to explain pronominalisation. Local focus takes
the current and previous utterances into account. Global focus, on the other hand, situates a referent within a larger discourse
segment (Hinterwimmer, 2019).
3
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2.3. Interpretability

Unlike classic approaches such as rule-based and feature-based methods, SOTA neural E2E models arguably lack transparency at
wo levels: (1) they do not explicitly use linguistic features such as those mentioned above, and (2) we do not have easy access to
heir decision steps. The success of these models comes from a combination of efficient learning algorithms and their huge parametric
pace (Castelvecchi, 2016; West, 2018; Barredo Arrieta et al., 2020). Deep learning models are evolving rapidly and their learning,
easoning, and adaptation capabilities are constantly improving. With the growth in popularity of these models, interpretability and
xplainability become of paramount importance.

In recent years, numerous research efforts in the field of eXplainable AI (XAI) have sought to make neural systems more
nterpretable and explainable (see Dosilovic et al. (2018) and Barredo Arrieta et al. (2020) for an overview). It is generally believed
hat the vector representations of neural models encode some ‘‘continuous analogue of linguistic structures’’ (Torroba Hennigen
t al., 2020). Therefore, most post-analyses of these models, such as probing experiments, try to answer the question of what kind
f linguistic features are encoded in neural networks.

For probing experiments in the context of this paper, we first train neural RFS models and generate representations. We then
efine several probing classifiers based on the features that are assumed to influence the choice of RF (e.g., the ones explained
n Section 2.2). These classifiers take the representations as input and classify them in accordance with the probing task. If they
erform well, we can conclude that the model has learned the information relevant to the classifiers’ task. Torroba Hennigen et al.
2020) consider this type of probing as an extrinsic evaluation method. This method thus provides a way of looking at the latent

representations of a neural model through the lens of linguistic features.

3. Research questions

In this study, we consider the following research questions (s).

3.1. 1: The choice of model architectures

Analogous to much other research in NLP, we investigate various model architectures for RFS. We test several models to
answer the following three questions: (1) Do models for REG work well in selecting RFs? we adapt the SOTA NeuralREG models
in Castro Ferreira et al. (2018a) to model RFS; (2) Do simpler model architectures work worse than SOTA models for RFS? we propose
a simple RFS model that uses only a single GRU (Cho et al., 2014) encoder and compare its performance to SOTAs (see Section 5
for more details); (3) Do pre-trained word embeddings or language models help RFS? although there are several works applying neural
models to REG, only Cao and Cheung (2019) have used pre-trained embeddings, but no ablation study has been conducted. In this
study, we test models using pre-trained word embeddings (GloVe and SGNS) and language models (BERT).

3.2. 2: The use of structurally different corpora

We are interested in how the choice of corpus affects the performance of RFS models and the information learned by each RFS model.
We first perform RFS on the webnlg corpus (Gardent et al., 2017; Castro Ferreira et al., 2018b). As discussed in Section 1, webnlg
has certain shortcomings. For example, it is formal and monolingual, and its texts are extremely short. We, therefore, built a new
REG/RFS dataset from the ontonotes corpus, whose texts are thought to be more representative of normal language use than webnlg,
and which is multi-lingual, and multi-genre. We assess and probe our RFS models on both datasets and compare their results.

3.3. 3: Handling unseen entities

Castro Ferreira et al. (2018a) defined the REG task representing each entity with an entity label (e.g., AWH_Engineering_College
in Table 1). It has already been pointed out that this makes it difficult for REG models to handle unseen entities (Cao and Cheung,
2019; Cunha et al., 2020) because entity labels of unseen entities are usually out-of-vocabulary (OOV) words for REG models. The
same is likely to happen when modelling RFS. In addition, as mentioned above, we plan to examine pre-trained word embeddings
and language models. Using entity labels prevents entity representations from benefiting from these pre-trained models (again, since
the entity labels of unseen entities are usually OOV words).

To ease the handling of unseen entities, Cunha et al. (2020) replaced entity labels of the target referents with proper names by
simply substituting underscores in entity labels with white spaces (e.g., changing ‘‘AWH_Engineering_College’’ to ‘‘AWH Engineering
College’’).3 In this study, to gain further benefits from pre-trained models, we use proper names not only for the target referents
but also for the referents in the pre-context and post-context. We are interested to test whether using the lexical format instead of
entity labels helps RFS models to better handle unseen entities.

3 The term proper in this context refers to the non-underscored version of entity labels, which can also be used as referring expressions. This term is not to
4

e confused with the class proper names used in the RFS classification tasks.
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Table 2
Three different types of English RF classification.
Type Classes

4-Way Demonstrative, Description, Proper Name, Pronoun
3-Way Description, Proper Name, Pronoun
2-Way Non-pronominal, Pronominal

3.4. 4: The use of REs in different languages

As discussed in Section 1, speakers of different languages use REs differently and, therefore, we are curious how language impacts
he behaviour of each RFS model (i.e., its performance and the linguistic information it learns). Concretely, in addition to English, we
est RFS models on Chinese in order to validate their ability to model Zero Pronouns (ZPs), which Chinese speakers use much more
requently than English speakers.

.5. 5: Linguistic information

As mentioned in Section 1, we want to investigate what linguistic information neural RFS models learn. We explore a number of
eatures that have been shown to influence the choice of RFs in linguistics (see Section 2.2), and formalise a series of probing tasks
ccordingly (see Section 6.2). Building on the previous two research questions, we would also like to know how the following three
actors influence the models’ ability to acquire a given linguistic feature: (1) the model architecture, (2) the use of pre-trained word
mbeddings and language models, and (3) the classification task (e.g., full RFS or pronominalisation).

.6. Expectations

In connection with these research questions, we have a number of more detailed expectations, which we number here for
onvenience. In the bracket after each expectation number, we indicate which research question the expectation relates to.

1 (1): In this study, we try both an attention-based RFS model, the SOTA in REG, and a simple model with a single GRU (see
Section 3.1). We expect that the attention-based models outperform the simpler GRU-based models.

2 (1): Since pre-trained word embeddings have been shown to be effective in many NLP tasks, and contextual pre-trained
language models (e.g., BERT) have been proved to be able to further boost performance, we expect that models with
pre-trained embeddings work better than those without pre-training, but worse than those with BERT.

3 (2): Since ontonotes is considered to be more realistic and contains more complex uses of REs, we expect models trained on
ontonotes to have lower performance than models trained on webnlg.

4 (3): We expect that representing entities with their proper names enables models to handle unseen entities better than representing
entities with their entity labels. Since ontonotes is a dataset that mixes seen and unseen entities, this expectation implies that
models trained using proper names perform better than models trained using entity labels.

5 (4): Given the theory that Chinese speakers process ZPs in the same way as pronouns (Yang et al., 1999), we expect that RFS
models that work well in English would also work well in Chinese.

6 (4): Since Chinese relies more on context than English (see Section 3.4), we expect that Chinese RFS models would benefit more
from the use of contextual representations (i.e., BERT) than English RFS models.

7 (5): By conducting a probing analysis (see Section 3.5), we expect that models with better performance would also learn more
relevant linguistic information.

8 (5): We try different classification tasks. Since more fine-grained classification provides more detailed supervision signals
when training RFS models, it is plausible to expect that RFS models learn more useful linguistic information when trained for
more fine-grained classifications.

9 (5): The probing tasks target the factors that supposedly work similarly across different languages. Therefore, we expect to
see the same patterns in the probing results across both languages.

. RFS: Task and datasets

In this section, we introduce the task of RFS and describe the webnlg dataset and how we built the ontonotes dataset.

.1. The RFS task

Following Castro Ferreira et al. (2018a), we define the RFS task as follows: given the previous context 𝑥(𝑝𝑟𝑒) = {𝑤1, 𝑤2,… , 𝑤𝑖−1},
here each 𝑤 is either a word or a delexicalised entity label, the target referent 𝑤(𝑟) = {𝑤𝑖}, and the post context 𝑤(𝑝𝑜𝑠) =

̂ 𝐾
5

𝑤𝑖+1, 𝑤𝑖+2,… , 𝑤𝑛}, an RFS algorithm aims at finding the proper RF 𝑓 from a set of 𝐾 candidate RFs  = {𝑓𝑘}𝑘=1.
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Table 3
Four different types of Mandarin RF classification.
Type Classes

5-way Demonstrative, Description, Proper Name, Pronoun, Zero Pronoun
4-Way Description, Proper Name, Pronoun, Zero Pronoun
3-Way Proper Name, Pronoun, Zero Pronoun
2-Way Overt Referring Expression, Zero Pronoun

The above definition, hereafter referred to as RFS-EL, uses delexicalised entity labels to represent referents in the input. As
iscussed in Section 3.3, such a method makes it hard for the models to handle unseen entities during inference. Therefore, we also
ry another setting where the entity labels are replaced with their corresponding proper names. From now on, this task is called
FS-PN.

In contrast to RFS-EL, RFS-PN takes word-based input, including the previous context 𝑥(𝑝𝑟𝑒) = {𝑤1, 𝑤2,… , 𝑤𝑖−1}, where each 𝑤
s a word, the target referent 𝑥(𝑟) = {𝑤𝑖, 𝑤𝑖+1,… , 𝑤𝑗}, and the post context 𝑥(𝑝𝑜𝑠) = {𝑤𝑗+1, 𝑤𝑗+2,… , 𝑤𝑛}. In Sections 4.2 and 4.3, we
escribe the datasets used for RFS-EL. For RFS-PN, we simply replace all entity labels with proper names in each dataset.

