
Information and Software Technology 160 (2023) 107226

A
0

O
i
W
a

b

A

K
R
T
M
L
M

1

i
l
r
t
I
J

a
p
t
u
t
v

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

n the effectiveness of automated tracing from model changes to project
ssues
outer van Oosten a, Randell Rasiman a, Fabiano Dalpiaz a,∗, Toine Hurkmans b

Utrecht University, The Netherlands
Mendix, The Netherlands

R T I C L E I N F O

eywords:
equirement Traceability
race link recovery
odel-driven development

ow-code development
achine learning

A B S T R A C T

Context: Requirements Traceability (RT) is concerned with monitoring and documenting the lifecycle of
requirements. Although researchers have proposed several automated tracing tools, trace link establishment
and maintenance are still prevalently manual activities.
Objective: In order to foster the adoption of automated tracing tools, we study their empirical effectiveness in
the context of model-driven development (MDD). We focus on trace link recovery (TLR) from (i) SVN revisions
of MDD models to (ii) JIRA issues that represent requirements and bugs.
Method: Based on the state-of-the-art in automated TLR, we propose the LCDTrace tool that uses 131 features
to train a machine learning classifier. Some of these features use specific information for MDD contexts. We
conduct three experiments on ten datasets from seven MDD projects. First, we evaluate the effectiveness
of three ML algorithms and four rebalancing strategies using all 131 features, and we derive two optimal
combinations for trace link recommendation and for trace maintenance. Second, we investigate whether the
MDD-specific features convey higher performance than a version of LCDTrace that excludes those features.
Third, we employ automated feature selection and study whether we can reduce the number of features while
keeping similar performance, thereby boosting time and energy efficiency.
Results: In our experiments, the gradient boosting models outperform those based on random forests. The
best combinations for trace recommendation and maintenance achieve an F2-score of 61% and F0.5-score of
67%, respectively. While MDD-specific features do not provide additional value, automated feature selection
succeeds at reducing feature numerosity without compromising performance.
Conclusion: We provide insights on the effectiveness of state-of-the-art TLR techniques in MDD. Our findings
are a baseline for devising and experimenting with alternative TLR approaches.
. Introduction

Requirements Trace Link Recovery (RTR) is the process of establish-
ng trace links between requirements and other artifacts [1], when such
inks are not existing. Many of the automated approaches for trace link
ecovery (TLR) use information retrieval (IR) techniques [2]; roughly, if
wo artifacts are textually similar, they should be traced [3]. Common
R algorithms include Vector Space Models, Latent Semantic Indexing,
enson–Shannon Models, and Latent Dirichlet Allocation [2,4,5].

The ever-increasing adoption of machine learning (ML) has affected
utomated TLR too [2]. ML approaches treat TLR as a classification
roblem: the Cartesian product of the two sets of trace artifacts defines
he space of candidate trace links [6,7]. A subset of these links, man-
ally defined by domain experts, are valid links. An ML classifier is
asked to build a model that predicts whether unseen trace links are
alid or invalid. This is achieved by representing the trace links as a

∗ Corresponding author.
E-mail address: f.dalpiaz@uu.nl (F. Dalpiaz).

vector of features. Most ML approaches for TLR use similarity scores
of IR-based methods as features [6–8] and they have been shown to
outperform IR-based TLR approaches [7].

We investigate the effectiveness of ML-based TLR in the context of
model-driven development, specifically, in low-code development. In
this development paradigm, which has shown potential for RTR [9,10],
applications are built by creating models that describe the domain
entities and their relationships, the application logic, the algorithms,
and the mapping between data and user interfaces. We study how to
automatically recover missing trace links from model changes to project
management issues.

We respond to the call of the research community [2,5] by exper-
imenting with industrial datasets in an emerging application domain.
Thanks to the collaboration with Mendix, an MDD platform producer
vailable online 10 April 2023
950-5849/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107226
eceived 13 August 2022; Received in revised form 24 March 2023; Accepted 3 Ap
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ril 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:f.dalpiaz@uu.nl
https://doi.org/10.1016/j.infsof.2023.107226
https://doi.org/10.1016/j.infsof.2023.107226
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107226&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information and Software Technology 160 (2023) 107226W. van Oosten et al.

d
a
a

t
b
f

m
M
s
S
c
f

2

M
o
b
m
v

c
t
t
v
p

v
a

2

t
‘
w
i
a

p
w
m

e
w

2

a
t
t

t
r

that specializes in low-code development, we investigate ten datasets
from seven real-world projects, with the research goal of studying the
effectiveness of ML-based TLR algorithms in the context of MDD.

Following the Design Science research methodology [11], we con-
uct an empirical study at Mendix with a focus on vertical trace-
bility [12]: the recovery of trace links between artifacts at different
bstraction levels. Our main contributions are as follows:

1. We build the LCDTrace tool, an ML approach that recovers trace
links from model revisions to JIRA issues using 131 features from
the literature [7,8]. LCDTrace is available as an open-source
project: https://github.com/RELabUU/LCDTrace.

2. We use ten datasets from seven projects at Mendix to evalu-
ate the effectiveness of three ML algorithms (random forests,
XGBoost, and LightGBM) with four rebalancing strategies. We
identify two combinations that are best suited for the scenarios
of trace link recommendation and of trace link maintenance.

3. We empirically evaluate whether the MDD-specific features of
LCDTrace have an effect on the performance. To do so, we
compare the performance of all the features against LCDTrace
trained only with those features that do not use MDD-specific
information.

4. We study whether we can reduce feature numerosity while
maintaining comparable effectiveness, so to decrease energy
consumption and processing time. In our experiments, we use
the automated feature selection algorithm mRMR [13,14] that
discards highly correlated features.

In addition to reporting quantitative results, we attempt to interpret
he performance, with the overall aim of understanding the reasons
ehind the results. To do so, we investigate which features and feature
amilies offer the highest predictive power.
Paper organization. Section 2 presents the background on require-

ents traceability and automated TLR. Section 3 describes our case:
DD at Mendix. Section 4 presents our research method and the re-

earch questions. Section 5 elaborates on the construction of LCDTrace.
ections 6–8 show the results to the research questions. Section 9 dis-
usses the threats to validity, while Section 10 concludes and outlines
uture work.

. Related work

RT practices are mandated by standards such as the Capability
aturity Model, ISO 9000/9001, and IEEE 830-1998 [15,16]. Thus,

rganizations who aim or need to comply with such standards em-
race RT practices. These are expected to deliver benefits for project
anagement and visibility, project maintenance, and verification &

alidation.
Despite these benefits, RT activities are found to be ‘‘time-

onsuming, tedious and fallible’’ [17]. Even when conducted, manual
racing is favored, leading to traces which are error-prone, vulnerable
o changes, and hard to maintain. These difficulties gave birth to a
ast research landscape, with many automated techniques that were
roposed for recovering trace links.

After providing the terminological background in Section 2.1, we re-
iew the major types of approaches to automated TL recovery (without
iming at a comprehensive literature review) in Section 2.2.

.1. Basics of software and requirements traceability

Gotel et al. [18] define (software) traceability as the potential for
traces to be established (i.e., created and maintained) and used. A trace is
denoted as a triple: (source artifact, target artifact, trace link).

Trace artifacts can be organized into types [18] that have a similar
structure and/or purpose. For instance, requirements may be a distinct
artifact type. In our research, we have two trace artifact types: (i) JIRA
issues, which indicate requirements or bugs; and (ii) revisions, which
2

summarize the changes in the models that the MDD developer commits
to a repository like SVN.

We use revisions as our source artifact, and JIRA issues as our target
artifact. Since JIRA issues contain also requirements, this setting is an
instance of requirements traceability [19]. In particular, we study vertical
traceability: relating artifacts at differing levels of abstraction [18]. This
contrasts with horizontal tracing, which focuses on the establishment
and maintenance of trace links between artifacts at the same level of
abstraction.

Traceability can also be characterized in terms of the direction of
the trace links recovery, either forward or backward [18]. We inves-
tigate backward traceability: tracing that follows antecedent steps in a
developmental path. In our case, this antecedence also corresponds with
a chronological path: we assume that changes cannot be committed for
an issue that does not yet exist.

A final distinction relates to the direction with respect to a require-
ments specification (RS) [19]. Requirements in the RS can be traced
either (1) to information prior to the requirements’ inclusion in the RS
(pre-RS traceability), or (2) to information after their inclusion in the
RS (post-RS traceability). We focus on post-RS traceability. Our RS is
expressed in a lightweight format: a collection of JIRA issues.

2.2. Automated trace link recovery

Gotel and colleagues [18] distinguish between three terms that per-
tain to tracing activities: manual tracing (e.g., drag and drop methods),
automated tracing where a tool identifies the links, and semi-automated
tracing where the tool suggests and a human vets [20] the results.

We investigate automated and semi-automated tracing, a rich area
of research that is characterized by numerous approaches. We review
the major types of approaches in the following paragraphs.

2.2.1. Information retrieval (IR)
These techniques assume that when two artifacts are textually sim-

ilar, they should probably be traced to each other [3]. Thus, to recover
trace links, an IR-based algorithm computes a score of the textual simi-
larity between software artifacts. Trace links scoring above a threshold
are considered valid.

Many IR-based methods use Vector Space Models (VSM): each
document is transformed into a vector space, and the similarity be-
tween documents is calculated via cosine distance [1]. More advanced
techniques are the Jenson–Shannon Models, which take documents as a
probabilistic distribution [21,22], and the Jenson–Shannon Divergence
as a measure of semantic difference.

There are two fundamental challenges with IR methods. Synonymy–
he use of different terms for the same concept (e.g., ‘drawing’ and
illustration’)–threatens recall, unless the tracing algorithm knows
hich terms are synonyms. Polysemy–terms that have multiple mean-

ngs (e.g., ‘fall’)–impacts precision, as IR algorithms are not that strong
t word sense disambiguation [23].

Latent Semantic Indexing (LSI) can mitigate these challenges by
redicting a word’s meaning based on its co-occurrence with other
ords in a document. Existing approaches that apply LSI to TLR show
ixed results [3,24].

Many other approaches have further improved performance. How-
ver, according to De Lucia et al. [25], there does not seem to be a clear
inner: the best performing IR-based approach depends on the case.

.2.2. Machine learning
Most state-of-the-art techniques for RTR employ ML nowadays. ML

pproaches are used for their ability to recognize implicit patterns in
he data that are then used to distinguish between valid and invalid
races.

ML approaches treat the TLR process as a classification problem:
he Cartesian product of the two trace artifact sets is calculated, and the
esulting elements represent candidate trace links [6,7]. An ML classifier

https://github.com/RELabUU/LCDTrace


Information and Software Technology 160 (2023) 107226W. van Oosten et al.
Fig. 1. Meta-model showing the relationships between JIRA issues and SVN revisions.
learns from the sample data, which is manually traced, and the classifier
is then used to predict whether unseen couples of artifacts should be
traced to one another.

In order to learn the patterns that distinguish valid trace links from
invalid ones, the classifier uses a characterization of couples of artifacts
in terms of features: attributes that can either refer to a single artifact
(e.g., the number of words in a requirement), or to the relationship
between them (e.g., their textual similarity). Most ML TLR approaches
use IR similarity scores as features [6–8], although other features, such
as query quality [7], source code location distance [26], process-related
features [8], Requirements to Requirements Set (R2RS) metrics [27],
have been proposed.

Besides feature representation, researchers have also analyzed
which ML classification algorithms perform best. Falessi et al. [27]
have compared decision trees, random forests, Naïve Bayes, logistic
regression, and bagging, with random forests yielding the best results.

2.2.3. Deep learning
Advances in neural networks can be employed in automated TLR.

Guo et al. [28] proposed a combination of word embeddings and recur-
rent neural networks for establishing forward traces from subsystem
requirements to subsystem design descriptions. In their experiments,
deep learning outperforms IR approaches based on VSM and LSI.

Another comparison between IR and deep learning is conducted
by Lin et al. [29]. They study datasets that include multiple (inter-
mingled) languages and, like us, they link revisions to issues. In their
experiments, neural networks outperform IR-based approaches.

Although deep learning approaches have the potential of achieving
good results without the costs of feature engineering, neural networks
are best suitable with large datasets. Unsurprisingly, researchers have
started assembling open datasets, such as SEOSS 33 [30], a collection of
data regarding open-source projects. The availability of large data col-
lections is not applicable to all industrial cases, like the one described
in this paper, where the number of issues and commits is too low to
enable deep learning.

3. Case description: MDD at Mendix

We conduct research in collaboration with Mendix, the producer
of the Mendix Studio Low-Code Platform (MLCP). The MLCP employs
MDD principles and allows creating software by defining graphical
models for the domain, the business logic, and the user interface [31].

We focus on the practices of MLCP developers employed by Mendix,
who are building MLCP applications for internal use. These developers
follow the SCRUM development process. Product Owners are respon-
sible for managing and refining requirements, which are documented
as JIRA issues and added to the product backlog, alongside the bugs.
The issues for the Sprint Backlog are chosen by the development team,
and each item is assigned to one developer who is responsible for its
implementation in the sprint.

