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ABSTRACTDANIELE CAMPA:
Introduction  Only a small number of risk factors 
for pancreatic ductal adenocarcinoma (PDAC) has 
been established. Several studies identified a role of 
epigenetics and of deregulation of DNA methylation. 
DNA methylation is variable across a lifetime and in 
different tissues; nevertheless, its levels can be regulated 
by genetic variants like methylation quantitative trait loci 
(mQTLs), which can be used as a surrogate.
Materials and methods  We scanned the whole 
genome for mQTLs and performed an association 
study in 14 705 PDAC cases and 246 921 controls. 
The methylation data were obtained from whole 
blood and pancreatic cancer tissue through online 
databases. We used the Pancreatic Cancer Cohort 
Consortium and the Pancreatic Cancer Case–Control 
Consortium genome-wide association study (GWAS) 
data as discovery phase and the Pancreatic Disease 
Research consortium, the FinnGen project and the 
Japan Pancreatic Cancer Research consortium GWAS 
as replication phase.
Results  The C allele of 15q26.1-rs12905855 showed 
an association with a decreased risk of PDAC (OR=0.90, 
95% CI 0.87 to 0.94, p=4.93×10−8 in the overall meta-
analysis), reaching genome-level statistical significance. 
15q26.1-rs12905855 decreases the methylation of a 
’C-phosphate-G’ (CpG) site located in the promoter 
region of the RCCD1 antisense (RCCD1-AS1) gene 
which, when expressed, decreases the expression of 
the RCC1 domain-containing (RCCD1) gene (part of 
a histone demethylase complex). Thus, it is possible 

that the rs12905855 C-allele has a protective role in 
PDAC development through an increase of RCCD1 gene 
expression, made possible by the inactivity of RCCD1-
AS1.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The overall estimated heritability of 
pancreatic ductal adenocarcinoma (PDAC) is 
around 21.2%, but only 4.5% of it has been 
determined, suggesting that many additional 
loci remain to be identified. The majority of 
those loci lack a functional explanation of the 
statistical association.

WHAT THIS STUDY ADDS
	⇒ A novel PDAC risk variant, 15q26.1-rs12905855, 
that regulates methylation in the pancreatic 
tissue has been identified with a genome-wide 
level of statistical significance (p=4.93×10−8). 
This SNP modifies the methylation and the 
consequent expression in the pancreas of the 
RCC1 domain-containing (RCCD1) gene that 
is involved in chromosomal stability during 
mitosis.

HOW MIGHT THIS STUDY AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ These results improve the knowledge on PDAC 
genetic.
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Conclusion  We identified a novel PDAC risk locus which modulates 
cancer risk by controlling gene expression through DNA methylation.

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) constitutes the fourth 
cause of cancer-related deaths in Europe.1 2 The early stages of 
PDAC are characterised by few or unspecific symptoms, making 
diagnosis very difficult. Surgery remains the only curative treat-
ment but is possible in only a small portion of patients as most 
PDAC cases are diagnosed at an advanced stage.3 4

