
IEEE Copyright Notice

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted to be published in: Proceedings of the 2023 IEEE ASEE Frontiers in Education Conference,

College Station, Texas, October 18–21, 2023.

Exploring the Potential of Large Language Models
to Generate Formative Programming Feedback

Natalie Kiesler§

Information Center Education
DIPF Leibniz Institute for Research

and Information in Education
Frankfurt am Main, Germany

kiesler@dipf.de

Dominic Lohr§

Computer Science Education
Friedrich-Alexander-University

Erlangen, Germany
dominic.lohr@fau.de

Hieke Keuning§

Information and Computing Sciences
Utrecht University

Utrecht, The Netherlands
h.w.keuning@uu.nl

Abstract—Ever since the emergence of large language mod-
els (LLMs) and related applications, such as ChatGPT, its
performance and error analysis for programming tasks have
been subject to research. In this work-in-progress paper, we
explore the potential of such LLMs for computing educators
and learners, as we analyze the feedback it generates to a
given input containing program code. In particular, we aim at
(1) exploring how an LLM like ChatGPT responds to students
seeking help with their introductory programming tasks, and
(2) identifying feedback types in its responses. To achieve these
goals, we used students’ programming sequences from a dataset
gathered within a CS1 course as input for ChatGPT along with
questions required to elicit feedback and correct solutions. The
results show that ChatGPT performs reasonably well for some of
the introductory programming tasks and student errors, which
means that students can potentially benefit. However, educators
should provide guidance on how to use the provided feedback,
as it can contain misleading information for novices.

Index Terms—ChatGPT, large language models, feedback,
feedback types, introductory programming

I. INTRODUCTION

The challenges educators have to face nowadays include
highly increasing numbers of students in STEM, scarce staff
resources, and heterogeneous groups of learners with their
need for formative feedback [1], [2]. Hence, the educators’
need for automated systems that support their teaching pro-
cess is growing. Many of these systems focus on providing
automated feedback, but this feedback is often still basic and
not tailored to the learners’ needs [3]–[5].

In late November 2022, an easily accessible tool using a
large language model (LLM) was released, known as Chat-
GPT. The tool is designed to engage in conversations with
humans and seems to provide impressive results in natural
language discussions, the generation of texts, and other tasks.
Despite its weaknesses, its performance and error analysis
in introductory programming tasks seem promising [6], [7].
Although we do not yet know a lot about its impact, the com-
puting education community needs to explore the potential of
LLMs and related tools for teaching, learning, and assessing.

This work-in-progress paper addresses this demand by ex-
ploring the potential of an LLM-based tool for generating

§Equal contribution

formative feedback on programming tasks. In particular, we
investigate 99 generated responses to student input comprising
solutions to introductory programming exercises and an ac-
companying question about the student solution. The research
questions of this work are: (RQ1) How does an LLM system
like ChatGPT respond to students seeking help with their
introductory programming tasks? (RQ2) Which feedback types
can be recognized in the responses?

II. RELATED WORK

While LLMs have only appeared recently, several re-
searchers have started studying their implications for educa-
tion, among them an ITiCSE working group [8]. This section
introduces recent work in the context of computing education
specifically. One of the first papers appeared in early 2022 [6],
describing the performance of OpenAI’s Codex model on CS1
programming exercises, showing that it can compete well with
actual students. However, the Codex model is currently not
accessible anymore, because newer and better models quickly
followed. The rapid replacement of models shows that studies
become outdated quickly, and are hard to replicate, especially
if research data is not available (anymore) [9]. A follow-up
study on CS2 exercises also showed impressive results [7].

Becker et al. [10] discuss several opportunities and chal-
lenges regarding the educational opportunities and challenges
of LLMs. They urge that we “need to review our educational
practices in the light of these new technologies.” Kiesler
and Schiffner [11] further derive ChatGPT’s implications for
assessment. At the same time, LLMs are already applied in
computing education to generate exercises and code explana-
tions [12], [13], or to improve compiler error messages [14].

LLMs have also been used to repair buggy programs. Zhang
et al. [15] applied the Codex completion model to student
Python programs and found that an LLM trained on code (i.e.,
Codex) can fix both syntactic and semantic mistakes. Denny
et al. [16] explored the engineering of prompts using GitHub
Copilot. Their goal was to identify types of problems where
Copilot does not perform well, and how to phrase questions
in natural language to achieve good results.

