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Abstract

Researchers are often interested in comparing statistical network models estimated from groups that are
defined by the sum-score of the modeled variables. A prominent example is an analysis that compares
networks of individuals with and without a diagnosis of a certain disorder. Recently, several authors
suggested that this practice may lead to invalid inferences by introducing Berkson’s bias. In this article,
we show that whether bias is present or not depends on which research question one aims to answer.
We review five possible research questions one may have in mind when separately estimating network
models in groups that are based on sum-scores. For each research question, we provide an illustration
with a simulated bivariate example and discuss the nature of the bias, if present. We show that if one is
indeed interested in the network models of the groups defined by the sum-score, no bias is introduced.
However, if one is interested in differences across groups defined by a variable other than the sum-
score, detecting population heterogeneity, the network model in the general population, or inferring
causal relations, then bias will be introduced in most situations. Finally, we discuss for each research
question how bias can be avoided.

Translational Abstract

Researchers in clinical psychology and psychiatry increasingly study relationships between symptoms
of mental disorders using network models. In this context, it is often interesting to compare network
models across groups, for example based on gender, age, or whether individuals are diagnosed with a
disorder. The latter case is different from the first two, because diagnosis groups are themselves defined
by the presence or absence of symptoms. Recently, several researchers have suggested that creating
groups in this way leads to biased estimates. In this article, we show that whether or not bias occurs
depends on the research question at hand. We consider five different types of research questions and in
each case determine what the target of our analysis is, whether bias is present, and if so, where that bias
is coming from. In each case, we outline how that bias could best be dealt with or avoided, showing

that each research question requires a qualitatively different approach.

Keywords: Network models, Group comparison, Berkson's bias

The network approach to psychopathology conceptualizes men-
tal disorders as systems of causally interacting symptoms (Bors-
boom, 2017; Borsboom & Cramer, 2013; Schmittmann et al.,
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2013). From this perspective, psychopathology arises not from the
presence of some latent disease variable (e.g., “depression”) caus-
ing symptoms, but from the direct interactions between the symp-
toms themselves. A popular strategy to gain insight into these
interactions is to analyze symptom data with pairwise statistical
network models such as the Gaussian graphical model (GGM) or
the Ising model (e.g., Epskamp et al., 2018).

A key prediction of the network approach is that healthy and
unhealthy individuals differ in the patterns of causal relations
between their symptoms, for example with respect to the role
particular symptoms play in the network, or how densely con-
nected the symptoms are overall (Borsboom, 2017; Cramer et
al., 2010). To evaluate this prediction, many studies have inves-
tigated differences between healthy and unhealthy individuals by
comparing estimated network models across groups (e.g., Hee-
ren & McNally, 2018; Levinson et al., 2018; Meier et al., 2019;
Santos et al., 2017; Southward & Cheavens, 2018; Van Rooijen
et al., 2018). To define healthy and unhealthy groups, a popular
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choice is to use the DSM-5 definition of the disorder at hand,
which typically relies on a cut-off value based on the symptom
sum-score (e.g., at least five out of nine symptoms for major
depression; American Psychiatric Association, 2013).

However, this type of analysis has been put into question by
several authors who have suggested that defining groups based on
the sum-score leads to biased inferences (for example, Birkeland
et al., 2020; Dablander et al., 2019; De Ron et al., 2019; Epskamp
& Fried, 2018; Fritz et al., 2018; Funkhouser et al., 2020; Lazarov
et al., 2020; Meier et al., 2019; Mkhitaryan et al., 2019; Mullarkey
et al., 2021; Robinaugh et al., 2020). How could such a bias arise
in principle? Bias is defined as the discrepancy between the expec-
tation of an estimator (i.e., the average estimate obtained from
many random samples) and a particular target of inference.
Researchers may obtain biased estimates for a number of reasons.
One way is by intentionally choosing to use a biased estimator in
order to obtain estimates with some other desirable qualities (e.g.,
using regularization techniques to reduce variance; Hastie et al.,
2015). A second way to obtain biased estimates is by unintention-
ally using an estimator which does not correspond to one’s partic-
ular target of inference. It is this latter case that is related to
conditioning on the sum-score and is the focus of this article.

