
Vol.:(0123456789)

Japan Journal of Industrial and Applied Mathematics (2023) 40:1359–1390
https://doi.org/10.1007/s13160-022-00534-x

1 3

ORIGINAL PAPER

Monte Carlo simulation of SDEs using GANs

Jorino van Rhijn1 · Cornelis W. Oosterlee2  · Lech A. Grzelak3,4 · 
Shuaiqiang Liu1

Received: 22 May 2022 / Revised: 22 May 2022 / Accepted: 28 July 2022 /  
Published online: 23 September 2022 
© The Author(s) 2022, corrected publication 2022

Abstract
Generative adversarial networks (GANs) have shown promising results when 
applied on partial differential equations and financial time series generation. We 
investigate if GANs can also be used to approximate one-dimensional Itô stochas-
tic differential equations (SDEs). We propose a scheme that approximates the path-
wise conditional distribution of SDEs for large time steps. Standard GANs are only 
able to approximate processes in distribution, yielding a weak approximation to the 
SDE. A conditional GAN architecture is proposed that enables strong approxima-
tion. We inform the discriminator of this GAN with the map between the prior input 
to the generator and the corresponding output samples, i.e. we introduce a ‘super-
vised GAN’. We compare the input-output map obtained with the standard GAN 
and supervised GAN and show experimentally that the standard GAN may fail to 
provide a path-wise approximation. The GAN is trained on a dataset obtained with 
exact simulation. The architecture was tested on geometric Brownian motion (GBM) 
and the Cox–Ingersoll–Ross (CIR) process. The supervised GAN outperformed the 
Euler and Milstein schemes in strong error on a discretisation with large time steps. 
It also outperformed the standard conditional GAN when approximating the condi-
tional distribution. We also demonstrate how standard GANs may give rise to non-
parsimonious input-output maps that are sensitive to perturbations, which motivates 
the need for constraints and regularisation on GAN generators.
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1 Introduction

A significant amount of research has been conducted on generative adversarial net-
works (GANs), with particularly successful application on image generation prob-
lems [1–4]. However, GANs are also found to be notoriously unstable during train-
ing [5, 6], while their output is difficult to analyse, although various heuristics have 
been proposed [7, 8]. Interpreting key properties of GANs explicitly, such as the 
map learned by the generator, or its output distribution, is typically not possible 
for image problems. In this work, we propose a sampling scheme for Itô stochas-
tic differential equations (SDEs), where we approximate the path-wise conditional 
distribution of SDEs with a conditional GAN. The SDE framework allows us to 
interpret qualities such as the map learned by the generator and the output distribu-
tion explicitly, since the flow map between two time steps is available explicitly for 
some SDEs. We investigate whether our GAN-based scheme can provide a path-
wise approximation [9] to one-dimensional Itô SDEs. Compared to traditional meth-
ods for solving SDEs, the introduction of deep learning-based schemes offers large 
potential benefits when scaling to higher dimensional problems and overcoming the 
curse of dimensionality [10, 11]. Our main contributions are as follows:

• We propose a deep learning-based scheme to construct SDE paths for large time 
steps. A path for any 1D Itô SDE can be sampled by approximating the path-wise 
conditional distribution with a GAN.

• We propose a ‘supervised GAN’ to study the input-output map learned by the 
generator and relate this map to the ability to approximate the SDE path-wise. 
We show that vanilla GANs may produce non-parsimonious input-output maps 
that are sensitive to perturbations, motivating the use of constraints on the gen-
erator map during training.

1.1  Earlier work

SDEs are prevalent in models of stochastic dynamical systems in engineering, 
physics, healthcare, and myriad other domains [12]. In finance, they are cor-
nerstone to the modelling of asset prices and interest rates, with applications in 
portfolio management or the pricing of financial derivatives and related products 
[13]. In general, the analytical solution to SDEs is not available, which is why 
practitioners make extensive use of numerical approximations to simulate paths 
in a Monte Carlo setting [13]. However, a high-quality numerical approxima-
tion may be too costly in an online setting for practical purposes. At the same 
time, a continuous representation of the path is not of interest in many appli-
cations, but rather the solution at specific times along the path. Through exact 
simulation of an SDE, the exact values of the process underlying the SDE are 
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sampled at a pre-determined set of times, cf. [14]. However, for general SDEs, 
exact simulation may not be available. One alternative technique is the stochastic 
collocation Monte Carlo (SCMC) method [15], in which the conditional inverse 
distribution of an SDE is approximated with a polynomial expansion, e.g. in a 
Gaussian random variable. Our goal is not to compete with the SCMC algorithm 
in financial applications, but rather to initiate a new direction for Monte Carlo 
estimation of SDEs, where the wide applicability of GANs can be demonstrated. 
The SCMC method only provides an approximation of the conditional distribu-
tion given a fixed choice of the time step, the previous value of the process, and 
the SDE parameters. In [16], this is addressed by combining the SCMC method 
with a neural network (NN), the ‘Seven League Scheme’, that predicts the collo-
cation points for the SCMC method, conditional on all model parameters. In our 
work, the scope is similar, but the conditional distribution will be approximated 
directly by a conditional GAN, instead of using the SCMC method. This retains 
the advantage of the Seven League scheme being able to incorporate the depend-
ence on the model parameters and the time step. In addition, if the method can be 
scaled up to higher dimensions, it exploits the ability of deep learning to combat 
the curse of dimensionality, where the SCMC method requires the definition of a 
grid of collocation points [15, 16], which could be expensive in high dimensions.

GANs have been successfully applied on solving (stochastic) PDEs [17–19], 
however these works rely on application of the PDE operator on outcomes generated 
with a NN. In the case of Itô SDEs, however, the Brownian motion term precludes 
differentiability of the dynamics. If the diffusion parameter is constant, Abbati et al. 
show [20] it is possible to define a measure change that allows one to compute 
the time derivatives of the transformed random process. This would allow one to 
‘match’ the moments of the time derivative and solve the SDE, but the requirement 
for constant diffusion processes is too restrictive for the purposes of this work.

Another approach is to apply the ‘neural ODEs’ by Chen et  al. [21] on SDEs. 
Kidger et al. [22] ‘fit’ SDEs to time series data, where the SDE coefficients are given 
by NNs. A GAN architecture is used here as well, where the solution to the SDE 
defines the output of the ‘neural SDE’. The discriminator takes the generated pro-
cess as input and is itself defined as an SDE, allowing the model to be defined in 
continuous-time. The model allows the generation of time series data that is equal in 
distribution to the target, although not necessarily path-wise. We focus on the prac-
tical simulation of SDEs, where large time steps are essential and the continuous 
representation of the process is not of interest.

Instead of focusing directly on solving the SDE, a NN could be used to construct 
samples that share the same conditional distribution as the target data, which is 
modelled as a time series, as shown for example in [23–25]. These authors show that 
the output of their NNs is adapted to the input sequence {Zk} of i.i.d. N(0, 1) random 
variables, which means that it could find a weak solution to the SDE. However, their 
approaches would provide no guarantees of finding a strong solution to the SDE, 
i.e. path-wise approximation given the same Brownian motion on which the SDE 
is defined. Details about the difference between weak and strong solutions will be 
further explored in Sect. 2.
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In a similar fashion to neural SDEs, in [26] a GAN architecture is proposed that 
calibrates stochastic local volatility models to market data. This is an example of a 
data-driven inverse problem using GANs. We, however, will not assume any knowl-
edge about the structure of the SDE.

