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Abstract—Hybrid modules that combine self-attention and
convolution operations can benefit from the advantages of both,
and consequently achieve higher performance than either opera-
tion alone. However, current hybrid modules do not capitalize
directly on the intrinsic relation between self-attention and
convolution, but rather introduce external mechanisms that come
with increased computation cost. In this paper, we propose a new
hybrid vision transformer called Shift and Concatenate Trans-
former(SCFormer), which benefits from the intrinsic relationship
between convolution and self-attention. SCFormer roots in the
Shift and Concatenate Attention (SCA) block, that integrates
convolution and self-attention features. We propose a shifting
mechanism and corresponding aggregation rules for the feature
integration of SCA blocks such that generated features more
closely approximate the optimal output features. Extensive ex-
periments show that, with comparable computational complexity,
SCFormer consistently achieves improved results over competi-
tive baselines on image recognition and downstream tasks. Our
code is available at: https://github.com/hotfinda/SCFormer.

Index Terms—Vision transformer, hybrid module, feature in-
tegration

I. INTRODUCTION

Convolutional neural networks (CNNs) and vision trans-

formers have achieved remarkable performance. Considering

the inherently different feature extraction process of CNNs

and transformers, researchers are motivated to utilize the

advantages of both and extract optimal features through the

integration of features from both CNNs and transformers.

Previous work has explored the combination of self-

attention (SA) and convolution operations in two ways. One

option is to consider SA and convolution operations inde-

pendently and aggregate their outputs through summation or

multiplication. Examples of this approach include SAN [1],

AA-ResNet [2], and Container [3]. A second line of approach

focuses on integrating convolution and SA operations in a

mixed path to exchange features through matrix projection or

insert operations. This approach is pursued in Mixformer [4],

Conformer [5], and MobileFormer [6]. While existing ap-

proaches to combine SA and convolutions achieve better per-

formance than their uni-modal counterparts, they unavoidably

introduce additional CNN modules to enrich SA modules.

These additional modules make models computationally ex-

pensive. Moreover, these CNN modules are designed for cer-

tain model structures or integration methods. When integrating

these CNN modules with SA modules in different model

structures, feature details could deteriorate. Thus it remains a

challenging task to optimally combine outputs of convolution

and SA without heavily increasing the computation cost.

In this paper, we explore an alternative approach to integrate

convolution and self-attention outputs. We utilize the intrinsic

relationship between convolution and SA by reusing the value

map of SA layers as the source of integrated CNN features,

and develop a mixed Shift and Concatenate Attention (SCA)

module. The SCA module elegantly integrates features from

convolution and SA with minimal computational overhead. We

first project the input feature maps with 1× 1 convolutions to

obtain a set of intermediate features. After the computation of

the SA layer, these intermediate features are reused to generate

CNN features. The CNN and SA layer features further pass

through a novel shifting block that increases the receptive

field. The final complementary features are obtained after

aggregation. In this way, we benefit from the capabilities of

convolution and SA operations, while reducing the computa-

tion effort. Our contributions include:

• We propose a computationally efficient Shift and Con-

catenate Attention (SCA) block to combine features of

CNN and SA. We also introduce SCFormer, a vision

transformer with integrated SCA blocks.

• A shifting mechanism is proposed in the SCA block to

integrate the complementary contribution of self-attention

and convolution.

• Our SCFormer achieves state-of-the-art performance on

image classification, object detection and semantic seg-

mentation tasks, demonstrating its use as an efficient

general purpose vision transformer.

II. RELATED WORK

Owing to the ability to capture long-range dependencies,

self-attention is mainly introduced as non-local alternative

to CNN blocks [7]. SAGAN [8] introduced SA modules

into the generator and the discriminator of a GAN so that

both efficiently model relationships between spatially distant

regions. Relation Networks [9] use an object attention module

as an embedding in existing networks. The object attention

module processes a set of objects simultaneously through the

interaction of their appearance features and geometry. Despite

the performance improvement of transformers over CNNs, it

is deemed necessary to complement transformer models with

convolution operations to introduce additional inductive biases

[10]. CvT [11] adopts convolution in the tokenization process
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and utilizes strided convolutions to reduce the computation

complexity of SA. Xiao et al. [12] demonstrated that a

standard, lightweight convolutional stem at the early stage

of vision transformers is more robust. Swin Transformer [13]

adopts a convolution-based positional encoding technique and

shows improvements on downstream tasks such as image

classification and segmentation.

