
8

Competitive Algorithms for Generalized k-Server in

Uniform Metrics

NIKHIL BANSAL, University of Michigan

MAREK ELIÁŠ, Bocconi University

GRIGORIOS KOUMOUTSOS, Lightcurve GmbH

JESPER NEDERLOF, Utrecht University

The generalized k-server problem is a far-reaching extension of the k-server problem with several applica-

tions. Here, each server si lies in its own metric space Mi . A request is a k-tuple r = (r1, r2, . . . , rk), which

is served by moving some server si to the point ri ∈ Mi , and the goal is to minimize the total distance trav-

eled by the servers. Despite much work, no f (k)-competitive algorithm is known for the problem for k > 2

servers, even for special cases such as uniform metrics and lines.

Here, we consider the problem in uniform metrics and give the first f (k)-competitive algorithms for gen-

eral k . In particular, we obtain deterministic and randomized algorithms with competitive ratio k · 2k and

O (k3 logk), respectively. Our deterministic bound is based on a novel application of the polynomial method

to online algorithms, and essentially matches the long-known lower bound of 2k − 1. We also give a 22O (k)
-

competitive deterministic algorithm for weighted uniform metrics, which also essentially matches the recent

doubly exponential lower bound for the problem.

CCS Concepts: • Theory of computation→ K-server algorithms;

Additional Key Words and Phrases: k-server problem, online algorithms, competitive analysis

ACM Reference format:

Nikhil Bansal, Marek Eliáš, Grigorios Koumoutsos, and Jesper Nederlof. 2023. Competitive Algorithms for

Generalized k-Server in Uniform Metrics. ACM Trans. Algor. 19, 1, Article 8 (February 2023), 15 pages.

https://doi.org/10.1145/3568677

1 INTRODUCTION

The k-server problem was proposed by Manasse et al. [28] as a far-reaching generalization of many
online problems, and its study has led to various remarkable developments in online computation.
Here, we are given k-servers s1, . . . , sk located at points of a metric space M . At each timestep a

A preliminary version of this article appeared in the Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA) 2018. This work was carried out while authors were affiliated with TU Eindhoven.

Nikhil Bansal was supported by a NWO Vici grant 639.023.812. Marek Eliáš was supported by a NWO Vidi grant 639.022.211.

Grigorios Koumoutsos was supported by ERC consolidator grant 617951 and by FNRS Grant MISU F 6001 1. Jesper Nederlof

was supported by NWO Veni project 639.021.438.

Authors’ addresses: N. Bansal, University of Michigan, 2260 Hayward Street, Ann Arbor, MI 48109-2121, USA; email:

bansal@gmail.com; M. Eliáš, Bocconi University, Via Roentgen 1, 20136 Milan, Italy; email: marek.elias@unibocconi.it;

G. Koumoutsos, Lightcurve GmbH, Köpenicker Straße 126, 10179 Berlin, Germany; email: gregkoumoutsos@gmail.com; J.

Nederlof, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands; email: j.nederlof@uu.nl.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2023/02-ART8 $15.00

https://doi.org/10.1145/3568677

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

https://orcid.org/0000-0002-6290-0894
https://orcid.org/0000-0003-4583-8897
https://orcid.org/0000-0002-4928-103X
https://orcid.org/0000-0003-1848-0076
https://doi.org/10.1145/3568677
mailto:permissions@acm.org
https://doi.org/10.1145/3568677
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3568677&domain=pdf&date_stamp=2023-02-20

8:2 N. Bansal et al.

request arrives at some point of M and must be served by moving some server there. The goal is
to minimize the total distance traveled by the servers.

Koutsoupias and Taylor [27] introduced a substantial generalization of the k-server problem,
called the generalized k-server problem. Here, each server si lies in its own metric space Mi , with
its own distance function di . A request is a k-tuple r = (r1, r2, . . . , rk) and must be served by
moving some server si to the point ri ∈ Mi . Note that the standard k-server problem corresponds
to the special case when all the metrics are identical, M1 = · · · = Mk = M , and the requests are of
the form (r , r , . . . , r), i.e., the k-tuple is identical in each coordinate.

The generalized k-server problem can model a rich class of online problems, for which the
techniques developed for the standardk-server problem do not apply, see, e.g., [27]. For that reason,
it is widely believed that a deeper understanding of this problem should lead to powerful new
techniques for designing online algorithms [27, 31]. According to Koutsoupias and Taylor [27],
this problem “may act as a stepping stone towards building a robust (and less ad hoc) theory of
online computation.”

1.1 Previous Work

The k-server problem. The k-server problem has been extensively studied (an excellent ref-
erence is [8]). The initial work focused on special metrics such as uniform metrics and lines, and
optimum competitive ratios were obtained in many cases [14, 15, 26]. A particularly interesting
case is that of uniform metrics, which corresponds to the very well-studied paging problem, where
tight k-competitive deterministic [34] andO (logk)-competitive randomized algorithms [1, 18, 30]
are known.

For general metrics, Koutsoupias and Papadimitriou [25] showed in a breakthrough result that
the Work Function Algorithm (WFA) is (2k − 1)-competitive in any metric space. This essentially
matches the lower bound of k for any deterministic algorithm [28]. For randomized algorithms
the competitive ratio is Ω(logk), and it is widely believed that there is a O (logk)-competitive
randomized algorithm. While this remains open, polylog(k,n) randomized competitive algorithms
were obtained, where n in the number of points in M [4, 10].

The generalized k-server problem. This problem is much less understood. In their seminal
paper, Koutsoupias and Taylor [27] studied the special case where k = 2 and both the metrics M1

and M2 are lines. This is called CNN problem and it has attracted a lot of attention [2, 13, 21, 22].
They showed that, even for this special case, many successful k-server algorithms or their natural
generalizations are not competitive.

Lower Bounds. For uniform metrics, Koutsoupias and Taylor [27] showed that even when each
Mi containsn = 2 points, the competitive ratio is at least 2k−1. For general metrics, the best known

lower bound is 22Ω(k)
[5], and comes from the weighted k-server problem (the weighted variant

of the standard k-server problem). This problem corresponds to generalized-k-server where the
metric spaces are scaled copies of each other, i.e. Mi = wiM for some fixed M , and the requests
have the form (r , . . . , r).