Further studies directly involved students. Kazemitabaar
et al. [17], for example, conducted experiments with novice

programmers. Half of them had access to Codex when working
on programming tasks. Their results show that student who
used Codex significantly increased their code-authoring perfor-
mance. Prather et al. [18] investigated students’ use of GitHub
Copilot in an introductory programming assignment through
observation and interviews. They conclude that novices still
experience challenges when using Copilot, and that Copilot’s
design should be improved.

In this study, we use a different approach, as we generate
feedback with ChatGPT on student submissions to small
programming problems. We then explore and categorize the
generated output in detail, as opposed to simply assessing
whether an AI model can fix the problem. While conducting
our study, some new related works appeared [19]–[21].

III. METHOD

A. Data Selection

To answer the research questions, we used a dataset gathered
within a CS1 course with about 300 students. Our dataset
consists of student submissions to programming exercises. We
selected four tasks and respective submissions to the weekly
exercises. Tasks were selected based on the following criteria:

• Tasks originate from the first four weeks of the course.
• Tasks do not comprise interdependent subtasks.
• Length of solution does not exceed 15 lines of code.
• Submissions with diverse errors are available.

Based on these criteria, we selected four tasks: 1) computing
thermal equations of state (TEOS), 2) classifying triangle types
(TTBS and TTBA), and 3) computing the negative Fibonacci
sequence (NEGF). A task description and the addressed con-
cepts are provided in Table I.

TABLE I
EXERCISE OVERVIEW.

Exercise Description Concepts
TEOS Write methods for the given thermal equa-

tions of state using the constants provided.
calculations,
class, methods,
constants

TTBS Classify a triangle by its sides (equilateral,
isosceles, or scalene), depending on whether
all three sides, exactly two sides, or no sides
are equal.

methods, calcu-
lations, condi-
tionals, enums

TTBA Classify a triangle by its angles (acute, right,
or obtuse) depending on whether all three
angles are less than 90◦, one angle is exactly
90◦, or one angle is greater than 90◦.

methods, calcu-
lations, condi-
tionals, enums

NEGF Compute the negative Fibonacci sequence
for negative inputs without using classes or
methods from the Java API.

methods, con-
ditionals, recur-
sion

Next, we selected erroneous student solutions for each of the
three tasks as input to ChatGPT, making sure that they differed
in terms of error patterns. These errors could be compiler
errors, logical errors as identified by test cases, and stylistic
issues. Selected solutions may contain multiple errors.

B. Data Analysis

To answer RQ1 and explore the generated feedback, the
selected student solutions were used as an input to ChatGPT
(March 23 Version), accompanied by the prompt “What’s
wrong with my code?” followed by the code of the student’s
submission. We analyzed ChatGPT’s responses with regard to
their characteristics (e.g., feedback content [22], [23]). After
several iterations as part of a design-based research approach,
we distinguished 11 criteria within three categories: Content,
Quality, and Other. For each criterion, we defined a closed set
of specifications (e.g., Yes/No/Snippet/Not applicable).

For the feedback’s content, we identified elements contained
in ChatGPT’s responses. Among them are requests for more
information (INFO), stylistic suggestions (STYLE), textual
explanations of the cause of an error (CAUSE), its fix (FIX),
and whether code (CODE) or examples (EXA) are provided.
Moreover, we analyzed the quality of ChatGPT’s output w.r.t.
code compilation (COMP), misleading information (MIS) and
uncertainty (UNC). Other criteria comprise meta-cognitive
(META) and motivational elements (MOT) (see Table III).

For the exploration of how the feedback deviates upon re-
generation, we generated three responses for each submission
(using the “regenerate”-option), by one author, on the same
machine, in the same browser, and in one chat per student.
We assume students to act similarly when using ChatGPT.
Each of the 99 outputs generated by ChatGPT was analyzed
by two authors. Disagreements were discussed and resolved
using a consensual approach.

To answer RQ2 relating to feedback types, we refer to an
existing typology of elaborated feedback in the context of
programming education [5], based on Narciss’ feedback clas-
sification [23]. Hence, ChatGPT’s responses to the prompt are
analyzed with regard to the following five types of feedback
(subtypes not mentioned here for brevity):

• KTC: Knowledge about task constraints
• KC: Knowledge about concepts
• KM: Knowledge about mistakes
• KH: Knowledge on how to proceed
• KMC: Knowledge about meta-cognition

IV. RESULTS

In this section, we present the results of the analysis as
answers to the two research questions of this work.

