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ABSTRACT
◥

Background: Chemical risk assessment can benefit from inte-
grating data across multiple evidence bases, especially in exposure–
response curve (ERC) modeling when data across the exposure
range are sparse.

Methods: We estimated the ERC for benzene and acute
myeloid leukemia (AML), by fitting linear and spline-based
Bayesian meta-regression models that included summary risk
estimates from non-AML and nonhuman studies as prior infor-
mation. Our complete dataset included six human AML studies,
three human leukemia studies, 10 human biomarker studies, and
four experimental animal studies.

Results: A linear meta-regression model with intercept best
predicted AML risks after cross-validation, both for the full dataset
and AML studies only. Risk estimates in the low exposure range
[<40 parts per million (ppm)-years] from this model were com-
parable, but more precise when the ERC was derived using all

available data than when using AML data only. Allowing for
between-study heterogeneity, RRs and 95% prediction intervals
(95% PI) at 5 ppm-years were 1.58 (95% PI, 1.01–3.22) and 1.44
(95% PI, 0.85–3.42), respectively.

Conclusions: Integrating the available epidemiologic, biomark-
er, and animal data resulted in more precise risk estimates for
benzene exposure and AML, although the large between-study
heterogeneity hampers interpretation of these results. The harmo-
nization steps required to fit the Bayesian meta-regression model
involve a range of assumptions that need to be critically evaluated, as
they seem crucial for successful implementation.

Impact: By describing a framework for data integration and
explicitly describing the necessary data harmonization steps, we
hope to enable risk assessors to better understand the advantages
and assumptions underlying a data integration approach.

See related commentary by Keil, p. 695

Introduction
There is international consensus that benzene exposure is causally

related to acute myeloid leukemia (AML; ref. 1), but accurate descrip-
tion of the AML–benzene exposure-response curve (ERC) is still
needed for impact and risk assessment. Vlaanderen and colleagues (2)
used meta-regression to derive an ERC for total leukemia, which
includes AML, but also subtypes for which a causal relation to benzene
exposure has not been shown. Derivation of a precise ERC for AML
was not considered possible because of the limited number of studies
and low case numbers at low levels of exposure. Combining human
AML data with data from closely related study domains, for example,
human epidemiologic data on leukemia or cancer biomarkers, and
animal experimental data could be used to increase precision of the
estimated ERC in this, and other cases (3).

The aim of this article is to estimate the benzene-AML ERC using
data from both human and animal studies and fromboth experimental
and observational study designs. We also aim to identify and highlight
some of the assumptions underlying the harmonization steps required
for integrating data across these different study domains. We hypoth-
esize that the shape of the benzene-AML ERC may be estimated more
preciselywhenusing a larger evidence base, but also that it will improve
our ability to address concerns regarding the generalizability of results
obtained from a small set of studies. We focus on the exposure-
response relation at relatively low exposure levels, because the risks at
low occupational and environmental benzene exposure levels are still
being debated (4).

For this purpose, we add to the available epidemiologic studies that
directly investigated benzene and AML: (i) human studies on benzene-
induced leukemia, (ii) human biomarker studies in benzene-exposed
workers on the induction of chromosomal aberrations (CA) and
micronuclei (MN), and (iii) experimental animal studies on ben-
zene-induced hematopoietic and lymphoid cancers. Biomarker studies
forCAandMNwere includedbecause thesewere found tobe associated
with increased risk of cancer in large prospective cohort studies (5, 6).

We choose a Bayesian meta-regression approach because it can be
readily adapted to include prior information on likely effect sizes and
between-study heterogeneity (7), while also accounting more directly
for the imprecisely estimated between-study heterogeneity than
frequentist models (8).