Upper Bounds. Despite considerable efforts, competitive algorithms1 are known only for the
case of k = 2 servers [31–33]. In a breakthrough result, Sitters and Stougie [33] obtained a O (1)-
competitive algorithm for k = 2 in any metric space. Recently, Sitters [31] showed that the gener-
alized WFA is also O (1)-competitive for k = 2 by a careful and subtle analysis of the structure of

1We focus on algorithms with competitive ratio f (k) that only depends on k . Note that an nk − 1 competitive algorithm

follows trivially, as the problem can be viewed as Metrical Service System (MSS) on nk states, where n = maxk
i=1 |Mi |.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

Competitive Algorithms for Generalized k-Server in Uniform Metrics 8:3

work functions. Despite this progress, no f (k)-competitive algorithms are known for k > 2, even
for special cases such as uniform metrics and lines.

1.2 Our Results

We consider the generalized k-server problem on uniform metrics and obtain the first f (k)-
competitive algorithms for general k , with competitive ratios close to the known lower bounds.

Perhaps surprisingly, there turn out to be two very different settings for uniform metrics:

(1) When all the metric spaces M1, . . . ,Mk are uniform (possibly with different number of
points) with identical pairwise distance, say 1. We call this the uniform metric case.

(2) When the metric spaces Mi are all uniform, but have different scales, i.e., all pairwise dis-
tances in Mi are wi . We call this the weighted uniform metric case.

Our first result is the following.

Theorem 1.1. There is a (k · 2k)-competitive deterministic algorithm for the generalized k-server

problem in the uniform metric case.

This almost matches the 2k − 1 lower bound due to [27] (we describe this instructive and simple
lower bound instance in the Appendix for completeness).

The proof of Theorem 1.1 is based on a general combinatorial argument about how the set of
feasible states evolves as requests arrive. Specifically, we divide the execution of the algorithm into
phases, and consider the beginning of a phase when all the MSS states are feasible (e.g., the cost
is 0 and not ∞). As requests arrive, the set of states that remain valid for all requests during this
phase can only reduce. In particular, for this problem we show that any sequence of requests that
causes the feasible state space to strictly reduce at each step, can have length at most 2k until all
states becomes infeasible.

Interestingly, this argument is based on a novel application of the polynomial or the rank method
from linear algebra [20, 24, 29]. While the rank method has led to some spectacular recent successes
in combinatorics and computer science [16, 17], we are not aware of any previous applications to
online algorithms. We feel our approach could be useful for other online problems that can be
modeled as Metrical Service Systems by analyzing the combinatorial structure in a similar way.

Next, we consider randomized algorithms against oblivious adversaries.

Theorem 1.2. There is a randomized algorithm for the generalized k-server problem on uniform

metrics with competitive ratio O (k3 logk).

The rank method above does not seem to be useful in the randomized setting as it only bounds
the number of requests until the set of feasible states becomes empty, and does not give any
structural information about how the set of states evolves over time. As we observe in Section 3,
a o(2k) guarantee cannot be obtained without using such structural information. So we explore
the properties of this evolution more carefully and use it to design the randomized algorithm in
Theorem 1.2.

Finally, we consider the weighted uniform metric case.

Theorem 1.3. There is a 22k+3
competitive algorithm for generalized k-server on weighted uniform

metrics.

Theorem 1.3 follows by observing that a natural modification of an algorithm due to Fiat and
Ricklin [19] for weighted k-server on uniform metrics also works for the more general generalized
k-server setting. Our proof is essentially the same as that of [19], with some arguments streamlined

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

8:4 N. Bansal et al.

and an improved competitive ratio.2 Finally, note that the 22Ω(k)
lower bound [5] for weighted k-

server on uniform metrics implies that Theorem 1.3 is essentially optimal.

Recent Developments. Since the initial announcement of this work [6], Bienkowski et al. [7]
considered the generalized k-server on uniform metrics, focusing on randomized algorithms. They
obtained a O (k2 logk)-competitive randomized algorithm by modifying our algorithm from The-
orem 1.2, and also gave a lower bound of Ω(k). Chiplunkar and Vishwanathan [12] focused on
randomized memoryless algorithms against oblivious adversaries for the weighted uniform case
and showed tight doubly-exponential bounds on the competitive ratio.

2 DETERMINISTIC ALGORITHM FOR UNIFORM METRICS

In this section, we prove Theorem 1.1. Recall that each Mi is the uniform metric with unit distance.
We assume that all metrics have n = maxk

i=1 |Mi | points (if for some metric |Mi | < n, we can add
some extra points that are never requested). We use [n] to denote {1, . . . ,n}. As the requests are
arbitrary k-tuples and each metric Mi is uniform, we can relabel the points arbitrarily and hence
assume that the set of points in each Mi is [n]. At any time t , the state of an algorithm can be
described by the k-tuple qt = (qt

1, . . . ,q
t
k

) where for each i ∈ [k], qt
i ∈ [n] denotes the location of

server i . Let r t = (r t
1 , . . . , r

t
k

) denote the request vector at time t . Given such a request, we need to

move to some state qt satisfying the following:

Definition 2.1. A state qt satisfies (or is feasible for) the request r t if qt
i = r

t
i for some i ∈ [k].

Moreover, if the state changes from qt to qt+1, the algorithm pays the Hamming distance

d (qt+1,qt) = |{i : qt+1
i � qt

i }|,
between qt and qt+1.

Algorithm. Consider the following generic algorithm, that works in phases and upon each re-
quest, moves to some arbitrary location (if it exists) that satisfies all the requests in the current
phase thus far. If no such location exists, it moves to some location satisfying the current request
and the next phase begins. We call this algorithm generic as it can pick any arbitrary point q as

ALGORITHM 1: A deterministic k · 2k competitive algorithm.

If a phase begins, the algorithm starts in some arbitrary q1.

At each time t when a request r t arrives do the following.

if the current state qt does not satisfy the current request r t then

if there exists a state q that satisfies all requests r1, . . . , r t then

Set qt+1 = q.

else

Set qt+1 to be an arbitrary location satisfying (only) r t .

End the current phase.

else

Set qt+1 = qt .

long as it satisfies all the requests of the current phase r 1, . . . , r t . Note that this captures a wide
variety of natural algorithms; e.g., for the special case of the paging problem, it behaves exactly as
the well-known Marking algorithm.

2It was first pointed out to us by Chiplunkar [11] that the competitive ratio 224k
claimed in [19] can be improved to 22k+O (1)

.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

Competitive Algorithms for Generalized k-Server in Uniform Metrics 8:5

Analysis. Clearly, during each phase the offline pays at least 1, as by the definition of a phase,
no location can satisfies all the requests that arrive during the phase. We will show that the online
algorithm can change its state at most 2k times and hence pay at mostk2k as the Hamming distance
between any two states is at most k implying the desired competitive ratio of k2k .

