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Abstract
We give sufficient conditions for effective descent in categories of (generalized) internal
multicategories. Two approaches to study effective descent morphisms are pursued. The first
one relies on establishing the category of internalmulticategories as an equalizer of categories
of diagrams. The second approach extends the techniques developed by Ivan Le Creurer in
his study of descent for internal essentially algebraic structures.
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Introduction

Let B be a category and p : x → y a morphism in B such that pullbacks along p exist. We
say that p is an effective descent (descent) morphism whenever the change-of-base functor

p∗ : B ↓ y → B ↓ x

is monadic (premonadic). The main subject of this note, the study of effective descent mor-
phisms, is at the core of Grothendieck Descent Theory (see e.g. [12, 13]) and its applications
(see, for instance, [2]).

Except for the case of locally cartesian closed categories, the full characterization of
effective descent morphisms is far from trivial in general. The topological descent case is
the main example of such a challenging problem (see the characterization in [18] and the
reformulation in [5]).

The notion of (T ,V)-categories, introduced in [10], generalizes both enriched categories
and various notions of spaces. By studying effective descent morphisms in categories of
(T ,V)-categories, Clementino and Hofmann were able to give further descent results and
understanding in various contexts, including, for instance, the reinterpretation of the topo-
logical results mentioned above and many other interesting connections (see, for instance,
[6–9]).

On one hand, since they were mainly concerned with topological results, their study
focused on the case where V is a quantale, and there is no obvious way to generalize their
approach tomore general monoidal categoriesV . On the other hand, their work, together with
the characterization of effective descentmorphisms for the category of internal categories (see
[12, Section 6] and [15]), have raised interest in further studying effective descent morphisms
in categories of generalized categorical structures.

With this in mind, [17, Lemma 9.10] showed that we can embed the category of V-
enriched categories (with V lextensive) in the category of internal categories in V . From this
embedding, [17, Theorem 1.6] provides sufficient conditions for effective descentmorphisms
in V-categories. However, the literature still lacks results for (T ,V)-categories for a non-
trivial T and an extensive V .

The present note is part of a project which aims to study descent and Janelidze-Galois
theory within the realm of generalized multicategories and other categorical structures. The
first aim of this project consists of studying effective descent morphisms in categories of
generalized multicategories.

While the definition of (T ,V)-categories generalizes that of enriched categories, the def-
initions of internal T -multicategories in B, for T a (cartesian) monad and B with pullbacks,
introduced in [3, p. 8] and [11, Definition 4.2], generalize the notion of internal categories.
Following this viewpoint and the approach of [17, Theorem 1.6], in order to study effective
descent morphisms between more general (T ,V)-categories, the first step is to study effec-
tive descent morphisms of categories of internal T -multicategories, which is the aim of the
present paper.

The main contributions of our present work consist of two approaches to the problem of
finding effective descent morphisms between internal multicategories. We explain, below,
the key ideas of our first approach, which is the main subject of Section 4.
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As a special case of [17, Theorem 9.2] (see Proposition 4.1), given a pseudo-equalizer
(iso-inserter)

PsEq(F,G) C DI F

G

of categories with pullbacks and pullback preserving functors, p is of effective descent
whenever F I p is of descent and I p is of effective descent. Therefore, whenever (effective)
descent morphisms in C and D are well-understood, we find tractable, sufficient conditions
for effective descent in PsEq(F,G).

We establish the category Cat(T ,B) of internal T -multicategories in B as an equalizer
consisting of a category of models of a finite limit sketch and categories of diagrams (Lemma
3.1), which is fully embedded in the corresponding pseudo-equalizer (Theorem 3.3). Since
descent in categories of models of a finite limit sketch were studied in [15, Section 3.2],
and categories of diagrams are well-understood, we obtain sufficient conditions for effective
descent in the pseudo-equalizer by the result mentioned above (Lemma 4.3).

Finally, we find that the embedding of Cat(T ,B) into the pseudo-equalizer reflects effec-
tive descent morphisms (Lemma 4.4), getting, then, our first result. Namely, a functor p of
internal T -multicategories is effective for descent whenever

– T p1 is an effective descent morphism in B,
– T p2 is a descent morphism in B,
– p3 is an almost descent morphism in B,

where pi is the component of p between the objects of i-tuples of composable morphisms
(Theorem 4.5).

Our second approach to the problem is presented in Section 5, which extends the work of
[15] on effective descent morphisms between internal structures. We observe that the same
techniques employed in Le Creurer’s work can be applied to the “sketch” of internal T -
multicategories. With these techniques, we were able to refine our result on effective descent
morphisms. We prove that functors p such that

– p1 is an effecive descent morphism in B,
– p2 is a descent morphism in B,
– p3 is an almost descent morphism in B,

are effective descent morphisms in Cat(T ,B).
The techniques exploited in Section 5 proved to be more suitable to our context of internal

structures. However, the approach given there cannot be trivially applied to other generalized
(enriched) categorical structures. Thus, Section 4 has expository value and its techniques are
especially relevant to our future work in descent theory of generalized (enriched) categorical
structures.