A. How ChatGPT responds to student input (RQ1)

To answer the first research question, we explored the
characteristics of ChatGPT’s output. In Table II, all of the
aforementioned criteria (see Section III-B) are presented along
with a shorthand notation representing the degree to which
each criterion is fulfilled. Moreover, the table contains the
results for each of the three generations requested by the
authors. This is why we display three columns with results for
each criterion (labeled as R1, R2, and R3). Table III explains
all abbreviations used for the characteristics.

First of all, we recognized that the three generated responses
from ChatGPT to the same student input vary greatly. The 11

TABLE II
HOW CHATGPT RESPONDS TO STUDENT INPUT (RQ1). FOR LEGEND SEE TABLE III

CONTENT QUALITY OTHER
INFO STYLE CAUSE FIX CODE EXA COMP MIS UNC META MOT

Stud task R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

01 TEOS # # # # # # # # # # G# # # # – # # # # # # # # # #
02 TEOS # # # # # # # # # # # # # # # #
03 TEOS # # # # # G# # # # # # – – – # # # # # # # # # # #
04 TEOS # # # # # # # # # # # # # # # # # – – – # # # # # #
05 TEOS # # # # # # # # # # # # # # # # # #
06 TEOS # # # # G# G# – – # # # # # # # # # # # #
07 TEOS # # # # # # # # # # – # # # # # # # # # # #
08 TEOS # # # # # # G# # # # # # – – – # # # # # # # # # # #
09 TEOS # # # # # # # # # # # # # # # # #
10 TEOS # # # # # # # # # # # # # # # # # # # #
01 TTBS # # # # # # # # # # – # # # # # # # # # #
02 TTBS # # # # # # # # – # # # # # # # # # # # #
03 TTBS # # # # # # # # # # # – – # # # # # # # # #
04 TTBS # # # # # # G# # # # – # # # # # # # # # # #
05 TTBA # # # # # G# # # – # # # # # # # # # #
06 TTBA # # # # # # G# # # # – – # # # # # # # #
07 TTBA # # # # # G# G# # # – – – # # # # # # # #
08 TTBA # # # # # # # # # # # # # # # # #
09 TTBA # # # # # # # # # # # # # # # # # # # #
10 TTBA # # # # # # # # # # # # # # # # #
01 NEGF # # # # # # # # # # – – # # # # # # #
02 NEGF # # # # # # # # # – # # # # # # #
03 NEGF # # # # # # # # # # # # # # # #
04 NEGF # # # # # # # # # # # – # # # # # # # #
05 NEGF # # # # # # # # # G# # # # # # – – – # # # # # # # # #
06 NEGF # # # # # # # # # – – # # # # # # # #
07 NEGF # # # # # # G# # # # – – # # # # # # # # #
08 NEGF # # # # # # # # – # # # # # # # #
09 NEGF # # # # # # # # # # # # # # # # # #
10 NEGF # # # # # # # # # # # # # # # # # #
11 NEGF # # # # # # # # # # # # # # # # # # # # #
12 NEGF # # # # # # # # # # # # # # # # #
13 NEGF # # # # # # G# # # # – # # # # # # # #

 : Yes #: No G#: Snippet –: Not applicable

TABLE III
LEGEND FOR CODING.

Symbol Meaning
INFO Requesting more information
STYLE Stylistic suggestion
CAUSE Textual explanation cause of error
FIX Textual explanation fix of error
CODE Code provided
EXA Illustrating examples
COMP Code, if provided, compiles
MIS Misleading information
UNC Uncertainty
META Meta-cognitive elements
MOT Motivational elements

criteria, which are applicable to all 33 tasks, show variations
in 116 out of the 363 triples, appearing in at least one of the
three regenerated replies. Due to this degree of randomness,
it seems challenging to rely on responses or to know what to
expect as an answer.

ChatGPT’s responses usually contained textual explanations
of the cause and fix of errors (88, and 83 responses each). In
65 out of 99 responses, an improved version of the code was
offered, in 13 other cases, at least code snippets were provided.

Stylistic suggestions (e.g., on comments, naming conventions)
were less common, with 30 occurrences. In a few cases (4
out of 99) ChatGPT also requested more information about
the problem (e.g., “If you could provide more context about
what you are trying to achieve and any error messages you
are encountering, I can help you more effectively.”).

In 61 of the 99 generated responses, ChatGPT offered
misleading information to the asking person, meaning one
or more aspects within the answer were incorrect or would
not have contributed to improving the solution, especially for
novices. ChatGPT further uttered uncertainty in 21 of the 99
generated responses across all four tasks (e.g., “Based on the
code you provided, it is difficult to identify any errors”). Most
instances (14) were noticed in responses to the NEGF task.

