
Analyzing the Quality of Submissions
in Online Programming Courses

Maria Tigina
JetBrains Research
Republic of Serbia

maria.tigina@jetbrains.com

Anastasiia Birillo
JetBrains Research
Republic of Serbia

anastasia.birillo@jetbrains.com

Yaroslav Golubev
JetBrains Research
Republic of Serbia

yaroslav.golubev@jetbrains.com

Hieke Keuning
Utrecht University
The Netherlands

h.w.keuning@uu.nl

Nikolay Vyahhi
Stepik

United States

vyahhi@stepik.org

Timofey Bryksin
JetBrains Research
Republic of Cyprus

timofey.bryksin@jetbrains.com

Abstract—Programming education should aim to provide stu-
dents with a broad range of skills that they will later use while
developing software. An important aspect in this is their ability
to write code that is not only correct but also of high quality.
Unfortunately, this is difficult to control in the setting of a massive
open online course. In this paper, we carry out an analysis
of the code quality of submissions from JetBrains Academy
— a platform for studying programming in an industry-like
project-based setting with an embedded code quality assessment
tool called Hyperstyle. We analyzed more than a million Java
submissions and more than 1.3 million Python submissions,
studied the most prevalent types of code quality issues and
the dynamics of how students fix them. We provide several
case studies of different issues, as well as an analysis of why
certain issues remain unfixed even after several attempts. Also,
we studied abnormally long sequences of submissions, in which
students attempted to fix code quality issues after passing the
task. Our results point the way towards the improvement of
online courses, such as making sure that the task itself does not
incentivize students to write code poorly.

Index Terms—programming education, code quality, MOOC,
learning programming, refactoring, large-scale analysis

I. INTRODUCTION

Nowadays, software lies at the heart of virtually every area

of our life [1], including such crucial fields as medicine,

banking, and governance, where the cost of even a single

error can be incredibly high [2], [3]. Since the quality of code

directly affects the maintainability, flexibility, and performance

of the software [4]–[6], maintaining its high quality also

becomes a priority [7]. However, many novice programmers

do not pay enough attention to the quality of the software

they develop [8], which indicates the importance of instilling

the ability to write high-quality code during the education

process [9], [10].

A popular way of learning programming is attending mas-

sive open online courses (MOOCs) [11], which answer the

needs of a growing number of students, in particular during

the pandemic [12]. While MOOCs allow everyone to get the

programming education they require [13], they provide signif-

icantly less control over the student and their progress [14],

which means that the student may pass the course without

learning everything they need to know. Specifically, it is

possible to submit solutions to programming tasks without

maintaining the desired level of code quality, because, on the

one hand, it is not feasible to manually check this many sub-

missions [15], and on the other, professional automated code

quality tools are not adapted to the education process [10].

Much research has been conducted that studies the aspect

of code quality in code written by students in MOOCs or

regular classes [8], [16]–[21]. The majority of the existing

research focuses on Java [8], [16]–[18] and Scratch [19],

[20], since public large-scale datasets already exist for these

languages [22], [23]. Despite the growing popularity of Python

in education [24], Python code quality studies are usually

limited to submissions from just one or several semesters of

a university course [18], [25]. Moreover, researchers usually

only consider code fragments of tasks for beginners [8], [18]–

[20], whereas it would also be valuable to look at more

complex code snippets. Finally, existing works do not take

into account external factors of code quality issues, e.g., the

issues in the task itself, which can affect the results.

To bridge the existing gaps in research, in this work, we

conduct a large-scale analysis of Java and Python student

submissions from a popular MOOC platform — JetBrains

Academy [26]. The platform’s team provided us with a large

dataset of 1,073,018 Java submissions and 1,345,332 Python

submissions for more than 700 different tasks. This includes

only the correct submissions, after passing all tests, allowing

us to study code quality issues in them. We applied a tool

called Hyperstyle [27] to discover code quality issues in the

submissions. Hyperstyle is embedded into JetBrains Academy,

meaning that students see its feedback after a successful task

submission and can fix detected code quality issues in their

next attempts to increase their code quality grade. This allowed

us to use the historical data of past submissions to analyze the

way students resolve existing issues.

The analysis of the most popular code quality issues showed

that among both languages, not only minor issues like unused

271

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

979-8-3503-2259-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEET58685.2023.0003120

23
 IE

EE
/A

C
M

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g:
 S

of
tw

ar
e

En
gi

ne
er

in
g

Ed
uc

at
io

n
an

d
Tr

ai
ni

ng
 (I

C
SE

-S
EE

T)
 |

97
9-

8-
35

03
-2

25
9-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-S

EE
T5

86
85

.2
02

3.
00

03
1

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

imports are popular, but also issues that can lead to bugs in

the future, e.g., the incorrect usage of a switch statement in

Java or the shadowing of built-in function names in Python.

This indicates the necessity to teach students about them early

on. Moreover, we found that frequent code quality issues are

not always the fault of students, and can be caused by tasks

on the platform itself: for example, incomplete or incorrect

theory part, a weak test base, mistakes in task descriptions or

in pre-written code templates, an incorrect order of topics that

leads to the misunderstanding of the learned concepts, etc.

Next, we looked at the way students fix their issues. We

found out that the majority of students are good at fixing

simple issues that do not require big changes in the code.

Moreover, some students even tried to correct code quality

issues that were not their fault, e.g., fix issues in a pre-written

template or in a code sample taken from an incorrect theory

part. This indicates a successful synthesis of the code quality

analyzer and the platform, since students try to follow the

advice of the code quality analyzer to fix issues even if they

did not introduce them. During the detailed manual analysis

of the submissions, we discovered several interesting cases,

e.g., many students try to shorten their code and only worsen

its quality due to the lack of experience in refactoring.

Finally, we analyzed abnormally long sequences, where

after successfully passing the task, students submit five or

more attempts, changing or fixing the code. It turned out

that students can spend dozens of attempts improving their

code and get the highest code quality score. We noticed that

the main reason for many attempts is the student’s lack of

understanding of what exactly needs to be corrected. For

example, in the code editor on the platform, only the line

with the issue is highlighted, but not the exact position,

which confuses students, so they try different fixes until they

reach the correct code. Another interesting observation is that

students correct issues by groups, i.e., if students see a familiar

issue and know how to correct it, they try to correct it in all

the places where it appears at once.

The results of our study and the provided insights can

be of use to various groups of practitioners. Teachers who

are developing or maintaining programming courses can use

our results to modify their content to focus on the most

prevalent issues. Software developers who are creating new

code quality tools can consider our insights to take care of the

most prominent mistakes, as well as to facilitate their better

fixing among students. Finally, content managers and creators

of MOOCs and their tasks can ensure that the content itself

does not facilitate the issues, be that in the theory or templates.

The tool that we developed for gathering data from JetBrains

Academy is available online, among with the detailed statistics

about the code quality issues within our dataset [28], so others

can extend this paper.

Overall, the main contributions of our paper are:

1) Analysis of more than a million successful submissions in

Java and more than 1.3 million successful submissions in

Python from the standpoint of their quality. We describe

the most popular types of code quality issues and analyze

the dynamics of students fixing them.

2) Case studies of the most prominent issues, where we

provide several examples that demonstrate how students

struggle with code quality problems and how a MOOC’s

environment can help or interfere with the studying

process.

3) Insights and practical implications that can be useful to

teachers who are in the process of developing courses,

as well as developers working on MOOC platforms and

their quality control tools.

II. BACKGROUND

A. Code Quality Analysis

Many works study the problems of students’ code quality,

analyzing large-scale datasets of student submissions to find

certain common behaviors and patterns [8], [17]–[20], [29]

and testing code quality tools on small groups of students [25],

[30], [31]. The first group mostly focuses on Scratch and Java

languages, and uses open datasets for their research [22], [23].

Keuning et al. [8] studied Java submissions from the

Blackbox database [22]. The authors used PMD [32], a pre-

configured industrial code analyzer, to find common code

quality issues. In addition, the authors studied which issues

students correct over time, and compared code quality of

students who use code analyzers with those who do not. The

main weak point of this work is the lack of studying issues of

more experienced students [17].

Edwards et al. [17] broadened the research towards more

difficult tasks. They studied over 500,000 Java submissions

from students with different programming experience, and

categorized the obtained code quality issues, especially of

formatting issues. The students used the Web-CAT tool [33]

to submit their solutions and immediately receive feedback

from professional analyzers. In addition to researching general

issues, the authors explored the issues with more granular

metrics, for example, which issues take more time to fix.

