
The Journal of Systems & Software 203 (2023) 111728

D
F

w
t
g
e
t
c

(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A systematic literature review on the impact of formatting elements on
code legibility✩

elano Oliveira a,b,1, Reydne Santos a,1, Fernanda Madeiral c, Hidehiko Masuhara d,
ernando Castor e,a,∗

a Federal University of Pernambuco, Recife, Brazil
b Federal Institute of Pernambuco, Recife, Brazil
c Vrije Universiteit Amsterdam, Amsterdam, Netherlands
d Tokyo Institute of Technology, Tokyo, Japan
e Utrecht University, Utrecht, Netherlands

a r t i c l e i n f o

Article history:
Received 30 December 2022
Received in revised form 12 April 2023
Accepted 24 April 2023
Available online 28 April 2023

Dataset link: A Systematic Literature Review
on the Impact of Formatting Elements on P
rogram Legibility (Original data)

Keywords:
Program understandability
Code legibility
Formatting elements

a b s t r a c t

Context: Software programs can be written in different but functionally equivalent ways. Even though
previous research has compared specific formatting elements to find out which alternatives affect code
legibility, seeing the bigger picture of what makes code more or less legible is challenging.
Goal: We aim to find which formatting elements have been investigated in empirical studies and which
alternatives were found to be more legible for human subjects.
Method: We conducted a systematic literature review and identified 15 papers containing human-
centric studies that directly compared alternative formatting elements. We analyzed and organized
these formatting elements using a card-sorting method.
Results: We identified 13 formatting elements (e.g., indentation) and 33 levels of formatting elements
(e.g., two-space indentation), which are about formatting styles, spacing, block delimiters, long or
complex code lines, and word boundary styles. While some levels were found to be statistically better
than other equivalent ones in terms of code legibility, e.g., appropriate use of indentation with blocks,
others were not, e.g., formatting layout. For identifier style, we found divergent results, where one
study found a significant difference in favor of camel case, while another study found a positive result
in favor of snake case.
Conclusion: The number of identified papers, some of which are outdated, and the many null and
contradictory results emphasize the relative lack of work in this area and underline the importance
of more research. There is much to be understood about how formatting elements influence code
legibility before the creation of guidelines and automated aids to help developers make their code
more legible.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Program comprehension is a required activity for any soft-
are maintenance and evolution task. Even when documenta-
ion is available, software developers have to understand fine-
rained elements of the source code to be able to modify it. These
lements relate to visual, structural, and semantic characteris-
ics of the source code of a program and may hinder program
omprehension.

✩ Editor: Gabriele Bavota.
∗ Corresponding author.

E-mail addresses: dho@cin.ufpe.br (D. Oliveira), reydne.bruno@gmail.com
R. Santos), fer.madeiral@gmail.com (F. Madeiral), masuhara@acm.org
H. Masuhara), f.j.castordelimafilho@uu.nl (F. Castor).
1 Authors contributed equally.
ttps://doi.org/10.1016/j.jss.2023.111728
164-1212/© 2023 The Authors. Published by Elsevier Inc. This is an open access art
Formatting elements, such as spacing, are factors that impact
the legibility of the source code and, consequently, may affect
the ability of developers to identify the elements of the code
while reading it. Structural and semantic characteristics, such
as programming constructs, impact the readability of the source
code and may affect the ability of developers to understand it
while reading the code. We use the term understandability to refer
to the ease with which developers are able to extract information
from a program that is useful for a software development- or
maintenance-related task just by reading its source code. Under-
standability is impacted by legibility and readability.

Ensuring the understandability of software projects is a chal-
lenging task. Some software organizations (e.g., Google2 and Sun

2 https://google.github.io/styleguide/, last access May 22, 2023.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111728
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111728&domain=pdf
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
http://creativecommons.org/licenses/by/4.0/
mailto:dho@cin.ufpe.br
mailto:reydne.bruno@gmail.com
mailto:fer.madeiral@gmail.com
mailto:masuhara@acm.org
mailto:f.j.castordelimafilho@uu.nl
https://google.github.io/styleguide/
https://doi.org/10.1016/j.jss.2023.111728
http://creativecommons.org/licenses/by/4.0/


D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

M

a
l
a

g
J
c
b
t
o
p
w
F
i
(
i
o
p

t
e
s
f
o
t
W
f
p
f
o
t
s
b
2

3
i
f
a
i
o
a

r
s
s
w
i
f
t
w
d
c
l
r
a
f
c
f

c

icrosystems3) have adopted code conventions to enforce the
usage of software development best practices by their developers.
Smit et al. (2011) explain that ‘‘code conventions are a body of
dvice on lexical and syntactic aspects of code, aiming to standardize
ow-level code design under the assumption that such a systematic
pproach will make code easier to read, understand, and maintain’’.
There exist guidelines and coding standards for different pro-

ramming languages, such as the Google Java Style Guide4 for the
ava language, which describe good practices and well-accepted
onventions on how to write code. However, these guides are
uilt based on the intuition and experience of the developers
hat elaborate them. In fact, what makes the code more legible
r readable is an open question. Researchers have conducted em-
irical studies to compare different but functionally equivalent
ays of writing code in terms of their legibility and readability.
or instance, Miara et al. (1983) compared different levels of
ndentation (zero, two, four, and six spaces), and Binkley et al.
2013) investigated the usage of camel case vs. underscore for
dentifier names. These studies provide insight into the influence
f different formatting elements on code legibility, but they are
arts of a bigger whole that is still unclear.
In this paper, we aim to provide a more comprehensive view of

he existing knowledge about the impact of different formatting
lements on code legibility. To do so, we examined empirical
tudies performed by researchers with human subjects aiming to
ind which formatting alternatives are the best for the legibility
f source code. We conducted a systematic literature review
hat, from an initial set of 4,914 documents, analyzes 15 papers.
e selected papers that directly compared alternative levels of

ormatting elements and organized them through a card-sorting
rocess. Finally, for each formatting element, we examined the
indings reported by the primary studies considering two aspects
f human-centric studies that evaluate code legibility: the activi-
ies performed by human subjects (which relate to the cognitive
kills required from them) and the response variables employed
y the researchers to collect data from the studies (Oliveira et al.,
020).
We identified 13 formatting elements (e.g., indentation) and

3 alternative levels of these factors (e.g., two-space indentation)
n 27 comparisons (e.g., one comparison considered zero, two,
our, and six indentation levels). These formatting elements are
bout formatting styles (e.g., formatting layout), spacing (e.g.,
ndentation), block delimiters (e.g., block delimiter visibility), long
r complex code line (e.g., statements per line), and word bound-
ry styles (i.e., identifier styles).
All comparisons for four factors showed statistically significant

esults in favor of the same level (e.g., book format for formatting
tyle). For other four factors, there were comparisons where
tatistically significant differences between the levels were found,
hile other comparisons did not show differences. For instance,

n comparisons involving horizontal spacing, Miara et al. (1983)
ound out that two-space indentation leads to code that is easier
o understand than zero, four, or six spaces. However, recent
orks (Santos and Gerosa, 2018; Bauer et al., 2019) did not find
ifferences between indentation levels, though the studied source
ode snippets of these studies were from different programming
anguages. For the identifier style factor, there were divergent
esults. Sharif and Maletic (2010) found that snake case is the best
lternative for identifier names. However, Binkley et al. (2013)
ound out that the usage of camel case is better than snake
ase in one study, and no statistical difference between the two
ormatting alternatives was found in a second study. For the

3 https://www.oracle.com/java/technologies/javase/codeconventions-
ontents.html, last access May 22, 2023.
4 https://google.github.io/styleguide/javaguide.html, last access May 22, 2023.
2

remaining four factors, e.g., blank space around operators and pa-
rameters (Sampaio and Barbosa, 2016), no statistically significant
differences were found.

This study highlights that our current understanding of code
legibility is limited. The area is immature, i.e., there are few
studies on the topic, the studies that do exist are narrow in
scope, i.e., they employ a restricted and small set of approaches to
evaluate alternative solutions, and the results of many studies are
inconclusive, in part due to lack of statistical power. Further-
more, 5/15 papers we analyzed are outdated, having been pub-
lished 30 or more years ago. This indicates the need for more
research in this area. Ultimately, understating the impact of for-
matting elements on code legibility would allow the creation of
guidelines and automated aids, e.g., linters and recommendation
systems, to help developers during programming activities and
make their code more legible.

2. Background

In a previous work (Oliveira et al., 2020), we conducted a
systematic literature review to define how researchers measure
code legibility and readability. To achieve that, we examined
primary studies where human subjects are asked to perform
programming-related tasks involving comparisons between alter-
native programming constructs, idioms, and styles. These alter-
natives are different but functionally equivalent ways of writing
code, e.g., recursive vs. iterative code (Benander et al., 1996) and
abbreviated vs. word identifier names (Hofmeister et al., 2019).
The goal of those comparisons is to find the most legible or
readable ways of writing code. We did not, however, investigate
the alternatives themselves, which is the goal of the current work.

In this section, we summarize the main three elements of that
paper that we build upon. First, we introduce the concepts of code
legibility and readability in Section 2.1. We discuss how Software
Engineering researchers define these two terms, and we bring
insights from other areas of knowledge to make a clear distinction
between them. In Section 2.2, we provide background on the
tasks performed by humans and response variables collected in
studies that compared functionally-equivalent source code al-
ternatives, as found by Oliveira et al. (2020). The combination
of these tasks and response variables builds a landscape of the
different ways in which researchers define and measure code
legibility and readability in existing studies. Finally, in Section 2.3,
we present how we leverage a learning taxonomy (Bloom et al.,
1956; Fuller et al., 2007) to model program comprehension tasks
so that researchers can clearly express the cognitive skills they
intend to evaluate with a study. More specifically, we review a
set of activities that decompose the tasks performed by humans
in the primary studies of our previous study (Oliveira et al., 2020).

2.1. Legibility and readability

In software engineering, the terms readability and legibil-
ity have overlapping meanings. For example, Buse and Weimer
(2010) define ‘‘readability as a human judgment of how easy a text
is to understand’’. In a similar vein, Almeida et al. (2003) affirm
that ‘‘legibility is fundamental to code maintenance; if source code
is written in a complex way, understanding it will require much more
effort ’’.

In linguistics, the concept of text comprehension is similar
to program comprehension in software engineering. Gough and
Tunmer (1986) state that ‘‘comprehension (not reading comprehen-
sion, but rather linguistic comprehension) is the process by which
given lexical (i.e., word) information, sentences and discourses are
interpreted’’. However, Hoover and Gough (1990) further elab-
orate on that definition and claim that ‘‘decoding and linguis-
tic comprehension are separate components of reading skill’’. This

https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://google.github.io/styleguide/javaguide.html


D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

c
t
i

a
a
r
o
m
r

b
c
e
r

‘
g
i
b
r
t
s
e
c
r
s
t
l
c
t
w

2
o

h
b
a
A
m
f
f
o
O
d
a
f

T
c
h
r
p
h
h

i
a
s
s
i

A
t
t
s
p
F
p

laim highlights the existence of two separate processes during
ext comprehension: (i) decoding the words/symbols and (ii)
nterpreting them and the sentences formed by them.

DuBay (2004) separates these two processes and defines them
s legibility, which concerns typeface, layout, and other
spects related to the identification of elements in text, and
eadability, that is, what makes some texts easier to read than
thers. In a similar vein, for Tekfi (1987), legibility studies are
ainly concerned with typographic and layout factors, while

eadability studies concentrate on linguistic factors.
These two perspectives also apply to programs. We can find

oth the visual characteristics and linguistic factors in source
ode, although with inconsistent terminology. For example, Daka
t al. (2015) state that ‘‘the visual appearance of code in general is
eferred to as its readability’’. The authors clearly refer to legibil-
ity (in the design/linguistics sense) but employ the term ‘‘read-
ability’’ possibly because it is more often used in the Software
Engineering literature.

Based on the differences between the terms ‘‘readability’’ and
‘legibility’’ that are well-established in other areas such as lin-
uistics (DuBay, 2004), design (Strizver, 2013), human-computer
nteraction (Zuffi et al., 2007), and education (Tekfi, 1987), we
elieve that the two terms should have clear, distinct, albeit
elated, meanings also in the area of Software Engineering. On
he one hand, the structural and semantic characteristics of the
ource code of a program that affect the ability of develop-
rs to understand it while reading the code, e.g., programming
onstructs, coding idioms, and meaningful identifiers, impact its
eadability. On the other hand, the visual characteristics of the
ource code of a program, which affect the ability of developers
o identify the elements of the code while reading it, such as
ine breaks, spacing, alignment, indentation, blank lines, identifier
apitalization, impact its legibility. Hereafter, we employ these
wo terms according to these informal definitions. In this work,
e focus on code legibility.

.2. Tasks and response variables employed in human-centric studies
n code legibility and readability

In our previous study (Oliveira et al., 2020), we examined
ow researchers have investigated code legibility and readability
y asking human subjects to perform tasks on source code and
ssessing their understanding or effort with response variables.
recent study by Feitelson (2022) also presented the tasks and
etrics adopted in studies about code comprehension. Different

rom our previous study, their focus was narrower: they per-
ormed an in-depth analysis of the factors involved in only one
f the levels of learning skills (‘‘understanding’’) presented by
liveira et al. (2020), and on concrete activities performed by
evelopers. In this section, we review the tasks and response vari-
bles we found during our previous study, which lay a foundation
or the study presented in this paper.

asks. The essential code comprehension task is code reading. By
onstruction, human-centric studies about code comprehension
ave at least one reading task where the subject is required to
ead a code snippet, a set of snippets, or even large, complete
rograms. In addition, the subjects are also expected to compre-
end the code. However, there are different (kinds of) tasks that
elp researchers measure subject comprehension performance.
A large portion of the studies required subjects to provide

nformation about the code. For example, Benander et al. (1996)
sked the subjects to explain using free-form text what a code
nippet does right after having read it. In some studies, the
ubjects were asked to answer questions about code character-
stics. For example, Gopstein et al. (2017) and Ajami et al. (2019)
3

presented subjects with multiple code snippets and asked them
to guess the outputs of these snippets.