Moreover, we noted a few cases of meta-cognitive (e.g.,
knowledge about knowledge) and encouraging elements (e.g.,
“I hope this helps!”) in the responses. The meta-cognitive
aspects were related to strategic knowledge and, for example,
how to test the solution.

B. Types of feedback provided by ChatGPT (RQ2)

As the next step, we analyzed ChatGPT’s output w.r.t.
the existing feedback typology [5]. We noted correlations

between the inductively built characteristics and the well-
known feedback types during this process.

For example, ChatGPT did not provide any feedback within
the category of KTC feedback. This is not surprising, as the
LLM cannot consider task constraints unless one additionally
enters the task description. For the other four main types of
feedback, we identified corresponding categories. ChatGPT
provides KC feedback via examples, denoted as EXA within
the content category. KM feedback is also evident within
the CAUSE or STYLE elements provided by ChatGPT, as
these categories provide explanations about the mistake. KH
feedback corresponds to the categories FIX and STYLE, as
ChatGPT expresses how to fix errors or improve results. The
last main type of KMC is somewhat reflected within the META
category of our characterization scheme.

In addition, we noted that ChatGPT provides knowledge
about correct response feedback (KCR), which is one of the
simple feedback types [5], [23]. This is particularly evident
when the responses contain the full, improved code.

Another aspect worth mentioning is the lack of quality as-
pects in the used feedback typology [5]. Moreover, the LLM’s
request for more information or the notion of uncertainty are
entirely new categories. In the present analysis, it was crucial
to evaluate the feedback’s quality, as it was generated, and
not developed by a human. Even though many established
feedback types were applicable in our analysis of ChatGPT’s
responses, it may be useful to expand the feedback typology.

V. DISCUSSION AND LIMITATIONS

The results described in this paper show that LLMs like
ChatGPT have the potential to address the discrepancy be-
tween learners’ need for formative feedback on the root
causes of an error [24]. Textual explanation of errors and
fixes along with improved code are key characteristics of
ChatGPT’s feedback compared to other learning environments.
The majority of recent tools provide simple feedback, report
failed test cases, or compiler errors [4], [5].

At the same time, the results raise concerns about the
reliability and suitability of LLM-generated feedback. As the
characteristics of the output greatly vary and contain mis-
leading information in many cases, it is questionable whether
this is suitable for novice programmers. They would need
the competency to formulate appropriate prompts. Due to
the random nature of LLM-generated feedback, learners will
receive different feedback for the same input. Furthermore,
novice programmers may lack the competency to critically
analyze feedback and consider all task constraints, as they do
not yet have acquired competencies within the meta-cognitive
dimension [25]–[27].

From our analysis, it remains open whether and how addi-
tional input to the LLM would reduce the share of misleading
feedback. For example, some of the student submissions
included package imports, which are prohibited in the context
of the lecture. In the TEOS task, constants were provided in
an outsourced file. Since ChatGPT was not provided with this
information in the prompt, errors due to incorrect imports or

the incorrect use of constants were not addressed and caused
some of the misleading information.

Furthermore, the selection of suitable tasks and submissions
from the data proved to be challenging. Most tasks were
divided into several interdependent subtasks. Therefore, only
a few tasks could be isolated for this analysis. Additionally,
many of the submissions contained a large number of different
errors, making it difficult to build a diverse dataset without
redundancies.

The results presented in this study are limited to the
observations made using a single LLM trained on general
data. In the meantime, a new version of ChatGPT (Version 4)
and other LLMs – specifically trained on programming data –
have been published, which may have improved performance
compared to the model used in this study. Moreover, we only
explored the characteristics of the feedback based on four
tasks and available student solutions from one introductory
programming course. The generated feedback is likely to vary
for other tasks. The same is true for different prompts. So
far, we only explored one general, very open prompt, as we
assume students to behave similarly.