Regarding possible RFs for the RFS task, we test various classifications. For English, we test three different classifications, depicted
n Table 2. Since demonstrative noun phrases are infrequent, we decided to also conduct a 3-way classification, merging descriptions
nd demonstratives. Also, most emphasis in the linguistic literature is on the pronominalisation issue. Therefore, we also include a
-way classification task in the study. For Chinese, we consider an extra RF: ZP. This results in four different classifications which
re listed in Table 3.

.2. The webnlg dataset

We use the v1.5 of webnlg (Castro Ferreira et al., 2018b), in which the RF of each RE is provided. Castro Ferreira et al. (2018b)
ivided documents in the test set into seen (where all data are from the same domains as the training data) and unseen (where all
ata are from different domains than the training data).

We split the dataset in the same way as in Castro Ferreira et al. (2018b), but we have decided not to use the unseen data from
ebnlg. First, the way the test set of webnlg was constructed results in almost all referents from the seen test set appearing in the

raining set (9580 out of 9644), while only a few referents from the unseen test set appear in the training set (688 out of 9644).
document in which almost all referents are unseen is not realistic, or at least not the focus of this study. Second, the size of the

nderlying triples of the seen and unseen test sets differs from each other. The seen data is built from triple group sized in the range
–7, whereas the unseen data is built from triples in the range of 2–5. In other words, seen and unseen data do not have the same
omplexity. So when we test RFS models on them, the results for the two subsets are not comparable. After excluding the unseen
ata, the resulting webnlg corpus contains 67,027, 8278, and 9644 samples in the training, development, and test sets, respectively.4

imitations of webnlg. As mentioned in Section 1, webnlg has some notable shortcomings. First, it consists of rather formal texts that
ay not reflect the everyday use of REs, and in which very simple syntactic structures dominate. Second, the texts in webnlg are

xtremely short, with an average length of only 1.4 sentences. Third, as many as 85% of the REs in webnlg are first mentions, while
1% of the REs are proper names.

.3. The ontonotes dataset

To construct a realistic multilingual REG/RFS dataset, we used the Chinese and English portions of the ontonotes dataset5 whose
ontents come from six sources, namely broadcast news, newswires, broadcast conversations, telephone conversations, web blogs
nd magazines. We have called the resulting Chinese subset ontonotes-zh and the English subset ontonotes-en. In what follows, we
escribe the construction process.

First, for each RE in ontonotes, we used three previous sentences as the pre-context and three subsequent sentences as the
ost-context. Using the constituency syntax tree of the sentence containing the target referent, the POS tags, and the surface form
f the target referent, we automatically annotated each RE with its RF category. Note that information such as morpho-syntactic
nnotation (lemma, and POS tags), constituency syntax trees, and coreference annotation is available in ontonotes. Therefore, the

quality of the RF category annotation depends mainly on the quality of these annotations.
Second, we excluded all coreference chains consisting only of pronouns and ZPs. The pronominal chains consist mainly of

first/second-person referents, and we do not expect much variation in RFs of these cases. In other words, we only use the chains
that have at least one overt non-pronominal RE.

Third, we delexicalised the corpus following Castro Ferreira et al. (2018a).6 Additionally, since we use Chinese BERT as one of
our RFS models and it only accepts input shorter than 512 Chinese characters, we create two versions of ontonotes-zh: ontonotes-zh,

4 To answer research question 3 in Section 3.3 which focuses on unseen entities, we only use the data from ontonotes.
5 It is licensed under the Linguistic Data Consortium: https://catalog.ldc.upenn.edu/LDC2013T19
6 We have not yet carried out a thorough manual verification of the delexicalisation quality. However, we believe that manual verification can improve the

uality of the delexicalisations and thus the performance of the models.
6

https://catalog.ldc.upenn.edu/LDC2013T19
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Table 4
An example data from the ontonotes-en corpus. In the delexicalised text, every entity is underlined.

Text: Citizens & Southern Corp. said it signed a definitive agreement to
acquire Security Pacific Corp.’s New York-based factoring unit. Terms of the
bank holding companies’ agreement were not disclosed. Factoring involves the
purchase and collection of another company’s receivables. Citizens, based in
Atlanta, said it has about $ 4.6 billion in factored sales annually; the Security
Pacific unit has about $ 1.8 billion annually. Security Pacific ’s factoring
business works with companies in the apparel, textile and food industries,
among others.

Delexicialised Text:
Pre-context: Citizens_Southern_Corp said Citizens_Southern_Corp signed
the_bank_holding_companies_agreement. Terms of
the_bank_holding_companies_agreement were not disclosed. Factoring involves
the purchase and collection of another company ’s receivables.
Target Entity: Citizens_Southern_Corp
Post-context: said Citizens_Southern_Corp has about $ 4.6 billion in factored
sales annually; the_Security_Pacific_unit has about $ 1.8 billion annually.
the_Security_Pacific_unit works with companies in the apparel, textile and food
industries, among others.

Table 5
Statistics of webnlg and ontonotes. o-en and o-zh stand for ontonotes-en and ontonotes-zh.

webnlg o-en o-zh

Percentage of first mentions 85% 43% 43%
Percentage of proper names 71% 21% 15%
Average number of tokens 18.62 106.44 139.55

which is the original Chinese portion of ontonotes, and ontonotes-zh≤512, where we remove all samples whose total length is longer
than 512 characters. The length is calculated by removing all underscores introduced during delexicalisation and summing the
length of the pre-contexts, post-contexts, and target referents.

Last, we split the whole dataset into a training set and a test set in accordance with the CoNLL 2012 Shared Task (Pradhan et al.,
2012). We then sampled 10% of the documents from the training set as the development data. As a result, we obtained ontonotes-en
where the training, development and test sets contain 71667, 8149, and 7619 samples, respectively, and ontonotes-zh where the
raining, development and test sets contain 70428, 9217, and 11607 samples, respectively. 38.44% and 41.45% of the referents in
he test sets of ontonotes-en and ontonotes-zh also appear in the training sets. Table 4 shows a sample from the ontonotes-en dataset.

.4. Webnlg vs. ontonotes: an initial comparison

Building on the nature of ontonotes and the statistics in Table 5, we observe that: (1) the webnlg data is from DBPedia, while
he ontonotes data is multi-genre; (2) ontonotes has a much smaller proportion of first mentions and proper names; and (3) the
ocuments in ontonotes are on average much longer than the documents in webnlg. Having said this, ontonotes largely mitigates the
roblems of webnlg discussed in Section 4.2.

. Introducing and testing neural RFS models

In this section, we start by introducing RFS-EL and RFS-PN models. We build Neural RFS models by (1) adopting the best
euralREG model from Castro Ferreira et al. (2018a), and (2) proposing a new alternative that is simpler and can more easily

ncorporate pre-trained representations. We then describe the baselines and metrics, and test the RFS models on the two datasets.

.1. RFS-EL models

onATT-EL. We adopt the CATT model of Castro Ferreira et al. (2018a), which achieves the best performance on REG among the
odels tested in their study. Given the input, we first use a Bidirectional GRU (BiGRU, Cho et al., 2014) to encode 𝑥(𝑝𝑟𝑒) and 𝑥(𝑝𝑜𝑠).

ormally, for each 𝑘 ∈ [𝑝𝑟𝑒, 𝑝𝑜𝑠], we encode 𝑥(𝑘) to ℎ(𝑘) with a BiGRU:

ℎ(𝑘) = BiGRU(𝑥(𝑘)). (1)

ubsequently, unlike Castro Ferreira et al. (2018a), we encode ℎ(𝑘) into the context representation 𝑐(𝑘) using self-attention (Yang
et al., 2016). Specifically, given the total 𝑁 steps in ℎ(𝑘), we first calculate the attention weight 𝛼(𝑘)𝑗 at each step 𝑗 by:

(𝑘) (𝑘)𝑇 (𝑘) (𝑘)
7

𝑒𝑗 = 𝑣𝑎 tanh(𝑊𝑎 ℎ𝑗 ), (2)
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𝛼(𝑘)𝑗 =
exp(𝑒(𝑘)𝑗 )

∑𝑁
𝑛=1 exp(𝑒

(𝑘)
𝑛 )

, (3)

here 𝑣𝑎 is the attention vector and 𝑊𝑎 is the weight in the attention layer. The context representation of 𝑥(𝑘) is then the weighted
um of ℎ(𝑘):

𝑐(𝑘) =
𝑁
∑

𝑗=1
𝛼(𝑘)𝑗 ℎ(𝑘). (4)

After obtaining 𝑐(𝑝𝑟𝑒) and 𝑐(𝑝𝑜𝑠), we concatenate them with the target entity embedding 𝑥(𝑟), and pass it through a feed-forward
etwork to obtain the final representation:

𝑅 = ReLU(𝑊𝑓 [𝑐(𝑝𝑟𝑒), 𝑥(𝑟), 𝑐(𝑝𝑜𝑠)]), (5)

here 𝑊𝑓 is the weights in the feedforward layer. 𝑅 is also used as the input of the probing classifiers (Section 6). 𝑅 is then fed
or making the final prediction:

𝑃 (𝑓 |𝑥(𝑝𝑟𝑒), 𝑥(𝑟), 𝑥(𝑝𝑜𝑠)) = Softmax(𝑊𝑐𝑅), (6)

here 𝑊𝑐 is the weight in the output layer.

