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Introduction

In this thesis we study unstable vh-periodic homotopy theory, where h ∈ N; here
“unstable” refers to the homotopy theory of topological spaces (instead of spectra). The
work consists of two parts. In Part I we give a detailed exposition of the foundations
of unstable vh-periodic homotopy theory, sharpen an existing result about vh-periodic
equivalences of H-spaces, and pose concrete questions and conjectures for future
studies. The expository part follows [Bou94; Bou96; Bou97; Bou01; DroCS; Heu20b;
Heu21] and aims to assemble in one place the central notions and theorems of unstable
localisations with a focus on unstable periodic homotopy theory. The goal of Part II is
to understand unstable vh-periodic phenomena from the point of view of Lie algebras in
the stable vh-periodic homotopy category. We analyse the costabilisation of vh-periodic
homotopy types and obtain a universal property of the Bousfield–Kuhn functor. Below
we provide an introduction for each part.

Our understanding of unstable vh-periodic homotopy theory takes a lot of inspi-
ration from rational homotopy theory of topological spaces, which we recall now.
One goal of homotopy theory is to distinguish two given topological spaces up to
weak homotopy equivalence, i.e. whether there exists a continuous map between
them that induces an isomorphism of their homotopy groups in all degrees. For
example, every topological space is weakly homotopy equivalent to a CW-complex
by CW-approximation, see [HatAT, Proposition 4.13]. So, understanding the
homotopy groups of a CW-complex, both the structural properties and concrete
computations, is of great importance, but this is a very hard problem in general.
Thus, we content ourselves with studying certain more approachable algebraic
invariants which induce coarser equivalence relations of topological spaces. For
pointed simply-connected CW-complexes X and Y , a rational homotopy equivalence
between X and Y is a pointed continuous map f : X → Y which induces an isomor-
phism f∗ : π•(X)⊗Z Q ≃−→ π•(Y )⊗Z Q of graded rational homotopy groups. One of
the goals of rational homotopy theory is to distinguish topological spaces up to rational
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homotopy equivalence. The rational homotopy groups of a CW-complex are more
computable than its homotopy groups. For example, in [Ser53] the rational homotopy
groups of spheres are completely determined, summarised in the following theorem.

Theorem (Serre). — For a natural number n ≥ 1, denote the n-dimensional sphere
by Sn. We have isomorphisms of graded rational vector spaces

π•(Sn)⊗Z Q ∼=

Q[−n], if n is odd,
Q[−n]⊕Q[−2n+ 1], if n is even.

Here Q[−n] denotes the (−n)-fold shifts of the graded vector space Q concentrated in
degree 0, i.e. Q[−n]k = Qk−n.

A pointed simply-connected CW-complex Z is rational if its graded homotopy
group π•(Z) regarded as a graded abelian group underlies a graded rational vector
space. In the seminal work [Qui69] Quillen shows that the rational homotopy theory for
simply-connected topological spaces is determined by the homotopy theory of rational
spaces, and the latter can be analysed in a purely algebraic manner. A differential
graded Lie algebra over Q is a rational chain complex ((Li)i∈Z, d) together with a Lie
bracket [−,−] : L• ⊗Q L• → L• of degree 0 satisfying the graded anti-symmetry, the
graded Jacobi identity and the graded Leibniz rule, see [FHT, §21]. A differential
graded Lie algebra is connected if the homology groups of its underlying chain complex
vanish in non-positive degrees.

Theorem (Quillen). —
(i) For every pointed simply-connected CW-complex Z, there exists a rational

CW-complex ZQ together with a continuous map Z → ZQ which induces an
isomorphism on rational homotopy groups.

(ii) There is a functorial one-to-one correspondence between simply-connected ratio-
nal CW-complexes and connected rational differential graded Lie algebras, up to
homotopy equivalence of CW-complexes and quasi-isomorphisms of differential
graded Lie algebras.

The topological space ZQ together with the map Z → ZQ in (i) is known as a
rationalisation of Z. Furthermore, the graded rational homotopy group of a pointed
simply-connected CW-complex Z is isomorphic (up to a shift of degrees) to the
graded homology group of the differential graded Lie algebras corresponding to a
rationalisation ZQ, and the latter is much more computable. In this short summary
we only included those aspects of rational homotopy theory that are directly relevant
to our later applications in the thesis. For an overview of the history of rational
homotopy theory, see [Hes99]. A detailed study of this subject can be found in [FHT].
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From now on we fix a prime number p. An abelian group is p-local if multiplication
by each prime number ℓ ̸= p is an automorphism of the group. A pointed simply-
connected CW-complex is p-local if its homotopy groups are p-local abelian groups in
degrees at least 1. Unstable vh-periodic homotopy theory with h ∈ N (and p elided
from the notation) is concerned with the set [V,Z] of pointed homotopy class of maps
of pointed simply-connected p-local CW-complexes where V is a finite CW-complex.
Our approach to studying this theory is a generalisation of the methods used in
rational homotopy theory. We will explain this below in the introduction of the first
part of the thesis.

Since we treat everything in this work up to coherent homotopy, it is important for us
to work in a framework where we can perform our constructions and state our theorems
in a homotopy invariant way. Classically, one may choose to work in topologically
or simplicially enriched model categories, where homotopy invariance is guaranteed
by using fibrant and/or cofibrant replacements. We choose to use the language
of (∞, 1)-categories, abbreviated as ∞-categories and modelled by quasi-categories,
as introduced in [Joy02; HTT]. This framework allows us to present mathematical
statements in an elegant way and it eases certain categorical constructions, such
as limits and colimits of categories. Since much of the theory of ∞-categories we
use in this work is a natural generalisation of ordinary category theory, the reader
who is unfamiliar with the ∞-categorical language may ignore the “∞” symbol and
understand statements using the logic of ordinary category theory, while keeping
in mind that everything is defined up to some suitable notion of equivalences. For
example, a colimit in an ∞-category enjoys a similar universal property as ordinary
categorical colimit, while the existence of the colimit and the commutative diagram
exhibiting its universal property hold only up to coherent homotopy. In other words,
one can regard an ∞-categorical colimit equivalently as a homotopy colimit in a
topologically enriched model category.