Researchers have proposed different ways to integrate con-

volution and SA features. We distinguish between two main

approaches. One way is to treat the convolution and SA oper-

ations independently and to aggregate features in a subsequent

step. AA-Resnet [2] applies SA in parallel to a standard

convolution operation and concatenates the outputs. Lu et al.

[3] propose the Container block, which aggregates the outputs

of both operations using an affinity matrix. Another line of

research focuses on integrating convolution and SA operations

in an embedded path to share or exchange both features.

Mixformer [4] utilizes matrix projection to embed features of

depth-wise convolutions into the SA operation. The features

are integrated by concatenating the outputs. Conformer [5]

adds features directly to the pipeline of the other path and

finally integrates the features. MobileFormer [6] follows the

same strategy while having fewer parameters.

While existing approaches improve the model performance,

the improvement is based on additional CNN modules that

enrich the SA features. This approach relies on CNN modules

that are specifically designed for certain model structures or

integration method. When used in a different model structure,

feature details could deteriorate. Another drawback is that the

additional CNN modules add parameters and thus make the

network computationally more expensive.

We deviate from existing works and propose the Shift

and Concatenate Attention(SCA) block to integrate features

of convolution and SA without introducing additional con-

volution modules. The SCA block reusing the value map

features of SA layers as the source of integrated CNN features.

We further propose a shifting mechanism and corresponding

aggregation rules to expand the receptive field. Such a structure

not only naturally inherits the advantages of both CNNs and

transformers but also remains computationally efficient.

III. METHOD

A. SCA block

Our proposed SCA block (see Figure 1) makes two key

modifications to the standard self-attention block. First, the

SCA block uses a shifting operation to remove the overlap

between the focus regions of SA and CNN. Second, we

introduce an aggregation method to generate features from SA

and convolution.

Shifting block. SA and CNN will focus on partly over-

lapping regions, which we will refer to as “shared” regions.

Except for these shared regions, SA tends to focus on textured

regions to generate low-frequency features, while CNNs tend

to focus on the boundary regions to generate high-frequency

features. This could explain why a hybrid model uses convo-

lutions in early stages and SA in later stages [14]. Because

the features in shared regions are already processed by SA or

CNN, our intuition is that we can move the focus area of SA

from shared regions towards textured regions. This way, we

can not only collect more features, but also obtain a larger

receptive field. To achieve this shift, we propose a shifting

mechanism for the self-attention output following the form:

yi = αi − γ (αi, βi)� αi (1)

γ (αi, βi) = Softmax(αi � βi) (2)

where yi is the output of size 1×1×C, αi is the feature of

size 1×1×C in the SA result, and βi is the feature of size

1×1×C in the value map. The relation function γ outputs a

single vector that represents the relation between αi and βi,

� is the Hadamard product.

We take βi as the CNN feature since βi comes from a

convolution block. yi represents the new SA feature with no

relation to βi, which also means that Equations 1 and 2 remove

the shared regions from the focus areas of SA. Instead, we then

shift the self-attention towards the texture regions. Following

[15], we keep query map Q and key map K unchanged, and

the capacity of information that should be obtained at each

position i of the SA result can be calculated as follows:

Îi = φ(Qi)

m∑

j=1

φ(Kj)

Oj
(3)

where m is the number of tokens in the key map and
φ(Kj)
Oj

is

the normalization operation for the token at position j in key

map.

We take αiy
T
i as the similarity of features at position

i, because the similarity value will be much smaller when

the position is part of the shared region compared to the

textured region. We can increase the information capacity of

the textured region to get the final SA result ri through:

ri = LReLU(αiy
T
i ∗ Îi)� yi (4)

Aggregation. Instead of utilizing the simple summation

operation to aggregate the features from CNN and SA, we

firstly concatenate the features at the same position of CNN

and SA in the channel dimension and then use a 1 × 1
convolution layer to aggregate the features. The advantage of

this approach is that we not only increase the depth channel

for the later stage, but also keep the opportunity for feature

transformation in the next stage to better process the features.