After becoming acquainted with the JIRA issue, the MLCP developer
opens the latest MLCP model, navigates to the relevant modules, and
makes the required changes. These changes determine a revision that
is committed to the SVN repository once they fulfill the acceptance
criteria. Each revision includes a log message, in which the MLCP
developer outlines the changes they made, as well as the JIRA issue
3

ID for traceability purposes.
3.1. Studied artifacts

We consider the artifacts associated with MLCP-based development.
We focus on tracing committed SVN revisions to JIRA, using manual
trace information obtained from development teams who followed
traceability practices. Fig. 1 shows the relationships among the trace
artifacts.

Jira issues. Within the widespread project management tool Atlassian
JIRA, project members define work items called issues, which Mendix
uses to document requirements. The following attributes are shared
by all JIRA issues: (I1) a unique issue key serving as identifier, (I2) a
summary that represents a user story, (I3) a description, which further
explains the requirements alongside the acceptance criteria, (I4) an
assignee: the person who is responsible for implementing the issue.
Finally, each issue has three date/time indicating when the issue was
(I5) created, (I6) last updated, and (I7) resolved.

SVN revisions. The MLCP, like any modern development environment,
employs version control. An adapted version of Apache Subversion is
integrated into the MLCP, which the developer can access through
a GUI. Each SVN revision1 contains: (R1) revision-number, a unique
integer, (R2) author, the email of who committed the revision, (R3) log,
an optional text field for the developer to summarize the revision, and
(R4) date, the date/time when the revision was committed.

Finally, each SVN revision contains MDD-specific information that
describes the changes made to so-called units: models or elements
within a model. Each change is stored as an element of an array that
contains (R5) unitID, (R6) the status (added, deleted, or modified), (R7)
unitName: the name of that unit, (R8) unitType: the category of the unit
(e.g., microflow or form), (R9) the module where the unit is located. For
example, when the developer commits their work, one of the changes
in the revision which may indicate that an Entity (unitType) called
Customer (unitName), with identifier 345 (unitId) has been added
(status) to CustomerDB (module).

3.2. Studied datasets

We acquired data from seven internal MLCP projects, produced
by three development teams. We refer to them as (i) Company, (ii)
Control, (iii) Data, (iv) Learn, (v) Portfolio, (vi) Service, and (vii) Store.
For projects Control and Learn, we obtained multiple datasets, each
referring to a different time period, leading to Control_1, Control_2,
Control_3, Learn_1, and Learn_2. For each project, we used a data export
of one JIRA project and one MLCP repository.

Table 1 summarizes the availability of manually established traces,
distinguishing between revisions that trace to no issues, to a single
issue, and to two or more issues. Several revisions are untraced. This
could be because the revision is too generic (e.g., creation of a branch),
or because the developer forgot about tracing. Also, the revisions were
not always traced to issue keys of the JIRA projects we acquired. This
happens because multiple teams, each with their own JIRA project, may
operate on the same repository.

1 Throughout the paper, we use revision to indicate an SVN revision



Information and Software Technology 160 (2023) 107226W. van Oosten et al.

t
t

T
i

Table 1
Summary of the acquired project data. The average values in the last row, here and elsewhere, are reported as the
macro-average across the datasets.

Dataset Team Issues Revisions Revisions traced to

ID 0 issues 1 issue ≥2 issues

Count % Count % Count %

Company A 29 626 153 24.44 440 70.29 33 5.27
Control_1 A 111 1,629 485 29.77 1,118 68.63 26 1.60
Control_2 A 116 768 275 35.81 488 63.54 5 0.65
Control_3 A 99 498 145 29.12 335 67.27 18 3.61
Data B 58 818 236 28.85 556 67.97 26 3.18
Learn_1 C 278 1,239 211 17.03 894 72.15 134 10.82
Learn_2 C 168 303 105 34.65 166 54.79 32 10.56
Portfolio A 97 1,056 254 24.05 781 73.96 21 1.99
Service B 173 2,930 1,435 48.98 1,462 49.90 33 1.13
Store C 634 713 508 71.25 202 28.33 3 0.42

Average 176 1,058 381 34.40 644 61.68 33 3.92
3.3. Traceability practices at Mendix

We reviewed the traceability practices at Mendix to better assess the
industrial applicability of our research. We conducted two focus groups
with a total of eight (four per session) industry experts from Mendix:
tech leads, architects, and engineers. We discussed every aspect of
traceability within their development process, not limited to our JIRA
issues and model revisions. Mendix has numerous teams across the
company that develop applications for both internal use and external
clients. These teams can choose how their team operates, to a large
extent, making them in charge of their process.

Establishing trace links by including a JIRA issue key when making
revisions is seen as ‘good practice’ by the development teams. However,
how this is organized within the teams varies. While some teams follow
simply instruct their members to include the identifier, others adopt
more advanced processes. Some teams defined a repository rule that
checks if the revision log of a committed change includes an issue key.
Any revision that includes a key that is not part of the current sprint
gets rejected.

Still, both cases allow for errors to be introduced, for instance
by misspelled issue keys. As the experts said, fixing errors without
having trace links to the model changes is more challenging. The
experts showed great interest in our field of study. They highly value
their traceability practices, but at the same time they would not want
solutions that over-constrain their processes.

4. Research method

As stated in the introduction, our research goal is that of studying the
effectiveness of ML-based TLR algorithms in the context of MDD. We aim
to establish whether and to what extent state-of-the-art TLR approaches
can be applied to MDD, with a focus on those models used in low-code
development.

After presenting the evaluation scenarios in Section 4.1, we describe
and illustrate the research questions and the research approach in
Section 4.2.

4.1. Evaluation scenarios and metrics

We adopt the two scenarios by Rath et al. [8]: Trace Recommendation
and Trace Maintenance. We evaluate LCDTrace in both scenarios using
he F-measure, the harmonic mean between precision and recall. We
ake the versions of the F-measure [32] proposed by Rath et al..2

2 A rigorous estimation of 𝐹𝛽 [32] is beyond the scope of this paper.
o draw more solid conclusions, we also discuss precision and recall when

nterpreting the results.
4

Trace recommendation. At Mendix, MDD developers use a GUI to com-
mit changes to the remote repository. When doing this, the developer
outlines the changes made and can specify (log field of SVN revision in
Fig. 1) the identifier of the relevant JIRA issue(s). Integrating a trace
recommendation system can improve this scenario by showing a list of
candidate issues that are most likely to be linked to the current revision.
The developer manually vets the trace links. It is cognitively affordable
and relatively fast since developers generally know which specific JIRA
issue they have implemented. This scenario requires high recall: valid
traces must be in the list for a developer to review them. Precision is
less important because developers can ignore invalid traces. Therefore,
Rath and colleagues suggest using the F2-measure.

Trace maintenance. Not all the revisions are traced to a JIRA issue. As
visible in the ‘0 issues’ columns of Table 1, circa 34% of the revisions
are not traced to issues. Thus, maintenance is needed to recover traces,
which leads to the goal of the second scenario: an automated trace
maintenance system. Such a system would periodically recover traces
that were forgotten by the developers, ultimately leading to a higher
level of RT. Since this system should consider the Cartesian product of
all issues and all untraced revisions, precision is more important than
recall, leading to Rath’s suggestion of using the F0.5-measure.

4.2. Research questions and approach

We describe the research questions and the research approach; see
Fig. 2 for an illustration. We aim at a thorough empirical assessment,
rather than contributing new techniques for automated TLR. Therefore,
the first research question focuses on investigating the most effective
ML approach for our context:

RQ1: What is the most effective ML approach for trace maintenance
and trace recommendation between revisions and JIRA issues in
MDD contexts?

To answer RQ1, we need to define what is meant by ML approach,
which we characterize as (i) a classifier algorithm, (ii) a rebalancing
strategy, and (iii) a set of features. Details on these aspects are pro-
vided in Section 5. For now, note that we take 131 features from the
literature, and that we investigate a combination of three classifier
algorithms and four rebalancing strategies.

The answer to RQ1 leads to two combinations of classifier algorithm
and rebalancing strategy, one per each of the two evaluation scenarios
introduced in Section 4.1. A first answer to RQ1 was given in our
previous work [33]; here, we rely on ten datasets rather than three,
and we use a slightly improved version of LCDTrace that fixes some
bugs. RQ1 is analyzed in Section 6.

The selected ML approaches then feed into two research questions
that we did not explore at all in previous work. First, we examine
whether the features that make use of MDD-specific information lead

to improved performance:



Information and Software Technology 160 (2023) 107226W. van Oosten et al.
Fig. 2. Illustration of the research approach to address RQ1–RQ3.
RQ2: What is the added value delivered by the features that use
MDD-specific information?

To address RQ2, we follow the same experimental procedure that
we use for RQ1, but using a subset of the 131 features: those 85 features
that do not make use of MDD-specific information (features that make
use of unit names). By comparing the F-measures of RQ2 with those of
RQ1, we assess the added value of the MDD-specific features. RQ2 is
analyzed in Section 7.

The best ML approaches from RQ1 also feed into a third research
question, which aims at reducing the number of the features, as the
higher the number of features, the slower the algorithm and the higher
the energy footprint:

RQ3: Can we increase efficiency while keeping similar performance
by reducing the number of features?

To answer RQ3, we use a highly efficient automated feature se-
lection algorithm called mRMR (minimum redundancy-maximum rel-
evance) [13,14], which identifies those features that are expected to
deliver the highest gain by removing correlated features that would be
redundant. We make experiments on our ten datasets trying to select
the 40, 50, and 60 most relevant features according to mRMR. We
discuss RQ3 in Section 8.

5. Requirement trace link classifier for MDD (lcdtrace)

To support the trace recommendation and trace maintenance sce-
narios, we construct an ML classifier to categorize the validity of traces,
based on recent research [7,8]. Our LCDTrace classifier is publicly
available as open source (https://github.com/RELabUU/LCDTrace) and
in our online appendix [34].

We first describe how we pre-process the datasets from Mendix
and we construct the trace links in Section 5.1. Then, we describe the
feature engineering process (Section 5.2), we discuss the classification
algorithms (Section 5.3), and we elaborate on the data rebalancing
strategies (Section 5.4).
5

5.1. Data description and trace construction

To train the LCDTrace classifier, we used the data from the ten
datasets from Mendix that are summarized in Table 1. For each dataset,
we obtained a file including the JIRA issues, and another one with a
list of SVN revisions.

Revisions. The input data is a textual file in the Subversion Dump
format. LCDTrace uses Regular Expressions to transform the data and to
extract the issue key(s) from the log message and to store it as a distinct
issue key column. The issue key is then removed from the log message,
so that the data can be used for training and testing the classifier.

The log message is further pre-processed using common techniques:
(1) words are lowercased, (2) interpunction is removed, (3) numeric
characters are removed, (4) sentences are tokenized with NLTK, (5)
stop words are removed using the corpus from NLTK, and (6) all re-
maining terms are stemmed using the Porter Stemming Algorithm [35].

These activities lead to a pre-processed dataset that consists of
(using the labels we defined in Section 3.1): R1 (Revision Number),
R2 (Author), R3 (Log), R4 (Date), R7 (Unit Names), R8 (merge of Log
and Unit Names), and associated JIRA key (a reference to I1).

JIRA issues. The JIRA datasets are comma-separated text files that
are exported from JIRA. Pre-processing is carried out similarly to
the revisions, leading to a dataset that consists of I1 (Issue key), I2
(Summary), I3 (Description), I4 (Assignee), I5 (Created date), I6 (Last
updated date), I7 (Resolved date), plus one additional feature: I9 (JIRA
All Natural Text): the union of I2 and I3.

Trace link construction. We discarded revisions that are not traced to
issues, because we could not tell whether (i) the revision was related
to no issues, or (ii) the trace link had been forgotten. We calculated the
Cartesian product between the JIRA issues and the retained revisions.
Each element of the Cartesian product represents a candidate trace link
(revision, issue), whose validity was determined by comparing the issue
key to the revision’s related issue key. If the issue key is present, the
trace link is classified as valid; else, it is invalid.

https://github.com/RELabUU/LCDTrace


Information and Software Technology 160 (2023) 107226W. van Oosten et al.

a
c
c
a
a
f
b
c
a
b

5

t
o
c
a

P
e
t
i
b
t
(
i

D
t
t
i

Table 2
Potential number of trace links (|𝐼| × |𝑅|), candidate trace links by excluding revisions that are not linked to any issue, and
valid/invalid traces after applying causality filtering.