While there are numerous historical treatments of biases related
to conditioning on so-called endogenous variables in the statistical
literature (e.g., Berkson, 1946; Muthén, 1989; Pearl, 2009), De
Ron et al. (2019) first investigated this problem in the context of
network model comparisons based on symptom sum-scores. They
studied the specific case in which one’s research question concerns
the difference in network structure between two latent groups, but
instead one investigates the differences between groups defined by
the sum-score. Because the target of inference (the networks in the
latent groups) does not correspond to the estimator used (the net-
works in the sum-score groups), this procedure necessarily leads
to bias, except in the special case in which the latent groups hap-
pen to be the same as the sum-score groups.

But group comparisons can also be motivated by other types of
research questions. These could focus on the groups that are
defined by the sum-score (such as diagnosed vs. not diagnosed
groups), the detection of population heterogeneity, the network
model in the general population, or the estimation of causal
effects. Crucially, in each of these cases the target of inference is
different. Consequently, the answer to the question whether any
bias is present, and if so, how to mitigate it, depends on the type of
research question one aims to answer by comparing network mod-
els across groups that are defined by the sum-score.

In this article, we consider five types of research questions one
may have in mind when comparing groups based on the sum-
score, including the one originally studied by De Ron et al.
(2019). For each type of research question, we use a simulated
bivariate example as an illustration and discuss whether bias is
present. We show that if one is indeed interested in the groups
based on the sum-score, no bias is present. However, if one’s
research question concerns the networks based on another (latent)
grouping variable, detecting population heterogeneity, the network
model in the general population, or causal relations, biases exist.
In each of these cases we pinpoint the exact nature of the bias and
discuss strategies to avoid it. We thereby hope to add clarity for
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researchers about when comparing groups that are defined on the
sum-score is problematic and how to avoid possible biases.

Different Research Questions, Different Biases

In this section, we consider five research questions that one may
have in mind when separately estimating network models in
groups defined by a symptom sum-score. To discuss possible
biases that arise for each research question, we use the simplest
nontrivial example: Two continuous variables X; and X,, with two
groups defined by their sum. These two continuous variables could
be interpreted as severity scores of two symptoms of a given disor-
der. In this example, the statistical network structure simply takes
the form of a correlation parameter. However, all our conclusions
extend to more than two variables, conditional dependence meas-
ures such as partial correlations, more than two groups, and the bi-
nary and mixed variable case.

Network Models of Diagnosed and Not Diagnosed
Groups

The first type of research question we consider concerns the
investigation of statistical relationships between symptom varia-
bles in both diagnosed and not diagnosed groups of individuals.
Because symptom sum-scores are the primary criteria used to
diagnose psychopathology in the DSM-5 (American Psychiatric
Association, 2013), researchers may define groups of diagnosed
and not diagnosed individuals based on a sum-score cut-off of the
symptom variables themselves.' This allows researchers to investi-
gate how patterns of symptom relationships differ across diag-
nosed and not diagnosed groups. In statistical terms, this type of
research question concerns the statistical relationships between
symptoms conditional on diagnostic status.

To answer this type of research question, we split the data using
the sum-score of our symptoms and compute the correlation in
each group. Figure 1 illustrates this process for our bivariate exam-
ple.? The left panel shows the relationship between the two symp-
toms X; and X, in the overall population, and the solid line
displays the best fitting regression line, which indicates a strong
positive relationship ( = 0.74). This reflects the common empiri-
cal finding that symptoms are positively correlated. We now split
the sample based on the sum-score S = X; + X, defining individ-
uals with a sum-score of S < 8.50 as belonging to the no diagnosis
group (D = 0), and individuals having a sum-score of S = 8.50 as
belonging to the diagnosed group (D = 1). The dashed diagonal
line in the right panel of Figure 1 depicts this cut-off value, with
the diagnosis group and no-diagnosis group indicated by the red
and blue points, respectively. We can now estimate the parameters
of the network models separately in each group, obtaining the

"In the present article we take symptom sum-scores to be sufficient in
defining diagnosed and not diagnosed groups for the sake of simplicity. In
practice, additional criteria are often used, such as in the DSM-5 definition
of depression, which requires 5 or more of 9 symptoms (including at least 1
of depressed mood and loss of interest or pleasure) [...], (American
Psychiatric Association, 2013). The discussion of biases in the current
article also applies to the use of criteria additional to the sum-score to
create diagnosed and not diagnosed groups.

