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Abstract. A subset of vertices in a vertex-colored graph is called trop-
ical if vertices of each color present in the subset. This paper is dedi-
cated to the enumeration of all minimal tropical connected sets in vari-
ous classes of graphs. We show that all minimal tropical connected sets
can be enumerated in O(1.7142n) time on n-vertex interval graph which
improves previous O(1.8613n) upper bound obtained by Kratsch et al.
Moreover, for chordal and general class of graphs we present algorithms
with running times in O(1.937n) and O(1.999958n), respectively. The last
two algorithms answer question implicitly asked in the paper [Kratsch et
al. SOFSEM 2017]: «Is the number of tropical sets significantly smaller
than the trivial upper bound 2n?».

Keywords: tropical sets · enumeration algorithms · graph motif ·
chordal graphs · beating brute-force

1 Introduction

Efficient enumeration of objects with special properties is an important problem
in computer science. There are many problems in graph theory in which the
answer is a list of subsets of vertices that have a certain property or the cardi-
nality of this set. Most often one is looking for the inclusion minimal/maximal
induced subgraphs with additional attributes. The most classical result is that
all maximal independent sets can be enumerated in O∗(3

n
3 ) time [32], moreover,

the running time is tight since there are graphs that have 3
n
3 maximal indepen-

dent sets [32]. It is also known that all minimal dominating sets can be listed
in O(1.7159n) time [21]. If the input graph is restricted to a special type of
graphs like trees, chordal, and interval graphs faster algorithms were designed.
For example, in chordal graphs, all minimal dominating sets can be enumerated
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in O(1.5048n) time [24], in trees in O(1.4656n) time [28] and in interval graphs
in O∗(3

n
3 ) time [11] (O∗() suppress polynomial factors in the same way as O

suppress constant factors).
Listing all potential candidates might be essential in some applications and

the enumeration algorithms perform exactly this task. Such algorithms some-
times are key ingredients of very efficient algorithms for certain problems. For
example, Lawler’s O∗((1+3

1
3 )n) algorithm [30] for a chromatic number is based

on the fact that all maximal independent sets can be enumerated within O∗(3
n
3 )

running time. The same fact is also used in the fastest known algorithm for
4-coloring by Fomin, Gaspers, and Saurabh [18]. Construction of efficient enu-
meration algorithms also often leads to new combinatorial upper bounds on the
number of objects with special properties.

In the paper, we consider a problem of enumeration of subsets in vertex-
colored graphs. More precisely, we are interested in enumeration of tropical sub-
sets with additional properties. A set of vertices is called tropical if vertices of
each color are presented in the set. There are papers dedicated to the study of
various variants of tropical sets. For example tropical dominating sets were stud-
ied in [16], tropical matchings in [10], tropical paths in [9], tropical vertex-disjoint
cycles in [31]. However, it seems that tropical connected sets attract the greatest
attention [7,8,17,27]. Most probably that can be explained by close connection
of connected tropical sets with a Graph Motif problem that was motivated
by applications in biological network analysis [29] and later found applications
in social networks [2] and in the context of mass spectrometry [5].

Angles d’Auriac et al. [17] proved that finding a minimum tropical connected
set is NP-complete even on trees of height three as well as on split and interval
graphs. An exact exponential-time algorithm for Minimum Tropical Con-
nected Set was presented by Chapelle et al. [8]. In the case of a general input
graph, they provide a O(1.5359n) algorithm while in the case of trees they give
a O(1.2721n) algorithm. Later focus was shifted to enumeration of all minimal
tropical connected sets and Kratsch et al. [27] presented algorithms tailored to
special types of input graphs. So for split graphs they constructed a O(1.6402n)
algorithm, for interval graphs O(1.8613n) time algorithm, for co-bipartite graphs
and block graphs a O∗(3

n
3 ) algorithm was presented. Moreover, in the same

paper, several lower bounds on the maximum number of minimal tropical con-
nected sets were given: for co-bipartite, interval, and block graphs the lower
bound was 3