Several genome-wide association studies (GWASs) and gene 
candidate studies have identified around 30 common loci asso-
ciated with PDAC susceptibility in the European population,5–19 
with a smaller number in non-European ethnicities.20–22 The 
overall estimated heritability of PDAC is around 21.2%, but 
only 4.5% of it has been determined, suggesting that many 
additional loci remain to be identified.23 Additionally, GWASs 
are prone to false-negative results since only SNPs that reach 
a very restrictive p-value threshold (p<5×10−8) are generally 
reported. Moreover, GWASs suffer, as an additional limitation, 
from the inherent difficulty in linking the identified variants 
with a function that explains their effect. A possible solution is 
offered by secondary analysis of large GWAS data using only 
functional SNPs and a replication in a large cohort for valida-
tion. This strategy has been useful in identifying regulatory SNPs 
associated with PDAC susceptibility that have been overlooked 
by the original GWASs.11 24 25 In addition to genetics, several 
studies have also identified a relevant role of epigenetics in 
PDAC aetiology, and in particular in the deregulation of DNA 
methylation, with hypermethylation of tumour suppressor 
genes and hypomethylation of oncogenes.26–28 However, DNA 
methylation shows variability across a lifetime, in response to 
environmental stimuli or ageing, and shows tissue specificity,29 
making the studies that rely on blood as a proxy tissue difficult 
to interpret with respect to the methylation in a specific organ.30 
Therefore, the epidemiological investigation of the effects of 
DNA methylation remains a complex challenge due to its fluid 
feature. However, DNA methylation has a genetic component. 
Methylation quantitative trait loci (mQTLs) are germline vari-
ants associated with DNA methylation level and are, by their 
nature, stable during time and disease.31 The genetic component 
of methylation accounts for a small fraction of its variability; 
nevertheless, mQTLs could represent a good surrogate to study 
DNA methylation in epidemiological settings. Recently, several 
studies highlighted the association between mQTLs and risk of 
breast, bladder and prostate cancers.32–35 Heyn and colleagues 
conducted a small study on 49 PDAC cases and seven controls 
and identified rs401681, an mQTL in the TERT locus, to be 
associated with PDAC development.34 With these premises, in 
this study, we identified all human pancreatic mQTLs and anal-
ysed their involvement in PDAC susceptibility in a large case–
control association study.

MATERIALS AND METHODS
Discovery phase
The discovery phase consisted of the data of the Pancreatic 
Cancer Cohort Consortium (PanScan) (PanScan I–III) and the 
Pancreatic Cancer Case–Control Consortium (PanC4). The data 
were downloaded from the National Center for Biotechnology 
Information Database of Genotypes and Phenotypes (study 
accession numbers phs000206.v5.p3 and phs000648.v1.p1, 
project reference #12644). Detailed information on the study 

participants, genotyping arrays used and analysis is described 
in the original papers.5–8 The datasets were imputed separately 
using the Michigan Imputation Server (https://imputationserver.​
sph.umich.edu) and the Haplotype Reference Consortium 
V.r1.1 as reference panels, and subsequently the imputed data-
sets were merged. Before imputation, quality control procedures 
were performed and individuals with gender mismatches, call 
rate of <0.98, minimal or excessive heterozygosity (>3 SD 
from the mean), or cryptic relatedness (PI_HAT >0.2) were 
excluded from the dataset to be imputed. SNPs with low impu-
tation quality (INFO score r2<0.7), minor allele frequency of 
<0.01 or call rate of <0.9, and evidence for violation of the 
Hardy-Weinberg equilibrium (HWE) (p<10−6) were excluded. 
Principal component analysis (PCA) was carried out with PLINK 
V.2.0 (www.cog-genomics.org/plink/2.0/), including genotypes 
from all the populations of the phase III of the 1000 Genomes 
Project. Individuals not clustering in the PCA with the 1000 
Genomes subjects of European descent were excluded from 
further analysis. The final dataset comprised 15 772 individuals 
(8738 cases and 7034 controls).

Replication phase
For the replication phase, three consortia were analysed: the 
Pancreatic Disease Research (PANDoRA) consortium, the 
FinnGen project and the Japan Pancreatic Cancer Research 
(JaPAN) consortium.

The PANDoRA consortium consists of a multicentric study 
based mainly on European countries (Italy, Germany, Hungary, 
Czech Republic, Poland, Lithuania, the Netherlands and Greece), 
and it has been extensively described elsewhere.36 For this study 
3047 PDAC cases and 3225 controls were used. The controls 
were collected in the same geographical regions as the cases. 
Additional German controls from 'Epidemiologische Studie zu 
Chancen der Verhütung,Früherkennung und optimierten THer-
apie chronischerERkrankungen in der älteren Bevölkerung' 
(ESTHER) and Dutch controls from the European Prospective 
Investigation on Cancer (http://epic.iarc.fr/), two prospective 
cohorts with available GWAS data, have been included in the 
study.2 37 PANDoRA also includes a subgroup of 69 PDAC cases 
and 258 controls from Brazil, which were analysed separately 
from the Europeans in this study.