Materials and Methods
We refer to the Supplementary for a description of how individual

studies were selected for the epidemiologic, human biomarker, and
animal experimental study domains (Supplementary Study Selection).
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A “reference” ERC for benzene and AML was estimated using a
Bayesian version of the meta-regression model used by Vlaanderen
and colleagues (4) for estimating the ERC for benzene and leukemia,
and using only data from epidemiologic studies that directly investi-
gated risk of AML in benzene-exposed workers. As usual for this type
of (meta-regression) model, the input data consisted of reported
summary risk estimates (i.e., log-HRs) and SEs for each (AML) study
and for each (average) cumulative benzene exposure level for which it
was reported. Additional details on the structure of the meta-
regression model are provided further below.

To estimate an “augmented” ERC, i.e., an ERC that includes
information from studies in some or all of the related study domains,
we converted the available exposure-response information to fit the
same format as that used for the AML studies, i.e., into log relative
effect estimates with SEs at an estimated cumulative benzene exposure
level. Detailed examples of how the available information was
processed in order to fit this format (i.e., the data harmonization
steps) are provided in the Supplementary Data Harmonization
(including Supplementary Table S1), but the approach is also
outlined below, separately for each study domain.

Epidemiologic studies
For each study, risk estimates were selected from models where

cumulative exposure was entered as a categorical variable, with SEs
estimated from reported confidence intervals. No distinction was
made between rate or HRs, standardized mortality ratios (SMR), or
ORs, and we will refer to each of these using the term RR in the
remainder of the article. When no cases were observed in one of the
categories (as was the case for the study by Collins and colleagues (9),
we imputed half a case as a continuity correction to allow calculation of
the logRR for the meta-regression. An overview of all included AML or
leukemia studies can be found in the Supplementary AML studies
(Supplementary Table S2) and Supplementary Leukemia studies
(Supplementary Table S3), respectively.

Exposure estimates were based either on reported average cumu-
lative exposures or, when these were not available, by assigning the
midpoint of the reported range or, for open-ended upper categories,
the lower category boundary multiplied by 5/3.

Human biomarker studies
The meta-analytical approach of Scholten and colleagues (ref. 10;

where benzene exposure effects are estimated on an additive scale) was
modified in two ways to allow inclusion of the study data in our meta-
regression framework. First, to quantify effects on a multiplicative
scale, we log-transformed the reported proportions and used the delta
method to estimate their variance on the log-scale (11). We then
subtracted the log-transformed proportion of aberrant cells in the
unexposed (or low-exposed) from that in the exposed and estimated its
SE using standard variance rules. The main assumption underlying
this approach is that the ratio of CA (or MN) in exposed to unexposed
categories can be used to inform our prior estimate for the RR of
benzene-induced AML. Second, to harmonize exposure levels in the
biomarker studies to those in the epidemiologic studies, (average)
exposure levels were multiplied by the reported average working
histories, as a way to estimate cumulative exposures. If for a specific
study no working history was available (which was the case for three
CA and five MN studies) we assigned the average working history
across all other studies. The main assumption underlying this step is
that group differences in average exposures calculated from cross-
sectional studies are equivalent to the differences observed in the
epidemiologic studies.

Animal experimental studies
Effect estimates for most animal studies were either available

as, or could be easily expressed as, risk ratios. Concordance
between experimental animal and human epidemiologic data
for AML is supported by results presented in the recent Inter-
national Agency for Research on Cancer (IARC) monograph on
tumor site concordance and mechanisms of carcinogenesis (12).
We estimated cumulative benzene exposure levels by multiplying
reported exposure levels [parts per million (ppm)] by reported
exposure durations without applying any further conversion
factors. Results from multiple experiments reported in a single
paper (n ¼ 2) were considered separate studies. An overview
of all animal studies can be found in the Supplementary file
(Supplementary Table S4).