The fundamental ∞-category we consider is the ∞-category Ho of homotopy types,
which is the ∞-categorical ground for doing homotopy theory of topological spaces.
An object of Ho is called a homotopy type (also known as ∞-groupoids or animas
or spaces), which one shall consider as the homotopy type of a CW-complex or of
a simplicial set. Given two pointed homotopy types X and Y , one can construct a
homotopy type Map∗(X,Y ), called the pointed mapping space from X to Y . Repre-
senting X and Y by pointed CW-complexes, Map∗(X,Y ) encodes the homotopy type
of the topological space of pointed maps from X to Y endowed with the compact-open
topology. Finally Map∗(X,Y ) becomes a pointed homotopy type whose basepoint is
the constant map sending X to the basepoint of Y .



x Introduction

Introduction for Part I

Fix a prime number p. We explain now the idea of p-local unstable vh-periodic homo-
topy theory for h ∈ N, starting with vh-periodic homotopy groups. Let Z be a pointed
simply-connected p-local homotopy type. In the case h = 0, the v0-periodic homotopy
groups are just the rational homotopy groups of Z. We summarise the key ingredients
in this case in order to motivate the h ≥ 1 cases. Let V0 denote the 0-dimensional
sphere S0. Define the graded V0-homotopy group π•(Z;V0) of Z as the graded homo-
topy group π• (Map∗ (V0, Z)) of the pointed mapping space Map∗ (V0, Z), which is
isomorphic to the graded homotopy group π•(Z) of Z. Since Z is p-local, the only
torsion information present consists of p-primary torsion. The multiplication-by-p map
on πk(Z) ∼= πk(Z;V0), with k ≥ 1, is induced by the degree p self-map v0 : Sk → Sk rep-
resenting the element p ∈ Z ∼= πk(Sk). The graded rational homotopy group π•(Z)⊗ZQ
of Z is obtained from π•(Z) by inverting the multiplication-by-p action, i.e.

π•(Z)⊗Z Q ∼= lim−→
(
π•(Z) v0−→ π•(Z) v0−→ · · ·

)
,

where the colimit is taken in the category of graded abelian groups.
A finite homotopy type is an object in Ho that is equivalent to the homotopy

type of a finite CW-complex, so we sometimes call a finite homotopy type a finite
complex. For h ≥ 1, the vh-periodic homotopy groups of Z carry the “vh-torsion free”
information of the (graded) Vh-homotopy groups

π•(Z;Vh) := π• (Map∗(Vh, Z))

where Vh is a p-local finite complex of so-called “type h”. We explain what these
terminologies mean for h = 1 and say briefly how it works in the general case. Denote
the complex K-theory spectrum by KU. Its coefficient group KU• is isomorphic
to Z[β±], where the element β, lying in degree 2, denotes the Bott periodicity class.
A p-local finite complex V1 is of type 1 if its reduced rational homology H•(V1;Q)
vanishes and its reduced mod p KU-homology KU•(V1)/p is non-trivial. For k ≥ 1,
the homotopy type Sk/p defined by the cofibre sequence

Sk v0−→ Sk → Sk/p

is an example of a type 1 finite complex, which can be seen by using the long exact
sequence of homology induced by the cofibre sequence and some knowledge about
the K-theory of spheres. The set [Sk/p, Z] of pointed homotopy class of maps is a
group for k ≥ 2 (since Sk/p ≃ Σ(Sk−1/p)), and it is abelian for k ≥ 3. However, the
group [Sk/p, Z] is not easier to compute than the classical homotopy groups of Z. For
suitable choices of natural numbers n ≥ 2 and d1 depending on the prime number p, it
is shown in [Ada66] that Sn/p admits a self-map v1 : Σd1Sn/p→ Sn/p which induces
an isomorphism on KU-homology (strictly speaking, v1 is not a self-map. However,
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we embrace this traditional abuse of notation, cf. [MRW77; HS98].) For instance,
for p = 2, the map on KU-homology induced by v1 is given by the multiplication
by β4. In particular, this implies that the map v1 is non-nilpotent, i.e. for m ≥ 1, no
iterated composition

v◦m
1 : Σmd1Sn/p

Σ(m−1)d1 (v1)−−−−−−−−−→ Σ(m−1)d1Sn/p
Σ(m−2)d1 (v1)−−−−−−−−−→ · · · v1−→ Sn/p

is null-homotopic. The self-map v1 of Sn/p induces an endomorphism

v1 : π•(Z; Sn/p)→ π•(Z; Sn/p)

of the graded Sn/p-homotopy group of Z. A v1-torsion element in π•(Z; Sn/p)
is an element which is mapped to zero under v1. The v1-periodic homotopy
group v−1

1 π•(Z; Sn/p) of Z with coefficient in the type 1 finite complex Sn/p is defined
by inverting the v1-action on the graded Sn/p-homotopy group of Z, i.e.

v−1
1 π•(Z; Sn/p) := lim−→

(
π•(Z; Sn/p) v1−→ π•(Z; Sn/p) v1−→ · · ·

)
,

which captures the v1-torsion free information of π•(Z; Sn/p).
For the general cases, we need to use the so-called p-local Morava K-theory spec-

trum K(h) of height h with h ∈ N. We know that K(0) can be identified with the ratio-
nal Eilenberg–MacLane spectrum HQ, and K(1) is a summand of the mod-p K-theory
spectrum KU/p (defined as the cofibre of the multiplication-by-p self-map on KU).
The reader may view K(h), for h ≥ 1, as a generalisation of KU/p. For example,
the coefficient group K(h)• is isomorphic to Fp[v±

h ], where the element vh, lying in
degree 2(ph − 1), can be regarded as a generalised Bott periodicity class. A p-local
finite complex Vh is of type h if its reduced K(h)-homology K̃(h)•(Vh) is non-trivial
and K̃(i)•(Vh) = 0 for all 0 ≤ i ≤ h − 1. The following deep results from [Mit85]
and [HS98] are fundamental for periodic homotopy theory.