Dataset |𝐼| × |𝑅| Causality
filtering

Candidate
trace links

Invalid traces Valid traces

Company 28,154 Before 13,717 13,355 97.36% 362 2.64%
After 8,067 7,705 95.51% 362 4.49%

Control_1 180,819 Before 126,984 126,363 99.51% 621 0.49%
After 93,451 92,830 99.34% 621 0.66%

Control_2 89,088 Before 57,188 56,988 99.65% 200 0.35%
After 21,567 21,367 99.07% 200 0.93%

Control_3 49,302 Before 34,947 34,620 99.06% 327 0.94%
After 22,646 22,319 98.56% 327 1.44%

Data 47,444 Before 33,756 33,305 98.66% 451 1.34%
After 27,815 27,364 98.38% 451 1.62%

Learn_1 344,442 Before 285,784 284,965 99.71% 819 0.29%
After 144,591 143,772 99.43% 819 0.57%

Learn_2 50,904 Before 33,264 33,119 99.56% 145 0.44%
After 12,195 12,050 98.81% 145 1.19%

Portfolio 102,432 Before 77,794 77,023 99.01% 771 0.99%
After 51,415 50,644 98.50% 771 1.50%

Service 506,890 Before 258,635 258,215 99.84% 420 0.16%
After 89,233 88,813 99.53% 420 0.47%

Store 452,042 Before 129,970 129,884 99.93% 86 0.07%
After 33,627 33,541 99.74% 86 0.26%

Average 185,152 Before 105,204 104,784 99.23% 420 0.77%
After 50,461 50,041 98.68% 420 1.31%
Then, we applied causality filtering to the trace links [8]: given
candidate trace link, when the revision date is antecedent to the

reation date of an issue, the trace link is deemed invalid due to
ausality. This is a common situation in agile development: JIRA issues
re created as the project unfolds, when some or many revisions have
lready been made. Table 2 summarizes the results about causality
iltering. Column |𝐼|× |𝑅| indicates the potential number of trace links
y using the cardinality of the issues and revisions sets in Table 1;
olumn candidate trace links discards the revisions that are not linked to
ny issue. The table also shows the number of valid and invalid traces
efore and after causality filtering.

.2. Feature engineering

The existing trace links are used for training an ML classifier. For
his, the trace links have to be described as a set of features. Based
n literature, we engineered a total of 131 features grouped into four
ategories: process-related, document statistics, information retrieval,
nd query quality.

rocess-related. These four features build on the research by Rath
t al. [8]. Feature F1 captures stakeholder information by indicating if
he assignee of the JIRA issue is the author of the revision. The remain-
ng three features capture temporal information. F2 is the difference
etween the revision date (R4) and the issue creation date (I5), F3 is
he difference between R4 and the date when the issue was last updated
I6), and F4 is the difference between R4 and the date when the JIRA
ssue was resolved (I7).

ocument statistics. These features rely on the work of Mills et al. [7]:
hey gauge document relevance and the information contained within
he documents. In our case, a document consists of the text in a JIRA
ssue or in a revision. Within this category, seven metrics are included:

• Total number of terms, calculated for the JIRA issue (F5) and for
the revision (F6).

• Total number of distinct terms for the JIRA issue (F7) and for the
revision (F8).

• Overlap of terms between JIRA issue and revision. To calculate this
metric, the number of distinct terms that appear both in the JIRA
issue and in the revision are divided in three ways, each leading
to a feature: by the number of distinct terms in (i) the JIRA issue
(F9); the revision (F10); and (iii) either the JIRA issue or the
6

revision (F11).
Table 3
TF-IDF combinations used for VSM.

ID Revision artifact Issue artifact Features

1 Log Message Summary F12–F13
2 Log Message Description F14–F15
3 Log Message JIRA All Natural Text F16–F17
4 Unit Names Summary F18–F19
5 Unit Names Description F20–F21
6 Unit Names JIRA All Natural Text F22–F23
7 Revision All Natural Text Summary F24–F25
8 Revision All Natural Text Description F26–F27
9 Revision All Natural Text JIRA All Natural Text F28–F29

Information retrieval. This set of features captures the semantic sim-
ilarity between two trace artifacts. We first apply VSM with TF-IDF
weighting to transform the trace artifacts to a vector representation.
Because we use TF-IDF weighting, the chosen corpus used for weighting
impacts the resulting vector. For instance, the term ‘want’ occurs com-
monly in the JIRA summary, as Mendix developers write user stories
in there. However, it might be rare when considering all the terms in
a JIRA issue.

Since we could not determine which corpus best represents the trace
artifact, we explore multiple representations: we construct three vector
representations for the issues (I2: Summary, I3: Description, I9: Sum-
mary & Description) and three representations for the revisions (R3: log
message, R7: unit names, and R8: log & unit names). This results in 9
distinct pairs for each trace link candidate, as per Table 3. The cosine
similarity of each pair was computed and utilized as a feature. Mills and
Haiduc [36] showed that the chosen trace direction (which artifact in
the trace link is used as a query) affects traceability performance. Thus,
we calculated the cosine distance in either direction, resulting in the
18 IR-features (F12–F29) in Table 3. We used Scikit-learn for TF-IDF
weighting and SciPy for calculating the cosine distance.

Query quality. This determines a query’s expected ability to retrieve
relevant documents in a document collection. A high-quality query
returns the relevant document(s) at the top of the results lists, whereas
a low-quality query returns them at the bottom of the list or not at all.
Query quality provides complementary information to IR-techniques:
do two artifacts exhibit low cosine similarity because they actually refer

to an invalid trace link, or is this due to a low-quality query?



Information and Software Technology 160 (2023) 107226W. van Oosten et al.

(
r
t
b
t

Table 4
Query Quality Features from the work by Mills and Haiduc [36].

Sub-family Measure Metric Features

Query: Revision Query: JIRA

Specificity TF-IDF {Avg, Max, Std-Dev} F30–F38 F39–F47
TF-ICTF {Avg, Max, Std-Dev} F48–F56 F57–F65
Entropy {Avg, Med, Max, Std-Dev} F66–F77 F78–F89
Query Scope F90–F92 F93–F95
Kullback-Leiber divergence F96–F98 F99–F101

Similarity SCQ {Avg, Max, Sum} F102–F110 F111–F119

Relatedness PMI {Avg, Max} F120–F125 F126–F131
6

o
a
b
s
o

w
s
t
o
r
o

6

Mills and Haiduc [36] devised several metrics for query quality
QQ), which we adopt. These QQ metrics are organized into pre-
etrieval and post-retrieval. The former consider only the properties of
he query, whereas the latter also consider the information captured
y the query results. We focus on pre-retrieval QQ metrics, evaluating
hree different aspects:

• Specificity: the query’s ability to distinguish relevant documents
from irrelevant ones. Highly specific queries contain terms which
are rare in the document collection, while lowly specific queries
contain common terms. Highly specific queries are desirable.

• Similarity: the degree to which the query is similar to the doc-
ument collection. Queries that are comparable to the collection
suggest the existence of many relevant documents, increasing the
possibility that a relevant document is returned.

• Term relatedness: how often terms in the query co-occur in the
document collection. If the query terms co-occur in the document
collection, the query is considered of high quality.

We calculated these metrics for each of the six corpora mentioned in
the information retrieval paragraph (log message, unit names, revision
All Natural text, summary, description, and JIRA All Natural text),
resulting in a total of 102 QQ features: F30–F131, listed in Table 4.

5.3. Classification algorithms

We considered two state-of-the-art supervised ML algorithms for
classifying the validity of trace links: Random Forests and Gradient
Boosted Decision Trees. While the former are shown to be the best
RTR classifier in earlier research [7,8], Gradient Boosted Decision Trees
outperformed Random Forests in other domains like computational
economics [37] and oceanography [38].

To implement Random Forests, we used the framework of Scikit-
learn. For Gradient Boosted Decision Trees, we used two frameworks:
XGBoost, and LightGBM. These frameworks differ in two major re-
spects. First, the method of splitting. XGBoost splits the tree level-wise
rather than leaf-wise, whereas LightGBM splits the tree leaf-wise. Sec-
ond, how the best split value is determined. XGBoost uses a histogram-
based algorithm, which splits a feature and its data points into discrete
bins, which are used to find the best split value. LightGBM uses a subset
of the training data rather than the entire training dataset. Its sampling
technique uses gradients, resulting in training times that are up to 20
times faster than XGBoost [39].

5.4. Data rebalancing

The training data in traceability settings is generally highly imbal-
anced because only a few links are valid [8,28], causing challenges for
classifier training [8]. Table 2 shows that this occurs in our datasets too:
valid links are between 0.26% and 4.49% (mean: 1.31%). The positive
samples that the classifier would encounter during learning are much
lower than the negative ones.

Thus, we applied four rebalancing strategies [7] to the training data:

1. None. No rebalancing method is applied.
7

2. Oversampling. The minority class is oversampled until it reaches
the size of the majority class, by applying SMOTE [40].

3. Undersampling. The majority class is randomly undersampled
until it has the same size as the minority class.

4. 5050. Oversampling via SMOTE is applied to the minority class
with a sampling strategy of 0.5: this leads to increasing the
numerosity of the minority class until 50% of the majority class.
Then, undersampling is applied to the majority class until the
sizes of both classes are equal.

. What is the most effective ML approach (RQ1)?

To answer RQ1, we experimented with the different combinations
f the rebalancing strategies in Section 5.4 and of the classification
lgorithms in Section 5.3. We analyzed the ten datasets independently
y dividing each into a training (80%) and a testing (20%) set using
tratified sampling, so that the two sets have a comparable proportion
f positives (valid traces) and negatives (invalid traces).

To mitigate randomization effects, inspired by Mills and Haiduc [7],
e repeated the evaluation (training–testing set random, stratified

plitting, 10-fold stratified cross-validation on the training set to tune
he model’s hyper-parameters, classifier training on the 80%, testing
n the 20%) ten times, then we averaged the outputs, leading to the
esults in Section 6.1. Furthermore, we discuss the relative importance
f the features in Section 6.2.

.1. Quantitative results

Table 5 shows the average precision, the recall, and the F0.5- and
F2-measure across the 10 runs for each dataset. The table compares
the three algorithms (Random Forests, XGBoost, LightGBM) that are
visualized as macro-columns.

The results for each project are presented in a different set of
rows: each row refers to one of the four rebalancing strategies (none,
oversampling, undersampling, 5050). The last macro-row reports the
macro-average over the projects.

Trace recommendation (F2). In this setting, where recall is weighted
more than precision, the optimal rebalancing strategy is clearly 5050
(fourth row in the macro-rows), which generally leads the highest
results. When comparing the algorithms with the 5050 rebalancing,
both XGBoost and LightGBM outperform Random Forests. Interestingly,
Random Forests have consistently been found to be the best performing
algorithm in prior RTR research [7,8]. Here, in line with research from
other fields [37,38], we find that Gradient Boosted Decision Trees can
outperform Random Forests in RTR-tasks too.

Concerning our two implementations of gradient boosted decision
trees, each obtains the best F2 score in five cases. The differences
between these two algorithms are marginal, with the largest difference
being 3.8% for the Control_2 dataset. The macro-average shows that
XGBoost reaches 61.45%, with LightGBM following closely: 60.94%.

To confirm these findings, we employ statistical tests for testing clas-
sifiers [41]: we execute Friedman’s omnibus test that assesses whether
there is a statistically significant difference between all the tested clas-



Information and Software Technology 160 (2023) 107226W. van Oosten et al.
Table 5
Mean precision, recall, and F0.5- (trace maintenance scenario) and F2-measure (trace recommendation) across the ten datasets. The green-colored
cells indicate the best results per each dataset. For accuracy and readability, the table shows F-scores in percentage.