-RNN-EL. In addition to ConATT-EL, we also try a simpler yet effective structure, which uses only a single BiGRU. We name the
ramework it follows as the centred recurrent neural networks (henceforth c-RNN). Specifically, instead of using two separate BiGRUs
o encode pre- and pos-contexts, we first concatenate 𝑥(𝑝𝑟𝑒), 𝑥(𝑟), and 𝑥(𝑝𝑜𝑠), and then encode them together:

ℎ = BiGRU([𝑥(𝑝𝑟𝑒), 𝑥(𝑟), 𝑥(𝑝𝑜𝑠)]). (7)

ssuming the target entity is at position 𝑖 of the concatenated sequence, we extract the 𝑖th representation from ℎ𝑖 to obtain
= ReLU(𝑊𝑓ℎ𝑖). After obtaining 𝑅, the rest of the procedure is the same as ConATT-EL.

re-training. One of our aims (see Section 3.1) is to find out whether RFS can benefit from pre-trained word embeddings and
anguage models, whose effectiveness for REG has not yet been investigated. For both c-RNN-EL and ConATT-EL, we try the GloVe

mbeddings7 (Pennington et al., 2014) for English and SGNS embeddings for Chinese8 (Li et al., 2018) to see how pre-trained word
mbeddings contribute to the choice of RF.

For c-RNN-EL, we also try to stake it on the BERT (Devlin et al., 2019) model. To make BERT better encode the delexicalised entity
abels for English, we first re-train BERT as a masked language model on the training data of webnlg. We then freeze the parameters
f BERT and use the model to encode the input, which is then fed into c-RNN-EL.9 We name this re-trained BERT as BERT-RT.
or Chinese, however, all Chinese BERT models are character-based, which means that each entity label becomes a sequence of
haracters. Therefore, this method is not applicable to c-RNN-EL, since this model assumes that each entity label is a single token.
herefore, we do not use BERT on Chinese c-RNN-EL.

.2. RFS-PN models

In contrast to RFS-EL models, RFS-PN models take a different form of input. The target referent 𝑥(𝑟) is a sequence of words instead
f a single label, and therefore, these models need different mechanisms for encoding 𝑥(𝑟).

onATT-PN. After obtaining 𝑐(𝑝𝑟𝑒) and 𝑐(𝑝𝑜𝑠) from 𝑥(𝑝𝑟𝑒) and 𝑥(𝑝𝑜𝑠) using two self-attentions (Eqs. (1)–(4)), ConATT-PN uses another
elf-attention to encode 𝑥(𝑟) and obtain 𝑐(𝑟). Subsequently, we compute the final representation by adapting Eq. (5) to

𝑅 = ReLU(𝑊𝑓 [𝑐(𝑝𝑟𝑒), 𝑐(𝑟), 𝑐(𝑝𝑜𝑠)]). (8)

-RNN-PN. Similar to c-RNN-EL, c-RNN-PN first concatenates 𝑥(𝑝𝑟𝑒), 𝑥(𝑟), and 𝑥(𝑝𝑜𝑠), and encodes them together to obtain ℎ using
q. (7). Since the target referent has multiple words, we use the summation of the hidden representations at the beginning and end
f the target referent (i.e., 𝑖 and 𝑗) for calculating the final representation:

𝑅 = 𝑅𝑒𝐿𝑈 (𝑊𝑓 [ℎ𝑖 + ℎ𝑗 ]). (9)

re-training. For both ConATT-PN and c-RNN-PN, we try GloVe for English and SGNS for Chinese. For c-RNN-PN, we try BERT for
oth English and Chinese.
8
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Table 6
Features used in the XGBoost models.
Feature Definition webnlg onto-en onto-zh

Syn See Section 6.2. ✓ ✓ ✓

Entity Person, Organisation, Location, Other ✓ ✓ –
Gender Values: male/female/other ✓ – –
DisStat See Section 6.2. ✓ ✓ ✓

SenStat See Section 6.2. ✓ ✓ ✓

DistAnt See Section 6.2. ✓ ✓ ✓

IntRef See Section 6.2. ✓ ✓ ✓

DistAnt_W Distance in number of words (5 quantiles) ✓ – –
Sent_1 Does RE appear in the first sentence? ✓ – –
MetaPro Description see Section 6.2. ✓ – –
GloPro Description see Section 6.2. ✓ ✓ ✓

Table 7
Evaluation results of our RFS systems on webnlg. Best results are boldfaced, whereas the second best results are underlined.

4-way 3-way 2-way

Model Precision Recall F1 Precision Recall F1 Precision Recall F1

XGBoost 53.77 51.98 51.55 71.27 69.24 68.34 86.64 82.76 84.57

c-RNN-EL 68.79 62.95 64.96 84.49 82.52 83.63 90.31 88.01 89.09
+GloVe 69.10 63.90 65.40 84.29 82.55 83.30 89.33 88.02 88.63
+BERT-RT 62.63 61.80 62.15 83.02 81.44 82.15 90.98 88.00 89.42
ConATT-EL 67.42 62.39 64.07 85.04 82.21 83.53 89.30 89.19 89.23
+GloVe 65.98 62.49 63.67 83.62 81.41 82.45 89.60 88.06 88.80

c-RNN-PN

+BERT 67.19 58.81 61.08 81.47 80.16 80.54 86.83 88.41 87.60

5.3. Baseline

We use a Machine Learning (ML) model as our baseline for both RFS-EL and RFS-PN.10 We used XGBoost (Chen and Guestrin,
016) from the family of Gradient Boosting Decision Trees to train RFS classifiers. A 5-fold-cross-validation was used to train the
odels. The models are mainly trained on the features defined for the probing tasks. Additionally, some of the models include

urther features, such as entity type and gender. Table 6 shows the full list of the features used.

.4. Implementation details and evaluation protocols

We tuned the hyper-parameters of each of our models on the development set of each dataset and chose the setting with the best
acro F1 score. For the BERT model, we used the bert-base-cased11 for English and the bert-base-chinese12 for Chinese. For BERT-RT,
e re-trained BERT on webnlg. We set the masking probability to 0.15 and trained it for 25 epochs. For the XGBoost models, we

et the learning rate to 0.05, the minimum split loss to 0.01, the maximum depth of a tree to 5, and the sub-sample ratio of the
raining instances to 0.5.

The Chinese BERT is character-based (i.e., the inputs are broken down into characters), while all English models are word-based.
hen we test RFS-PN on ontonotes-zh≤512, we report the performance of both character-based and word-based models to show

hat our conclusions are not affected by whether the inputs are characters or words. We run each model 5 times and report the
acro-averaged precision, recall, and F1 on the test set.

.5. Results on webnlg

Table 7 shows the results of the different classification tasks on webnlg in English. All neural variants outperform the machine
earning baseline. The difference in performance is small for binary classification, but much larger for 3-way and 4-way classification.
s the 2-way classification task (i.e., pronominalisation) is simpler than the other two classifications, the feature set used by the
aseline produces almost similar results as the neural models.

7 https://nlp.stanford.edu/projects/glove/
8 https://github.com/Embedding/Chinese-Word-Vectors
9 We also explored other ways of using BERT, such as using only BERT plus a feed-forward layer to obtain ℎ, or not freezing the parameters of BERT during

raining. The resulting models had low performance in all cases.
10 This model is feature-based and the features used are the same in both RFS-EL and RFS-PN.
11 huggingface.co/bert-base-cased
12 huggingface.co/bert-base-cased
9

https://nlp.stanford.edu/projects/glove/
https://github.com/Embedding/Chinese-Word-Vectors
http://www.huggingface.co/bert-base-cased
http://www.huggingface.co/bert-base-chinese
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Fig. 1. Confusion Matrices for 4-way classification results of XGBoost (left) and c-RNN-EL+GloVe (right), where PRO, PN, DES, and DEM are pronoun, proper
name, description and demonstrative, respectively. The vertical axis indicates the reference labels while the horizontal axis indicates the predicted labels.

Comparing the neural variants, the results show that the simpler c-RNN-EL wins over ConATT-EL in 4-way classification and
performs on-par with ConATT-EL in 3- and 2-way classification. This is against 1, which expects that ConATT-EL outperforms
c-RNN-EL. One possible explanation is that ConATT-EL first breaks down the input into three pieces (i.e., the target entity and the
pre- and pos-contexts), encodes them separately, and then merges the encoded representations back together before sending them
to make predictions. This ‘‘divide and merge’’ procedure might hinder the model from learning some useful information.

Regarding the effectiveness of incorporating pre-trained models, GloVe embeddings have a positive impact on c-RNN only for
4-way predictions and do not contribute to 2- and 3-way classifications. Moreover, it has a negative impact on ConATT: performance
decreases when GloVe is used.

Concerning BERT, a surprising observation is that in the case of c-RNN-EL, BERT-RT has a negative effect on the 4-way and 3-way
predictions (F1 score decreases from 64.86 and 83.63 to 62.15 and 82.15, respectively). In the pronominalisation task, BERT slightly
increases performance (from 89.09 to 89.42), but this increase is not as much as BERT’s boosting effect on other NLP tasks. This is
probably because although BERT has been re-trained on webnlg delexicalised sentences, the entity labels still act as noise for BERT.