The authors found that students correct issues poorly since

professional linters are not adapted to the educational process,

i.e., provide feedback that is difficult for students to under-

stand [10], [17].

Albluwi et al. [18] studied the distribution of code quality

issues from professional linters. The authors searched for

a correlation between the issues and various metrics, such

as student experience and progress in the course, course

difficulty, etc., but the size of the dataset they used was rather

small. The data includes submissions of 968 students from

three semesters of an introductory programming course that

solve nine programming tasks, which might be too small to

generalize the results. The above-mentioned problem of having

unadapted feedback is also present.

The next group of works focused on Python. The PYTA

tool was developed by Liu and Petersen [25] to provide custom

checks for common code quality issues with adapted feedback.

This tool is a wrapper for the popular Pylint [34] analyzer. The

authors compared the issues before and after embedding the

272

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

tool into a computer science course, and found that students

who use the tool make fewer mistakes and spend less time

fixing them. The data consists of 114,865 submissions from

40 coding exercises, however, there is no detailed analysis of

the code quality issues in these solutions, and the work is

aimed only at the beginner students.

Molnar et al. [30] analyzed Python code in submissions

of various difficulty using Pylint [34] and employed their own

tool for visualizing the issues. The authors used a special score

computed by Pylint to assess the quality of the code. The work

shows how the code quality score changes depending on the

complexity of the tasks, as well as depending on the progress

of the given student. However, the dataset only contains 642

submissions, and, similarly to previous works, an unadapted

code quality tool was used for the assessment.

Effenberger and Pelánek [29] recently analyzed code quality

issues in 114,000 Python submissions for 161 tasks, taken

from 11,000 students over 2.5 years. The authors used the

data for tasks that can be solved with 2–20 lines of code

with a median time for their solving from 1 to 20 minutes.

The authors analyzed not only the issues that exist in correct

solutions, but also how the provided feedback affects their

correction. However, the main limitation of this work is the

simplicity of the tasks.

Overall, it can be seen that the topic of the quality of student

code is important and rather well-researched, however, existing

studies share a number of common drawbacks. The open-

access datasets (e.g., Blackbox [22]) are large, but they do not

contain detailed information about the student’s full context,

like the particular task the student is working on [8]. Other

datasets are significantly smaller—from several hundred [30]

to a hundred thousand submissions [25]—and only contain

tasks for novices. Finally, researchers use tools, the output of

which is not adapted to the educational process, and students

may find it difficult to interpret [10].

In our work, we aim to overcome these limitations by

conducting a study using a large dataset of solutions from

a popular education platform JetBrains Academy [26] that

employs a code quality tool called Hyperstyle [27] within it.

B. JetBrains Academy and Hyperstyle

JetBrains Academy [26] is a project-based education plat-

form developed by JetBrains [35]. The learning on the plat-

form is organized as completing a chain of small tasks that

are all part of a single complex one, thus, after solving them,

the student has a finished project. Currently, the platform

supports studying Java, Python, Kotlin, JavaScript, and Go.

The platform can be used by students, but is also available

for everybody. Some courses are free, some require a paid

subscription, both Java and Python courses that are the focus

of this study are paid.

JetBrains Academy is built around a large knowledge graph,

reflecting the set of topics necessary for studying a pro-

gramming language. The topics can be both theoretical (e.g.,
asymptotic complexity) and practical (e.g., arrays) with some

topics being common between languages (e.g., algorithms

or data structures). To learn more complex concepts, it is

necessary to move in deeper along the graph. Each task in a

studied project is connected to one topic in the graph, aligning

the development of the project with the learning of concepts.

This allows defining the complexity of the task, i.e., the depth

in the knowledge graph of the topic that corresponds to this

task. There are three levels of complexity depending on the

depth: shallow (≤ 2), deep (≥ 5), otherwise moderate.

Submissions to programming tasks are validated in two

stages. Firstly, the correctness of the solution is checked using

tests, similar to most MOOCs. If all the tests pass, the second

stage is initiated where code quality is checked using the

Hyperstyle [27] tool. Hyperstyle uses a subset of code quality

checks of professional analyzers (like PMD [32] for Java or

Pylint [34] for Python) that are relevant to the educational

process. Also, it changes the messages for the majority of the

analyzers’ issues to be more understandable for students. As a

result, students receive a grade based on the overall quality of

their code. Different code quality issues affect the final grade

differently, some issues are only informative (minor issues)

and do not lower the grade at all.

The detected issues are also highlighted in the JetBrains

Academy platform’s user interface, so that the students can see

and fix them in subsequent attempts and improve their grades.

The UI of JetBrains Academy, together with the Hyperstyle

issue and output, are presented in Figure 1. It is also important

to mention that students who have successfully passed the

task can see other public submissions of fellow students with

highlighted code quality issues.

All of this makes JetBrains Academy a suitable platform to

study code quality issues. It already comes with the embedded

code quality tool, which allows us not only to analyze the

issues themselves, but also check the history of submissions

from students to track how they fixed these issues.

III. DATASET

For our analysis, the JetBrains Academy team provided the

data about students’ successful submissions on the platform

over one year (from September 1st, 2020 to September 1st,

2021) that are written in Java or Python and passed all the

correctness tests for the corresponding task. Every submission

contains the source code of the solution, various metadata like

timestamp, task ID, user ID, etc., as well as platform-specific

features such as the task’s complexity. All personal informa-

tion about users was completely removed by the platform’s

team. The obtained data was preprocessed and then filtered.

Preprocessing. All successful solutions submitted by each

user to a particular task consecutively were grouped and

sorted by timestamp, we will refer to such a collection as

a submission series. If two consecutive submissions in one

series were identical, the latter was filtered out. Next, for each

submission, we ran the Hyperstyle tool and collected its output

to see what code quality issues are present in it. We use the

output of the Hyperstyle tool, since this tool is used on the

platform to show code quality issues to the students.

273

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

Сode quality issue

Student’s code

Hyperstyle output

Fig. 1. The UI of a task on JetBrains Academy, together with a Hyperstyle issue tooltip in the editor and the tool’s output.

TABLE I
CHARACTERISTICS OF THE COLLECTED DATASET

AFTER PREPROCESSING AND FILTERING.

Java Python

Tasks 415 364
Students 37,892 46,863

Solutions to shallow tasks 292,049 380,712
Solutions to moderate tasks 428,110 618,257
Solutions to deep tasks 352,859 346,363

Total solutions 1,073,018 1,345,332

Filtering. Firstly, we omitted issues found in templates —

pre-written parts of the solution from the creators that students

can edit and supplement with their own code. Issues in the

template were introduced by the task creators, not students,

so we did not take them into account in our analysis. To filter

them, we applied an algorithm that is used on the platform

itself to find code quality issues in the templates and fix them.

The algorithm analyzes students’ solutions, looks for issues

that are most frequently not corrected, matches positions with

the template, and finally marks them as template issues.

In order to select more representative and interesting data for

the general analysis, we applied a number of filtrations. Firstly,

for the main analysis we kept only the submission series that

contain five successful submissions or fewer. This allowed us

to remove suspiciously long series but filter out only 5% of the

data, since the vast majority of users finish the task in under

five attempts. Secondly, we skipped all formatting issues like

incorrect indentation or missing whitespaces to focus on more

prominent and serious issues. Although formatting issues are

important and appear in student’s solution more often, they

are already well-studied [17], [18], [25] and the process of

correcting them is rather straightforward. The characteristics

of the final dataset are presented in Table I.

IV. ANALYSIS

In our analysis, we studied the following two research

questions about the code quality of student submissions.

RQ1: Which code quality issues are the most prevalent in

Java and in Python submissions?

RQ2: How do students fix various types of issues as they

update their submissions with further attempts?

A. RQ1: Most Prevalent Issues

In this section, we study the most frequent issues and the

reasons for their popularity.

Methodology. In each submission series, we selected only

the first attempt, since we wanted to focus on the students’

initial issues, before they had seen any feedback from the

linters. These attempts represented 78% of all submissions for

Java and 86% for Python, respectively. For each issue type,

we calculated the percentage of submissions in which it was

detected at least once, separately for the tasks with different

complexity levels. Finally, we compared the most prevalent

issues and the differences between complexities.