Proj. Rebal. Random Forests XGBoost LightGBM
P R F0.5 F2 P R F0.5 F2 P R F0.5 F2

Co
m

pa
ny

None 78.78 39.31 65.41 43.63 74.35 48.89 67.20 52.42 71.95 46.39 64.71 49.89
Over 69.46 48.06 63.70 51.17 64.58 57.36 62.84 58.55 61.97 57.78 61.00 58.50
Under 17.65 86.94 20.99 48.64 21.59 91.39 25.48 55.46 20.86 90.42 24.64 54.16
5050 52.49 53.89 52.67 53.50 50.47 67.36 53.07 63.03 54.78 66.67 56.66 63.69

Co
nt

ro
l_1

None 83.86 29.11 60.71 33.45 79.53 41.29 66.91 45.63 62.86 38.39 55.70 41.61
Over 65.68 44.35 59.88 47.42 63.18 49.11 59.66 51.34 45.45 51.13 46.41 49.79
Under 6.55 94.03 8.05 25.62 6.78 95.32 8.33 26.38 7.01 95.40 8.61 27.08
5050 47.90 52.74 48.76 51.66 46.12 54.44 47.55 52.51 37.10 55.48 39.69 50.41

Co
nt

ro
l_2

None 74.69 28.50 55.86 32.43 70.76 48.25 64.43 51.39 65.73 42.50 58.67 45.47
Over 59.91 44.75 55.94 47.03 64.24 61.25 63.58 61.79 54.33 57.75 54.90 56.94
Under 8.85 94.25 10.81 32.09 9.88 93.00 12.02 34.61 9.40 94.00 11.47 33.53
5050 50.41 55.50 51.26 54.29 51.37 62.25 53.16 59.60 44.89 59.75 47.12 55.81

Co
nt

ro
l_3

None 80.32 50.92 71.63 54.78 75.99 56.00 70.83 59.05 71.45 52.77 66.50 55.56
Over 69.84 54.92 66.18 57.34 69.18 62.62 67.65 63.74 64.38 66.46 64.72 65.96
Under 13.46 96.00 16.25 43.06 15.44 97.85 18.57 47.29 15.93 98.46 19.13 48.23
5050 58.15 62.92 58.98 61.84 54.68 71.08 57.28 66.99 51.77 71.54 54.76 66.39

Da
ta

None 89.13 29.91 63.46 34.43 84.18 61.73 78.39 65.16 82.02 58.45 75.81 61.97
Over 75.00 45.27 66.20 49.13 75.62 69.27 74.16 70.38 73.01 71.09 72.57 71.43
Under 16.04 91.73 19.21 47.12 19.79 95.36 23.51 53.97 19.11 96.36 22.75 53.20
5050 67.74 57.27 65.34 59.09 64.14 75.55 66.09 72.89 62.68 76.18 64.92 72.94

Le
ar

n_
1 None 82.73 15.79 44.56 18.83 80.65 44.45 69.19 48.78 54.84 39.15 50.62 41.44

Over 59.86 40.30 54.50 43.09 68.24 51.52 64.01 54.14 53.31 55.61 53.72 55.10
Under 5.49 92.80 6.76 22.18 6.68 94.09 8.21 26.02 6.58 96.46 8.09 25.84
5050 53.03 47.24 51.19 47.79 52.86 59.94 54.12 58.36 46.18 60.67 48.45 57.01

Le
ar

n_
2 None 78.69 23.79 53.42 27.59 59.14 31.03 49.20 34.05 59.61 30.69 49.56 33.83

Over 66.19 42.76 59.33 45.88 57.67 45.86 54.64 47.68 56.68 41.72 52.43 43.79
Under 6.04 83.10 7.41 23.38 7.28 92.41 8.92 27.60 8.05 93.45 9.85 29.89
5050 47.81 42.76 46.46 43.50 44.79 48.28 45.15 47.25 46.68 48.97 46.93 48.27

Po
rt

fo
lio

None 77.42 35.32 62.39 39.60 74.15 46.23 66.07 49.96 68.39 42.27 60.78 45.73
Over 64.94 43.44 59.03 46.49 58.77 52.92 57.42 53.93 48.26 59.22 50.03 56.52
Under 9.48 91.49 11.55 33.50 13.95 95.45 16.82 43.98 13.86 96.75 16.73 44.03
5050 50.50 53.70 51.04 52.96 46.20 61.49 48.60 57.63 40.69 66.17 44.06 58.74

Se
rv

ic
e None 98.82 17.50 50.90 20.93 78.77 46.67 69.02 50.71 64.12 49.76 60.42 51.97

Over 72.15 42.02 62.96 45.80 69.87 63.10 68.16 64.15 61.20 66.67 62.18 65.45
Under 6.69 93.21 8.21 25.93 6.79 97.38 8.34 26.51 6.54 97.02 8.04 25.71
5050 58.91 54.40 57.89 55.20 58.98 70.24 60.86 67.56 54.79 73.57 57.64 68.69

St
or

e

None 87.84 37.06 68.25 41.76 82.10 57.65 74.62 60.75 59.20 52.35 56.73 52.37
Over 71.06 47.06 63.88 50.17 76.79 65.29 74.05 67.21 78.89 58.24 72.51 60.88
Under 4.11 91.76 5.07 17.26 2.56 91.76 3.18 11.38 3.41 85.88 4.22 14.69
5050 65.39 50.00 61.22 52.22 61.27 71.18 62.80 68.66 58.22 70.59 60.13 67.43

M
ac

ro
Av

g None 83.23 30.72 59.66 34.74 75.96 48.22 67.59 51.79 66.02 45.27 59.95 47.98
Over 67.41 45.29 61.16 48.35 66.81 57.83 64.62 59.29 59.75 58.57 59.05 58.44
Under 9.44 91.53 11.43 31.88 11.08 94.40 13.34 35.32 11.08 94.42 13.35 35.64
5050 55.23 53.04 54.48 53.20 53.09 64.18 54.87 61.45 49.78 64.96 52.04 60.94
sifiers, followed by the Nemenyi’s post-hoc test that determines which
couples of classifiers lead to significantly different results. Furthermore,
we measure effect size using Hedges’ 𝑔, which corrects the results of
Cohen’s 𝑑 for small sample sizes like ours [42]. We compare ten data
points per classifier: the average performance (precision, recall, . . . ) of
that classifier on a specific dataset across the ten runs.

The results in Table 6 confirm that, for F2, the two implementa-
tions of gradient boosting are not statistically different, while Light-
GBM+5050 outperforms RF+5050. For precision, RF+5050 has a sig-
nificantly higher precision than LightGBM+5050 with medium effect
size. This is, however, compensated by the lower recall: both Light-
GBM+5050 and XGBoost+5050 outperform RF+5050 in a statistically
significant manner and a large effect size.

Given the comparable performance of LightGBM and XGBoost, and
the substantially faster speed of LightGBM, we conclude (RQ1) that
LightGBM with the 5050 rebalancing strategy is the best combination
for trace recommendation.

Trace maintenance (f0.5). The superiority of gradient boosted deci-
sion trees is confirmed also in the trace maintenance scenario, with
8

a few nuances. Unlike our preliminary results [33], where gradient
boosting always outperformed random forests, in two cases (Control_3
and Learn_2) random forests have the highest F0.5-score. Nevertheless,
the XGBoost implementation obtains a much better F0.5-score in all
the other eight cases, with an average F0.5-score of over 67% (no
rebalancing), compared to 61% of random forests (with oversampling)
and almost 60% of LightGBM (no rebalancing).

Regarding rebalancing, the ‘none’ strategy delivers the best results
for XGBoost, while oversampling seems to be more effective for random
forests. For LightGBM, no rebalancing is slightly more effective than
oversampling, but the difference is only 1%.

XGBoost’s average F0.5-score is over 6% higher than the competing
algorithms. However, in order to properly answer RQ1 (means are
susceptible to outliers [41]), we statistically analyze four interesting
combinations: (i) XGBoost+none and (ii) LightGBM+none, which have
the highest mean F0.5; (iii) random forests with oversampling, the
highest F0.5 for random forests; and (iv) random forests with no re-
balancing, which delivers high precision. Table 6 reports the results of
this statistical comparison.



Information and Software Technology 160 (2023) 107226W. van Oosten et al.

(
t
a
a
e
d
a
L
s
I
R
r
r

O
o
r
a

t
c
r
j
r
a
h
t
a
t

Table 6
Statistical tests for trace recommendation and trace maintenance, using Friedman’s omnibus test followed by
Nemenyi’s post-hoc. The values in green indicate statistical significance with 𝑝 ≤ 0.05. Effect size is reported
using Hedges’ 𝑔, and interpreted according to Fritz and colleagues [42]: small if 𝑔 ≥ 0.2, medium if 𝑔 ≥ 0.5, large
if 𝑔 ≥ 0.8.

Metric Omnibus Post-Hoc Effect size
𝜒2 𝑝 Comparison Nemenyi 𝑔 interp.

Trace recommendation

F2 12.20 0.002 RF+5050 vs. LightGBM+5050 0.010 -1.082 large
RF+5050 vs. XGBoost+5050 0.005 -1.181 large
LightGBM+5050 vs. XGBoost+5050 0.900 -0.061 none

Precision 9.80 0.007 RF+5050 vs. LightGBM+5050 0.005 0.691 medium
RF+5050 vs. XGBoost+5050 0.261 0.299 small
LightGBM+5050 vs. XGBoost+5050 0.261 -0.429 small

Recall 15.80 0.0004 RF+5050 vs. LightGBM+5050 0.001 -1.576 large
RF+5050 vs. XGBoost+5050 0.010 -1.490 large
LightGBM+5050 vs. XGBoost+5050 0.632 0.087 none

Trace maintenance

F0.5 9.96 0.019 RF+none vs. RF+over 0.900 -0.219 small
RF+none vs. LightGBM+none 0.900 -0.035 none
RF+none vs. XGBoost+none 0.110 -0.944 large
RF+over vs. LightGBM+none 0.900 0.187 none
RF+over vs. XGBoost+none 0.046 1.000 large
LightGBM+none vs. XGBoost+none 0.029 -0.946 large

Precision 23.76 2.80 × 10−5 RF+none vs. RF+over 0.001 2.456 large
RF+none vs. LightGBM+none 0.001 2.203 large
RF+none vs. XGBoost+none 0.160 0.974 large
RF+over vs. LightGBM+none 0.900 0.203 small
RF+over vs. XGBoost+none 0.160 -1.322 large
LightGBM+none vs. XGBoost+none 0.160 -1.268 large

Recall 23.16 3.74 × 10−5 RF+none vs. RF+over 0.005 -1.748 large
RF+none vs. LightGBM+none 0.073 -1.472 large
RF+none vs. XGBoost+none 0.001 -1.728 large
RF+over vs. LightGBM+none 0.799 0.003 none
RF+over vs. XGBoost+none 0.507 -0.408 small
LightGBM+none vs. XGBoost+none 0.110 -0.331 small
6

w
t

i
t
s

T
F
t
7
(
l
p
a

(
b
b
t
i
s
d
a

H

The results indicate that the four classifiers are statistically different
with 𝑝 < 0.05). The results for 𝐹0.5 confirm that XGBoost+none statis-
ically outperforms both LightGBM+none and RF+oversampling with
large effect size, while it does not statistically outperform RF+none,

lthough this is probably due to the low number of samples; indeed, the
ffect size is large indicating a visible difference of almost one standard
eviation. An interesting finding concerns precision: RF+none, with
mean precision of 83.23%, statistically outperforms RF+over and

ightGBM+none (large effect size). Therefore, RF+none could be a
uitable option when precision is much more important than recall.
ndeed, the increased precision comes at the expense of recall: both
F+over and XGBoost+none are significantly better than RF+none for
ecall with large effect size. Since we use 𝐹0.5 for trace maintenance, we
ecommend XGBoost+none as the best combination for this scenario.

n rebalancing. No rebalancing seems to be the winning option when
ptimizing for F0.5: in 20 of the 30 cases of Table 5, this leads to the best
esults. On the other hand, the 5050 strategy, which combines under-
nd over-sampling, is the most effective one for F2: in 26/30 cases.

The ‘pure’ strategies, i.e., under- and over-sampling, are less effec-
ive for the metrics that we used. Nevertheless, they may be useful in
ertain contexts. For example, in the trace recommendation scenario,
ecall is much more important than precision [32] (perhaps more than
ust F2): in that case, undersampling could be an option. The last macro-
ow of Table 5 shows that undersampling leads to a recall of 91%, 94%,
nd 94% for random forests, XGBoost, and LightGBM, respectively. This
as a huge impact on precision, which is around 10%. This would mean
hat, on average, the developer would be presented ten possible target
rtifacts, only one of them being valid, and that in circa 5%–10% of
9

he cases, the valid target artifact would not be listed. i
.2. Feature importance

We analyze the feature importance with the goal of understanding
hich features deliver the highest information gain [43] to distinguish

he positives from the negatives.
We consider the average gain for each of the feature families defined

n Section 5.2, with QQ broken down into its three subcategories due
o the many features. The cumulative (total), max, and average gain is
hown in Table 7,3 while Fig. 3 presents them visually.

race recommendation. The total column in Table 7 and the plots of
ig. 3(a) show that the process-related features contribute the most
o information gain: 64.55% on average, from 53.95% (Company) to
2.55% (Service). The second best contributing family is QQ-specificity
average 20.32%), from 10.21% (Service) to 29.17% (Store). Neverthe-
ess, this gain arises from the high number of features: the average gain
er feature (0.28%) is lower than that of document statistics (0.38%)
nd it is comparable to term relatedness and similarity.

When looking at the ten features with the highest information gain
data in the online appendix), we see that feature F4: the difference
etween the issue resolution date and the revision date is always the
est, with an average gain (Max column in Table 7, process-related,
race recommendation) of 51.27%, reaching 68.73% for Control_3. This
s therefore a very important predictor for the trace recommendation
cenario. Feature F3 (the difference between the issue’s last update
ate and the revision date) also occurs in all ten datasets, but with
significantly lower gain: 6.86%. Other features with relatively high

3 Errata: we presented similar results for three datasets in Table 5 of [33].
owever, both in the table and in the interpretation, we had erroneously

nverted over- and under-sampling.



Information and Software Technology 160 (2023) 107226W. van Oosten et al.

a
f
F
A
i
o
X

r
i
o
a
F
a
t
s

i
i
s
o

7

m
w

Table 7
The total, average, and maximum gain (in percentage over the total gain) per feature family for trace recommendation (LightGBM+5050) and maintenance (XGBoost+none).