In this work, we introduce a modified GAN, that we will refer to as a ‘supervised 
GAN’, which approximates a strong solution to the SDE. We compare this GAN to 
the ‘standard’ conditional GAN, which only yields a weak approximation. Our set-
ting allows us to interpret the conditional output distribution of the generator using 
non-parametric statistics, as well as the map learned by the generator explicitly. We 
show that although ‘standard’ GANs and our modified GAN both approximate the 
same distribution, their generators may represent very different maps. Meanwhile, 
the supervised GAN converges faster than the standard GAN during training. Our 
work motivates the explicit analysis of the map obtained by a model through unsu-
pervised learning, which is relevant in any generative modelling application, from 
the generation of time series to image generation.

The paper is structured as follows. First, the necessary background behind SDEs 
and GANs is introduced. Then, the supervised GAN is introduced to allow strong 
approximation of SDEs, using a training set obtained from the conditional distribu-
tion of the SDE. Section 4 shows the key results obtained using our method, fol-
lowed by a discussion in Sect. 5. Section 6 provides a conclusion and outlook.

2  Preliminaries about SDEs and GANs

In this section, we discuss the preliminaries underlying SDEs and GANs, notably 
weak and strong solutions, discrete-time approximation and conditional GANs.

2.1  SDE definition

Suppose we are given a probability space (Ω,F,P) and let {Wt}t≥0 be a standard 
Brownian motion on ℝ , adapted to its natural filtration Ft ∶= �

(
{Ws ∶ s ≤ t}

)
 . A 

one-dimensional SDE of the Itô type is then defined as follows [12]:

where {St}t≥0 is a continuous-time random process on ℝ adapted to Ft . A(t, St) and 
B(t, St) are themselves Ft-measurable random processes on ℝ . One could write the 
SDE equivalently in its Itô integral form, as follows [12]:

From now on, we write a random process {⋅}t≥0 succinctly as {⋅} . We will refer to a 
realisation of the process {St} over a finite time period as a path. Note that a path is 
completely defined once the Brownian motion {Wt} has taken a realisation on the 
respective time interval. The nature of {St} as a random process complicates the 

(1)dSt = A
(
t, St

)
dt + B

(
t, St

)
dWt, S0 ∈ ℝ,

(2)St = S0 + �
t

0

A
(
�, S

�

)
d� + �

t

0

B
(
�, S

�

)
dW

�
, ∀t ≥ 0 P-a.s.
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notion of the existence and uniqueness of the solution of an SDE. Suppose that {St} 
is a solution to Eq. (1). A solution is called path-wise unique if the following holds 
for any other Ft-adapted solution {S�

t
} [27]:

i.e. the paths corresponding to the solution are equal P-a.s . We distinguish between 
a strong solution and a weak solution. If we are given a Brownian motion {Wt} , 
a strong solution is the path-wise unique solution of Eq. (1) corresponding to that 
Brownian motion. A weak solution also satisfies Eq. (1), but may be defined with 
respect to a different Brownian motion than {Wt} or even a different probability 
space. A solution is called weakly unique if it is equal in law to any other solution 
{S�

t
} : St

L

= S�
t
 [27]. Both weak and strong solutions are weakly unique, but only a 

strong solution is path-wise unique [12]. A unique strong solution exists if A(t, St) 
and B(t, St) satisfy Lipschitz conditions, if S0 is independent of Ft and if the pro-
cess {St} is square-integrable for all t, see [12] for details. A sufficient condition 
for a weak solution is that A(t, St) and B(t, St) must be bounded and continuous and 
|B(t, St)| ≥ 𝜀 > 0 for some positive real � [13]. The often cited conditions for weak 
and strong solutions are sufficient, but not necessary, as is clear from multiple exam-
ples of SDEs that do not satisfy the conditions, but still have a strong solution [12, 
13]. In the following, we will restrict ourselves to SDEs for which a strong solution 
exists.

2.2  Discrete‑time schemes

It is possible to approximate Eq. (2) by a discrete-time scheme, based on a stochastic 
Taylor expansion, such as the Euler or Milstein schemes [13]. Recall that in the 1D 
case, the Euler and Milstein schemes are given by [13]:

where � = 0 for the Euler and � = 1 Milstein scheme. Δt is the time step of the dis-
cretisation, ΔWt ∶= Wt+Δt −Wt and B� ∶=

�B

�St
 . We denote the discrete-time approxi-

mation of St by S̃t . A key property of these schemes is that they approximate the 
strong solution {St} of an SDE, if it exists [13]. In order to quantify their accuracy, 
we define the weak error ew and the strong error es as follows, for t ≥ 0:

where f is some real-valued polynomial function. Note how the weak error describes 
how much the approximation differs in distribution, i.e. how it differs from a weakly 
unique solution, while the strong error indicates how much the approximation dif-
fers path-wise from the strong solution. The convergence rate of a discrete-time 

(3)P
(
St = S�

t

)
= 1,

(4)S̃t+Δt = S̃t + A
(
t, S̃t

)
Δt + B

(
t, S̃t

)
ΔWt + 𝜁

[
1

2
B
(
t, S̃t

)
B�
(
t, S̃t

)(
ΔW2

t
− Δt

)]
,

(5)ew ∶=
|||�f

(
St
)
− �f

(
S̃t
)|||,

(6)es ∶= �||St − S̃t
||,
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scheme can be expressed in terms of Δt : the weak error of both the Euler and Mil-
stein schemes can be shown to be of O(Δt) , while the strong error is of O(

√
Δt) for 

the Euler scheme and of O(Δt) for the Milstein scheme [13].

2.3  Generative adversarial networks

A GAN is a combination of two NNs that are trained adversarially, cf. [1]. During 
training, the generator network iteratively maps a prior input to a new random sam-
ple, while the discriminator network alternatingly receives either a sample from the 
generator or the training set of reference samples. The discriminator assigns a score 
on [0, 1] to the input it receives. The input samples to the discriminator are labeled 
either 0 (‘fake’, coming from the generator) or 1 (‘real’, coming from the training 
set).1 The output of the discriminator can be interpreted as the confidence it assigns 
to the input being ‘real’. Suppose that the generator G

�
 is parameterised by � ∈ ℝ

p 
and the discriminator D

�
 is parameterised by � ∈ ℝ

q , for some p, q ∈ ℕ . The GAN 
objective function can then be defined in terms of both G

�
 and D

�
 as follows:

where P∗ is the target distribution associated with the training data and PZ is the 
prior distribution from which input samples to the generator are drawn. ‘ ◦ ’ denotes 
the composition of functions. The value function captures the degree to which the 
discriminator succeeds in recognising real samples (first term) and recognising 
‘fake’ samples (second term). From the generator’s point of view, this is the other 
way around and the second term is inversely related to its performance. The roles of 
the generator and discriminator give rise to the following adversarial objective:

Note the resemblance with a two-player zero-sum game and minimax theory [1, 28]. 
It can be shown that a solution to Eq. (8) coincides with equality in distribution 
between the target P∗ and generator output distribution P

�
 [1, 29].

The generator and discriminator are each given their own loss function, based on 
Eqs. (7) and (8):

for which the minima are found with a suitable gradient descent algorithm. Equa-
tion (10) tends to give vanishing gradients during training, which is why it is often 
replaced by LG = −�Z∼PZ

log
(
D

�
◦G

�
(Z)

)
 [5]. We adopt this modification as well.