Also, some studies required the subjects to act on the code.
mong these studies, subjects were asked to find and fix bugs in
he code. For example, Scanniello and Risi (2013) asked subjects
o do so in programs with different identifier styles. In other
tudies, the subjects were asked to modify the code of a working
rogram, i.e., without the need to fix bugs. For example, Jbara and
eitelson (2014) asked subjects to implement a new feature in a
rogram seen in a previous task.
Lastly, subjects were also asked to give their personal

opinion. In some studies, the subjects were inquired about their
personal preferences or gut feeling without any additional task.
For example, Buse and Weimer (2010) asked them to rate (from
1 to 5) how legible or readable a code snippet is. In other
studies, the subjects were asked about their personal opinions
while performing other tasks. For example, O’Neal and Edwards
(1994) first asked subjects to read a code snippet, then to state
if they understood the snippet and provide a description of its
functionality.

Response variables. After human subjects perform tasks, re-
searchers employ response variables to measure the subjects’
performance. Depending on the study’s goals, methodology, and
subjects, response variables vary. The performance of subjects
is measured in some studies in terms of whether they provide
correct answers given a task. The correctness of answers may
pertain to code structure, semantics, use of algorithms, or pro-
gram behavior. For example, Bauer et al. (2019) measured the
subjects’ code understanding by asking them to fill in a ques-
tionnaire with multiple-choice questions referring to program
output.

Studies that evaluate which code alternative is easier to read
often collect the subjects’ personal opinions. These response vari-
ables are grouped in a category called opinion. For instance,
Santos and Gerosa (2018) presented pairs of functionally equiv-
alent snippets to the subjects and asked them to choose which
one they think is more readable or legible.

Some researchers measure the time subjects spend perform-
ing tasks. There is variety in the way the studies measure time.
For Ajami et al. (2019), ‘‘time is measured from displaying the
code until the subject presses the button to indicate he is done’’.
Hofmeister et al. (2019) computed the time subjects spent look-
ing at specific parts of a program.

More recent studies collect information about the process of
performing the task instead of its outcomes. Multiple studies
employ special equipment to track what the subjects see and
to monitor the subjects’ brain activities during the tasks. The
response variables gathered during these processes are visual
metrics and brain metrics. For example, Binkley et al. (2013)
computed the visual attention, measured as the amount of time
during which a subject is looking at a particular area of the
screen. Siegmund et al. (2017) used functional magnetic res-
onance imaging (fMRI) to measure brain activity by detecting
changes associated with blood flow.

2.3. Program comprehension as a learning activity

The empirical studies analyzed in our previous work
(Oliveira et al., 2020) involve a wide range of tasks to be per-
formed by their subjects, as reviewed in the previous section. All
these tasks are conducted to evaluate readability and legibility.
However, they demand different cognitive skills from the subjects
and, as a consequence, evaluate different aspects of readabil-
ity and legibility. In our previous work, we attempted to shed
light on this topic by analyzing the cognitive skill requirements
associated with each kind of task.



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

t
l
d
t
t
i
t
a
o
c
o
n
c
d
(
s
s

s
t
t
i
‘
a
f
t
f
a

s
‘
a
a
m

Table 1
Learning activities from our previous study (Oliveira et al., 2020), extended from Fuller et al. (2007)—Inspect and Memorize are not in the original taxonomy. Opinion
is not included because it is not directly related to learning. We took the definitions directly from Fuller et al. (2007), except when a definition is not applicable to
our code understanding context. The examples are either extracted from tasks from the primary studies of our previous work (Oliveira et al., 2020) or general ones
when no task involved that activity.
Activity Description and example

Adapt Modify a solution for other domains/ranges, i.e., change a solution to fit in a given context. Example: Remove preprocessor directives to reduce
variability in a family of systems (Schulze et al., 2013).

Analyze Probe the complexity of a solution by reading the source code. Example: Identify the function where the program would spend more time running.

Apply Use an existing solution as a component to implement a part of a program. Example: Reuse of off-the-shelf components.

Debug Detect and correct flaws in a design. Example: Given a program, identify faults and fix them (Scanniello and Risi, 2013).

Design Understand a program and devise a solution for a new problem specification. Example: Given a program, sketch a solution for a new functionality.

Implement Read (part of) a program and implement a solution given a completed design. Example: Write code using the given examples according to a
specification (Stefik and Siebert, 2013).

Model Illustrate or create an abstraction of a solution by reading the source code. Example: Given a program and the design of a new functionality,
construct a UML model representing it.

Present Explain a solution to others. Example: Read a program and then write a description of what it does and how (Chaudhary and Sahasrabuddhe, 1980).

Recognize Identify a concept or code structure from a base knowledge or vocabulary of the domain obtained before the task to be performed. Example: ‘‘The
sorting algorithm (lines 46-62) can best be described as: (A) bubble sort (B) selection sort (C) heap sort (D) string sort (E) partition exchange
sort’’ (Tenny, 1988).

Refactor Redesign a solution to modify non-functional properties of a program or, at a larger scale, re-engineer it. Example: Rewrite a function so as to
avoid using conditional expressions.

Relate Understand different solutions and identify distinctions and similarities, pros and cons of these solutions. Example: Choose one out of three
high-level descriptions that best describe the function of a previously studied application (Blinman and Cockburn, 2005).

Trace Desk-check a solution, i.e., simulate program execution while looking at its code. Example: Consider the fragment ‘‘x=++y’’: what is the final value
of x if y is -10? (Dolado et al., 2003).

Inspect* Examine a source code to find or understand fine-grain static elements. Inspect is similar to Analyze, but the inspected aspect of the program is
static instead of dynamic. Example: ‘‘All variables in this program are global [true/false] ’’ (Miara et al., 1983).

Memorize* Memorize a source code in order to reconstruct it later, partially or as a whole. Example: Given a program, memorize it in 3 minutes and then
reconstruct it in 4 (Love, 1977).
According to the Merriam-Webster Thesaurus, to learn some-
hing is ‘‘to gain an understanding of’’ it. Following along these
ines, we treated the problem of program comprehension (or un-
erstanding) as a learning problem. We proposed an adaptation of
he learning taxonomy devised by Fuller et al. (2007) to the con-
ext of program comprehension. Fuller et al. (2007)’s taxonomy
s composed of a set of activities that build upon Bloom’s revised
axonomy (Anderson et al., 2001) (for educational objectives) and
model that emphasizes that some activities in software devel-
pment involve acting on knowledge, instead of just learning. Our
entral idea was to leverage the elements defined by the taxon-
my of Fuller et al. (2007), with some adaptions, to identify and
ame the cognitive skills required by different tasks employed by
ode readability and legibility studies. The resulting activities are
escribed with examples in Table 1. We introduced two activities
marked with ‘‘*’’) that stem directly from tasks performed by
ubjects in some of the primary studies we analyzed and required
kills that are not covered by the original set of activities.
We analyzed the tasks that subjects performed in the primary

tudies and identified which activities from Fuller et al. (2007)
hey require. Table 2 presents the mapping of tasks (rows) to
he learning activities (columns). Moreover, besides the activities
n Table 1, we also considered Giving an Opinion (hereafter,
‘Opinion’’), which is not part of the taxonomy because it is not
learning activity. The tasks listed in the table were extracted

rom the previously analyzed studies. Furthermore, the activi-
ies to which they are mapped are the ones that were required
rom subjects in those studies, i.e., there may be other activities
ssociated with those tasks that have not been investigated.
Table 2 shows that there is a direct correspondence between

ome tasks and activities. For example, all the instances of the
‘Find and fix bugs in the code’’ task involve the Debug activity,
nd all the tasks that require subjects to provide an opinion
re connected to the Opinion activity. In addition, some tasks
ay be connected to various activities. For instance, ‘‘Modify
4

Table 2
Mapping of tasks (rows) to learning activities (columns), adapted from
Oliveira et al. (2020). The rows exhibit tasks that subjects performed during the
investigated studies and the columns present the activities explained in Table 1.
Opinion is market with ‘‘*’’ because it is not directly related to learning.

Ad
ap

t

D
eb

ug

Im
pl
em

en
t

In
sp

ec
t

M
em

or
iz
e

Pr
es
en

t

Re
co

gn
iz
e

Re
la
te

Tr
ac
e

O
pi
ni
on

*

Provide information about the code
Explain what the code does ✓ ✓

Answer questions about code ✓ ✓ ✓ ✓

Remember (part of) the code ✓ ✓ ✓

Act on the code
Find and fix bugs in the code ✓

Modify the code ✓ ✓ ✓ ✓

Write code ✓ ✓

Provide personal opinion
Opinion about the code ✓

Answer if understood the code ✓

Rate confidence in her answer ✓ ✓ ✓

Rate the task difficulty ✓ ✓ ✓ ✓ ✓ ✓

the code’’ may require subjects to Implement, Trace, Inspect, or
Adapt the code to be modified. This makes sense: to modify a
program, one may have to understand its static elements and its
behavior, as well as adapt code elements to be reused. Another
example is ‘‘Answer questions about code’’, which often requires
subjects to Trace and Inspect code. Furthermore, ‘‘Explain what
the code does’’ is usually related to Present. Notwithstanding, in
some studies (O’Neal and Edwards, 1994; Blinman and Cockburn,
2005), subjects were presented with multiple descriptions for
the same code snippet and asked which one is the most ap-
propriate. This requires the subject to Relate different programs
and descriptions. Finally, there are some non-intuitive relation-
ships between tasks and activities. Chaudhary and Sahasrabuddhe



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

(
s
t
s

3

h
l
r
w
t

R

R

l
K
r
s
c
w
b
e
t
e
c
w
e
s
(
t
t
w
t
f

F
e
t
s
t
b
d
p

3

p
s
s
w
r
s
T
w
u
a
t

e
u

1980) asked the subjects to reconstruct a program after spending
ome time looking at it. This is a ‘‘Remember the code’’ task where
he subjects have to explain what the program does by writing a
imilar program. It is a mix of Present and Implement.

. Methodology

In this paper, we aim to examine what formatting elements
ave been investigated and which ones were found to be more
egible in human-centric studies. We focus on studies that di-
ectly compare two or more functionally equivalent alternative
ays of writing code. We address the following research ques-
ions in this paper:

Q1 What formatting elements at the source code level have
been investigated in human-centric studies?

Q2 Which levels of formatting elements have been found to
make the source code more legible?

To answer our research questions, we conducted a systematic
iterature review designed following the guidelines proposed by
itchenham et al. (2015). Fig. 1 presents the roadmap of our
eview, including all steps we followed. First, we performed the
election of studies. We started with a set of papers (11) about
ode legibility found in our previous work (Oliveira et al., 2020),
hich we used as seed papers so that a search string could
e defined, and automatic search could be performed on search
ngines (Section 3.1). We retrieved 3,999 unique documents with
he automatic search, which passed through a triage for study
xclusion (Section 3.2), an initial study selection where inclusion
riteria were applied (Section 3.3), and a final study selection
here we evaluated the quality of the studies based on sev-
ral criteria (Section 3.4). After this process, 14 papers were
elected. Then, we performed backward and forward snowballing
Section 3.5), where we found 915 new documents, which passed
hrough all the selection steps. We found one additional paper,
otaling 15 papers for our review. Finally, the selected 15 papers
ere analyzed (Section 3.6) for data extraction and synthesis
o answer our research questions. We detail these steps in the
ollowing sections.

ull disclosure on novelty. Our methodology resembles the one
mployed in our previous work (Oliveira et al., 2020). However,
he search for papers is different, which means the whole process
tarted based on a new set of papers for this work. Moreover,
he data analysis and synthesis methods are completely new
ecause we answer different research questions in this paper. A
etailed elaboration on the differences between the two works is
resented in Section 3.7.

.1. Search strategy

Our search strategy comprises three parts: the selection of pa-
ers to be used as seed studies, the definition of a generic search
tring, and the automatic search in search engines. First, we
elected relevant papers as seeds to define a generic search string
ith terms that would return relevant papers for answering our
esearch questions. We selected 11 papers from our previous
tudy (Oliveira et al., 2020) to be considered as seeds in this one.
hese papers contain studies that compare two or more ways of
riting code by only changing formatting elements to help code
nderstanding in terms of legibility. This is the kind of study we
re searching for in this work and, therefore, these papers form
he ideal seed set for systematically searching other papers.

We analyzed the title and keywords of the seed papers and
xtracted the general terms related to our research questions. We
sed the resulting terms to build the following search string:
5

Fig. 1. Systematic literature review roadmap.

Title(ANY(terms)) OR Keywords(ANY(terms)),
where terms = { ‘‘code comprehension’’, ‘‘code understandability’’, ‘‘code

understanding’’, ‘‘code readability’’, ‘‘code complexity’’, ‘‘code
misunderstanding’’, ‘‘code patterns’’, ‘‘program comprehension’’, ‘‘program

understandability’’, ‘‘program understanding’’, ‘‘program readability’’, ‘‘program
idioms’’, ‘‘program style’’, ‘‘program patterns’’, ‘‘programmer experience’’ }

We did not include terms with ‘‘legibility’’ in the search string.
Most of the papers with this word in the title or keywords are
related to linguistics or computational linguistics. In these fields,
researchers use this term with a different meaning than what
would be expected in a software engineering paper. Using it in
our search string would drastically increase the number of false
positives.

Finally, we performed an automatic search for studies using
our generic search string adapted for three search engines: ACM
Digital Library5, IEEE Explore6, and Scopus7. We retrieved 1,520,
979, and 3,458 documents, respectively, on October 10, 2022.
Since a given document might be retrieved from more than
one engine, we unified the output of the engines to eliminate
duplicates, which resulted in 3,999 unique documents. The 11
seed papers were returned by the automatic search.

3.2. Triage (study exclusion)

The 3,999 documents retrieved with our automatic search
passed through a triage process so that we could discard clearly
irrelevant documents. For that process, we first defined five ex-
clusion criteria:

EC1. The study is clearly irrelevant to our research questions, i.e.,
it is not primarily related to source code comprehension,
readability, legibility, or hard-to-understand code, or does
not involve any comparison of different ways of writing
code.

EC2. The study is not a full paper (e.g., PhD theses or 4-page pa-
pers), is not written in English, or was not peer-reviewed:
not considering these types of documents in systematic
reviews is a common practice (Kitchenham et al., 2015).

EC3. The study is about legibility, readability, or understandabil-
ity metrics.

EC4. The study is about program comprehension aids, such as vi-
sualizations or other forms of analysis or sensory aids, e.g.,
trace-based execution, code summarization, and character
encodings supporting colors.