n
3 , for split graphs it was 1.4766n and for chordal graphs it was

1.4916n. No algorithm was presented for the case of a general input graph or for
the case when the input graph is known to be chordal. We present a quote from
the paper by Kratsch et al. [27]: “Interestingly, the best known upper bound for
the maximum number of minimal tropical connected sets in an arbitrary graph
and even for chordal graphs is the trivial one which is 2n”. The main goal of our
paper is to answer this implicit question and present the first non-trivial upper
bounds on the maximum number of minimal connected tropical sets in chordal
and general graphs. We note that these types of questions, i.e. whether there
is an algorithm faster than naive brute-force search play a tremendous role in
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computer science, especially in areas like fine-grained complexity, parameterized
algorithm, and exact exponential algorithms. For many problems, it is easy to
come up with algorithms significantly faster than brute-force search. However,
for some problems, even a tiny improvement over brute-force search is a highly
non-trivial task [1,3,4,13–15,19,20,33]. Moreover, there are a lot of important
problems for which we do not know algorithms faster than simple brute-force
search. For example, Set Cover problem, Satisfiability, and Orthogonal Vectors.
Moreover, it is conjectured that it is impossible to construct such algorithms:
Orthogonal Vector Conjecture [35], Set Cover Conjecture [12], Strong Exponen-
tial Time Hypothesis [12].

As a result of our research, we present an algorithm that enumerates all
minimal tropical connected sets in O(1.999958n) time in general graphs and an
algorithm that performs the same task on chordal graphs in O(1.937n) time.
Moreover, we present an algorithm for interval graphs that runs in O(1.7142n)
time, which improves the previous asymptotic upper bounds of O(1.8613n).

2 Preliminaries

We consider finite undirected graphs without loops or multiple edges. For graph
G, V (G) is the set of vertices of G, E(G) is a set of edges of G and n = |V (G)| if
not stated otherwise. N(v) is the set of neighbours of vertex v ∈ V (G). N [v] =
N(v) ∪ {v} is the set of neighbours of vertex v including itself. For a set of
vertices X ⊆ V (G), NG[X] = ∪v∈XNG[v] and NG(X) = NG[X] \ X. For a
subset X ⊆ V (G) of vertices, G[X] denotes the subgraph of G induced by X.
A clique is a subset of vertices D ⊆ V (G) such that G[D] is a complete graph.
Chordal graph is a graph without induced cycles of length bigger than 3. Chordal
graphs admit many equivalent definitions, more details can be found here [26].
Interval graphs is a subclass of chordal graphs in which each vertex can be
assigned an interval on a line such that two vertices have a common edge if
and only if the corresponding intervals overlap [6]. c : V (G) → N is a coloring
function (not necessary proper), which assigns to each vertex a certain color.
Let c(X) = {c(v) : v ∈ X} be a set of different colors assigned to vertices of
X ⊆ V (G). Let C = c(V (G)) be a set of all colors of graph G. We assume that
C = {1, 2, . . . , C}. A tropical set of graph G is a subset of vertices X ⊆ V (G)
such that c(X) = c(V (G)). A tropical connected set of graph G is a subset of
vertices X ⊆ V (G) such that X is tropical and G[X] is a connected subgraph.
Let γ = |C|

n . A rainbow set is a tropical set of the smallest size |C|, i.e. a set
that contains each color exactly once. A subset of vertices X ⊆ V (G) is called
minimal tropical connected set if there is no Y � X such that Y is tropical and
G[Y ] is a connected subgraph.

Let n, �, C, n1, n2, . . . nC be positive integers such that n1+n2+ · · ·+nC = n.
We denote by Pn1,n2,...,nC

n,�,C the number of tuples (a1, a2, . . . , aC) ∈ Z
C
>0 such that

a1 + a2 + · · · + aC = � and 1 ≤ ai ≤ ni for each 1 ≤ i ≤ C. Let Pn,�,C =
maxn1,...,nC

Pn1,n2,...,nC

n,�,C .
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We assume that G is connected. Since otherwise, we can simply run our
algorithms on each connected component of G separately and output a union of
the obtained results. In our algorithms we use upper bounds on the number of
tropical, rainbow sets and binomial coefficients given in the lemmas below. Due
to the space constraints, proofs of lemmas marked by (�) are omitted.

Lemma 1. [22] For any positive integer n and 0 ≤ α ≤ 1 we have
(

n
αn

)
≤

2H(α)n, where H(·) is the binary entropy function i.e. H(x) = −x log2(x)− (1−
x) log2(1 − x).

Lemma 2 (�). Let G be a colored graph with n vertices and a number of used
colors is γn then:

1. the number of all rainbow sets is at most ( 1γ )
γn;

2. the number of tropical sets is at most (2
1
γ − 1)γn.

Moreover, all rainbow and tropical sets can be listed almost within the same
running time i.e. within O∗(( 1γ )

γn) and O∗((2
1
γ − 1)γn) running time.