Fix some phase that we wish to analyze, and let � denote its length. Without loss of generality, we
can assume that r t always causes qt to move (removing such requests does not reduce the online
cost, and can only help the offline adversary). So the online algorithm moves exactly � times. It
suffices to show the following.

Theorem 2.2. For any phase as defined above, its length satisfies � ≤ 2k .

Proof. We use the rank method. Let x = (x1, . . . ,xk),y = (y1, . . . ,yk), and consider the 2k-
variate degree k polynomial p : R2k → R,

p (x ,y) :=
∏

i ∈[k]

(xi − yi).

The key property of the polynomial p is that a state q ∈ [n]k satisfies a request r ∈ [n]k iff
p (q, r) = 0.

We now construct a matrixM that captures the dynamics of the online algorithm during a phase.
Let M ∈ R�×� be an �× � matrix, where columns correspond to the requests and rows to the states,

with entries M[t , t ′] = p (qt , r t ′), i.e., the [t , t ′] entry of M corresponds to the evaluation of the

polynomial p on qt and r t ′

Claim 2.3. M is an upper triangular matrix with non-zero diagonal. In particular, M has rank �.

Proof. At any time t = 1, . . . , �, as the current state qt does not satisfy the request r t , it must be
that p (qt , r t) � 0. On the other hand, for t = 2, . . . , �, the state qt was chosen such that it satisfied
all the previous requests t ′ for t ′ < t . This gives that M[t , t ′] = 0 for t ′ < t and hence all the
entries below the diagonal are 0.

As the determinant of any upper-triangular matrix is the product of its diagonal entries, M has
non-zero determinant and hence rk(M) = �. �

So it suffices to show that the rank of any such matrix M is at most 2k .3

Claim 2.4. For any set of requests r t and points qt chosen by the algorithm, for t = 1, 2, . . . , �,
where � is arbitrary, the matrix M has rank at most 2k .

Proof. We give an explicit factorization of M as M = AB, where A is � × 2k matrix and M is a
2k × � matrix. As any m × n matrix has rank at most min(m,n), both A and B have rank at most
2k . Moreover, as rk(AB) ≤ min(rk(A), rk(B)), this implies rk(M) ≤ 2k .

To obtain the factorization, we note that p (x ,y) can be expressed in terms of its 2k monomials
as

p (x ,y) =
∑

S ⊆[k]

(−1)k−|S |XSY[k]\S ,

where XS =
∏

i ∈S xi with X∅ = 1, and YS is defined analogously.
Let A be the � × 2k matrix with rows indexed by time t and columns by subsets S ∈ 2[k], with

the entries

A[t , S] = qt
S :=
∏

i ∈S
qt

i ,

3Curiously, this particular rank upper bound was used in a previous work for answering a question in a completely different

setting about the parameterized complexity of graph coloring parameterized by cutwidth [23].

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

8:6 N. Bansal et al.

and B be the 2k × � matrix with rows indexed by subsets S ∈ 2[k] and columns indexed by time t ′

with entries
B[S, t ′] = (−1)k−|S | r t ′

[k]\S := (−1)k−|S |
∏

i ∈[k]\S
r t ′

i .

Then, for any t , t ′ ∈ [�],

M[t , t ′] = p (qt , r t ′) =
∑

S ⊆[k]

(−1)k−|S | qt
S r

t ′

[k]\S =
∑

S ⊆[k]

A[t , S]B[S, t ′] = (AB)[t , t ′].

implying that M = AB, and giving the claimed factorization. �

The result now follows from Claims 2.3 and 2.4. �

3 RANDOMIZED ALGORITHM FOR UNIFORM METRICS

A natural way to randomize the algorithm above would be to pick a state uniformly at random
among all the states that are feasible for all the requests thus far in the current phase. The standard
randomized uniform MTS analysis [9] implies that this online algorithm would moveO (log(nk)) =
O (k logn) times. However, this guarantee is not useful if n 	 exp(exp(k)).

Perhaps surprisingly, even if we use the fact from Section 2 that the set of feasible states can
shrink at most 2k times, this does not suffice to give a randomizedo(2k) guarantee. Indeed, consider
the algorithm that picks a random state among the feasible ones in the current phase. If, at each
step t = 1, . . . , �, half of the feasible states become infeasible (expect the last step when all states
become infeasible), then the algorithm must move with probability at least 1/2 at each step, and
hence incur an expected Ω(�) = Ω(2k) cost during the phase.

So proving a better guarantee would require showing that the scenario above cannot happen.
In particular, we need a more precise understanding of how the set of feasible states evolves over
time, rather than simply a bound on the number of requests in a phase.

To this end, in Lemmas 3.1 and 3.3 below, we impose some stronger subspace-like structure over
the set of feasible states. Then, we use this structure to design a variant of the natural randomized
algorithm above, that directly works with these subspaces.

Spaces of configurations. Let Ui denote the set of points in Mi . We can think of Ui = [n], but Ui

makes the notation clear. We call state in
∏k

i=1Ui = [n]k a configuration. Here, we slightly abuse
notation by letting

∏
denote the generalized Cartesian product. It will be useful to consider sets

of configurations where some server locations are fixed at some particular location. For a vector

v ∈ ∏k
i=1 (Ui ∪ {∗}), we define the space

S (v) :=
⎧⎪⎨
⎪
⎩
c ∈

k∏

i=1

Ui

������
ci = vi ∀i s.t. vi � ∗

⎫⎪⎬
⎪
⎭
.

A coordinate i withvi = ∗ is called free and the corresponding server can be located at an arbitrary
point ofUi . The number of free coordinates in the space S (v) we call dimension and denote it with
dim(S (v)).

Let us consider a d-dimensional space S and a request r such that some configuration c ∈ S is
not feasible for r . Then, we claim that a vast majority of configurations from S are infeasible for r ,
as stated in the following lemma. We denote F (r) the set of configuration satisfying r .

Lemma 3.1. Let S be a d-dimensional space and let r be a request which makes some configuration

c ∈ S infeasible. Then, there exist d subspaces S1, . . . , Sd , each of dimension d − 1, such that we have

S ∩ F (r) = S1 ∪ · · · ∪ Sd .

Note that if all the metric spaces Ui contain n points, then |Si | = 1
n
|S | for each i = 1, . . . ,d .