5 http://dl.acm.org/, last access May 22, 2023.
6 http://ieeexplore.ieee.org/, last access May 22, 2023.
7 http://www.scopus.com/, last access May 22, 2023.

http://dl.acm.org/
http://ieeexplore.ieee.org/
http://www.scopus.com/


D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

E

o
a
r
w
m
r
b
a
c
m
t

3

p
p

I

I

C5. The study focuses on accessibility, e.g., targets individuals
with visual impairments or neurodiverse developers.

Then, each of the 3,999 documents was analyzed by an author
f this paper, who checked the title and abstract of the document,
nd in some cases, the methodology, against the exclusion crite-
ia. The documents that did not meet any of the exclusion criteria
ere directly accepted to enter the next step. The documents that
eet at least one exclusion criterion passed through a second

ound in the triage process, where each document was analyzed
y a different author. At the end of the two rounds, we discarded
ll documents that were annotated with at least one exclusion
riterion in both rounds. We followed this two-round process to
itigate the threat of discarding potentially relevant studies in

he triage. We ended up with 550 papers.

.3. Initial selection (study inclusion)

After discarding clearly irrelevant documents in the triage
rocess, we applied the following inclusion criteria to the 550
apers to build our initial set of papers:

C1 (Scope). The study must be primarily related to legibility.

C2 (Methodology). The study must be or contain a controlled
experiment, quasi-experiment, or survey involving human
subjects.

IC3 (Comparison). The study must directly compare alternative
formatting elements in terms of code legibility, and the alter-
natives must be clearly identifiable.

IC4 (Granularity). The study must target fine-grained program
elements and low-level/limited-scope programming activ-
ities. Not design or comments, but implementation.

The application of the inclusion criteria to a paper often re-
quires reading not only the title and abstract as in the triage
process, but also sections of introduction, methodology, and con-
clusion. If a given paper violates at least one inclusion criterion,
the paper is annotated with ‘‘not acceptable’’. When there are
doubts about the inclusion of a paper, the paper is annotated
with ‘‘maybe’’ for further discussion. We also performed this step
in two rounds, but differently from the triage, all papers in this
step were independently analyzed by two different authors. At
the end of this step, the papers annotated with ‘‘acceptable’’ in
both rounds were directly selected, and papers annotated with
‘‘not acceptable’’ in both rounds were rejected. All the other cases
were discussed by all authors in live sessions to reach consensus.
We ended up with 14 papers.
Deprecated studies. We identified some papers that we refer to
as deprecated. A paper is deprecated if it is extended by another
paper that we selected. For instance, the paper of Binkley et al.
(2009) was extended in a subsequent paper (Binkley et al., 2013).
In this case, we consider the former to be deprecated and only
take the latter into account.

3.4. Study quality assessment

The selected 14 papers passed through a final selection step,
aiming to identify low-quality papers for removal. To do so, we
elaborated nine questions that were answered for each paper. We
adapted these questions from the work of Keele et al. (2007).
Three questions were about study design, e.g., ‘‘are the aims clearly
stated?’’, four questions were about analysis, e.g., ‘‘are the data
collection methods adequately described?’’, and two questions were
about rigor, e.g., ‘‘do the researchers explain the threats to the study
6

validity?’’. Each question was answered with one of the following
possible answers: yes (1), partially (0.5), and no (0). The sum of
the answers for a given paper is its quality score. The maximum
is, therefore, 9. If a paper scores 0.5 or better in all questions, its
overall score is 4.5 or more. Thus, we defined that a paper should
score at least 4.5 to be kept in our list of papers.

Each paper was assessed by one of the authors of this paper.
At the beginning of this step, each author selected one paper,
performed the quality assessment, and justified to the other
authors the given score for each question in a live discussion. This
procedure allows us to align our understanding of the questions
and avoid misleading assessments. The scores of the papers were:
min = 5, median = 8, max = 9. Since the minimum score for
keeping a paper is 4.5 and no paper scored less than 5, no papers
were removed because of low quality.

3.5. Snowballing

To make sure our study is comprehensive, we carried out a
snowballing process. To do so, we collected new papers by gath-
ering all the references used in the included papers (backward
snowballing) and all the papers that cited the included papers
in our review (forward snowballing). We used Google Scholar to
extract the citations of included papers. The newly collected pa-
pers passed through the triage (study exclusion), initial selection
(study inclusion), and final selection (study quality assessment).
At this stage, only papers published from the 1990s onwards were
included because that period marked a significant advancement
in the field of software engineering with the emergence of object-
oriented programming. We repeated this process until no new
paper was found. We performed one complete iteration, and no
new paper was found for a second one. With the initial set of 14
selected papers, we gathered 915 new documents. After analyzing
them by considering the exclusion and inclusion criteria, we
found one new paper, totaling 15 papers for our review.

3.6. Data analysis

To answer our research questions (which is done in Section 4),
we analyzed a total of 15 papers. The analysis was composed of
data extraction and synthesis.

Data extraction. Initially, we read all the papers in full and
extracted the necessary data to answer our research questions.
The papers were equally divided among the authors, and periodic
meetings were held for discussion. For RQ1, we extracted the
independent variables of the studies, which are the formatting
elements (e.g., indentation) and their levels (e.g., two-space in-
dentation) being compared. For RQ2, for each formatting element,
we collected 1) the tasks the human subjects were required to
perform in the experiment, which we mapped to learning activ-
ities (see Section 2.3), 2) the dependent variables, which are the
response variables (see Section 2.2), 3) the results and statistical
analysis, 4) the characteristics of the human subjects, and 5) the
programming languages considered.

Synthesis process. To better understand and present the results
in an organized way, we performed card sorting (Wood and
Wood, 2008) on the extracted formatting elements. With this
method, we transformed the formatting elements into cards and
then grouped the cards based on their similarities. This process
was bottom-up, i.e., formatting elements → groups, as follows.

Formatting elements (factors). We used the formatting elements
extracted from the studies as factors in the card-sorting pro-
cess. Then, we created a card for each factor evaluated by the
study (e.g., indentation). For synonymous factors, we created one
unique card to represent them. For instance, Santos and Gerosa



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

(
t
l
c
G
W
t
a
a

G
s
g
n
w
n
w
t
‘
w
t
g
s
w

t
w
i
i

3

v
c
a
e
i
(
t

t
v
r
s
t
l
t
a
w
t
a

s
a
B
n
c
o
m
t
p
t

2018) evaluated whether using a beginning block delimiter in
he same line of their corresponding statements (e.g., class dec-
aration) is better than in its own line. Similarly, Arab (1992)
ompared different presentation schemes (Peterson, Crider, and
ustafson) that define where the block delimiter should be placed.
e created a unique card named ‘‘Block delimiter location’’ for

hese factors. The levels (e.g., in the statement line and in a sep-
rate line) of each factor compared by the studies are described
nd evaluated separately.

roups. The next step was to group similar cards. In live ses-
ions, we discussed each card and included it in a representative
roup. When there was no representative group for a card, a
ew group was created. For example, the first card we analyzed
as ‘‘Vertical and horizontal spacing’’. We created the first group,
amed ‘‘Group 1’’, and included that card in it. The second card
e analyzed was ‘‘Formatting layout’’. Such a card is not similar
o the card in ‘‘Group 1’’, so we created a second group named
‘Group 2’’ for it. The third card we analyzed was ‘‘Indentation’’,
hich is similar to the card in ‘‘Group 1’’, so we included it in
hat group as well. After including all cards in some groups, we
ave meaningful names to each group. We also split groups that
eemed too generic into smaller ones. In cases where two groups
ere very similar and small, we combined them.
The card sorting process was initially performed by the first

wo authors of this paper, and the results were later refined
ith the collaboration of all authors in multiple live sessions. The

dentified groups and factors are presented in Table 3 and detailed
n Section 4.

.7. Differences between this study and the previous one

This work is part of a bigger research project where we in-
estigate formatting elements, coding idioms, and programming
onstructs that affect code legibility and readability, what they
re, which ones are the best, and how researchers and developers
valuate what ‘‘best’’ means. Thus, the methodology we used
n this work resembles the methodology of a previous study
Oliveira et al., 2020), but the studies are different. We dedicate
his section to explaining the differences between the two works.

In the previous paper, our goal was to examine and classify the
asks performed by human subjects in experiments and response
ariables employed by researchers to assess code legibility and
eadability. This paper builds upon our previous work, so much
o that Section 2 presents a summary of that paper, and aims
o investigate formatting elements that were compared in the
iterature and which ones are more legible. Because the goals of
he two studies are different, the research questions and data
nalysis (explained in Section 3.6) are also different. Moreover,
e changed the process of the search for papers to better match
he goal of this study. We used papers found in our previous work
s seed papers for defining a new search string for this work.
The remainder of the methodology, which deals with study

election (i.e., study exclusion, study inclusion, and study quality
ssessment), was reused or adapted from our previous work.
ecause some studies that were selected in our previous work are
ot adequate to answer the research questions of this study, we
hanged inclusion criteria, more specifically IC1 and IC3, to select
nly studies on legibility that directly compare formatting ele-
ents or styles that can be clearly identified. Finally, a subset of

he 4,914 documents had already been analyzed in the selection
hases of our previous work, and therefore we partially reused
he results from it.
7

Table 3
Card sorting results.
Groups Formatting elements (factors)

Formatting Formatting style
Formatting layout

Spacing

Indentation
Appropriate use of indentation with blocks
Vertical and horizontal spacing
Vertical spacing between related instructions
Blank space around operators and parameters

Block Delimiters
Block delimiter location
Block delimiter style
Block delimiter visibility

Long or Complex Code Line Line length
Statements per line

Word Boundary Styles Identifier style

3.8. Data availability

Raw data, such as the list of the 3,999 documents returned
by our automatic search, 915 documents returned by snow-
balling, and additional details about our methodology, such as
the questionnaires we used for the study quality assessment and
data extraction, are available at https://github.com/reydne/code-
comprehension-review.

4. Results

In this section, we present the results of the study. We or-
ganized the subsections by the groups of formatting elements
(factors) we found in our review, which are named formatting
(Section 4.1), spacing (Section 4.2), block delimiters (Section 4.3),
long or complex code line (Section 4.4), and word boundary styles
(Section 4.5). In each section, we address both research questions.
The first research question aims to identify the formatting ele-
ments that researchers investigated in their studies about code
legibility, i.e., the characteristics of the code that make it easier or
harder to identify its elements. For a given group, we present the
formatting elements with their corresponding levels, separated
per the primary studies included in our review. Table 3 presents
the mapping of groups to formatting elements. With the second
research question, we aim to synthesize the studies’ findings
related to legibility by comparing the levels of the formatting
elements. For that, we consider data such as the studies’ answers,
statistical tests, activities performed by humans, and dependent
variables. Table 4 presents an overview of the papers included in
our study and summarizes the factors (from Table 3) investigated
in each of them.

4.1. Formatting

This group gathers studies about different ways of formatting
code from a global, higher-level perspective. Table 5 presents a
summary of the results. For each factor, the table presents the
references to the studies, the levels of the factors compared, the
programming languages considered, the dependent variables of
each study, the corresponding activities (see Section 2.3) per-
formed by the subjects, and the main results found for each
comparison of levels.

Formatting style. Oman and Cook (1990) proposed the notion
of Book Format Style for structuring source code and compared
it to two well-known styles for the Pascal and C languages: the
Lightspeed Pascal style (Johnson and Beekman, 1988) and the
Kernighan & Ritchie style (Ritchie et al., 1988). The Book Format
style, as the name implies, takes inspiration from how books

https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review


D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728
Table 4
Included papers and the factors analyzed, sorted in descending order by year of publication.
Study Study title PL Formatting elements (factors)

Langhout and Aniche (2021) ‘‘Atoms of Confusion in Java’’ Java – Appropriate use of indentation with blocks
– Block delimiter visibility

Bauer et al. (2019) ‘‘Indentation: Simply a Matter of Style or Support for Program
Comprehension?’’

Java – Indentation

Medeiros et al. (2019) ‘‘An investigation of misunderstanding code patterns in C
open-source software projects’’

C – Block delimiter visibility
– Statements per line

Santos and Gerosa (2018) ‘‘Impacts of Coding Practices on Readability’’ Java – Indentation
– Vertical spacing between related instructions
– Block delimiter location
– Line length
– Statements per line

Siegmund et al. (2017) ‘‘Measuring Neural Efficiency of Program Comprehension’’ Java – Formatting layout

Gopstein et al. (2017) ‘‘Understanding Misunderstandings in Source Code’’ C/C++ – Block delimiter visibility

Sampaio and Barbosa (2016) ‘‘Software readability practices and the importance of their
teaching’’

Java – Blank space around operators and parameters
– Block delimiter visibility
– Statements per line

Binkley et al. (2013) ‘‘The impact of identifier style on effort and comprehension’’ C/Java – Identifier style

Sharif and Maletic (2010) ‘‘An Eye Tracking Study on camelCase and under_score
Identifier Styles’’

None – Identifier style

Furman et al. (2002) ‘‘A Look at Programmers Communicating through Program
Indentation’’

Pascal – Indentation

Arab (1992) ‘‘Enhancing Program Comprehension: Formatting and
Documenting’’

Pascal – Block delimiter location

Oman and Cook (1990) ‘‘Typographic Style is More than Cosmetic’’ Pascal/C – Formatting style

Miara et al. (1983) ‘‘Program Indentation and Comprehensibility’’ Pascal – Indentation
– Block delimiter location

Sykes et al. (1983) ‘‘The Effect of Scope Delimiters on Program Comprehension’’ Pascal – Block delimiter visibility
– Block delimiter style

Love (1977) ‘‘An Experimental Investigation of the Effect of Program
Structure on Program Understanding’’

Pascal – Vertical and horizontal spacing
are structured as an approach to organizing source code. In this
format, programs include a preface, table of contents, chapter
divisions, pagination, code paragraphs, sentence structures, and
intramodule comments, among other elements. For the com-
parison with the Lightspeed Pascal style, the authors asked 36
students to answer 14 multiple-choice, short-answer questions
about the characteristics of a code snippet in a total of 10 minutes
(both requiring the Trace activity), and to provide a subjective
opinion about the understandability of the code snippet (Giving
an opinion). The subjects were randomly assigned to two treat-
ment groups, one for each formatting style, and both received
the same instructions. Then, the authors assessed (i) the number
of questions the students answered correctly (score of 1 to 14
points), (ii) the time they spent answering the questions (1 to
10 minutes), (iii) their performance score (number of correct
answers per minute), and (iv) their subjective opinions (rating
on a five-point scale). The study concluded that the Book Format
style is considered a better formatting style compared to the
Lightspeed Pascal style based on the significant differences in
correctness score (ANOVA, p < 0.005), performance (ANOVA,
p < 0.01), and subjective understandability opinion (ANOVA,
p < 0.05), but not for time. In the comparison between the Book
Format style and the Kerningham & Ritchie style, the authors
prepared a very similar experiment with 44 different students.
The only difference is that the questionnaire had 10 questions
instead of the 14 from the previous experiment. They assessed the
same response variables and found out that the Book Format style
was statistically better for correctness score (ANOVA, p < 0.005)
and performance (ANOVA, p < 0.005), but there are no significant
differences for time and subjective opinion.