Results. Firstly, it is important to note that only 8% of

Java and 11% of Python first attempt submissions have at

least one code quality issue not connected to formatting. The

percentages for each issue type are presented in Figure 2,

the top part shows the most popular issues in Java, while the

bottom part shows the information for Python. Both parts are

sorted by the total percentage among all submissions.

The Top-5 Java issues include: (1) Unused local variable,

which finds a locally declared variable that is not used; (2)
Unused imports, which is similar in regards to imports; (3)
Missing break in switch, which points to a possibly skipped

break operator in a casing construction; (4) Boolean expres-
sion complexity, which warns against conditions that are too

complex, e.g., if (a > -15 && a <= 12 || a > 14

274

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

Un
us

ed
Lo

ca
lV

ar
ia

bl
e

Un
us

ed
Im

po
rts

M
is

si
ng

Br
ea

kI
nS

wi
tc

h

Bo
ol

ea
nE

xp
re

ss
io

nC
om

pl
ex

ity

Fo
rL

oo
pC

an
Be

Fo
re

ac
h

M
is

si
ng

Sw
itc

hD
ef

au
lt

Si
m

pl
ify

Bo
ol

ea
nE

xp
re

ss
io

n
Eq

ua
ls

Av
oi

dN
ul

l

Pa
ra

m
et

er
As

si
gn

m
en

t

As
si

gn
m

en
tIn

Op
er

an
d

Co
lla

ps
ib

le
IfS

ta
te

m
en

ts

Li
te

ra
ls

Fi
rs

tIn
Co

m
pa

ris
on

s

Re
du

nd
an

tIm
po

rt

Av
oi

dA
rra

yL
oo

ps

Un
ne

ce
ss

ar
yI

m
po

rt
Ad

dE
m

pt
yS

tri
ng

Em
pt

yS
ta

te
m

en
t

M
od

ifi
ed

Co
nt

ro
lV

ar
ia

bl
e

Ca
llS

up
er

In
Co

ns
tru

ct
or

Up
pe

rE
ll

0

1

2

3

4

5

6

Ex
pl

ic
itS

tri
ng

Co
nc

at

Ap
pr

ox
im

at
eC

on
st

an
t

W
ro

ng
M

ul
til

in
eS

tri
ng

Us
e

To
oM

an
yE

lif
s

Lo
op

Co
nt

ro
lV

ar
ia

bl
eN

ot
Us

ed

Sh
ad

ow
in

gB
ui

lti
n

M
ea

ni
ng

le
ss

Nu
m

be
rO

pe
ra

tio
n

Ch
ai

ne
dC

om
pa

ris
on

To
oC

om
pl

ex
Fo

rm
at

te
dS

tri
ng

Im
pl

ic
itS

um
Im

pl
ic

itR
aw

St
rin

g

Ne
ga

te
dC

on
di

tio
ns

Bl
oc

kA
nd

Lo
ca

lO
ve

rla
p

Co
ns

id
er

Us
in

gE
nu

m
er

at
e

To
oC

om
pl

ex
Fu

nc
tio

ns

Re
de

fin
ed

Ou
te

rN
am

e

Fo
rb

id
Us

in
gA

lp
ha

be
tA

sS
tri

ng

Fl
oa

tC
om

pl
ex

Co
m

pa
re

Im
pl

ic
itN

eg
at

iv
eI

nd
ex

Us
el

es
sL

en
Co

m
pa

re

0

1

2

3

4

5

6

%
 o

f s
ub

m
is

si
on

s
w

ith
 a

n
is

su
e

 shallow
 moderate
 deep

Java

Python

%
 o

f s
ub

m
is

si
on

s
w

ith
 a

n
is

su
e

 shallow
 moderate
 deep

Fig. 2. Distribution of the most prevalent issues among Java submissions
(top) and Python submissions (bottom). The issues are sorted by their total
prevalence in all submissions.

&& a < 17 || a >= 19) {...}; and (5) For loop can
be foreach, which advises to rewrite the for loop into the

foreach to avoid explicit indexing.

The Top-5 Python issues include: (1) Explicit string con-
catenation, which forbids using string concatenation; (2) Ap-
proximate constant, which finds the constants that the students

defined and that can be replaced by existing constants from the

math library; (3) Wrong multiline string use, which informs

about the incorrect usage of multiline strings as function

arguments; (4) Too many elifs, which informs about using

elif statements that are too complex; and (5) Loop control
variable not used, which finds unused variables in loops that

should be replaced with the underscore symbol.

While there exists a difference between different task com-

plexities, we cannot definitely conclude that some issues are

more popular in moderate tasks than in deep ones. Usually,

the high frequency of the issue can be explained by the task

itself. For example, Missing break in switch is more popular in

moderate tasks, because students learn this construct in a task

with such complexity. The same findings were highlighted by

Effenberger and Pelánek [29]. They found that some issues are

highly localized in several tasks and thus influence the general

distribution. In Section V, we touch upon some of them in

more detail and give concrete code examples to illustrate the

most peculiar situations.

B. RQ2: Dynamics of the Solution Quality

In this section, we study how students fix quality issues

in their submission series. While the Hyperstyle paper [27]

has studied the influence of the tool on the correction of code

quality issues, a detailed analysis of which issues get corrected

was not provided.

Methodology. Firstly, we filter out all submissions with

only a single attempt, which is 81% of all submission series

for Java and 87% for Python. Of these, less than 10% have at

least one code quality issue, however, the students chose not

to fix them. Next, for each submission series that we kept, we

calculate the percentage of issues left in the last submission

in the series relative to the first attempt. For example, if there

were 1,000 initial submissions with the given issue, and 200

in the last attempts, we say that the issue remained in 20% of

cases. Comparing the first and last attempts allows us to focus

on the high-level, overall nature of fixing issues.

Results. The dynamics of fixing various issues in submis-

sion series is shown in Figure 3, the top chart represents

Java submissions, while the bottom one represents Python

submissions. In the chart, we consider the most prevalent

issues that were identified in RQ1.

For Java, many issues are successfully corrected by students

and remain in the final submission in less than 15% of cases:

(1) Upper ell forbids the student to use a lower-case l in

numbers of the long type, since the lower-case l looks a

lot like 1; (2) Empty statement informs the student about

standalone “;” semicolon with no statement; and (3) Unused
imports. These issues are easy to recognize and understand.

Moreover, to correct such issues, students need to add or

delete a single line or keyword, which explains the fact that

students successfully fix them. However, several issues are

not corrected in more than 90% of cases: (1) Call super in
constructor reminds of the need to call the constructor of the

class of the child; (2) Add empty string indicates a useless

concatenation with an empty string. To make matters worse,

there is a 14% increase in submissions with the Assignment in
operand issue, which prohibits an assignment within the con-

ditional expressions of while or if statements. We examine

the reasons for this anomaly in detail in Section V-B. Keuning

et al. [8] also showed that some mistakes are not corrected by

students, while some are corrected by the majority.

For Python, there are only two issues which remain in less

than 15% of students’ submissions: (1) Shadowing Python
built-in, which appears if students override built-in functions

like max or input; and (2) Loop control variable not used
when loop control variable is not in use and can be replaced

with an underscore. Moreover, unlike Java, most of the issues

in the studied list are not corrected by students even in the

final attempt in more than 50% of cases.