After fixing some notation on Section 1, we recall some basic aspects on effective descent
morphisms in Section 2. Then, we study the equalizer that gives the category of internal T -
multicategories and its corresponding pseudo-equalizer in Section 3. Afterwards, we discuss
each approach to our main problem in the two subsequent sections. We end the paper with a
discussion of examples of cartesian monads and internal multicategories.

1 Preliminaries

Let J : B → C be a diagram with a limit (lim J , λ). For any cone γb : x → Jb, there exists
a unique morphism f : x → lim J such that γb = λb ◦ f for all b in B. We denote f as
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(γb)b∈ob B. As an example, let B be a category with pullbacks, and C an internal category.
The object of pairs of composable morphisms is given by the pullback:

C2 C1

C1 C0

d0

d2 d1

d0

Thus, if we have morphisms g : X → C1 and f : X → C1 with d1 ◦ g = d0 ◦ f , we
write (g, f ) for the uniquely determined morphism X → C2. Furthermore, we denote the
internal composition by g • f = d1 ◦ (g, f ), where d1 : C2 → C1 is the composition
morphism. Likewise, we can talk about tuples of composable morphisms, an idea we apply
to T -multicategories.

Another remark on notation: in a category B with a choice of pullbacks, we write

v w

x y

ε f

p∗ f f

p

for the chosen pullback of f along p. It is clear that the change-of-base p∗ : B ↓ y → B ↓ x
defines a functor right adjoint to p! : B ↓ x → B ↓ y with counit ε. For a morphism
h : f → g in B ↓ y (that is, f = g ◦ h), write p∗

h for the unique morphism p∗ f → p∗g
such that εg ◦ p∗

h = h ◦ ε f .

2 Effective descent morphisms

We recall some known facts about effective descent morphisms. In a category B with chosen
pullbacks along p, the category Desc(p) of descent data for a morphism p : x → y in B
is defined as the category of algebras for the monad p∗ p!. Explicitly, objects are pairs of
morphisms (a : w → x, γ : v → w) satisfying

– p∗(p ◦ a) = a ◦ γ , that is, γ is a morphism p∗(p ◦ a) → a in B ↓ x ,
– γ ◦ p∗

εp◦a = γ ◦ p∗
γ , the multiplication law (note that p ◦ a ◦ γ = p ◦ p∗(p ◦ a), so that

we may apply p∗),
– γ ◦ (a, id) = id, the unit law, where (a, id) is the unique morphism such that a =

p∗(p ◦ a) ◦ (a, id) and id = εp◦a ◦ (a, id).

A morphism (a, γ ) → (b, θ) of descent data is a morphism f with a = b ◦ f such that
f ◦ γ = θ ◦ p∗

f .
Further recall the Eilenberg-Moore factorization of p∗:

B ↓ y Desc(p)

B ↓ x

Kp

p∗ U p

Here, U p is the forgetful functor, and Kp is commonly denoted the comparison functor. We
say a morphism p is

– an almost descent morphism if Kp is faithful,
– a descent morphism if Kp is fully faithful,
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– an effective descent morphism if Kp is an equivalence.

By the Bénabou-Roubaud theorem (originally proven in [1], see, for instance, [13, p. 258]
or [17, Theorem 7.4 and Theorem 8.5] for generalizations), this is equivalent to the classical
formulation of the descent category w.r.t. the basic (bi)fibration.

As a consequece of Beck’s monadicity theorem, we may characterize (almost) descent
morphisms (also check [15, Corollary 0.3.4] and [12, Theorem 3.4]):

Proposition 2.1 In a category B with finite limits, pullback-stable epimorphisms are exactly
the almost descent morphisms, and pullback-stable regular epimorphisms are exactly the
descent morphisms.

Proof Let p : x → y be a morphism in B.Kp is (fully) faithful if and only if ε is a pointwise
(regular) epimorphism (in B ↓ y), which happens if and only if p is a universal (regular)
epimorphism in B ↓ y, as ε is given pointwise by pullback of p.

Since B has a terminal object, the forgetful functor B/y → B has a right adjoint, hence it
preserves colimits. ��

Thus, oncewe have a pullback-stable regular epimorphism p, it is natural to take an interest
in studying the image ofKp . To do so, we make the following elementary observation. Since
we have defined descent data as algebras, we restrict our attention to this context. It should be
noted, however, that the result holds inmuchmore general contexts, and hence its applicability
in descent arguments does not depend on the Bénabou-Roubaud theorem.

Lemma 2.2 Let (L 	 U , ε, η) : A → B be an adjunction and let T be the induced monad.
An algebra (a, γ ) is in the image of the Eilenberg-Moore comparison KT : A → T -Alg if,
and only if, a is in the image of U and

εw ◦ Lγ = εw ◦ εLUw. (1)

where w is an object such that a = Uw.

Proof The algebraKTw satisfies (1) by naturality. Conversely, if an algebra (Uw, γ ) satisfies
(1), then

γ = Uεw ◦ ηUw ◦ γ = Uεw ◦ULγ ◦ ηULUw = Uεw ◦UεLUw ◦ ηULUw = Uεw

Hence (Uw, γ ) = KTw. ��
As a corollary, we get a fairly commonly used result in proofs about effective descent

morphisms. It has been, sometimes, implicitly assumed in the literature. The instance of Le
Creurer’s argument in Proposition 3.2.4, where he implicitly uses this result, is of particular
interest for our work.