The FinnGen project GWAS on 881 PDAC and 204 070 
controls with Finnish ancestry was used for replication.38 Subjects 
affected by other cancer types were excluded from the controls. 
Summary statistics were downloaded from the FinnGen website 
(FinnGen Release R6). More details on genotypes, data and 
statistical analysis are available at the FinnGen website (https://
www.finngen.fi).

The third validation consisted of individuals of East Asian 
ancestry. The summary statistics of a meta-analysis including 
three GWASs (JaPAN consortium, National Cancer Centre and 
BioBank Japan) were downloaded from the JaPAN consortium 
website (http://www.aichi-med-u.ac.jp/JaPAN/index-e.html). 
This study contains 34 631 individuals of East Asian origin 
(2039 PDAC cases and 32 592 controls). Detailed information 
regarding the JaPAN study is given elsewhere.22

The total number of individuals analysed in the study summed 
up to 14 705 cases and 246 921 controls (table 1).

SNP selection
The SNP selection was made using five different studies/databases 
in which mQTLs are annotated. One, PanCan meQTL,39 lists 
mQTLs identified on pancreatic cancer tissue samples, while the 
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other four, namely, mQTLdb,40 Bios mQTL,41 Go DMC42 and 
the data produced by Hawe and colleagues (from now onward 
HJBlood),43 identified mQTLs using blood samples. mQTLs 
were identified through PanCan meQTL, and to increase the 
chances that the annotation as mQTL of the identified variants 
was not due to chance, we analysed only those variants that have 
been reported as mQTLs in at least three of the other four data-
bases. To prioritise SNPs based on their function, these mQTLs 
were investigated through GTEx (https://gtexportal.org/home/) 
to select those that are also expression quantitative trait loci 
(eQTLs) for the same gene in the pancreatic tissue. All mQTLs 
that showed a statistically significant association with PDAC risk 
(p<0.05) in all datasets of the discovery phase (PanScan I–III, 
PanC4 and PanScan I–III+PanC4) were selected to be validated 
in the replication phase using the summary statistics of FinnGen, 
JaPAN and de novo genotyping in PANDoRA. The details of 

the SNP selection and the workflow of the study are shown in 
figure 1.

Genotyping
DNA of PANDoRA samples was isolated from whole blood 
using QIAamp DNA extraction kit (Qiagen, California, 
USA) and distributed in 384-well plates for genotyping. For 
quality control, 8% of the samples were randomly replicated 
throughout the plates, and no-template controls were included 
in each plate. Genotyping was performed using TaqMan (ABI, 
Applied Biosystems, Foster City, California, USA) probes. A 
QuantStudio 5 instrument and QuantStudio software (Applied 
Biosystems) were used to detect the genotypes. After geno-
typing, deviation from HWE distribution was assessed in 
controls, considering the overall population and dividing by 
the country of origin of the samples. The concordance rate 
between the duplicated samples was 99.65%, and all the geno-
typed SNPs were in HWE.

Statistical analysis
The association of the SNPs with PDAC risk was assessed 
through unconditional logistic regression, adjusting by age, sex 
and the eight best principal components for PanScan and PanC4 
and by age, sex and country of origin for PANDoRA (PANDoRA 
lacks GWAS data, therefore PCA cannot be performed). For 
FinnGen and JaPAN, summary statistics were instead used. A 
meta-analysis was performed using all the subjects (PanScan, 
PanC4, PANDoRA, FinnGen and JaPAN), using the fixed-
effect or random-effect models, depending on evidence of 
heterogeneity. To account for multiple testing, we considered 
Linkage Disequilibrium (LD) (r2 >0.6) among the SNPs used 
in the discovery phase to obtain a list of independent variants 
(n=702), and the resulting Bonferroni-corrected threshold was 
0.05/702=7.12×10−5.