Finally, as many as three of them appear more often in

the last attempt than in the first: (1) Too complex formatted
string, which is connected to using f-strings incorrectly

(strings like f"My name is: {name}"); (2) Wrong multi-
line string use, which forbids using multiline strings directly;

275

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

8

14

15

16

17

17

18

21

21

25

27

28

32

56

58

63

71

95

96

114

9

9

17

18

27

37

60

77

78

87

87

87

89

92

93

95

95

101

104

115

UpperEll
EmptyStatement
UnusedImports

MissingSwitchDefault
RedundantImport

UnnecessaryImport
MissingBreakInSwitch
UnusedLocalVariable

CollapsibleIfStatements
ParameterAssignment

EqualsAvoidNull
SimplifyBooleanExpression

ForLoopCanBeForeach
ModifiedControlVariable

AvoidArrayLoops
BooleanExpressionComplexity

LiteralsFirstInComparisons
CallSuperInConstructor

AddEmptyString
AssignmentInOperand

0 20 40 60 80 100 120

The precentage of issues left in the last submission
relative to the first submission

Java

PythonShadowingBuiltin
LoopControlVariableNotUsed

ChainedComparison
RedefinedOuterName

ConsiderUsingEnumerate
TooComplexFunctions
BlockAndLocalOverlap

ImplicitNegativeIndex
ForbidUsingAlphabetAsString
MeaninglessNumberOperation

ApproximateConstant
TooManyElifs

ImplicitSum
NegatedConditions

FloatComplexCompare
ExplicitStringConcat
UselessLenCompare

TooComplexFormattedString
WrongMultilineStringUse

ImplicitRawString

0 20 40 60 80 100 120

fe
w

er
 is

su
es

m
or

e
is

su
es

m
or

e
is

su
es

fe
w

er
 is

su
es

Fig. 3. The percentage of submission series that have each issue left in the
last attempt, for Java (top) and Python (bottom). Lower values indicate better
fixing, higher values indicate worse fixing.

(3) Implicit raw string which forbids escape sequences inside

regular strings and forces to use Python raw strings instead.

Similar to Java, we analyzed these anomalies separately in the

case studies in Section V-B, and came to the conclusion that

in all cases it is not the fault of the students. The reason lies

in the platform itself, namely, in the incomplete or erroneous

theoretical part or the task idea and formulation in general,

which lead to the inability to implement the task correctly.

V. CASE STUDIES

Generally, it is difficult to find the true root cause of the

popularity of an issue without manually studying specific

cases. In this section, we describe several cases that provide

explanations for some major peaks in our data.

import java.util.Arrays;
import java.util.Scanner;

public class Main {
 public static int maxAbs(String[] num){
 // Expected solution
 Arrays.stream(num)...

 // Student solution#1
 Stream.of(num)...

 // Student solution#2
 for (int i = 0; i < num.length; i++)
 {...}
 }
}

 while (scanner.hasNext()) {
 input = scanner.nextLine();
 if (input.equals("0")) {
 break;
 }
 ...
 }

1
2
3
4
5
6
7

p ();
 if (input.equals("0")) {
2
3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

“Equals" skips the null check.
It is better to use:

if ("0".equals(input)) {…}

b)

a) import java.util.Arrays;1
The unused import.

Students use an alternative
strategy to solve the task

(lines 9-13).

p
 Arrays.stream(num)...7

Fig. 4. Examples of RQ1 Java cases: a) Unused imports; b) Equals avoid
null. The code formatting is unchanged.

A. RQ1: Most Prevalent Issues

Method. For each code quality issue with high frequency

(from Figure 2), we analyzed its distribution among different

tasks. We assume that if the distribution is biased towards a

specific task, there should be some problem with the task itself.

By examining the reason for this accumulation of issues in a

particular task with concrete examples from the dataset, we

can identify the true reason why students make this issue so

often and whether it is their own fault or not. As examples, we

selected and analyzed around 20 submissions from a concrete

task that contains such an issue and the same amount where

students avoid making it.

Case studies. In total, we highlight six cases: three for

Java (Figure 4) and three for Python (Figure 5). Each case

demonstrates how different factors, e.g., incorrect theory part,

irrelevant tests, or complexity can influence code quality.

1) Unused local variable (Top-1 Java issue): This issue

appears in 80% of the student submissions for Task#9057 [36],

which asks to read several values, put them into placeholders

in the text, and print the result. However, not all input values

are required to complete the text, so if the student uses a

separate variable for each of them, some remain unused. Some

students avoid this issue by reading the value without saving

it into a variable, but apparently, most of the students do

not come to this idea because of the lack of experience in

programming. We reported this observation to the creators of

the task, now all the variables are used, and students no longer

have such an issue in their submissions.

Summary. This example shows that the massive prevalence

of this code quality issue was caused by poorly designed

and tested tasks combined with the lack of knowledge by the

students. Such kind of “third-party” mistakes, not related to the

main idea of the task, can discourage the student and interfere

with their learning of new complex material. Therefore, one

possible solution to avoid this problem in this particular task

would be to display this inspection without lowering the score,

as optional or additional information, or even disable it.

2) Unused imports (Top-2 Java issue): This issue is com-

mon for all tasks, and most of it happens by accident because

of the students’ carelessness. However, one example we would

like to highlight is Task#3828 [37], where students need to find

the maximum value in an array of numbers (Figure 4a). The

task assignment explicitly says: “Try not to use the loop, but
use Stream API”. Moreover, the template for the task contains

276

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

print(1 * 2 * 3)

print('''
Did that stop the old Grinch?
No! The Grinch simply said,
"If I can't find a reindeer,
I'll make one instead!"
''')

...
for i in range(n):
 number = int(input())
 numbers.append(number)
...

1
2
3
4
5
6

1

print('''
i i

1
for i in range(n):

print(1 * 2 * 3)1

Wrong multiline string usage Loop control variable not used

a) b)

c) Meaningless number operation violation

Fig. 5. Examples of RQ1 Python cases: a) Wrong multiline string use; b)
Loop control variable not used; c) Meaningless number operation violation.
The code formatting is unchanged.

import of java.util.Arrays to work with the Stream

API. However, some students ignore this and write the code

using a for loop, probably because they are more familiar

with this construct. Conversely, more advanced students use

java.util.stream.Stream library as an alternative for

one mentioned above.

Summary. This is an example of how a code quality issue

can indicate different intentions of teachers and students. The

authors of the tasks expected only one particular solution from

the students and configured the template only for that solution.

However, they did not consider that some tasks can have

alternative solutions, in which some parts of the template may

not be needed, and therefore, cause an issue. In order to better

control the submissions, the test base for these tasks should

be strengthened or even extended with semantic checks.

3) Equals avoid null: This issue is interesting because it

dominates in tasks with moderate complexity, although the

peaks should logically occur in shallow tasks due to the

inexperience of students. The cause of this peak is a specific

moderate task, where 40% of all submissions with such an

issue are concentrated. It requires the student to use the

equals method to compare the input string with the constant

string “0”. However, the input value in Java can be null, so

to avoid a NullPointerException, the best practice is

to invoke equals on the constant, passing the input as an

argument, rather than vice versa (see Figure 4b).

Summary. This task contains a theoretical section, the theory

only provides examples of comparing two variables, so the

student can find out about the practice of variable-to-constant

comparison only from the Hyperstyle’s feedback.

4) Wrong multi-line string use (Top-3 Python issue): The

prevalence of this issue is mostly caused by Task#6881 [38],

which requires students to print a multi-line string. In the first

attempt, 88% of the students sent the straightforward sub-

mission with the multi-line string directly inside the print
function (Figure 5a), which is flagged by Hyperstyle. Only a

few students managed to avoid this issue by submitting the

following solutions: (1) divide the string into several print
calls; (2) use a single-line string with \n newline separators

and invoke print only once; (3) put the text into a variable.

Summary. This task also contains a theoretical section.

The theory part has a multi-line string usage example that

contradicts the official Python style guide. When students try

to use the incorrect code from the example, the issue is flagged.

5) Loop control variable not used (Top-5 Python issue):
Task#6818 [39] requires students to write a program that

calculates the arithmetic mean. To solve the task, students add

a loop without using its counter. In these cases, the variable

should be replaced by an _ symbol (see Figure 5b).

Summary. The theoretical section of this task does not have

an example of this language feature. As a result, 48% of

student submissions contain the issue in the first attempt.

However, thanks to Hyperstyle, the students learn about it

and in more than 90% of the cases get rid of it during their

following attempts.

6) Meaningless number operation: This is another exam-

ple of an issue where the peak in Figure 2 can be seen for the

moderate tasks, which can be once again explained by specific

tasks with moderate complexity causing it. Task#6558 [40]

requires students to write a program that prints the product of

these three numbers: 1 * 2 * 3 (see Figure 5c). However,

according to the linter’s rules, it is meaningless and could be

simplified into print(6). As a result, about 85% of these

issues related to this particular task.

Summary. Obviously, the authors tried to artificially simplify

the task for beginner students, missing the possible code

quality issues. For this task, it would be better to use values

from the input instead of the predefined constants, or put the

code for obtaining input inside the pre-written template. This

could probably keep the student’s task simple but eliminate

code quality issues. An alternative solution here could be to

hide this issue from the student by customizing Hyperstyle for

this particular task.