To rule out the above speculation, we also tried out the models without using entity labels. We tested c-RNN-PN with BERT on
webnlg, but BERT still had a negative effect. This result is in contrast to 2, which assumes that pre-trained models would contribute
positively to RFS. Expectations 1 and 2 on webnlg could be rejected in part because the dataset itself is overly formal and therefore
uses REs in a simplified way. As mentioned earlier, 85% of the REs in webnlg are first mentions and 71% of the REs are proper names.
Therefore, models with complex architecture or pre-trained models may not be able to show their true strengths.

To gain insight into the behaviour of the deep learning and classic ML-based models for RFS, we plot in Fig. 1 the confusion
matrices of XGBoost and the best performing neural model c-RNN-EL+GloVe for 4-way classification. The confusion matrices show
that both models perform well in predicting pronouns and proper names (hence the difference in performance is small for 2-way
classification) and both perform poorly in predicting demonstratives (probably due to the fact that demonstratives are extremely
infrequent in webnlg).

The main difference between the two models lies in distinguishing proper names from descriptions. The XGBoost model
incorrectly predicted descriptions as proper names 62.58% of the time, while the neural model c-RNN-EL+GloVe made this incorrect
prediction 20.18% of the time. This difference in the performance of the two models could be due to the fact that the neural models
have learned some useful features from the discourse that are not captured in our feature engineering procedure.

In addition, when we examined the webnlg dataset, we found that several RE cases are incorrectly annotated. For example,
webnlg annotates ‘‘United States’’ as a proper name and ‘‘the United States’’ as a description. The incorrect annotations could add to
the confusion between the choice of description and proper name in both XGBoost and c-RNN-EL+GloVe.

5.6. Results on ontonotes

Table 8 and 9 show the performance of our RFS models on English and Chinese ontonotes, respectively. In the case of Chinese, we
tested our models on both ontonotes and ontonotes-zh≤512, using both character-based and word-based input formats. We provide
the results of our word-based RFS-PN models on ontonotes-zh≤512 in Appendix A to show that the input format (comparing it to
the character-based RFS-PN models on ontonotes-zh≤512) and sub-sampling (comparing it to the word-based RFS-PN models on
ontonotes-zh) do not influence the results as much.

Results in English. For the English portion, we find that, in line with our expectation 3, the performance of the RFS-EL models
is lower than their performance on webnlg. Looking at the results on ontonotes-en, it is surprising that for 2-way classification, the
baseline (i.e., the data-driven, feature-based model) defeats almost all neural models except c-RNN-PN+BERT. For 4-way and 3-way
classification, it can still beat the RFS-EL models but performs worse than the RFS-PN models.

Consistent with the experiments on webnlg, the simpler c-RNN models (either EL or PN) outperform or are at least on par with the
ConATT models on ontonotes-en. Furthermore, pre-trained word embeddings (i.e., GloVe) make a positive contribution to both RFS-EL
and RFS-PN, and BERT significantly improves performance on all classification tasks. For example, if we compare c-RNN-PN+BERT

with c-RNN-PN for the full RFS-PN task (i.e., 4-way classification), c-RNN-PN+BERT improves performance (F1 score) from 62.38 to
74.59.
10
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Table 8
Evaluation results of our RFS-EL and RFS-PN systems on ontonotes-en. Each percentage below the F-score of c-RNN-PN+BERT indicates how much c-RNN-PN gains
rom using BERT compared to not using BERT.
Model 4-way 3-way 2-way

Precision Recall F1 Precision Recall F1 Precision Recall F1

XGBoost 48.96 49.69 49.12 67.78 65.78 66.44 79.11 78.01 78.42

c-RNN-EL 50.77 45.89 46.38 60.83 59.56 59.94 73.33 72.58 72.84
+Glove 53.47 49.49 50.44 61.72 60.66 60.98 75.06 73.96 74.32
ConATT-EL 52.32 45.88 46.89 59.66 58.71 59.08 71.86 71.38 71.56
+Glove 54.55 47.56 48.14 59.75 60.05 59.85 73.84 72.32 72.66

c-RNN-PN 65.45 60.59 62.38 68.19 69.19 68.55 76.66 75.23 75.70
+Glove 66.06 63.39 64.56 69.94 70.14 70.01 77.61 76.31 76.67
+BERT 73.57 75.94 74.59 80.53 81.81 81.03 87.21 86.97 87.08

(+19.57%) (+18.21%) (+15.03%)
ConATT-PN 61.29 62.21 61.58 66.34 65.87 66.01 73.19 73.21 73.19
+Glove 63.71 61.70 62.51 67.18 66.88 67.00 75.17 74.48 74.75

Table 9
Evaluation results of our word-based RFS systems on the ontonotes-zh dataset and character-based RFS systems on the ontonotes-zh≤512 dataset. The subscript ‘‘w’’
indicates that the model takes words as inputs and ‘‘c’’ indicates that the model takes characters as inputs.

5-way 4-way 3-way 2-way

Model P R F P R F P R F P R F

ontonotes-zh

XGBoost 38.17 40.06 34.59 46.16 44.12 41.29 56.19 54.64 51.98 64.5 79.56 63.67

c-RNN𝚠-EL 45.34 43.27 43.62 53.55 51.51 52.18 56.11 53.33 54.42 64.91 63.64 64.22
+SGNS 51.13 48.13 48.05 59.14 57.65 57.63 59.15 55.46 56.78 66.76 68.57 67.58
ConATT𝚠-EL 46.01 43.79 44.28 53.69 52.93 53.05 55.25 54.04 54.55 64.60 65.85 65.01
+SGNS 50.78 47.77 47.84 57.75 55.98 56.42 59.34 55.40 56.87 67.04 68.30 67.59

c-RNN𝚠-PN 52.36 47.91 48.97 54.14 52.40 53.06 55.30 52.99 53.86 64.88 62.81 63.68
+SGNS 56.67 53.82 54.30 59.38 57.40 58.23 59.58 56.66 57.78 67.75 66.28 66.91
ConATT𝚠-PN 50.41 45.45 46.86 51.27 49.80 50.35 59.06 54.43 56.11 63.71 63.75 63.73
+SGNS 52.33 48.60 49.37 53.48 51.64 52.38 60.53 56.18 57.69 67.86 64.97 65.95

ontonotes-zh≤512
c-RNN𝚌-PN 52.42 48.49 49.62 54.60 54.65 54.19 56.78 53.50 54.68 67.66 62.89 64.59
+SGNS 54.54 51.27 51.56 57.78 56.75 57.16 59.57 56.19 57.46 67.74 65.33 66.37
+BERT 64.99 63.60 63.85 68.22 69.48 68.17 70.36 68.60 69.13 78.35 73.51 75.59

(+28.68%) (+25.80%) (+26.43%) (+17.03%)
ConATT𝚌-PN 51.78 48.28 49.25 54.27 53.08 52.98 53.67 49.47 50.79 63.25 56.92 58.28
+SGNS 55.44 52.13 53.09 55.88 54.94 54.18 55.01 53.06 53.87 64.98 61.38 62.69

Results in Chinese. As for the results on the Chinese portion, unlike the English results, the baseline defeats very few neural RFS
models in the 2-way classification (i.e., choosing between ZP and overt RE) and only ConATT𝑐 -PN in the 3-way classification. For
the 5-way and 4-way classification, all neural models significantly beat the baseline. For example, the best model c-RNN𝑐-PN+BERT
achieves an F1 score of 63.85 in the 5-way classification, which is far higher than the 34.59 of the baseline. This is probably because
the Chinese RFS task has a higher complexity than the English RFS, which we will discuss later in this section.

With the exception of the 5-way classification of ontonotes-zh≤512, c-RNN models generally perform better or at least similar
to ConATTs. The pre-trained word embeddings again help with all kinds of RFS tasks. Similar to English, Chinese RFS benefits
enormously from the use of BERT. For example, in 5-way classification, it improves performance by about 20% compared to the
second best model (i.e., ConATT𝑐-PN+SGNS).

Analysis of expectations. Overall, our first expectation 1, (i.e., ConATT works better than c-RNN) is incorrect with respect to both
languages. The second expectation 2 (i.e., models using pre-trained word embeddings perform better than models without pre-
training, and worse than models with pre-trained contextual language models) is partially rejected in English, as BERT sometimes
has negative effects, but it is confirmed in Chinese.

The fourth expectation 4 is confirmed, as models with proper names as referent representations always perform better than their
counterparts with entity labels. More specifically, on ontonotes-en, the RFS-PN models perform significantly better than the RFS-EL
models. For example, c-RNN-PN+GloVe has an F1 score of 64.56, while c-RNN-EL+GloVe’s F1 score is only 50.44. On ontonotes-zh,
this difference is smaller, partly due to the fact that Chinese proper names more often consist of only one word; therefore, Chinese
entity labels are more likely to match the corresponding proper names.

In line with our expectation 5, models that work well in English also work well in modelling ZP in Chinese, but deciding whether
11
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Fig. 2. Confusion Matrix for English 4-way c-RNN-PN+BERT (left) and Confusion Matrix for Chinese 5-way c-RNN𝑐-PN+BERT (right) on ontonotes.

English 2-way task, while the performance of c-RNN𝑐-PN was only 64.59 for Chinese. The confusion matrices (Fig. 2) suggest that
both English and Chinese RFS models confuse demonstratives with descriptions.