Theorem (Mitchell, Hopkins–Smith). — Let p be a prime number.
(i) For every h ∈ N, there exists a p-local finite complex of type h.
(ii) Every non-trivial p-local finite complex is of type h for a unique h ∈ N.
(iii) Let Vh be a finite complex of type h. There exists an n ∈ N such that ΣnVh

(which is also a type h finite complex) admits a self-map vh : Σdh(ΣnVh)→ ΣnVh

inducing an isomorphism on K(h)-homology. In particular, the self-map vh is
non-nilpotent.(1)

For a natural number h ≥ 1 let Vh be a finite complex of type h together with
a vh self-map vh : ΣdhVh → Vh. The map vh induces an endomorphism of the

(1)By abuse of notation, vh denotes both the self-map vh and the generator of the coefficient group
of K(h). The map on K(h)•-homology induced by the map vh is given by the multiplication by a
power of the element vh, which depends on the prime number p and the height h.
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graded Vh-homotopy groups π•(X;Vh) := Map∗(Vh, X). With these ingredients we
can define the (graded) vh-periodic homotopy group

v−1
h π•(Z;Vh) := lim−→

(
π•(Z;Vh) vh−→ π•(Z;Vh) vh−→ · · ·

)
of Z with coefficient in Vh, by inverting the vh-“multiplication” on π•(Z;Vh).
In contrast to rational homotopy groups, for h ≥ 1, the vh-periodic homotopy
groups are much less amenable to computation. There exist some works computing
the v1-periodic homotopy groups of spheres, compact Lie groups and H-spaces, see for
example [Mah82], [Dav91; Dav03] and [Bou99b], respectively. For an overview of the
methods used in those computations, see [Dav95] and [Bou05]. In his thesis [Wan15]
Wang computes the v2-periodic homotopy groups of the 3-dimensional p-local sphere
in the case of prime numbers p ≥ 5. There is no general computational results
when h ≥ 3.

A morphism f : X → Y of pointed simply-connected p-local homotopy types is a
vh-periodic equivalence if it induces an isomorphism on vh-periodic homotopy groups
with coefficient in Vh. By the milestone work of [HS98], in particular the Thick
Subcategory Theorem, we know that the notion of vh-periodic equivalence of homotopy
types is independent of the choice of the finite complex Vh and the self-map vh.
This notion of equivalence relates closely to the so-called notion of T(h)-homology
equivalence of homotopy types that we introduce next. A spectrum is p-local if its
stable homotopy groups are p-local abelian groups. We can construct the p-local
telescope spectrum of height h

T(h) := lim−→
(

Σ∞Vh
vh−→ Σ−dhΣ∞Vh

vh−→ Σ−2dhΣ∞Vh
vh−→ · · ·

)
using Vh, where the colimit is taken in the ∞-category Sp of spectra. Again by the
Thick Subcategory Theorem, the notion of T(h)-homology equivalence of homotopy
types does not depend on the choice of Vh and the self-map vh. The p-local sphere
spectrum S(p) is a p-local spectrum together with a morphism S→ S(p) such that the
induced map on stable homotopy groups πst

• (−) is the p-localisation of the abelian
group πst

• (S). The reader shall view the construction of T(h) as an analogue of
a construction of the rational Eilenberg–MacLane spectrum HQ which is given by
inverting the degree p self-map v0 of S(p). Because of this we set T(0) := HQ.

By the Whitehead Theorem, a morphism of simply-connected homotopy types is
a rational homotopy equivalence if and only if it is a rational homology equivalence,
see [DK, Theorem 10.6]. For h ≥ 1 it is in general not true that a vh-periodic
equivalence of pointed simply-connected p-local homotopy types is a T(h)-homology
equivalence, nor vice versa. See [LS01] for concrete examples in the case of h = 1.
In the case of morphisms between H-spaces, considered as objects in the homotopy
category ho(Ho) of homotopy types, we prove the following theorem.
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Theorem 1 (Theorem 4.4.0.4). — Let h be a natural number and let f : X → Y

be a morphism of connected H-spaces. If the map f is a T(n)-homology equivalence for
all 0 ≤ n ≤ h and f induces an isomorphism f∗ : π•(X)⊗Z Z[1/p] ≃−→ π•(Y )⊗Z Z[1/p],
then f is a vn-periodic equivalence for all 0 ≤ n ≤ h.

This is an improvement of [Bou94, Theorem 13.5], which concludes that f is
a vn-periodic equivalence after some finite number of suspensions. By the Class
Invariance Theorem of [HS98], a morphism of p-local finite homotopy types is a
T(h)-homology equivalence if and only if it is a K(h)-homology equivalence. Based
on these results and the non-trivial fact that a K(h)-homology equivalence of p-local
homotopy types is also a K(h− 1)-homology equivalence for h ≥ 2, see [Bou99a], we
expect a slightly stronger version of Theorem 1 and make the following conjecture.

Conjecture 2 (Conjecture 4.4.0.8). — Fix a natural number h ≥ 1. Let f : X → Y

be a morphism of pointed simply-connected p-local homotopy types whose rational
homotopy groups are trivial. The following statements are equivalent:

(i) The map Ωf is a T(h)-homology equivalence.
(ii) The map Ωf is a T(n)-homology equivalence for all 0 ≤ n ≤ h.
(iii) The map f is a vn-periodic equivalence for all 0 ≤ n ≤ h and f induces an

isomorphism πk(f) on homotopy groups in all degree k ≤ h+ 1.

The second important part of rational homotopy theory, namely rationalisation,
can also be generalised to unstable vh-periodic homotopy theory and it is called
unstable vh-periodic localisation. For this purpose we need to use the theory of
localisations of ∞-categories, which is the ∞-categorical analogue of localisations
of ordinary categories (also known as the calculus of fractions). A localisation of
an ∞-category C at a set W of morphisms of C is an ∞-category D together with a
functor F : C → D such that F sends morphisms in W to equivalences in D and is
universal with respect to this property. In many situations of our interest, the functor F
admits a fully faithful right adjoint, making D equivalent to a full ∞-subcategory of C.
Conversely, if the canonical inclusion functor of a full ∞-subcategory C0 in C admits a
left adjoint F0, then F0 exhibits C0 as a localisation of C, where W is the collection of
morphisms in C that are sent to equivalences in C0.