Discovered causes of code quality issues. (1) The task

assignment is poorly developed and tested; (2) Students do

not use constructs that are proposed by the creators; (3) The

theoretical part of the task is incomplete or even incorrect; (4)
Students have a lack of knowledge to avoid the issue.

B. RQ2: Dynamics of the Solution Quality

Method. To explain the differences in the dynamics of fix-

ing issues, we also conducted a manual review of submissions,

and collected some illustrative examples. For each issue, we

were interested in the submission series of three different

configurations: (1) only the first attempt contains an issue (the

issue was fixed), (2) both the first and the last attempts contain

an issue (the issue was not corrected), and (3) only the last

attempt contains an issue (the issue appeared in the subsequent

solutions). For this analysis, we selected tasks with the highest

frequency of issues and analyzed their submission series.

Case studies. We considered four different cases with

examples and explanations for several interesting trends, which

we observed in Section IV. Figure 6 shows examples for the

Java cases and Figure 7 — for the Python cases.

1) Assignment in operand (Top-1 Java unfixed issue): This

issue often occurs in tasks where students are required to read

numbers until a specific number is seen, e.g., Task#2153 [41].

There are several ways to implement this, but the most popular

among students is to read the first number, assign it to the

variable, and then read the remaining numbers into the same

variable in the loop, until it equals the necessary value (see

277

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

 // Incorrect
 while ((x = getX() != 5)
 {...}

 // Correct
 x = getX();
 while (x != 5) {
 ...
 x = getX();
 }

 while ((x = getX() != 5)

 // Incorrect
 if ((x = getX() == 5)
 {...}

 // Correct
 x = getX();
 if (x == 5) {...}

1
2
3

1
2
3
4
5
6

1
2
3

1
2
3

a)

b)

 // Incorrect
 ExecutorService executor
 = Executors
 .newCachedThreadPool();;

 // Correct
 ExecutorService executor
 = Executors
 .newCachedThreadPool();

1
2
3
4

1
2
3
4

 // Incorrect
 for(…){…};

 // Correct
 for (…){…}

1
2

1
2

c)

d)

 .newCachedThreadPool();;4

 .newCachedThreadPool();4

 for(…){…};2
)

 for (…){…}2

x = getX();2

 if ((x = getX() == 5)2
)

 x = getX();2

Fig. 6. Examples of RQ2 Java cases: a, b) Assignment in operand; c, d)
Empty statement check.

Figure 6a). To get rid of code duplication, experienced students

start to save the numbers into a variable directly inside the

while condition (Figure 6a and Figure 6b), which leads to an

Assignment in operand issue. It is worth noting that this code is

also correct and is even sometimes used for size optimization

of the bytecode. However, in industrial programming, this code

construction is considered to be error-prone, as it is difficult

to read and understand.

Summary. The theory on the platform does not provide

such a complex example of the while usage. However, we

found many students that have only two submissions with a

small difference in time (within 5 minutes) and the second

one has this complicated case with the while usage. Taking

all facts into account, we can assume that these students, after

successfully submitting a solution, used the opportunity to see

other students’ successful public solutions on the JetBrains

Academy platform, saw this interesting new language con-

struct with the while usage, copied it into their code and

submitted it. This example shows how a seemingly useful

platform feature can have an unexpected effect in the form

of spreading a mistake.

2) Empty statement check (Top-2 Java fixed issue): We

found three typical instances of this issue. Firstly, there are two

semicolons one after another next to a variable initialization.

The task has a pre-written template with a variable declaration

with a semicolon at the end. When students initialize the

variable with a value, they might also add their own semicolon

automatically, forgetting about the one already present in the

template (see Figure 6c).

Secondly, there can be a redundant semicolon after a control

flow statement. Students are taught that in Java it is necessary

to put a semicolon after each statement, so diligent students

also do this after the body of if, for, and while blocks

(Figure 6d), although it is not required.

Finally, there can be a control flow statement without

a body like for (i = 2; i <= n; i *= 2);. Often-

times, students try to shorten their code and calculate some

value directly using a for loop variable, leaving the body of

the for statement empty. For example, this can happen to

calculate the power of some value. However, this is an anti-

Incorrect
print(a < b and b < c)

Correct
print(a < b < c)

1
2

1
2

c)

print(a < b < c)2

print(a < b and b < c)2
c)

Incorrect
print(f'Amount'
 f'={int(round(tax_amount))}!')

Correct
tax_amount = int(round(tax_amount))
print(f'Amount={tax_amount}!')

1
2
3

1
2
3

b)
p (
 f'={int(round(tax_amount))}!')3

print(f'Amount={tax_amount}!')3

Incorrect
...
t = r”…”
match = re.match(t, string)
...
print(f"Full number: "
 f"{match.group(1)}”)

Correct
...
t = re.compile(r”…”)
match = t.match(string)
...
print(f"Full number: "
 f"{match[1]}”)

1
2
3
4
5
6
7

1
2
3
4
5
6
7

a)

p (
 f"{match[1]}”)7

 f"{match.group(1)}”)7

Fig. 7. Examples of RQ2 Python cases: a, b) Too complex formatted string
violation; c) Chained comparison.

pattern, since an empty for body often introduces bugs that

are hard to spot later on.

Summary. Most students (over 85%) fix this issue because it

seems pretty easy to fix — simply remove the extra semicolon.

However, about 15% of users do not to fix this issue. A

possible reason for this may be that the issue is too simple

and students prefer to fix more interesting ones.

3) Too complex formatted string (Top-1 Python unfixed
issue): This issue appears if the student uses an f-string
and calls something inside it. For instance, the example in

Figure 7a calls the group function, and the example in

Figure 7b calls the int and round functions. This can

complicate the code and lead to potential bugs.

Summary. Almost all students write the correct solution

at the beginning, but then, in an attempt to shorten it, they

transfer some of their code into the f-string, which causes

the issue. At this stage, students might not yet be familiar with

the concept of refactoring and therefore do it incorrectly.

4) Chained comparison (Top-3 Python fixed issue): This

issue appears if students use two comparisons instead of a

single triple one (see Figure 7c). Python allows chaining com-

parison operators as a helpful shorthand, but such a “syntactic

sugar” is not common in other programming languages.

Summary. There are not many guidelines about code quality

on the JetBrains Academy platform at the moment. However,

Chained comparison issue is covered by the theory in

Task#5920 [42]. This task provides several illustrative exam-

ples and clear explanations, which can be the reason why 83%

of the students fix it in their final attempts.

Discovered reasons to fix code quality issues. (1) When

students exchange their solutions, they can both acquire new

knowledge and borrow other students’ issues; (2) If an issue

is simple to correct, students mostly try to do it, even with

issues that are not covered in the theory part; (3) However, if

the issue is too difficult to understand, students may ignore it.

In this case, theory can help.

VI. ANOMALOUSLY LONG SUBMISSION SERIES

In the main body of this study, answering two research

questions above, we did not take into account long submission

series (longer than 5 successful submissions), which constitute

about 5% of the entire dataset. In this additional study, we

278

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

MNC - MagicNumberCheck
WAFC - WhitespaceAfterCheck
WARC - WhitespaceAroundCheck
PPC - ParenPadCheck
AAL - AvoidArrayLoops
FLCBF - ForLoopCanBeForeach

1
import java.util.Scanner;

public class Main {

 public static void main(String[] args) {
 // write your code here

 String[] guestsArr = new String[8]; // MNC
 int guestsArrCounter = 0;
 Scanner scanner = new Scanner(System.in);
 for(int i = 0; i < 4; i++){ // WAFC, WARC, PPC (2), MNC
 String[] roomGuests = scanner.nextLine().split(" ");
 for(int j = 0; j < roomGuests.length; j++){
// WAFC, WARC, PPC (2), AAL, FLCBF
 guestsArr[guestsArrCounter] = roomGuests[j];
 guestsArrCounter++;
 }
 }
 for(int i = 8; i > 0; i--){ // WAFC, WARC, PPC (2), MNC
 System.out.println(guestsArr[i-1]); // WAFC, WARC
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