VI. CONCLUSION AND NEXT STEPS

In this work-in-progress, we explored the potential of Large
Language Models such as ChatGPT to generate formative
feedback to novice learners of programming. To achieve this,
we investigated ChatGPT’s responses to incorrect student
solutions to introductory programming tasks. As part of the
analysis, we characterized ChatGPT’s output w.r.t. its content,
quality and other criteria. Moreover, we applied the feedback
typology by Keuning et al. [5] to the responses. The results
show that an LLM like ChatGPT performs reasonably well
when it comes to the detection and correction of compile
errors. The availability of textual explanations and improved
code (snippets) aligned to the user’s input is also unique.
However, there are limitations to ChatGPT’s feedback qual-
ity on logic and semantic errors, or if multiple errors are
contained in a student solution. Moreover, ChatGPT may
provide misleading information, and it lacks information on
task constraints. Hence, it is crucial to guide students towards
using ChatGPT, to inform them about its capabilities and
limitations, and to develop respective pedagogical methods.

As the next step of this work-in-progress, we will evaluate
the quality of feedback generated by LLM-based tools by
comparing the generated output with expert feedback on these
tasks. Future work will also comprise an investigation of how
we can engineer prompts to generate correct solutions from a
student input, and to generate specific types of feedback. Based
on such research, we can further discuss the implications
for computing educators considering the use of LLMs in the
classroom, and how we can adapt pedagogy to the availability
of LLMs. Another continuation of this work is the combination
of the presented feedback characterization with the existing
feedback typology for the context of programming. This
is how we can develop a more recent framework for the
classification of feedback types in the robot age.

REFERENCES

[1] A. Petersen, M. Craig, J. Campbell, and A. Tafliovich, “Revisiting why
students drop cs1,” in Proceedings of the 16th Koli Calling International
Conference on Computing Education Research, 2016, pp. 71–80.

[2] N. Kiesler, “Investigating the Use and Effects of Feedback in
CodingBat Exercises: An Exploratory Thinking Aloud Study,”
in 2023 Future of Educational Innovation-Workshop Series
Data in Action. IEEE, 2023, pp. 1–12. [Online]. Available:
10.1109/IEEECONF56852.2023.10104622

[3] T. Crow, A. Luxton-Reilly, and B. Wuensche, “Intelligent
tutoring systems for programming education: A systematic
review,” in Proceedings of the 20th Australasian Computing
Education Conference, 2018, p. 53–62. [Online]. Available:
https://doi.org/10.1145/3160489.3160492

[4] J. Jeuring, H. Keuning, S. Marwan, D. Bouvier, C. Izu, N. Kiesler,
T. Lehtinen, D. Lohr, A. Peterson, and S. Sarsa, “Towards giving timely
formative feedback and hints to novice programmers,” in Proceedings
of the 2022 Working Group Reports on Innovation and Technology in
Computer Science Education, ser. ITiCSE-WGR ’22, 2022, p. 95–115.
[Online]. Available: https://doi.org/10.1145/3571785.3574124

[5] H. Keuning, J. Jeuring, and B. Heeren, “A systematic literature review
of automated feedback generation for programming exercises,” ACM
Trans. Comput. Educ., vol. 19, no. 1, sep 2018. [Online]. Available:
https://doi.org/10.1145/3231711

[6] J. Finnie-Ansley, P. Denny, B. A. Becker, A. Luxton-Reilly, and
J. Prather, “The robots are coming: Exploring the implications of openai
codex on introductory programming,” in Proceedings of the Australasian
Computing Education Conference, 2022, pp. 10–19.

[7] J. Finnie-Ansley, P. Denny, A. Luxton-Reilly, E. A. Santos, J. Prather,
and B. A. Becker, “My ai wants to know if this will be on the exam:
Testing openai’s codex on cs2 programming exercises,” in Proceedings
of the 25th Australasian Computing Education Conference, 2023, pp.
97–104.

[8] J. Prather, P. Denny, J. Leinonen, B. A. Becker, I. Albluwi,
M. E. Caspersen, M. Craig, H. Keuning, N. Kiesler, T. Kohn,
A. Luxton-Reilly, S. MacNeil, A. Petersen, R. Pettit, B. N. Reeves,
and J. Savelka, “Transformed by Transformers: Navigating the AI
Coding Revolution for Computing Education: An ITiCSE Working
Group Conducted by Humans,” in Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education
V. 2, ser. ITiCSE 2023, 2023, p. 561–562. [Online]. Available:
https://doi.org/10.1145/3587103.3594206

[9] N. Kiesler and D. Schiffner, “Why We Need Open Data in Computer
Science Education Research,” in Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education
V. 1, ser. ITiCSE 2023, 2023, p. 348–353. [Online]. Available:
https://doi.org/10.1145/3587102.3588860

[10] B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, J. Prather,
and E. A. Santos, “Programming is hard – or at least it used to
be: Educational opportunities and challenges of ai code generation,”
in Proceedings of the 54th ACM Technical Symposium on Computer
Science Education (SIGCSE ’23), 2023.