2 Code to reproduce the figures is available from https://github.com/
fdabl/Sum-Score-Paper.
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Relationships Between X; and X, in the Entire Population and in Subgroups Defined by Their Sum-Score
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Note. Left: Relationship between severity of symptoms X; and X,. The solid line indicates the best fitting regression line (r = 0.74). Right: Relationship
between severity of symptoms X; and X, in diagnosed and not diagnosed individuals. The dashed black line indicates the split of the symptom sum-score
at the value 8.50; individuals with sum-score larger 8.50 are above this line (diagnosis), and subject with sum-score lower 8.50 are below this line (no di-
agnosis). The solid lines indicate the best fitting regression lines in the separate groups, with correlations rp—y = 0.12 and rp-; = 0.40, respectively. See

the online article for the color version of this figure.

correlation between both symptoms conditional on diagnosis. We
find that in the group without diagnosis the correlation is rp-g =
0.12, while the correlation in the group with diagnosis is higher
rpey = 0.40.°

Given the present research question and analysis, are these cor-
relation coefficients biased? Recall that bias is defined as a dis-
crepancy between the expectation of the estimator and the target
of inference. In the present case, the estimates are the sample cor-
relation coefficients in the groups with (D = 1) and without (D =
0) diagnosis, and the targets of inference are the population corre-
lation coefficients in the groups with (D = 1) and without (D = 0)
diagnosis. Consequently, there is no bias.

Critically, the absence of bias in the context of this research
question does not imply the absence of bias in the context of other
research questions. Indeed, for the four research questions dis-
cussed in the remainder of this article, different biases arise when
trying to answer them by splitting the data based on the sum-score.
We discuss the bias in each context in detail and describe possible
remedies that may help researchers to avoid biased inferences.

Network Models of Groups Defined by Another
Variable

The second type of research question we consider also concerns
the investigation of how statistical relationships between symp-
toms depend on group membership, but where the grouping vari-
able of interest (G) is different from the diagnostic grouping
variable (D). The bias in this scenario has previously been
described in the network literature by De Ron et al. (2019), who
take G to represent a latent variable “healthy” versus “unhealthy”
as distinct from “diagnosed” versus “not diagnosed.” In this situa-
tion, the network model conditional on D will be a biased estimate
of the network model conditional on G. Figure 2 illustrates this for
our bivariate example.

Comparing the regression lines in the two groups based on diag-
nosis, D = 1 and D = 0 (right panel of Figure 1), with the regres-
sion lines in the two groups defined by G (right panel of Figure 2)
shows that they are different. Here, the sample correlation coeffi-
cients rg—o and rg—; are unbiased estimators of the population cor-
relations in groups G = 0 and G = 1, but, as we can see,
membership of D and G do not correspond. Consequently, if we
use the sample correlation in group D = 0 (rp-¢ = 0.12) as an esti-
mate of the population correlation in Group G = 0 (which is much
higher, as indicated by the sample correlation rg—o = 0.55), then
this estimate will be biased.

In which situations is one dealing with such an alternative
grouping variable G? There are two types of situations. In the first
one we can obtain the grouping variable from the data. For exam-
ple, the grouping variable might simply be available (e.g., sex at
birth) or is a function of the data that is different from the sum-
score. In this situation, avoiding bias is easy: One splits the data
using G in the groups of interest, and estimates the statistical net-
work models in each of the groups.