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

Competitive Algorithms for Generalized k-Server in Uniform Metrics 8:7

Proof. By reordering the coordinates, we can assume that the first d coordinates of S are free
and S corresponds to the vector (∗, . . . , ∗, sd+1, . . . , sk), for some sd+1, . . . , sk . Let r = (r1, . . . , rk).

Consider the subspaces S (v1), . . . , S (vd), where

v1 = (r1, ∗, . . . , ∗, sd+1, . . . , sk),
...

vd = (∗, . . . , ∗, rd , sd+1, . . . , sk).

Clearly, any configuration contained in S (v1) ∪ · · · ∪ S (vd), is feasible for r . Conversely, as there
exists c ∈ S infeasible for r , we have si = ci � ri for each i = d + 1, . . . ,k . This already implies
that each configuration from S feasible for r must belong to S (v1) ∪ · · · ∪ S (vd): Whenever c ′ ∈ S
is feasible for r , it needs to have c ′i = ri for some i ∈ {1, . . . ,d } and therefore c ′ ∈ S (vi). �

Spaces of feasible configurations. During each phase, we maintain a set F t of spaces containing
configurations, which were feasible with respect to the requests r 1, . . . , r t . In the beginning of the
phase, we set F 1 = {(r 1

1 , ∗, . . . , ∗), . . . , (∗, . . . , ∗, r 1
k

)}, and, at time t , we update it in the follow-

ing way. We remove all spaces of dimension 0 whose single configuration is infeasible w.r.t. r t . In
addition, we replace each S ∈ F t−1 of dimension s > 0, which contains some infeasible config-
uration by S1, . . . , Sd according to the Lemma 3.1. The following observation follows easily from
Lemma 3.1.

Observation 3.2. Let us consider a phase with requests r 1, . . . , r � . A configuration c is feasible

with respect to the requests r 1, . . . , r t if and only if c belongs to some space in F t .

An alternative deterministic algorithm. Based on F t , we can design an alternative deterministic
algorithm that has a competitive ratio of 3k!. This is worse than Algorithm 1 but will be very useful
to obtain our randomized algorithm. To serve a request at time t , it chooses some space Qt ∈ F t

and moves to an arbitrary qt ∈ Qt . Whenever Qt−1 no more belongs to F t , it moves to another
space Qt regardless whether qt−1 stayed feasible or not, see Algorithm 2 for details. While, this is
not an optimal behaviour, a simple exploitation of the structure of F t already gives a reasonably
good algorithm.

ALGORITHM 2: Alternative deterministic algorithm.

at time t :

foreach S ∈ F t−1 containing some infeasible configuration do // update F t for r t

replace S by S1, . . . , Sd according to Lemma 3.1

if F t = ∅ then // start a new phase,

// if needed
F t := {S ((r t

1 , ∗, . . . , ∗)), . . . , S ((∗, . . . , ∗, r t
k

))}

if Qt−1 ∈ F t then // serve the request
set Qt := Qt−1 and qt := qt−1

else

choose arbitrary Qt ∈ F t and move to an arbitrary qt ∈ Qt

The following lemma bounds the maximum number of distinct spaces, which can appear in F t

during one phase. In fact, it already implies that the competitive ratio of Algorithm 2 is at most

k · k! ·∑k−1
d=0

1
d ! ≤ 3kk! ≤ 3(k + 1)!.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

8:8 N. Bansal et al.

Lemma 3.3. Let us consider a phase with requests r 1, . . . , r � . Then,
⋃�

t=1 F t contains at most k!/d!
spaces of dimension d .

Proof. We proceed by induction on d . In the beginning, we have k = k!/(k − 1)! spaces of
dimension k − 1 in F 1 and, by Lemma 3.1, all spaces added later have strictly lower dimension.

By the way F t is updated, each (d − 1)-dimensional space is created from some d-dimensional

space already present in
⋃�

t=1 F t . By the inductive hypothesis, there could be at mostk!/d! distinct
d-dimensional spaces and Lemma 3.1 implies that each of them creates at most d distinct (d − 1)-
dimensional spaces. Therefore, there can be at most k !

d !d =
k !

(d−1)! spaces of dimension d − 1 in
⋃�

t=1 F t . �

Randomized algorithm. Now we transform Algorithm 2 into a randomized one. Let mt denote
the largest dimension among all the spaces in F t and letMt denote the set of spaces of dimension
mt in F t .

The algorithm works as follows: Whenever moving, it picks a space Qt fromMt uniformly at
random, and moves to some arbitrary qt ∈ Qt . As the choice of qt is arbitrary, whenever some
configuration from Qt becomes infeasible, the algorithm assumes that qt is infeasible as well.4

ALGORITHM 3: Randomized Algorithm for Uniform metrics.

at time t :

foreach S ∈ F t−1 containing some infeasible configuration do // update F t for r t

replace S by S1, . . . , Sd according to Lemma 3.1

if F t = ∅ then // start a new phase,

// if needed
F t := {S ((r t

1 , ∗, . . . , ∗)), . . . , S ((∗, . . . , ∗, r t
k

))}

if Qt−1 ∈ Mt then // serve the request
set Qt := Qt−1 and qt := qt−1

else

Choose a space Qt fromMt uniformly at random

Move to an arbitrary qt ∈ Qt

At each time t , ALG is located at some configuration qt contained in some space in F t , which
implies that its position is feasible with respect to the current request r t , see Observation 3.2. Here
is the key property about the state of ALG.

Lemma 3.4. At each time t , the probability of Qt being equal to some fixed S ∈ Mt is 1/|Mt |.

Proof. If ALG moved at time t , the statement follows trivially, since Qt was chosen fromMt

uniformly at random. So, let us condition on the event that Qt = Qt−1.
Now, the algorithm does not change state if and only if Qt−1 ∈ Mt . Moreover, in this case mt

does not change, andMt ⊂ Mt−1. By induction, Qt−1 is distributed uniformly withinMt−1, and
hence conditioned on Qt−1 ∈ Mt , Qt is uniformly distributed withinMt . �

Proof of Theorem 1.2. At the end of each phase (except possibly for the last unfinished phase),
the set of feasible states F t = ∅, and hence OPT must pay at least 1 during each of those

4This is done to keep the calculations simple, as the chance of Q t being removed from F and qt staying feasible is

negligible when k � n.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

Competitive Algorithms for Generalized k-Server in Uniform Metrics 8:9

phases. Denoting N the number of phases needed to serve the entire request sequence, we have
cost(OPT) ≥ (N − 1). On the other hand, the expected online cost is at most,

E[cost(ALG)] ≤ c (N − 1) + c ≤ c cost(OPT) + c,

where c denotes the expected cost of ALG in one phase. This implies that ALG is c-competitive,
and strictly 2c-competitive (as the offline must move at least once, if the online algorithm pays a
non-zero cost).

