
S. Costantini, E. Pontelli, A. Russo, F. Toni,
R. Calegari, A. D’Avila Garcez, C. Dodaro, F. Fabiano,
S. Gaggl, A. Mileo, (Eds.): ICLP 2023
EPTCS 385, 2023, pp. 321–323, doi:10.4204/EPTCS.385.32

© Berthold, Knorr and Odekerken
This work is licensed under the Creative Commons
Attribution-Noncommercial License.

ForgettingWeb

Matti Berthold
ScaDS.AI, Dresden/Leipzig,

Universität Leipzig,
Germany

berthold@informatik.uni-leipzig.de

Matthias Knorr
NOVA LINCS

Universidade Nova de Lisboa,
Portugal

mkn@fct.unl.pt

Daphne Odekerken
Utrecht University,
The Netherlands

National Police Lab AI,
Netherlands Police

d.odekerken@uu.nl

The relatively young area of forgetting is concerned with the removal of selective information, while
preserving other knowledge. This might be useful or even necessary, for example, to simplify a
knowledge base or to tend legal requests. In the last few years, there has been an ample amount of
research in the field, in particular with respect to logic programs, spanning from theoretical consider-
ations to more practical applications, starting at the conceptual proposal of forgetting, to suggestions
of properties that should be satisfied, followed by characterizations of abstract classes of operators
that satisfy these properties, and finally the definition of concrete forgetting procedures.

In this work we present novel Python implementations of all the forgetting procedures that have
been proposed to date on logic programs. We provide them in a web interface, and hope to thereby
give anybody who is interested a low-barrier overview of the landscape.

An Overview

While dynamics in knowledge representation are often examined with respect to the addition of new
information, there is an increasing amount of research on how it may be removed. Forgetting, or variable
elimination, seeks to make a knowledge base independent of elements of the underlying formal language,
while keeping as many logical connections between the remaining elements as possible. Though it
was initially proposed as a semantical notion over classical formulas [LR94], in the context of logic
programming forgotten atoms are usually also required to be removed syntactically. More broadly, there
have been several suggestions for properties that a plausible forgetting procedure should satisfy [EW08,
ZZ09, WZZZ12, WWZ13, KA14, DW15], cf. [GKL16b] for an extensive overview.

Along the way, there have also been a number of suggestions for concrete syntactical transformations
to forget atoms from a program [ZF06, EW08, KA14, BGKL19, GJKL21, ACF+22b, ACF+22a, Ber22]
that satisfy some of the proposed properties, or at least satisfy them whenever possible [GKL16a]. The
hope for such operators is to produce forgetting results that in some way resemble their origin, while
avoiding a computational blow-up as much as possible. Given a semantic definition of a class of for-
getting operators, e.g. [GKLW17, GJK+19], the construction of a program from the desired HT-models
remains a baseline that can be employed to confirm the existence of a concrete forgetting operator [CF07].

The definitions of the syntactic forgetting procedures are rather involved, sometimes spanning over
several pages of text. In order to make them more accessible, we compiled encodings as well as short
explanations, of the operators (those that are defined over logic programs) and the construction of canon-
ical programs into a web interface.1 We hope to thereby give anybody who is interested a good overview
of the material.

A screenshot of the interface is shown in Figure 1. In the leftmost column, users can specify a logic
program and the atoms to be forgotten, or select a predefined sample input. Subsequently, they select the

1ForgettingWeb can be accessed here. Its source code is available here.

322 ForgettingWeb

Figure 1: Screenshot of ForgettingWeb.

forgetting operator of their choice from the dropdown in the middle column. These are implementations
from operators proposed in the literature. For more details, the user presses the "Operator Explanation"
button: this triggers a pop-up with an explanation of the operator and a reference to the paper in which it
was proposed. After pressing the "Forget it!" button, the result program appears in the rightmost column.

An input program P is specified by one rule per line, where the head atoms are separated by ‘;’, the
head and the body are separated by ‘:-’, and the body literals are separated by commas. As negation
signs both the traditional ‘not’ and the shorter ‘∼’ can be used. No dot at the end of a rule is required.
The atoms of the forgetting set V are separated by commas. In the “Result” column on the right side, the
new program has the same syntax as the input program.

The input of the counter-models construction auxcm are tuples with delimiters ‘<’ and ‘>’, e.g.:

<ab,ab><a,ab><b,ab><,ab>

<a,a><,>

Each character within an element of a tuple is assumed to be a single element of a set.

Acknowledgements

The authors have been arranged alphabetically. The authors acknowledge the financial support by the
Federal Ministry of Education and Research of Germany and by the Sächsische Staatsministerium für
Wissenschaft Kultur und Tourismus in the program Center of Excellence for AI-research "Center for
Scalable Data Analytics and Artificial Intelligence Dresden/Leipzig", project identification number:
ScaDS.AI. This work was partially supported by FCT project FORGET (PTDC/CCI-INF/32219/2017)
and by FCT project NOVA LINCS (UIDB/04516/2020).