The results of both Chinese and English RFS tasks improve dramatically when the contextual language model BERT is used. To
test our last hypothesis 6, we compute how much c-RNN-PN gains from using BERT compared to not using BERT and report the
numbers in Tables 8 and 9. On average, c-RNN-PN gains 17.60% from using BERT in English and 24.48% in Chinese. The results
suggest that Chinese RFS benefits more from BERT than English RFS. Nevertheless, we cannot make conclusive statements about
6. Strictly speaking, these percentages are not directly comparable and the comparison cannot be fully controlled because, for
example: (1) the data is not fully parallel, and (2) the RFS tasks defined for the two languages differ from each other. For instance,
Chinese RFS, unlike English RFS, considers an additional category, namely ZP.

5.7. Summary

We introduced several RFS models in this section and evaluated them on webnlg and ontonotes. In short, we found that (1)
the models that worked well on webnlg had lower performance on ontonotes, probably because the ontonotes data is multi-genre
and more complex. (2) The models which worked well in English also worked well in Chinese, where ZPs are frequently used.
Chinese RFS models benefit more from contextual pre-trained language models than English RFS models, but such a statement is
not conclusive. (3) Representing entities using their proper names instead of their entity labels helped the models to better deal
with unseen entities.

6. Probing RFS models

Having compared the performance of the RFS models on both corpora, it is now time to investigate what each model has learned.

6.1. Probing classifiers

We use a logistic regression classifier as our probing classifier. Concretely, for each input, we first use a model discussed in
Section 5 to obtain its representation 𝑅. As mentioned in Section 5, we ran each model five times and reported their averaged
scores. For the probing tasks, we use the representations of the models with the best RFS performance on the development set.

6.2. Probing tasks

Following our discussion in Section 2.2, we formulate the following probing tasks.

Referential status. Both linguistic (Chafe, 1976; Gundel et al., 1993) and computational studies (Castro Ferreira et al., 2016) have
examined the role of referential status as one of the factors influencing the choice of RF. We define referential status at two levels:
discourse-level and sentence-level. The former (DisStat) has two possible values: (a) discourse-old (i.e., the entity has appeared in
the previous discourse) and (b) discourse-new (the entity is new in the discourse). The sentence-level referential status (SenStat)
also consists of two values: (a) sentence-new (the RE is the first mention of the entity in the sentence), and (b) sentence-old (the
RE is not the first mention of the entity in the sentence).

Syntactic position. Entities in the subject position are more likely to be pronominalised than those in the object position (Brennan,
1995; Arnold, 2010). Therefore, in the syntax probing task (Syn), we do a binary classification: subject or object.
12
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Fig. 3. Feature importance of the XGBoost classifiers for predictions on webnlg. Higher loss shows greater importance of a feature.

Recency. Recency is a key feature in many of the previous REG and RFS models (Greenbacker and McCoy, 2009; Kibrik et al., 2016).
It measures the distance between the target entity and its closest coreferring antecedent. There are various ways of estimating the
recency of a target entity given its context. We use two measures here. The first one (DistAnt) measures the number of sentences
between the target entity and its antecedent, and has four possible values: the entity and its antecedent are (a) in the same sentence,
(b) one sentence away, (c) more than one sentence away, and (d) the entity is mentioned for the first time in the discourse (to
distinguish first mentions from subsequent mentions). The second measure (IntRef) asks whether there is an intervening referent
between the target and its nearest antecedent. In other words, it checks whether the target and the preceding RE are coreferential.
This feature has three possible values: (a) the target entity is a first mention, (b) the preceding RE refers to the same entity, and
(c) the preceding RE refers to a different entity. Note that the presence of intervening markables might signal the existence of
competition (i.e., the intervening referent has the same animacy and gender values as the target RE).

Discourse structure prominence. As mentioned in Section 2, the ‘‘organizational’’ properties of discourse may influence the prominence
status of the entities. We introduce three probing tasks capturing different properties of the discourse. (1) Local prominence (LocPro):
The idea of local prominence comes from Centering Theory (Grosz et al., 1995) and it is a hybrid feature of DisStat and Syn.
Concretely, we use the implementation of Henschel et al. (2000): an entity is locally prominent if it is ‘‘discourse-old’’ and ‘‘realised
as subject’’. It is a binary feature with two possible values: (a) locally prominent, and (b) not locally prominent. (2) Global prominence
(GloPro): This feature is based on the notion of global salience in Siddharthan et al. (2011), asking whether the entity is a minor
or major referent in the text. According to them, ‘‘the frequency features are likely to give a good indication of the global salience
of a referent in the document’’ (Siddharthan et al., 2011, p. 820). We define a binary feature in which the most frequent entity in
a text is marked as globally prominent. (3) Meta-prominence (MetaPro): In line with global prominence, we also want to explore
to what extent prominence beyond a single text (e.g., on a text collection level) may impact the way people refer. In the context
of the current circumstances, the sentence ‘‘I received my vaccine today’’ is unambiguous, and the RE my vaccine needs no extra
modification (e.g. my covid-19 vaccine); however, a couple of years from now, a richer RE may be needed to refer to the vaccine.
The idea behind this exploratory feature is that people might use less semantic content to refer to the referents which are well known
outside of the text. Based on the number of mentions of a target entity in the whole corpus, four possible values, each of which
representing an interval, are assigned to each RE: (a) [0, 50), (b) [50, 150), (c) [150, 290), and (d) [290,∞). For example, the category
[0, 50) contains those entities that occur fewer than 50 times in the corpus. Note that since, different from webnlg, ontonotes was
collected from a wide range of resources, there are very few referents appearing more than 50 times in the corpus. We, therefore,
consider probing MetaPro merely on webnlg.

6.3. Importance analysis

We conducted a feature importance analysis to determine which of the features used in the probing tasks contributed most to the
feature-based ML models. This analysis serves as a sanity check to find out whether the representations have learned the features
that contribute most to the RFS task.

To assess the importance of the features used in the probing tasks, we train XGBoost models using only features from
Section 6.2, and calculate the model-agnostic permutation-based variable importance of each model (Biecek and Burzykowski, 2021).
Specifically, we measure the extent to which performance changes when we remove one of the features. Fig. 3 shows the change
in performance for each feature on webnlg.

According to the figure, DisStat and Syn contribute the most, while LocPro is the least important feature, being a hybrid
combination of DisStat and Syn. This means that if we remove this feature while keeping DisStat and Syn, the performance of the
model will not be significantly affected. Considering that DisStat and Syn are both very important features, LocPro is much more
important than the experiment suggests. In addition to the DisStat and Syn probing tasks, we, therefore, expect high performance
for LocPro. The results of the importance analysis on ontonotes can be found in Appendix B.
13
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Table 10
Macro-averaged F1 scores of each probing task on webnlg, where ‘‘m_avg’’ means average value per model per task and ‘‘t_avg’’ means average value per task.

Model Type DisStat SenStat Syn DistAnt IntRef LocPro GloPro MetaPro

Random – 41.83 22.87 48.99 14.90 22.92 49.84 48.02 25.20
majority – 46.50 31.00 37.99 23.25 31.00 36.01 40.65 10.97

c-RNN

4-way 84.06 73.72 85.34 53.84 55.43 82.92 56.00 42.32
3-way 83.72 72.60 83.60 54.78 53.21 81.67 56.70 41.79
2-way 88.04 73.84 84.00 54.93 52.31 85.69 59.98 41.65

m_avg 85.27 73.39 84.31 54.52 53.65 83.43 57.56 41.92

c-RNN

+GloVe

4-way 84.85 74.59 87.04 55.67 55.93 83.20 53.53 41.71
3-way 83.89 67.24 82.48 50.94 51.17 81.44 52.49 42.34
2-way 88.02 71.25 82.67 53.67 51.43 85.22 63.17 41.03

m_avg 85.59 71.03 84.06 53.43 52.84 83.29 56.40 41.69

c-RNN +BERT

4-way 90.64 78.04 82.71 56.91 54.30 81.67 54.24 43.07
3-way 84.80 72.29 84.08 54.21 53.25 82.53 57.31 42.80
2-way 87.28 69.69 84.74 54.19 54.88 82.77 63.07 40.75

m_avg 87.57 73.34 83.84 55.10 54.14 82.32 58.21 42.21

ConATT

4-way 87.81 77.11 88.00 57.09 55.88 86.34 60.15 46.14
3-way 84.39 74.19 86.66 55.26 54.09 84.56 60.61 47.47
2-way 84.20 73.18 88.44 53.98 53.64 86.75 56.39 41.81

m_avg 85.47 74.83 87.7 55.44 54.54 85.88 59.05 45.14

ConATT

+GloVe

4-way 87.82 77.70 87.24 57.52 55.22 85.69 58.54 49.94
3-way 84.35 72.83 88.91 54.23 51.96 86.80 59.05 46.36
2-way 84.38 73.21 86.96 56.14 53.33 85.27 62.46 39.63

m_avg 85.52 74.58 87.70 55.96 53.50 85.92 60.02 45.31

– t_avg 85.88 73.43 85.52 54.89 53.74 84.17 58.25 43.25

6.4. Baselines and evaluation protocols

We evaluate probing tasks using the macro-averaged F1 scores. We also report the accuracy of each probing task in C. We train
ach probing classifier 5 times and report the average value. To better describe the results, we also report the average performance
er model per task and the average performance per task.

We use 2 baselines: (1) random: it randomly assigns a label to each input; and (2) majority: it assigns the most frequent label
n the given probing task to the inputs. In this section, we will not probe all the models from Section 5. Specifically, we probe only
he RFS-PN models for ontonotes.