Now we prove that c is at most O (k3 logk). To show this, we use a potential function

Φ(t) = H (|Mt |) +
mt−1∑

d=0

H (k!/d!),

where H (n) denotes the nth harmonic number. As the beginning of the phase, Φ(1) ≤ kH (k!) ≤
k (logk! + 1) = O (k2 logk) as |M1 | ≤ k! andm1 ≤ k − 1. Moreover, the phase ends whenever Φ(t)
decreases to 0. Therefore, it is enough to show that, at each time t , the expected cost incurred by
the algorithm is at most k times the decrease of the potential. We distinguish two cases.

If mt =mt−1, let us denote b = |Mt−1 | − |Mt |. If b > 0, the potential decreases, and its change
can be bounded as

ΔΦ ≤ H (|Mt |) − H (|Mt−1 |) = − 1

|Mt | + 1
− 1

|Mt | + 2
− · · · − 1

|Mt | + b ≤ −b ·
1

|Mt−1 | .

On the other hand, the expected cost of ALG is at most k times the probability that it has to move,
which is exactly P[Qt−1 ∈ Mt−1 \ Mt] = b/|Mt−1 | using Lemma 3.4. Thus, the expected cost of
the algorithm is at most k · b/|Mt−1 |, which is at most k · (−ΔΦ).

In the second case, we havemt < mt−1. By Lemma 3.3, we know that |Mt | ≤ k!/mt ! and hence

ΔΦ = H (|Mt |) − H (|Mt−1 |) − H (k!/mt !) ≤ −H (|Mt−1 |) ≤ −1,

since |Mt−1 | ≥ 1 and, therefore, H (|Mt−1 |) ≥ 1. As the expected cost incurred by the algorithm
is at most k , this is at most k · (−ΔΦ).

4 ALGORITHM FOR WEIGHTED UNIFORM METRICS

In this section, we prove Theorem 1.3. Our algorithm is a natural extension of the algorithm of
Fiat and Ricklin [19] for the weighted k-server problem on uniform metrics.

High-level idea. The algorithm is defined by a recursive construction based on the following idea.
First, we can assume that the weights of the metric spaces are highly separated, i.e., w1 � w2 �
· · · � wk (if they are not, we can make them separated while losing some additional factors). So
in any reasonable solution, the server sk lying in metric Mk should move much less often than the
other servers. For that reason, the algorithm moves sk only when the accumulated cost of the other
k − 1 servers reaches wk . Choosing where to move sk turns out to be a crucial decision. For that
reason, (in each “level k-phase”) during the first part of the request sequence when the algorithm
only uses k − 1 servers, it counts how many times each point of Mk is requested. We call this
“learning subphase”. Intuitively, points of Mk , which are requested a lot are “good candidates” to
place sk . Now, during the next c (k) (to be defined later) subphases, sk visits the c (k) most requested
points. This way, it visits all “important locations” of Mk . A similar strategy is repeated recursively
using k − 1 servers within each subphase.

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

8:10 N. Bansal et al.

Notation and Preliminaries. We denote by sALG
i and sADV

i the server of the algorithm (respec-
tively, adversary) that lies in metric space Mi . Sometimes we drop the superscript and simply use

si when the context is clear. We set Rk := 22k+2
and c (k) := 22k+1−3. Note that c (1) = 2 and that for

all i ,

4(c (i) + 1) · c (i) ≤ 8c (i)2 = c (i + 1). (1)

Moreover, for all i ≥ 2, we have

Ri = 8 · c (i) · Ri−1. (2)

We assume (by rounding the weights if necessary) that w1 = 1 and that for 2 ≤ i ≤ k , wi is an
integral multiple of 2(1 + c (i − 1)) ·wi−1. Letmi denote the ratio wi/(2(1 + c (i − 1)) ·wi−1).

The rounding can increase the weight of each server at most by a factor of 4k−1c (k − 1) · . . . ·
c (1) ≤ Rk−1. So, proving a competitive ratio Rk for an instance with rounded weights will imply a
competitive ratio Rk · Rk−1 < (Rk)2 for arbitrary weights.

Finally, we assume that in every request ALG needs to move a server. This is without loss of
generality: requests served by the algorithm without moving a server do not affect its cost and
can only increase the optimal cost. This assumption will play an important role in the algorithm
below.

4.1 Algorithm Description

The algorithm is defined recursively, where ALGi denotes the algorithm using servers s1, . . . , si .
An execution of ALGi is divided into phases. The phases are independent of each other and the
overall algorithm is completely determined by describing how each phase works. We now describe
the phases.

ALG1 is very simple; given any request, ALG1 moves the server to the requested point. For
purposes of analysis, we divide the execution of ALG1 into phases, where each phase consists of
2(c (1) + 1) = 6 requests.

Phase of ALG1:

for j = 1 to 2(c (1) + 1) do
Request arrives to point p: Move s1 to p.

Terminate Phase

We now define a phase of ALGi for i ≥ 2. Each phase of ALGi consists of exactly c (i) + 1
subphases. The first subphase within a phase is special and we call it the learning subphase. During
each subphase we execute ALGi−1 until the cost incurred is exactly wi .

Phase of ALGi , i ≥ 2:

Move si to an arbitrary point of Mi ;

Run ALGi−1 until cost incurred equals wi ; // Learning subphase

For p ∈ Mi ,m(p) ← # of requests such that r (i) = p; // Assume m(p1) ≥ · · · ≥ m(pn)

P ← {p1, . . . ,pc (i) };
for j = 1 to c (i) do

Move si to an arbitrary point p ∈ P ;

P ← P − p;

Run ALGi−1 until cost incurred equals wi ; // (j + 1)th subphase

Terminate Phase

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

Competitive Algorithms for Generalized k-Server in Uniform Metrics 8:11

During the learning subphase, for each point p ∈ Mi , ALGi maintains a count m(p) of the
number of requests r where p is requested in Mi , i.e., r (i) = p. Let us order the points of Mi as
p1, . . . ,pn such thatm(p1) ≥ · · · ≥ m(pn) (ties are broken arbitrarily). We assume that |Mi | ≥ c (i)
(if Mi has fewer points, we add some dummy points that are never requested). Let P be the set of
c (i) most requested points during the learning subphase, i.e., P = {p1, . . . ,pc (i) }.