The ∞-category Ho>1
Q of pointed simply-connected rational homotopy types is

a full ∞-subcategory of the ∞-category Ho>1
(p) of pointed simply-connected p-local

homotopy types. Moreover, the inclusion Ho>1
Q ↪→ Ho>1

(p) admits a left adjoint LQ,
which exhibits Ho>1

Q as the localisation of Ho>1
(p) at the set of rational homotopy

equivalences. For Z ∈ Ho>1
(p) the rational homotopy type LQ(Z) together with the

morphism Z → LQ(Z) in Ho>1
(p) induced by the adjunction-unit natural transformation

is a model for the rationalisation of Z.
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To explain the generalisation from rationalisation to vh-periodic localisations, we
begin with an alternative description of rational p-local homotopy types. Recall the
cofibre sequence S2 v0=p−−−→ S2 → S2/p, which induces a fibre sequence

Map∗(S2/p, Z)→Map∗(S2, Z) v0−→Map∗(S2, Z).

for Z ∈ Ho>1
(p). The following three statements are equivalent:

(i) The homotopy type Z is rational.
(ii) The map v0 : Map∗(S2, Z)→Map∗(S2, Z) is an equivalence.
(iii) The mapping space Map∗(S1/p, Z) is contractible.

Recall that S1/p is a p-local finite complex of type 1. The condition (iii) has an
immediate generalisation to any p-local finite complex Vh of type h, for h ≥ 1.

We say that a pointed simply-connected p-local homotopy type Z is Vh-less if
the pointed mapping space Map∗(Vh, Z) is contractible, that is, any pointed map
from Vh to Z is homotopic to the unique pointed map from the one-point space to Z.(2)

Because of technical requirements, from now on we assume without loss of generality
that every type h finite complex Vh we consider is equivalent to a suspension ΣV ′

h of
some finite complex V ′

h.
Denote by Ho>1

(p),Vh
the full ∞-subcategory of Ho>1

(p) whose objects are Vh-less
homotopy types. Using formal arguments, one can show that the fully faithful inclu-
sion i : Ho>1

(p),Vh
↪→ Ho>1

(p) admits a left adjoint PVh
. We call the functor PVh

contrac-
tion of Vh, which can be interpreted as a “quotient of Ho>1

(p) modulo Vh”; in particular,
it sends Vh to a point and preserves Vh-less homotopy types.(3) The functor PVh

ex-
hibits Ho>1

(p),Vh
as the localisation of Ho>1

(p) where the so-called Vh-equivalences in Ho>1
(p)

are inverted. For example, for h = 1 and Vh = S1/p, an S1/p-equivalence is a rational
homotopy equivalence. More generally, one can show that a Vh-equivalence of simply
connected p-local homotopy types, e.g. Z → PVh

(Z), is a vn-periodic equivalence for
all 0 ≤ n ≤ h−1 (see Theorem 3.3.2.2); the converse is true after imposing a connectiv-
ity assumption on Z depending on Vh (see Theorem 3.3.2.6). Moreover, the vm-periodic
homotopy groups of PVh

(Z) vanish for all m ≥ h (see Proposition 3.3.2.4).
By abuse of notation we denote the composition i◦PVh

: Ho>1
(p) → Ho>1

(p),Vh
↪→ Ho>1

(p)
by PVh

, where Vh is a finite complex of type h ≥ 1. We can choose a suitable
sequence (Ṽh)h≥1 of finite complexes Ṽh of type h such that an object Z is Ṽh+1-less
if it is Ṽh-less. Under this assumption we obtain a tower

· · · → P
Ṽh+1

P̃h−−→ P
Ṽh
→ · · · → P

Ṽ2

P̃1−−→ P
Ṽ1

(0.1)

of functors (viewed as objects in the∞-category Fun(Ho>1
(p),Ho>1

(p)) of functors), where
the natural transformation P̃h is given by contraction of Ṽh.

(2)This definition is also known as Z being “Vh-null”, or “Vh-local”, or “Vh-periodic”.
(3)The functor PVh

is also known as “Vh-nullification”, or “Vh-localisation” or “Vh-periodisation”.
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Define the functor F
Ṽh+1,Ṽh

: Ho>1
(p) → Ho>1

(p) by the fibre sequence

F
Ṽh+1,Ṽh

→ P
Ṽh+1

P̃h−−→ P
Ṽh

in Fun(Ho>1
(p),Ho>1

(p)). In particular, for Z ∈ Ho>1
(p), we have a fibre sequence

F
Ṽh+1,Ṽh

(Z)→ P
Ṽh+1

(Z) P̃h−−→ P
Ṽh

(Z)

of pointed simply-connected p-local homotopy types. By the universal property of a
fibre F

Ṽh+1,Ṽh
(Z) and Z have isomorphic vh-periodic homotopy groups, and for m ̸= h

the vm-periodic homotopy groups of F
Ṽh+1,Ṽh

(Z) vanish. Let f be a morphism of
simply connected p-local homotopy types. If F

Ṽh+1,Ṽh
(f) is an equivalence of homotopy

types, then f is a vh-periodic equivalence; the converse is true if the source and
target of f are suitably highly connected (depending on the connectivity of Ṽh+1,
see Proposition 3.4.0.5).

Finally, let us conclude the above discussion by the following theorem about a
concrete model of the localisation of Ho>1

(p), where vh-periodic equivalences are inverted.
Denote the natural number 1 + conn(Ṽh+1) by ch+1, where conn(Ṽh+1) denotes the
connectivity of Ṽh+1. The ch+1-connected cover of an object Z ∈ Ho>1

(p) is a homotopy
type τ>ch+1(Z) together with a morphism f : τ>ch+1(Z)→ Z such that the homotopy
groups of τ>ch+1(Z) in all degrees j ≤ ch+1 vanish and f induces an isomorphism of
homotopy groups in all degrees k > ch+1.

Theorem (Bousfield [Bou01]). — Let h ≥ 1 be a natural number. The localisa-
tion Hovh

of the∞-category Ho>1
(p), where vh-periodic equivalences are inverted, is given

by the full ∞-subcategory of Ho>1
(p) whose objects are of the form τ>ch+1(F

Ṽh+1,Ṽh
(Z))

for a Z ∈ Ho>1
(p). The localisation functor Ho>1

(p) → Hovh
is given by τ>ch+1 ◦F

Ṽh+1,Ṽh
.

This localisation is known as unstable vh-periodic localisation. See Theorem 3.4.0.7
for a precise formulation of the theorem. Although the construction of this model
for Hovh

depends on concrete choices of finite complexes Ṽh+1 and Ṽh, the result-
ing ∞-category is independent of those choices, by uniqueness (up to contractible
choice) of localisations.