B. SCFormer architecture

Overall architecture. Based on the SCA block, we propose

our SCFormer architecture, which follows residual networks.

SCFormer is efficient and easy to implement, as shown in

Figure 1. Another advantage of this design is that we can

directly compare to recent works that use a similar structure,

e.g. EfficientNets [16], SAN [1], and Mixformer [4].

SCFormer consists of four parts: convolution stem, SCA

block, projection layer, and classification head, see Figure 1.

The convolution stem acts as an initial encoder. In four stages,
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Fig. 1: Overall pipeline of SCA block. The convolution block processes the input feature map and generates initial features. The self-
attention block processes features from the convolution block and generates features that mainly focus on textured regions. The self-attention
regions move toward other textured regions after passing through the shifting block, and the final result is generated by aggregating the value
map and the deformed self-attention output.

we stack SCA blocks with downsampling rates of 4, 8, 16, 32

inside the convolution block, respectively. We then use a linear

projection layer to increase the number of channels to 1280 to

preserve more detail in the channel. Finally the classification

head provides the final classification.

Architecture variants. We define four architecture variants

(B1-B4) by stacking blocks of different sizes. The number of

blocks in four stages is set by following residual networks and

SAN networks [1], and the channel number of the four stages

is set as 256, 512, 1024, and 2048, respectively. Details of the

four variants appear as follows:

• B1: head numbers={2, 4, 8, 16}, blocks={1, 2, 4, 1}
• B2: head numbers={2, 4, 8, 16}, blocks={2, 3, 5, 2}
• B3: head numbers={3, 6, 12, 24}, blocks={3, 4, 6, 3}
• B4: head numbers={4, 8, 16, 32}, blocks={3, 5, 8, 4}

IV. EXPERIMENTS

We evaluate our SCA block and its use in SCFormer on

image classification (Section IV-A), object detection (Sec-

tion IV-B) and semantic segmentation (Section IV-C). We then

compare to related architectures. In Section IV-E, we provide

a qualitative evaluation of SCFormer. We further present the

ablation study on the effects of aggregation method, feature

map type, and number of blocks per stage. Finally, we validate

the performance of our SCFormer on datasets of limited size.

A. Image classification

We first verify our method on the image classification task

using the ImageNet-1K dataset. To make a fair comparison

with previous works, the setting follows [4]. We use the

AdamW optimizer with a cosine decay schedule. All models

are trained for 300 epochs, and the input image size is

224× 224. The results are shown in Table I.

Results. We compared the four SCFormer variants to the

state-of-the-art, including ConvNets, vision transformers, and

a combination of both. We explicitly evaluate several variants

of the same architecture to better understand the relation

between model size, number of computations and classifica-

tion performance. Our method outperforms all baselines with

comparable FLOPs and parameters. For example, compared

to vision transformers, SCFormer-B4 obtains a 83.7% top-1

accuracy, which is 0.7% higher than Swin-S with 38% fewer

parameters and 60% fewer FLOPs. With a combination of

CNN and transformer, the formerly best performing works are

MixFormer-B4 and Swin-ACmix-S. Our largest architecture

variant SCFormer-B4 outperforms these networks by +0.7%

and +0.2% respectively. SCFormer-B4 has a comparable com-

putational complexity to MixFormer-B4 but has only 61% the

number of parameters and only performs 39% of the number

of FLOPs of Swin-ACmix-S. SCFormer is both more efficient

and more effective.

B. Object detection

We continue with an experiment on COCO-2017 dataset to

evaluate the effectiveness of SCFormer on object detection.

We use our SCFormer-B4 as backbone with Mask R-CNN

[19] and Cascade Mask R-CNN [20] as the detection heads.

To better compare with other models, we follow [4] and adopt

the 1× and 3× schedule to train different models.

Results. For Table II, we observe that SCFormer-B4 con-

sistently shows better performance than the baselines under

different train schedules and detection heads. For example,
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TABLE I: Image classification accuracy on ImageNet-1K valida-
tion. Methods grouped into convolution, transformer and combina-
tion. Best top-1 accuracy in bold.