Formatting layout. Siegmund et al. (2017) compared a pretty-
printed code layout with a disrupted layout. More specifically,
8

Table 5
Summary of results for the Formatting group.
Factor – Study: Levels (Programming Language) – Dependent Variables
(Activities): Results

Formatting style
Oman and Cook (1990): book format and Lightspeed Pascal style (Pascal)

Correctness (Trace): The book format style is the best.
Time (Trace): No significant difference.
Opinion: The book format style is the best.

Oman and Cook (1990): book format and Kernighan & Ritchie style (C)
Correctness (Trace): The book format style is the best.
Time (Trace): No significant difference.
Opinion: No significant difference.

Formatting layout
Siegmund et al. (2017): pretty-printed and disrupted (Java)

Brain Metrics (Relate): No significant difference.

they compared the code comprehension of subjects considering
code snippets following common coding conventions for layout,
e.g., indentation, line breaks, and correctly-placed scope delim-
iters, and a code snippet with defective layout, e.g., line breaks
in the middle of an expression or irregular use of indentation.
An interesting differentiating aspect of such a study is that it
analyzed bottom-up program comprehension and the impact of
beacons (Brooks, 1978) and pretty-printed layout using functional
magnetic resonance imaging (fMRI). Eleven students and profes-
sionals took part in the study. First, these subjects participated in
a training session in which they studied code snippets in Java,
including semantic cues, to gain familiarity with them. Then,
once in the fMRI scanner, the participants looked at other small
code snippets to determine whether they implemented the same
functionality as one of the snippets in the training session with a



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

t
t
m
D
t
b
t
(
l
a
G
p
f
w
n
w
e
t
w

4

i
r

I
5
e
m
a
t
i
(
a
p
c
o
t
c

v
t
s
a
(
t

s
l
a
u
o
v
p
a
t
q
a
s
a
s
l
t
t
t

ime limit of 30 seconds for each snippet (Relate). In the scanner,
he level of blood oxygenation in various areas of the brain was
easured. This process is called BOLD (Blood Oxygenation Level
ependent) (Chance et al., 1993). That metric is a proxy to assess
he activation of the area of the brain. To evaluate the role of
eacons and layout on comprehension based on semantic cues,
hey created four versions of the semantic-cues snippets in Java:
i) beacons and pretty-printed layout, (ii) beacons and disrupted
ayout, (iii) no beacons and pretty-printed layout, (iv) no beacons
nd disrupted layout. Finally, they extracted the Random-effects
eneralized Linear Model (GLM) beta values for each partici-
ant and condition to identify differences in brain activation
or each program comprehension condition. For that evaluation,
e considered the study with code snippets in which there are
o beacons to avoid the effect of another variable. Specifically,
e avoid beacons because they are not related to formatting
lements. The authors did not find significant differences in ac-
ivation values in the brain areas when comparing code versions
ith pretty-printed layout and disrupted layout.

.2. Spacing

This group assembles studies about different types of spacing
n source code. Table 6 presents a summary of the analyzed
esults.

ndentation. Miara et al. (1983) conducted an experiment with
4 novice students and 32 professional developers and experi-
nced students (i.e., people with three or more years of program-
ing experience) to evaluate the influence of indentation levels
nd blocked code on program comprehension. In the experiment,
he authors used the following independent variables: level of
ndentation (zero, two, four, and six spaces), level of experience
novice and expert), and method of block indentation (blocked
nd non-blocked): the latter belongs to block delimiters, so it is
resented in Section 4.3. Each subject received a program in Pas-
al using one of the levels of indentation and one of the methods
f block indentation, accompanied by a quiz with 10 questions
hat required subjects to (i) select the correct answer about code
haracteristics (Trace and Inspect), (ii) explain what the code does
(Present), and (iii) provide an opinion on the difficulty of the
task (Giving an opinion). The authors considered two dependent
ariables: the number of questions correctly answered (score be-
ween 1-10) and the rating of the subjective opinion. The results
howed that there are significant differences between novices
nd experts (ANOVA, p < 0.001) and between indentation levels
ANOVA, p = 0.013), where two-space indentation resulted in
he best results.

Furman et al. (2002) also evaluated the effect of the left (no
pace), normal (2-4 spaces), and random indentation on code
egibility. They conducted an experiment with 24 inexperienced
nd 18 experienced programmers in Pascal. The subjects had to
nderstand three sorting programs, one at a time, presented in
ne indentation version. The authors used DISCOVERY (a tool de-
eloped by them) to measure visual metrics. This tool printed the
rograms to mask the code lines with the character ‘X’ and only
llowed subjects to look at one line at a time. After understanding
he program, the subjects had to answer eight multiple-choice
uestions for each of the three sorting programs (Trace, Inspect,
nd Present). The authors evaluated the correctness of the an-
wers, the average line-look time (i.e., time spent looking to
revealed code line), the average line-search time (i.e., time

pent choosing a code line to be revealed), and the total of code
ines revealed in a program. Also, the authors asked subjects
o answer a subjective questionnaire (Giving an opinion) using
he Likert scale to evaluate the difficulty of performing the task,
he subjective preference, and the level of fatigue. They found
9

Table 6
Summary of results for the Spacing group.
Factor – Study: Levels (Programming Language) – Dependent Variables
(Activities): Results

Indentation
Miara et al. (1983): 0, 2, 4, and 6 (Pascal)
Correctness (Trace, Inspect, Present): Two-space indentation is the best.
Opinion: Two-space indentation is the best.

Furman et al. (2002): left [0], normal [2-4], and random (Pascal)
Correctness (Trace, Inspect, Present): No significant difference.
Visual Metrics (Trace, Inspect, Present): Left and normal are better than

random indentation on line-look time, normal is better than the
other levels on revealed lines, and there is no difference on
line-search time.

Opinion: Normal is considered less difficult than other indentation
levels for subjective difficulty and preference. However, for fatigue,
normal is considered only less difficult than random indentation.

Santos and Gerosa (2018): 2 and 4 (Java)
Opinion: No significant difference.

Bauer et al. (2019): 0, 2, 4, and 8 (Java)
Correctness (Trace): No significant difference.
Time (Trace): No significant difference.
Visual Metrics (Trace): No significant difference.
Opinion: No significant difference.

Appropriate use of indentation with blocks
Langhout and Aniche (2021): with and without (Java)
Correctness (Trace): Appropriate use of indentation is the best only

when it is not preceded by curly braces.
Opinion: Appropriate use of indentation is the best.

Vertical and horizontal spacing
Love (1977): paragraphed and unparagraphed (Pascal)
Correctness (Memorize and Present): No significant difference.

Vertical spacing between related instructions
Santos and Gerosa (2018): with and without (Java)
Opinion: No significant difference.

Blank space around operators and parameters
Sampaio and Barbosa (2016): with and without (Java)
Opinion: No significant difference.

a statistical difference between different indentation versions
in terms of correctness. With the visual metrics, they found a
statistical difference in line-look time (F-test, p < 0.05) and in the
total of revealed lines (F-test, p < 0.05). For the line-look time,
subjects spent less time in program versions with left and normal
indentation than in programs with random indentation, and for
the total of revealed lines, they spent less time in programs
with normal indentation than in other versions. The authors did
not find a statistical difference for line-search time. Finally, the
subjects considered the version with normal indentation less
difficult than others (F-test, p < 0.05), as well as their subjective
preference (F-test, p < 0.05). However, they considered that
version with normal indentation only was less fatigued than the
random version (F-test, p < 0.05).

Santos and Gerosa (2018) performed a survey with 55 stu-
dents and 7 professionals to investigate the impact of a set of
Java coding practices on code understandability. Among other
practices, subjects had to choose (Giving an opinion) between
two alternatives for indentation level: two and four spaces. The
authors evaluated the results by comparing the proportions of
the votes to each alternative. The results showed that there is no
statistical difference (Two-tailed test for proportion, p = 0.32)
between these alternatives.

Bauer et al. (2019) conducted an experiment with 7 devel-
opers and 15 students to investigate the influence of levels of
indentation (zero, two, four, and eight spaces) on code com-
prehension. They designed an experiment similar to the one of
Miara et al. (1983), with the differences that they asked sub-

jects for the output of code snippets in an open box instead of



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

p
d
s
o

l
d
p
a
d
h
s

A
L
s
w
T
u
f
h
o
a
o
o
o
a
i
I
e
i
c
b
t
r
a
e
c

V
o
v
p
b
r
i
1
e
a
T
3
d
p
c
t
o
p
s

roviding subjects with multiple choices, and did not ask for a
escription of code functionality. They assessed code comprehen-
ion by (i) the correctness of answers (Trace) and (ii) the rank
f perception of task difficulty (Giving an opinion). Differently

from the work of Miara et al. (1983), this experiment included
eye-tracking to measure visual effort using fixations, which occur
when the gaze is resting on a point, and saccades, which are the
transition between two fixations. Furthermore, it measured the
time subjects spent providing an answer. The code snippets in
this experiment were in Java. The authors first applied Mauchly’s
sphericity test to evaluate which test was more adequate for
each dependent variable, i.e., one-way ANOVA with repeated
measures or Friedman’s test. The results of this experiment were:
the correctness of answers (Friedman’s test, p = 0.36), the
og-transformed response time (ANOVA, p = 0.72), perceived
ifficulty (Friedman’s test, p = 0.15), fixation duration (ANOVA,
= 0.045), fixation rate (Fridman test, p = 0.06), saccadic

mplitude (ANOVA, p = 0.18). Despite the p < 0.05 for fixation
uration, the authors could not confirm this difference with a post
oc test. Therefore, unlike in the previous study, there was no
tatistically significant difference between indentation levels.

ppropriate use of indentation with blocks. In the work by
anghout and Aniche (2021), a partial replication of the study pre-
ented by Gopstein et al. (2017) (further explained in Section 4.3)
as conducted, focusing on the Java language instead of C/C++.
hese papers measure the impact of atoms of confusion in code
nderstandability. The authors recruited 132 novice developers
or an experiment conducted in two parts, in which participants
ad to (i) predict the output of code snippets with and with-
ut atoms (Trace) and (ii) give their opinions about which ones
re confusing among two functionally-equivalent code snippets,
ne with an atom of confusion and another without (Giving an
pinion). For the first part, the authors calculated the odds ratio
f subjects correctly predicting the output of the code snippets
s a measure of effect size. Two atoms of confusion related to
nappropriate use of indentation were investigated: the Remove
ndentation atom and the Indentation atom. In both cases, there
xist indented statements after the end of a block, which makes
t look like the statements are part of the block. In the latter
ase, the incorrectly indented statement is preceded by curly
races, whereas in the former, it is not. The authors found out
hat Remove Indentation is associated to misunderstanding (odds
atio = 56.21, p < 0.05), and for 57.1% of the subjects, this
tom is unfavorable for legibility. There was no statistical differ-
nce in answers for Indentation, although 72.7% of the subjects
onsidered it confusing.

ertical and horizontal spacing. Love (1977) evaluated the use
f paragraphed vs. unparagraphed code, i.e., the disciplined use of
ertical and horizontal spacing to organize the code in text-like
aragraphs. In the paragraphed version, the source code contains
lank lines between different instructions and indentation to
epresent blocks. Unlike, there are no blank lines or indentation
n the unparagraphed version. The author experimented with
9 undergraduate and 12 graduate students to investigate the
ffect of program indentation (paragraphed or unparagraphed)
nd control flow (simple or complex) on code comprehension.
he subjects were asked to memorize a program in Pascal in
minutes, rewrite the program in 4 minutes (Memorize), and
escribe the program functionality (Present). The reconstructed
rograms were scored based on the percentage of lines of source
ode correctly recalled in the proper order. The descriptions of
he program functionality were rated with a 5-point scale, where
ne point means that a description has nothing right about the
rogram functionality and five points means that a description
hows a complete understanding of it. The author did not find
10
a statistically significant difference between paragraphed and
unparagraphed programs, considering the correctness scores in
the Memorize activity (ANOVA, p = 0.79) and in the Present
activity (ANOVA, p = 0.6) for both undergraduate and graduate
students.

Vertical spacing between related instructions. Another coding
practice analyzed by Santos and Gerosa (2018) pertains to the
use of vertical spaces. More specifically, the authors asked the
subjects (by presenting code examples) whether blank lines must
be used to create a vertical separation between related instruc-
tions (Giving an opinion). The results did not show a statistically
significant difference (Two-tailed test for proportion, p = 1.0)
between subjects who agree and disagree with this practice.

Blank space around operators and parameters. Sampaio and
Barbosa (2016) investigated the importance of teaching a set
of best practices for code understandability. For this, the au-
thors conducted a survey to ask object-oriented programming
teachers to provide a subjective rating on a 5-point Likert scale
about the importance of coding practices for code understand-
ability (Giving an opinion). The authors considered that practices
with a median rating greater than 3 are relevant to code under-
standability. Four practices related to legibility were investigated,
among others. The practices related to spacing, which are the
ones relevant to this section, are about blank space around opera-
tors and arguments/parameters: ‘‘The assignment operator include
blank space before and after’’ and ‘‘Blank space between the argu-
ments/parameters of functions’’. The authors found out that the
first (median = 3, range = 4, interquartile = 2) and the second
(median = 2, range = 4, interquartile = 2) practices are not
relevant for legibility.

4.3. Block delimiters

This group gathers studies about different types of block/scope
delimiters. Table 7 presents a summary of the analyzed results.