Lemma 3 (�). If n1, n2, . . . , nk are positive integer numbers such that n1 +
n2 + · · · + nk = n then n1n2 . . . nk ≤ 3

n
3 .

Lemma 4 (�). For any positive integers n, �, C we have: (i) Pn,�,C ≤ ( n
C )C ; (ii)

Pn,�,C ≤
(

�−1
C−1

)
.

Lemma 5 (�). Let (G, c) be a colored graph and S ⊆ V (G). There is a polyno-
mial time algorithm that tests whether S is a Minimal Tropical Connected
Set.

3 General Graphs

In this section we present an algorithm that enumerates all inclusion-minimal
tropical connected sets. The running time of the algorithm is O(1.999958n).
Hence, the number of Minimal Tropical Connected Sets is at most O(1.999958n).
These results answers an implicit question from [27], where trivial upper bound
2n was given. In order to present the algorithm with mentioned running time we
construct two auxiliary algorithms for the problem. The first one is given in the
lemma below.

Lemma 6. Let G be a vertex-colored graph with n vertices colored with C = γn
colors. There is an algorithm that enumerates all Minimal Tropical Con-
nected Sets in O∗((21/γ − 1)γn) time.

Proof. From Lemma 2, it follows that the number of all tropical sets is at most
((21/γ −1)γn). It is straightforward to enumerate all of them within this running
time. What is left is to delete all sets that are not minimal tropical connected.
However, by Lemma 5 we can run such test for each candidate in polynomial
time. Hence in O∗((21/γ −1)γn) time we can list all Minimal Tropical Connected
Sets. ��
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Before we proceed to the second auxiliary algorithm we state the following
definition and theorem from [34].

Definition 1. [34] For a given subset of vertices T we call a superset S of T
T -connecting if S induces a connected graph. Moreover, we call S a minimal
T -connecting if no strict subset of S is T -connecting.

Theorem 1. [34] For an n vertex graph G = (V,E) and a terminal set T ⊆ V

where |T | ≤ n
3 there are at most

(
n−|T |
|T |−2

)
·3(n−|T |)/3 minimal T -connecting vertex

sets and they can be enumerated in time O∗(
(
n−|T |
|T |−2

)
· 3(n−|T |)/3).

Lemma 7 (�). For an n vertex graph G = (V,E) and a terminal set T ⊆
V there are at most 2n−|T | minimal T -connecting vertex sets and they can be
enumerated in time O∗(2n−|T |).

Equipped with the previous theorem and lemma, we are ready to prove the
following result.

Lemma 8. Let (G, c) be a graph with n vertices colored in C = γn colors and
γ ≤ 1

3 . There is an algorithm that enumerates all Minimal Tropical Con-
nected Sets in time

max{ max
α:γ≤α≤1−2γ

2H( γ
α )·αn · min{2H( γ

1−α )·(1−α)n · 3 1−α
3 n, 2(1−α)n},

max
α:1−2γ≤α≤1

2H( γ
α ) · 2(1−α)n}

up to a polynomial factor.

Proof. Recall that our graph contains vertices of C = γn different colors and the
number of vertices colored in the i-th color is exactly ni, i.e. n1+n2+· · ·+nC = n.
Let Vi = {v1

i , . . . , vni
i } be a set of all vertices of the i-th color.

We know that any tropical set must contain a rainbow set. With each minimal
tropical connected set X we associate a rainbow set RX constructed in the
following way: for each i ∈ {1, 2, 3, . . . , C} we put vj

i in RX if vj
i ∈ X and for

each p < j we have that vp
i 	∈ X. We note that X\RX is an inclusion-minimal set

that connects vertices from RX , otherwise X is not minimal tropical connected
set.

Now we are ready to describe the algorithm. In the first step we list
all potential candidates for the role of RX . So, basically, we consider many
branchings and each branch defines a corresponding RX . So in branch with
RX = {vj1

1 , vj2
2 , . . . , vjC

C } we assume that RX is part of a minimal tropical con-
nected set, while vertices vpi

i with pi < ji are not, hence in this branch these
vertices can be simply deleted from the graph. At this point at each branch we
already decided about � = j1 + j2 + · · · + jC vertices whether they belong to a
minimal tropical connected set or not. There are n − j1 − j2 − · · · − jC vertices
that are left, let us call the set of these vertices W . Now it is enough to list
all inclusion-minimal sets Y ′ ⊆ W such that RX ∪ Y ′ is connected and discard
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those sets that are not minimal tropical connected sets. Check whether a set is a
minimal tropical connected set can be done in a polynomial time by Lemma 5.
Moreover, by Theorem 1 and Lemma 7 we can list all Y ′ that connect RX in time
min {O∗(