Corollary 2.3 Kp is essentially surjective if and only if, for all descent data (a, γ ), there is
f such that p∗ f ∼= a and ε f ◦ γ = ε f ◦ εp◦a.

We finish this section recalling the following classical descent result (see [13, 2.7], [12,
3.9]):

Proposition 2.4 Let U : C → D be a fully faithful, pullback-preserving functor, and let p be
a morphism in C such that Up is effective for descent. Then p is effective for descent if and
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only if for all pullback diagrams of the form

Ux z

Ue Ub

f

Up

(2)

there exists an isomorphism Uy ∼= z for y an object of C.

The following consequence is of particular interest:

Corollary 2.5 Let U : C → D be a fully faithful, pullback-preserving functor. If there exists
z ∼= Uy whenever there is an effective descent morphism g : Ux → z, then U reflects
effective descent morphisms.

Proof Suppose (2) is a pullback square. If Up is an effective descent morphism, then so
is f ∗(Up) : Ux → z by pullback-stability. By hypothesis, we have z ∼= Uy, whence we
conclude that p is effective for descent by Proposition 2.4. ��

3 Multicategories and pseudo-equalizers

Recall that a monad T = (T ,m, e) is cartesian if T preserves pullbacks and the naturality
squares of m and e are pullbacks.

As defined in [11], for T a cartesian monad on a category B with pullbacks, a T -
multicategory internal to B is a monad in the bicategory SpanT (B), and a functor between
two such T -multicategories is a monad morphism considering the usual proarrow equipment
B → SpanT (B); these define the category Cat(T ,B). Explicitly, a T -multicategory is given
by an object x0 of B, together with a span

T x0 x1 x0
d1 d0

and two morphisms, given by dashed arrows below

x2 x0

T x0 x0 T x0 x0

x1 x1

m◦Td1◦d2 d0◦d0

d1

e idx0

s0

d1 d0 d1 d0

which make the triangles commute, where

x2 T x1

x1 T x0

d0

d2

Td0

d1

is a pullback diagram. Moreover, this data is required to satisfy certain identity and associa-
tivity conditions, which we will proceed to specify.

Following the terminology of Section 1, we say that a pair g : a → x1, f : a → T x1 is
composable if d1g = (Td0) f , we write (g, f ) : a → x2 for the uniquely defined morphism,
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and we let g • f = d1(g, f ). Likewise, define k •T h = (Td1)(k, h) for k : a → T x1 and
h : a → T T x1 such that (Td1)k = (T Td0)h (T -composable).

The identity properties of the monad guarantee that 1d0 f • (e ◦ f ) = f = f • 1d1 f , and
the associativity property guarantees that h • (g •T f ) = (h • g) • (m ◦ f ), where we are
implicitly given the following pullback diagram

x3 T x2

x2 T x1

d0

d3

Td0

d2

for h : a → x1, g : a → T x1 and f : a → T T x1 such that h, g are composable and g, f
are T -composable. Moreover, a functor p : x → y between internal T -multicategories is
given by a pair of morphisms p0 : x0 → y0 and p1 : x1 → y1 such that di ◦ p1 = (T i p0)◦di
for i = 0, 1, 1p0 = p11 and p1g • p1 f = p1(g • f ).

Going back to an internal description, we may denote

– s0 = (id, T s0 ◦ d1) : x1 → x2,
– s1 = (s0 ◦ d0, e) : x1 → x2,
– d1 = (d0 ◦ d0, Td1 ◦ d3),
– d2 = (d1 ◦ d0, m ◦ Td2 ◦ d3),

so the above data can be organized in the following diagram

x0 x1 x2 x3

T x0 T x1 T x2

T T x0 T T x1

s0

e

s0

s1

d0
d1 e

d0
d1

d2
d2

d1

d0

d3
T s0

Td1

Td0

Td0

Td1
Td2m m

TTd0

which is similar to [3, Figure 1]. In fact, one may define T -multicategory as a diagram
satisfying certain relations, a description particularly suitable for our techniques in Section 4.
First, we let S be the (finite limit) sketch given by the following graph

x0 x1 x2 x3

x ′
0 x ′

1 x ′
2

x ′′
0 x ′′

1

s0

e0

s0

s1

d0
d1 e1

d0
d1

d2
d2

d1

d0

d3
s′0

d ′
1

d ′
0

d ′
0

d ′
1

d ′
2m0 m1

d ′′
0

(3)

with relations resembling cosimplicial identities

– s1 ◦ s0 = s0 ◦ s0 : x0 → x2,
– d1+i ◦ si = ei : xi → x ′

i ,
– di ◦ s j = id : xi → xi ,
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– d2 ◦ s0 = s′
0 ◦ d1 : x1 → x ′