Recommend. Maintenance

Total Avg Max Total Avg Max

Pr
oc

es
s-

re
la

te
d

Company 53.95 13.49 48.83 6.57 1.64 2.71
Control_1 63.90 15.97 46.83 5.79 1.45 2.90
Control_2 63.59 15.90 56.79 4.88 1.22 1.94
Control_3 71.92 17.98 68.73 5.36 1.34 3.56
Data 69.04 17.26 29.57 9.98 2.50 3.71
Learn_1 67.88 16.97 59.82 7.91 1.98 4.36
Learn_2 54.56 13.64 41.79 4.32 1.08 1.88
Portfolio 66.03 16.51 63.47 4.91 1.23 3.27
Service 72.55 18.14 42.42 10.66 2.67 3.87
Store 62.10 15.53 54.49 5.37 1.34 2.43
Average 64.55 16.14 51.27 6.58 1.65 3.06

Do
cu

m
en

t
st

at
ist

ic
s

Company 0.79 0.11 0.27 5.08 0.73 1.15
Control_1 1.35 0.19 0.47 6.94 0.99 1.90
Control_2 1.12 0.16 0.59 10.84 1.55 3.32
Control_3 2.19 0.31 1.41 8.43 1.20 1.91
Data 0.74 0.11 0.24 4.43 0.63 0.82
Learn_1 1.46 0.21 1.00 6.21 0.89 1.99
Learn_2 1.22 0.17 0.30 7.12 1.02 2.09
Portfolio 1.00 0.14 0.43 4.86 0.69 1.14
Service 1.05 0.15 0.49 10.08 1.44 3.04
Store 0.24 0.03 0.10 3.98 0.57 1.24
Average 1.12 0.16 0.53 6.80 0.97 1.86

In
fo

rm
at

io
n

re
tr

ie
va

l

Company 6.26 0.35 1.64 26.83 1.49 8.14
Control_1 5.48 0.30 0.76 23.49 1.31 2.35
Control_2 3.48 0.19 0.62 19.69 1.09 4.52
Control_3 1.04 0.06 0.18 14.69 0.82 2.15
Data 11.45 0.64 5.36 20.43 1.13 2.01
Learn_1 10.18 0.57 3.18 24.01 1.33 3.28
Learn_2 12.77 0.71 5.41 26.05 1.45 5.21
Portfolio 3.42 0.19 1.21 24.24 1.35 6.87
Service 12.90 0.72 5.71 15.55 0.86 1.72
Store 1.91 0.11 0.79 16.04 0.89 3.80
Average 6.89 0.38 2.49 21.10 1.17 4.01

Recommend. Maintenance

Total Avg Max Total Avg Max

Q
Q

-S
pe

ci
fic

ity

Company 27.85 0.39 3.60 47.70 0.66 2.22
Control_1 20.85 0.29 3.43 50.10 0.70 2.71
Control_2 25.02 0.35 5.78 46.43 0.64 3.06
Control_3 15.37 0.21 1.71 53.65 0.75 4.11
Data 14.43 0.20 1.17 47.92 0.67 3.14
Learn_1 15.60 0.22 1.50 46.50 0.65 1.73
Learn_2 20.92 0.29 2.91 45.88 0.64 1.72
Portfolio 23.73 0.33 5.95 51.56 0.72 4.00
Service 10.21 0.14 1.16 47.14 0.65 1.40
Store 29.17 0.41 7.82 60.46 0.84 7.49
Average 20.32 0.28 3.50 49.73 0.69 3.16

Q
Q

-S
im

ila
rit

y

Company 6.70 0.37 2.39 6.51 0.36 1.24
Control_1 5.94 0.33 2.21 6.96 0.39 0.81
Control_2 5.21 0.29 1.67 8.04 0.45 1.28
Control_3 5.68 0.32 2.21 5.23 0.29 0.82
Data 3.07 0.17 1.46 9.24 0.51 2.04
Learn_1 2.18 0.12 0.91 7.36 0.41 0.91
Learn_2 5.01 0.28 1.53 10.21 0.57 2.96
Portfolio 3.51 0.20 1.35 7.36 0.41 1.28
Service 1.28 0.07 0.19 9.04 0.50 1.60
Store 3.37 0.19 1.78 6.76 0.38 1.26
Average 4.20 0.23 1.57 7.67 0.43 1.42

Q
Q

-T
er

m
-R

el
at

ed
ne

ss

Company 4.45 0.37 1.19 7.31 0.61 1.50
Control_1 2.49 0.21 0.71 6.72 0.56 1.03
Control_2 1.59 0.13 0.56 10.12 0.84 3.54
Control_3 3.79 0.32 2.51 12.65 1.05 7.28
Data 1.26 0.10 0.29 8.00 0.67 1.30
Learn_1 2.69 0.22 0.63 8.01 0.67 0.83
Learn_2 5.52 0.46 1.58 6.42 0.54 1.42
Portfolio 2.31 0.19 0.46 7.06 0.59 1.16
Service 2.00 0.17 0.72 7.53 0.63 1.76
Store 3.22 0.27 1.67 7.40 0.62 1.63
Average 2.93 0.24 1.03 8.12 0.68 2.15
importance are F1: whether the issue assignee is the committer (4.83%)
and F73: the standard deviation of the entropy of the SVN log as a query
(2.54%). All other features have an information gain below 2%.

Trace maintenance. While process-related features, and especially F4,
re predominant for trace recommendation, the situation is less clear
or trace maintenance. First, when visually inspecting the plots in
ig. 3(b), the process-related features stand out much less prominently.
lthough they still have the highest average gain (1.65% in Table 7

n the Avg column of Process-related, Maintenance), no feature stands
ut the same way as in trace recommendation. This may be because
GBoost creates more complex decision trees than LightGBM.

Analyzing feature family gain, QQ-Specificity leads with 49.73%,
anging from 45.88% (Learn_2) to 60.46% (Store). The second family
s information retrieval: total gain of 21.10%, average gain per feature
f 1.17%. Although the total gain of these two families is good, the
verage gain is low. The individual feature with the highest gain is still
4, but with a limited contribution (2.97%). Only other two features
re above 2%: F29 (2.28%): similarity based on VSM of all the text in
he revision and in the issue (see last row of Table 3), and F23 (2.17%):
imilarity based on VSM based on unit names and JIRA description.

Given the limited information gain of each feature (1%–2%), it
s difficult to draw solid conclusions on which features are the most
mportant for trace maintenance. In this case, we see how a highly
ophisticated classifier like XGBoost achieves better performance than
ther models at the expense of interpretability.

. What is the value of MDD-specific features (RQ2)?

RQ2 examines the value of features that use MDD-specific infor-
ation. One unique aspect of revisions in MDD is the granularity at
hich changes are stored. Other version control system store changes
10
such as which lines of which files were modified. MDD provides readily-
available, finer-grained information, as it describes changes occurring
at the unit level (e.g., entity A in the domain model was deleted and
entity B was added) rather than at the file level. We examine if making
use of this granularity level affects the classifier’s performance.

To address RQ2, we prune from the 131 features those that are
specific to the MDD domain, leading to a subset that do not use
MDD-specific information.

By MDD-specific information, based on our feature engineering, we
refer to the use of unit names in the calculation of the value for a feature.
Note that our strategy for deriving MDD-agnostic features is dependent
on how we use MDD information in LCDTrace.

Table 8 summarizes the features that we altered or deleted:

• Modified: two features of the document statistics family (F6, F8)
use the unit names (R7) to calculate the number of terms in a
revision. F6 and F8 are also used by F9–F11 to determine the
overlap between the terms in the revision and those in the JIRA
issue. These features are modified by using only the log message
(R3).

• Deleted: we remove all those features that use unit names. For
example, as visible in Table 3, F18–F29 all make use of unit
names, either uniquely (F18–F23) or in combination with the log
message (All Natural text features F24–F29).

7.1. Quantitative results

In line with Fig. 2, we compare the two sets of features (131 vs. 85)
using only the best algorithms from RQ1: for trace recommendation,
LightGBM+5050; for trace maintenance, XGBoost+none. The quanti-
tative results are summarized in Table 9. To facilitate the reader in

comparing the results, Table 9 presents the specific results with the



Information and Software Technology 160 (2023) 107226W. van Oosten et al.
Fig. 3. Average gain per feature family for trace recommendation (a) and for trace maintenance (b). The 𝑦-axis uses an exponential scale to improve readability.
Table 8
Overview of the MDD-specific features that we deleted or modified to study RQ2.

Feature family Count Features

Total Non-MDD

Process Related 4 4 –
Document Statistics 7 7 Modified: F6, F8–F11
Information Retrieval 18 6 Deleted: F18–F29
QQ-Specificity 72 48 Deleted: F30–F32, F36–F38, F48–F50, F54–F56,

F66–F69, F74–F77, F90, F92, F96, F98
QQ-Similarity 18 12 Deleted: F102-F104, F108-F110
QQ-Term Relatedness 12 8 Deleted: F120-F121, F124-F125

Total 131 85 Deleted: 46
Modified: 5
85 non-MDD features, while Table 9 presents the results for the 131
features that were shown in Table 5, plus the standard deviation.

The results do not reveal remarkable differences. When compar-
ing the macro-average across the ten datasets, the F2-score of Light-
GBM+5050 decreases only slightly: from 60.94% to 60.19%, with a
comparable standard deviation; and the F0.5-score with XGBoost+none
decreases even less: from 67.59% to 67.18%. We observe similar small
11

differences also for precision and recall.
To confirm our preliminary conclusion that the MDD-specific fea-
tures do not improve performance, we statistically compare the two
classifiers using the Wilcoxon Signed-Rank test, the non-parametric
alternative to the paired samples T-Test that is recommended when the
assumption of normality does not hold [41]. The results confirm that no
statistically significant difference (with 𝑝 < 0.05) exists when comparing
the results for RQ1 with those for RQ2. For trace recommendation:

precision 𝑊 = 18, 𝑝 = 0.375; recall 𝑊 = 22, 𝑝 = 1.000; F2 𝑊 = 21,



Information and Software Technology 160 (2023) 107226W. van Oosten et al.

𝑊

7

f
b
s

T
r
f
R
f
i
r
A
c

T
t
f
S

Table 9
Mean and standard deviation for precision, recall, and F2-measure (trace recommendation) and F0.5- (trace maintenance) across the ten datasets, (a) for
the non-MDD features (RQ2), and (b) for all 131 features (RQ1).

(a) Results for the 85 non-MDD features

Project Recommendation: LightGBM+5050 Maintenance: XGBoost+None

Precision Recall F2 Precision Recall F0.5

𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎

Company 47.90 3.21 67.08 5.03 61.99 3.60 71.17 5.78 51.25 5.95 65.83 4.60
Control_1 38.80 2.73 58.47 5.67 53.05 4.60 74.81 4.46 42.82 3.26 64.97 3.17
Control_2 46.76 2.89 61.50 12.32 57.56 8.89 70.06 5.40 48.50 6.89 64.25 5.88
Control_3 51.73 3.60 77.54 3.34 70.41 2.29 76.32 5.61 58.46 7.18 71.76 5.32
Data 64.06 15.92 71.76 14.08 69.15 11.74 85.47 16.54 55.29 13.64 76.35 14.14
Learn_1 45.12 2.61 62.13 3.55 57.75 3.10 79.84 3.44 44.02 2.89 68.61 2.81
Learn_2 39.20 7.98 46.90 15.69 44.93 13.47 57.27 10.36 30.34 6.66 48.51 9.07
Portfolio 39.54 2.43 66.75 4.70 58.64 3.69 74.09 3.84 45.97 4.09 65.88 2.92
Service 48.10 4.53 68.81 3.58 63.24 3.08 78.41 3.38 50.36 6.76 70.38 4.07
Store 57.45 4.64 67.65 10.83 65.14 8.76 82.24 12.31 57.65 10.30 75.24 10.03
Avg 47.87 5.05 64.86 7.88 60.19 6.32 74.97 7.11 48.47 6.76 67.18 6.20

(b) Results for the 131 features (re-shown from Table 5 for comparison)

Project Recommendation: LightGBM+5050 Maintenance: XGBoost+None

Precision Recall F2 Precision Recall F0.5

𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎

Company 54.78 4.50 66.67 6.64 63.69 4.93 74.35 7.35 48.89 2.43 67.20 4.87
Control_1 37.10 2.31 55.48 4.41 50.41 3.22 79.53 6.27 41.29 4.06 66.91 4.42
Control_2 44.89 6.18 59.75 11.27 55.81 9.06 70.76 7.45 48.25 7.64 64.43 6.58
Control_3 51.77 5.61 71.54 5.54 66.39 5.25 75.99 7.02 56.00 6.03 70.83 6.30
Data 62.68 3.63 76.18 5.03 72.94 3.85 84.18 3.74 61.73 5.34 78.39 3.58
Learn_1 46.18 3.42 60.67 3.31 57.01 2.53 80.65 3.95 44.45 3.62 69.19 2.28
Learn_2 46.68 8.83 48.97 8.57 48.27 7.86 59.14 11.36 31.03 11.26 49.20 11.42
Portfolio 40.69 2.41 66.17 5.60 58.74 4.03 74.15 6.94 46.23 3.12 66.07 5.05
Service 54.79 4.72 73.57 5.44 68.69 3.89 78.77 6.43 46.67 5.49 69.02 4.82
Store 58.22 7.95 70.59 9.20 67.43 7.96 82.10 10.35 57.65 12.34 74.62 6.27
Avg 49.78 4.95 64.96 6.50 60.94 5.26 75.96 7.09 48.22 6.13 67.59 5.56
Table 10
Feature importance, reported in percentage and divided by feature family, for the non-MDD specific features (RQ2).