( |W |
|C|−2

)
· 3 |W |

3 ),O∗(2|W |)} if |W | ≥ 2C or in time O∗(2|W |) otherwise.
Denote by

f(w, c) =

{
min (

(
w

c−2

)
· 3w

3 , 2w), if w ≥ 2c
2w, otherwise

So the running time of the algorithm up to a polynomial factor is equal to:
∑

1≤j1≤n1
...

1≤jC≤nC

f(n − (j1 + j2 + · · · + jC), C).

Recall that Pn,�,C = maxn1,n2,...,nC
Pn1,n2,...,nC

n,�,C and Pn1,n2,...,nC

n,�,C is the num-
ber of tuples (a1, . . . , aC) such that a1 + a2 + · · · + aC = � and 1 ≤ ai ≤
ni. So, the running time can be rewritten (up to a polynomial factor) as∑

C≤�≤n P�,C · f(n − �, C). By Lemma 4 we know that Pn,�,C ≤
(

�−1
C−1

)
≤

(
�
C

)

So, the running time up to the polynomial factor is bounded by
maxC≤�≤n

(
�
C

)
· f(n − �, C). Since γ ≤ 1

3 we know that C ≤ n − 2C. So we
can split interval [C, n] into two intervals [C, n − 2C] and [n − 2C, n]. So, it is
obvious that:

max
C≤�≤n

(
�

C

)
· f(n − �, C) =

max
{

max
C≤�≤n−2C

(
�

C

)
· f(n − �, C), max

n−2C≤�≤n

(
�

C

)
· f(n − �, C)

}
=

max
{

max
C≤�≤n−2C

(
�

C

)
· min

{(
n − �

C − 2

)
· 3n−�

3 , 2n−�

}
, max
n−2C≤�≤n

(
�

C

)
· 2n−�

}
.

Let � = αn, recall that C = γn. Note that
(

w
c−2

)
≤ w2

(
w
c

)
for any w, c and

(
n

βn

)
≤ 2H(β)n for arbitrary 0 ≤ β ≤ 1. Keeping the above said in mind, the

running time up to the polynomial factor is bounded by:

max{ max
α:γ≤α≤1−2γ

2H( γ
α )·αn · min{2H( γ

1−α )·(1−α)n · 3 1−α
3 n, 2(1−α)n},

max
α:1−2γ≤α≤1

2H( γ
α ) · 2(1−α)n}

So, we obtain the desired result. ��

Now, we have all tools to show the main result of this section.

Theorem 2. Let G be a colored graph with n vertices. There is an algorithm that
enumerates all Minimal Tropical Connected Sets in time O(1.999958n).
Hence, the number of all Minimal Tropical Connected Sets in a graph on
n vertices is at most O(1.999958n).
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Proof. In order to construct an algorithm with desired running time, we carefully
choose the right algorithm from algorithms presented in Lemmas 6 and 8. Note
that (21/γ − 1)γ is decreasing function for γ ∈ [0, 1], see Fig. 2. So it is more
reasonable to use the algorithm from Lemma 6 when γ is large enough, i.e.
input graph G has a sufficiently large number of colors. In contrary, if we plot
the function

max{ max
α:γ≤α≤1−2γ

2H( γ
α )·αn · min{2H( γ

1−α )·(1−α)n · 3 1−α
3 n, 2(1−α)n},

max
α:1−2γ≤α≤1

2H( γ
α )·αn · 2(1−α)n},

we see that the function is non-decreasing for γ ∈ [0, 0.1], Fig. 2, so the second
algorithm shows its best performance when the number of different colors is
small.

So if the number of different colors in graph G is bigger than 0.08369n we run
the first algorithm, i.e. if γ ≥ 0.08369 then we run the algorithm with running
time O∗((21/γ − 1)γn) ≤ O(1.999958n). Otherwise, we run the second algorithm
with running time

max{ max
α:γ≤α≤1−2γ

2H( γ
α )·αn · min{2H( γ

1−α )·(1−α)n · 3 1−α
3 n, 2(1−α)n},

max
α:1−2γ≤α≤1

2H( γ
α )·αn · 2(1−α)n} ≤ O∗(1.999958n).