1,
– d0 ◦ s1 = s0 ◦ d0 : x1 → x1,
– d ′

0 ◦ s′
0 = id : x ′

0 → x ′
0,

– d1+i ◦ d1+i = mi ◦ d ′
1+i ◦ d2+i : x2+i → x ′

i ,
– d1+i ◦ d0 = d ′

0 ◦ d2+i : x2+i → xi ,
– d ′

j ◦ d2+i = d1+i ◦ d j : x2+i → x ′
i ,

– d0 ◦ d1 = d0 ◦ d0 : x2 → x0,
– d j ◦ d1+i = di ◦ d j : x3 → x1,
– d ′

1 ◦ d ′
0 = d ′′

0 ◦ d ′
2 : x ′

2 → x ′′
0 ,

– d ′
0 ◦ d ′

1 = d ′
0 ◦ d ′

0 : x ′
2 → x ′

0,

and limit cones

x2+i x1+i

x ′
1+i x ′

i

d0

d2+i d1+i
d ′
0

x ′
2 x ′

1

x ′′
1 x ′′

0

d ′
0

d ′
2 d ′

1
d ′′
0

(4)

with i = 0, 1 and j ≤ i . Abusing notation, we also denote by S the category generated by
the graph (3) and the given relations. WritingMod(S,B) for the category of B-models of S,
we have:

Lemma 3.1 For a cartesian monad (T ,m, e) on a category B with pullbacks, Cat(T , B) is
given as the equalizer of the following composite of pullback-preserving functors:

Mod(S,B) [S,B] [ST ,B] × [Sm0 ,B
] × [Sm1 ,B

] × [Se0 ,B
] × [Se1 ,B

]I
S∗−

�

(5)
Moreover, Cat(T ,B) has pullbacks and the canonical functor Cat(T ,B) → Mod(S,B)

preserves them.

Remark 3.2 It might seem superfluous to require the right diagram of (4) to be a pullback, as
the equalizer condition will force x ′

i = T xi and x ′′
i = T T xi , and since T preserves pullbacks,

the pullback condition for the aforementioned diagram is already guaranteed.
Moreover, omitting this apparently redundant diagram, an analogous versionofLemma3.1

would describe Burroni’s notion of T -multicategories (check [3], where this extra pullback
condition is not required), even when T is not cartesian, or even pullback-preserving.

In spite of the above reasons, this requirement is justified by the sharper results we obtain
about effective descent in Mod(S,B) (see Proposition 4.2), and consequently, in Cat(T ,B)

as well (see Theorem 4.5).

Note that the inclusionMod(S,B) → [S,B] is an iso-inserter of categories of diagrams,
thus it creates limits.

The categories SI , ST , Smi , and Sei for i = 0, 1 are subcategories of S, respectively given
by

x0 x1 x2

x ′
0 x ′

1

s0

d0
d1

d0

d1
d2

d ′
0

x ′
0 x ′

1 x ′
2

x ′′
0 x ′′

1

s′0

d ′
1

d ′
0

d ′
0

d ′
1

d ′
2

d ′′
0

x ′′
i x ′

i
mi xi x ′

i
ei
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and write S∗
I , S

∗
T , S

∗
mi
, S∗

ei , for the restriction functors. Also write x∗
0 and x∗

1 : [S,B] → B
for the projections. With these, S∗−, and � are the uniquely determined functors given by the
following

[S,B] [ST ,B]

[SI ,B] [ST ,B]

S∗
T

S∗
I ∼=

T∗

[S,B] [Smi ,B
]

B

S∗
mi

x∗
i m̂

[S,B] [Sei ,B
]

B

S∗
ei

x∗
i ê

where T∗, m̂ and ê are the functors induced by the monad T . Note that these preserve
pullbacks exactly when T is cartesian.

Note that, in general, the equalizer is a full subcategory of the pseudo-equalizer: for
functors F,G : C → D, the category PsEq(F,G) is the category whose objects are pairs
(c, φ) where c is an object of C and ι : Fy → Gy is an isomorphism, and morphisms
(c, φ) → (d, ψ) are morphisms f : c → d such that G f ◦ φ = ψ ◦ F f . Thus, the full
embedding may be given on objects by x → (x, id).

Henceforth, we denote

P = PsEq(S∗− ◦ I ,� ◦ I ). (6)

Lemma 3.3 The inclusion Cat(T ,B) → P is full and preserves pullbacks.

Proof The inclusion Cat(T ,B) → Mod(S,B) preserves pullbacks, which are then created
by P → Mod(S,B). ��

Given an object (y, ι) of P , ι can be explicitly described as a family of isomorphisms
making the appropriate squares commute:

y′
0 y′

1 y′
2

y′′
0 y′′

1

T y′
0 T y′

1

T y0 T y1 T y2

s′0

ιT0

d ′
0

d ′
1

d1

d ′
0

ιT2

d ′
2

ιT3 ιT4

T s0

Td0

Td1
T Td0

Td1

Td2

ιT1

y′′
i y′

i

T T yi T yi

ι
mi
0

mi

ι
mi
1

m

yi y′
i

yi T yi

ei

ι
ei
0 ι

ei
1

e
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Lemma 3.4 An object (y, ι) of P is isomorphic to a T -multicategory if and only if the fol-
lowing coherence conditions hold:

(i) ι
mi
1 = ι

ei
1 = ιTi for i = 0, 1,

(ii) T ιTi ◦ ιT3+i = ι
mi
0 , for i = 0, 1,

(iii) ι
ei
0 = id for i = 0, 1,

Such an object (y, ι) satisfying these conditions is said to be coherent.