(7)V(G
�
,D

�
) = �X∼P∗

[
logD

�
(X)

]
+ �Z∼PZ

[
log

(
1 − D

�
◦G

�
(Z)

)]
,

(8)inf
�

sup
�

V(G
�
,D

�
),

(9)LD = −�X∼P∗

[
log

(
D

�
(X)

)]
− �Z∼PZ

log
(
1 − D

�
◦G

�
(Z)

)
,

(10)LG = �Z∼PZ
log

(
1 − D

�
◦G

�
(Z)

)
,

1 Note that it is possible to define alternative labels, e.g. 0.1 and 0.9, or smooth variants, which some-
times improves results in practice [7].
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We will refer to the GAN described so far as the ‘vanilla GAN’, as it forms the 
basis for further extensions. One key extension is the conditional GAN, introduced 
in [30]. In this architecture, the generator and discriminator receive a vector with 
conditional information as an additional input, which allows the GAN to learn how 
the output should vary based on a condition label, e.g. generating images of apples 
or oranges based on the given input. Aside from the appearance of the conditional 
label, the loss functions remain unchanged. If we let y ∈ ℝ

nc be a vector with nc con-
ditional inputs, the joint objective function becomes [30]:

with similar expressions for the loss functions as in Eqs. (9) and (10).

2.4  The generator as a parametric map

The GAN is part of a class of methods with for approximating the distribution 
of a target random variable X ∼ PX , starting from a prior Z ∼ PZ . Let us assume 
that both X, Z ∈ ℝ

n . The model that approximates the target is defined by a map 
�
�
∶ ℝ

n
→ ℝ

n , z ↦ �
�
(z) , with parameter set � ∈ ℝ

p , for some integer dimensions 
n,  p. Let us assume the distribution of �

�
(Z) is given by P

�
 , i.e. the distribution 

of the output samples is P
�
 . The goal is then to change the parameters � such that 

P
�

d
≈ PX . In our case, the role of �

�
 is taken by the GAN generator. We can use com-

mon methods to quantify the ‘difference’ between the distributions P
�
 and PX , such 

as the Jensen-Shannon (JS) divergence [31]. This quantity is defined for any two 
absolutely continuous distribution measures P and Q through the Kullback-Leibler 
(KL) [32] divergence as:

where p and q are the densities associated with respectively P and Q, M =
P+Q

2
 and 

X ⊆ ℝ
n is the support of both distributions. It can be shown that JS(P‖Q) ≥ 0 , with 

equality iff P = Q [31]. The goal is to choose � such that it minimises JS(P
�
‖PX) . 

This could be done with standard techniques such as stochastic gradient descent 
(SGD) [33]. However, we now focus on how the map �

�
 relates to the induced distri-

bution P
�
 . In typical problems, this map is not of interest, such as in image genera-

tion problems, where no reasonable model exists for �
�
 , making it very difficult to 

draw conclusions based on the learned map �
�
 . However, in this work, we study the 

map �
�
 explicitly, which is required for our strong approximation criterion. Mean-

while, it enables us to make qualitative statements about the map learned by the 
GAN generator.

Let us turn to a simple example where we can write the map from Z to X explic-
itly: the lognormal distribution.

(11)inf
�

sup
�

[
�X∣y∼P∗ logD�

(X ∣ y) + �Z∼PZ
log

(
1 − D

�
◦G

�
(Z ∣ y)

)]
,

(12)JS(P‖Q) = 1

2
(KL(P‖M) + KL(Q‖M)),

(13)KL(P‖Q) = ∫
X

log

�
p(x)

q(x)

�
q(x)dx,
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Example 2.1 (Lognormal distribution) Let X, Z ∈ ℝ and let X = eZ with Z ∼ N(0, 1) . 
One function that minimises JS(P

�
‖PX) is given by �+ ∶= eZ . However, it is not 

unique, as we could have equally chosen �− ∶= e−Z by symmetry of the normal dis-
tribution. Both choices yield a JS divergence of exactly 0 and we may expect an 
SGD-based algorithm to find either of the solutions in some proportion.

If the lognormal distribution in Example 2.1 was approximated by a NN with infi-
nite capacity, i.e. one which can represent any continuous map � ∶ ℝ

n
→ ℝ

n , includ-
ing �+ or �− , the set of maps minimising the JS divergence would be {�+,�−} . Note 
that in n dimensions, i.e. X = [eZ1 , eZ2 ,… , eZn ]T , the set of candidate functions with 
JS divergence exactly 0 grows as 2n , as each Zi ∼ N(0, 1) is individually symmetric 
about the origin.

In reality, NNs do not have infinite capacity, but the set of maps they can rep-
resent is restricted by the parameter set Θ ⊆ ℝ

p . This means that in general, 
JS(P

𝜃
‖PX) > 0 . The parametric map �

�
 may only be able to bring the JS divergence 

down to some 𝜀 > 0 . The key question we are interested in is how many maps lie 
within an � from optimality, and how different these maps are from the ‘true’ opti-
mum, e.g. �+ or �− in Example 2.1. Let us define the collection of maps that lie 
within an � from optimality in terms of the JS divergence as:

where we stress the dependence on � and Θ . Since we did not make any assumptions 
on �

�
 , the class of functions V�

Θ
 found after applying SGD may be very large. The 

number of elements of V�

Θ
 should increase with � , as more maps give rise to distribu-

tions that lie within an � of PX.
In addition to the finite capacity of the parameter set � ∈ Θ , NNs are trained 

on finite datasets, not perfectly representing PX . Thus, even if we know the ‘true’ 
underlying map �∗(Z) from which a dataset X was constructed, we may find a map 
�
�
∈ V

�

Θ
 with a gradient descent algorithm that is very different from �∗ . In other 

words, maps that are close in JS divergence may not be close in function space. Note 
that although we chose the JS divergence to illustrate the point, we could define sim-
ilar classes of functions for other divergence measures, such as the KL divergence, 
total variation distance, etc. The JS divergence is particularly relevant in the case 
of GANs, as one can show that the optimal generator in Eq. (8)—given the optimal 
discriminator - minimises the quantity JS(P

�
‖P∗) [1, 29].

The key observation is that algorithms minimising a distributional quantity or 
metric do not impose any restrictions on the map �

�
 . It may for example be highly 

non-smooth in regions along its support, even though the approximation in distribu-
tion is close. Therefore, although it is typically not tractable to study �

�
 , we argue 

that qualitative properties of �
�
 should be of interest in generative modelling, given 

its implications for the robustness of the resulting sampling scheme.

(14)V
𝜀

Θ
∶=

�
𝜑
𝜃
∶
�
0 < JS(P

𝜃
‖PX) < 𝜀

�
, 𝜃 ∈ Θ

�
,
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3  Methodology

Let {St} be the strong solution to an SDE as defined in Equation (1). Suppose we are 
interested in the solution at N times, i.e. 0 = t0 < t1 < ⋯ < tN = T  . Let us denote 
the conditional distribution function of the solution at time tk given the previous 
sample by FStk

∣Stk−1
 for k ∈ {1,… ,N} . When using exact simulation, one samples 

iteratively from the distribution of Stk ∣ Stk−1 , cf. [14]. This is possible due to the 
Markov property of Itô SDEs [27], i.e. each Stk ∣ Stk−1 is independent of Ftk−1

 for 
k ∈ {1,… ,N} . This allows one to construct a path {St0 , St1 ,… , StN} along the time 
discretisation by iterated sampling from the distribution of Stk ∣ Stk−1 . Let us from 
now on assume, without loss of generality, that our discretisation consists of time 
steps of equal size Δt . Paths can then be constructed by iteratively sampling from 
the conditional distribution of St+Δt ∣ St , having initialised the process at some 
S0 ∈ ℝ at t = 0 , which is illustrated in Fig. 1.