We consider the tower (0.1) of localisations as a tower of “truncations” of
the ∞-category Ho>1

(p) with respect to vh-periodic homotopy groups, in the following
sense: For every Z ∈ Ho>1

(p), the evaluation of (0.1) at Z gives a tower

· · · → P
Ṽh+1

(Z)→ P
Ṽh

(Z)→ · · · → P
Ṽ1

(Z)

under Z, where the canonical morphism Z → P
Ṽh+1

(Z) induces an isomorphism on
the vn-periodic homotopy groups for all 0 ≤ n ≤ h, and the vm-periodic homotopy
groups of P

Ṽh+1
(Z) are zero for all m ≥ h + 1. From this point of view, one can

interpret the unstable vh-periodic localisation Hovh
as the “associated graded” of
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the tower (0.1), called the unstable monochromatic layer of height h. Therefore, it
is also important to ask how to use our knowledge of the associated graded pieces
to improve our understanding of p-local homotopy types or p-local Ṽh-less homotopy
types. Questions in this direction are studied under the keyword chromatic assembly,
and they are awaiting further exploration.

Introduction for Part II

A Lie algebra over a field k is a k-vector space together with a k-bilinear operation,
called the Lie bracket, satisfying the so-called anti-symmetry and Jacobi-identity
relations. For example, an associative algebra over k becomes a Lie algebra where the
Lie bracket is given by the commutator bracket. The universal enveloping algebra U(L)
of a Lie algebra L is an associative algebra over k together with a Lie algebra
morphism L→ U(L) which satisfies the following universal property: For every Lie
algebra morphism f : L → A, where A is an associative algebra endowed with the
commutator Lie bracket, there exists a unique factorisation

L A

U(L),

f

∃! f ′

where f ′ is a morphism of associative algebras. For a k-vector space V , denote by
T(V ) the free associative algebra, i.e. the tensor algebra, generated by V . An explicit
construction of U(L) is given as the quotient of T(L) by the two-sided ideal generated
by the elements a⊗ b− b⊗ a− [a, b] for a, b ∈ L. The free Lie algebra functor is the
left adjoint to the forgetful functor from the category of Lie algebras to the category
of k-vector spaces. The universal enveloping algebra of a free Lie algebra generated by
a k-vector space V is isomorphic to the free associative algebra T(V ), see [ReuFLA,
Theorem 0.5].

There are many applications of universal enveloping algebras in representation the-
ory, algebra and topology; for some expositions, see [DixEA], [MM65] and [NeiAMU].
We discuss one example in rational homotopy theory. Let Z be a pointed simply-
connected homotopy type. We recall now briefly the construction of the Samelson prod-
uct on the graded homotopy group π•(ΩZ) of the loop space ΩZ of Z. Let f : Sn → ΩZ
and g : Sm → ΩZ be morphisms of pointed homotopy types representing elements
of π•(ΩZ) in degree n and m, respectively. We define the following composition

ϕ : Sn × Sm f×g−−−→ ΩZ × ΩZ → ΩZ

(l1, l2) 7→ l1 ⋆ l2 ⋆ l
−1
1 ⋆ l−1

2
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where ⋆ denotes the concatenation of loops and (−)−1 denotes the reversed loop.
One can check that the composition Sn ∨ Sm i

↪→ Sn × Sm ϕ−→ ΩZ is null-homotopic,
where Sn ∨ Sm denotes the wedge of spheres. The cofibre of i is equivalent to the
smash product Sn ∧ Sm. Now the Samelson product [f, g] ∈ πn+m(ΩZ) of f and g is
represented by the map Sn+m ≃ Sn ∧ Sm → ΩZ induced by ϕ.

Theorem (Cartan–Serre, Milnor–Moore). —
(i) The Samelson product endows the graded rational homotopy group π•(ΩZ)⊗Z Q

of ΩZ with the structure of a graded Lie algebra over Q.
(ii) There exists an isomorphism

U (π•(ΩZ)⊗Z Q) ∼= H• (ΩZ;Q) (0.2)

of graded associative algebras over Q, where the algebra structure on the singular
homology H• (ΩZ;Q) is induced by concatenating loops in Z.

See [FHT, Theorem 21.5] for a proof of the above theorem. For shadowing later con-
siderations let us remark that the rational homology group H• (ΩZ;Q) is isomorphic to
the stable homotopy group πst

• (Σ∞
+ (ΩZ)⊗HQ) of the tensor product Σ∞

+ (ΩZ)⊗HQ of
the suspension spectrum Σ∞

+ (ΩZ) with the rational Eilenberg–MacLane spectrum HQ.
The construction of the universal enveloping algebra can be generalised in two

directions, see [Knu18], using the theory of enriched∞-operads. Let us first give a brief
introduction to the role played by∞-operads, which generalises the classical categorical
theory of (coloured) operads [MayGIL; FreHO; LV]. Operads were invented to abstract
over algebraic structures themselves, by expressing the axioms of an algebraic structure
in terms of objects and morphisms in a suitable symmetric monoidal category. For
example, an associative algebra over Z can be defined as an algebra over the associative
operad in the category of Z-modules. Using the framework of operads one is able to
define algebraic structures on objects of an arbitrary symmetric monoidal category,
not just on Z-modules.

In the setting of ∞-categories, the theory of enriched ∞-operads [HTT; CH20;
Hau22] allows us to formalise algebraic structures compatible with coherent homo-
topy. We work with the model for one-coloured enriched ∞-operads with values
in a presentable symmetric monoidal ∞-category given by certain symmetric se-
quences, following the ideas of [Bra17; Hei18; Tri]. Thus, a Lie algebra in a pre-
sentable stable symmetric monoidal ∞-category C is an algebra over the spectral
Lie ∞-operad Lie (see Example 5.3.4.10) and an associative algebra in C is an alge-
bra over the associative ∞-operad E1. Using this, the construction of the universal
enveloping algebra can be generalised to a functor assigning to a Lie algebra in C

an E1-algebra in C.
The second direction of generalisation is topological in nature: Unlike Z-modules, a

homotopy type can have more sophisticated multiplicative structures than just the
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associative or commutative one. In particular, one can consider algebras over the
so-called En ∞-operad for n ∈ N, generalising the associative ∞-operad E1. Thus,
one may ask whether it is possible to assign to a Lie algebra in C an En-algebra for
every n ∈ N. Informally speaking, an algebra over the En ∞-operad in a symmetric
monoidal ∞-category D is an object X ∈ D together with n-many binary operations,
each of which endows X with the structure of an associative algebra (i.e. an E1-algebra),
and each pair of these associative multiplications satisfies an Eckmann–Hilton-like
compatibility condition up to coherent homotopy. A standard example of an En-algebra
is the n-fold loop space ΩnY of a homotopy type Y . For example, for n = 2, the double
loop space Ω2X is equivalent to the pointed mapping space Map∗

(
S1,Map∗(S1, X)

)
;

the two associative multiplications are given by concatenation of loops in X and of
loops in Map∗(S1, X), respectively. We leave the verification of the compatibility of
these multiplications to the interested reader.