Method #Params FLOPs Top-1
ConvNets

EffNet-B1 [16] 8M 0.7G 79.1
EffNet-B2 [16] 9M 1.0G 80.1
EffNet-B3 [16] 12M 1.8G 81.6
EffNet-B4 [16] 19M 4.2G 82.9

Vision transformers
DeiT-T [17] 6M 1.3G 72.2
DeiT-S [17] 22M 4.6G 79.9
DeiT-B [17] 87M 17.5G 81.8
PVT-T [18] 13M 1.8G 75.1
PVT-S [18] 25M 3.8G 79.8
PVT-M [18] 44M 6.7G 81.2
PVT-L [18] 61M 9.8G 81.7
CvT-13 [11] 20M 4.5G 81.6
CvT-21 [11] 32M 7.1G 82.5
Swin-T [13] 29M 4.5G 81.3
Swin-S [13] 50M 8.7G 83.0

Combination of CNN and transformers
AA-ResNet-50 [2] 25.8M 4.2G 77.7
MixFormer-B1 [4] 8M 0.7G 78.9
MixFormer-B2 [4] 10M 0.9G 80.0
MixFormer-B3 [4] 17M 1.9G 81.7
MixFormer-B4 [4] 35M 3.6G 83.0

Swin-ACmix-T [10] 30M 4.6G 81.9
Swin-ACmix-S [10] 51M 9.0G 83.5
SCFormer-B1(Ours) 8M 0.7G 78.9
SCFormer-B2(Ours) 10M 0.9G 80.0
SCFormer-B3(Ours) 16M 1.9G 82.0
SCFormer-B4(Ours) 31M 3.5G 83.7

TABLE II: Object detection on MS COCO. We compare using two
schedules and two backbones. Best results in bold.

Method Backbone # FLOPs APm APm
50 APm

75

Mask
R-CNN

ResNet50 [21] 1× 260G 34.4 55.1 36.7
Swin-T [13] 1× 264G 39.1 61.6 42.0

MixFormer-B4 [4] 1× 243G 41.2 64.3 44.1
SCFormer-B4(Ours) 1× 240G 42.0 65.3 45.0

Cascade
Mask

R-CNN

ResNet50 [21] 3× 739G 40.1 61.7 43.4
Swin-T [13] 3× 745G 43.7 66.6 47.1

Shuffle-T [22] 3× 746G 44.1 66.9 48.0
SCFormer-B4(Ours) 3× 717G 45.5 68.5 49.4

compared to Swin-T [13], SCFormer-B4 achieves +2.9 higher

mAP under the 1× schedule with Mask R-CNN, and +1.8

higher mask mAP in the 3× schedule with Cascade Mask

R-CNN. The number of FLOPs for all methods is compara-

ble. Again, this demonstrates that the improvements are not

achieved from using a more complex model, but instead from

the ability to encode more informative features.

C. Semantic segmentation

We also evaluate the effectiveness of SCFormer on a chal-

lenging scene parsing dataset: ADE20K [23]. We use UPer-

Net [24] as the segmentation method with different backbones

TABLE III: Semantic segmentation results on ADE20K validation
split with single scale testing. Best mIoU in bold.

Backbone #Params FLOPs mIoU
ResNet-101 [21] 86M 1029G 43.8

DeiT-S [17] 52M 1099G 44.0
Swin-T [13] 60M 945G 44.5
Focal-T [25] 62M 998G 45.8

Shuffle-T [22] 60M 949G 46.6
TwinsP-S [26] 55M 919G 46.2

ACmix-Swin-T [10] 60M 950G 45.3
MixFormer-B4 [4] 63M 918G 46.8

SCFormer-B4 (Ours) 60M 914G 47.7

TABLE IV: Image classification results with other networks. In
ResNets and SAN, we replace the original blocks in the last stage
with SCA blocks, and adjust the channel depth of the original network
(denoted with *). Best results in bold.