Bayesian meta-regression model
Our meta-regression model is formulated as a hierarchical two-

level random intercept and slope model. The (level 1) model for the
observed (log) RRs (Y) is:

Y�MVN E Yð Þ;Sy
� �

E Yij
� � ¼ d0;i þ

XK
k¼1

dk;i�Xk;ij

Where MVN is the multivariate normal distribution and E(Y) the
expected value of Y, i and j index different studies and exposure levels,
d0;i and dk,i are the study-specific intercept and slope coefficients,
and where Xk is either the benzene exposure level itself (for linear
models; K ¼ 1) or the kth basis of a K-dimensional regression spline.
The covariance matrix of residual errors (Sy) is assumed to be known
and was estimated using the method proposed by Greenland and
Longnecker (13).

The (level 2) model for the random intercept (d0;i) and slope
coefficient(s) (dk;i) is:
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We aimed to specify priors that are strong enough to rule out
unreasonable values, while still allowing the data to dominate the prior
when it provides enough information.

We assigned a weakly informative normal prior centered at 0 and
with a scale of 1 to the overall intercept (b0Þ, and normal priors
centered at 0with a scale of 2 to the slope parameter(s) (b1 � � �bKÞ. This
reflects our prior belief that the RR at zero exposure is likely to be exp
(0) ¼ 1 and rather unlikely (i.e., with prior probability <20%) to be
outside the range exp(�1.28) ¼ [1/3.6, 3.6] and that the RR per 100
ppm-years is unlikely to be outside the range exp(�2�1.28) ¼ [1/13,
13] (for the linear model).

For the random effect variances we followed the recommendations
by R€over and colleagues (14) in using a half-Cauchy prior for the
random effect variances and the prior suggested by Lewandowski,
Kurowicka, and Joe (LKJ; ref. 15) for the correlations between random
effects. Our main analyses are based on using a half-Cauchy with a
scale of 1. Our choice for this particular prior scale reflects our belief
that the between-study variation in logRRs is likely (i.e., with prior
probability >80%) within the range (0.16–6.3), but with a mode at 0,
and it allows for considerable heterogeneity in RRs between studies.
Based on this prior, and assuming an overall RR of 1, approximately
20% of study-specific RRs (per 100 ppm-years) are expected to be
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between 0.9 and 1.1, 40% are expected to be between 0.7 and 1.5, 60%
are expected to be between 0.4 and 2.4, and 80% are expected to be
between and 0.1 and 9.9.

The parameterh of the LKJ prior was set at 2, whichmainly serves to
exclude very strong correlations between estimated random effect
parameters [e.g., 80% of the intercept-slope correlations is expected to
be in the range (�0.6 to þ0.6)].

Exposure–response models
To assess the shape of the ERC, we fitted a regression spline model

using a natural regression spline basis with interior knots at 10 and 65
ppm-years (the approximate 33% and 67% percentiles of the exposure
distribution) and outer knots at 0 and 130 ppm-years (the approximate
0% and 85% percentiles of the exposure distribution). Alternative
exposure-response models included a regression spline model without
an intercept, forcing the ERC through the origin (RR ¼ 1) at zero
exposure, and linear models with and without an intercept.

Between-study heterogeneity was accommodated by allowing for
study-specific intercepts and slopes (regression coefficients) as (cor-
related) random effects. We additionally present 95% prediction
intervals (95% PI) that take into account the between-study hetero-
geneity as recommended by Higgins and colleagues (16). Prediction
intervals were calculated using estimates for the between-study het-
erogeneity for AML studies.

We evaluatedmodel fit for each individual study by jackknifing (i.e.,
leaving out one study at a time), refitting the meta-regression model,
and calculating the ratio of the sumof the differences between observed
and predicted values over its estimated SE for each held out study as an
externally studentized residual. An absolute value of the ratio exceed-
ing 3 was considered evidence of severe lack of fit. To compare the
quality of posterior predictions from different model structures we
estimated the sum of the expected log pointwise predictive density
(ELPD; ref. 17) using the models fitted during jackknifing. Higher
ELPDs indicate better predictions for the left-out studies and can be
calculated for the full set of studies, but also for a subset (e.g., only
studies in the AML set).