An augmented En-algebra in C is an En-algebra A together with a morphism
from A to the unit of the symmetric monoidal structure of C; note that the universal
enveloping algebra of a Lie algebra L over a field k is an augmented associative algebra.
For each n ∈ N, there exists a generalisation of the universal enveloping algebra
construction provided by a cocontinuous functor (i.e. preserving small colimits)

Un,+ : AlgLie(C)→ Algaug
En

(C)

from the ∞-category of Lie algebras in C to the ∞-category of augmented En-algebras
in C, which sends a free Lie algebra generated by an object X ∈ C to the aug-
mented En-algebra freely generated by the n-fold suspension Σn

CX of X. Note that
the evaluation of the functor Un,+ on a Lie algebra is uniquely determined by its value
on morphisms between free Lie algebras, since every Lie algebra is equivalent to a
(∞-categorical) colimit of free Lie algebras. It is shown in [Knu18] that Un,+(L) is
equivalent to Σ∞

+ (Ωn
LieL) where ΩLie denotes the loop functor of AlgLie(C) and Σ∞

+ de-
notes the stabilisation functor of AlgLie(C), which one shall consider as the suspension
spectrum functor, as the notation suggests. Denote by SpQ the ∞-category of rational
spectra, i.e. the localisation of the∞-category Sp at the set of rational homology equiv-
alences of spectra. In the case n = 1 and C = SpQ the equivalence U1,+(L) ≃ Σ∞

+ ΩLieL

enhances the isomorphism (0.2) of homotopy groups to the spectral level.
The family of functors {Un,+}n∈N fits into a commutative diagram (up to coher-

ent homotopy)

AlgLie (C)

· · · Algaug
En

(C) Algaug
En−1

(C) · · · Algaug
E1

(C) Algaug
E0

(C)

U1,+
Un,+

Barn Bar1
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of∞-categories and cocontinuous functors (the horizontal functor Barn is the so-called
Bar construction). In §6.1 we construct the above diagram using the recent result
about Koszul duality of the (spectral) En ∞-operad [CS22], which is different from
the original approach in [Knu18]. By the universal property of (∞-categorical) limits,
there exists an induced cocontinuous functor

U∞,+ : AlgLie(C)→ lim←−
n

Algaug
En

(C).

By formality of the En ∞-operad over Q (see Theorem 6.2.1.11) we obtain the
following theorem.

Theorem 3 (Theorem 6.2.1.17). — The cocontinuous functor

U∞,+ : AlgLie
(
SpQ

)
→ lim←−Algaug

En

(
SpQ

)
is an equivalence of ∞-categories.

As before we fix a prime number p and let h ∈ N. Recall from the introduction
of Part I that the p-local telescope spectrum T(h) of height h is an analogue of the
rational Eilenberg–MacLane spectrum HQ (with T(0) ≃ HQ). Denote by SpT(h) the
localisation of the ∞-category Sp(p) of p-local spectra at the set of T(h)-homology
equivalences. We prove the following theorem.

Theorem 4 (Theorem 6.3.0.1). — Let C = SpT(h) for a natural number h ≥ 1.
Then the functor U∞,+ is fully faithful.

This gives a hint towards the following conjecture, generalising Theorem 3.

Conjecture 5. — Let C = SpT(h) for a natural number h ≥ 1. Then the functor U∞,+

is an equivalence of ∞-categories.

Recall the ∞-category Hovh
from the end of the introduction of Part I. It is

the unstable monochromatic layer of height h and is defined as the localisation of
the ∞-category Ho>1

(p) of pointed simply-connected p-local homotopy types at the
set of vh-periodic equivalences. The following theorem generalises Quillen’s rational
differential graded Lie algebra model for simply-connected rational homotopy types.

Theorem (Heuts). — For every natural number h ≥ 1, there exists an
∞-categorical equivalence

Hovh
≃ AlgLie(SpT(h)).

Thus, Lie algebras provides a different viewpoint for studying Hovh
, which is our

main motivation for investigating the properties of the ∞-category AlgLie(SpT(h)).
There exist two adjunctions

SpT(h)
free
⇄
forg

AlgLie(SpT(h))
indec
⇄
triv

SpT(h)
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associated with AlgLie(SpT(h)); the first one is the free–forgetful adjunction and
the second is the indecomposable–trivial adjunction. The functor triv endows every
object E ∈ SpT(h) with the structure of a trivial Lie algebra: The Lie bracket is
defined as the zero map. Under the equivalence Hovh

≃ AlgLie(SpT(h)), the above
adjunctions correspond to the following adjunctions

SpT(h)
Θh

⇄
Φh

Hovh

Σ∞
vh

⇄
Ω∞

vh

SpT(h)

associated to Hovh
, where Φh is the so-called Bousfield–Kuhn functor (see Theo-

rem 3.4.1.5) and Σ∞
vh
⊣ Ω∞

vh
exhibits SpT(h) as the stabilisation of Hovh

(see ¶6.2.2.6).
Since the suspension functor is an auto-equivalence of the stable ∞-category SpT(h),
the left adjoint functor Θh supplies the ∞-category Hovh

with non-trivial objects X
admitting infinite desuspensions, i.e. there exists an infinite sequence (Xi)i≥0 of objects
in Hovh

with X ≃ X0 and Xi ≃ Σvh
Xi+1 for i ∈ N, where Σvh

denotes the suspension
functor of Hovh

.
The general theory of the study of objects of an ∞-category D that admit infinite

desuspensions is called costabilisation; i.e. it is the opposite of stabilisation. The costa-
bilisation of an ∞-category D admitting finite colimits is a stable ∞-category coSp(D)
together with a functor Σ∞ : coSp(D)→ D (defined uniquely up to coherent homo-
topy) such that every finite colimit preserving functor from a stable ∞-category to D

factors through Σ∞. The costabilisation of the ∞-category Ho∗ of pointed homotopy
types is trivial, since a pointed homotopy type admitting infinite desuspensions is
contractible. However, as we indicated earlier, the costabilisation of the vh-periodic
localisation Hovh

of homotopy types is not trivial.