2 import java.util.Scanner;

public class Main {

 public static void main(String[] args) {
 // write your code here
 String[] guestsArr = new String[8]; // MNC
 int guestsArrCounter = 0;
 Scanner scanner = new Scanner(System.in);
 for(int i = 0; i < 4; i++){ // WAFC, WARC, PPC, MNC
 String[] roomGuests = scanner.nextLine().split(" ");
 for(int j = 0; j < roomGuests.length; j++){
// WAFC, WARC, PPC, AAL, FLCBF
 guestsArr[guestsArrCounter] = roomGuests[j];
 guestsArrCounter++;
 }
 }
 for(int i = 8; i > 0; i--){ // WAFC, WARC, PPC, MNC
 System.out.println(guestsArr[i - 1]);
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

 for(int i = 0; i < 4; i++){ // WAFC, WARC, PPC, MNC10

 for(int i = 8; i > 0; i--){ // WAFC, WARC, PPC, MNC18
 System.out.println(guestsArr[i - 1]);19

 for(int j = 0; j < roomGuests.length; j++){
// WAFC, WARC, PPC, AAL, FLCBF

12
13

3
import java.util.Scanner;

public class Main {

 public static void main(String[] args) {
 // write your code here

 String[] guestsArr = new String[8]; // MNC
 int guestsArrCounter = 0;
 Scanner scanner = new Scanner(System.in);
 for (int i = 0; i < 4; i++) { // MNC
 String[] roomGuests = scanner.nextLine().split(" ");
 for (int j = 0; j < roomGuests.length; j++) { // AAL, FLCBF
 guestsArr[guestsArrCounter] = roomGuests[j];
 guestsArrCounter++;
 }
 }
 for (int i = 8; i > 0; i--) { // MNC
 System.out.println(guestsArr[i - 1]);
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 for (int i = 0; i < 4; i++) { // MNC10

 for (int j = 0; j < roomGuests.length; j++) { // AAL, FLCBF12

 for (int i = 8; i > 0; i--) { // MNC17

4 import java.util.Scanner;

public class Main {

 public static void main(String[] args) {
 // write your code here

 String[] guestsArr = new String[8]; // MNC
 int guestsArrCounter = 0;
 Scanner scanner = new Scanner(System.in);
 for (int i = 0; i < 4; i++) { // MNC
 String[] roomGuests = scanner.nextLine().split(" ");
 for (String roomGuest : roomGuests) {
 guestsArr[guestsArrCounter] = roomGuest;
 guestsArrCounter++;
 }
 }
 for (int i = 8; i > 0; i--) { // MNC
 System.out.println(guestsArr[i - 1]);
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 for (String roomGuest : roomGuests) {12

3 attempts

35 attempts

1 attempt

for (int i = 0; i < 4; i++) // WAFC, WARC
for (int i = 0; i< 4; i++) // WAFC, WARC
for (int i = 0; i < 4; I++) // WAFC, WARC
Different combinations
of spaces inside for loops
for (int i = 0; i < 4; i++)

Fig. 8. The full submission series for solving Task#9261 [43], consisting of 39 attempts. The green color indicates places with the fixed code quality issues
between attempts. Comments contain the list of code quality issues in the code line and their number in the brackets (if it contains more than one such issue).
(1) Contains the first successful attempt, (4) — the last attempt. Between (2) and (3) there were 35 attempts, the changes are shown next to the corresponding
arrow, changing line 10.

manually analyze these long sequences to examine how stu-

dents fix issues and why they might make numerous attempts.

In the previous sections, we omitted code quality issues related

to formatting, because they are less interesting and they would

dominate the results in RQ1. However, in this part, we kept

all formatting issues because they play a major role in these

anomalously long sequences.

A. Data

For this analysis, we extracted all student submission se-

ries of length greater than 5 from the dataset described

in Section III. Then, we filtered out submissions made by

internal JetBrains Academy bots, which resend all submissions

for a specific task after some content or any of the tests

change. From the standpoint of out dataset, these bots look

like separate students that have suspiciously long artificial

submission series of more than 1,000 attempts, which were

sent one by one with less than a minute gap, but had quite

different code inside (solutions of different students), making

them easy to detect and remove. Thus, the final data for this

analysis consisted of only 5,180 submission series in Java and

2,786 in Python, with 5 to 50 attempts in each.

Finally, we calculated the frequency of different lengths

of the remaining series. For Java, most students have 6-10

attempts (about 92.6%). However, several students solve tasks

in 31, 39, and even 41 attempts. For Python, the situation is

similar — about 93.9% of the students have 6–10 attempts.

However, the maximum number of attempts for Python is

slightly higher — one of the students tried to pass the solution

47 times. At the same time, the rest of the students made no

more than 29 attempts, which is lower than in Java.

B. Java Case Study

We chose the more interesting of the longest series to

present as a case study. This submission series has 39 attempts

for Task#9261 [43], where it is necessary to read several lines

from the keyboard and output them in reverse order. The full

history of correct submissions is presented in Figure 8.

The first successful attempt that passes all tests 1 has 6

unique code quality issues and 19 issues in total. As we can

see, almost all of them are about code formatting in for loops.

To begin with, the student got rid of indentation issues step

by step within 3 attempts 2 : (1) firstly, deleted extra space

between the open bracket and int in lines 10 and 18; (2) then

added missing spaces in the guestsArr array index in line

19; (3) finally, removed extra spaces between i++, j++, i--,

and the closing bracket in lines 10, 12, and 18. We assume that

the student knew exactly how to fix the issue at each attempt,

as it was fixed in several places via one change.

However, after these changes, the for loops still contains

formatting issues: Whitespace After and Whitespace Around.

In fact, the loops do not contain a space after the for keyword

and before the opening curly bracket. Probably, because the

JetBrains Academy interface highlights only the line with the

279

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

n=0 # E225
n= 0 # E225
Different combinations
of spaces around =
n =0 # E225

while (n < 3) : # C0325
while (n < 3) : # E201, E202, E203
while (n < 3): # E201, E202
Different combinations
of spaces around brackets
while n < 3:

if x % 2 == 0 : # E203
Different combinations
of spaces around brackets
if (x % 2) == 0: # E201, E202

E201 - Whitespace after (
E202 - Whitespace Before)
E203 - Whitespace Before :
E221 - Multiple spaces before operator
E225 - Missing whitespace around operator
E226 - Missing whitespace around arithmetic operator
E228 - Missing whitespace around modulo operator
E703 - Statement ends with a semicolon
C0325 - Unnecessary parens after “if”
SC200 - Spelling error in name
W0104 - Statement seems to have no effect
W0301 - Unnecessary semicolon

n = 0 # E221
nbre_banc = 0 # SC200 (2)
while n < 3:
 x = int(input())
 if x%2 == 0: # E228
 x = x//2 # E226
 nbre_banc += x # SC200 (2)
 else:
 x = x//2 + 1 # E226
 nbre_banc += x # SC200 (2)
 n +=1; # E225, E703
 nbre_banc # W0104, SC200 (2)
print(nbre_banc) # SC200 (2)

1
2
3
4
5
6
7
8
9
10
11
12
13

1 n = 0 # E221
nbre_banc = 0 # SC200 (2)
while n < 3:
 x = int(input())
 if x % 2 == 0:
 x = x // 2
 nbre_banc += x # SC200 (2)
 else:
 x = x // 2 + 1
 nbre_banc += x # SC200 (2)
 n += 1; # W0301
 nbre_banc # W0104, SC200 (2)
print(nbre_banc) # SC200 (2)

 if x % 2 == 0:

1
2
3
4
5
6
7
8
9
10
11
12
13

 x = x // 26

 n += 1; # W030111

2

n = 0 # E221
nbre_banc = 0 # SC200 (2)
while n < 3:
 x = int(input()) # E201, E202
 if x % 2 == 0:
 x = x // 2
 nbre_banc += x # SC200 (2)
 else:
 x = x // 2 + 1
 nbre_banc += x # SC200 (2)
 n += 1; # W0301
 nbre_banc # W0104, SC200 (2)
print(nbre_banc) # E201, E202, SC200 (2)

1
2
3
4
5
6
7
8
9
10
11
12
13 print(nbre_banc) # E201, E202, SC200 (2)13

 x = int(input()) # E201, E2024

3

n = 0
nbre_banc = 0 # SC200 (2)
while n < 3:
 x = int(input()) # E201, E202
 if x % 2 == 0:
 x = x // 2
 nbre_banc += x # SC200 (2)
 else:
 x = x // 2 + 1
 nbre_banc += x # SC200 (2)
 n += 1; # W0301
 nbre_banc # W0104, SC200 (2)
print(nbre_banc) # E201, E202, SC200 (2)