Finally, to combine predictions from models with different model
structures (i.e., linear/spline, with/without intercept) we used Bayesian
stacking (18), with weights calculated based on the ELPD estimates.
We call the resulting model the “consensus”model and the estimated
ERC the “consensus” ERC.

Sensitivity analyses
First, we evaluated the sensitivity of our results to our choice of prior

for the between-study covariance by changing the scale of the half-
Cauchy prior to 0.5 and 5.

Second, we investigated the effect of excluding risk estimates for
relatively high exposures (i.e., over 40 ppm-years) from the model on
estimated risks at low exposures.

Third, we used an approach similar to that described in Bartell and
colleagues (19), reducing the precision of point estimates for a subset of
studies, to illustrate how our approach could be used to selectively
downweigh the impact of some studies, in this case adding an
(arbitrary) 10-fold uncertainty factor to results from the experimental
animal studies and a three-fold uncertainty factor to results from both
sets of biomarker studies.

Impact assessment
To illustrate how our framework could be used for risk assessment,

we calculated the excess risk of AML due to benzene exposure for our
“consensus” ERC using a life table analysis. Background incidence

rates for AML in the Netherlands were obtained from the Dutch
Integraal Kanker Centrum (IKC) and combined with Dutch mortality
rates as obtained from Statistics Netherlands. Excess risk of AML was
estimated for workers that were exposed to 0.1 ppm benzene for
40 years (between age 20–60), assuming a 5-year lag period, and
evaluated at age 80. We also estimated benzene exposure levels
corresponding to the definition of acceptable risk (AR) and maximum
tolerable risk (MTR) levels for occupational settings, i.e., the benzene
exposure level at which the number of excess cases is either 40 per
1,000,000 or 40 per 10,000 exposed workers.

Software
The Bayesian meta-regression model was implemented in STAN

using the brms package (version 2.10.0). We collected 10,000 samples
for each parameter from 4 chains after a burn-in of 5,000 iterations
using Markov Chain Monte Carlo (MCMC) techniques to sample
from the posterior distribution. The algorithmwas tuned by increasing
adapt.delta to 0.999 to avoid divergent transitions (20). The posterior
distribution was summarized by calculating the mean, SD, and 2.5, 50,
and 97.5 percentiles.

Jackknifing (leave-one-group-out cross-validation) was performed
using the R function kfold from the brms package, which was also used
to estimate ELPDs for the held-out studies. Weights for Bayesian
model averaging (model stacking) used to estimate the “consensus”
ERC were estimated using the stacking_weights function from the loo
package in R.

Results
We removed the MN biomarker study by Surrall�es and collea-

gues (21) from all further analyses because the results of the (first)
jackknifing analysis indicated a severe lack of fit for this study even in
our most flexible exposure-response model (i.e., a regression spline
model with intercept; Supplementary Table S5). Our final study base
therefore consisted of 26 studies: six human epidemiologic studies on
AML, three human leukemia studies (that had not reported on AML),
10 biomarker studies (4CAand 6MN), and seven experimental animal
studies (from four publications; refs. 22–25). Most of the AML and
leukemia studies, but only aminority of other studies, had estimates for
more than one exposure level.

Table 1 shows estimated RRs at cumulative benzene exposure levels
of 0, 5, 10, 20, and 40 ppm-years based on our spline model with
intercept for models fitted to data from studies in the reference set (i.e.,
humanAML studies), after adding studies from single additional study
domains, and after using all studies from all domains. Using data from
the full set of studies resulted in slightly higher relative risk estimates
than using the reference set only, and these were estimated more
precisely with narrower confidence intervals (CI) and PI. There was
considerable between-study heterogeneity in risk estimates however,
as evident also from the PIs that were much wider than the CIs. Using
the full set of studies resulted in narrower PIs than using the reference
set only, suggesting that the gain in precision for population-level risk
estimates was not at the expense of increased between-study
heterogeneity.