Proof Given a coherent (y, ι), we define a T -multicategory ŷ such that ŷ0 = y0, ŷ1 = y1,
and we consider the span

T y0 y1 y0,
ιT0 ◦d1 d0

so that we have d̂1 = ιT0 ◦d1, d̂0 = d0, and we let d̂1 = d1 : x2 → x1 and ŝ0 = s0 : x0 → x1.
Consider the diagram for i = 0, 1:

y2+i y′
1+i T y1+i

y1+i y′
i T yi

d0

d2+i

d ′
0

ιT1+i

T d0

d1+i ιTi

The right square is a pullback because ιTj is an isomorphism for j = 0, 1, 2, and the left
square is a pullback by definition, therefore the outer rectangle is a pullback as well.

Let d̂0 = d0 : y2+i → y1+i and d̂2+i = ιT1+i ◦ d2+i : y2+i → y1+i for i = 0, 1. We claim
that every triangle commutes:

y2

T y0 y0

y1

m◦T d̂1◦d̂2 d0◦d0

d1

d̂1 d0

(7)

y0

T y0 y0

y1

e

s0

d̂1 d0

(8)

Of course, both right triangles commute by definition.Moreover, we have that the diagram

y2 y′
1 y′′

0 y′
0

T y1 T y′
0 T T y0 T y0

d2 d ′
1

ιT1

M

ιm0
ιT3

ιm1

Td1 T ιT0
m

(9)

commutes by the naturality of ι and coherence of (y, ι).
Since M ◦ d ′

1 ◦ d2 = d1 ◦ d1 by definition, the left triangle of (7) commutes. The left
triangle of (8) also commutes, for we have e = ι

e0
1 ◦ e0, ι

e0
1 = ιT0 and e0 = d1 ◦ s0.

We claim it is possible to define
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– ŝ0 = (id, T s0 ◦ d̂1)
– ŝ1 = (s0 ◦ d0, e)
– d̂2 = (d1 ◦ d0,m ◦ T d̂2 ◦ d̂3)
– d̂1 = (d0 ◦ d0, Td1 ◦ d̂3)

and in order to verify our claim, we must show that

– d̂1 = Td0 ◦ T s0 ◦ d̂1,
– d̂1 ◦ s0 ◦ d0 = Td0 ◦ e,
– d̂1 ◦ d1 ◦ d0 = Td0 ◦ m ◦ T d̂2 ◦ d̂3,
– d̂1 ◦ d0 ◦ d0 = Td0 ◦ Td1 ◦ d̂3,

Since d0 ◦ s0 is the identity, the first equation is satisfied. We have

ιT0 ◦ d1 ◦ s0 ◦ d0 = ι
e0
1 ◦ e0 ◦ d0 = e ◦ d0 = Td0 ◦ e,

which verifies the second. For the third and fourth, we have

ιT0 ◦ d1 ◦ d0 ◦ d0 = ιT0 ◦ d ′
0 ◦ d2 ◦ d0

= Td0 ◦ ιT1 ◦ d ′
0 ◦ d3

= Td0 ◦ Td0 ◦ ιT2 ◦ d3

= Td0 ◦ Td1 ◦ d̂3,

Td0 ◦ m ◦ T ιT1 ◦ Td2 ◦ ιT2 ◦ d3 = m ◦ T Td0 ◦ T ιT1 ◦ Td2 ◦ ιT2 ◦ d3

= m ◦ T ιT0 ◦ Td ′
0 ◦ Td2 ◦ ιT2 ◦ d3

= m ◦ T ιT0 ◦ Td1 ◦ Td0 ◦ ιT2 ◦ d3

= m ◦ T ιT0 ◦ Td1 ◦ ιT1 ◦ d ′
0 ◦ d3

= m ◦ T ιT0 ◦ ιT3 ◦ d ′
1 ◦ d2 ◦ d0

= m ◦ ι
m0
0 ◦ d ′

1 ◦ d2 ◦ d0

= ι
m0
1 ◦ m0 ◦ d ′

1 ◦ d2 ◦ d0

= ι
m0
1 ◦ d1 ◦ d1 ◦ d0,

as desired.
Recalling that the left square in (9) is a pullback for i = 0, 1, it follows that s0, s1 : x1 → x2

and d1, d2 : x3 → x2 are given by (id, s′
0 ◦ d1), (s0 ◦ d0, e1), (d1 ◦ d0,m1 ◦ d ′

2 ◦ d3) and
(d0 ◦ d0, d ′

1 ◦ d3), respectively. But these are just ŝ0, ŝ1, d̂1, d̂2, respectively.
The converse is implied by the result that follows. ��

Theorem 3.5 If f : (x, id) → (y, ι) is a pointwise epimorphism in P , then (y, ι) is coherent.
Hence, (y, ι) is isomorphic to a T -multicategory.