Feature family Count Trace recommendation Trace maintenance

Sum-
Avg

Mean-
Avg

Std.-
Avg

Max Sum-
Avg

Mean-
Avg

Std.-
Avg

Max

Process related 4 63.89 15.97 2.20 63.43 8.95 2.24 0.54 5.40
Document Statistics 7 1.99 0.28 0.14 1.88 8.19 1.17 0.33 4.23
Information Retrieval 6 7.46 1.24 0.87 19.90 10.12 1.69 0.27 4.15
QQ-Specificity 48 19.55 0.41 0.11 5.56 55.61 1.16 0.06 9.78
QQ-Similarity 12 4.27 0.36 0.15 4.99 7.80 0.65 0.25 2.00
QQ-Term Relatedness 8 2.84 0.35 0.23 2.85 9.34 1.17 0.43 14.71
d
f
w
S
t
r
f
3
t
F
r
h

8

c
(
s
R
c

𝑝 = 0.5557. For trace maintenance: precision 𝑊 = 12, 𝑝 = 0.131; recall
= 22, 𝑝 = 0.610; F0.5 𝑊 = 21, 𝑝 = 0.322.

.2. Feature importance

We also analyze whether the subset of features has an effect on the
eature importance. The results are summarized in Table 10, organized
y feature family. Similar to the previous results, feature importance
eems to be generally aligned with the results for RQ1 in Table 7.

race recommendation (F2). There is no visible difference: the process-
elated family remains the most important (63.89% for RQ2, 64.55%
or RQ1), followed by QQ-specificity (19.55% for RQ2, 20.32% for
Q1). The importance of individual features confirms F4 as the most in-

ormative (51.10% gain, on average, reaching 64.43% on Control_3). F3
s still the second most informative (6.47%), followed by F12 (3.73%,
eaching 19.90% on Store), F1 (3.17%), F2 (3.15%), and F14 (2.07%).
ll the other features have gains of less than 2%. The information gain
alculations and values can be found in the online appendix.

race maintenance (f0.5). We see some differences when considering
he feature families. QQ-Specificity is still the leading family, going up
rom 49.73% to 55.61%. On average, however, each feature in QQ-
12

pecificity has a low information gain (1.16%). Information retrieval o
ecreases from 21.10% to 10.12% as a result of the 12 dropped
eatures, with a slightly higher average gain per feature (1.69%),
hich, however, can be due to the lower total number of features.
mall increases also occur for process-related and document statis-
ics features, but, again, the total gain is split across 85 features
ather than 131. By analyzing the gain of the individual features, only
ew are above 2%: two features from the process-related family (F4:
.73%, F1: 2.18%), the total number of terms in JIRA (F5: 2.30%),
wo information-retrieval features (F14: 2.13%, F17: 2.26%), F61 and
101 from QQ-Specificity (2.67% and 2.16%), F129 from QQ-Term
elatedness (2.52%, reaching 14.71% on Control_3). The limited gain,
owever, does not allow us to label any feature as highly informative.

. Can we reduce feature numerosity (RQ3)?

RQ3 focuses on reducing the number of features while maintaining
omparable performance as with all the 131 features of LCDTrace
RQ1). To do so, we conduct an experiment (see Fig. 2) using the
tate-of-the-art mRMR automated feature selection algorithm. Like for
Q2, we consider our ten datasets and we use the best combinations of
lassifier and rebalancing strategy from RQ1.

Using mRMR [13], we assess the effect of smaller features sets
n our ten datasets, employing feature sets of sizes 40, 50, and 60.



Information and Software Technology 160 (2023) 107226W. van Oosten et al.
Preliminary experimentation showed promising results in terms of
keeping performance when using only half our original feature set.
This made a set size of 60 our starting point, while opting for even
smaller sets as well. mRMR comes with various functions to determine
feature relevance. We use the FCQ scheme which combines the F-
statistic with (Pearson) correlation, one of the more computational
efficient variants under the mRMR framework, that showed excellent
results at Uber [14]. mRMR selects an optimal feature set by retaining
features with maximum relevance and by removing false positives
(redundant) ones. A reduction in the size of the feature set directly
impacts the computational complexity of our model. The aim is to
improve the effectiveness and efficiency of the model, while also in-
creasing the interpretability [14], as the analyst can better understand
the model predictions given the lower number and non-redundancy of
the features.

8.1. Quantitative results

The results of both trace scenarios are presented in Table 11, using
a similar visualization to Tables 5 and 9. Unlike those tables, the results
are shown for each value of K: 40, 50, and 60. Then, Table 12 presents
the results of statistical analysis using Wilcoxon’s Signed-Ranks tests,
comparing the results from automated feature selection with those of
the 131 features of RQ1.

Trace recommendation (F2). With the three feature set sizes, we see
small differences in precision, recall, and F2. The last row in the macro-
rows of Table 11 shows fluctuations in the ranges of 2.93%, 0.38%, and
1.31% for the three metrics. When inspecting the average precision of
the individual projects, we observe how Control_2, Control_3, Service
and Store are the main contributors to the lower macro-average com-
pared to RQ1. This difference in precision is statistically significant, as
shown in Table 12, with medium to large effect sizes.

The macro-average of recall shows a similar deviation between the
three set sizes, with a small delta of 0.38% between the best and the
worst value. When considering the individual projects, there are larger
fluctuations depending on K; the largest difference pertains to the Store
dataset, ranging from 62.35% (K=40) to 72.35% (K=60). Interestingly,
the lower precision compared to RQ1 leads to a statistically significant
increment in recall, with medium effect size (see Table 12), with the
classifiers from RQ3 outperforming LightGBM+5050 from RQ1.

The opposite results for precision (decreased) and recall (increased)
seem to balance out each other, leading to the absence of significant
differences in 𝐹2, indicating that the reduced feature sets do not affect
our reference metric.

Moreover, the distribution of green cells (best values) in Table 11,
and the significance results in Table 12, indicate that no best value for
K can be determined for trace recommendation.

Trace maintenance (F0.5). The results are even more stable than those
for trace recommendation. While comparing the different set sizes,
the macro-averages of precision, recall and F0.5 range between 0.10%,
0.40%, and 0.36%, respectively. This suggests that the choice of K has
a smaller effect on the classifier algorithm, or that a smaller subset of
the features present in the subsets (K=40, K=50, K=60) contribute the
most to the performance.

When we compare the results to those of RQ1, we see that for
all projects, there is always a feature subset that outperforms the
complete set. This is visible through the Hedges’ g score for 𝐹0.5 in
Table 12, which is negative although it does not reach a visible effect
size. For both scenarios, although there is no statistically significant
gain in the relevant metrics, the results confirm that it is possible to
reduce feature numerosity without compromising performance, thereby
13

answering RQ3 positively.
8.2. Feature importance

We analyze feature importance to assess whether there is an effect
on the interpretability of the ML models.

Table 13 shows the average number of features (count), average
sum, mean, standard deviation and maximum gain, with the aggregate
results of the ten datasets.

Trace recommendation. The Sum-Avg column in Table 13 shows that
process-related features are the largest contributor to information gain,
ranging between 59.68% and 66.77% across the values of K. This
feature family is followed by information retrieval-related (IR) and QQ-
Specificity-related features, which score similarly (13.09%–16.03% for
IR, 13.65%–17.75% for QQ-Specificity). Note that IR-related features
show a higher maximum score than QQ-Specificity, indicating their
effectiveness for some projects.

The online appendix includes details on the individual feature gain.
With each value of K, F4 is the dominant feature (45.34% with K=40,
49.14% with K=50, 48.91% with K=60), followed by F1 (7.37%,
7.06%, 6,24%), F3 (6.22%, 6.21%, 8.10%), F2 (5.22%, 4.08%, 3.54%),
and F12 (5.22%, 3.42%, 2.40%). All other features are below 2%.

When comparing these results to the results obtained in Section 6.2,
we see similar results. For both the 131 feature set and the feature
subsets, feature F4 is dominant, followed by feature F1 (indicating if the
assignee is equal to the committer). Looking at the results from Tables 7
and 13, we can see that for both, process-related features contribute the
most to information gain. The results of all feature subsets does show
improvements over the complete feature set in terms of the aggregate
average (mean-Avg) and max (Max) gain: 16.14%, 51.27% for RQ1;
and 17.69%, 65.57% for RQ3.

Trace maintenance. For trace recommendation, the obvious contributor
to information gain (process-related) was clear from Table 13. For
trace maintenance, the differences are less evident (see Sum-Avg in
Table 13, Trace Maintenance). IR-related features (29.12% to 32.19%)
and QQ-Specificity (34.92% to 41.09%) contribute the most. While the
Sum-Avg indicates that the latter is the largest contributor, columns
Mean-Avg and Max provide a more specific insight: on average, the
IR features (2.09%, 10.78%) contribute more than the QQ-Specificity
features (1.99%, 8.58%).

It is harder to determine which individual feature contributes the
most to the gain. Again, F4 has the highest value, but the gain is
ten times lower than for trace recommendation: 4.46%, 4.06%, and
3.61% for K=40, K=50, and K=60, respectively. The other features are
scattered, with a different dominant feature (F1, F10, F19, F25, F29,
F62, F129) for various datasets. F1, F10 (overlap of terms between JIRA
issue and revision), F25 (revisions All Natural text × JIRA summary)
and F29 (revisions All Natural text × JIRA All Natural text) recur more
often (≥ 4 projects) in the top-10 features. However, the individual gain
is just above 2%.

Comparing the results for trace maintenance with those from RQ1,
we can see a different order of the feature families. Though process
related features still contribute with the highest information gain, IR
becomes the second contributor for RQ3, and therefore switches places
with document statistics compared to the results in Section 6.2.

There are no strong effects depending on the choice of K. Still,
Table 13 shows large differences between the different sizes in terms
of maximum values (e.g., 13.42% and 40.79% for IR in the trace
recommendation scenario). Also, compared to RQ1, there are no big
shifts between feature families. However, the efficiency of the model
still benefits from the feature numerosity reduction.

9. Threats to validity

We discuss the major threats to validity organized according to the

taxonomy by Wohlin and colleagues [44].



Information and Software Technology 160 (2023) 107226W. van Oosten et al.
Table 11
Mean and standard deviation for precision, recall, and F2-measure (trace recommendation) and F0.5- (trace maintenance) across the ten
datasets, feature subset sizes K=40, K=50, K=60 (RQ3). The colored cells highlight which value of K leads to the highest metric for
each of the projects in either scenario. We use green for trace recommendation, orange for trace maintenance. The last sub-table
repeats the results from Table 9.