Table 1  Description of study subjects

Colonna1
PanScan I–III 
and PanC4 PANDoRA FinnGen JaPAN Total

Diagnosis

 � Cases 8738 3047 881 2039 14 705

 � Controls 7034 3225 204 070 32 592 246 921

 � Total 15 772 6272 204 951 34 631 261 626

Median age (years)

 � Cases 65 65 – 65

 � Controls 65 57 – 51

Sex (%)

 � Male 53 49 – 57

 � Female 47 51 – 43

Note: In the data of the FinnGen project, information about age and sex is not 
present.
JaPAN, Japan Pancreatic Cancer Research; PanC4, Pancreatic Cancer Case–Control 
Consortium; PANDoRA, Pancreatic Disease Research; PanScan, Pancreatic Cancer 
Cohort Consortium.

Figure 1  Workflow of the study. eQTL, expression quantitative trait locus; mQTL, methylation quantitative trait locus.
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Functional evaluation
We used the Ensembl genome browser (https://www.ensembl.​
org/index.html) to identify the positions of CpG sites in the 
genome and to evaluate if their locations were inside of regu-
latory elements as promoter or enhancer. In addition, we 
used PanCan meQTL (http://bioinfo.life.hust.edu.cn/Pancan-​
meQTL/) to evaluate the possible effect of the SNPs on gene 
methylation and GTEX portal to identify the potential SNPs’ 
association with different gene expressions.39

RESULTS
A total of 13 278 variants were identified as mQTLs, among 
which 2556 are eQTLs for the same gene in the pancreatic tissue. 
Seven of those mQTLs showed a statistically significant associ-
ation with PDAC risk in the discovery phase (p<0.05). After 
pruning for residual LD (r2 >0.6), two independent mQTLs 
(15q26.1-rs12905855 and 15q15.1-rs3751653) were selected 
to be replicated. The C allele of 15q26.1-rs12905855 showed 
a statistically significant association in PDAC risk in PANDoRA, 
FinnGen and JaPAN, with the effect direction consistent with 
the discovery phase. Instead, the C allele of 15q15.1-rs3751653 
showed a statistically significant association in PANDoRA with 
an increase of PDAC risk but did not show an association in 
FinnGen and JaPAN. The two mQTLs were also tested in the 
Brazilian individuals of PANDoRA but did not show any associ-
ation in this subgroup.

The C allele of the 15q26.1-rs12905855 showed an asso-
ciation at genome-wide level in the meta-analysis (OR=0.90, 
95% CI 0.87 to 0.94, p=4.93×10−8), while the C allele of the 
15q15.1-rs3751653 showed evidence for heterogeneity (phetero-

geneity=0.04 and I2=63%) and no association with risk (p=0.17). 
Considering the high heterogeneity for this SNP, Brazilian and 
East Asian subjects were removed, and a meta-analysis of PanScan, 
PanC4, PANDoRA and FinnGen was performed. This subgroup 
analysis showed a statistically significant increase in risk for carriers 

of the C allele (OR=1.09, 95% CI 1.05 to 1.13, p=8.13×10−6), 
which remained significant after correction for multiple testing. All 
the results are summarised in table 2.

According to PanCan meQTL, the C allele of 
15q26.1-rs12905855 increases the methylation of the CpG 
site cg23684204 that is located in the promoter of the anti-
sense of the RCC1 domain-containing (RCCD1) gene and 
increases the expression of the RCCD1 gene. The C allele of 
15q15.1-rs3751653 increases the methylation of CpG site 
cg13045913 that maps in the promoter of the zinc finger FYVE-
type containing 19 (ZFYVE19) gene and, according to GTEx, 
decreases its expression (figure 2). The boxplots from PanCan 
meQTL and the violin plots from GTEx of two mQTLs are 
shown in figure 3A,B.