Proof A morphism f : (x, id) → (y, ι) is a morphism f : x → y such that G f = ι ◦ F f ,
which translates to the following equations:

f0 = ι
e0
0 ◦ f0 f ′

0 = ιT0 ◦ T f0 = ι
m0
1 ◦ T f0 = ι

e0
1 ◦ T f0

f1 = ι
e1
0 ◦ f1 f ′

1 = ιT1 ◦ T f1 = ι
m1
1 ◦ T f1 = ι

e1
1 ◦ T f1

f ′
2 = ιT2 ◦ T f2

f ′′
0 = ιT3 ◦ T f ′

0 = ι
m0
0 ◦ T T f0

f ′′
1 = ιT4 ◦ T f ′

1 = ι
m1
0 ◦ T T f1
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and noting that fi , f ′
i , f ′′

i all are epimorphisms for all i we recover the coherences; just note
that T fi and T T fi are epimorphisms as well, and that T f ′

i = T ιTi ◦ T T fi . ��

4 Descent via bilimits

Recall the pseudo-equalizer P defined in (6) from the previous section. We understand the
effective descent morphisms of P via the effective descent morphisms of Mod(S,B) by the
following instance of [17, Theorem 9.2].

Proposition 4.1 Suppose that we have a pseudo-equalizer of categories and pullback-
preserving functors

PsEq(F,G) C DI F

G

and let f be a morphism in the pseudo-equalizer. Then f is effective for descent whenever
I f is effective for descent and F I f ∼= GI f is a pullback-stable regular epimorphism.

Furthermore, by the work of [15], we are able to provide sufficient conditions for effective
descent in Mod(S,B) for B with finite limits:

Proposition 4.2 If a morphism p in Mod(S,B) is such that

– p0, p1, p′
0, p

′
1, p

′′
0 , p

′′
1 are effective descent morphisms in B,

– p2, p′
2 are descent morphisms in B,

– p3 is an almost descent morphism in B,
then p is an effective descent morphism in Mod(S,B).

Proof We refer the reader to Section 3.2 ibid if they wish to fill in the details. The sketch
S may be given as an essentially algebraic theory with sorts x0, x1, x ′

0, x
′
1, x

′′
0 , x

′′
1 , partially

defined operations d1 : x1 × x ′
1 → x1, d ′

1 : x ′
1 × x ′′

1 → x ′
1, and equation (d1 ◦ (id, d1), d1 ◦

(d1, id)) : x1× x ′
1× x ′′

1 → x1, among other data and equations. Then apply Proposition 3.2.4
ibid. ��

With T cartesian, diagram (5) is a pseudo-equalizer, so we are under the hypothesis of
Proposition 4.1. Therefore:

Lemma 4.3 A morphism p in P is effective for descent whenever p is effective for descent in
Mod(S,B) and S∗

X p is a descent morphism for each X = T ,m0,m1, e0, e1.
In particular, if p satisfies the conditions in Proposition 4.2, then p is effective for descent

in the pseudo-equalizer.

Proof We observe that a morphism in a product of categories is of descent if and only if each
component is a descent morphism. Moreover, pointwise (effective) descent in [S,B] implies
pointwise descent in [SX ,B] for every X . Therefore, the result follows by Proposition 4.1. ��

By Lemma 3.3, we may apply the previous proposition to U : Cat(T ,B) → P . Conse-
quently, we can show that:

Lemma 4.4 U reflects effective descent morphisms.
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Proof Since every effective descent morphism is an epimorphism, the result follows by
Theorem 3.5 and Corollary 2.5. ��

Combining Lemmas 4.3 and 4.4 , we get our main result:

Theorem 4.5 For B with finite limits, let p : x → z be a T -multicategory functor internal to
B. If T p1 is an effective descent morphism, T p2 is a descent morphism and p3 is an almost
descent morphism in B, then p is an effective descent morphism in Cat(T ,V).

Proof By the results in Appendix A (observe that T p1 is a T -graph morphism), we guarantee
that p is an effective descent morphism in Mod(S,B). Now apply Theorem 4.4. ��

5 Descent via sketches

In this section,we extend the techniques of [15, Chapter 3] to give refined sufficient conditions
for (effective) descentmorphisms inCat(T ,B) in the broader sense ofBurroni; that is,without
requiring T to be cartesian (though we require T to preserve kernel pairs for Theorem 5.3),
while keeping the definition of T -multicategory intact. We highlight that given a functor
p : x → y of internal multicategories, if p1 is a pullback-stable (regular) epimorphism, or
of effective descent, then so is p0 by Lemma A.3.

Lemma 5.1 Let p : x → y be a functor of internal T -multicategories. If p1 is an (pullback-
stable) epimorphism in B, then so is p in Cat(T ,B).

Proof Given functors q, r such that q ◦ p = r ◦ p, we have qi ◦ pi = ri ◦ pi , and therefore
qi = ri for i = 0, 1, hence q = r , thus p is an epimorphism. Since pullbacks are calculated
pointwise, p must be pullback-stable whenever p1 is. ��
Lemma 5.2 Let p be a functor of internal T -multicategories. If

– p1 is a (pullback-stable) regular epimorphism in B,
– p2 is an (pullback-stable) epimorphism in B,

then p is a (pullback-stable) regular epimorphism in Cat(T ,B).