Project
K = 40

Recommendation: LightGBM+5050 Maintenance: XGBoost+None
Precision Recall F2 Precision Recall F0.5
𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎

Company 42.63 3.72 70.56 6.20 62.28 4.75 72.04 5.16 51.94 2.94 66.85 4.41
Control_1 31.71 2.15 67.10 2.27 54.81 2.13 77.66 5.86 45.32 4.04 67.79 4.06
Control_2 41.58 4.21 63.50 8.60 57.24 6.56 72.47 9.57 48.75 7.00 65.90 8.24
Control_3 41.81 3.07 80.15 4.38 67.70 3.85 70.31 7.14 56.92 5.08 66.91 4.82
Data 54.26 3.50 82.27 2.91 74.52 2.74 85.96 5.18 63.27 3.16 80.10 3.43
Learn_1 35.04 2.95 67.32 3.48 56.76 2.92 81.76 2.91 48.29 2.63 71.77 2.59
Learn_2 43.35 4.44 55.17 10.53 52.11 8.23 57.97 9.32 42.07 7.23 53.71 8.24
Portfolio 27.26 0.97 80.65 3.72 57.91 1.93 77.09 4.14 47.99 4.49 68.66 3.87
Service 40.23 3.52 72.62 5.83 62.43 4.25 81.96 7.18 48.33 3.60 71.75 4.55
Store 50.74 8.46 62.35 12.15 59.34 10.17 82.64 11.66 54.71 9.63 74.47 9.33
Average 40.86 3.70 70.17 6.01 60.51 4.75 75.99 6.81 50.76 4.98 68.79 5.35

Project
K = 50

Recommendation: LightGBM+5050 Maintenance: XGBoost+None
Precision Recall F2 Precision Recall F0.5
𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎

Company 42.84 2.52 72.50 6.03 63.63 4.51 73.07 2.09 55.28 4.93 68.55 2.17
Control_1 32.61 1.85 65.24 2.91 54.29 1.45 77.21 4.22 43.23 5.55 66.46 3.83
Control_2 44.06 5.78 64.25 7.91 58.73 6.70 72.89 5.20 51.75 7.82 67.17 5.41
Control_3 44.51 4.54 80.92 4.30 69.41 3.81 71.01 2.75 55.54 6.30 67.11 2.67
Data 55.11 1.69 79.82 5.17 73.19 3.65 82.30 2.46 65.45 2.57 78.23 1.54
Learn_1 36.22 1.77 65.00 3.73 56.04 2.56 81.42 4.10 47.68 2.68 71.24 2.57
Learn_2 42.99 5.73 56.21 8.14 52.88 7.19 56.45 9.15 38.97 5.87 51.55 7.25
Portfolio 27.50 0.98 76.69 2.66 56.47 1.66 75.18 3.48 47.21 3.24 67.12 2.43
Service 47.03 3.19 72.14 3.18 65.14 2.91 84.43 4.56 48.21 3.47 73.35 3.91
Store 58.83 9.66 71.76 7.74 68.43 7.31 84.27 10.93 58.24 14.79 76.83 11.37
Average 43.17 3.77 70.45 5.18 61.82 4.17 75.82 4.89 51.16 5.72 68.76 4.31

Project
K = 60

Recommendation: LightGBM+5050 Maintenance: XGBoost+None
Precision Recall F2 Precision Recall F0.5
𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎

Company 49.02 4.98 66.81 4.32 62.20 4.00 73.71 4.56 54.31 6.79 68.53 3.64
Control_1 31.96 1.67 63.87 2.40 53.21 1.81 77.43 4.73 45.32 3.70 67.74 3.94
Control_2 41.37 3.69 62.75 8.93 56.70 6.49 72.36 7.29 48.75 7.00 65.78 6.58
Control_3 46.27 4.37 77.85 5.09 68.39 4.32 68.33 3.98 55.23 8.38 65.03 4.53
Data 55.22 2.68 80.64 2.88 73.81 2.40 84.39 3.13 64.18 6.03 79.28 3.22
Learn_1 35.90 1.93 67.01 4.00 57.04 2.57 79.82 4.39 48.41 3.07 70.60 3.55
Learn_2 43.02 6.56 56.21 5.40 52.80 5.07 60.32 8.96 39.66 7.84 54.41 8.15
Portfolio 28.11 2.18 78.18 3.37 57.59 2.81 77.54 3.19 47.92 3.21 68.94 2.62
Service 49.84 4.27 75.00 3.17 68.06 3.18 80.77 5.78 52.38 4.99 72.63 3.70
Store 57.15 8.85 72.35 10.02 68.15 7.46 81.60 10.42 54.71 7.36 73.99 8.02
Average 43.79 4.12 70.07 4.96 61.79 4.01 75.63 5.64 51.09 5.84 68.69 4.79

All features
(see Table 9)

Recommendation: LightGBM+5050 Maintenance: XGBoost+None
Precision Recall F2 Precision Recall F0.5
𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎 𝑥 𝜎

Average 49.78 4.95 64.96 6.50 60.94 5.26 75.96 7.09 48.22 6.13 67.59 5.56
Table 12
Statistical tests for RQ3: the Wilcoxon’s Signed-Rank W test is used to compare the metrics of relevance between the automated feature
selection and all the 131 features. Green-colored cells highlight statistically significant differences with 𝑝 < 0.05. Effect size is reported
via Hedges’ g.

K Precision Recall F2
W p Hedges’ g W p Hedges’ g W p Hedges’ g

Recommendation:
LightGBM

40 0 0.002 1.058 large 8 0.049 -0.570 med. 26 0.922 0.055 none
50 1 0.004 0.720 med. 2 0.006 -0.641 med. 17 0.322 -0.110 none
60 0 0.002 0.647 med. 0 0.002 -0.589 med. 15 0.232 -0.105 none

K Precision Recall F0.5
W p Hedges’ g W p Hedges’ g W p Hedges’ g

Maintenance:
XGBoost

40 26 0.922 -0.003 none 6 0.027 -0.321 small 12 0.131 -0.158 none
50 24 0.770 0.017 none 1 0.004 -0.339 small 12 0.131 -0.149 none
60 27 1.000 0.045 none 7 0.037 -0.352 small 11 0.105 -0.148 none
14



Information and Software Technology 160 (2023) 107226W. van Oosten et al.

s
t
b
o
m
w
t
r
c
b
e
r
o
b

Table 13
Feature importance, shown in percentage and divided by feature family, for feature subset sizes K=40, K=50, K=60 (RQ3).

Feature family K Count Trace recommendation Trace maintenance

Sum-
Avg

Mean-
Avg

Std.-
Avg

Max Sum-
Avg

Mean-
Avg

Std.-
Avg

Max

Process
Related

40 4 64.16 18.30 4.49 66.66 11.32 3.17 1.12 8.98
50 4 59.68 16.51 5.84 64.97 9.88 2.73 0.90 7.91
60 4 66.77 18.27 2.77 65.07 9.22 2.44 0.88 6.45
Avg 4 63.53 17.69 4.37 65.57 10.14 2.78 0.97 7.78

Document
Statistics

40 4 2.56 0.62 0.45 2.43 11.19 2.66 0.43 5.24
50 5 3.29 0.72 0.80 4.59 9.95 2.22 0.48 5.77
60 5 1.82 0.38 0.34 2.35 8.61 1.82 0.57 5.41
Avg 4 2.56 0.57 0.53 3.12 9.92 2.23 0.49 5.47

Information
Retrieval

40 13 16.03 1.25 0.45 40.79 32.19 2.40 0.52 11.97
50 14 14.40 1.06 0.40 22.60 30.95 2.08 0.43 10.41
60 16 13.09 0.84 0.31 13.42 29.12 1.79 0.41 9.96
Avg 14 14.51 1.05 0.39 25.60 30.75 2.09 0.45 10.78

Query Quality
(Specificity)

40 14 13.56 1.00 0.51 6.83 34.92 2.46 0.34 8.66
50 20 17.75 0.82 0.47 7.65 38.80 1.93 0.25 8.72
60 26 13.65 0.53 0.20 5.17 41.09 1.60 0.19 8.36
Avg 20 14.98 0.79 0.39 6.55 38.27 1.99 0.26 8.58

Query Quality
(Similarity)

40 3 2.08 0.87 0.78 6.23 4.57 1.68 0.78 3.78
50 5 2.15 0.50 0.32 3.19 5.15 1.16 0.55 3.79
60 7 2.44 0.39 0.27 3.77 6.06 0.91 0.45 3.44
Avg 5 2.22 0.59 0.46 4.40 5.26 1.25 0.59 3.67

Query Quality
(Term-relatedness)

40 2 1.61 0.54 0.55 2.25 5.81 2.35 2.86 16.99
50 3 2.74 0.71 0.99 10.34 5.28 1.45 0.96 10.34
60 4 2.24 0.58 0.68 6.67 5.90 1.41 0.96 15.47
Avg 3 2.20 0.61 0.74 6.42 5.66 1.74 1.59 14.27
Conclusion validity. It refers to drawing correct conclusions about rela-
tions between treatment and outcome. We extended previous work [33]
with seven additional datasets, leading to more credible conclusions
about the effectiveness. Yet, these originate from a single company
and were developed by three teams. Obviously, a more heterogeneous
sample would be beneficial. To mitigate this threat, we conduct statis-
tical analysis that minimizes reliance on assumptions, and we run each
experiment ten times.

Internal validity. It regards influences that may affect the independent
variable with respect to causality, without the researchers’ knowledge.
The datasets are created by teams who follow the development method
outlined in Section 3. While we compared the common attributes, we
excluded those that were used only by certain datasets, e.g., JIRA com-
ments. Furthermore, it is possible that certain trace links were incorrect
and some links were missing. However, we used the original datasets
without performing any attempts to repair the datasets, which could
have increased the bias. Consequently, we discarded those revisions
that were linked to no JIRA issues.

Construct validity. It concerns generalizing the result of the experiment
to the underlying concept or theory. The main threat concerns the
research design: we approximate performance in the two scenarios
via the F0.5 and F2-scores. Although our method is aligned with the
tate-of-the-art [8], in-vivo studies should be conducted for a more
ruthful assessment of the effectiveness, e.g., by deploying a system
ased on the algorithms and measuring the performance in use. Part
f these studies could use the technique by Berry [32] to identify the
ost suitable F-score for the scenarios. Moreover, for RQ2 and RQ3,
e continued the study only with the best combinations. Although

hese configurations were identified as the best-performing in RQ1, the
esults should be carefully analyzed and interpreted. In particular, the
hoice of LightGBM over XGBoost for trace recommendation, justified
y its efficiency and the comparable F2-score, did not allow us to
xamine the information gain per feature (family) for XGBoost in trace
ecommendation. Furthermore, we have not explored the performance
f many other families of algorithms that could have lower performance
15

ut higher interpretability.
External validity. It regards the generalizability of the results to in-
dustrial practice. Our claims mostly hold for low-code development
at Mendix. Although we collected projects from three teams, using
more data (from Mendix, its clients, or the providers of similar MDD
platforms) would be beneficial. Also, to minimize overfitting and en-
hance generalizability, we followed the standard practice of separating
training and test set. Yet, we cannot argue that the performance scores
would be comparable in other settings, although the better performance
of gradient boosting and the effectiveness of automated feature selec-
tion are likely to hold with other industrial datasets, as these techniques
have shown to be highly effective in various application domains of ML.

10. Conclusions and future work

In this study, we have investigated the effectiveness of ML tech-
niques for the recovery of trace links in MDD, specifically, in low-
code development. We focused on backward, vertical trace links from
committed revisions (indicating model changes) to JIRA issues (repre-
senting requirements or bugs).

We empirically assess the effectiveness of state-of-the-art TLR ap-
proaches on ten datasets from seven projects provided to us by a
low-code development platform provider: Mendix. Upon analyzing the
MDD process at Mendix, we confirm the two scenarios for automated
trace link recovery by Rath et al. [8]: trace recommendation and trace
maintenance. Each requires a different performance score: F2 for the
former, F0.5 for the latter.

RQ1: What is the most effective ML approach for trace maintenance and
trace recommendation between revisions and JIRA issues in MDD con-
texts? To answer this question, we have constructed the LCDTrace
classifier, which combines recent research [7,8] and uses 131 features
from the literature organized in four families. In addition to random
forests, which performed the best in earlier studies [7,45], we exper-
imented with gradient boosted decision trees, a family of algorithms
that performs excellently in other domains [37,38]. We explored twelve
combinations of ML algorithm and rebalancing strategy (Section 6),
leading to two choices: (i) for trace recommendation, the LightGBM
implementation of gradient boosting with a combination of under- and

over-sampling for rebalancing the data (F2-score ∼61%); and (ii) for



Information and Software Technology 160 (2023) 107226W. van Oosten et al.

c
a
a
f
g
i
t
f
t
t

R
s
o
s
t
t
t
d
t
f
n
t
p
m

R
r
t
d
s
a
a
t
s
s
v
o
r
a
w

F
i
s
t
R
i
s
o
i
r
a
a
w

p

R

trace maintenance, the XGBoost implementation of gradient boosting
with no rebalancing (F0.5-score ∼67%). For trace recommendation, we
ould not find statistical differences in the performance of LightGBM
nd XGBoost, so we suggest using LightGBM because of its speed. We
lso investigated feature importance, in order to understand which
eature families or individual features have the highest information
ain. For trace recommendation, process-related features are the most
nformative (64% in total, with feature F4 alone providing 51% of
he gain). For trace maintenance, instead, we could not identify a
eature with high predictive power: while query quality features have
he highest total gain, this is better explained by their number than by
heir informativeness.

Q2: What is the added value delivered by the features that use MDD-
pecific information? We repeated the experimental procedure of RQ1
n a subset of features: we removed 46 features that used MDD-
pecific information (making use of unit names in the delta between
he committed models), and we modified 5 features by excluding
hat information while retaining the feature (see Table 8). We tested
he best algorithms from RQ1, and the results did not show major
ifferences between the classifiers trained with the RQ2 features and
hose from RQ1. The relative importance of the gain provided by the
eature families changed (see Table 10 in Section 7.2), but this does
ot correspond to individual features gaining prominence compared
o RQ1. Therefore, we conclude that the MDD-specific features do not
rovide additional performance when considering unit names in the
odels as MDD-specific information.