1
2
3
4
5
6
7
8
9
10
11
12
13

n = 01
4

n = 0
nbre_banc = 0 # SC200 (2)
while n < 3:
 x = int(input()) # E201, E202
 if x % 2 == 0:
 x = x // 2
 nbre_banc += x # SC200 (2)
 else:
 x = x // 2 + 1
 nbre_banc += x # SC200 (2)
 n += 1; # W0301
 nbre_banc # W0104, SC200 (2)
print(nbre_banc) # E201, E202, SC200 (2)

1
2
3
4
5
6
7
8
9
10
11
12
13

while n < 3:3

5

n = 0
nbre_banc = 0 # SC200, SC200
while n < 3:
 x = int(input())
 nbre_banc += x // 2 + x % 2 # SC200, SC200
 x = x // 2
 n += 1
print(nbre_banc) # SC200, SC200

1
2
3
4
5
6
7
8

 n += 17

 nbre_banc += x // 2 + x % 2 # SC200, SC200
 x = x // 2

5
6

6

1 attempt

8 attempts

10 attempts

1 attempt

27 attempts

Fig. 9. The full submission series for solving Task#6462, consisting of 47 attempts. The green color indicates places with the fixed code quality issues
between attempts. The yellow color indicates places where the initial issues were corrected, but new ones appeared. The red color indicates places where new
code quality issues appeared. Comments contain the list of code quality issues in the code line and their number in the brackets (if it contains more than one
such issue). (1) contains the first successful attempt, (6) — the last attempt. Between (3) and (4) there were 8 attempts, the changes are shown next to the
corresponding arrow, changing line 1. Between (4) and (5) there were 27 attempts, the changes are shown next to the corresponding arrow, changing line 3.
Between (5) and (6) there were 10 attempts, the changes are shown next to the corresponding arrow, changing line 5.

issue, the student did not understand their exact positions and

went through various options for 35 attempts. Finally, the

student found the right combination 3 . In the end, a more

serious issue was fixed — the for loop was replaced with

forEach 4 . The final code looks more readable, but still

contains a few issues — all of them do not affect the final

grade, so the student finished this task with the highest score.

C. Python Case Study

For Python, we analyzed the longest submission series with

47 attempts. The student tried to solve Task#6462 [44], which

requires reading three integer numbers from the user input

(the number of students in three classes) and calculating the

minimum number of desks to be purchased if at most two

students may sit at any desk. The full history of the correct

submissions is presented in Figure 9.

The first successful attempt that passes all the tests 1

has 7 unique code quality issues and 17 issues in total, and

almost all of them are about code formatting in arithmetic

expressions. Thus, the student tried to correct them first and

succeeded (lines 5, 6 and 11 in 2). However, another issue in

line 11 (E703) was unexpectedly substituted with (W0301).

Both of these issues point to an extra semicolon at the end of

line 11, but they were detected by different linters inside the

Hyperstyle tool [27] and deduplicated in a wrong way.

Probably, this platform behavior confused the student, so in

the third attempt 3 , the student added extra spaces around

input (line 4) and inside print (line 13), which produced

four new formatting issues. Then, the student switched to

the first line and tried to correct wrong spaces in 8 attempts

4 . It is interesting to note that the student tried different

combinations of spaces, while there were already similar lines

in the code that did not contain this issue (e.g., lines 2, 4, 6,

etc.). Besides the highlighting of the exact issue position, a

clearer message from the tool could help with this task faster,

since the current version of the hint is too general: missing
whitespace around operator.

Next, the student added parentheses around the while
statement and tried to add spaces in the correct way. After

27 attempts, the extra brackets were removed and the solution

between 4 and 5 did not change. Finally, we see the same

problem, but with the if statement between 5 and 6 . For

both of these cases, the student tried to correct the issues that

280

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

they themselves added, experimenting with parentheses and

spaces. Perhaps, the problem is that students can not see their

submissions history and roll back code with code quality issues

they made to the previous state.

As a result, after all corrections, the student’s final solution

6 is much cleaner and shorter than in 1 . However, it

should be noted that issues related to incorrect spelling and

those that do not affect the final score have not been corrected.

Summary. (1) Issue hints must be carefully adapted in code

quality assessment tools because students can spend a lot of

attempts to fix an issue just by going through all the possible

options; (2) Students can change correct code to incorrect

code. Perhaps, in this case, it is necessary to additionally

indicate these cases to the student and highlight them among

other issues; (3) Some students find it difficult to correct

formatting issues (spaces, brackets, etc) in the Web editor if

the exact position is not set, resulting in a lot of attempts; (4)
Students are reluctant to correct issues that do not affect the

final code quality grade.

VII. IMPLICATIONS

Let us reiterate the main practical results from the analysis

of cases in both RQs and anomalously long submission series.

Theoretical part. The theoretical part of a task should be

complete and covering different cases. First and foremost,

it should not contain quality issues in itself, and, equally

important, it should cover all the specific sub-cases that will

appear in the practical part.

Extensive testing. Test cases for practical tasks should

be exhaustive and account for different possible solutions.

Perhaps, this is not feasible to predict from the start, so this

part should be revisited after some time by analyzing the most

popular solutions.

Pre-written templates. If the task contains a pre-written

template, the template also should not contain code quality

issues itself. Moreover, the template should not be too restric-

tive and force a particular solution, but instead enable different

solution strategies.

Reporting issues. The overall results of our study indi-

cate that the reporting of code quality issues to students is

paramount in the education process. In a lot of cases, these

reports allow the students to fix the issues in their initial

attempts, thus practically instilling code quality guidelines.

Rewarding students. Specifically, we found that the grade
for code quality (that does not directly influence the overall

result of the course) is a good incentive for a student to put

effort into the task, and, conversely, some issues that do not

influence the grade, remain unfixed.

Adapting the hints. As mentioned before in Section II,

a problem with some code quality tools is that their results

are unadapted for novices. In our study, we also found that

students sometimes struggle with understanding what exactly

the issue is. Overall, even when adopting messages from

tools, developers should be very careful with wording. Also,

for simple and understandable formatting issues, finding their

exact place in the marked line can also present a challenge.

VIII. THREATS TO VALIDITY

In this work, we conducted a large-scale study of code

quality issues, however, it has some limitations. In RQ1, the

presence of each specific issue is not uniform among different

tasks, which means that there are tasks where a specific issue

is more prevalent, and these tasks can inflate its prevalence in

general. However, this is normal: different tasks target different

constructs and concepts in the language, and are thus more

prone to different types of issues. For this reason, issues such

as Missing break in switch are more prevalent in certain tasks,

while more general issues like Redundant import check are

more universal. We believe that this does not invalidate the

results of our study, since we used a diverse dataset of 779

tasks that target a wide variety of topics.

Also, the results of this work are not generalizable to all

MOOC platforms, since they were obtained on a specific

platform — JetBrains Academy. We conducted the manual

analysis to look into case studies for RQ1 and RQ2, as well

as long series, however, these findings are not directly general-

izable, since they depend on specific tasks and environments.

At the same time, we received and shared a lot of insights that

can be useful to the community in different settings.

IX. CONCLUSION AND FUTURE WORK

In this paper, we carried out an analysis of the code quality

of successful student submissions from the JetBrains Academy

platform. We studied the most popular code quality issues

among the users’ initial successful submissions, analyzed the

dynamics of fixing these issues on a large scale, and analyzed

the most interesting cases manually.

We found that students introduce various kinds of code

quality issues, with the real root causes being not only the

students themselves, but also external factors, such as an

incorrect task or learning materials, as well as obscure code

quality issues messages. The issues also significantly differ in

terms of how often they get fixed. Some issues are fixed by the

majority of students if the issue is simple to understand or easy

to fix. However, some issues are fixed more rarely, and there

even exist issues that are more common in the last attempts

than in the first. This can happen due to students copying other

students’ solutions after solving the task, or when they try to

shorten the code without the proper knowledge of refactoring

practices. Finally, in about 5% of the cases, the submission

series can be more than 5 attempts long, and we found that

these long series of attempts often consist of unsuccessfully

fixing simple formatting issues. The supplementary materials

for the paper are available online [28].