The second situation occurs if G is not directly observable and
cannot be obtained from the data. This is the situation researchers
are in if they wish to study, for example, the variable “depression,”
but they assume that membership of the depressed or not
depressed group is not equivalent to meeting the diagnostic criteria
for depressed or not depressed, as indicated by the symptom varia-
bles. Because the grouping variable G is unobserved, it cannot be
used to split the data into groups, and so we need to approximate it
somehow. One option to approximate G would be to use the diag-
nostic Group D, as we did above. The better D approximates G,
the smaller the bias. But unless D and G are equivalent, some bias

3 The result that the correlation is stronger in the group with diagnosis in
this example reflects the finding that the symptom networks in groups with
diagnosis are more dense than the symptom networks of groups without
diagnosis (although the opposite result has also been found in the literature;
for a review see Robinaugh et al., 2020).
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Relationships Between X; and X, in the Entire Population and in Subgroups Defined by

Alternative Grouping Variable
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Left: Relationship between severity of symptoms X; and X,. The solid line indicates the best fitting

regression line (r = 0.74). Right: Relationship between severity of symptoms X, and X, in different groups G.
The dashed black line indicates the split of the symptom sum-score at the value 8.50. The purple and green col-
ors indicate “healthy” (G = 0) and “unhealthy” (G = 1) latent groups, whose correlation between the symptoms
is rg=p = 0.55 and rg-; = 0.71, respectively. See the online article for the color version of this figure.

will be present. The obvious strategy to reduce bias in this scenario
is to better specify what this alternative grouping variable G really
is, or how it could in principle be measured. For example, one
might be able to better approximate G using other variables such
as biological or environmental risk factors. However, this is only
possible if G is well defined. This shows that the fundamental rea-
son for the bias in this situation is not a statistical problem related
to splitting the data into two groups, but the conceptual problem of
not specifying what the latent variable G is and how it can be
measured.

Let’s take a step back and consider again the specific example
of G being the latent variable “depression.” Assuming that such a
variable exists implies that we take the position that depression
can be conceptualized along a single dimension. However, this
position is at odds with the premise of the network approach as a
theoretical framework, which posits that mental disorders arise
from direct interactions between symptoms (Borsboom, 2017). It
therefore seems unclear whether it is conceptually consistent to an-
alyze symptom networks separately for groups that represent dif-
ferent levels of depression on a unidimensional scale. An
alternative way to investigate how the network structure depends
on symptom activation that is conceptually consistent with the net-
work approach would be to specify a model in which each pair-
wise interaction is moderated by each variable in the model (De
Ron et al., 2019; Haslbeck, 2020; Haslbeck et al., 2019). This
way, the interactions between symptoms can be dependent on the
values of the modeled variables, without assuming an underlying
latent variable.

Population Heterogeneity

The third research question concerns the detection of population
heterogeneity, that is, detecting the presence of subgroups defined

by distinct statistical characteristics (such as means, variances,
correlations, and/or partial correlations). This research question
differs the second research question, where the presence of distinct
subgroups was assumed a priori as a latent grouping variable G,
and the first research question, where distinct subgroups were
imposed based on sum-scores and diagnostic criteria D. We will
treat the identification of population heterogeneity in statistical
terms as a question about mixtures of distributions: Are the magni-
tude of the symptoms and the relations between them best
described with a single multivariate distribution, or does a mixture
of two or more such distributions better describe the data? In the
latter case, we refer to the population as being heterogeneous,
while in the former case we refer to the population as being homo-
geneous. This research question is conceptually similar to the
question whether a latent class structure underlies the data (cf.
Borsboom et al., 2016). Here, we discuss to what extent popula-
tion heterogeneity can be detected by splitting the data on the
sum-score.

A perhaps intuitive line of argument would be that, if the net-
work parameters in the two groups defined on the sum-score dif-
fer, the population is heterogeneous. This reasoning is flawed,
however, and Figure 3 illustrates why: In both panels we show the
same data generated from a single bivariate Gaussian distribution,
which means that there is no population heterogeneity. In the two
panels we split the data at different cut-off values of the sum-score
(depicted by the dashed diagonal lines). We see that the correla-
tions in the “high” and “low” sum-score groups are different, even
though the data were generated from a single distribution. Further-
more, by comparing the left and right panels, we see that those
group differences are a function of the chosen cut-off value. In
fact, the correlations in the two groups will be different for almost
all cut-off values. Critically, this shows that network models will
be different across groups defined on the sum-score, even if the
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Relationships between severity of symptoms X; and X5 in the low and high groups, for different cut-off

values on the sum-score. Both panels illustrate that the network models in the two groups can be very different
while the population is homogeneous. See the online article for the color version of this figure.

studied population is homogeneous. Consequently, comparing
groups based on the sum-score cannot be a valid method to detect
population heterogeneity.