Proof Consider the kernel pair r , s of p, and let q : x → z be a functor such that q ◦r = q ◦s.
Then there exist unique morphisms k0, k1 such that ki ◦ pi = qi for i = 0, 1. We claim these
morphisms define a functor y → z. We have

d1 ◦ k1 ◦ p1 = d1 ◦ q1 = Tq0 ◦ d1 = T k0 ◦ T p0 ◦ d1 = T k0 ◦ d1 ◦ p1

d0 ◦ k1 ◦ p1 = d0 ◦ q1 = q0 ◦ d0 = k0 ◦ p0 ◦ d0 = k0 ◦ d0 ◦ p1

k1 ◦ d1 ◦ p2 = k1 ◦ p1 ◦ d1 = q1 ◦ d1 = d1 ◦ q2 = d1 ◦ k2 ◦ p2,

and since p1, p2 are epimorphisms, cancellation allows us to conclude that k is a functor (we
note that k2 is defined as k2(g, f ) = (k1g, k1 f ), and hence q2 = k2 ◦ p2).

Again, pointwise calculation of pullbacks guarantees pullback stability. ��
Theorem 5.3 Let p be a functor of internal T -multicategories, and assume T preserves kernel
pairs. If

– p1 is an effective descent morphism in B,
– p2 is a descent morphism in B,
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– p3 is an almost descent morphism in B,
then p is effective for descent in Cat(T ,B).

Proof By the previous lemma, and Proposition 2.1, the comparison functorKp is fully faith-
ful. Hence, we aim to prove that Kp is also essentially surjective under our hypotheses,
thereby concluding that p is effective for descent.

Suppose we are given a p∗ p!-algebra (a, γ ), where a : v → x is a functor and γ : u → v

is the algebra structure. We have equivalences Ki : B ↓ yi → Desc(pi ), for i = 0, 1, and
(a, γ ) then determines algebras (ai , γi ) for i = 0, 1. Hence, there exist fi : wi → yi and
hi : vi → wi such that the following diagram

vi wi

xi yi

hi

ai fi

pi

is a pullback square, and moreover, we have hi ◦ γi = hi ◦ εpi◦ai . We claim that

– h0, h1 determine a functor h : v → w,
– f0, f1 determine a functor f : w → y,

so that the above lifts to a pullback diagram of T -multicategories.
The hypothesis that p1, p2 are pullback-stable regular epimorphisms implies that h1, h2

are regular epimorphisms. Taking kernel pairs and noting that T preserves them, we get

u1 v1 w1

T iu0 T iv0 T iw0

di

h1

di di

T i h0

u0 v0 w0

u1 v1 w1

s0

h0

s0 s0

h1

u2 v2 w2

u1 v1 w1

d1

h2

d1 d1

h1

therefore there exist unique morphisms making every right hand side square commute. We
note that we define h2(g, f ) = (h1g, (Th1) f ). Assuming thatw is in fact a T -multicategory,
we may already conclude that h is a functor. The hypothesis that p1, p2, p3 are pullback-
stable epimorphisms implies that h1, h2, h3 are epimorphisms. We have equations

d1s0h0 = (Th0)di s0 = (Th0)e = eh0

d0s0h0 = h0d0s0 = h0

d1d1h2 = (Th0)d1d1 = (Th0)m(Td1)d2 = m(Td1)dhk2

d0d1h2 = h0d0d1 = h0d0d0 = d0d0h2

d1si h1 = h1d1si = h1s0d0 = s0d0h1

d1d2h3 = h1d1d2 = h1d1d1 = d1d1h3
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and by cancellation, we conclude w is a T -multicategory (proving our assumption) and,
similarly, we can show that f is a functor, by following the same strategy as in the previous
lemma. This confirms that p∗ is essentially surjective.

Finally, it is immediate that h ◦ γ = h ◦ εp◦a , since hi ◦ γi = hi ◦ εpi◦ai for i = 0, 1 and
pullbacks are calculated pointwise. The result now follows by Corollary 2.3. ��

6 Epilogue

There are sparse examples of cartesian monads, and therefore sparse examples of categories
of internal multicategories over a monad. For B finitely extensive with finite limits and
pullback-stable nested countable unions, as in [16, Appendix D], the free category monad on
graphs internal to B is cartesian, and therefore so is the free monoid monadW on B. In fact,
Leinster’s construction is iterable, and most known examples fit into the above conditions.

A class of examples outside of the previous setting is given by free monoid monads on
extensive categories with finite limits (thus, trading off the requirement of the aforementioned
unions by infinitary extensivity). These are also cartesian; the idea is that the coproduct functor
Fam(B) → B preserves finite limits, so we may construct the required limit diagrams in
Fam(B), allowing us to conclude that such monads preserve pullbacks and that the required
naturality squares are pullbacks.