Berthold, Knorr and Odekerken 323

References
[ACF+22a] F. Aguado, P. Cabalar, J. Fandinno, D. Pearce, G. Pérez & C. Vidal (2022): A polynomial reduction

of forks into logic programs. Artif. Intell. 308, p. 103712, doi:10.1016/j.artint.2022.103712.
[ACF+22b] F. Aguado, P. Cabalar, J. Fandinno, D. Pearce, G. Pérez & C. Vidal (2022): Syntactic ASP Forgetting

with Forks. In: Proceedings of (LPNMR-22), Lecture Notes in Computer Science 13416, Springer,
pp. 3–15, doi:10.1007/978-3-031-15707-3_1.

[Ber22] M. Berthold (2022): On Syntactic Forgetting with Strong Persistence. In: Proceedings of (KR-22),
doi:10.24963/kr.2022/5.

[BGKL19] M. Berthold, R. Gonçalves, M. Knorr & J. Leite (2019): A Syntactic Operator for Forgetting that
Satisfies Strong Persistence. Theory and Practice of Logic Programming 19(5-6), p. 1038–1055,
doi:10.1017/S1471068419000346.

[CF07] P. Cabalar & P. Ferraris (2007): Propositional theories are strongly equivalent to logic programs.
Theory and Practice of Logic Programming 7(6), pp. 745–759, doi:10.1017/S1471068407003110.

[DW15] J.P. Delgrande & K. Wang (2015): A Syntax-Independent Approach to Forgetting in Disjunctive Logic
Programs. In: Proceedings of (AAAI-15), pp. 1482–1488, doi:10.1609/aaai.v29i1.9402.

[EW08] T. Eiter & K. Wang (2008): Semantic forgetting in answer set programming. Artificial Intelligence
172(14), pp. 1644–1672, doi:10.1016/j.artint.2008.05.002.

[GJK+19] R. Gonçalves, T. Janhunen, M. Knorr, J. Leite & S. Woltran (2019): Forgetting in Modu-
lar Answer Set Programming. In: Proceedings of (AAAI-19), AAAI Press, pp. 2843–2850,
doi:10.1609/aaai.v33i01.33012843.

[GJKL21] R. Gonçalves, T. Janhunen, M. Knorr & J. Leite (2021): On Syntactic Forgetting Under Uniform
Equivalence. In: Proceedings of (JELIA-21), Lecture Notes in Computer Science 12678, Springer,
pp. 297–312, doi:10.1007/978-3-030-75775-5_20.

[GKL16a] R. Gonçalves, M. Knorr & J. Leite (2016): The Ultimate Guide to Forgetting in Answer Set Program-
ming. In: Proceedings of (KR-16), pp. 135–144.

[GKL16b] R. Gonçalves, M. Knorr & J. Leite (2016): You Can’t Always Forget What You Want: On the
Limits of Forgetting in Answer Set Programming. In: Proceedings of (ECAI-16), pp. 957–965,
doi:10.3233/978-1-61499-672-9-957.

[GKLW17] R. Gonçalves, M. Knorr, J. Leite & S. Woltran (2017): When you must forget: Beyond strong per-
sistence when forgetting in answer set programming. Theory and Practice of Logic Programming
17(5-6), pp. 837–854, doi:10.1017/S1471068417000382.

[KA14] M. Knorr & J.J. Alferes (2014): Preserving Strong Equivalence while Forgetting. In: Proceedings of
(JELIA-14), LNCS 8761, Springer, pp. 412–425, doi:10.1007/978-3-319-11558-0_29.

[LR94] F. Lin & R. Reiter (1994): Forget it. In: Working Notes of AAAI Fall Symposium on Relevance, pp.
154–159.

[WWZ13] Y. Wang, K. Wang & M. Zhang (2013): Forgetting for Answer Set Programs Revisited. In: Pro-
ceedings of (IJCAI-13), IJCAI/AAAI, pp. 1162–1168. Available at http://www.aaai.org/ocs/
index.php/IJCAI/IJCAI13/paper/view/6807.

[WZZZ12] Y. Wang, Y. Zhang, Y. Zhou & M. Zhang (2012): Forgetting in Logic Programs under Strong Equiv-
alence. In: Proceedings of (KR-12), AAAI Press.

[ZF06] Y. Zhang & N.Y. Foo (2006): Solving logic program conflict through strong and weak forgettings.
Artificial Intelligence 170(8-9), pp. 739–778, doi:10.1016/j.artint.2006.02.002.

[ZZ09] Y. Zhang & Y. Zhou (2009): Knowledge forgetting: Properties and applications. Artificial Intelli-
gence 173(16), pp. 1525–1537, doi:10.1016/j.artint.2009.07.005.