For the rest of the phase, ALGi repeats the following c (i) times: it moves si to a point p ∈ P that
it has not visited during this phase, and starts the next subphase (i.e., it calls ALGi−1 until its cost
reaches wi).

4.2 Analysis

We first note some basic properties that follow directly by the construction of the algorithm. Call
a phase of ALGi , i ≥ 2 complete, if all its subphases are finished. Similarly, a phase of ALG1 is
complete if it served exactly six requests.

Observation 4.1. For i ≥ 2, a complete phase of ALGi consists of (c (i) + 1) subphases.

Observation 4.2. For i ≥ 2, the cost incurred to serve all the requests of a subphase of ALGi iswi .

These observations give the following corollary:

Corollary 4.3. For i ≥ 1, the cost incurred by ALGi to serve requests of a phase is 2(c (i) + 1)wi .

Proof. For i = 1, this holds by definition of the phase. For i ≥ 2, a phase consists of (c (i) + 1)
subphases. Before each subphase ALGi moves server si , which costswi , and moreover ALGi−1 also
incurs cost wi . �

Using this, we get the following two simple properties:

Lemma 4.4. By definition of ALG, the following properties hold:

(1) A subphase of ALGi , i ≥ 2, consists ofmi complete phases of ALGi−1.

(2) All complete phases of ALGi , i ≥ 1, consist of the same number of requests.

Proof. The first property uses the rounding of the weights. By Corollary 4.3, each phase of
ALGi−1 costs 2(c (i − 1) + 1)wi−1 and, in each subphase of ALGi , the cost incurred by ALGi−1 iswi .
So there are exactly wi/(2(c (i − 1) + 1)wi−1) =mi phases of ALGi−1.

The property above, combined with Observation 4.1 implies that a complete phase of ALGi

contains mi · (c (i) + 1) complete phases ALGi−1. Now, the second property follows directly by
induction: each phase of ALG1 consists of 2(c (1)+1) = 6 requests, and each phase of ALGi consists
ofmi (c (i) + 1) phases of ALGi−1. �

Consider a phase of ALGi . The next lemma shows that, for any point p ∈ Mi , there exists a
subphase where it is not requested too many times. This crucially uses the assumption that ALGi

has to move a server in every request.

Lemma 4.5. Consider a complete phase of ALGi , i ≥ 2. For any pointp ∈ Mi , there exists a subphase

such that at most 1/c (i) fraction of the requests have r (i) = p.

Proof. Let P be the set of c (i) most requested points of Mi during the learning subphase. We
consider two cases: ifp ∈ P , there exists a subphase where sALG

i is located atp. During this subphase
there are no requests such that r (i) = p, by our assumption that the algorithm moves some server
at every request. Otherwise, if p � P , then during the learning subphase, the fraction of requests
such that r (i) = p is no more than 1/c (i). �

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

8:12 N. Bansal et al.

To prove the competitiveness of ALGk with respect to the optimal offline solution ADVk , the
proof uses a subtle induction on k . Clearly, one cannot compare ALGi , for i < k against ADVk ,
since the latter has more servers and its cost could be arbitrarily lower. So the idea is to compare
ALGi against ADVi , an adversary with servers s1, . . . , si , while ensuring that ADVi is an accurate
estimate of ADVk during time intervals when ALGi is called by ALGk . To achieve this, the in-
ductive hypothesis is required to satisfy certain properties described below. For a fixed phase, let
cost(ALGi) and cost(ADVi) denote the cost of ALGi and ADVi respectively.

(i) Initial Configuration of ADVi . Algorithm ALGi (for i < k), is called several times during
a phase of ALGk . As we do not know the current configuration of ADVi each time ALGi is
called, we require that for every complete phase, cost(ALGi) ≤ Ri ·cost(ADVi), for any initial
configuration of ADVi .

(ii) Adversary can ignore a fraction of requests. During a phase of ALGi , ADVk may serve
requests with servers si+1, . . . , sk , and hence the competitive ratio of ALGi against ADVi may
not give any meaningful guarantee. To get around this, we will require that cost(ALGi) ≤
Ri · cost(ADVi), even if the ADVi ignores an f (i) := 4/c (i + 1) fraction of requests. This will
allow us to use the inductive hypothesis for the phases of ALGi where ADVk uses servers
si+1, . . . , sk to serve at most f (i) fraction of requests.

For a fixed phase, we say that ALGi is strictly Ri -competitive against ADVi , if cost(ALGi) ≤
Ri · cost(ADVi). The key result is the following.

Theorem 4.6. Consider a complete phase of ALGi . Let ADVi be an adversary with i servers that

is allowed to choose any initial configuration and to ignore any 4/c (i + 1) fraction of requests. Then,

ALGi is strictly Ri -competitive against ADVi .

Before proving this, let us note that this directly implies Theorem 1.3. Indeed, for any request
sequence σ , all phases except possibly the last one, are complete, so cost(ALGk) ≤ Rk ·cost(ADVk).
The cost of ALGk for the last phase, is at most 2(c (k)+1)wk , which is a fixed additive term indepen-
dent of the length of σ . So, ALGk (σ) ≤ Rk ·ADVk (σ)+2(c (k)+1)wk , and ALGk is Rk -competitive.

Together with loss in rounding the weights, this gives a competitive ratio of at mot (Rk)2 ≤ 22k+3

for arbitrary weights.

Proof of Theorem 4.6. We prove the theorem by induction on k .

Base case (i = 1): As R1 > 6 and 4/c (2) = 1/8 ≤ 1/3, it suffices to show here that ALG1 is strictly
6-competitive in a phase where ADV1 can ignore at most 1/3 fraction of requests, for any starting

point of sADV1

1 .
By Corollary 4.3, we have cost(ALG1) = 2(c (1) + 1) = 6. We show that cost(ADV1) ≥ 1.

Consider two consecutive requests rt−1, rt . By our assumption that ALG1 has to move its server
in every request, it must be that rt−1 � rt . So, for any t if ADV1 does not ignore both rt−1 and
rt , then it must pay 1 to serve rt . Moreover, as the adverary can chose the initial server location,
it may (only) serve the first request at zero cost. As a phase consists of six requests, ADVi can
ignore at most 6/3 = 2 of them, so there are at most four requests that are either ignored or appear
immediately after an ignored request. So among requests r2, . . . , r6, there is at least one request rt ,
such that both rt−1 and rt are not ignored.