DISCUSSION
DNA methylation is variable throughout human life and across 
tissues; therefore, studies on DNA methylation are challenging 
in the context of an epidemiological setting. However, DNA 
methylation is at least partially regulated by SNPs called mQTLs, 
which can be used as surrogates of a direct measure. The role of 
mQTLs in cancer development has already been identified for 
bladder, breast, colorectal and pancreatic cancers.32–34

To investigate the association between mQTLs and PDAC, we 
conducted a two-phase study in 14 705 cases and 246 921 controls. 
The C allele of rs12905855 showed a clear association with 
decreasing risk of developing PDAC. The association was statistically 
significant in all studies with consistent ORs and reached genome-
wide significance (p=4.93×10−8) in the meta-analysis. This mQTL 
regulates the methylation levels of the CpG site cg23684204, which is 
located in the promoter of the RCCD1 antisense (RCCD1-AS1) gene. 
The C allele of this mQTL increases the methylation of cg23684204 
and increases the expression of RCCD1. This gene encodes a protein 
that acts in a histone demethylase complex involved in chromosomal 
stability during mitosis.44 Therefore, the molecular data obtained by 

Table 2  Associations of 15q26.1-rs12905855 and 15q15.1-rs3751653 with PDAC risk

Chr SNP Position M/m Phase OR (95% CI) P value I* (%)
P value 
Het

15 rs12905855 15q26.1 G/C PanScan I–III/PanC4 0.93 (0.88 to 0.98) 2.40×10−3

PANDoRA†§ 0.89 (0.89 to 0.98) 1.80×10−2

PANDoRA*§ 0.91 (0.83 to 0.99) 4.00×10−2

FinnGen 0.85 (0.76 to 0.94) 2.40×10−3

JaPAN 0.89 (0.83 to 0.96) 3.40×10−3

Meta-analysis†§ 0.90 (0.87 to 0.94) 4.93×10−8 0 4.50×10−1

Meta-analysis*§ 0.91 (0.87 to 0.94) 1.42×10−7 0 4.70×10−1

15 rs3751653 15q15.1 T/C PanScan I–III/PanC4 1.08 (1.04 to 1.13) 4.25×10−4

PANDoRA†§ 1.11 (1.03 to 1.20) 8.00×10−3

PANDoRA*§ 1.10 (1.02 to 1.18) 1.90×10−2

FinnGen 1.00 (0.91 to 1.10) 9.60×10−1

JaPAN 0.97 (0.95 to 1.12) 6.40×10−1

Meta-analysis†§ 1.04 (0.98 to 1.11) 1.70×10−1 68 4.00×10−2

Meta-analysis*§ 1.04 (0.98 to 1.11) 1.70×10−1 61 5.00×10−2

Meta-analysis‡§ 1.09 (1.05 to 1.13) 8.13×10−6 0 7.90×10−1

The analysis in PANDoRA was adjusted by age, sex and country of origin. Meta-analysis was performed by applying the fixed-effect model (rs12905855) or the random-effect 
model for the SNP showing heterogeneity (rs3751653).
*Brazilians were included in the analysis.
†Brazilians (69 cases and 258 controls) were excluded from the analysis.
‡Brazilians and JaPAN (2108 cases and 32 850 controls) were excluded from the analysis.
§The analysis included the German and Dutch controls from ESTHER and European Prospective Investigation on Cancer consortia.
Het, heterogeneity; JaPAN, Japan Pancreatic Cancer Research; m, minor allele; M, major allele; PanC4, Pancreatic Cancer Case–Control Consortium; PANDoRA, Pancreatic Disease 
Research; PanScan, Pancreatic Cancer Cohort Consortium; PDAC, pancreatic ductal adenocarcinoma.
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Figure 2  Schematic representation of the functional explanation of 15q26.1-rs12905855 and 15q15.1-rs3751653. PDAC, pancreatic ductal 
adenocarcinoma.