If the conditional distribution of St+Δt ∣ St is approximated with a conditional 
GAN, i.e. conditional on Δt and St , new points can be sampled iteratively along the 
path with the conditional GAN as follows:

where Z ∼ N(0, 1) . We denote the approximation of St by the GAN by Ŝt . This could 
be further generalised by conditioning on the SDE parameters contained in A(t, St) 
and B(t, St) as well. In this work, we will hold them fixed and train the conditional 
GAN on a dataset of tuples ((St+Δt ∣ St), St,Δt) with varying Δt and St.

3.1  Supervised GAN

Since St+Δt ∣ St is a continuous random variable and FSt+Δt ∣St
∼ U(0, 1) , for each 

realisation of St+Δt ∣ St , there is a unique realisation of U ∼ U(0, 1) . Let FZ denote 
the cumulative distribution function of the random variable Z ∼ N(0, 1) . Both 

(15)Ŝt+Δt ∣ Ŝt = G
𝜃

(
Z,Δt, Ŝt

)
,

Fig. 1  Illustration of the prob-
lem setting: given the process 
{S

t
} up to time t, obtain samples 

from the process at time t + Δt 
using a GAN
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FSt+Δt ∣St
 and FZ are strictly increasing, as they are based on continuous random vari-

ables. Therefore, their distribution functions are bijections and their inverses exist. 
Thus, for each realisation of � ∈ Ft and corresponding realisation of the process (
St+Δt ∣ St

)
(�) , there is a unique realisation U(�) . In turn, for each U(�) there is a 

unique realisation Z(�) . These realisations are related as follows:

In the SCMC scheme, Eq. (16) is approximated by a polynomial expansion in Z 
[15, 16]. This allows path-wise comparison of the SCMC scheme to e.g. a Mil-
stein scheme in [16], where Z(�) is used to define the Brownian motion increment 
between time t and t + Δt . In this work, we approximate the conditional inverse 
function directly using the generator of a GAN. However, as we saw in Sect. 2.4, an 
approximation to the target distribution does not imply the underlying map is unique. 
For a strong approximation to the process, we must approximate Eq. (16). That is, we 
must ensure that we preserve the relation between the prior Z(�) and (St+Δt ∣ St)(�) . 
To this end, we can build a training set of samples (Z, (St+Δt ∣ St), St,Δt) as input to 
both the generator and discriminator, where Z is found using the ‘inverse’ of Eq. 
(16):

This way, we do not only let the GAN learn the distribution FSt+Δt ∣St
 , but the map 

from Z(�) to 
(
St+Δt ∣ St

)
(�) , which carries the information about the event � ∈ Ft 

that corresponds to the realisation of the specific value 
(
St+Δt ∣ St

)
(�) . We will call 

this architecture the ‘supervised GAN’, as it is a GAN-based equivalent to training a 
standard feed-forward network on the mean squared error between F−1

St+Δt ∣St

(
FZ(Z(�))

)
 

and G
�
(Z(�), St,Δt) . The supervised GAN discriminator receives as input (

Z(�),
(
St+Δt ∣ St

)
(�), St,Δt

)
 , while the vanilla GAN discriminator only receives ((

St+Δt ∣ St
)
(�), St,Δt

)
 but not Z(�) . This constrains which input-output map from 

the generator is allowed. It allows the supervised GAN to perform a path-wise 
approximation, while the vanilla GAN is only guaranteed to approximate the pro-
cess in conditional distribution (e.g. may fail to distinguish the output given −Z from 
+Z ), yielding a weak approximation.

3.2  Analysis of the output distribution

In order to quantify the difference between the conditional distribution of the 
generator output and FSt+Δt ∣St

 , we use two non-parametric statistics: the Kolmogo-
rov–Smirnov (KS) statistic and the Wasserstein distance in 1D. The 2-sample KS 
statistic is defined as follows, cf. [34]:

(16)
(
St+Δt ∣ St

)
(�) = F−1

St+Δt ∣St

(
FZ(Z(�))

)
.

(17)Z(�) = F−1
Z

(
FSt+Δt ∣St

(
St+Δt ∣ St

)
(�)

)
.

(18)un ∶= sup
x

||FX(x) − FY (x)
||,
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where FX and FY are two empirical cumulative distribution functions (ECDFs), one 
of which corresponding to the generator output and the other to the reference distri-
bution. Note that if the CDF of the target distribution is available analytically, we 
can use it in Equation (18) instead of its ECDF.

In 1D, the r-Wasserstein-distance (i.e. based on the r-norm) between two distri-
bution functions FX and FY can be expressed as follows, for some r ∈ ℝ

+ [35]:

where F−1
(⋅)

 denotes the inverse distribution function, i.e. the quantile function of the 
random variable under consideration. In this work, we will set r = 1 and use the 
1-Wasserstein distance. FX and FY are computed from a dataset of samples {X̂i}

n
i=1

 
obtained through inference with the GAN and a dataset {Xi}

n
i=1

 drawn from the refer-
ence distribution.

The KS-statistic computes the largest difference between two (E)CDFs, i.e. ‘vertical 
differences’ in the plane FX(x) versus x. In 1D, the Wasserstein distance can be thought 
of as the average distance between the quantiles of two distributions, i.e. ‘horizontal 
differences’ [35]. The combination of these statistics simultaneously thus allows us to 
capture different features of both distributions.

The challenge is, however, to interpret the value of both statistics given a sample of 
size Ntest of both the reference distribution and the GAN output. We could construct 
a reference value by drawing two i.i.d. vectors of size Ntest containing realisations of 
the reference distribution, say X, Y iid

∼ FSt+Δt ∣St
 . If we choose Ntest too low (e.g. 100), the 

approximation of the distribution function will be very coarse and both statistics would 
exhibit a large variance. If we choose Ntest high, e.g. 105 , the KS statistic and Was-
serstein distance of this reference value will tend towards 0. This dependence on Ntest 
makes comparison between the statistics on the GAN output and reference value dif-
ficult. In order to avoid a particular choice of Ntest , we will compute the statistics for a 
range of values of Ntest , e.g. {100, 1000,… , 105} and plot the result versus Ntest . We 
will repeat this experiment on a set of Ntest samples obtained with a single-step Euler 
and Milstein approximation, based on the same time step Δt and ‘starting value’ St that 
the GAN is tested on.

3.3  Data pre‑processing

In our setting, the only knowledge of the process St+Δt ∣ St that we assume to be avail-
able are the SDE parameters and the latest value of the process St . We can leverage the 
fact that the sample St is available, by training the network on the relative increase of 
St+Δt ∣ St compared to St , instead of its absolute value. This way, the NN does not need 
to learn where to place the distribution for each St , but automatically outputs a distribu-
tion in a neighbourhood of St . Following [23], we use logreturns and let the conditional 
GAN approximate the logreturns-transformed process:

(19)vr(FX ,FY ) =

(
∫

1

0

|F−1
X
(x) − F−1

Y
(x)|rdx

) 1

r

,
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The approximation of the process St+Δt ∣ St is then obtained with the inverse 
transform:

Using logreturns comes with the additional benefit of centering the distribution near 
the origin. NNs typically converge faster if the training set is standardised [36], i.e. 
if the inputs to the network are of mean zero and unit variance. The variance will 
still vary with the model parameters, and as we do not assume that the moments 
of the target distribution are known, we cannot simply standardise the dataset and 
invert the standardisation step after training. Moreover, financial SDEs are typically 
heavy-tailed, which makes standardisation with point estimates ineffective.