Block delimiter location.Miara et al. (1983) compared two styles
of block indentation: (i) blocked, where the code within a block
is at the same indentation level as the block delimiters (begin-
end), and (ii) non-blocked, where the code within the block
appears at least one more indentation level to the right of the
block delimiters. This comparison is different from what has been
previously reported about indentation (Section 4.2) because this
one evaluated when the indentation of the block starts (i.e., in
the line of the block delimiter itself or in the first statement
after the block delimiter), while the other one focuses solely on
the indentation level. The design of this study was explained
in Section 4.2. The analysis of variance (ANOVA) of the quiz scores
and the program ratings showed no significant effect with the
blocked and non-blocked styles.

Arab (1992) compared three combinations of the use of block
delimiters in the same line as their associated statements with
the use of block delimiters in a separate line. More specifically,
they evaluated three different code presentation schemes in Pas-
cal that propose different patterns to place the block delim-
iters: (i) Peterson’s scheme: BEGIN and END in their own lines
(Peterson, 1977); (ii) Crider’s scheme: BEGIN and END in the same
line of the last statement or declaration (Crider, 1978); and (iii)
Gustafson’s scheme: BEGIN in the same line as the last statement
but END in its own line (Gustafson, 1979). The study consisted
of an opinion survey with 30 subjects (22 novices and 8 experts),
who were asked to classify the three schemes in descending order
(Giving an opinion). The results showed that the block delimiters
in their own lines, i.e., Peterson’s scheme, was chosen as the best
by most participants. However, they did not apply any statistical
test to evaluate the results. In a similar vein, Santos and Gerosa



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

(
c
c
s
p
a
p
e

B
d
(

B

B
w
i
l
a
t
d
s

t
t
c
(

b
T
p
t
o
T
t
d
l
t
c
t
O
t
c
s
c
b

t

2018) asked subjects whether they prefer to have Java’s opening
urly braces in their own lines or in the same line as their
orresponding statements (e.g., class declaration). They found a
tatistically significant difference (Two-tailed test for proportion,
= 0.006) between subjects who preferred the first alternative
nd subjects who preferred the second alternative, where most
articipants consider that opening braces in their own lines are
asier to read, similar to results of Arab (1992).

lock delimiter style. In the study reported by Sykes et al. (1983),
ifferent styles of scope delimiters in Pascal were investigated:
i) ENDIF, which uses IF-ENDIF and WHILE-ENDWHILE scope
delimiters for the bodies of conditional and iterative statements,
respectively; (ii) REQ-BE, which always uses BEGIN-END scope
delimiters for simple and compound statements within a con-
ditional structure; and (iii) BE, which uses BEGIN-END scope
delimiters only for compound statements. The study employed
a questionnaire where most of the questions asked subjects to
determine the values of variables by simulating the execution
of program segments in Pascal with initial values given in the
questions (Trace). In total, 36 students participated in that study,
and they had 25 minutes to finish the questionnaire. The subjects
were divided into advanced (at least two years of program-
ming experience) and intermediate. The authors evaluated the
responses to the questionnaire considering the type of delimiter
and the experience of the subjects. ANOVA indicated that experi-
ence was significant (p = 0.005), and advanced subjects did much
better than intermediate ones. Also, a paired t-test (considering
an α = 0.1) showed that the subjects performed better using
the ENDIF delimiters than using the REQ-BE (p = 0.074) and
E (p = 0.073) delimiter styles.

lock delimiter visibility. Also, in the work of Sykes et al. (1983),
e found an evaluation of block delimiter visibility in Pascal,

.e., whether omitted or present block delimiters impact code
egibility. We limited the comparison analysis between REQ-BE
nd BE to evaluate the block delimiter visibility. The details of
he study are explained in the previous paragraph. The authors
id not find a difference between the REQ-BE and BE delimiter
tyles (t-test, p = 0.955).
The work of Sampaio and Barbosa (2016) (introduced in Sec-

ion 4.2) evaluated the relevance of the practice ‘‘use { and }
o enclose the statements in a loop’’ for code legibility, in the
ontext of Java code. They found that this practice is not relevant
median = 2, range = 4, interquartile = 2) for legibility.

Gopstein et al. (2017) compared the use of omitted and present
lock delimiters in the specific context of small C programs.
he authors conducted a broad-scoped experiment8 with 73
rogrammers with three or more months of experience in C/C++
o evaluate small and isolated patterns in C code, named atoms
f confusion, that may lead programmers to misunderstand code.
hey asked subjects to analyze tiny programs (∼8 lines), where
he control version contained a single atom of confusion candi-
ate, and the treatment version contained a functionally-equiva-
ent version where the atom does not exist. For each program,
he participants had to predict its output (Trace). The authors
ompared the correctness of the answers of the version with
he atom of confusion and their counterparts without the atoms.
ne of these atoms is called Omitted Curly Braces. In C programs,
his is used when the body of an if, while, or for statement
onsists of a single statement. The study found a statistically
ignificant difference (McNemar’s test adjusted using Durkalski
orrection, p < 0.05) between the programs where the curly
races were omitted and the ones where they were not. Subjects

8 Arguably, it was an Internet-based survey, but with enough controls in place
hat we feel it is more appropriate to call it an experiment.
11
Table 7
Summary of results for the Block Delimiters group.
Factor – Study: Levels (Programming Language) – Dependent Variables
(Activities): Results

Block delimiter location
Miara et al. (1983): blocked and non-blocked (Pascal)
Correctness (Trace, Inspect, Present): No significant difference.
Opinion: No significant difference.

Arab (1992): in the statement line and in separate line (Pascal)
Opinion: Block delimiters in their own lines is the best.

Santos and Gerosa (2018): in the statement line and in separate line (Java)
Opinion: Block delimiter in its own line is the best.

Block delimiter style
Sykes et al. (1983): ENDIF/ENDWHILE (without BEGIN) and BEGIN-END

in all blocks (Pascal)
Correctness (Trace): ENDIF/ENDWHILE is the best.
Opinion: ENDIF/ENDWHILE is the best.

Sykes et al. (1983): ENDIF/ENDWHILE (without BEGIN) and BEGIN-END
only in compound statement blocks (Pascal)

Correctness (Trace): ENDIF/ENDWHILE is the best.
Opinion: ENDIF/ENDWHILE is the best.

Block delimiter visibility
Sykes et al. (1983): omitted and present (Pascal)
Correctness (Trace): No significant difference.
Opinion: No significant difference.

Sampaio and Barbosa (2016): omitted and present (Java)
Opinion: No significant difference.

Gopstein et al. (2017): omitted and present (C/C++)
Correctness (Trace): Present block delimiters is the best.

Medeiros et al. (2019): omitted and present (C)
Opinion: Present block delimiters is the best.

Langhout and Aniche (2021): omitted and present (Java)
Correctness (Trace): Present block delimiters is the best.

analyzing programs with omitted curly braces made more mis-
takes. Langhout and Aniche (2021) (introduced in Section 4.2)
also evaluated the atom Omitted Curly Braces, but in Java code.
They found a statistically significant difference (odds ratio = 4.62,
p < 0.05), indicating that omitting curly braces is associated with
misunderstanding. Furthermore, 93.3% of the subjects agreed that
a code snippet with this atom is hard to read.

Similarly, Medeiros et al. (2019) investigated what they call
misunderstanding code patterns, which are very similar to atoms
of confusion. One study was a survey with 97 developers, where
the subjects should determine the negative or positive impact of
using one code snippet version containing one misunderstanding
pattern instead of a functionally-equivalent alternative without
that pattern on a 5-point Likert scale (Giving an opinion). In
another study, they submitted 35 pull requests suggesting de-
velopers remove several misunderstanding patterns. This study
focused on the C language. In this section, we analyze the results
of the misunderstanding pattern named Dangling Else, which hap-
pens when an if statement without braces contains one if/else
statement without braces. The reader of the code needs to know
that the else clause belongs to the innermost if statement. The
first study found that Dangling Else is perceived as negative by
71.73% of the developers. In the second study, they submitted
10 pull requests to remove instances of the Dangling Else pattern,
where two of them were accepted, one was rejected, three were
not answered, and four were ignored by developers (according to
the authors, due to the pattern instances being in third party or
deprecated code).

4.4. Long or complex code line

This group comprises studies that evaluate elements related to
the size and complexity of code lines. Table 8 presents a summary
of the analyzed results.



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

L
a
a
c
o
l
w
p

S
l
o
u
s
S
c

f
a
t
i
i
(
c
o
i
i
f
w
s
p

4

i
s

I
o
i
t
i
a
i
c
p
o
c
r
t
b
m
i
t
m
m
t
d

a
s
o
U
d

i
s

u
r
t
e
t
o
t
d
f

F
m

(

ine length. In the study of Santos and Gerosa (2018) (details
bout the methodology are in Section 4.2), the subjects were
sked if they agree that the practice ‘‘line lengths not exceeding 80
hars’’ has a positive impact on code legibility. The authors found
ut that students and professionals find code snippets containing
ines of up to 80 characters more legible than code snippets
here there are longer lines (Two-tailed test for proportion,
< 0.001).

tatements per line. Three studies tackle the question of whether
ines of code including a single statement are more legible than
nes with multiple statements. Sampaio and Barbosa (2016) eval-
ated the relevance of the practice of ‘‘breaking the line after
emicolon’’ for code legibility (the methodology is detailed in
ection 4.2). The authors found that this practice is relevant for
ode legibility (median = 4, range = 3, interquartile = 1.5).
Santos and Gerosa (2018) found out that students and pro-

essionals agreed with the practice ‘‘avoid multiple statements on
same line’’ (Two-tailed test for proportion, p < 0.001), i.e.,

he subjects prefer code snippets where lines of code do not
nclude multiple statements (details about the methodology are
n Section 4.2). As discussed before, the paper of Medeiros et al.
2019) (Section 4.3) introduced and evaluated what the authors
all misunderstanding code patterns. Among the studied patterns,
ne specifically refers to a scenario where multiple variables are
nitialized on the same line. The study asked subjects their opin-
on about the use of this pattern (Giving an opinion). The authors
ound out that the use of multiple initializations on the same line
as neither negative nor positive for most of the subjects. In the
econd study, they submitted one pull request to remove this
attern, which was rejected by developers.

.5. Word boundary styles

The fifth and last group we have identified comprises stud-
es of word boundary styles for identifiers. Table 9 presents a
ummary of the analyzed results.

dentifier style. Sharif and Maletic (2010) investigated the effect
f the camel case and underscore identifier styles on code legibil-
ty. They compared the identifier styles using phrases formed by
wo and three words from code, i.e., phrases that are likely to be
n source code (e.g., ‘‘start time’’), and non-code, i.e., phrases that
re not likely to be in source code (e.g., ‘‘river bank’’). In the exper-
ment, 15 students had to read a phrase and, on the next screen,
hoose an identifier (from four choices) that exactly matches the
hrase they just saw (Memorize), and answer it verbally. Only
ne of the choices is correct, and the rest are distracters that
hange the beginning, middle, or end of the identifier. It was
epeated for eight phrases. The authors measured the correctness,
ime, and visual effort for each phrase. They found no difference
etween identifier styles for correctness. Using a simple linear
ixed model, they found a significant difference (p = 0.0001)

n time where subjects took 13.5% longer for camel-cased iden-
ifiers than underscored. For visual effort, they employed two
etrics: fixation rate and average fixation duration. They were
easured when the subjects looked at the correct answer and

he distracters. Using Wilcoxon test, they only found a significant
ifference in the average fixation duration (correct: p = 0.015;

distracters: p = 0.026), where the distribution showed that
camel-cased identifiers required a higher average duration of
fixations than underscored.

Binkley et al. (2013) performed five studies to evaluate the
effect of identifier style on code comprehension. Only three are
related to source code: Where’s Waldo study, Eye Tracker Code
12
Table 8
Summary of results for the Long or Complex Code Line group.
Factor – Study: Levels (Programming Language) – Dependent Variables
(Activities): Results

Line length
Santos and Gerosa (2018): limit of 80 characters and exceed of 80

characters (Java)
Opinion: Line length within the limit of 80 characters is the best.

Statements per line
Sampaio and Barbosa (2016): multiple and one (Java)

Opinion: One statement per line is relevant for code legibility.
Santos and Gerosa (2018): multiple and one (Java)

Opinion: One statement per line is the best.
Medeiros et al. (2019): multiple and one (C)

Opinion: No significant difference.

Table 9
Summary of results for the Word Boundary Styles group.
Factor – Study: Levels (Programming Language) – Dependent Variables
(Activities): Results

Identifier style
Sharif and Maletic (2010): camel case and underscore (None)
Correctness (Memorize): No significant difference.
Time (Memorize): Underscore is the best.
Visual Metrics (Memorize): Underscore is the best for average fixation

duration.
Binkley et al. (2013): camel case and underscore (C and Java)
Correctness (Inspect, Memorize, Present): Camel case is the best only in

the Inspect activity.
Time (Inspect, Present): Camel case is the best only in the Inspect

activity.
Visual Metrics (Memorize): Camel case is the best.

study, and Read Aloud study. In the first study, 135 program-
mers and non-programmers attempted to find all occurrences of
a particular identifier in code fragments (Inspect) written in C
nd Java. The authors measured the number of lines where the
ubjects misread occurrences of the identifier and the time spent
n that task for the subjects that found all identifier occurrences.
sing a Linear mixed-effects regression, they found a significant
ifference (p = 0.0293) in favor of camel-cased identifiers, to an

estimated 0.24 fewer missed lines than with underscored ones.
For the time, it was marginally significant (p = 0.0692) and
ndicated that camel-cased identifiers took, on average, 1.2 fewer
econds to be found than underscored ones.
In the second study, they asked 15 programmers (undergrad-

ate and graduate students) to study two C++ code snippets,
eproduce them, and answer questions by selecting the identifiers
hey remember from the code (Memorize). The authors consid-
red the correctness of the answers. They also used an eye tracker
o measure eye fixations and gaze duration, which is the duration
f a fixation within a specific area of interest (boxes around
he identifiers with some extra padding). The authors compared
ifferences in visual effort using two pairs of similar identi-
iers, row_sum and colSum, and c_sum and rSum. They found out
that row_sum required significantly more fixations than colSum
(1-tailed, p = 0.007), and that its average gaze duration was
704ms longer than that of colSum (1-tailed, p = 0.005). No
significant differences were found between c_sum and rSum.
urthermore, they did not find a statistical difference (Linear
ixed-effects regression, p = 0.451) for correctness.
Finally, the third study asked 19 programmers to summarize

i.e., explain each step of the code) a Java code snippet (Present)
verbally. The subjects were a subset of the Where’s waldo study
group in at least their second year of university. The authors
collected the amount of time that each subject spent reviewing

the code before summarizing it and the correctness of the answer,



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

w
T
u (

f

F
b
I
e
K
a
l
p
n
a
F
t

S
t
i
t
h
d
a
l
2
b
i
t
s
F
M
w
t
C
e
C
v

B
b
i
b
t
v
i
w
(
(
w
t
b
l

c
t
i
A

hich was assessed on a 10-point Likert scale by the authors.
hey did not find a statistical difference between camel case and
nderscore for time (Linear mixed-effects regression, p = 0.6129)

or correctness (Linear mixed-effects regression, p = 0.3048).