Q3: Can we increase efficiency while keeping similar performance by
educing the number of features? Despite their effectiveness, thanks
o their ability to combine many features in non-trivial ways, high-
imensional classifiers require longer training time, making them less
uitable for practical use. We attempted to improve on this aspect via
utomated feature selection: we experimented with the efficient mRMR
lgorithm [13,14] that removes highly correlated features, and we
rained the best classifiers from RQ1 with 40, 50, and 60 features. This
tudy reveals two major results: (i) the performance with the features
ubsets is comparable to that of all 131 features; and (ii) there are
ery marginal differences in the three settings with a different number
f features. Since the statistical comparison of RQ3 vs. RQ1 does not
eveal significant differences in the scores of interest ( Table 12), we
nswer RQ3 positively: it is possible to reduce feature numerosity
ithout affecting performance.

uture work. More research is needed about which features to include
n production environments and those that characterize well the MDD
etting. Our experimentation with unit names (models or the elements
herein) did not lead to any gain, as highlighted by our answer to
Q2. It will be important to analyze whether this is due to the limited

nformativeness of the features that make use of unit names, or by the
pecific ML algorithms that favor other features such as project-related
nes. Furthermore, the ML-based approach needs to be compared to
ts deep learning counterpart, and also to non-learning approaches that
ely on capturing the semantics of a change in the models. Studying
dditional datasets outside Mendix is a priority: although ten datasets
llowed us to reach more solid conclusions than in earlier work [33],
e still need to determine how well LCDTrace would work with other

development teams and with different low-code platforms. Moreover,
analyzing the performance of the tool in use is essential: while we
based our analysis and discussion on F-measures, only a user study can
reveal the actual quality of the recommended and recovered traces,
that is, whether the developers who have to vet and use the traces
find them useful and efficient. Finally, studying horizontal traceability,
i.e., the existence of links between artifacts at the same abstraction level
(e.g., between JIRA issues) is a relevant direction.

In the broad sense, this paper contributes to the literature on
software traceability through an empirical study on industrial data,
16
in a not-widely-explored domain, that determines the effectiveness of
existing TLR techniques. We encourage other researchers to build on
our research and to conduct additional studies where they compare
alternative techniques to LCDTrace.

CRediT authorship contribution statement

Wouter van Oosten: Conceptualization, Methodology, Software,
Validation, Investigation, Data curation, Writing. Randell Rasiman:
Conceptualization, Methodology, Software, Validation, Investigation,
Data curation, Writing. Fabiano Dalpiaz: Conceptualization, Method-
ology, Validation, Investigation, Writing, Supervision, Project adminis-
tration. Toine Hurkmans: Conceptulization, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

A snapshot of the LCDTrace source code repository and a replication
ackage are available in a Zenodo repository [34].

eferences

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E. Merlo, Recovering trace-
ability links between code and documentation, IEEE Trans. Softw. Eng. 28 (10)
(2002) 970–983.

[2] T.W.W. Aung, H. Huo, Y. Sui, A literature review of automatic traceability links
recovery for software change impact analysis, in: Proc. of ICPC, 2020, pp. 14–24.

[3] R. Oliveto, M. Gethers, D. Poshyvanyk, A. De Lucia, On the equivalence of
information retrieval methods for automated traceability link recovery, in: Proc.
of ICPC, 2010, pp. 68–71.

[4] A. Marcus, J.I. Maletic, Recovering documentation-to-source-code traceability
links using latent semantic indexing, in: Proc. of ICSE, 2003, pp. 125–135.

[5] M. Borg, P. Runeson, A. Ardö, Recovering from a decade: A systematic mapping
of information retrieval approaches to software traceability, Empir. Softw. Eng.
19 (6) (2014) 1565–1616.

[6] D. Falessi, M. Di Penta, G. Canfora, G. Cantone, Estimating the number of
remaining links in traceability recovery, Empir. Softw. Eng. 22 (3) (2017)
996–1027.

[7] C. Mills, J. Escobar-Avila, S. Haiduc, Automatic traceability maintenance via
machine learning classification, in: Proc. of ICSME, 2018, pp. 369–380.

[8] M. Rath, J. Rendall, J.L.C. Guo, J. Cleland-Huang, P. Maeder, Traceability in the
wild: Automatically augmenting incomplete trace links, in: Proc. of ICSE, 2018,
pp. 834–845.

[9] S. Winkler, J. von Pilgrim, A survey of traceability in requirements engineering
and model-driven development, Softw. Syst. Model. 9 (4) (2010) 529–565.

[10] J. Di Rocco, D. Di Ruscio, L. Iovino, A. Pierantonio, Collaborative repositories
in model-driven engineering, IEEE Softw. 32 (3) (2015) 28–34.

[11] R.J. Wieringa, Design Science Methodology for Information Systems and Software
Engineering, Springer, 2014.

[12] B. Ramesh, M. Edwards, Issues in the development of a requirements traceability
model, in: Proc. of ISRE, 1993, pp. 256–259.

[13] C. Ding, H. Peng, Minimum redundancy feature selection from microarray gene
expression data, J. Bioinform. Comput. Biol. 3 (02) (2005) 185–205.

[14] Z. Zhao, R. Anand, M. Wang, Maximum relevance and minimum redundancy
feature selection methods for a marketing machine learning platform, in: Proc.
of DSAA, 2019, pp. 442–452.

[15] F. Blaauboer, K. Sikkel, M.N. Aydin, Deciding to adopt requirements traceability
in practice, in: Proc. of CAISE, 2007, pp. 294–308.

[16] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, E. Romanova, Best practices
for automated traceability, Computer 40 (6) (2007) 27–35.

[17] B. Wang, R. Peng, Y. Li, H. Lai, Z. Wang, Requirements traceability technologies
and technology transfer decision support: A systematic review, J. Syst. Softw.
146 (2018) 59–79.

[18] O. Gotel, J. Cleland-Huang, J.H. Hayes, A. Zisman, A. Egyed, P. Grünbacher,
A. Dekhtyar, G. Antoniol, J. Maletic, P. Mäder, Traceability fundamentals, in:
Software and Systems Traceability, Springer, 2012, pp. 3–22.

[19] O.C. Gotel, C. Finkelstein, An analysis of the requirements traceability problem,
in: Proc. of RE, 1994, pp. 94–101.

[20] D. Cuddeback, A. Dekhtyar, J. Hayes, Automated requirements traceability: The
study of human analysts, in: Proc. of RE, 2010, pp. 231–240.

http://refhub.elsevier.com/S0950-5849(23)00080-0/sb1
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb1
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb1
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb1
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb1
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb2
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb2
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb2
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb3
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb3
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb3
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb3
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb3
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb4
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb4
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb4
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb5
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb5
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb5
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb5
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb5
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb6
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb6
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb6
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb6
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb6
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb7
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb7
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb7
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb8
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb8
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb8
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb8
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb8
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb9
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb9
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb9
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb10
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb10
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb10
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb11
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb11
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb11
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb12
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb12
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb12
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb13
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb13
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb13
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb14
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb14
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb14
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb14
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb14
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb15
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb15
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb15
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb16
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb16
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb16
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb17
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb17
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb17
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb17
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb17
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb18
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb18
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb18
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb18
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb18
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb19
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb19
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb19
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb20
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb20
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb20


Information and Software Technology 160 (2023) 107226W. van Oosten et al.
[21] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, S. Panichella, On the
role of the nouns in IR-based traceability recovery, in: Proc. of ICPC, 2009, pp.
148–157.

[22] A. Abadi, M. Nisenson, Y. Simionovici, A traceability technique for specifications,
in: Proc. of ICPC, 2008, pp. 103–112.

[23] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman, Indexing
by latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (6) (1990) 391–407.

[24] P. Heck, A. Zaidman, Horizontal traceability for just-in-time requirements: The
case for open source feature requests, J. Softw. Evol. Process 26 (12) (2014)
1280–1296.

[25] A.D. Lucia, A. Marcus, R. Oliveto, D. Poshyvanyk, Information retrieval methods
for automated traceability recovery, in: Software and Systems Traceability,
Springer, 2012, pp. 71–98.

[26] H. Abukwaik, A. Burger, B.K. Andam, T. Berger, Semi-automated feature
traceability with embedded annotations, in: Proc. of ICSME, 2018, pp. 529–533.

[27] D. Falessi, J. Roll, J.L.C. Guo, J. Cleland-Huang, Leveraging historical associations
between requirements and source code to identify impacted classes, IEEE Trans.
Softw. Eng. 46 (4) (2018) 420–441.

[28] J. Guo, J. Cheng, J. Cleland-Huang, Semantically enhanced software traceability
using deep learning techniques, in: Proc. of ICSE, 2017, pp. 3–14.

[29] J. Lin, Y. Liu, J. Cleland-Huang, Information retrieval versus deep learning
approaches for generating traceability links in bilingual projects, Empir. Softw.
Eng. 27 (1) (2022) 1–33.

[30] M. Rath, P. Mäder, The SEOSS 33 dataset: Requirements, bug reports, code
history, and trace links for entire projects, Data Brief 25 (2019) 104005.

[31] E. Umuhoza, M. Brambilla, Model driven development approaches for mobile
applications: A survey, in: Proc. of MobiWIS, 2016, pp. 93–107.

[32] D.M. Berry, Empirical evaluation of tools for hairy requirements engineering
tasks, Empir. Softw. Eng. 26 (6) (2021) 1–77.

[33] R. Rasiman, F. Dalpiaz, S. España, How effective is automated trace link recovery
in model-driven development? in: Proc. of REFSQ, in: LNCS, 13216, Springer,
2022, pp. 35–51.
17
[34] W. van Oosten, R. Rasiman, F. Dalpiaz, T. Hurkmans, Online appendix of ‘‘On
the effectiveness of automated tracing from model changes to project issues’’,
2023, http://dx.doi.org/10.5281/zenodo.7757275, Zenodo.

[35] M.F. Porter, An algorithm for suffix stripping, Program: Electron. Libr. Inf. Syst.
14 (3) (1980) 130–137.

[36] C. Mills, S. Haiduc, The impact of retrieval direction on IR-based traceability
link recovery, in: Proc. of ICSE NIER, 2017, pp. 51–54.

[37] J. Yoon, Forecasting of real GDP growth using machine learning models: Gradient
boosting and random forest approach, Comput. Econ. 57 (1) (2021) 247–265.

[38] A. Callens, D. Morichon, S. Abadie, M. Delpey, B. Liquet, Using random forest
and gradient boosting trees to improve wave forecast at a specific location, Appl.
Ocean Res. 104 (2020).

[39] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, LightGBM:
A highly efficient gradient boosting decision tree, in: Proc. of NIPS, Vol. 30,
2017.

[40] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: Synthetic
minority over-sampling technique, J. Artificial Intelligence Res. 16 (2002)
321–357.

[41] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (2006) 1–30.

[42] C.O. Fritz, P.E. Morris, J.J. Richler, Effect size estimates: current use, calculations,
and interpretation., J. Exp. Psychol. [Gen.] 141 (1) (2012) 2.

[43] J.T. Kent, Information gain and a general measure of correlation, Biometrika 70
(1) (1983) 163–173.

[44] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer-Verlag, 2012, pp. 1–236.

[45] C. Mills, J. Escobar-Avila, A. Bhattacharya, G. Kondyukov, S. Chakraborty,
S. Haiduc, Tracing with less data: Active learning for classification-based
traceability link recovery, in: Proc. of ICSME, 2019, pp. 103–113.

http://refhub.elsevier.com/S0950-5849(23)00080-0/sb21
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb21
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb21
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb21
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb21
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb22
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb22
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb22
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb23
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb23
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb23
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb24
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb24
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb24
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb24
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb24
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb25
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb25
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb25
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb25
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb25
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb26
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb26
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb26
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb27
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb27
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb27
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb27
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb27
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb28
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb28
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb28
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb29
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb29
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb29
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb29
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb29
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb30
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb30
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb30
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb31
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb31
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb31
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb32
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb32
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb32
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb33
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb33
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb33
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb33
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb33
http://dx.doi.org/10.5281/zenodo.7757275
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb35
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb35
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb35
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb36
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb36
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb36
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb37
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb37
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb37
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb38
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb38
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb38
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb38
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb38
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb39
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb39
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb39
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb39
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb39
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb40
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb40
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb40
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb40
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb40
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb41
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb41
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb41
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb42
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb42
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb42
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb43
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb43
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb43
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb44
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb44
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb44
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb45
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb45
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb45
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb45
http://refhub.elsevier.com/S0950-5849(23)00080-0/sb45

	On the effectiveness of automated tracing from model changes to project issues
	Introduction
	Related Work
	Basics of Software and Requirements Traceability
	Automated Trace Link Recovery
	Information Retrieval (IR)
	Machine Learning
	Deep Learning


	Case Description: MDD at Mendix
	Studied artifacts
	Studied Datasets
	Traceability practices at Mendix 

	Research Method
	Evaluation Scenarios and Metrics
	Research Questions and Approach

	Requirement Trace Link Classifier for MDD (LCDTrace)
	Data Description and Trace Construction
	Feature Engineering
	Classification Algorithms
	Data Rebalancing

	What is the most effective ML approach (RQ1)?
	Quantitative Results
	Feature Importance

	What is the value of MDD-specific features (RQ2)?
	Quantitative Results
	Feature Importance

	Can we reduce feature numerosity (RQ3)?
	Quantitative Results
	Feature Importance

	Threats to Validity
	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