.5. Probing experiments

As mentioned earlier, we perform probing tasks to find out whether the latent representations of the RFS models encode the
eatures mentioned in Section 6.2. High performance on the probing tasks would indicate that the features are encoded in the latent
epresentations of the models.

esults on webnlg. Table 10 shows the results of probing experiments on webnlg. Compared to the random baseline, all neural models
have achieved higher performance on all tasks. Concretely, we made the following observations:

1. Referential status and syntactic position: all models exhibit consistently high performance on DisStat, SenStat, and Syn. This
shows that all neural models can learn information about referential status and syntactic position;

2. Recency (i.e., DistAnt and IntRef): all models perform worse than the referential status and syntax probes. Their F1 scores are
lower than those of DisStat, SenStat, and Syn, and are closer to the baselines. This finding is consistent with the importance
analysis in Section 6.3, where DistAnt and IntRef were found to be less important than DisStat and Syn. This may be due
to the fact that 67% of the documents in the webnlg corpus only contain one sentence, making recency-related features less
relevant. It is also possible that the models have greater difficulty capturing long-distance properties, in line with previous
probing works on co-reference and bridging anaphora (Sorodoc et al., 2020; Pandit and Hou, 2021);

3. Discourse structure prominence: since LocPro is a hybrid of DisStat and Syn, all models were able to handle it quite well.
Meanwhile, the models seem to handle GloPro and MetaPro worse than the other features since the performance of the
corresponding probing tasks is closer to the baselines.13 These results are in contrast to the results of the importance analysis,
which suggests that both GloPro and MetaPro are important features (ranked 3 and 4 in Fig. 3). Learning GloPro and MetaPro
requires a model to have an overall understanding of the entire input document or corpus, which the neural models might
not be able to acquire.

13 Note that, for MetaPro, the Majority has a low F1 score, as the distribution of the values of MatePro is balanced.
14
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Table 11
Results of our baselines and RFS-PN models on each probing task on the ontonotes-en dataset.

Model Type DisStat SenStat Syn DistAnt IntRef LocPro GloPro

Random – 49.77 32.27 50.10 23.75 32.40 48.21 49.53
majority – 35.88 20.39 33.39 15.29 20.39 40.50 38.68

c-RNN-PN

4-way 63.39 50.76 74.67 36.31 44.81 67.86 50.32
3-way 63.30 50.45 75.55 36.78 42.83 68.26 49.71
2-way 63.31 49.72 73.82 35.75 43.03 65.72 45.76

m_avg 63.33 50.31 74.68 36.28 43.56 67.28 48.60

c-RNN-PN

+GloVe

4-way 64.24 51.39 76.75 37.09 44.94 67.26 51.44
3-way 64.44 52.69 78.06 37.55 45.89 70.66 53.28
2-way 64.26 49.34 75.06 35.87 45.04 67.22 47.49

m_avg 64.31 51.14 76.62 36.84 45.29 68.38 50.74

c-RNN-PN

+BERT

4-way 85.67 69.46 79.73 50.36 65.99 80.08 60.06
3-way 83.42 68.90 81.15 49.10 63.62 82.38 61.93
2-way 81.12 67.07 77.89 47.97 62.06 77.45 53.37

m_avg 83.40 68.48 79.59 49.14 63.89 79.97 58.45

ConATT-PN

4-way 62.95 46.63 73.34 33.33 43.52 66.30 48.89
3-way 61.87 45.92 74.76 31.91 41.64 67.51 48.61
2-way 59.46 41.73 63.72 30.18 40.85 59.96 47.51

m_avg 61.43 44.76 70.61 31.81 42.00 64.59 48.34

ConATT-PN

+GloVe

4-way 63.41 50.49 79.95 36.03 43.17 70.27 49.86
3-way 61.79 45.39 79.00 33.03 41.53 68.46 48.97
2-way 61.56 44.35 73.97 31.53 42.81 63.31 48.39

m_avg 62.25 46.74 77.64 33.53 42.50 67.35 49.07

– t_avg 64.67 48.94 72.81 35.53 45.04 67.15 50.05

Table 12
Results of RFS-PN models on each probing task on the ontonotes-zh≤512 dataset.

Model Type DisStat SenStat Syn DistAnt IntRef LocPro GloPro

Random – 49.93 32.70 49.79 23.81 33.01 46.44 44.27
majority – 36.43 19.95 36.62 14.96 19.95 43.27 45.09

c-RNN𝚌-PN

5-way 62.80 45.89 75.94 28.49 45.78 65.54 52.03
4-way 61.80 43.39 74.74 27.73 44.65 63.44 46.64
3-way 61.19 41.52 76.11 26.43 41.13 61.70 45.76
2-way 58.06 36.30 76.96 24.11 36.49 58.82 45.54

m_avg 60.96 41.78 75.94 26.69 42.01 62.38 47.49

c-RNN𝚌-PN
+SGNS

5-way 63.52 47.24 77.28 30.71 46.13 66.11 50.37
4-way 62.90 46.96 77.18 30.78 47.81 66.16 48.20
3-way 62.87 42.54 77.81 27.51 43.59 64.17 46.11
2-way 60.45 38.24 77.12 24.27 37.61 64.09 46.12

m_avg 62.44 43.75 77.35 28.32 43.79 65.13 47.70

c-RNN𝚌-PN
+BERT

5-way 75.20 57.07 78.68 39.54 57.69 70.93 55.17
4-way 73.96 57.66 78.15 37.12 56.90 69.68 46.60
3-way 73.77 56.29 79.67 35.77 55.96 73.24 45.59
2-way 68.10 52.08 79.84 29.71 52.36 71.30 45.07

m_avg 72.76 55.78 79.09 35.54 55.73 71.29 48.11

ConATT𝚌-PN

5-way 62.33 43.17 73.94 28.92 45.05 63.99 47.16
4-way 61.91 43.15 67.48 26.41 44.15 57.31 47.27
3-way 59.54 39.55 68.78 24.47 39.13 55.27 45.73
2-way 52.10 32.85 65.67 21.78 32.66 49.38 45.35

m_avg 58.97 39.68 68.97 25.40 40.25 56.49 46.38

ConATT𝚌-PN
+SGNS

5-way 63.48 45.60 77.27 29.77 46.84 64.16 50.72
4-way 61.97 44.63 74.65 28.19 46.61 64.49 47.27
3-way 58.79 38.78 74.09 24.66 38.51 60.19 45.73
2-way 60.09 39.53 72.90 22.13 34.88 61.43 45.35

m_avg 61.08 42.14 74.73 26.19 41.71 62.57 47.27

– t_avg 63.24 44.62 75.21 28.43 44.70 63.57 47.39

Results on ontonotes. Table 11 and 12 report the results on ontonotes-en and ontonotes-zh≤512, respectively. The general observations
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1. Compared to the webnlg probing results, the scores for ontonotes-en are generally lower. This is consistent with the RFS
results (i.e., RFS models also have lower performance on ontonotes-en than on webnlg) and follows from the fact that the data
in ontonotes is more complex than the data in webnlg;

2. Focusing on ontonotes, all models for both languages can learn a certain amount of information about all features except
GloPro;

3. Except BERT-based models, all models perform similarly on the GloPro task. Using BERT can help the model learn slightly more
GloPro information, but these improvements are much smaller than those obtained in the other probing tasks. Two possible
explanations could be given for this. One reason is that, as mentioned earlier, neural models are not good at counting how
many times a referent occurs in the discourse and are therefore unable to pick out the dominant referents. The other reason
is that we created each input in ontonotes using only 3 sentences before the target referent and 3 sentences after the target
referent. This sometimes leads to the dominant referent occurring only once in a given discourse. Thus, for each input in the
current format, there is little or no difference between the frequency of the prominent referent and that of other referents,
which hinders the classifiers from distinguishing them;

4. Similar to webnlg, all models perform remarkably well on the tasks DisStat, Syn, and LocPro. This suggests that all models
have learned information about the referential status and grammatical role of the target referents. Since LocPro is a hybrid
of DisStat and Syn, it is no surprise that our models can handle it well;

5. The performance of SenStat, DistAnt, and IntRef is lower than that of the three tasks above. This drop in performance is
understandable because learning these features requires a model to not only check whether the target referent occurs in the
pre-context, but also to roughly locate it in that context. These tasks are clearly more demanding than DisStat and Syn. All
models have the lowest performance on the DistAnt task. This is partly because, compared to SenStat and IntRef, this task
asks each model to locate the previous mention of the target referent in a more fine-grained way: It checks whether the
previous mention occurs in the current sentence, in the previous sentence or further away.

Comparing c-RNN and ConATT. We concluded in Section 5 that compared to the ConATT models, the c-RNN models can sometimes
erform better or at least equally well on both datasets (webnlg and ontonotes) and languages (English and Chinese). However, the
robing results are different for the two datasets.

Unlike the RF classification results, for webnlg, we find that ConATT performs better than c-RNN on many tasks, including DisStat
They receive similar F1 scores, but ConATT achieves much better accuracy. See Table C.14 for more details.), LocPro, GloPro,
nd MetaPro. In contrast, for ontonotes, c-RNN learns significantly more information about syntactic position and slightly more
nformation about referential status (i.e., SenStat) and recency (i.e., IntRef) than ConATT, which is consistent with c-RNN winning
t RFS classification. In summary, our expectation 7, that the better performing models would learn more relevant linguistic
nformation, is rejected for the webnlg corpus but confirmed for the ontonotes corpus. This is probably due to the fact that the

REs in webnlg are not representative of the realistic use of REs (see Section 4 for further discussion).