The logreturns transformation comes with a complication for SDEs that can reach 
values arbitrarily close to zero, such as the CIR process [9, 37]. This means that the 
numerator and denominator in Eq. (20) can differ by many orders of magnitude (e.g. 
a sample starting at 0.1 and jumping to 10−6 and vice-versa), which leads to large 
and potentially unbounded output domains after the logreturns transform, which is 
undesirable. Therefore, an SDE that can jump to and from values near the origin 
should be pre-processed in a different way. Since we assume the model parameters 
are known, one could use this knowledge as an alternative to standardisation. For 
example, the CIR process reverts to a long-term mean S̄ , which is assumed to be 
known. We use this parameter to shift and scale the distribution as follows:

which is approximated with the conditional GAN. The approximation of St+Δt ∣ St is 
then obtained by inverting Eq. (22). Since values of the process can get arbitrarily 
close to zero, the generator may output negative values very close to 0. We ‘rectify’ 
the output by taking the absolute value of the generator output: |(Rt+Δt ∣ St + 1)S̄| , 
making sure the final approximation of the process is in ℝ+.

3.4  Network architecture

The generator and discriminator are both implemented as feed-forward NNs, 
using 4 hidden layers and 200 neurons per layer. A LeakyReLU activation (i.e. 
x ↦ max(x, 0) + amin(x, 0) , for some a ∈ ℝ ) [38] is chosen as the non-linearity 
after each layer, except the output layers of the generator and discriminator. This 
activation is chosen, since the distribution of the inputs and hidden state of the net-
work is heavy-tailed. Saturating activations, such as the tanh function, were there-
fore found to be less effective. The discriminator is given a logistic function at the 
output, to force the output to be on [0, 1]. The generator has no output activation. All 
implementations are made using PyTorch [39] and run on an NVIDIA RTX 2070 

(20)Rt+Δt ∣ St ∶= log

(
St+Δt ∣ St

St

)
.

(21)Ŝt+Δt ∣ St = Ste
G

𝜃(Z,St ,Δt).

(22)Rt+Δt ∣ St ∶=
(
St+Δt ∣ St − S̄

)
∕S̄,
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Super GPU with 8 GB of memory. See Appendix 1 for more details on the architec-
ture and training process.

4  Results

To assess the GAN, we study three different properties that allow us to compare the 
vanilla GAN to the supervised GAN. Firstly, we study the ability of both GANs to 
approximate the conditional distribution FSt+Δt ∣St

 , for several test values of Δt and St . 
Secondly, we compute the weak and strong error of artificial paths constructed with 
the vanilla GAN and supervised GAN. Thirdly, we explicitly study the map from 
prior sample Z to the sample St+Δt ∣ St learned by the generator for both GANs.

4.1  SDEs under consideration

To test the supervised GAN, we choose two common SDEs that have a strong solu-
tion: geometric Brownian motion (GBM) [40] and the Cox-Ingersoll-Ross (CIR) 
process [37]. The dynamics are given by:

where � and � of GBM denote respectively the drift and volatility of the underlying 
asset. � controls the rate at which the CIR process reverts to its long-term mean S̄ , 
while � represents the volatility of the CIR process.

The conditional distribution of St+Δt ∣ St is available explicitly for both SDEs, 
which allows the construction of an exact training set and simplifies the interpreta-
tion of the results. In the GBM case, application of Itô ’s lemma on the process log St 
allows one to immediately derive that the solution is lognormally distributed [40, p. 
226]. For the CIR process, one can show that St+Δt ∣ St follows a scaled non-central 
�
2-distribution with some non-centrality parameter � , degrees of freedom � and scal-

ing factor c̄ [37]:

where c̄, 𝜉 and � are expressed in terms of the SDE parameters [9], see Appendix 
3 for details. The presence of the square root in Eq. (24) introduces a complication 
when approximating the SDE with a discrete-time scheme, which could take nega-
tive values. Therefore, we apply a modified, truncated version of the Euler [41] and 
Milstein [42] schemes on the CIR process, see Appendix 3 for details.

If 𝛿 < 2 , the non-central �2-distribution exhibits near-singular behaviour in a 
region near zero, i.e. (0, q] for arbitrarily small q > 0 , allowing the process to ‘hit’ 
zero [37]. If � ≥ 2 , the process does not exhibit this property and remains strictly 
positive. This regime for � is known as the Feller condition [43]. For our numerical 
experiments, we chose two regimes of parameters, one in which the Feller condition 

(23)GBM ∶ dSt = �Stdt + �StdWt,

(24)CIR ∶ dSt = 𝜅
�
S̄ − St

�
dt + 𝛾

√
StdWt,

(25)St+Δt ∣ St ∼ c̄ 𝜒2(𝜉, 𝛿),
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is satisfied and one in which it is violated. The near-singular behaviour of the distri-
bution makes the latter case the most challenging.

4.2  Approximating the conditional distribution

We focus on the CIR dynamics for which the Feller condition is violated. The 
results for GBM and the case where the Feller condition is satisfied are provided 
in Appendix 2. First, we present the distribution of the output of the vanilla and 
supervised GAN in Fig. 2, which shows the ECDF of Ŝt+Δt ∣ St for fixed St = 0.1 
and four choices of Δt . We compare this with the exact distribution given in 
black. We see that both GANs adapt the shape of the output distribution to match 

(a) (b)

Fig. 2  ECDF plots of the vanilla and supervised GAN output with S
t
= 0.1 and Δt ∈ {0.1, 0.5, 1, 2}

(a) (b)

Fig. 3  KS statistic and Wasserstein distance at Δt = 0.4 , versus the size of the test set. The confidence 
bands show the standard deviation based on 10 repetitions of the experiment, i.e. 10 i.i.d. samples of N 
random inputs to both GANs. The mean of both statistics is reported in the solid and dashed lines
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the exact distribution, while the supervised GAN appears to provide a more accu-
rate approximation.

In Fig. 3, the KS statistic and Wasserstein distance are reported for a range of 
test sizes, using the method described in Sect. 3.2. St was set to 0.1. Δt was cho-
sen to be 0.4 in Fig. 3, for which the KS statistic was close to the Milstein scheme 
for the supervised GAN. For Δt > 0.4 , both statistics of the supervised GAN were 
lower than those of the Milstein scheme, i.e. the supervised GAN outperforms 
both the Euler and Milstein schemes for Δt > 0.4 . The supervised GAN outper-
forms the vanilla GAN on both statistics. Similar plots can be made for different 
choices of Δt and St and similar results were found for GBM and the case where 
the Feller condition was satisfied.