We believe that this study will be useful to teachers,

developers of code quality tools, as well as MOOC educa-

tional platforms in general. One can focus on specific issues

highlighted in this work to make sure they are addressed, but

it is also crucial to improve existing materials and tools, in

particular so that they do not introduce issues themselves. In

future work, we plan to study in greater detail the influence of

grading on code quality, as well as differences in code quality

issues between the Web environment and the IDE.

281

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. Boehm, “A view of 20th and 21st century software engineering,” in
Proceedings of the 28th international conference on Software engineer-
ing, 2006, pp. 12–29.

[2] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 1. IEEE, 2015, pp. 913–923.

[3] J.-L. Lions, L. Luebeck, J.-L. Fauquembergue, G. Kahn, W. Kubbat,
S. Levedag, L. Mazzini, D. Merle, and C. O’Halloran, “Ariane 5 flight
501 failure report by the inquiry board,” 1996.

[4] R. C. Martin, Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2009.

[5] R. L. Glass, Facts and Fallacies of Software Engineering. Addison-
Wesley Professional, 2002.

[6] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[7] M. Fagan, “Design and code inspections to reduce errors in program
development,” in Software pioneers. Springer, 2002, pp. 575–607.

[8] H. Keuning, B. Heeren, and J. Jeuring, “Code quality issues in student
programs,” in Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education, 2017, pp. 110–115.

[9] J. Börstler, H. Störrle, D. Toll, J. Van Assema, R. Duran, S. Hooshangi,
J. Jeuring, H. Keuning, C. Kleiner, and B. MacKellar, “”I know it
when I see it” Perceptions of Code Quality: ITiCSE’17 Working Group
Report,” in Proceedings of the 2017 ITiCSE Conference on Working
Group Reports, 2018, pp. 70–85.

[10] H. Keuning, B. Heeren, and J. Jeuring, “How teachers would help
students to improve their code,” in Proceedings of the 2019 ACM Con-
ference on Innovation and Technology in Computer Science Education,
2019, pp. 119–125.

[11] E. G. Oh, Y. Chang, and S. W. Park, “Design review of MOOCs:
Application of e-learning design principles,” Journal of Computing in
Higher Education, vol. 32, no. 3, pp. 455–475, 2020.

[12] C. Impey and M. Formanek, “MOOCS and 100 Days of COVID:
Enrollment surges in massive open online astronomy classes during the
coronavirus pandemic,” Social Sciences & Humanities Open, p. 100177,
2021.

[13] A. Koutropoulos, M. S. Gallagher, S. C. Abajian, I. de Waard, R. J.
Hogue, N. O. Keskin, and C. O. Rodriguez, “Emotive Vocabulary in
MOOCs: Context & Participant Retention,” European Journal of Open,
Distance and E-Learning, 2012.

[14] S. Kinash, “MOOCing about MOOCs,” Education Technology Solutions,
vol. 57, no. 70, pp. 56–58, 2013.

[15] J. Carter, K. Ala-Mutka, U. Fuller, M. Dick, J. English, W. Fone, and
J. Sheard, “How shall we assess this?” in Working group reports from
ITiCSE on Innovation and technology in computer science education,
2003, pp. 107–123.

[16] G. De Ruvo, E. Tempero, A. Luxton-Reilly, G. B. Rowe, and N. Gi-
acaman, “Understanding semantic style by analysing student code,” in
Proceedings of the 20th Australasian Computing Education Conference,
2018, pp. 73–82.

[17] S. H. Edwards, N. Kandru, and M. B. Rajagopal, “Investigating static
analysis errors in student Java programs,” in Proceedings of the 2017
ACM Conference on International Computing Education Research,
2017, pp. 65–73.

[18] I. Albluwi and J. Salter, “Using static analysis tools for analyzing student
behavior in an introductory programming course,” Jordanian J. Comput.
Inf. Technol, 2020.

[19] E. Aivaloglou and F. Hermans, “How kids code and how we know:
An exploratory study on the Scratch repository,” in Proceedings of the
2016 ACM Conference on International Computing Education Research,
2016, pp. 53–61.

[20] P. Techapalokul and E. Tilevich, “Understanding recurring quality prob-
lems and their impact on code sharing in block-based software,” in 2017

IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2017, pp. 43–51.

[21] Y. Bai, T. Wang, and H. Wang, “Amelioration of teaching strategies by
exploring code quality and submission behavior,” IEEE Access, vol. 7,
pp. 152 744–152 754, 2019.

[22] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting, “Blackbox: A
large scale repository of novice programmers’ activity,” in Proceedings
of the 45th ACM technical symposium on Computer science education,
2014, pp. 223–228.

[23] “Scratch Open Dataset,” https://scratch.mit.edu/explore/projects/all/,
[Online; accessed 20-January-2023].

[24] C.-A. Lo, Y.-T. Lin, and C.-C. Wu, “Which programming language
should students learn first? A comparison of Java and Python,” in 2015
International Conference on Learning and Teaching in Computing and
Engineering. IEEE, 2015, pp. 225–226.

[25] D. Liu and A. Petersen, “Static analyses in Python programming
courses,” in Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 2019, pp. 666–671.

[26] “JetBrains Academy,” https://www.jetbrains.com/academy/, [Online; ac-
cessed 20-January-2023].

[27] A. Birillo, I. Vlasov, A. Burylov, V. Selishchev, A. Goncharov,
E. Tikhomirova, N. Vyahhi, and T. Bryksin, “Hyperstyle: A tool for
assessing the code quality of solutions to programming assignments,”
in Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 1, 2022, pp. 307–313.

[28] “Artifacts and supplementary materials,” https://zenodo.org/record/
7573422, [Online; accessed 20-January-2023].

[29] T. Effenberger and R. Pelánek, “Code quality defects across introduc-
tory programming topics,” in Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 1, 2022, pp. 941–947.

[30] A.-J. Molnar, S. Motogna, and C. Vlad, “Using static analysis tools to
assist student project evaluation,” in Proceedings of the 2nd ACM SIG-
SOFT International Workshop on Education through Advanced Software
Engineering and Artificial Intelligence, 2020, pp. 7–12.

[31] H. Keuning, B. Heeren, and J. Jeuring, “Student refactoring behaviour in
a programming tutor,” in Koli Calling’20: Proceedings of the 20th Koli
Calling International Conference on Computing Education Research,
2020, pp. 1–10.

[32] “PMD,” https://pmd.github.io/, [Online; accessed 20-January-2023].
[33] S. H. Edwards and M. A. Perez-Quinones, “Web-cat: automatically

grading programming assignments,” in Proceedings of the 13th annual
conference on Innovation and technology in computer science education,
2008, pp. 328–328.

[34] “Pylint,” https://pylint.pycqa.org/en/latest/, [Online; accessed 20-
January-2023].

[35] “JetBrains,” https://www.jetbrains.com/, [Online; accessed 20-January-
2023].

[36] “Task#9057 on the JetBrains Academy platform,” https://hyperskill.org/
learn/step/9057, [Online; accessed 20-January-2023].

[37] “Task#3828 on the JetBrains Academy platform,” https://hyperskill.org/
learn/step/3828, [Online; accessed 20-January-2023].

[38] “Task#6881 on the JetBrains Academy platform,” https://hyperskill.org/
learn/step/6881, [Online; accessed 20-January-2023].

[39] “Task#6818 on the JetBrains Academy platform,” https://hyperskill.org/
learn/step/6818, [Online; accessed 20-January-2023].

[40] “Task#6558 on the JetBrains Academy platform,” https://hyperskill.org/
learn/step/6558, [Online; accessed 20-January-2023].

[41] “Task#2153 on the JetBrains Academy platform,” https://hyperskill.org/
learn/step/2153, [Online; accessed 20-January-2023].

[42] “Task#5920 on the JetBrains Academy platform,” https://hyperskill.org/
learn/step/5920, [Online; accessed 20-January-2023].

[43] “Task#9261 on the JetBrains Academy platform,” https://hyperskill.org/
learn/step/9261, [Online; accessed 20-January-2023].

[44] “Task#6462 on the JetBrains Academy platform,” https://hyperskill.org/
learn/step/6462, [Online; accessed 20-January-2023].

282

Authorized licensed use limited to: University Library Utrecht. Downloaded on September 26,2023 at 08:44:09 UTC from IEEE Xplore. Restrictions apply.