So, in any case we get the desired running time. ��

4 Chordal Graphs

The objective of this section is to present an algorithm that enumerates all Min-
imal Tropical Connected Sets in chordal graphs within O(1.937n) running
time which is smaller than in the case of arbitrary graphs. As a consequence we
get that the number of all Minimal Tropical Connected Sets in any col-
ored chordal graph is at most O(1.937n). We note that this answers an implicit
question from [27] where even for chordal graphs, the trivial 2n bound was the
only given bound on the number of minimal tropical connected sets. In order
to achieve this improvement compared to the case of general input graph we
replace algorithm described in Lemma 2 with a more efficient one. Instead of
enumerating T -connecting sets we will be interested in enumerating connected
dominating sets in special chordal subgraphs.

Before we proceed we recall some properties of chordal graphs and tree-
decomposition.

A tree decomposition of a graph G is a pair ({Xi | i ∈ I}, T = (I, F )) with
{Xi | i ∈ I} a collection of subsets of V (G), called bags, and T = (I, F ) a tree,
such that

1. For every v ∈ V (G), there exists i ∈ I with v ∈ Xi.
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2. For every {v, w} ∈ E, there exists i ∈ I with v, w ∈ Xi

3. For every i, j, k ∈ I, if j is contained in a path from i to k in T , then Xi∩Xk ⊆
Xj .

The following lemma is folklore and easily follows from lemma 7.1 in [12].

Lemma 9. [12] Let T = (T, {Xt}t∈V (T )) be a tree decomposition of non-
complete graph G and let u, v, w be nodes in tree T with bags Bu, Bv, Bw such
that shortest path from u to w in tree T goes through vertex v. If x ∈ Bu, y ∈ Bw

then there is no path from x to y in graph G \ Bv (note the statement trivially
holds if x or y belongs to Bv).

The following lemma is well known [25].

Lemma 10. [25] Let G be a chordal graph then there exists a tree decompo-
sition of G in which all bags are cliques. Moreover, such decomposition can be
constructed in polynomial time.

Now we are ready to present relevant results about connected dominating
sets.

Definition 2. For a connected graph G a subset of vertices X ⊆ V (G) is called
connected dominating set, if X induces a connected subgraph and N [X] = V (G).

Theorem 3. [23] Any chordal graph with n vertices has no more than 1.4736n

minimal connected dominating sets. And all of them can be enumerated within
O(1.4736n) running time.

Before we proceed with the algorithm we prove several auxiliary lemmas.

Lemma 11. Let X be a vertex subset in graph G. Let S be a minimal set that
connects X, i.e. is an inclusion-minimal subset of V (G) such that the induced
subgraph G[S ∪ X] is connected. If S ∪ X is a dominating set then there is a
minimal connected dominating subset M ⊆ V (G) such that S ⊆ M ⊆ S ∪ X.

Proof. We know that S ∪ X is connected and a dominating set. So it must
contain some minimal connected dominating set. Let us call this set M ′. If
S ⊆ M ′ then we are done and can take M = M ′. If this is not the case, consider
S′ = M ′ \ X. Since M ′ ⊆ (S ∪ X) and S 	⊆ M ′ we have that S′

� S. M ′ is
connected and dominating so M ′ ∪ X is also connected. Since S′ ∪ X = M ′ ∪ X
we have that S is not an inclusion-minimal subset of V (G) such that G[S ∪ X]
is connected. So we get a contradiction. Hence, S must be a subset of M ′. And
we can take M = M ′. ��

Definition 3. Let G be a chordal graph. For a subset of vertices X ⊆ V (G) we
call an X-restriction a chordal graph GX obtained in the following way:

1. Take the tree decomposition T of G where each bag is a clique, one that is
described in Lemma 10
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Fig. 1. The left part of figure shows graph G, set X = {c, g, j} colored red and sub-
graph GX that consist of orange and red vertices. The right part of figure shows tree-
decomposition T of graph G, and an inclusion-minimal subtree TX with all bags con-
taining vertices from X.

2. Find inclusion-minimal subtree TX ⊆ T such that TX includes all nodes whose
bags contain vertices from X

3. GX is a graph, obtained by removing all vertices in G that are not contained
in bags of TX .

Note that GX is a chordal graph (as an induced subgraph of a chordal graph)
and TX is a tree-decomposition of GX . Illustration of this definition is presented
in Fig. 1.