Models FLOPs Params Top-1
ResNet-26 [21] 2.4G 13.7M 75.5

ResNet-26 + Swin-T [13] 2.5G 15.8M 78.0
ResNet-26 + ACmix [10] 2.5G 15.9M 78.0

ResNet-26 + SCA 2.6G 16.1M 78.7
ResNet-26* + SCA 2.4G 13.6M 78.4

ResNet-50 [21] 4.1G 25.6M 79.0
ResNet-50 + Swin-T [13] 4.3G 28.4M 80.0
ResNet-50 + ACmix [10] 4.4G 28.8M 80.3

ResNet-50 + SCA 4.4G 29.0M 81.1
ResNet-50* + SCA 4.1G 23.7M 80.9

SAN-10 [1] 1.9G 11.8M 79.1
SAN-10 + Swin-T [13] 1.9G 12.1M 79.6
SAN-10 + ACmix [10] 1.9G 12.3M 79.6

SAN-10 + SCA 2.0G 12.4M 80.0
SAN-10* + SCA 1.9G 11.8M 79.8

SAN-19 [1] 3.3G 20.5M 80.2
SAN-19 + Swin-T [13] 3.4G 21.2M 80.6
SAN-19 + ACmix [13] 3.5G 21.9M 80.7

SAN-19 + SCA 3.5G 22.1M 81.2
SAN-19* + SCA 3.3G 19.3M 80.9

pretrained on ImageNet-1K. For training, we mainly follow the

setting in [13], and a resolution of 512× 2048 is used.

Results. From Table III, we conclude that SCFormer out-

performs other backbones with fewer or a comparable number

of parameters and FLOPs. For example, with the same number

of parameters, SCFormer-B4 outperforms Swin-T by +3.2 on

mIoU, and ACmix by +2.1. These results confirm the merits

of SCFormer.

D. Generalization to other networks

We now evaluate the ImageNet-1K image classification

performance of the SCA block in ResNet [21] and SAN [1]

architectures. Following [4], we replace all the blocks in the

last stage with our SCA block. The networks are trained as in

Section IV-A. Results appear in Table IV.

Our SCA block can provide consistent gains. For example,

SCA Block brings +3.2% and +2.1% top-1 accuracy over

ResNet-26 and ResNet-50, respectively. By adjusting the depth
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Fig. 2: Grad-CAM visualization of different layers of ResNet-50,
ResNet-50+Swin-T and ResNet-50+SCFormer.

TABLE V: Feature aggregation strategies. We evaluate SCFormer-
B4 on the image classification, object detect, and image segmentation
tasks. Best results in bold.

Integration ImageNet-1K MS COCO ADE20k
Top-1 Top-5 APm mIoU

Dot product 82.6 96.1 40.4 46.1
Subtraction 82.7 96.1 40.4 46.3
Summation 83.1 96.3 41.1 47.2

Concatenation 83.7 96.8 42.0 47.7

of feature maps, we obtain the ResNet* and SAN* with same

FLOPs and similar numbers of parameters as ResNet and SAN

while obtaining higher accuracy.

E. Qualitative evaluation

To better understand how the SCA module is working, we

use Grad-CAM to visualize the feature maps of three ResNet-

50 networks with the original convolution blocks in the last

stage, and with blocks replaced by Swin-Transformers or SCA

blocks. The networks are trained as in Section IV-A. The

visualization results for two images are shown in Figure 2.

The networks focus on different regions at different stages.

CNN layers focus on small regions in the feature maps, and

few pixels in the objects are identified by the network, we

might explain the lower accuracy. Compared to CNN layers,

self-attention layers clearly have larger regions of attention,

which results in higher accuracy. Our SCA layers have richer

information of the object and combine useful attention areas

from CNN layers and self-attention layers to obtain comple-

TABLE VI: Different feature maps in image classification, object
detection, and image segmentation with SCFormer-B4.

Feature map ImageNet-1K MS COCO ADE20k
Top-1 Top-5 APm mIoU

1× 1 conv + 3× 3 conv 81.5 95.4 39.4 45.0
Value map 83.7 96.8 42.0 47.7

Value map + 3× 3 conv 83.9 96.9 42.4 47.8

TABLE VII: Image classification with different numbers of blocks
in each stage SCFormer-B4, evaluated on ImageNet-1K.