[11] N. Kiesler and D. Schiffner, “Large Language Models in
Introductory Programming Education: ChatGPT’s Performance
and Implications for Assessments,” in CoRR abs/2308.08572.
arXiv: 2308.08572. https://arxiv.org/abs/2308.08572, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2308.08572

[12] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic generation
of programming exercises and code explanations using large language
models,” in ICER 2022 - Proceedings of the 2022 ACM Conference on
International Computing Education Research, vol. 1, 2022, pp. 27–43.

[13] S. MacNeil, A. Tran, D. Mogil, S. Bernstein, E. Ross, and Z. Huang,
“Generating diverse code explanations using the gpt-3 large language
model,” in ICER 2022 - Proceedings of the 2022 ACM Conference on
International Computing Education Research, vol. 2, 2022, pp. 37–39.

[14] J. Leinonen, A. Hellas, S. Sarsa, B. Reeves, P. Denny, J. Prather, and
B. A. Becker, “Using large language models to enhance programming
error messages,” in Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1, ser. SIGCSE 2023, 2023, p.
563–569. [Online]. Available: https://doi.org/10.1145/3545945.3569770

[15] J. Zhang, J. Cambronero, S. Gulwani, V. Le, R. Piskac, G. Soares,
and G. Verbruggen, “Repairing bugs in python assignments using large
language models,” arXiv preprint arXiv:2209.14876, 2022.

[16] P. Denny, V. Kumar, and N. Giacaman, “Conversing with copilot:
Exploring prompt engineering for solving cs1 problems using natural
language,” in Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1, 2023, p. 1136–1142. [Online].
Available: https://doi.org/10.1145/3545945.3569823

[17] M. Kazemitabaar, J. Chow, C. K. T. Ma, B. J. Ericson, D. Weintrop, and
T. Grossman, “Studying the effect of ai code generators on supporting
novice learners in introductory programming,” in Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems, 2023,
pp. 1–23.

[18] J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen,
A. Luxton-Reilly, G. Powell, J. Finnie-Ansley, and E. A. Santos, ““it’s
weird that it knows what i want”: Usability and interactions with
copilot for novice programmers,” ACM Trans. Comput.-Hum. Interact.,
2023. [Online]. Available: https://doi.org/10.1145/3617367

[19] A. Hellas, J. Leinonen, S. Sarsa, C. Koutcheme, L. Kujanpää, and
J. Sorva, “Exploring the responses of large language models to beginner
programmers’ help requests,” arXiv preprint arXiv:2306.05715, 2023.

[20] R. Balse, B. Valaboju, S. Singhal, J. M. Warriem, and P. Prasad, “Inves-
tigating the potential of gpt-3 in providing feedback for programming
assessments,” in Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1, 2023, pp. 292–298.

[21] M. Pankiewicz and R. S. Baker, “Large language models (gpt) for
automating feedback on programming assignments,” arXiv preprint
arXiv:2307.00150, 2023.

[22] S. Narciss and K. Huth, “How to design informative tutoring feedback
for multi-media learning,” in Instructional design for multimedia learn-
ing. Waxmann Verlag, 2004, pp. 181–195.

[23] S. Narciss, “Feedback strategies for interactive learning tasks,” Hand-
book of research on educational communications and technology, pp.
125–144, 2008.

[24] D. Lohr and M. Berges, “Towards criteria for valuable automatic
feedback in large programming classes,” in Proceedings of the 2021
Conference on Hochschuldidaktik Informatik (HDI), 2021.

[25] N. Kiesler, “Towards a Competence Model for the Novice Programmer
Using Bloom’s Revised Taxonomy - An Empirical Approach,”
in Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education, ser. ITiCSE ’20, 2020, p.
459–465. [Online]. Available: https://doi.org/10.1145/3341525.3387419

[26] L. W. Anderson, D. R. Krathwohl, P. W. Airasian, K. A. Cruikshank,
R. E. Mayer, P. R. Pintrich, J. Raths, and M. C. Wittrock, A taxonomy
for learning, teaching, and assessing: A revision of Bloom’s taxonomy
of educational objectives. New York: Addison Wesley Longman, 2001.

[27] N. Kiesler, “On Programming Competence and Its Classification,” in
Proceedings of the 20th Koli Calling International Conference on
Computing Education Research, ser. Koli Calling ’20, 2020. [Online].
Available: https://doi.org/10.1145/3428029.3428030