Lemma 12. Let G be a chordal graph and X ⊆ V (G), then all minimal con-
nected subgraphs of G containing X must be subgraphs of a restriction GX .

Proof. Let T be the tree decomposition of G (with corresponding tree T ) con-
structed by the algorithm from Lemma 10 and TX be a subtree in the decompo-
sition that we used to construct an X-restriction graph GX . Assume that there is
a connected minimal subgraph H such that X ⊆ V (H) and V (H) 	⊆ V (GX). It
can happen only if there are x, y ∈ X such that there exists an vertex inclusion-
minimal path p in V (H) that connects x, y and has vertices outside GX . Let
us consider the shortest such path p and let z be a vertex on it that does not
belong to GX . Consider the shortest path pT = v1, v2, . . . , vq in T from the
subtree TX to the subtree Tz induced by bags containing z. Since, z 	∈ GX we
have TX ∩ Tz = ∅. Hence, there is only one such path as otherwise T is not a
tree. We note that v1 ∈ TX . Consider a subset of vertices S′ from V (G) that
forms a bag of vertices for node v1. S′ is a separator and any path going from
a vertex in GX to z must pass through one of the vertices in S′. So it means
that path p = x, . . . , z, . . . y must contain vertices u1, u2 ∈ S′ on the subpaths
from x to z and from z to y. However, u1, u2 ∈ S′ and S′ is a clique as a bag of
a node in a tree-decomposition for a chordal graph. So it means that the path
p can be shorten as instead of going from u1 to z and from z to u2 we can go
straight-ahead from u1 to u2. This leads to a desired contradiction. ��

Lemma 13. Let G be a chordal graph, X ⊆ V (G), GX be an X-restriction of
G. If Y is connected in GX and X ⊆ Y then Y is a dominating set in GX .



136 I. Bliznets et al.

Proof. It is enough to show that each bag of tree TX contains a vertex from Y .
Indeed, any vertex v ∈ V (GX) belongs to some bag B in the tree TX . Since all
bags in TX are cliques, v is dominated by any vertex from bag B. So if Y ∩B 	= ∅
then the vertex v is dominated by Y .

Let us assume that there is a node t in TX with a bag set B that does not
contain any vertex from Y . Consider a graph GX \ B. If in this graph some
vertices of the set X become disconnected we get a contradiction since Y was
connecting all vertices from X and Y ∩ B = ∅. So X is connected by Y in
GX \ B. However, in this case TX is not an inclusion-minimal subtree with the
required property as some connected component of TX \{t} will contain all bags
with vertices from the set Y (this follows from Lemma 9). It is not possible that
vertices x1, x2 ∈ X belong to bags from different components of TX \ t since the
path that connects x1, x2 in G[Y ] must go through some vertex from bag B and
this contradict the fact that B ∩ Y = ∅. ��
Lemma 14. Let G be a chordal graph with n vertices colored in C = γn colors.
There is an algorithm that enumerates all Minimal Tropical Connected
Sets within maxα:γ≤α≤1 min{( 1γ )γn, 2H( γ

α )·αn} · 1.4736(1−α+γ)n running time.

Proof. First of all the algorithm in Lemma 10 constructs a tree-decomposition of
graph G in which each bag is a clique. As in the case of general graph we list all
potential candidates for the role of the rainbow set RX . Recall that as before for
each tropical set X we associated a rainbow set RX . The RX was constructed
in the following way: for each i ∈ {1, 2, 3, . . . , C} we put vj

i in RX if vj
i ∈ X and

for each p < j we have that vp
i 	∈ X. Note that if RX is a chosen rainbow set

in the minimal tropical connected set then vertices vp
i such that p < j can be

deleted from G. Denote by G′ the obtained graph after such deletion.
After this, for the fixed rainbow set RX , the algorithm constructs an RX -

restriction G′
RX

. On the next step the algorithm enumerates all minimal con-
nected dominating sets of the graph G′

RX
. Let D be a minimal connected dom-

inating set of G′
RX

. If D ∪ RX is a minimal tropical connected set we output
D ∪ RX (we can test it by Lemma 5).