The effect of pre-training. Recall that for the RFS task, the incorporation of pre-trained word embeddings can always improve the
erformance of the models, and the incorporation of BERT can further improve the performance.

Again, the probing results do not match the results of RFS on webnlg. The effect of incorporating the GloVe embeddings is not
significant for c-RNN and ConATT. Although BERT contributes to the learning of DisStat, since most of the entities in webnlg are
first-mentions, the increased accuracy in DisStat is not sufficient to increase the overall performance of RFS.

On ontonotes, pre-trained word embeddings (i.e., GloVe and SGNS) help each model learn significantly more information about
almost every feature. Also, consistent with the RFS results, BERT can dramatically improve the models’ ability to capture information
about all features.

Comparing different RF classifications. Given our expectation 8, which postulates that more fine-grained classification models would
learn more linguistic information, we compare the results of different types of classifications.

On webnlg, it seems that the models learn different information by using different sets of labels (classes). For example, 2-way
classification (i.e., pronominalisation) helps c-RNN-EL learn more about referential status. However, for models with attention
mechanism (i.e., ConATT-EL, ConATT-EL+GloVe and c-RNN-EL+BERT-RT), referential status is better learned in 4-way classification
models. Also, in the case of ConATT-EL(+GloVe), we find that more fine-grained classifications help the model learn more about
the meta-prominence (i.e., MetaPro).

On ontonotes, we found no significant difference between the amount of information learned by the models trained for more
fine-grained classifications (3-, 4-, and 5-way classifications). As for 2-way classification, all models except c-RNN-PN+BERT learn
less information on ontonotes-en. If we train a model on ontonotes-zh≤512 for 2-way classification (i.e., whether the target referent is
realised as an overt RE or as a ZP), the model learns less information about every feature. This is consistent with our expectation that
fine-grained classifications provide more supervision signals for a model to learn more linguistic information than coarse-grained
classifications. The reason is that, at least for the RFS task, fine-grained classifications are closer to human behaviour.

6.6. Summary

Based on our probing experiments, each model was able to learn information about referential status, syntactic position, and
recency to varying degrees. The models had difficulty acquiring information that required an overall understanding of the entire
document or corpus.

We found that the webnlg probing results were not able to explain the RFS results, as models that learned more useful information
performed worse. In contrast, the probing results on ontonotes (which is considered to contain a more realistic use of REs) can explain
16
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7. General discussion

7.1. Are the results consistent with our expectations?

In what follows, we summarise our findings with respect to our expectations as outlined in Section 3.6.

1. Attention-based models do not always outperform the simpler BiGRU-based models. In contrast, the simpler BiGRUs often
work better than attention-based models;

2. Pre-trained word embeddings and language models do help with ontonotes models, but often not with webnlg;
3. Models trained on ontonotes have lower performance than models trained on webnlg;
4. Models using proper names as their referent representations perform better than those using entity labels;
5. Models that work well in English generalise well to Chinese;
6. Chinese RFS models benefit more from using contextual representations than English RFS models, but such a statement is

not conclusive (see discussion in Section 5);
7. Models with better RFS performance learn more relevant linguistic information on ontonotes but not on webnlg;
8. RFS models do not always learn more useful information when trained for more fine-grained classifications, but those trained

on binary classifications always learn less useful information;
9. Probing results for English and Chinese are similar.

A few of these points are worth discussing in more detail. We will focus on the differences between the two corpora, on the way
in which entities are represented, and on the modelling of zero pronouns, as an example of the challenges of modelling a variety
of languages. Finally, we will discuss the limitations of our use of probing classifiers.

7.2. Webnlg vs. ontonotes

The webnlg dataset contains only English-language data, while ontonotes contains data in English and Chinese. Furthermore,
these two datasets were constructed using different methodologies. Another difference is that almost all referents in the webnlg test
set also appear in the training set, whereas only a few referents in the ontonotes test set appear in its training set. Therefore, it is
hard to use the results on the two datasets to conduct controlled comparisons between them. Nevertheless, compared to webnlg, the
texts in ontonotes seem intuitively more natural and the REs are closer to human behaviour. Regarding this intuition, we have the
following observations.

First, given the discussion in Section 6, the difficulty of each probing task follows the following order: GloPro ≻ DistAnt ≻
{SenStat, IntRef} ≻ {DisStat, Syn, LocPro}, where A ≻ B means that A is harder than B. Theoretically, if a probing task is harder,
it is also harder for an RFS model to learn the corresponding task, and the probing classifier, therefore, has lower performance.
This theoretical assumption is confirmed when the ontonotes dataset is used. For example, since SenStat and IntRef are simpler than
DistAnt, each model performs better on either SenStat or IntRef than on DistAnt. Using the webnlg dataset, we, unfortunately, did
not find a clear correlation between the difficulty of the probing tasks and the performance of a probing classifier.

Second, the aim of the probing study is to understand what and how much linguistic information each model can learn, and
to use the results to interpret the models’ behaviour. Intuitively, if a model learns more linguistic information than other models,
it will achieve better RFS classification performance (i.e., our expectation 3). However, in webnlg, we found that the models that
learned more information (according to the probing results) performed worse than those that acquired less linguistic information.
One possible explanation is that models that have lower capability to obtain high-level linguistic features are more likely to learn
artefacts, and these artefacts may help models perform better. For example, one can imagine a model trained on webnlg that has
no sense of language and never uses pronouns because 85% of the REs in webnlg are first-mentions which are almost never realised
as pronouns. Learning this simple ‘‘rule’’ helps the model achieve better performance but know nothing about ‘‘language’’. The
situation is different when testing models on ontonotes, whose texts and uses of REs are more realistic than webnlg. As discussed in
Section 6.5, in most cases, the model that performs poorly on probing tasks also does not perform well on RFS classification.

Third, pre-trained word embeddings and language models have proven effective in many NLP tasks. However, in webnlg, we
found that neither word embeddings (i.e., GloVe) nor pre-trained language models (i.e., BERT) help in RFS classification. Such an
abnormal phenomenon is not observed when using the ontonotes dataset. The ontonotes models that incorporate pre-trained word
embeddings and language models almost always (except for 4-way classification on ontonotes-en) perform better than those that do
not.

7.3. Entity representations

We have explored two ways of representing entities in RFS: proper name (PN) and entity label (EL). There appears to be a
trade-off: EL helps a model identify mentions of the target entity in pre- and post-context, but hinders it in handling unseen entities.
In contrast, PN makes it more difficult for a model to identify pre- and post-mentions (especially if the PN consists of multiple
words), but helps it to model unseen entities. The experiments have shown that PN is better at representing entities in realistic RE
datasets.

However, PN and EL have a common shortcoming: both are unable to represent overlapping REs. Therefore, in creating the
ontonotes corpus, we used only maximal spans and overlooked the embedded REs. For example, consider the following sentence:
17
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Fig. 4. Confusion Matrix for Chinese 2-way c-RNN𝑐-PN+BERT (left) and Confusion Matrix for Chinese 5-way c-RNN𝑐-PN+BERT (right).

Fig. B.5. Feature importance of the XGBoost classifiers for predictions on ontonotes-en.

(1) He lost his seven children plus his wife and his mom.
In this example, the RE ‘‘his seven children plus his wife and his mom’’ contains five REs that refer to five different referents,

including ‘‘his seven children plus his wife and his mom’’, ‘‘his’’, ‘‘his seven children’’, ‘‘his wife’’, and ‘‘his mom’’, but the last four are
missing from the corpus due to the limitation of the entity representation methodologies we used.

7.4. Modelling zero pronouns

One of our main reasons for examining Chinese RFS models was to assess whether neural RFS can model ZPs or not. Based on
the results of the experiments, we concluded that of all the models tested, c-RNN𝑐-PN+BERT works best. It works remarkably well
on using ZPs in a pragmatically natural way. Now, we look more closely at how well it models the use of ZPs.

When we compare the confusion matrices for the 5-way classification and the 2-way classification in Fig. 4, we find that fine-
grained supervision helps to better choose between ZPs and overt REs. Let us focus on the 5-way classification to find out which
referential form is always confused with ZPs by the model. We observe that the use of ZPs was quite often confused with the use
of pronouns by the model. According to linguistic theory, both pronominalisation and pro-drop happen when the target referent is
salient enough in the given discourse. Therefore, it is understandable that ZPs and pronouns are easily confused since it is hard for
a model to make such a fine-grained decision about when the target referent is salient enough for pronominalisation but not salient
enough for pro-drop. Additionally, the use of ZPs is also easily confused with the use of descriptions. One possible explanation is
that ontonotes is not a balanced dataset. 45% of the REs in the dataset are descriptions, while only 13.6% of them are ZPs. Such
an unbalanced distribution causes the trained model to be biased towards non-descriptions (i.e., ZPs, pronouns, proper names, and
demonstratives).

In terms of learned linguistic information, we found that in the Chinese 2-way classification (i.e., deciding whether or not to use
ZP), the models were good at acquiring information about the syntactic position and referential status. This is consistent with the
use of ZPs in ontonotes. Specifically, we found that out of 9897 ZPs, 9827 instances are in the subject position, and 8944 instances
are discourse-old. This suggests that c-RNN𝑐-PN+BERT does well in modelling human use of ZPs and has not simply learned artefacts
from the corpus.