Using cross-validation to estimate and compare the quality ofmodel
predictions, we found that the linearmodel with intercept provided the
best predictions (i.e., had lowest kICs; seeTable 2); both for the full set
of studies and when considering predictions only for the AML studies.
This was true also when models were fitted using data only from AML
studies. Predictions for AML studies were also better from models
fitted using all available data than frommodels fitted to the AML data
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only. As a result, estimated model weights were highly skewed
towards the linear model with intercept, which was assigned a
weight of nearly 1 (versus <1e-5 for any of the other model
structures), making the “consensus” model virtually identical to
the linear model with intercept.

Estimated ERCs using the linear “consensus”model for the AML set
only and after adding studies from different domains are presented
graphically in Fig. 1. Although most datapoints from the biomarker
and experimental animal studies were in the lower exposure region,
inclusion of these studies had only limited effect on the estimated ERC.
Similar to the more flexible regression spline model, estimated RRs at
low cumulative benzene exposure levels were generally lower and less
precise when using data only from the AML studies, when compared
with using all available studies (Table 3). As an example, the risk
estimate (95% PI) at 5 ppm-years was 1.44 (95% PI, 0.85–3.42) when
using only AML studies, while it was 1.58 (95% PI, 1.01–3.22) when
using all available studies.

Parameter estimates for the consensus parameters and between-
study (co)variance for the linear model with an intercept fitted to the
full dataset are provided in the Supplemental Materials (Supplemen-
tary Table S6). Between-study variance in slopes was large relative to
the consensus slope estimate. There were no large differences in
estimated between-study variance for slopes for different study
domains, but these were estimated rather imprecisely.

Sensitivity analyses
Prior choice for the between-study (co)variance

Detailed results from sensitivity analyses regarding our prior choice
for the between-study (co)variance are presented in the Supplemen-
tary file (Supplementary Tables S7-S9).Using a more diffuse prior had
relatively little effect on the width of CIs for predicted exposure effects,
but resulted in significantly wider posterior PIs. As an example, for the
linear model with intercept the CIs for the predicted exposure effect at
40 ppm-yrs were (1.58–2.04) and (1.51–2.11) for prior scales of 0.5 and
5 respectively, while the corresponding PIs were (1.03–3.72) and
(0.80–5.54).

Prior-posterior plots (Supplementary Fig. S1) suggest that there is
no large mismatch between any of these priors and information
provided by the data itself.

Excluding high exposure datapoints
Risk estimates were comparable but less precise after excluding all

datapoints with benzene exposures over 40 ppm-years, with a notice-
able drop in risk estimates for exposures of 40 ppm-years for the
regression-spline based models (Supplementary Table S10).

Uncertainty factors
Estimated risks were marginally lower and considerably less precise

when three-fold uncertainty factors were used for the biomarker

Table 1. Relative risk estimates and 95% CIs and PIs for benzene-induced AML, for benzene exposure at selected exposure levels.

Benzene
(ppm, y) AML

AML þ
leukemia

AML þ CA
biomarker

AML þ MN
biomarker

AML þ
animal data All

0a 1.39 1.40 1.35 1.59 1.44 1.58
(0.77–2.47) (0.81–2.41) (0.76–2.34) (1.15–2.12) (0.82–2.44) (1.17–2.09)
(0.73–3.67) (0.76–3.54) (0.73–3.45) (0.94–3.53) (0.78–3.55) (0.96–3.47)

5 1.40 1.36 1.41 1.60 1.35 1.57
(0.84–2.30) (0.87–2.09) (0.91–2.18) (1.26–1.99) (0.86–2.07) (1.25–1.92)
(0.72–3.89) (0.73–3.49) (0.78–3.68) (0.92–3.69) (0.73–3.39) (0.93–3.51)

10 1.40 1.32 1.48 1.62 1.28 1.57
(0.79–2.50) (0.84–2.08) (0.98–2.19) (1.24–2.09) (0.81–2.03) (1.25–1.90)
(0.60–4.83) (0.61–4.05) (0.71–4.48) (0.78–4.40) (0.58–3.80) (0.81–3.98)