Let us prove that we output all Minimal Tropical Connected Sets. If Y
is Minimal Tropical Connected Set then it contains the associated rainbow
subset X ′ (here it might be the case that Y = X ′, but it does not contradict
anything). Recall that at some point we generate X ′ as a rainbow set in our
algorithm. Since Y is minimal then S′ = Y \ X ′ is a minimal set that connects
vertices X ′ (as otherwise there will be a tropical connected set that is a subset
of Y ). Note that any minimal set that connects X ′ lies inside G′

X′ by Lemma 12.
For the graph G′

X′ and sets S′,X ′ conditions of the Lemma 11 are true (take
G′

X′ as G, S′ as S and X ′ as X). Indeed, S′ is a minimal set connecting X ′,
S′ ∪ X ′ is connected and that is why by Lemma 13 is a dominating set in G′

X′ .
Hence, at some point our algorithm considers minimal connected dominating set
M ′ of G′

X′ such that S′ ⊆ M ′ ⊆ S′ ∪ X ′ = Y and outputs M ′ ∪ X ′ which is
exactly Y .

It is left to prove the upper bound on the running time. Construction of the
required tree-decomposition of the chordal graph takes polynomial time as well
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as vertex deletion and construction of RX -restriction for fixed RX and G′. So
most of the time is consumed by the enumeration of all the rainbow sets and
the enumeration of all the connected dominating sets in graph G′

RX
for fixed

rainbow set RX . So, as in the case with general graphs, the overall running time
up to polynomial factor is:

∑

1≤j1≤n1
...

1≤jC≤nC

1.4736n−(j1+j2+···+jC)+C =
∑

�:C≤�≤n

Pn,�,C · 1.4736n−�+C ≤

n · max
�:C≤�≤n

Pn,�,C · 1.4736n−�+C .

By Lemma 4 we know that Pn,�,C ≤ min{( n
C )C ,

(
�−1
C−1

)
} ≤ min{( n

C )C ,
(

�
C

)
}.

Making the substitution C = γn and � = αn we have that the running time is
at most:

max
α:γ≤α≤1

{
min{( 1

γ
)γn, 2H( γ

α )·αn} · 1.4736(1−α+γ)n

}
.

��

Now we have all ingredients to prove the main result of this section.

Theorem 4. All Minimal Tropical Connected Sets in a chordal graph on
n vertices can be enumerated within O(1.937n) running time. Hence, the maxi-
mum number of Minimal Tropical Connected Sets is at most O(1.937n).

Proof. Our algorithm for chordal graphs as well as the algorithm for the gen-
eral case combines two algorithms and chooses between them depending on the
number of colors in the input graph. However, instead of the algorithm from
Lemma 8 we use the algorithm from Lemma 14. We recall that the running
time of the algorithm from Lemma 6 is decreasing so it is more suitable for
the case when the number of colors C = γn is large. In contrary, the function
maxα:γ≤α≤1 min{( 1γ )γn, 2H( γ

α )·αn}·1.4736(1−α+γ)n is increasing for γ ∈ [0, 1
3 ], see

Fig. 2, so the algorithm from Lemma 14 is preferable for small γ. So if γ ≤ 0.3019
then we run the algorithm from Lemma 14 and the running time will be bounded
by O(1.937n). If γ > 0.3019 then we run the algorithm from Lemma 6 and again
the running time will be bounded by O(1.937n). ��

5 Interval Graphs

The main result of this section improves the previous known upper bound on
the maximum number of minimal tropical connected sets in an interval graph
on n vertices. Kratsch et al. [27] showed that the number is at most O(1.8613n).
Our upper bound is O(1.7142n). Specifically, we prove the following:

Theorem 5. There is an algorithm with running time O(1.7142n) that enumer-
ates all minimal tropical connected sets in a given interval graph on n vertices.
Hence, the number of minimal tropical connected sets in any interval graph is at
most O(1.7142n).
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Fig. 2. The dependence of exponent on γ for the algorithms from Lemmas 6, 8, 14

In order to prove the theorem we use the following

Lemma 15. Given an interval graph G of order n and a subset of vertices
U ⊆ V (G) such that |U | = n′ we can list all minimal sets Z that connects U in
time O∗(3

n−n′
3 ) (i.e. inclusion-minimal sets Z ⊆ V (G) \ U such that G[Z ∪ U ]

is a connected graph).

Proof. As our graph is interval we can in polynomial time construct a interval
model such that each vertex has a corresponding interval on a line and:

– two vertices share an edge if and only if corresponding intervals intersect;
– no two intervals share endpoints.

Let us construct such model and fix it. Note that if G[U ] is a connected subgraph
then the only set Z that satisfies the conditions is ∅. Denote by U1, U2, . . . , Uq

connected components of G[U ]. We enumerate them from left to right i.e. U1 is
the leftmost connected component in the interval model and Uq is the rightmost
connected component. Denote by �(Ui), r(Ui) the leftmost and the rightmost
point of the connected component Ui on the fixed line model of G.