Given a cartesianmonadon a categoryBwith pullbacks andC an internal T -multicategory,
we can construct a cartesian monad TC on B ↓ C0; see Corollary 6.2.5 ibid. This yields an
equivalence of categories

Cat(TC ,B ↓ C0) ∼= Cat(T ,B) ↓ C , (10)

and since pullback-stable (regular) epimorphisms and effective descent remain unchanged
on slice categories (more precisely, C/x → C creates each of the three types of morphism),
we can deduce facts about effective descent of complicated internal multicategories in terms
of simpler ones.

For the remainder of this section, we will discuss some simple examples of interest,
compare our work with other literature, then mention some open problems.
(M × −)-multicategories. Given a monoid M , we can define a cartesian monad M × −
on Set. An (M × −)-multicategory C is, intuitively, a category with weighted morphisms.

(M × −)-morphisms are of the form f : x m−→ y for objects x, y and an element m ∈ M ,

and if g : y n−→ z, then g ◦ f : x n·m−−→ z. Identities are given by id : x 1−→ x , and these are to
satisfy associativity and identity laws.

Despite being a more complicated structure than a category, (M×−)-functors of effective
descent are not harder to come by compared to ordinary functors. Awell-known result (which
can be deduced from (10)) is that Cat(M × −, Set) ∼= Cat ↓ M , where we view M as a
one object category. Hence, an (M × −)-functor is an effective descent morphism whenever
it has the respective property as a functor. In fact, since [15] characterizes effective descent
functors, we have also characterized effective descent (M × −)-functors. The arguments
remain unchanged when we replace Set by a lextensive category B (with regular epi-mono
factorizations for the complete characterization).
Ordinary and operadic multicategories. A multicategory C consists of sets C0 and C1

of objects and multimorphisms, respectively, together with domain and codomain functions
d1 : C1 → WC0, d0 : C1 → C0, together with composition and unit operations d1 : C2 → C1

and s0 : C0 → C1 satisfying associativity and identity properties. Here, C2 is the set of
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multicomposable pairs given by the pullback of d1 and Td0. Likewise, Cn is the set of
multicomposable n-tuples.

A multicategory functor F : C → D is given by a pair of functions on objects and multi-
morphisms which preserve domain, codomain, unit and composition. Our main result states
that F is effective for descent whenever it is surjective on multimorphisms, multicomposable
pairs, and multicomposable triples.

To extend this result using (10), suppose we have an operad O (a multicategory with
one object). The induced monad WO is said to be an operadic monad, which is cartesian.
These are related to strongly regular theories; we refer the reader to [16] and [4] for details.
One could denote the category Cat(WO, Set) as the category of operadic multicategories and
functors between them. These functors come with an underlying multicategory functor, and
is effective for descent in Cat(WO, Set) if and only if it is effective for descent in Cat(W, Set).
As in the previous case, the same arguments work for B lextensive.
State of the art. Our results have shown that three levels of “surjectivity” (of singles, pairs
and triples of multimorphisms) are sufficient to determine effective descent in generalized
multicategories. This is consistentwith the findings of [12, 6.2 Proposition] forCat, and in [15,
Theorem 6.2.9] for Cat(C) where C has finite limits and a (regular epi, mono)-factorization,
where these three levels are also necessary.

This is also the case for V-categories, with V cartesian, as verified by [17, Theorem 9.11]
(with suitable V lextensive), and [6, Theorem 5.4] (with V a complete Heyting lattice). In the
latter case, since V is thin, surjectivity on triples of morphisms is no longer required.

In the enriched multicategory case, for T the ultrafilter monad and V = 2 (so that
(T ,V)-Cat = Top), we have the result of [5, Theorem 5.2], which requires only two levels
of surjectivity as well.
Further work. We also take the opportunity to state some open problems. One might be
interested in verifying whether the converses to Theorems 4.5 or 5.3 hold. As mentioned
in the introduction, LeCreurer gave an affirmative answer for T = id and further requiring
a (regular epi, mono)-factorization on B. One might also wonder if this extra condition is
necessary.

Another interesting problem is to check whether LeCreurer’s tools are also amenable to
fully characterize effective descent morphisms of enriched categories internal to B.
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Appendix A. T-stability of pullback-stable classes

The purpose of this appendix is to establish a couple of auxiliary lemmas about preservation
of pullback-stable classes. Let T = (T , e,m) be a cartesian monad on B.
Lemma A.1 T creates any pullback-stable property of morphisms in its essential image.

Proof If T f satisfies a property P , stable under pullback, then the unit and multiplication
naturality squares guarantee that f and T T f also satisfy P . ��
Corollary A.2 If T f is a pullback-stable (regular) epimorphism, effective for descent, then f
and T T f also have the respective property.

Lemma A.3 Let f : x → y be a T -graph morphism, and let E be a class of epimorphisms,
containing all retractions, closed under composition and cancellation. If f1 is in E , then so
is f0.

Proof Since d0 : y1 → y0 is a retraction, d0 ◦ f1 = f0 ◦ d0 is in E , therefore so is f0 by
cancellation. ��

We are interested in the cases when E is the class of pullback-stable epimorphisms, of
descent morphisms and of effective descent morphisms.
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