4.6. Addressing the two research questions

The two research questions that this work aims to answer are:

RQ1 What formatting elements at the source code level have
been investigated in human-centric studies?

RQ2 Which levels of formatting elements have been found to
make the source code more legible?

Based on the results of our study, for RQ1, we have identified
15 scientific papers in which researchers compared alternative
levels of formatting elements with human subjects. We found
13 factors (i.e., formatting elements), which are about code for-
matting (e.g., formatting layout), code spacing (e.g., indentation),
block delimiters (e.g., block delimiter location), long or complex
code lines (e.g., line length), and word boundary styles (i.e., iden-
tifier style). For the 13 factors, researchers examined 33 different
levels (e.g., 2 and 4 levels of indentation) in 27 comparisons (e.g.,
one comparison considered 0, 2, 4, and 6 indentation levels).

For RQ2, researchers found statistically significant results in
17 comparisons and no significant results in 10 comparisons.
Considering the significant differences, it was found that the
best alternative levels for four factors were: book format style
(cf. Lightspeed Pascal and Kernighan & Ritchie styles), appropriate
use of indentation with blocks (cf. inappropriate use), the use of
ENDIF/ENDWHILE for block delimiters (cf. the use BEGIN-END
in all blocks and the use BEGIN-END for compound statement
blocks), and the practice that line lengths should be kept within
the 80-character limit (cf. line lengths that exceed such a limit).
In other comparisons where significant differences were found,
there were divergent results. In one case, more than one com-
parison of the same factor found statistically significant results
but in favor of different levels. This is the case for the factor
identifier style, for which one study found that underscore is the
best alternative for identifier style while another study found that
camel case is better than underscore. In other cases of divergent
results, which involved four factors, some comparisons found sig-
nificant differences in favor of some level, but other comparisons
found no significant differences. This is the case for the factors
indentation, block delimiter location, block delimiter visibility,
and statements per line. Finally, for four factors (i.e., formatting
layout, vertical and horizontal spacing, vertical spacing between
related instructions, and blank space around operators and pa-
rameters), no statistically significant results were found for their
levels.

5. Discussion

In this section, we discuss aspects of this study that pertain to
more than one of the investigated papers. We also highlight gaps
we have identified in the literature and potential directions for
future work.

5.1. Contrasting empirical results with existing coding style guides

In this section, we discuss the results of this study in the light
of five existing style guides for Java (Google Java Style Guide9),

9 https://google.github.io/styleguide/javaguide.html, last access May 22, 2023.
13
JavaScript (AirBNB JavaScript Style Guide10), Python (Style Guide
for Python Code11), C (Linux Kernel Coding Style12), and Pascal
Free Pascal13), and contrast their recommendations against the
indings of this study.

ormatting. We found three comparisons of formatting styles,
ut only two of them showed statistically significant results.
n particular, the Book Format style (Oman and Cook, 1990)
xhibited better results compared to the Lightspeed Pascal and
ernighan & Ritchie styles. However, one of these results is from
study that used Pascal, which is not a popular programming

anguage in 202214 ,15, and at the time this comparison was
erformed, formatting tools were still scarce. Such results may
ot be applicable in our current context because considerable
dvances have been made in programming languages and tools.
urthermore, no existing coding style guide supports the use of
he Book Format style.

pacing. Most studies that evaluated spacing did not produce sta-
istically significant results. The results of one study (Love, 1977)
ndicate that the disciplined use of vertical and horizontal spacing
o organize code into text-like paragraphs is not relevant. We
ypothesize that this may stem from a lack of statistical power:
ifferent spacing approaches are not likely to yield big effect sizes,
nd the power required to detect such small effect sizes implies
arge sample sizes (Section 5.2). Two studies (Santos and Gerosa,
018; Bauer et al., 2019) did not find a significant difference
etween different indentation levels, e.g., two versus four spaces,
n Java code. An older study (Miara et al., 1983) comparing zero,
wo, four, and six spaces in Pascal code snippets found that two
paces exhibited the best result. The coding style provided by
ree Pascal recommends two spaces for indentation. Although
iara et al. (1983)’s finding is for Pascal, it is also consistent
ith some coding guides such as the Google Java Style Guide,
he AirBNB JavaScript Style Guide, and the Style Guide for Python
ode. Others, such as the Linux Kernel Coding Style, recommend
ight spaces and explicitly argue against two or four spaces.
urrently, the developer community uses spacing patterns, both
ertical and horizontal, because they believe in their usefulness.

lock delimiters. The majority of the comparisons related to
lock delimiters (7/10 comparisons) showed statistically signif-
cant results. They evaluated the location, visibility, and style of
lock delimiters. The studies (in Pascal, C, C++, and Java) suggest
hat block delimiters are relevant to legibility, and should be
isible and stay in their own line. The Google Java Style Guide
s consistent with this result, suggesting the use of braces even
hen the block is empty or contains only a single statement
block delimiter visibility), but not about the placement of braces
block delimiter location). The Linux Kernel Coding Style agrees
ith this for functions but disagrees for statements. In addition,
he AirBNB JavaScript Style Guide prescribes that the opening
race of a statement or declaration should be placed in the same
ine as the statement or declaration and not in a separate line.

Some languages allow omitting the block delimiters in some
ases, e.g., when the block consists of only one line, to make
he code less verbose. The Linux Kernel Coding Style argues
n favor of this practice. The Google Java Style Guide and the
irBNB JavaScript Style Guide argue in the opposite direction. The

10 https://github.com/airbnb/javascript, last access May 22, 2023.
11 https://peps.python.org/pep-0008/, last access May 22, 2023.
12 https://www.kernel.org/doc/html/v4.10/process/coding-style.html, last ac-
cess May 22, 2023.
13 https://wiki.freepascal.org/Coding_style, last access May 22, 2023.
14 https://www.tiobe.com/tiobe-index/, last access May 22, 2023.
15 https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/, last ac-
cess May 22, 2023.

https://google.github.io/styleguide/javaguide.html
https://github.com/airbnb/javascript
https://peps.python.org/pep-0008/
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://wiki.freepascal.org/Coding_style
https://www.tiobe.com/tiobe-index/
https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/


D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

r
b
d
c
n
n
o
s

L
t
e
h
M
s
B
o
b
b
s
v
i
G
c
1
a

W

t
n
o
C
t

5

s
I
t
w
r
t
p
c

p
w
s
a
B
t
w
r
t
o
a
s
S
t

esults obtained by Gopstein et al. (2017) suggest that omitting
races may be bug-prone. Furthermore, using names to block
elimiters that indicate the context of the block seems to increase
ode comprehension. It becomes apparent when the code has
ested blocks, where the information about the block in the
ame of delimiters could avoid misunderstanding. To the best
f our knowledge, no programming language in widespread use
upports this approach.

ong or complex code line. One study investigated and found
hat keeping line lengths within 80 characters in Java is consid-
red positive for legibility (Santos and Gerosa, 2018). On the other
and, Sampaio and Barbosa (2016), Santos and Gerosa (2018), and
edeiros et al. (2019) investigated the use of one vs. multiple
tatements per line and obtained different results. Sampaio and
arbosa (2016) and Santos and Gerosa (2018) found out that
ne statement per line in Java is preferred by the participants,
ut Medeiros et al. (2019) did not find a significant difference
etween one or more statements per line in C. In these three
tudies, only the subjects’ opinions were used as the dependent
ariable. The Style Guide for Python Code and Linux Kernel Cod-
ng Style agree with the 80-character limit. The Google Java Style
uide recommends one statement per line but recommends 100-
haracter lines. The AirBNB JavaScript Style Guide also establishes
00 characters as the limit for lines, but it makes no prescription
bout the number of statements per line.

ord boundary styles. The two studies that investigated word
boundary styles for identifier names revealed divergent results.
While Binkley et al. (2013) found that camel case is a positive
standard for legibility in comparison to snake case (a.k.a. under-
score) in Java and C, Sharif and Maletic (2010) found that snake
case is the best alternative (no specific programming language
was considered). The camel case style is adopted in the examined
coding style guides for Java and JavaScript. Python uses camel
case for class names and for method names ‘‘where that’s already
he prevailing style [...] to retain backwards compatibility’’. For most
ames, it suggests the use of snake case, with additional trailing
r leading underscores for special identifiers. The Linux Kernel
oding Style explicitly argues against camel case and prescribes
he use of snake case.

.2. Statistical power of the analyzed studies

The power of a statistical test describes the probability that a
tatistical test will correctly identify a genuine effect (Ellis, 2010).
n other words, a statistical test with sufficient power is unlikely
o accept a null hypothesis when it should be rejected. A scenario
here a null hypothesis is rejected when it should not have been
ejected is called a Type II error (Cohen, 1992). The calculation of
he sample size required to achieve a certain level of statistical
ower is called power analysis. It depends on the significance
riterion, the sample size, and the population effect size.
For nine of the comparisons we have investigated, it was not

ossible to reject the null hypothesis. However, it is not clear
hether these results stem from the absence of a statistically
ignificant difference or from a lack of power. Among the an-
lyzed studies, only the works of Gopstein et al. (2017) and
auer et al. (2019) report a concern with this aspect. In both cases,
he authors have calculated the sample sizes that would yield
hat they considered an acceptable level of statistical power. Null
esults reported by other studies are difficult to judge because
hey have no associated confidence level. This is due to the lack
f power analysis and reporting of effect sizes, and the gener-
lly low sample sizes. These low sample sizes imply that these
tudies are only able to detect large effect sizes. The study of
iegmund et al. (2017) presents an illustrative example. It at-
empted to compare the differences in brain activation of subjects
14
exposed to pretty-printed code and code whose layout is dis-
rupted. Since this study involved only 11 participants, its power is
very low, and it can only detect statistically significant differences
if the effect size is large.

Another example is the pair of studies performed by Miara
et al. (1983) and Bauer et al. (2019). Both compared different
indentation levels, with the latter being inspired by the former.
On the one hand, the study of Miara et al. involved 86 subjects
and found a statistically significant difference between differ-
ent indentation levels and also between novices and experts.
On the other hand, the study conducted by Bauer et al. had
only 22 participants and could not find statistically significant
differences. Although still not common in Software Engineering,
meta-analyses (Ellis, 2010) could be leveraged to combine the
results of these different studies. In this manner, it would be
possible to identify subtler differences if they exist.

5.3. Limitations of our study and of existing studies

The studies analyzed in this work were conducted between
1977 and 2021 and covered several formatting elements. Never-
theless, there are other aspects beyond what we captured. For
example, in our work, we did not consider studies that investigate
the influence of typography, colors, contrast, or dynamic presen-
tation of program elements on the ability of developers to identify
program elements. In summary, aspects that fall outside what can
be tinkered with at the source code level, in an ASCII text editor,
are beyond the scope of this work. Investigating aspects that go
beyond these limits is left for future work.

Even within the strictly-defined boundaries we adhere to,
much is still unknown. This study highlights the limitations in our
current understanding of the impact of formatting elements on
code legibility. We have found only 15 papers containing direct
comparisons between alternative levels of formatting elements
and styles out of 4,914 examined documents. Replications, even
partial ones, are almost non-existent. This suggests that this
area of research is immature and can greatly benefit from new
studies.

As pointed out when discussing statistical power, many pre-
vious studies are inconclusive, and it is still not clear if well-
established practices actually have any effect on legibility. For
example, we identified only one paper that reports on the com-
parison of different types of block delimiters (Sykes et al., 1983),
and that paper was published 40 years ago, at a time when soft-
ware development was very different from what it is today. An-
other example is indentation. Although many style guides provide
directives about how to indent code, most of the studies on the
topic found inconclusive results (Section 4.2). Notwithstanding,
the importance of the topic for software developers in practice
emphasizes that more investigation is required. One point that
can be raised against this kind of study is whether such choices
matter at all, especially for experienced developers, since these
can be seen as minute details. Previous work (Stefik and Siebert,
2013; Gopstein et al., 2017, 2018; Medeiros et al., 2019) sug-
gests that they do, though, even in very mature, high-complexity
projects (Gopstein et al., 2018).