20 1.44 1.32 1.61 1.69 1.23 1.61
(0.66–3.32) (0.72–2.45) (0.95–2.52) (1.13–2.45) (0.68–2.28) (1.18–2.05)
(0.43–7.60) (0.45–5.63) (0.57–6.73) (0.60–6.18) (0.41–5.19) (0.65–5.28)

40 1.64 1.56 1.79 1.94 1.37 1.78
(0.70–4.08) (0.81–3.05) (1.05–2.86) (1.20–2.97) (0.75–2.63) (1.28–2.34)
(0.43–10.21) (0.47–7.57) (0.57–8.55) (0.60–8.12) (0.40–6.73) (0.63–6.52)

Note: Risk estimates are population-level estimates from a meta-regression model that includes an intercept and allows for nonlinear effects of benzene exposure.
Estimates are given only for AML studies, and with inclusion of several data domains, including the full dataset. Second row in each cell, CI; third row, PI.
aIntercept.

Table 2. Comparison of predictive model quality for models with different model structures.

Model Full dataset Full dataset : AML only AML

Linear model without intercept 121.6 54.52 56.82
Linear model with intercept 85 49.12 52.76
Spline model without intercept 113.2 54.02 58.88
Spline model with intercept 96 52.16 56.56

Note: Results are presented as the sum of ELPD (
P

ELPDÞ, with higher values indicating better model predictions. ELPDs were estimated using jackknifing (leave-
one-study-out cross-validation). Results are shown for models fitted to the full set of studies from all study domains for all studies and for AML studies only and for
models fitted to data only from AML studies.
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studies and a 10-fold uncertainty factor for the experimental animal
studies (Supplementary Table S11). The effect was more pro-
nounced for CIs: risk estimates at 5 ppm-years were reduced
from 1.58 (95% CI, 1.37–1.82) to 1.52 (95% CI, 1.16–2.00) when
uncertainty factors were applied.

Impact assessment
Results from the life table analyses that were used to estimate the

excess risk of AML due to benzene exposure using the linear model
exposure-response model with intercept are presented in Table 4.
These results indicate that, when workers are exposed to 0.1 ppm for
40 years, the estimated number of excess cases is higher than that

corresponding to AR levels, except when the most conservative
approach (i.e., subtracting the intercept) is used on the linear model
fitted to data from only the reference set, where it is just slightly lower.

Exposure levels corresponding to AR and theMTR levels are shown
in the Supplementary Tables S12 and S13, and range from 0.0003 ppm
(for the interpolated linear model) to 0.098 ppm (for the model with
intercept subtracted) when models are fitted to the full set of studies.

Discussion
To estimate the benzene-AML ERC, we collected and summa-

rized human and animal studies. The ERC derived using studies

Figure 1.

Benzene exposure andRRof developingAMLbasedonvarious datadomains. Linearmodelwith intercept. Dark ribbon, confidence interval for all studies; light ribbon,
PI for all studies. Dashed line represents knots. A, all study points; B, zoomed 0 to 40 ppm-years.

Table 3. Risk estimates and 95% PIs for benzene-induced AML at selected exposure levels.

Benzene exposure (ppm, y) AML
AML þ
leukemia

AML þ CA
biomarker

AML þ MN
biomarker

AML þ
animal data All

0 1.42 1.42 1.54 1.56 1.33 1.55
(intercept) (0.91–2.21) (0.99–2.06) (1.11–2.12) (1.31–1.90) (0.91–1.93) (1.34–1.80)

(0.84–3.40) (0.86–3.22) (0.94–3.28) (1.01–3.18) (0.80–3.03) (1.00–3.16)
5 1.44 1.45 1.56 1.60 1.36 1.58

(0.94–2.22) (1.01–2.09) (1.14–2.11) (1.36–1.92) (0.93–1.96) (1.37–1.82)
(0.85–3.42) (0.88–3.29) (0.97–3.32) (1.03–3.27) (0.82–3.09) (1.01–3.22)