Inductive step: Assume inductively that ALGi−1 is strictlyRi−1-competitive against any adversary
with i − 1 servers that can ignore up to 4/c (i) fraction of requests.

Let us consider some phase at level i , and let I denote the set of requests that ADVi chooses to
ignore during the phase. We will show that cost(ADVi) ≥ wi/(2Ri−1). This implies the theorem,

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

Competitive Algorithms for Generalized k-Server in Uniform Metrics 8:13

as cost(ALGi) = 2(c (i) + 1)wi by Corollary 4.3 and hence,

cost(ALGi)

cost(ADVi)
≤ 2(c (i) + 1)wi

wi/(2Ri−1)
= 4(c (i) + 1)Ri−1 ≤ 8 · c (i) · Ri−1 = Ri .

First, if ADVi moves server si during the phase, its cost is already at leastwi and hence more than
wi/(2Ri−1). So we can assume that sADV

i stays fixed at some point p ∈ Mi during the entire phase.
So, ADVi is an adversary that uses i − 1 servers and can ignore all requests with r (i) = p and the
requests of I . We will show that there is a subphase where cost(ADVi) ≥ wi/(2Ri−1).

By Lemma 4.5, there exists a subphase, call it j, such that at most 1/c (i) fraction of the requests
have r (i) = p. As all c (i) + 1 subphases have the same number of requests (by Lemma 4.4), even if
all the requests of I belong to subphase j, they make up at most (4 · (c (i) + 1))/c (i + 1) ≤ 1/c (i)
fraction of its requests, where the inequality follows from Equation (1). So overall during subphase
j, ADVi uses servers s1, . . . , si−1 and ignores at most 2/c (i) fraction of requests.

We now apply the inductive hypothesis together with an averaging argument. As subphase j
consists of mi phases of ALGi−1, all of equal length, and ADVi ignores at most 2/c (i) fraction of
requests of the subphase, there are at mostmi/2 phases of ALGi−1 where it can ignore more than
4/c (i) fraction of requests. So, for at least mi/2 phases of ALGi−1, ADVi uses i − 1 servers and
ignores no more than 4/c (i) fraction of requests. By the inductive hypothesis, ALGi−1 is strictly
Ri−1-competitive against ADVi in these phases. As the cost of ALGi−1 for each phase is the same
(by Corollary 4.3), overall ALGi is strictly 2Ri−1 competitive during subphase j. As the cost of ALGi

during subphase j is wi , we get that cost(ADVi) ≥ wi/2Ri−1, as claimed. �

5 CONCLUDING REMARKS

We gave the first f (k)-competitive algorithms for uniform metrics, which attain (almost) optimal
competitive ratios. The outstanding open problem is the following:

Open Problem 5.1. Is there an f (k)-competitive algorithm for the generalized k-server problem

in general metric spaces?

Answering this question seems to require the development of powerful new techniques for
online algorithms and could lead to a much deeper theory of online computation.

Even for the special case of the weighted k-server problem, no competitive algorithms are
known for k > 2 beyond uniform metrics. As an intermediate step between uniform and arbi-
trary metric spaces, it would be interesting to focus on some fixed metric, which is more complex
than uniform metrics (e.g., weighted star, line). Understanding the easier weighted k-server could
be a useful first step in understanding generalized k-server, as was the case in Section 4.

Randomized Algorithms. Can randomization help, even for the case of weighted uniform met-
rics? Recently, Ayyadevara and Chiplunkar [3] showed that the competitive ratio of randomized
algorithms is at least exponential. However, even for easier the weighted k-server problem on

uniform metrics, no 22o (k)
bound is known. This motivates the following question:

Open Problem 5.2. Is there an exp(k) competitive randomized algorithm for weighted uniform

metrics?

APPENDIX

A LOWER BOUND

We present a simple lower bound on the competitive ratio of deterministic algorithms for the
generalized k-server problem in uniform metrics. In particular, we show a simple construction

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

8:14 N. Bansal et al.

due to [27] that directly implies a (2k − 1)/k lower bound on the competitive ratio of deterministic
algorithms. Using a more careful argument, [27] also improve this to 2k − 1.

Assume that each metric space Mi has n = 2 points, labeled by 0,1. A configuration of servers
is a vector c ∈ {0, 1}k , so there are 2k possible configurations. Now, a request r = (r1, . . . , rk) is
unsatisfied if and only if the algorithm is in the antipodal configuration r̄ = (1 − r1, . . . , 1 − rk).
Let ALG be any online algorithm and ADV be the adversary. Initially, ALG and ADV are in the
same configuration. At each timestep, if the current configuration of ALG is a = (a1, . . . ,ak), the
adversary requests ā until ALG visits every configuration. If p is the configuration that ALG visits
last, the adversary can simply move to p at the beginning, paying at most k , and satisfy all requests
until ALG moves to p. On the other hand, ALG pays at least 2k − 1 until it reaches p. Once ALG
and ADV are in the same configuration, the strategy repeats.

ACKNOWLEDGMENTS

We would like to thank René Sitters for useful discussions on the generalized k-server problem.

REFERENCES

[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. 2000. Competitive analysis of randomized paging algorithms.

Theoretical Computer Science 234, 1–2 (2000), 203–218. DOI:https://doi.org/10.1016/S0304-3975(98)00116-9

[2] John Augustine and Nick Gravin. 2010. On the continuous CNN problem. In Proceeding of the ISAAC. 254–265.

[3] Nikhil Ayyadevara and Ashish Chiplunkar. 2021. The randomized competitive ratio of weighted k-server is at least

exponential. In Proceedings of the European Symposium on Algorithms, ESA (LIPIcs), Petra Mutzel, Rasmus Pagh, and

Grzegorz Herman (Eds.), Vol. 204. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 9:1–9:11. DOI:https://doi.org/

10.4230/LIPIcs.ESA.2021.9

[4] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. 2015. A polylogarithmic-competitive algorithm

for the k-server Problem. Journal of the ACM 62, 5 (2015), 40.

[5] Nikhil Bansal, Marek Eliáš, and Grigorios Koumoutsos. 2017. Weighted k-server bounds via combinatorial dichotomies.