Some of the studies we analyzed are outdated. These 5 papers
were published 30 or more years ago. Software development
was very different back then. For example, object-oriented pro-
gramming was a relative novelty, the world wide web had been
public for just one year, and mobile devices did not exist for
the general public. In addition, the main programming language
examined by these old studies, Pascal, is rarely used in practice
nowadays. These studies investigated aspects that are relevant to
contemporary software development, such as indentation and the
use of block delimiters. However, they do that in a scenario that



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

i
m

(
P
i
b
d
r
t
m
f
t
T
r
i
w
M
s
t
o
w
c
w

o
u
r
a
2
f
1
m
M
u
(
d
t
s
b
a
p
t
f

6

s

C
s
W
O
d
i
o
w
r
a
s
r

I
s
i
a

r
p
s
t
m
F
m
l
t
d
t
s
h
b
p
d
t

E
n
t
t

7

w
a
p
e
p
a
i
i

c
i
F
m
o
l
e
f
n
a
r

s
T
s
q
d
t
a
t
c
i
l
t
i
a

l
r
T
w
f

s disconnected from current practice and software development
ethods and tools.
The learning activities involved in the analyzed studies

Section 2.3) required participants to Memorize, Inspect, Trace,
resent, and Relate, plus the task of Giving an opinion. The learn-
ng activities were modeled in two semi-independent dimensions
y Fuller et al. (2007) and extended by Oliveira et al. (2020). Each
imension defines hierarchical linear levels where a deeper level
equires the competencies from the previous ones. This means
hat some activities require more competencies than others. The
ajority of the comparisons of formatting element levels we

ound in the literature were based on the Giving an opinion
ask, which is not modeled because it is not a learning activity.
race is the most used learning activity, but it does not even
equire an intermediate level of competencies. The activity used
n the analyzed studies that requires more competencies is Relate,
hich was used for only one formatting element evaluation.
ore generally, the analyzed studies focused on ‘‘lower’’ cognitive
kills according to the model of Fuller et al. (2007), emphasizing
heir narrow scope. Program comprehension aims to support
ther activities such as performing maintenance, fixing bugs, and
riting tests. The absence of studies requiring participants to
onduct these activities points to a possible direction for future
ork.
Since our ultimate goal is to create a coding style guide based

n empirical evidence, an analysis of the programming languages
sed in the experiments of the primary studies included in our
eview is necessary. Five studies used the Java language (Sampaio
nd Barbosa, 2016; Siegmund et al., 2017; Santos and Gerosa,
018; Bauer et al., 2019; Langhout and Aniche, 2021). Another
ive studies used the Pascal language (Love, 1977; Miara et al.,
983; Sykes et al., 1983; Arab, 1992; Furman et al., 2002). Two
ore targeted the C or C++ languages (Gopstein et al., 2017;
edeiros et al., 2019). The paper by Oman and Cook (1990)
sed the languages C and Pascal, and the paper by Binkley et al.
2013) used the languages C and Java. Sharif and Maletic (2010)
id not specify a programming language. This characteristic of
he studies makes it impossible to generalize the results of our
tudy and emphasizes that very few languages have been targeted
y previous work. For example, none of these studies examined
scripting language, such as Python or JavaScript, a functional
rogramming language, e.g., Haskell or Elixir, or even more con-
emporary multiparadigm languages that receive strong influence
rom functional languages, e.g., Kotlin or Swift.

. Threats to validity

In this section, we discuss the threats to the validity of this
tudy.

onstruct validity. Our study was built on the selected primary
tudies, which stem from the search and selection processes.
e only used three search engines for our automatic search.
ther engines, such as Springer and Google Scholar, could return
ifferent results. However, the majority of our seed studies were
ndexed by ACM and IEEE, and then we used Scopus to expand
ur search. Moreover, while searching on the ACM digital library,
e used the Guide to the Computing Literature, which retrieves
esources from other publishers, such as Springer. Finally, we
voided Google Scholar because it returned more than 17 thou-
and documents for our search string, and we did not have the
esources to analyze so many papers.

nternal validity. This study was conducted by multiple re-
earchers. We understand that this could pose a threat to its
nternal validity since each researcher has a certain knowledge

nd way of conducting her research activities. However, each

15
esearcher conducted her activities according to the established
rotocol, and periodic discussions were conducted between all re-
earchers. Moreover, a few primary studies do not report in detail
he tasks the subjects perform. Because of that, we might have
isclassified these studies when mapping studies to task types.
inally, comparing different studies poses some threats due to the
any differences in their setups, such as materials, programming

anguages, number of subjects, the subjects’ expertise, and tasks
o be performed by the subjects. It is not feasible to consider all
ifferences in the studies’ setups to compare the studies; some of
hem do not even provide fine-grained information, such as the
ize of source code snippets used in the experiments. In our study,
owever, we mitigated the threat of directly comparing studies
y considering the activities performed by subjects in the ex-
eriments (which require different levels of cognitive skills), the
ependent variables of the studies, the programming languages,
he number of subjects, and statistical power.

xternal validity. Our study focuses on studies that report alter-
ative ways of formatting code, considering low-level aspects of
he code. Our findings might not apply to other kinds of works
hat evaluate code legibility or readability.

. Conclusion

In this paper, through a systematic review of the literature,
e investigated what formatting elements have been studied
nd which levels of formatting elements were found to have a
ositive impact on code legibility when compared to functionally
quivalent ones in human-centric studies. We present a com-
rehensive categorization of the elements and levels found. In
ddition, we analyzed the results considering the subjects, activ-
ties, dependent variables, and programming languages involved
n the studies.

We identified 13 factors of formatting elements, which were
ategorized into five groups: formatting, spacing, block delim-
ters, long or complex code lines, and word boundary styles.
or four factors, the results showed that the levels book for-
at style, appropriate use of indentation with blocks, the use
f ENDIF/ENDWHILE for block delimiters, and the practice that
ine lengths should be kept within the limit of 80 characters
xhibited positive impact on code legibility. Also, for other four
actors, some studies found significant results while others did
ot find. Furthermore, there were contradictory results in the best
lternative level for one factor. Finally, no statistically significant
esults were found for other four factors.

Although we found some positive results, there are only a few
uggestions that can be made to developers based on our findings.
he limitations of the literature (i.e., few studies, narrow-in-scope
tudies, outdated studies, and inconclusive results) and, conse-
uently, of our work, limit us toward our bigger goals: to provide
evelopers with guidelines so that they can choose the best ways
o format their code, and to help other researchers in developing
utomated support, e.g., linters and recommendation systems,
o aid developers during programming activities and make their
ode more legible. Our systematic literature review allowed us to
dentify and discuss those limitations in this paper. Finally, these
imitations call for more research and replication studies because
here is much to be understood about how formatting elements
nfluence code legibility before the creation of guidelines and
utomated aids to help developers.
Our study focused only on code formatting elements. Nonethe-

ess, other studies on code comprehension investigated aspects
elated to the structural and semantic characteristics of the code.
hus, we plan to investigate what these characteristics are and
hich of them are positive for the understanding of the code in

uture work.



D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

A

b
s
T
a
f
(
C

C

t
S
o
C
i
M

cknowledgments

We thank the anonymous reviewers for their valuable feed-
ack that made us improve this paper. This work was partially
upported by the Federal Institute of Education, Science, and
echnology of Pernambuco, the Foundation for Support of Science
nd Technology of Pernambuco State, the Swedish Foundation
or Strategic Research under the TrustFull project, and INES 2.0
FACEPE PRONEX APQ 0388-1.03/14 and APQ-0399-1.03/17, and
NPq 465614/2014-0).

RediT authorship contribution statement

Delano Oliveira: Conceptualization, Methodology, Investiga-
ion, Writing – original draft, Writing – review & editing. Reydne
antos: Conceptualization, Methodology, Investigation, Writing –
riginal draft, Writing – review & editing. Fernanda Madeiral:
onceptualization, Methodology, Investigation, Writing – orig-
nal draft, Writing – review & editing, Supervision. Hidehiko
asuhara:Writing – review & editing. Fernando Castor: Concep-

tualization, Methodology, Investigation, Writing – original draft,
Writing – review & editing, Supervision.

Data availability

The data used in our study is available on GitHub.

A Systematic Literature Review on the Impact of Formatting E
lements on Program Legibility (Original data) (GitHub)

References

Ajami, S., Woodbridge, Y., Feitelson, D.G., 2019. Syntax, predicates, idioms –
what really affects code complexity? Empir. Softw. Eng. 24 (1), 287–328.
http://dx.doi.org/10.1007/s10664-018-9628-3.

Almeida, J.R.d., Camargo, J.B., Basseto, B.A., Paz, S.M., 2003. Best Practices in
Code Inspection for Safety-Critical Software. IEEE Softw. 20 (3), 56–63.
http://dx.doi.org/10.1109/MS.2003.1196322.

Anderson, L., Bloom, B., Krathwohl, D., Airasian, P., Cruikshank, K., Mayer, R.,
Pintrich, P., Raths, J., Wittrock, M., 2001. A Taxonomy for Learning, Teaching,
and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives.
Longman.

Arab, M., 1992. Enhancing program comprehension: Formatting and document-
ing. ACM SIGPLAN Notices 27 (2), 37–46. http://dx.doi.org/10.1145/130973.
130975.

Bauer, J., Siegmund, J., Peitek, N., Hofmeister, J.C., Apel, S., 2019. Indentation:
Simply a matter of style or support for program comprehension? In:
Proceedings of the 27th International Conference on Program Comprehension
(ICPC ’19). IEEE Press, Piscataway, NJ, USA, pp. 154–164. http://dx.doi.org/10.
1109/ICPC.2019.00033.

Benander, A.C., Benander, B.A., Pu, H., 1996. Recursion vs. Iteration: An empirical
study of comprehension. J. Syst. Softw. 32 (1), 73–82. http://dx.doi.org/10.
1016/0164-1212(95)00043-7.

Binkley, D., Davis, M., Lawrie, D., Maletic, J.I., Morrell, C., Sharif, B., 2013. The
impact of identifier style on effort and comprehension. Empir. Softw. Eng.
18 (2), 219–276. http://dx.doi.org/10.1007/s10664-012-9201-4.

Binkley, D.W., Davis, M., Lawrie, D.J., Morrell, C., 2009. To CamelCase or Un-
der_score. In: Proceedings of the 17th International Conference on Program
Comprehension (ICPC ’09). IEEE Press, Piscataway, NJ, USA, pp. 158–167.
http://dx.doi.org/10.1109/ICPC.2009.5090039.

Blinman, S., Cockburn, A., 2005. Program comprehension: Investigating the
effects of naming style and documentation. In: Proceedings of the 6th
Australasian User Interface Conference (AUIC ’05). ACS, Newcastle, Australia,
pp. 73–78.

Bloom, B., Engelhart, M., Furst, E., Hill, W.H., Krathwohl, D.R., 1956. Taxonomy
of Educational Objectives: The Classification of Educational Goals. Handbook
I: Cognitive Domain. David McKay Company, New York.

Brooks, R., 1978. Using a Behavioral Theory of Program Comprehension in
Software Engineering. In: Proceedings of the 3rd International Conference
on Software Engineering (ICSE ’78). pp. 196–201.

Buse, R.P.L., Weimer, W.R., 2010. Learning a Metric for Code Readability. IEEE
Trans. Softw. Eng. 36 (4), 546–558. http://dx.doi.org/10.1109/TSE.2009.70.

Chance, B., Zhuang, Z., UnAh, C., Alter, C., Lipton, L., 1993. Cognition-activated
low-frequency modulation of light absorption in human brain.. Proc. Natl.
Acad. Sci. 90 (8), 3770–3774. http://dx.doi.org/10.1073/pnas.90.8.3770.
16
Chaudhary, B.D., Sahasrabuddhe, H.V., 1980. Meaningfulness as a Factor of
Program Complexity. In: Proceedings of the ACM 1980 Annual Conference
(ACM ’80). ACM, New York, NY, USA, pp. 457–466. http://dx.doi.org/10.1145/
800176.810001.

Cohen, J., 1992. Statistical Power Analysis. Curr. Direct. Psychol. Sci. 1 (3),
98–101. http://dx.doi.org/10.1111/1467-8721.ep10768783.

Crider, J.E., 1978. Structured Formatting of Pascal Programs. ACM Sigplan Notices
13 (11), 15–22. http://dx.doi.org/10.1145/953777.953779.

Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W., 2015. Modeling Read-
ability to Improve Unit Tests. In: Proceedings of the 10th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE ’15). Association for
Computing Machinery, New York, NY, USA, pp. 107–118. http://dx.doi.org/
10.1145/2786805.2786838.

Dolado, J.J., Harman, M., Otero, M.C., Hu, L., 2003. An Empirical Investigation
of the Influence of a Type of Side Effects on Program Comprehension.
IEEE Trans. Softw. Eng. 29 (7), 665–670. http://dx.doi.org/10.1109/TSE.2003.
1214329.

DuBay, W.H., 2004. The Principles of Readability. Online Submiss..
Ellis, P.D., 2010. The Essential Guide To Effect Sizes: Statistical Power, Meta-

Analysis, and the Interpretation of Research Results. Cambridge University
Press.

Feitelson, D.G., 2022. Considerations and pitfalls for reducing threats to the
validity of controlled experiments on code comprehension. Empir. Softw.
Eng. 27 (6), http://dx.doi.org/10.1007/s10664-022-10160-3.

Fuller, U., Johnson, C.G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jack-
ova, J., Lahtinen, E., Lewis, T.L., Thompson, D.M., Riedesel, C., Thompson, E.,
2007. Developing a Computer Science-specific Learning Taxonomy. ACM
SIGCSE Bull. 39 (4), 152–170. http://dx.doi.org/10.1145/1345375.1345438.

Furman, S., Boehm-Davis, D.A., Holt, R.W., 2002. A Look at Programmers
Communicating through Program Indentation. J. Wash. Acad. Sci. 88 (2),
73–88.

Gopstein, D., Iannacone, J., Yan, Y., DeLong, L., Zhuang, Y., Yeh, M.K.-C., Cappos, J.,
2017. Understanding Misunderstandings in Source Code. In: Proceedings of
the 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
’17). ACM, New York, NY, USA, pp. 129–139. http://dx.doi.org/10.1145/
3106237.3106264.

Gopstein, D., Zhou, H.H., Frankl, P., Cappos, J., 2018. Prevalence of confusing code
in software projects: Atoms of confusion in the wild. In: Proceedings of the
15th International Conference on Mining Software Repositories (MSR ’18).
ACM, New York, NY, USA, pp. 281–291. http://dx.doi.org/10.1145/3196398.
3196432.

Gough, P.B., Tunmer, W.E., 1986. Decoding, Reading, and Reading Dis-
ability. Remedial Special Edu. 7 (1), 6–10. http://dx.doi.org/10.1177/
074193258600700104.

Gustafson, G., 1979. Some Practical Experiences Formatting Pascal Programs.
ACM Sigplan Notices 14 (9), 42–49. http://dx.doi.org/10.1145/988113.988118.

Hofmeister, J.C., Siegmund, J., Holt, D.V., 2019. Shorter identifier names take
longer to comprehend. Empir. Softw. Eng. 24 (1), 417–443. http://dx.doi.org/
10.1007/s10664-018-9621-x.

Hoover, W.A., Gough, P.B., 1990. The simple view of reading. Read. Writ. 2 (2),
127–160. http://dx.doi.org/10.1007/BF00401799.

Jbara, A., Feitelson, D.G., 2014. On the Effect of Code Regularity on Compre-
hension. In: Proceedings of the 22nd International Conference on Program
Comprehension (ICPC ’14). ACM, New York, NY, USA, pp. 189–200. http:
//dx.doi.org/10.1145/2597008.2597140.