Figures 2 and 3 provide a ‘snapshot’ of the output of both GANs for one or more 
conditional inputs. For the CIR process, we can test a qualitative property that 
requires the GAN to accurately capture the conditional dependence on Δt and St . 
We show this for the supervised GAN. The CIR process reverts in the mean to the 

(a) (b)

(c)

Fig. 4  Mean of 105 paths obtained with the supervised GAN after n repetitions of G
�
(Z, S

t
,Δt) , starting 

from S0 = 0.01 . The mean reversion parameter was set to S̄ = 0.1 . The paths generated by the supervised 
GAN indeed exhibit mean reversion, although the GAN does not revert to the correct mean for every Δt . 
As Δt decreases, the error in the mean to which the GAN samples revert increases. This shows that the 
approximation of the conditional distribution is less accurate for smaller Δt , in line with our remaining 
benchmarks
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parameter S̄ with increasing t at a rate defined by � . We can test this property by 
sampling N values of St+Δt ∣ St repeatedly (e.g. 100 times) and taking the mean over 
all paths. The simulated process should converge in mean to S̄ . The result is shown 
in Fig. 4. The GAN indeed appears to revert to a mean, although it does not revert 
to the correct mean for each Δt . For lower values of Δt , the mean to which the GAN 
reverts is not equal to S̄ , which indicates that the distribution is captured less accu-
rately than at higher values of Δt . Note that this experiment ‘stress-tests’ the itera-
tive sampling method, as it is repeated 100 times, allowing errors to accumulate. In 
practice, one most likely only repeats the GAN output several times on the previous 
output. However, if many repeated samples are of interest, the architecture should be 
extended to include the possibilities for online corrections along the path.

4.3  Weak and strong error

We iteratively sample from the process Ŝt+Δt ∣ St with both the vanilla GAN and 
supervised GAN, on a discretisation {0,Δt,… ,NΔt} with Δt = T

N
 and T = 2 . The 

(a) (b)

(c) (d)

Fig. 5  Weak and strong errors of artificial paths obtained with the vanilla and supervised GAN. In both 
cases, the strong error outperforms the discrete-time schemes even at low values of Δt , suggesting that 
both GANs have learned a strong approximation. However, the vanilla GAN did not manage to find a 
strong approximation on all test problems (see e.g. Fig. 7)
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input to both GANs, Z ∼ N(0, 1) , is stored at each time point and re-used for the 
Euler and Milstein approximation. Note that if we chose a different Z for the dis-
crete-time schemes, we could not compare the results path-wise. The experiment 
is repeated for N ∈ {40, 20, 10, 5, 4, 3, 2, 1} steps, yielding different choices of Δt . 
Using this setup, 100,000 paths were generated for each choice of N and the weak 
and strong error have been plotted versus Δt in Fig. 5.

When the Feller condition was not satisfied, the modified Milstein scheme did not 
perform better than the modified Euler scheme, which is why it was left out of this 
experiment. Both GANs yield a lower strong error even at small values of Δt across 
all three figures, which suggests that both GANs provide a strong approximation. 
For the vanilla GAN, this is a special case, as we see in Fig. 6, in which we provide 
an example if the Feller condition is satisfied. We study this phenomenon in more 
detail in the succeeding paragraph. The weak error in Fig. 5a, b on this problem is 
relatively high compared to the Euler scheme, which can be explained by the choice 
of parameters in this experiment. The mean reversion parameter S̄ was set to 0.1, 
which is equal to S0 . This means that the Euler scheme starts at exactly the correct 

(a) (b)

(c)

Fig. 6  Example of failure of the vanilla GAN to provide a strong approximation on the CIR process if the 
Feller condition was satisfied. It fails to converge path-wise (a), which is reflected in the strong error (b). 
S0 was set to 0.1
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mean from time t0 . If we change S0 to 0.01, the supervised GAN also outperforms 
the Euler scheme in weak error at approximately Δt greater than 0.5. The perfor-
mance of both GANs is not uniform in Δt , which is particularly pronounced at low 
values. The opposite is true for the Euler scheme, which becomes increasingly accu-
rate for decreasing Δt . Note that for an ideal GAN, the weak and strong error would 
not depend on Δt.

4.4  Map learned by vanilla and supervised GAN

We now test the reasoning in Sect.  2.4 empirically and study the map learned 
by both GAN architectures, i.e. the output 

(
St+Δt ∣ St

)
(�) given an input 

Z(�) ∼ N(0, 1) for an event � ∈ Ft . Instead of St+Δt ∣ St , we plot the output of the 
pre-processed data Rt on which the GANs were trained, i.e. logreturns for GBM 
and CIR with Feller condition violated, scaling with S̄ if the Feller condition is 
violated. In Fig. 7, we show three different examples of the vanilla GAN failing 
to provide a strong approximation, although the approximation of the distribution 
is close.

Each of the examples in Fig.  7 gives rise to different pathological behaviour 
on the side of the vanilla GAN. The map on the left corresponds to ‘mirrored’ 
paths compared to the strong solution, corresponding to the weakly unique 
‘twin’ solution to the strong solution with Z ← −Z , which is equal in distribu-
tion, but not path-wise. This is exactly the �− from Example 2.1. Note how the 
logreturns transformation makes the GBM problem trivial: the conditional GAN 
learns the slope and intercept of a straight line. In the centre and right figure, the 
vanilla GAN has not simply learnt a weakly unique solution with opposite sign, 
it has learned a map that gives rise to a similar distribution as the reference, but 

(a) (b) (c)

Fig. 7  Top row: the map Z ↦ G
�
(Z, S

t
,Δt) with S

t
= 0.1 and Δt = 1 for three different examples. Each 

figure shows a scatter plot of the generator output of both GANs on the same 100 input samples Z. Bot-
tom row: corresponding histograms of based on 1000 input samples Z 
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corresponds to an entirely different map from Z to the GAN output. This would 
correspond to a map that generates samples within some � from the target distri-
bution, but where �

�
 itself is very different from �+ and �− , as we discussed in 

Eq. (14). This again led to the paths not being equal path-wise to the strong solu-
tion. The maps in the centre and rightmost figures are not bijective, since there 
are two returns for some inputs Z. Furthermore, the rightmost example shows that 
the vanilla GAN may be highly sensitive to small changes in the input. E.g. for Z 
around 0, the output can change very rapidly for a small perturbation in Z.

In all experiments performed in preparation for this work, the supervised GAN 
was able to provide a strong approximation, which is visible in Fig.  7 by the 
orange data points completely overlapping with the exact samples. The super-
vised GAN thus learns the map corresponding to the inverse function 
F−1
St+Δt ∣St

(FZ(Z)).

4.5  Supervised GAN discriminator output

We can visualise how the supervised GAN learns by visualising the discrimina-
tor output and overlay the generator output. This way, we show explicitly how 
the discriminator scores each input sample. The generator is given by the func-
tion G

�
∶ ℝ

3
→ ℝ with input (Z, St,Δt) , while the discriminator is given by 

D
�
∶ ℝ

4
→ [0, 1] with inputs ((St+Δt ∣ St), Z, St,Δt) . If we fix St and Δt , say at 0.1 

and 1.0, respectively, we can visualise the discriminator output on [0, 1] with a 
colormap on the space (Z,G

�
(Z, St,Δt)) , which is shown in Fig. 8.

Upon convergence of the GAN, the discriminator output will be around 0.5 in 
a neighbourhood of the generated samples, as it is no longer able to distinguish 
between the reference and generated samples. This corresponds to the ‘white 
band’ in Fig. 8, which is exactly where the exact samples and supervised GAN 
samples can be found. If the vanilla GAN samples would have been provided to 
the supervised GAN discriminator, it would have classified all samples as fake, 

Fig. 8  Discriminator output corresponding to Figs. 6a and 7b output after 40,000 training steps for vary-
ing Z and G

�
(Z, S

t
,Δt) , with fixed S

t
= 0.1 and Δt = 1.0 . The discriminator identifies the region in which 

the exact samples lie for each combination of (Z,Δt, S
t
)
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as is visible in the figure by the fact that all the vanilla GAN data points lie in the 
dark blue region. This shows how the supervised GAN discriminator rules out 
any map other than the strong solution.