7.5. Limitations of probing classifiers

It is worth noting that probing has its own shortcomings. Firstly, low probing performance does not always mean that the
feature is not encoded, but could also mean that such a feature does not matter for RFS. To mitigate this problem, we conducted
a complementary ML-based analysis of variable importance. In this analysis, referential status and syntactic position emerged as
the factors with the highest contributions. These features were also predicted very well in the probing tasks. However, these results
18
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Fig. B.6. Feature importance of the XGBoost classifiers for predictions on ontonotes-zh.

Table A.13
Evaluation results of our word-based RFS-PN systems on the ontonotes-zh≤512 dataset.

Model 5-way 4-way 3-way 2-way

P R F P R F P R F P R F

c-RNN-PN 51.13 47.14 48.63 54.70 54.02 54.18 57.63 53.79 55.16 66.19 63.22 64.40
+SGNS 53.40 53.33 53.16 57.91 59.12 58.19 60.17 57.49 58.52 70.87 65.22 67.30
ConATT-PN 48.52 45.15 46.26 56.34 49.92 49.26 56.24 55.70 55.94 65.33 64.28 64.75
+SGNS 50.58 47.04 48.31 54.68 51.85 52.62 59.93 55.79 57.32 67.15 65.29 66.11

Table C.14
Accuracy of each probing task on webnlg.

Model Type DisStat SenStat Syn DistAnt IntRef LocPro GloPro MetaPro

Random – 41.83 22.87 48.99 14.90 22.92 49.84 48.02 25.20
majority – 46.50 31.00 37.99 23.25 31.00 36.01 40.65 10.97

c-RNN

4-way 84.06 73.72 85.34 53.84 55.43 82.92 56.00 42.32
3-way 83.72 72.60 83.60 54.78 53.21 81.67 56.70 41.79
2-way 88.04 73.84 84.00 54.93 52.31 85.69 59.98 41.65

c-RNN

+GloVe

4-way 84.85 74.59 87.04 55.67 55.93 83.20 53.53 41.71
3-way 83.89 67.24 82.48 50.94 51.17 81.44 52.49 42.34
2-way 88.02 71.25 82.67 53.67 51.43 85.22 63.17 41.03

c-RNN +BERT

4-way 90.64 78.04 82.71 56.91 54.30 81.67 54.24 43.07
3-way 84.80 72.29 84.08 54.21 53.25 82.53 57.31 42.80
2-way 87.28 69.69 84.74 54.19 54.88 82.77 63.07 40.75

ConATT

4-way 87.81 77.11 88.00 57.09 55.88 86.34 60.15 46.14
3-way 84.39 74.19 86.66 55.26 54.09 84.56 60.61 47.47
2-way 84.20 73.18 88.44 53.98 53.64 86.75 56.39 41.81

ConATT

+GloVe

4-way 87.82 77.70 87.24 57.52 55.22 85.69 58.54 49.94
3-way 84.35 72.83 88.91 54.23 51.96 86.80 59.05 46.36
2-way 84.38 73.21 86.96 56.14 53.33 85.27 62.46 39.63

should be taken with a pinch of salt: the variable importance was conducted with the ML model and not with the neural models.
We cannot be certain that the same features contribute to all models similarly: a feature could be very important in the machine
learning model but not in the neural models.

Furthermore, some researchers have questioned the validity of probing methods. They have found that it is difficult for a probing
classifier to distinguish between ‘‘learning the probing task’’ and ‘‘extracting the encoded linguistic information’’ (Hewitt and Liang,
2019; Kunz and Kuhlmann, 2020). This suggests that higher performance of a probing classifier does not necessarily mean that more
linguistic information was encoded. This prevents us from directly quantifying how well linguistic information was learned based
on the performance of probing classifiers and requires us to draw our conclusions more carefully. In future, we plan to test other
model explanation techniques, e.g., probing classifiers with control tasks (Hewitt and Liang, 2019) and attention analysis (Bibal
et al., 2022).

7.6. Concluding thoughts

One interpretation of Searle’s ‘‘Chinese Room’’ experiment (Searle, 1980) is that an NLP algorithm may display human-like
behaviour without understanding much about human language. Neural NLP systems have sometimes been seen as a case in point
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Table C.15
Accuracy of our baselines as well as RFS-PN models on each probing task on the ontonotes-en dataset.

Model Type DisStat SenStat Syn DistAnt IntRef LocPro GloPro

Random – 49.77 32.27 50.10 23.75 32.40 48.21 49.53
majority – 35.88 20.39 33.39 15.29 20.39 40.50 38.68

c-RNN-PN

4-way 63.39 50.76 74.67 36.31 44.81 67.86 50.32
3-way 63.30 50.45 75.55 36.78 42.83 68.26 49.71
2-way 63.31 49.72 73.82 35.75 43.03 65.72 45.76

c-RNN-PN

+GloVe

4-way 64.24 51.39 76.75 37.09 44.94 67.26 51.44
3-way 64.44 52.69 78.06 37.55 45.89 70.66 53.28
2-way 64.26 49.34 75.06 35.87 45.04 67.22 47.49

c-RNN-PN

+BERT

4-way 86.00 72.17 79.83 66.53 69.85 82.32 68.47
3-way 83.74 71.56 81.17 65.35 68.03 85.05 67.82
2-way 81.82 69.33 78.05 63.46 65.11 81.85 66.35

ConATT-PN

4-way 62.95 46.63 73.34 33.33 43.52 66.30 48.89
3-way 61.87 45.92 74.76 31.91 41.64 67.51 48.61
2-way 59.46 41.73 63.72 30.18 40.85 59.96 47.51

ConATT-PN

+GloVe

4-way 63.41 50.49 79.95 36.03 43.17 70.27 49.86
3-way 61.79 45.39 79.00 33.03 41.53 68.46 48.97
2-way 61.56 44.35 73.97 31.53 42.81 63.31 48.39

Table C.16
Accuracy of RFS-PN models on each probing task on the ontonotes-zh≤512 dataset.

Model Type DisStat SenStat Syn DistAnt IntRef LocPro GloPro

Random – 49.93 32.70 49.79 23.81 33.01 46.44 44.27
majority – 36.43 19.95 36.62 14.96 19.95 43.27 45.09

c-RNN𝚌-PN
5-way 62.80 45.89 75.94 28.49 45.78 65.54 52.03
4-way 61.80 43.39 74.74 27.73 44.65 63.44 46.64
3-way 61.19 41.52 76.11 26.43 41.13 61.70 45.76
2-way 58.06 36.30 76.96 24.11 36.49 58.82 45.54

c-RNN𝚌-PN
+SGNS

5-way 63.52 47.24 77.28 30.71 46.13 66.11 50.37
4-way 62.90 46.96 77.18 30.78 47.81 66.16 48.20
3-way 62.87 42.54 77.81 27.51 43.59 64.17 46.11
2-way 60.45 38.24 77.12 24.27 37.61 64.09 46.12

c-RNN𝚌-PN
+BERT

5-way 75.20 57.07 78.68 39.54 57.69 70.93 55.17
4-way 73.96 57.66 78.15 37.12 56.90 69.68 46.60
3-way 73.77 56.29 79.67 35.77 55.96 73.24 45.59
2-way 68.10 52.08 79.84 29.71 52.36 71.30 45.07

ConATT𝚌-PN
5-way 62.33 43.17 73.94 28.92 45.05 63.99 47,16
4-way 61.91 43.15 67.48 26.41 44.15 57.31 47.27
3-way 59.54 39.55 68.78 24.47 39.13 55.27 45.73
2-way 52.10 32.85 65.67 21.78 32.66 49.38 45.35

ConATT𝚌-PN
+SGNS

5-way 63.48 45.60 77.27 29.77 46.84 64.16 50.72
4-way 61.97 44.63 74.65 28.19 46.61 64.49 47.27
3-way 58.79 38.78 74.09 24.66 38.51 60.19 45.73
2-way 60.09 39.53 72.90 22.13 34.88 61.43 45.35

because, allegedly, they do not embody any insights into the questions that linguists are interested in. Our probing experiments of
Section 6 show that, for the neural RFS models discussed in this paper, this assessment would not be fair, because these models
were shown to have learned key linguistic concepts such as referential status, syntactic position, recency, and prominence.

Another lesson from our investigations is that researchers in REG, and probably elsewhere in NLG and NLP as well, would
ometimes be wise to reflect on the limits of the validity of their findings.

For evidently, findings about one language cannot always be generalised to other languages, even if these findings are on a
elatively abstract level; we have seen this when we compared English with Chinese referential behaviour. Perhaps more worryingly,
indings about one corpus (in a given language) cannot always be generalised to other corpora (even in that same language). A
orpus is a data sample, and every data sample gives rise to the question of what that sample is representative of. We found that,
n regard of REG use, the webnlg corpus is limited to very short texts that do not offer a playing field on which pronouns can play
he kind of role that they play in longer texts. Although such problems with generalisation across datasets might seem obvious from
perspective of the natural and social sciences – and have been occasionally discussed in corpus linguistics as well, see e.g. Biber

1993), Sinclair (2005), Moreno Fernández (2004) – it appears to sometimes be overlooked in some areas of modern, data intensive
LP, when researchers fail to say what type of language use their corpora are thought to be representative of.
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ppendix A. Complementary results

Table A.13 shows the results of our word-based RFS-PN models on the ontonotes-zh≤512 dataset.

ppendix B. Importance analysis on ontonotes

Fig. B.5 and B.6 show the importance analysis on the ontonotes-en and ontonotes-zh datasets respectively.

ppendix C. Accuracy of probing experiments

Tables C.14, C.15, and C.16 report the accuracy of each probing task on each dataset.
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