Theorem 6 (Theorem 7.3.0.4). — Let h ≥ 1 be a natural number. The adjunc-
tion Θh ⊣ Φh exhibits the ∞-category SpT(h) as the costabilisation of Hovh

.

In other words, the functor Θh plays the role of Σ∞, which gives a universal property
for the Bousfield–Kuhn functor Φh.

Corollary 7 (Corollary 7.3.0.7). — Let h ≥ 1 be a natural number. For a
presentable stable ∞-category D, composition with the Bousfield–Kuhn functor Φh

induces an equivalence

FunR(SpT(h),D) ∼−→ FunR (Hovh
,D)

where FunR denotes the ∞-category of functors that are accessible and preserve small
limits, i.e. functors that admits a left adjoint.

Recall the tower (0.1) of localisations of the ∞-category Ho>1
(p) of p-local pointed

simply-connected homotopy types given by Ṽh-contractions for h ≥ 1. We consider
Theorem 6 as our first step towards understanding chromatic assembly of homotopy
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types. For a natural number h ≥ 2, the finite truncation Ho>1
(p),Ṽh

of this tower also
admits a non-trivial costabilisation; for h = 1 the costabilisation of Ho>1

(p),Ṽ1
(for exam-

ple Ṽ1 = S2/p) of pointed simply-connected rational homotopy types is trivial, for the
same reason as for the∞-category Ho∗. We would like to pose the following questions.

Question 8. —
(i) What is the costabilisation of the ∞-category Ho>1

(p),Ṽh

?
(ii) What is the relationship between the Bousfield–Kuhn functor Φh and the right

adjoint Φ≤h to the natural functor

Σ∞ : coSp(Ho>1
(p),Ṽh

)→ Ho>1
(p),Ṽh

?

This is related to Heuts’s question [Heu20b, Question C.4]:
(iii) Let V be a pointed finite p-local homotopy type. If the vh-periodic homotopy

groups of V vanish, are the vn-periodic homotopy groups of V also trivial for
every 0 ≤ n ≤ h?

Question (iii) has an affirmative answer if we replace finite homotopy types by
finite spectra. Indeed, a spectrum has vanishing vh-periodic homotopy groups if and
only if it has vanishing T(h)-homology groups (recall that this is not true for p-local
homotopy types). Furthermore, a T(h)-homology equivalence of finite spectra is also
a K(h)-homology equivalence, and vice versa. Let F be a finite p-local spectrum
such that its T(h)-homology T(h)•(F ) is trivial. Then we have K(h)•(F ) = 0, which
implies that K(h− 1)•(F ) = 0 and T(h− 1)•(F ) = 0.

Conventions. — We follow the size conventions in [HTT, §1.2.15] to deal with set-
theoretic technicalities; see [LanII, §1.1] for a more precise explanation. In particular,
we work in the set-theoretic framework of the ZFC axioms. In addition we assume
the large cardinal axiom which guarantees the existence of a tower U0 ⊊ U1 ⊊ · · · of
Grothendieck universes [BorHCA, Definition 1.1.2]. We call a mathematical object
small if it is an element of U0. Then, for example, the ∞-category Ho of small
homotopy types is well-defined and it is itself an element of U1. Since we are not
writing a foundational text, this will be the last comment about set theory that
we make.





CHAPTER 1

Background

1.1. ∞-categories and ∞-categorical localisations

Throughout the text we use the theory of (∞, 1)-categories, following [HTT]. For
abbreviation, we call an (∞, 1)-category an∞-category. In this expositional section we
recall some prerequisites of the theory of ∞-categories and ∞-categorical localisations.

1.1.1. ∞-categorical prerequisites. — We use quasi-categories as our model for
∞-categories. In other words, an ∞-category is a simplicial set satisfying “inner horn
filling conditions” [HTT, Definition 1.1.2.4], and a functor between ∞-categories is a
morphism of the underlying simplicial sets. We refer the reader to [HTT, Chapter 1]
for a more detailed motivation and introduction on the theory of ∞-categories. For a
more compact textbook on this subject, see [LanII].

1.1.1.1. Example. — We list some methods of constructing of ∞-categories.
(i) The nerve N(C) of a 1-category C is an ∞-category [HTT, Proposition 1.1.2.2].
(ii) Let C be a simplicially enriched category whose mapping simplicial sets are

Kan complexes [HTT, Definition 1.1.2.1].(1) The simplicial nerve N(C) of C is
an ∞-category [HTT, Proposition 1.1.5.10].

(iii) Every simplicial model category gives rise to an ∞-category by taking the
simplicial nerve of the full subcategory of fibrant and cofibrant objects [HTT,
Appendix A.2].

1.1.1.2. Example. — Here are some examples of ∞-categories.
(i) The simplex category ∆ is a 1-category whose objects are totally ordered sets

[n] := {0 ≤ 1 ≤ · · · ≤ n} for n ∈ N

(1)In other words, C is a fibrant simplicially enriched category with respect to the Quillen model
structure of the category of simplicially enriched categories [QuiHA].



2 Chapter 1. Background

and morphisms are order preserving maps. Fix a natural number n, the
category ∆n is the full subcategory of ∆ whose objects are [m] for 0 ≤ m ≤ n.
Define the ∞-simplex category ∆ := N(∆) and ∆n := N(∆n) for n ∈ N.

(ii) A Kan complex is an ∞-category. Furthermore, it is an ∞-groupoid, i.e. an
∞-category where every morphism is an equivalence, see [HTT, §1.2.5].

(iii) The ∞-category Ho of homotopy types is defined as the simplicial nerve of the
simplicially enriched category of Kan complexes [HTT, Definition 1.2.16.2]. It
can be equivalently defined as the simplicial nerve of the simplicially enriched
category of CW-complexes [HTT, Remark 1.2.16.3].