In Symposium on Foundations of Computer Science, FOCS. 493–504. DOI:https://doi.org/10.1109/FOCS.2017.52

[6] Nikhil Bansal, Marek Eliáš, Grigorios Koumoutsos, and Jesper Nederlof. 2018. Competitive algorithms for generalized

k-server in Uniform Metrics. In Proceedings of the Symposium on Discrete Algorithms, SODA. 992–1001. DOI:https://

doi.org/10.1137/1.9781611975031.64

[7] Marcin Bienkowski, Łukasz Jeż, and Paweł Schmidt. 2019. Slaying hydrae: Improved bounds for generalized k-server

in uniform metrics. In Proceedings of the Symposium on Algorithms and Computation, ISAAC 2019. 14:1–14:14.

[8] Allan Borodin and Ran El-Yaniv. 1998. Online Computation and Competitive Analysis. Cambridge University Press.

[9] Allan Borodin, Nathan Linial, and Michael E. Saks. 1992. An optimal on-line algorithm for metrical task system. Journal

of the ACM 39, 4 (1992), 745–763. DOI:https://doi.org/10.1145/146585.146588

[10] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry. 2018. k-server via multiscale

entropic regularization. In Proceedings of the Symposium on Theory of Computing, STOC. 3–16. DOI:https://doi.org/10.

1145/3188745.3188798

[11] Ashish Chiplunkar. Oct 2016. (Oct 2016). Personal Communication.

[12] Ashish Chiplunkar and Sundar Vishwanathan. 2020. Randomized memoryless algorithms for the weighted and the

generalized k-server Problems. ACM Transactions on Algorithms 16, 1 (2020), 14:1–14:28. DOI:https://doi.org/10.1145/

3365002

[13] Marek Chrobak. 2003. SIGACT news online algorithms column 1. SIGACT News 34, 4 (2003), 68–77. DOI:https://doi.

org/10.1145/954092.954104

[14] Marek Chrobak, Howard J. Karloff, Thomas H. Payne, and Sundar Vishwanathan. 1991. New results on server prob-

lems. SIAM Journal on Discrete Mathematics 4, 2 (1991), 172–181.

[15] Marek Chrobak and Lawrence L. Larmore. 1991. An optimal on-line algorithm for k-servers on trees. SIAM Journal

on Computing 20, 1 (1991), 144–148. DOI:https://doi.org/10.1137/0220008

[16] Z. Dvir. 2009. On the size of kakeya sets in finite fields. Journal of the American Mathematical Society 22 (2009), 1093–

1097.

[17] J. S. Ellenberg and D. Gijswijt. 2017. On large subsets of F n
q with no three-term arithmetic progression. Ann. Math.

185, 1 (2017), 339–343.

[18] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and Neal E. Young. 1991. Com-

petitive paging algorithms. Journal of Algorithms 12, 4 (1991), 685–699. DOI:https://doi.org/10.1016/0196-6774(91)

90041-V

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.4230/LIPIcs.ESA.2021.9
https://doi.org/10.1109/FOCS.2017.52
https://doi.org/10.1137/1.9781611975031.64
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1145/3365002
https://doi.org/10.1145/954092.954104
https://doi.org/10.1137/0220008
https://doi.org/10.1016/0196-6774(91)90041-V

Competitive Algorithms for Generalized k-Server in Uniform Metrics 8:15

[19] Amos Fiat and Moty Ricklin. 1994. Competitive algorithms for the weighted server problem. Theoretical Computer

Science 130, 1 (1994), 85–99. DOI:https://doi.org/10.1016/0304-3975(94)90154-6

[20] L. Guth. 2016. Polynomial Methods in Combinatorics. American Mathematical Society.

[21] Kazuo Iwama and Kouki Yonezawa. 2001. Axis-bound CNN problem. IEICE TRANS (2001), 1–8.

[22] Kazuo Iwama and Kouki Yonezawa. 2004. The orthogonal CNN problem. Information Processing Letters 90, 3 (2004),

115–120.

[23] Bart M. P. Jansen and Jesper Nederlof. 2019. Computing the chromatic number using graph decompositions via matrix

rank. Theoretical Computer Science 795, 26 (2019), 520–539. DOI:https://doi.org/10.1016/j.tcs.2019.08.006

[24] Stasys Jukna. 2011. Extremal Combinatorics - With Applications in Computer Science. Springer.

[25] Elias Koutsoupias and Christos H. Papadimitriou. 1995. On the k-server conjecture. Journal of the ACM 42, 5 (1995),

971–983.

[26] Elias Koutsoupias and Christos H. Papadimitriou. 1996. The 2-evader problem. Information Processing Letters 57, 5

(1996), 249–252. DOI:https://doi.org/10.1016/0020-0190(96)00010-5

[27] Elias Koutsoupias and David Scot Taylor. 2004. The CNN problem and other k-server variants. Theoretical Computer

Science 324, 2–3 (2004), 347–359. DOI:https://doi.org/10.1016/j.tcs.2004.06.002

[28] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. 1990. Competitive algorithms for server problems. Journal

of the ACM 11, 2 (1990), 208–230.

[29] Jiří Matoušek. 2010. In Proceedings of the 33rd Miniatures: Mathematical and Algorithmic Applications of Linear Algebra.

American Mathematical Society.

[30] Lyle A. McGeoch and Daniel Dominic Sleator. 1991. A strongly competitive randomized paging algorithm. Algorith-

mica 6, 6 (1991), 816–825. DOI:https://doi.org/10.1007/BF01759073

[31] René Sitters. 2014. The generalized work function algorithm is competitive for the generalized 2-server problem. SIAM

Journal on Computing 43, 1 (2014), 96–125. DOI:https://doi.org/10.1137/120885309

[32] René Sitters, Leen Stougie, and Willem de Paepe. 2003. A competitive algorithm for the general 2-server problem. In

ICALP. 624–636.

[33] René A. Sitters and Leen Stougie. 2006. The generalized two-server problem. Journal of the ACM 53, 3 (2006), 437–458.

DOI:https://doi.org/10.1145/1147954.1147960

[34] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Amortized efficiency of list update and paging rules. Commu-

nications of the ACM 28, 2 (1985), 202–208. DOI:https://doi.org/10.1145/2786.2793

Received 15 May 2020; accepted 19 September 2022

ACM Transactions on Algorithms, Vol. 19, No. 1, Article 8. Publication date: February 2023.

https://doi.org/10.1016/0304-3975(94)90154-6
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/0020-0190(96)00010-5
https://doi.org/10.1016/j.tcs.2004.06.002
https://doi.org/10.1007/BF01759073
https://doi.org/10.1137/120885309
https://doi.org/10.1145/1147954.1147960
https://doi.org/10.1145/2786.2793