10 1.46 1.48 1.58 1.63 1.38 1.61
(0.95–2.24) (1.04–2.12) (1.17–2.10) (1.39–1.94) (0.96–1.98) (1.40–1.84)
(0.85–3.50) (0.89–3.35) (0.97–3.38) (1.04–3.35) (0.83–3.17) (1.02–3.30)

20 1.50 1.54 1.63 1.71 1.44 1.67
(0.97–2.31) (1.08–2.19) (1.23–2.10) (1.43–2.03) (1.01–2.04) (1.46–1.90)
(0.81–3.77) (0.88–3.58) (0.95–3.58) (1.02–3.68) (0.83–3.40) (1.02–3.51)

40 1.59 1.67 1.72 1.86 1.55 1.80
(0.96–2.55) (1.16–2.38) (1.29–2.24) (1.44–2.37) (1.10–2.21) (1.56–2.07)
(0.66–4.72) (0.81–4.39) (0.82–4.37) (0.90–4.86) (0.76–4.21) (0.94–4.21)

Note: Risk estimates are population-level estimates froma linearmeta-regressionmodel that includes an intercept. Estimates are given for onlyAML studies, andwith
inclusion of several data domains, including the full dataset. Second row in each cell, CI; third row: PI.
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from this broader evidence base was very similar to that based on
data from the human AML studies only, but with more precise risk
estimates. Based on results from cross-validation, prediction of risks
observed in single (held-out) AML studies was improved by using
data from other study domains.

We included a detailed description of data harmonization steps
and our prior motivation to improve understanding of the assump-
tions underlying the use of these models by risk assessors. The need
to harmonize exposure and outcome variables required us to make
strong and mostly untestable assumptions. For human studies,
exposure metrics used in the, mostly cross-sectional, biomarker
studies (average exposure levels) were fundamentally different from
those in the long-term prospective epidemiologic studies (cumu-
lative exposure levels). In addition, effects recorded in the biomark-
er studies had to be converted to relative effects to allow combi-
nation with epidemiologic data. For the animal data, cumulative
exposure could be readily estimated, but it is unclear whether any
interspecies extrapolation factors should have been applied.
Although others (e.g., Bartell and colleagues; ref. 19) used conver-
sion factors, there seems to be no general agreement on either use or
value. We chose not to apply any conversion factor, based on the
argument that metabolic rate and cell division are roughly inversely
correlated to lifespan (26).

Uncertainties stemming from the extrapolation of risks from
animal to human studies in current risk assessment procedures are
typically addressed by using a fixed set of interspecies extrapolation
factors (27). In an analogous approach, we (arbitrarily) used a 10-
fold uncertainty factor for the animal studies and a three-fold
uncertainty factor for the biomarker studies to downweigh evidence
from these study domains, resulting in slightly less precise risk
estimates. While safeguarding against inappropriate over-reliance
on animal or biomarker data, this may also result in suboptimal use
of the available data.

Prior choice for the between study variation is an important
ingredient of Bayesian meta-analyses, and may be crucial when there
is little information. There were only few studies per study domain in
the analysis, and we therefore used a half-Cauchy prior with a scale
parameter of 1, to exclude implausible high values for the random
effects variance. We evaluated the sensitivity of our findings to this
choice in sensitivity analyses (Supplementary Table S7; Supplementary
Figs. S1 and S2), with the results confirming our prior is broadly
compatible with the data, but also that estimated heterogeneity, which
affects precision of e.g., common slope factors, is quite sensitive to the
prior scale. We discuss the importance of heterogeneity for model
inference further below, but note that with more or more precise data,
the meta-regression model could be formulated with hyperpriors for

the half-Cauchy scale. Our approach also allows evaluation and
comparison of study heterogeneity across different study domains.
We found no large differences in heterogeneity between study
domains in our study, this could well be due to the fact that these
were estimated rather poorly, as there were only few studies per
study domain.