To directly assess whether population heterogeneity exists,
researchers may wish to use mixture models (e.g., McLachlan &
Peel, 2000), as has been suggested previously in the network liter-
ature (e.g., Brusco et al., 2019; De Ron et al., 2019). In particular,
one can fit mixture models with a varying number of mixture com-
ponents or groups (e.g., 1, 2, or 3) to the data and perform model
selection, for instance using information criteria such as the BIC
to find the best fitting mixture model (Leroux, 1992; Steele & Raf-
tery, 2010). This can be done in a confirmatory manner by, for
example, using the sum-score as a way to define the group mem-
bership of each observation, or in an exploratory manner by learn-
ing the group membership of each observation. If model selection
returns a single component, we would speak of a homogeneous
population; if it returns two or more components, we would speak
of a heterogeneous population.

Network Model in the General Population

The fourth type of research question we consider is about the
network structure in the general population, which consists of
both diagnosed and not diagnosed (or, if we choose to consider
such a grouping variable, “healthy” and “unhealthy”) individuals.
The network model in the general population is also called the
marginal network model, because it is obtained by marginalizing
(i.e., averaging) over all variables (e.g., group memberships) that
may have an effect on the network. If one has a representative
sample from the general population, the approach one should take
to answer this type of research question is simple: Estimate the
network model on the full sample, without splitting the data into
groups. This provides an unbiased estimate of the population net-
work model, to the extent that the sample is indeed representative
of the general population.

The problematic case, however, is when one takes a sample
from a specific subpopulation and uses it to make inferences about
the general population. This reflects the situation initially studied
by Berkson (1946): Suppose one wishes to study the correlation
between lung cancer (X;) and diabetes (X,), and that the correla-
tion in the general population is zero. When one looks at the corre-
lation between these two diseases among patients in a hospital,
however, then X; and X, are negatively associated. This is because
both lung cancer and diabetes increase one’s chances of visiting
the hospital: If one is in the hospital but does not have lung cancer,
then it is more likely that one does have diabetes than it is for hos-
pitalized individuals who do have lung cancer. The correlation
between X; and X, in the hospital is a conditional correlation,
since it is the correlation conditional on being in the hospital. The
bias induced by using a conditional correlation as an estimate for
the marginal correlation has traditionally been referred to as Berk-
son’s bias (e.g., Snoep et al., 2014).

The situation that marginal and conditional relationships need
not be the same is also illustrated in the example in Figure 1. Here,
the correlation in the whole sample (left panel) is different than
the correlation in either of the two separate groups (right panel).
Clearly, in such a situation taking the correlation of one of the
groups as an estimate of the correlation in the general population
would lead to bias. Notably, the converse is also true: Estimating
the correlation using the whole sample would yield a biased esti-
mate of the correlation in each group (a situation previously dis-
cussed in the network literature by Hoffman et al.,, 2019).
However, it should be noted that researchers who purposefully
split their sample according to the sum-score are unlikely to have
marginal relationships in mind as their target of inference, since
the marginal relationships can simply be estimated directly with-
out splitting the sample in the first place. Splitting the sample by
the sum-score group would suggest that we are interested in some
kind of conditional relationship instead, and so Berkson’s bias
does not occur in that case.
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Figure 4
Causal Graph Connecting Variables and Sum-Score
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Note.

Left: Causal graph with variables X; and X, having a positive causal effect on

variable D. When D is defined by the sum-score of X; and X5, it is fully determined by
X; and X,. Right: X; and X, become negatively associated when conditioning on the col-

lider D.

Causal Relations

The final scenario concerns the use of the conditional relation-
ship between two variables X; and X, given diagnosis D, when the
research question concerns the causal relationship between X; and
X,. From a causal perspective D would be called a common effect
or a collider of X; and X5, and collider bias refers to the fact that
the conditional correlation of X; and X, given D is a biased esti-
mate of the direct causal effect between X and X,. Unlike the sce-
narios described in all previous sections, the target of inference
here concerns causal relationships, not merely statistical ones
(Pearl, 2009).