5  Discussion

Supervised learning One could argue that GANs are not needed to solve our 
problem, since the map Z ↦ �

�
(Z) could have equally been trained using only a 

‘generator’ combined with an L2 loss. This is possible since we had available the 
underlying map F−1

Z
◦FSt+Δt ∣St

 and were able to build a training set with examples 
of ((St+Δt ∣ St), Z) . However, using a supervised variant of the GAN as a reference 
model allowed us to compare both GAN-architectures directly, using the same 
learning algorithm.

Beyond GBM and the CIR process For general 1D Itô SDEs, where FSt+Δt ∣St
 

is not available analytically, one could use an empirical analogue instead, without 
any changes to the supervised GAN architecture. The only requirement is that the 
empirical approximation should be strictly increasing in order to find a unique Z 
for each data sample, which could be achieved e.g. with a non-decreasing interpo-
lation scheme between the data points defining the ECDF. For higher dimensional 
SDEs, the prior input to the generator should be increased for each degree of 
freedom. If the Brownian motions are correlated, they can be written as a product 
covariance matrix and a vector independent Brownian motions, using Cholesky 
decomposition [9]. The covariance matrix would be a function of the correla-
tion coefficients of each of the correlated Brownian motions. A conditional GAN 
could then be trained, with correlation parameters �1, �2,… as an additional con-
ditional input.

Large time steps We showed that the supervised GAN is able to approximate 
the conditional distribution accurately for large time steps. ‘Large’ here meant 
large compared with a discrete-time approximation, which we used to benchmark 
our results. However, this may be considered unfair, since time steps of e.g. 1,2 
are unrealistic for discrete-time schemes. On the other hand, the supervised GAN 
outperformed the discrete-time schemes on time steps below 1 as well, only strug-
gling with the smallest of time steps. The comparison was sufficient to show that the 
supervised GAN is able to approximate the target SDE path-wise.

Data pre-processing On all benchmarks, performance of both GANs decreased 
the lower we chose Δt . This may seem counter-intuitive, as discrete-time schemes 
improve with decreasing Δt . However, since our model approximates an exact 
simulation scheme, the accuracy should theoretically not depend on Δt at all. The 
dependence of performance on Δt reflects the ability of the GAN to approximate 
the target distribution conditional on Δt . Neural networks tend to learn slower on 
input samples with lower variance [36]. This is because the gradient update for each 
weight scales with the variance of the input samples. Although the data were pre-
processed by taking logreturns or scaling with S̄ , the in-class variance is still non-
constant. The more conditional classes are added that affect the variance, the more 
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pronounced this result would be. An example would be if the parameter � from the 
CIR process were added as an additional conditional input.

One way to counter the in-class variance would be to standardise each class indi-
vidually. However, the post-processing step would then require knowledge of the 
mean and variance of the training set batches. A different route may be through 
scaling each training point with its corresponding Δt and S0 . However, in order to 
achieve unit variance, one would need very specific knowledge of the output distri-
bution, which may be restrictive. Additionally, the heavy tails in the distributions 
make traditional standardisation techniques ineffective.

Full parameter range The conditional GAN architecture for modelling the con-
ditional distribution could be further generalised to include the full parameter set of 
the SDE, allowing the GAN to learn an entire family of SDEs at once, as is done in 
[16] for the SCMC implementation. In this work, we developed a conditional GAN 
that was sufficient to demonstrate path-wise convergence. In future work, it would 
be interesting to test the GAN on the full parameter range of SDEs as well, if the 
challenge of pre-processing the data without incorporating knowledge of the target 
distribution could be resolved.

6  Conclusion and outlook

We proposed a GAN-based architecture for exact simulation of Itô SDEs. Specifi-
cally, we approximated the conditional probability distribution of 1D geometric 
Brownian motion (GBM) and the Cox-Ingersoll-Ross (CIR) process with a condi-
tional GAN. The GAN was conditioned on the time interval length and the preced-
ing value along the path and was used to construct artificial asset paths by iterative 
sampling from the conditional distribution. We argued that for unsupervised genera-
tive models based on divergence measures, there are no guarantees about the input-
output map learned by the neural network. This is because the network parameters 
are varied only to minimise a quantity such as the Jensen-Shannon divergence, but 
no restriction is applied on the underlying map. We demonstrated experimentally 
how this could lead to non-unique and non-parsimonious input-output maps by the 
generator. In the context of SDEs, we showed how this implies that the vanilla GAN 
is unable to reliably provide a strong approximation. We replaced the vanilla GAN 
by a supervised GAN, which learns how a random input maps to the target variable 
explicitly. This supervised GAN was able to provide a strong approximation in all 
cases. Additionally, the approximation in distribution by the supervised GAN was 
more accurate under identical learning parameters and network capacity. We see two 
main directions for future work. Firstly, our findings motivate users of generative 
models to study the input-output map learned by the model explicitly and verify 
qualitative properties such as smoothness. This aligns well with efforts to constrain 
the generator, such as the ‘potential flow generator’ introduced in [44], that uses 
optimal transport to constrain the generator map. Secondly, our conditional GAN 
architecture could be further extended to include the SDE parameters as well, as is 
done for the ‘Seven-League’ collocation sampler in [16]. This would allow exact 
simulation of entire classes of SDEs instead of a specific choice of parameters. Since 
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we showed how supervised learning can be used for Itô SDEs, the GAN architecture 
itself can be replaced by a single generator, trained on e.g. the mean-squared error. 
Extensions of our architecture, along with the methods we used for studying the out-
put may be applied on more general problems, such as higher dimensional SDEs or 
non-Itô SDEs.

Network architectures

The architectures of the feed-forward neural networks of the generator and discrimi-
nator are shown in Table 1. c equals the amount of conditional parameters of the 
conditional GAN. c = 1 for GBM and c = 2 for the CIR process. If the discrimina-
tor is informed with Z, i.e. the supervised GAN, the discriminator input is further 
increased by 1 for the input Z. The batch size was set to 1000. Batches were sampled 
uniformly with replacement from a training set of 105 training samples. The GAN 
was trained for a fixed amount of 200 epochs. An additional learning rate schedule 
was created to stabilise GAN training. This schedule was used for the generator, 
where the learning rate was decreased by a factor 1.05 every nLR = 500 iterations.