Weused life table calculation to evaluate the impact of our estimated
“consensus”ERC for further risk assessment. It should be noted that, in
the presence of significant between-study heterogeneity, use of an ERC
based on consensus (population-level) parameters may be difficult to
justify (28). Without knowing, or at least suspecting, what the reasons
for the apparent heterogeneity may be, the mean parameters may be
difficult to interpret. In case of strong heterogeneity, the mean para-
meters are also estimated with (near) equal weights for smaller and
larger studies, which could be problematic when smaller studies are
more likely to suffer from small-sample or publication bias (29).
Alternatively, the full (random effects) distribution may be used
e.g., to average lifetable results across a random sample of study-
specific ERCs or for choosing an upper quantile of the between-study
distribution under the assumption that the higher risks are observed in
better studies [similar to what is done in benchmark dose modeling
(BMDL)].

Sobel and colleagues (30) and Dahabreh and colleagues (28)
recently discussed the problem of casual interpretation of results
from meta-analyses. Both papers stress the importance of investi-
gating sources of heterogeneity and rely on using additional indi-
vidual-level covariate data to account for differential selection and
exposure effects. Our approach is flexible enough to include further
covariates as moderators.

We found that a linear model with intercept provided the
best predictions. Possible reasons for this intercept include exposure
measurement error, uncontrolled confounding, and healthy worker
selection. Models with an intercept present considerable interpre-
tational difficulties from a risk assessment perspective, and risk
assessors therefore often prefer (meta-regression) models that do
not allow intercepts. We therefore evaluated risks using a number of
different approach to account for the intercept and also assessed
risks based on the regression-spline model without an intercept.
Estimated AR levels from these models estimated using all avalilable
data were in the range of 0.0003 to 0.098 ppm, which includes the
limit for benzene exposure that was recently proposed by the Risk
Assessment Comittee of 0.05 ppm (31).

Our approach differs from earlier proposals for using Bayesian
methods to integrate data for risk assessment (e.g., Bartell and
colleagues, Dumouchel and colleagues; ref. 19, 32). Most notably
these authors used the additional data to derive a single prior for a
slope coefficient from a linear meta-analytical model. In contrast,
we aimed to include data from several different study domains
simultaneously and wanted to allow for potential nonlinear effects
using a meta-regression model. Our approach is more easy to use
with more complex model structures and allows more explicit
evaluation of between-study heterogeneity for studies from differ-
ent study sources.

Our approach can be seen as a first step towards quantitative
integration of human and animal data in risk assessment. It involves
a tradeoff between a potential gain in statistical precision that comes
with a more complete evaluation of the evidence base, but it also runs
the risk of introducing bias or increasing heterogeneity due to the
harmonization steps that may be required. Risk assessors may there-
fore choose to use this approach primarily when evaluating com-
pounds with weak epidemiologic evidence (i.e., insufficient data) but a

Table4. Results of a life table analysis for calculating excess cases
per 1,000,000 at age 80 when exposed to benzene at 0.1 ppm for
40 years.

AML
AML þ
leukemia

AMLþ
all data

<40
ppm-yrs

Linear with intercept 1,289 1,322 1,698 1,711
Linear with intercept –
intercept subtracted

30 42 41 3

Linear with intercept –
interpolation

1,222 1,253 1,606 1,619

Spline no intercept 295 204 379 —

Linear no intercept 64 65 75 184
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large animal or molecular evidence base. Implementation of our
approach in regulatory chemical risk assessment exercises would
require additional knowledge (such as better understanding of tox-
icokinetics, better evidence for prediagnostic biomarker-cancer asso-
ciations, better understanding of reasonable approaches to extrapolate
animal evidence to the human setting) to reduce the assumptions that
had to be made in the current evaluation.

To conclude, we provide a first step towards the quantitative
integration of data from different study domains, into human risk
assessment and identified a number of gaps that need to be addressed
in further research.
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