Structure Channels FLOPs # Param Top-1

1

stage1:(64, 128, 256)

3.5G 31.0M 83.7
stage2:(512*5)
stage3:(1024*8)
layer4: (2048*4)

2

stage1:(64, 128, 256, 256)

3.5G 31.5M 83.7
stage2:(512*5)
stage3:(1024*8)
stage4: (2048*4)

3

stage1:(64, 128, 256)

3.5G 32.2M 83.7
stage2:(512*6)
stage3:(1024*8)
stage4: (2048*4)

4

stage1:(64, 128, 256)

3.6G 33.0M 83.8
stage2:(512*5)
stage3:(1024*9)
stage4: (2048*4)

5

stage1:(64, 128, 256)

3.7G 35.1M 83.9
stage2:(512*5)
stage3:(1024*8)
stage4: (2048*5)

mentary information. This is consistent with the design of our

SCA layer.

F. Ablation: Effect of aggregation method

We experiment with alternative feature aggregation meth-

ods: summation, subtraction, and dot product. We consider the

same tasks image classification, object detection, and image

segmentation. We use the SCFormer-B4 model and apply the

same training procedures and datasets.

In Table V, self-concatenation is the most effective way of

aggregation. The other strategies show comparable but lower

performance. A reasonable assumption is that summation,

subtraction and dot product cannot take into account the scale

of the features, so that the network misses information.

G. Ablation: Value map versus other feature maps

To explore the design spirit of utilizing the value map

and the output of SA, we utilize feature maps from different

methods and summarize the results in Table VI.

In Table VI, the value map consistently performs better than

utilizing features from another 1×1 conv + 3×3 convolution

block. This verifies our hypothesis that the value map enables

better feature representation learning. Introducing additional

convolution modules after the value map also slightly increases

the performance, but at increased computation cost.

H. Ablation: Number of blocks per stage

Our SCFormer utilizes the same structure as residual net-

works, which includes four stages. In each stage, a number

of SCA blocks is used. To explore the sensitively to different

numbers of blocks per stage, we take SCFormer-B4 as the
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Models FLOPs Top-1 Top-5
ResNet-50 4.1G 82.6 94.5

ResNet-50 + ACmix 4.4G 83.2 95.8
ResNet-50 + Swin-Transformer 4.3G 83.1 95.6

ResNet-50* + SCA 4.1G 83.8 96.1
MobileNetV2 0.3G 70.8 90.4

MobileNetV2 + ACmix 0.3G 71.5 91.6
MobileNetV2 + Swin-Transformer 0.3G 71.4 91.4

MobileNetV2 + SCA 0.3G 71.9 92.0

TABLE VIII: Image classification on CIFAR-100. We substitute our
SCA block in ResNet-50 and MobileNetV2.

baseline and systematically increase the number of blocks in

each stage. Results for image classification on ImageNet-1K

are shown in Table VII.

In Table VII, by comparison with first three rows we can

see that increasing the number of blocks in the early stage

has almost no influence on the performance. Comparing the

fourth and fifth row, we can see that the optimal choice is to

use more blocks in later stages.

I. Application to small-scale datasets

Here we validate the performance of our SCA block on

datasets of limited size. To make comparison with other

methods, we follow [14] and replace all blocks in the last

stage of the original networks with our SCA block. We apply

our SCA block to widely used ConvNets ResNet-50 and

MobileNetV2, and utilize the CIFAR-100 dataset.

Table VIII shows that the SCA block acts as a suitable

alternative to ConvNet blocks and provides gains on small

dataset. For example, SCA brings +1.1% and +1.2% top-

1 accuracy over MobileNetV2 and ResNet-50, respectively.

Compared to ACmix, SCA also shows better performance

with +0.4% and +0.6% over MobileNetV2 and ResNet-50,

respectively.

V. CONCLUSION

We have introduced a Shift and Concatenate Attention

(SCA) block to combine features from convolution operations

and self-attention without an increase in the computational

overhead. The block allows for an expanded receptive field,

while the focus is directed to regions that are naturally

more informative. We employ the SCA block in a novel

transformer architecture SCFormer. Extensive experiments on

image classification, object detection and image segmentation

demonstrate the effectiveness and efficiency of our approach.
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