Figure 3  Relation between genotypes of SNPs and methylation of CpG site/gene expression. (A) Relation between genotypes of 15q26.1-rs12905855 
and methylation of CpG site cg23684204/RCCD1 expression. (B) Relation between genotypes of 15q15.1-rs3751653 and methylation of CpG site 
cg13045913/ZFYVE19 expression. Note: PAAD=PDAC. The data used for the analysis described here were obtained from the PanCan meQTL database, 
downloaded on 11 April 2022, and GTEx analysis release V.8, accessed on 11 April 2022. meQTL, methylation expression quantitative trait locus; PAAD, 
pancreatic adenocarcinoma; PDAC, pancreatic ductal adenocarcinoma.
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analysing together methylation (PanCan meQTL) and gene expres-
sion (GTEx) suggest that the protecting role of the rs12905855 C 
allele results from an increased methylation of RCCD1-AS1, which 
in turn leads to RCCD1 increased expression, which contributes 
to chromosomal stabilising activity. Supporting this hypothesis, the 
results showed that higher expression of RCCD1 gene has been asso-
ciated with a decreased risk of breast and ovarian cancer.45 46 Further-
more, a recent transcriptome-wide association study for PDAC has 
identified RCCD1 as a possible risk locus.47

The other mQTL, 15q15.1-rs3751653, did not show a statistically 
significant association in the meta-analysis when all studies were anal-
ysed together. However, removing individuals with non-European 
ancestry from the analysis (East Asians and Brazilians), we found that 
the significance level of the association improved (p=8.13×10−6) 
and reached the Bonferroni-corrected threshold. This result could be 
explained by the possibility that 15q15.1-rs3751653 is not directly 
responsible for association but in LD with a causative SNP. There-
fore, different LD architectures between populations could dilute 
the association when considering different ethnicities together.48 
According to PanCan meQTL, 15q15.1-rs3751653 regulates the 
methylation of the promoter of the ZFYVE19 gene and its expres-
sion in the pancreatic tissue. ZFYVE19 encodes a protein that regu-
lates the abscission checkpoint of cytokinesis, delaying cell division in 
the presence of chromosome damage.49 According to Thoresen and 
colleagues, depletion of the ZFYVE19 gene is associated with accel-
erated timing on the cellular abscission, with a consequent increment 
of cell cytokinesis defects that may result in cancer development.49 
Therefore, the association of the C allele of 15q15.1-rs3751653 
with increased risk of developing PDAC can be explained by a higher 
methylation level on the ZFYVE19 gene promoter, resulting in lower 
expression of the gene in pancreatic tissue, with a consequent dereg-
ulation of the abscission checkpoint of cytokinesis in the pancreas.

A strength of this work is the study design, which included a 
discovery phase and a replication phase performed using 261 626 
individuals, making this study the most extensive mQTL scan 
performed on PDAC. Additionally, the molecular data obtained by 
PanCan meQTL and GTEx link the alleles both to methylation and 
gene expression changes that are consistent with the observed asso-
ciations in the cellular context of the genes they regulate. It is also 
worth noting that the association of the C allele of rs12905855 with 
decreased risk is consistent in populations of different ancestries, 
decreasing the possibility of a spurious association.

The results of this study clearly highlight the importance of 
secondary analysis to discover new susceptibility loci of complex 
diseases. Neither SNPs were reported in the original studies because 
they focused on p value as the sole selection criteria to validate and 
report associations. Here, we show that combining GWAS data with 
functional data is an effective approach to discover new risk loci and 
to further our knowledge of disease biology.

In conclusion, our results point towards the regulation of DNA 
methylation through mQTL as a significant factor affecting the 
risk of developing in PDAC.
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