Johnson, M., Beekman, G., 1988. Oh! Thinks Lightspeed Pascal!. WW Norton.
Keele, S., et al., 2007. Guidelines for Performing Systematic Literature Reviews

in Software Engineering. Technical Report, Version 2.3 EBSE.
Kitchenham, B.A., Budgen, D., Brereton, P., 2015. Evidence-Based Software

Engineering and Systematic Reviews. Chapman & Hall/CRC.
Langhout, C., Aniche, M., 2021. Atoms of Confusion in Java. In: Proceedings of the

29th IEEE/ACM International Conference on Program Comprehension (ICPC
’21). IEEE, pp. 25–35. http://dx.doi.org/10.1109/ICPC52881.2021.00012.

Love, T., 1977. An Experimental Investigation of the Effect of Program Structure
on Program Understanding. In: ACM SIGOPS Operating Systems Review –
Proceedings of An ACM Conference on Language Design for Reliable Software,
Vol. 11. ACM, New York, NY, USA, pp. 105–113. http://dx.doi.org/10.1145/
390018.808317.

Medeiros, F., Lima, G., Amaral, G., Apel, S., Kästner, C., Ribeiro, M., Gheyi, R.,
2019. An investigation of misunderstanding code patterns in C open-source
software projects. Empir. Softw. Eng. 24 (4), 1693–1726. http://dx.doi.org/
10.1007/s10664-018-9666-x.

Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B., 1983. Program
Indentation and Comprehensibility. Commun. ACM 26 (11), 861–867. http:
//dx.doi.org/10.1145/182.358437.

Oliveira, D., Bruno, R., Madeiral, F., Castor, F., 2020. Evaluating Code Readability
and Legibility: An Examination of Human-centric Studies. In: Proceedings of
the 36th IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME ’20). IEEE, pp. 348–359. http://dx.doi.org/10.1109/ICSME46990.
2020.00041.

https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
https://github.com/reydne/code-comprehension-review
http://dx.doi.org/10.1007/s10664-018-9628-3
http://dx.doi.org/10.1109/MS.2003.1196322
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb3
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb3
http://dx.doi.org/10.1145/130973.130975
http://dx.doi.org/10.1145/130973.130975
http://dx.doi.org/10.1145/130973.130975
http://dx.doi.org/10.1109/ICPC.2019.00033
http://dx.doi.org/10.1109/ICPC.2019.00033
http://dx.doi.org/10.1109/ICPC.2019.00033
http://dx.doi.org/10.1016/0164-1212(95)00043-7
http://dx.doi.org/10.1016/0164-1212(95)00043-7
http://dx.doi.org/10.1016/0164-1212(95)00043-7
http://dx.doi.org/10.1007/s10664-012-9201-4
http://dx.doi.org/10.1109/ICPC.2009.5090039
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb9
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb9
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb9
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb9
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb9
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb9
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb9
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb10
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb11
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb11
http://dx.doi.org/10.1109/TSE.2009.70
http://dx.doi.org/10.1073/pnas.90.8.3770
http://dx.doi.org/10.1145/800176.810001
http://dx.doi.org/10.1145/800176.810001
http://dx.doi.org/10.1145/800176.810001
http://dx.doi.org/10.1111/1467-8721.ep10768783
http://dx.doi.org/10.1145/953777.953779
http://dx.doi.org/10.1145/2786805.2786838
http://dx.doi.org/10.1145/2786805.2786838
http://dx.doi.org/10.1145/2786805.2786838
http://dx.doi.org/10.1109/TSE.2003.1214329
http://dx.doi.org/10.1109/TSE.2003.1214329
http://dx.doi.org/10.1109/TSE.2003.1214329
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb19
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb20
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb20
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb20
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb20
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb20
http://dx.doi.org/10.1007/s10664-022-10160-3
http://dx.doi.org/10.1145/1345375.1345438
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb23
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb23
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb23
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb23
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb23
http://dx.doi.org/10.1145/3106237.3106264
http://dx.doi.org/10.1145/3106237.3106264
http://dx.doi.org/10.1145/3106237.3106264
http://dx.doi.org/10.1145/3196398.3196432
http://dx.doi.org/10.1145/3196398.3196432
http://dx.doi.org/10.1145/3196398.3196432
http://dx.doi.org/10.1177/074193258600700104
http://dx.doi.org/10.1177/074193258600700104
http://dx.doi.org/10.1177/074193258600700104
http://dx.doi.org/10.1145/988113.988118
http://dx.doi.org/10.1007/s10664-018-9621-x
http://dx.doi.org/10.1007/s10664-018-9621-x
http://dx.doi.org/10.1007/s10664-018-9621-x
http://dx.doi.org/10.1007/BF00401799
http://dx.doi.org/10.1145/2597008.2597140
http://dx.doi.org/10.1145/2597008.2597140
http://dx.doi.org/10.1145/2597008.2597140
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb31
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb32
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb32
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb32
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb33
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb33
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb33
http://dx.doi.org/10.1109/ICPC52881.2021.00012
http://dx.doi.org/10.1145/390018.808317
http://dx.doi.org/10.1145/390018.808317
http://dx.doi.org/10.1145/390018.808317
http://dx.doi.org/10.1007/s10664-018-9666-x
http://dx.doi.org/10.1007/s10664-018-9666-x
http://dx.doi.org/10.1007/s10664-018-9666-x
http://dx.doi.org/10.1145/182.358437
http://dx.doi.org/10.1145/182.358437
http://dx.doi.org/10.1145/182.358437
http://dx.doi.org/10.1109/ICSME46990.2020.00041
http://dx.doi.org/10.1109/ICSME46990.2020.00041
http://dx.doi.org/10.1109/ICSME46990.2020.00041


D. Oliveira, R. Santos, F. Madeiral et al. The Journal of Systems & Software 203 (2023) 111728

O

O

P

R

S

S

S

S

S

S

S

S

S

man, P.W., Cook, C.R., 1990. Typographic Style is More than Cosmetic. Commun.
ACM 33 (5), 506–520. http://dx.doi.org/10.1145/78607.78611.

’Neal, M.B., Edwards, W.R., 1994. Complexity Measures for Rule-Based Pro-
grams. IEEE Trans. Knowl. Data Eng. 6 (5), 669–680. http://dx.doi.org/10.
1109/69.317699.

eterson, J.L., 1977. On the Formatting of Pascal Programs. ACM Sigplan Notices
12 (12), 83–86. http://dx.doi.org/10.1145/954618.954624.

itchie, D.M., Kernighan, B.W., Lesk, M.E., 1988. The C Programming Language.
Prentice Hall Englewood Cliffs.

ampaio, I.B., Barbosa, L., 2016. Software readability practices and the importance
of their teaching. In: Proceedings of the 7th International Conference on
Information and Communication Systems (ICICS ’16). IEEE, pp. 304–309.
http://dx.doi.org/10.1109/IACS.2016.7476069.

antos, R.M.d., Gerosa, M.A., 2018. Impacts of Coding Practices on Readability. In:
Proceedings of the 26th Conference on Program Comprehension (ICPC ’18).
ACM, New York, NY, USA, pp. 277–285. http://dx.doi.org/10.1145/3196321.
3196342.

canniello, G., Risi, M., 2013. Dealing with faults in source code: Abbreviated vs.
Full-word identifier names. In: Proceedings of the 2013 IEEE International
Conference on Software Maintenance (ICSM ’13). IEEE Computer Society,
USA, pp. 190–199. http://dx.doi.org/10.1109/ICSM.2013.30.

chulze, S., Liebig, J., Siegmund, J., Apel, S., 2013. Does the discipline of
preprocessor annotations matter? A controlled experiment. In: Proceedings
of the 12th International Conference on Generative Programming: Concepts
& Experiences (GPCE ’13). ACM, New York, NY, USA, pp. 65–74. http://dx.
doi.org/10.1145/2517208.2517215.

harif, B., Maletic, J.I., 2010. An Eye Tracking Study on camelCase and un-
der_score Identifier Styles. In: Proceedings of the 18th IEEE International
Conference on Program Comprehension (ICPC ’10). IEEE Computer Society,
Washington, DC, USA, pp. 196–205. http://dx.doi.org/10.1109/ICPC.2010.41.

iegmund, J., Peitek, N., Parnin, C., Apel, S., Hofmeister, J., Kästner, C., Begel, A.,
Bethmann, A., Brechmann, A., 2017. Measuring Neural Efficiency of Program
Comprehension. In: Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE ’17). ACM, New York, NY, USA, pp. 140–150.
http://dx.doi.org/10.1145/3106237.3106268.

mit, M., Gergel, B., Hoover, H.J., 2011. Code Convention Adherence in Evolving
Software. In: Proceedings of the 27th IEEE International Conference on
Software Maintenance (ICSM ’11). IEEE, pp. 504–507. http://dx.doi.org/10.
1109/ICSM.2011.6080819.

tefik, A., Siebert, S., 2013. An Empirical Investigation into Programming Lan-
guage Syntax. ACM Trans. Comput. Edu. 13 (4), 19:1–19:40. http://dx.doi.
org/10.1145/2534973.

trizver, I., 2013. Type Rules: The Designer’s Guide To Professional Typography.
John Wiley & Sons.
17
Sykes, F., Tillman, R.T., Shneiderman, B., 1983. The Effect of Scope Delimiters
on Program Comprehension. Softw. - Pract. Exp. 13 (9), 817–824. http:
//dx.doi.org/10.1002/spe.4380130908.

Tekfi, C., 1987. Readability formulas: An overview. J. Doc. 43, 261–273. http:
//dx.doi.org/10.1108/eb026811.

Tenny, T., 1988. Program readability: Procedures versus comments. IEEE Trans.
Softw. Eng. 14 (9), 1271–1279. http://dx.doi.org/10.1109/32.6171.

Wood, J.R., Wood, L.E., 2008. Card Sorting: Current Practices and Beyond. J.
Usability Stud. 4 (1), 1–6.

Zuffi, S., Brambilla, C., Beretta, G., Scala, P., 2007. Human Computer Interaction:
Legibility and Contrast. In: Proceedings of the 14th International Conference
on Image Analysis and Processing (ICIAP ’07). IEEE, pp. 241–246. http:
//dx.doi.org/10.1109/ICIAP.2007.4362786.

Delano Oliveira is a Ph.D. candidate at the Federal University of Pernambuco,
Brazil, and a professor at the Federal Institute of Pernambuco, Brazil. His main
research goal is to understand the best coding alternatives for code legibility
and readability to help developers write understandable code.

Reydne Santos is a Ph.D. candidate at the Federal University of Pernambuco,
Brazil. His main research interest is productivity in software engineering and
source code legibility and readability.

Fernanda Madeiral is an Assistant Professor at the Vrije Universiteit Amsterdam,
The Netherlands. Her broad research goal is to help developers produce and
maintain high-quality software systems. She is interested in software bugs and
their fixes, linter violation, and source code legibility and readability.

Hidehiko Masuhara is the dean of the School of Computing and a Professor of
Mathematical and Computing Science, Tokyo Institute of Technology, Japan. His
research interest is programming languages, especially on aspect- and context-
oriented programming, partial evaluation, computational reflection, meta-level
architectures, parallel/concurrent computing, and programming environments.

Fernando Castor is an Assistant Professor at the Department of Information
and Computing Sciences, Utrecht University, The Netherlands, and an Asso-
ciate Professor (on leave) at the Informatics Center of the Federal University
of Pernambuco, Brazil. His broad research goal is to help developers build
more efficient software systems more efficiently. More specifically, he conducts
research in the areas of Software Maintenance, Software Energy Efficiency, and
Code Understandability.

http://dx.doi.org/10.1145/78607.78611
http://dx.doi.org/10.1109/69.317699
http://dx.doi.org/10.1109/69.317699
http://dx.doi.org/10.1109/69.317699
http://dx.doi.org/10.1145/954618.954624
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb42
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb42
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb42
http://dx.doi.org/10.1109/IACS.2016.7476069
http://dx.doi.org/10.1145/3196321.3196342
http://dx.doi.org/10.1145/3196321.3196342
http://dx.doi.org/10.1145/3196321.3196342
http://dx.doi.org/10.1109/ICSM.2013.30
http://dx.doi.org/10.1145/2517208.2517215
http://dx.doi.org/10.1145/2517208.2517215
http://dx.doi.org/10.1145/2517208.2517215
http://dx.doi.org/10.1109/ICPC.2010.41
http://dx.doi.org/10.1145/3106237.3106268
http://dx.doi.org/10.1109/ICSM.2011.6080819
http://dx.doi.org/10.1109/ICSM.2011.6080819
http://dx.doi.org/10.1109/ICSM.2011.6080819
http://dx.doi.org/10.1145/2534973
http://dx.doi.org/10.1145/2534973
http://dx.doi.org/10.1145/2534973
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb51
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb51
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb51
http://dx.doi.org/10.1002/spe.4380130908
http://dx.doi.org/10.1002/spe.4380130908
http://dx.doi.org/10.1002/spe.4380130908
http://dx.doi.org/10.1108/eb026811
http://dx.doi.org/10.1108/eb026811
http://dx.doi.org/10.1108/eb026811
http://dx.doi.org/10.1109/32.6171
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb55
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb55
http://refhub.elsevier.com/S0164-1212(23)00123-1/sb55
http://dx.doi.org/10.1109/ICIAP.2007.4362786
http://dx.doi.org/10.1109/ICIAP.2007.4362786
http://dx.doi.org/10.1109/ICIAP.2007.4362786

	A systematic literature review on the impact of formatting elements on code legibility
	Introduction
	Background
	Legibility and Readability
	Tasks and Response Variables Employed in Human-centric Studies on Code Legibility and Readability
	Program Comprehension as a Learning Activity

	Methodology
	Search Strategy
	Triage (Study Exclusion)
	Initial Selection (Study Inclusion)
	Study Quality Assessment
	Snowballing
	Data Analysis
	Differences between this study and the previous one
	Data availability

	Results
	Formatting
	Spacing
	Block Delimiters
	Long or Complex Code Line
	Word Boundary Styles
	Addressing the two research questions

	Discussion
	Contrasting empirical results with existing coding style guides
	Statistical power of the analyzed studies
	Limitations of our study and of existing studies

	Threats to validity
	Conclusion
	Acknowledgments
	CRediT authorship contribution statement
	Data availability
	References