We must add a few vertices/intervals that join connected components
U1, . . . , Uq. Hence, we must add some vertex whose corresponding interval starts
to the left of r(U1) and ends to the right of r(U1) as otherwise the connected
component U1 will stay isolated from the other connected components. For a
connected subgraph W denote by Nr(W ) vertices whose intervals start before
r(W ) and end to the right of it. For any minimal U -connecting set Z we have
|Z ∩ Nr(U1)| ≥ 1. On the other hand |Z ∩ Nr(U1)| < 2, otherwise there are
v1, v2 ∈ Z ∩ Nr(U1). If r(v1) is to the left of r(v2) then (Z \ v1) connects all
components U1, . . . , Uq as Z was doing so. If r(v1) is to the right of r(v2) then
(Z \ v2) connects all components U1, . . . , Uq. In any case, this contradicts to the
fact that Z is inclusion-minimal. So it must be the case that |Z ∩ Nr(U1)| = 1.

Based on the above proved facts we suggest the following algorithm:

1. Branch on |Nr(U1)| possibilities to select a vertex from Nr(U1) that belongs
to Z and discard from the graph the rest of vertices from Nr(U1). Assume
that we pick vertex v′ at this step.
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2. Run the whole algorithm recursively on the new graph (G \ Nr(U1)) ∪ {v′}
and with a new subset (that needs to be connected) U ∪ {v′}.

The correctness of the presented algorithm follows from the above observa-
tions. Since in the recurrence call each time we create i branchings and decrease
n by i, we have that the running time of the algorithm is at most O∗(3

n−n′
3 ) (as

the maximum of i
1
i is achieved when i = 3 in the set of natural numbers). ��

Now we have all needed tools to present proof of Theorem 5:

Proof. (Proof of Theorem 5). As before we assume that our graph contains ver-
tices of C = γn different colors and the number of vertices colored in the i-th
color is exactly ni, i.e. n1 + n2 + · · · + nC = n. Let Vi = {v1

i , . . . , vni
i } be a set

of all vertices of the i-th color.
We know that any tropical set must contain a rainbow set. With each Minimal

Tropical Connected Set X we associate a rainbow set RX constructed as before
(for each i ∈ {1, 2, 3, . . . , C} we put vj

i in RX if vj
i ∈ X and for each p < j

we have that vj
i 	∈ X). We note that X \ RX is an inclusion-minimal set that

connects vertices from RX , otherwise X is not minimal tropical connected set.
Now we are ready to describe the algorithm. In the first step we list all

potential candidates for the role of RX . So, basically, we consider many branch-
ings and each branch defines a corresponding RX . So in branch in which
RX = {vj1

1 , vj2
2 , . . . , vjC

C } we assume that RX is part of a minimal tropical con-
nected set, while vertices vpi

i with pi < ji are not, hence in this branch these
vertices can be simply deleted from the graph. At this point at each branch we
already decided about � = j1 + j2 + · · · + jC vertices whether they belong to a
minimal tropical connected set or not. There are n − j1 − j2 − · · · − jC vertices
that are left, let us call the set of these vertices W . Now it is enough to list
all inclusion-minimal sets Y ′ ⊆ W such that RX ∪ Y ′ is connected and discard
those sets that are not minimal tropical connected sets. Check whether a set is
a minimal tropical connected set can be done in a polynomial time by Lemma 5
and by Lemma 15 we can list all Y ′ that connect RX in time O∗(3

|W |
3 ). So the

running time of the algorithm up to a polynomial factor is bounded by:
∑

1≤j1≤n1
...

1≤jC≤nC

3
n−(j1+j2+···+jC )

3 ≤
∑

C≤�≤n

Pn,�,C · 3n−�
3 .

Taking into account inequalities from Lemma 4 we have that the running time
of our algorithm is at most poly(n) · max�[min{2�, 3

n
3 } · 3n−�

3 ]. The maximum
of previous expression is achieved when 2� = 3

n
3 (since 2�3

n−�
3 is an increasing

function of � when n is fixed and 3
n
3 3

n−�
3 is decreasing). So in the worst case

we have � = n
3 · log2 3 and the running time of our algorithm is bounded by

O∗(31/3·n·(2− 1
3 · log 3

log 2 )) = O(1.7142n). ��
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