(a) (b)

(c)

Fig. 9  KS statistic and Wasserstein distance during training on a test set of 100,000 i.i.d. samples from 
the distribution of S

t+Δt ∣ St . The default parameters listed in Sect. 1 were used to generate test sets. The 
supervised GAN converges faster than the vanilla GAN on both metrics
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(a) (b)

Fig. 10  Example of the effect of the learning rate schedule during training on the CIR process if the 
Feller condition is satisfied. The gradually decreasing learning rate allows the generator to more accu-
rately converge to the target distribution

(a) (b)

Fig. 11  ECDF plots of the conditional GAN output on the GBM problem for various choices of Δt . Note 
that pre-processing the data with logreturns removes dependence on S

t
 . In this example, S

t
= 1

(a) (b)

Fig. 12  ECDF plots of the conditional GAN output on the CIR process with the Feller condition satis-
fied, for various choices of Δt . S

t
 was held fixed at 0.1
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(a) (b)

(c) (d)

Fig. 13  KS statistic and Wasserstein distance at Δt = 0.4 , versus the size of the test set. The confidence 
bands show the standard deviation based on 10 repetitions of the experiment, i.e. 10 iid samples of N ran-
dom inputs to both GANs. The mean of both statistics is reported in the solid and dashed lines

(a) (b)

Fig. 14  GBM: Weak and strong errors at time T = 2 of paths constructed using the vanilla GAN and 
supervised GAN, compared with the Euler scheme, Milstein scheme and exact scheme. S0 = 1 , 
Δt = 0.05 , i.e. 40 steps between 0 and 2



1384 J. van Rhijn et al.

1 3

The learning rate for the discriminator was set to 5 × that of the generator learning 
rate, which was found to lead to faster convergence in the first epochs and a better 
approximation of the optimal discriminator, cf. [29, section 2].

Saturating activation functions, such as a tanh or sigmoid, have also been consid-
ered. However, since the heavy left-tails of the target distributions persist after a pre-
processing step (for the CIR process), the distribution of the hidden state will have a 
heavy tail as well. A saturating activation would then be undesirable, as it makes the 
tail less important in the saturating region. ReLU-type activations are not affected, 
as they are non-zero on [0,∞) and do not saturate.

KS statistic and Wasserstein distance during training

The KS statistic and Wasserstein distance were computed during training on a test 
set of 105 samples for GBM and the two instances of the CIR process. Figure 9 com-
pares the training process of the vanilla and supervised GAN. Under equal training 

(a) (b)

(c) (d)

Fig. 15  CIR process with Feller condition satisfied: weak and strong errors at time T = 2 of paths con-
structed using the vanilla GAN and supervised GAN, compared with the Euler scheme, Milstein scheme 
and exact scheme. Δt ranges between 0.05 and 2. In (a, b), S0 = S̄ , which gives the discrete-time schemes 
an advantage, as they have the mean reversion ‘built-in’. Therefore, we also show the results if S0 ≠ S̄ , 
e.g. if S0 = 0.25 in (c, d)
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conditions, the supervised GAN converges faster and achieves a better approxima-
tion in distribution in all three cases. Figure 10 shows the effect of using a learning 
rate schedule for the generator (see Figs. 11, 12, 13, 14, 15 and 16, for more detailed 
output).

Results on GBM and the case Feller condition satisfied

Weak and strong error

Here, we show the weak and strong error obtained with artificial paths constructed with 
the vanilla and supervised GAN, this time for GBM and the CIR process if the Feller 
condition is satisfied. In the GBM example, the vanilla GAN happened to find a strong 
approximation, i.e. the same map as the conditional inverse distribution on the prior 
(Eq. (16)). On the example we show for the CIR process with the Feller condition satis-
fied, it did not manage to provide a strong approximation.

(a) (b)

(c) (d)

Fig. 16  Scatter plot of S
t+Δt ∣ St versus S

t
 . In (a, b), the Feller condition is satisfied, while in (c, d) it is 

violated. In both cases, the similar shapes of the point clouds reveal that the autocorrelation structures of 
the GAN output and reference samples are similar, demonstrating good weak approximation capabilities 
for Δt = 1 . Strong approximation is reflected in the data points overlapping with the exact samples
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Details on the model parameters

CIR process SDE parameters In the case of the CIR process, the conditional random 
process St+Δt ∣ St follows a scaled non-central �2-distribution with some non-centrality 
parameter � , degrees of freedom � and scaling factor c̄ [9, 37]:

where c̄, 𝜉 and � are related to the SDE parameters as shown in equations (27)–(29), 
cf. [37, p.392].

Modified Euler and Milstein scheme for the CIR process A practical considera-
tion for the CIR process is that discrete-time schemes could give rise to negative 
values, which are problematic when computing the square root in Eq. (24). There-
fore, the Euler scheme will be replaced by what we will refer to as the (partially) 
‘truncated’ Euler scheme, as mentioned e.g. in [41]. In the case of the CIR process 
it is given by:

where S0 ∈ ℝ and Ŝ+
t
∶= max(Ŝt, 0) . Z ∼ N(0, 1) . Note that the truncated Euler 

scheme may still produce negative paths, in which case the term with the Brownian 
motion is equal to zero at step t + Δt.

A modified version of the Milstein scheme can be defined as well. In [42], such a 
Milstein-type scheme has been proposed specifically for the CIR process, which we 
implemented as a reference to the CIR process. This truncated Milstein scheme is 
given by in Eq. (31).

where Ŝt0 = St0 and (⋅)+ ∶= max(⋅, 0) . The one-step order of convergence of this 
scheme depends on the previous value Stk , time step Δt and degrees of freedom 
parameter � [42]. However, the authors of [42] show that the scheme converges in Lp 

(26)St+Δt ∣ St ∼ c̄ 𝜒2(𝜉, 𝛿),

(27)�(St,Δt) =
4�Ste

−�Δt

�2
(
1 − e−�Δt

) ,

(28)𝛿 =
4𝜅S̄

𝛾2
,

(29)c̄(Δt) =
𝛾
2

4𝜅

(
1 − e−𝜅Δt

)
.

(30)Ŝt+Δt = Ŝt + 𝜅(S̄ − Ŝt)Δt + 𝛾
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with order 1
2p
min(1, �) . Note that we could have used a Milstein scheme analogous 

to the truncated Euler scheme, but this led to inferior weak and strong errors com-
pared to the scheme in [42].

Default training/testing parameters For GBM, the default 
parameters were � = 0.05 and � = 0.2 . The CIR parameters were 
S̄ = 0.1, St = 0.1, 𝜅 = 0.1, 𝛾 ∈ {0.1, 0.3} , where � = 0.1 corresponds to the case 
where the Feller condition is satisfied ( � = 4 ) and � = 0.3 to the case where the 
Feller condition is violated (� = 0.44).

Conditional GAN training Both GANs were trained on a range of parameters 
of Δt and (for the CIR process) the ‘previous value’ St . It was found that choosing a 
discrete range parameters that recur many times outperformed a continuous range of 
unique parameters. For example, for Δt , a fixed list was created of times of interest 
Δt ∈ {0.05, 0.1, 0.2, 0.4, 0.5, 0.67, 1, 2} , each of which occured with equal frequency 
in a dataset of Ntrain training samples. This outperformed a continuous range of Ntrain 
time steps on [0, 2]. If more than one conditional parameter is chosen, a training set 
must be defined as the Cartesian product of the two discrete sets of training param-
eters. This was achieved by randomly permuting each vector of training samples and 
concatenating the results. This created ordered vectors of the pairs (St,Δt) , which 
were provided as input to a function that draws samples from the exact distribu-
tion of St+Δt ∣ St and provides corresponding standard normal variates Z to train the 
supervised GAN.

Autocorrelation structure for results on CIR process

To test whether the GAN has correctly captured the dependence of the conditional 
distribution on the previous St , we show a plot of St+Δt ∣ St versus St . These plots 
were made by first drawing 1, 000 samples using the exact distribution of St ∣ S0 at 
t = 1 and S0 = 0.1 . Then, an additional 1000 samples St+Δt ∣ St were drawn from the 
exact distribution conditional on the samples St , with Δt = 1 . Z was computed using 
Eq. (17) and provided as input to the generator.
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