We illustrate the problem of collider bias using the following
example. The left panel of Figure 4 depicts causal relationships
between three variables, X, X, and D, as a directed acyclic graph
(DAG), which is a widespread and well-developed formalism for
describing directed causal structures. In this scenario, we see that
both X, and X; have a positive direct causal effect on D (that is,

Xi D and Xs i>D) but that X; and X, have no direct causal
effect on one another. We can think about these causal effects as
describing what would happen if we were to intervene on a vari-
able: Setting X to a larger value would increase the value of D,
but have no effect on the value of X,. These causal relationships in
turn imply a certain set of statistical relationships: D is dependent
on X; and X, both marginally and when conditioning on X, or X,
respectively. However, while X; and X, are marginally independ-
ent of each other, conditioning on D induces a negative statistical
dependency between them. As such, the conditional dependency
between X; and X, given D is a biased estimate of the causal de-
pendency between them. Note that if X; and X, were positively
related, conditioning on D would result in a downward biased—
but not necessarily negative—estimate, too.

Collider bias as we have outlined here is an issue when using
statistical network models (based on sum-score splits) with the
goal of inferring underlying directed causal structures. However,
researchers should also be aware that statistical network models
are likely to induce collider bias even in the absence of sum-score
splitting, and that the use of statistical network models to infer

directed causal structures is problematic (e.g., Dablander & Hinne,
2019; Ryan et al., 2019). Researchers who wish to infer a directed
causal structure in the general population from observational data
—with all caveats attached—have a plethora of tools at their dis-
posal (for an overview see Spirtes & Zhang, 2016). Causal search
methods generally do not allow for heterogeneity in the causal
structure across groups, however. To search for heterogeneous
causal structures, researchers could instead use a “mixture of
DAGs” approach, which combines mixture modeling techniques
as described above with causal search procedures (e.g., Saeed et
al., 2020). The royal road to estimating causal effects, however,
remains performing an experiment.

Conclusions

In this article, we reviewed five types of research questions one
may have in mind when separately estimating statistical network
models across groups that are defined based on the sum-score. For
each type of research question, we discussed the presence of bias
using a bivariate example, and our findings are summarized in
Table 1.

Our analysis adds clarity for applied researchers and methodolo-
gists concerned by potential problems associated with estimating
network models from groups defined by the sum-score. We
showed that even though statistical network models are a relatively
new addition to the statistical toolbox of psychologists, the issues
related to conditioning have been identified previously in more
general settings. In the cases in which the problems were of a sta-
tistical nature, there were clear solutions: If one is indeed inter-
ested in the network models conditional on the sum-score, there is
no problem; if one is interested in the network model in the gen-
eral population, one should not condition on any variable; and if
one aims to detect population heterogeneity, one should use appro-
priate statistical methods to do so. However, in case one would
like to estimate network models in groups defined by a latent vari-
able, the problem is primarily conceptual: One needs to clearly
characterize this latent variable and specify how to measure it.
Finally, if the goal is to move beyond statistical relationships and
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Summary of Which Biases Are Present for Different Types of Research Goals When Analyzing Network Models Separately in Groups

Defined by the Sum-Score

Research goal Target of inference Bias Suggested approach
Estimating network models of diagnosed rp=1, 'p=0 No Use symptom sum-score to split groups.
and undiagnosed groups
Estimating network models of healthy rG=1, 'G=0 Yes If possible, split on grouping variable

and unhealthy groups (where health #
diagnosis)
Detecting population heterogeneity
Estimating network model in the general r

population

Estimating causal relationships between
symptoms

Number of components

E[X,|do(X,),D = 1],
E[Xz |d0(X1),D = O]

G. If G unobservable, solution
depends on understanding G.
Possible that D may be the best avail-
able approximation.

Yes (Gaussian) mixture models to test for
K =1,2,... components.
Yes Do not use symptom sum score to split

groups. Obtain representative sample
of whole population. Marginalize
over all grouping variables.

Yes Use causal search procedures; causal
search with mixtures of DAGs; if
possible, conduct experiments

Note.

to discover causal relations, one needs to use appropriate methods
for causal inference. In sum, we showed that the key to avoiding
biases related to conditioning on sum-scores is to clearly specify
what the target of inference is. Only then can one choose an appro-
priate method that avoids bias.
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