(iv) The ∞-category Sp of spectra can be constructed from a simplicial model
category of spectra, using the method in Example 1.1.1.1.iii). Alternatively, one
can consider Sp as the stabilisation of the ∞-category Ho of homotopy types,
see ¶6.2.2.6 and [HA, §1.4].

(v) The ∞-category Cat∞ of small ∞-categories has objects small ∞-categories,
and a morphism in Cat∞ is a functor between small ∞-categories, see [HTT,
Definition 3.0.0.1] for a construction of Cat∞. Denote the ∞-category of (not
necessarily small) ∞-categories by CAT∞.

1.1.1.3. Convention. — We use the following conventions throughout the text.
(i) As we already demonstrated in the above examples, we denote ∞-categories by

calligraphy letters and 1-categories by boldface letters.
(ii) For an ∞-category C, we denote by ho(C) the homotopy category of C [HTT,

§1.2.3]. The homotopy category ho(Ho) of the ∞-category Ho of homotopy
types is abbreviated as Ho.

(iii) For two objects X and Y in an∞-category C, let MapC(X,Y ) ∈ Ho denote the
∞-groupoid of morphisms from X to Y , see [HTT, §1.2.2]. Denote the image
of MapC(X,Y ) in the homotopy category Ho of by MapC(X,Y ).

(iv) For ∞-categories C and D, let Fun(C,D) denote the ∞-category of functors
from C to D, see [HTT, §1.2.7].

1.1.2. Localisations of ∞-categories. — We review the necessary background of
the theory of localisations of (presentable) ∞-categories, which plays an important
role in this thesis. The main references for this section are [HTT, Chapter 5] and [HA,
§1.3.4]. Since ∞-categorical localisations work analogously to ordinary categorical
localisations, we also refer the reader to corresponding statements in the context of
ordinary categories for comparison and motivation, following [BorHCA, Chapter 5].
For an exposition of the applications of localisations to homotopy theory containing
many interesting examples, see [Law20b].

1.1.2.1. Definition. — Let C be an ∞-category and W be a set of morphisms in C.
A localisation of C at W is an ∞-category D together with a functor L : C→ D such
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that L satisfies the following universal property: For every ∞-category E, composing
with L induces a fully faithful functor

Fun (D,E) −◦L−−−→ Fun(C,E)

whose essential images are functors sending morphisms in W to equivalences in E. In
particular, L sends morphisms in W to equivalences in D.

1.1.2.2. Remark. — The definition is a natural generalisation of the ordinary
categorical localisations, known as category of fractions, see [BorHCA, Definition 5.2.1].
The localisation of an ordinary small category C at a small set W of morphisms exists;
one can explicitly construct it by formally adding morphisms to C which serve as
inverses of morphisms in W , see [BorHCA, Proposition 5.2.2]. The localisation of an
∞-category always exists up to contractible choice [HA, §1.3.4].

1.1.2.3. Proposition. — Let C be an ∞-category and let W be a set of morphisms
in C. Then the localisation of C at W exists.

Sketch. — A marked simplicial set is a pair of a simplicial set and a set of edges of the
simplicial set which contains every degenerate edge [HTT, Definition 3.1.0.1]. The idea
is to consider (C,W ) as a marked simplicial sets and construct the localisation as a
fibrant replacement of (C,W ) in the category of marked simplicial sets endowed with the
cartesian model structure [HTT, Proposition 3.1.3.7]. By [HTT, Proposition 3.1.4.1] a
fibrant object under the above model structure is equivalent to a pair (D, E) where D

is an ∞-category and E is the set of equivalences in D. A fibrant replacement of the
pair (C,W ) is a functor

F : (C,W )→ (D, E)

of marked simplicial sets such that (D, E) is fibrant and F is a cartesian equivalence.
It follows from the definition of cartesian equivalences that F exhibits D as the
localisation of C at W [HTT, Proposition 3.1.3.3].

1.1.2.4. Proposition. — Let F : C→ D be a functor between∞-categories admitting
a fully faithful right adjoint. Denote the set of morphisms of C that are sent to
equivalences in D under F by WF . Then F exhibits D as the localisation of C at WF .

Proof. — See [HTT, Proposition 5.2.7.12].

1.1.2.5. Remark. — In the situation of Proposition 1.1.2.4 we say F is a reflective
localisation, i.e. a localisation functor that admits a fully faithful right adjoint, see [HTT,
§5.2.7] and [BorHCA, §5.3]. Reflective localisations have nice closure properties, e.g.
the set WF is closed under small colimits in the ∞-category Fun(∆1,C) of morphisms
in C. Given a set W of morphisms in C, we would like to know whether the reflective
localisation of C at W exists. Ordinary categorically, one construction of reflective
localisations is given with the help of orthogonal pairs or factorisation systems of
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morphisms in cocomplete categories whose objects are presentable; in particular,
locally presentable categories, see [BorHCA, §§5.4–5.5] for more details. This approach
generalises naturally to ∞-categorical settings [HTT, §§5.2.8, 5.5.4, and 5.5.5].

1.1.2.6. Proposition. — Let F : C→ D be a functor exhibiting the ∞-category D

as a reflective localisation of the ∞-category C. Denote the right adjoint of F by G.
The unit natural transformation λC : id→ G ◦ F satisfies the following property: For
every object X ∈ C, the morphisms (G ◦ F )(λ(X)) and λ((G ◦ F )(X)) are homotopic
to each other and are both equivalences in C.

Proof. — For every object X ∈ C, the evaluation of λ on the morphism λ(X) gives
the following commutative diagram

X (G ◦ F )(X)

(G ◦ F )(X) (G ◦ F ) ((G ◦ F )(X)) ,

λ(X)

id(λ(X))=λ(X) (G◦F )(λ(X))

λ((G◦F )(X))

that is, the upper-right composition ((G◦F )(λ(X)))◦λ(X) of morphisms is homotopic
to the lower-left composition λ((G ◦ F )(X)) ◦ λ(X). For an object Y ∈ D, composing
with λ(X) induces an equivalence

MapC((G ◦ F )(X), G(Y )) ≃MapC(X,G(Y )),

on mapping spaces, since G is fully faithful. Therefore, the morphisms (G ◦ F )(λ(X))
and λ((G ◦ F )(X)) are homotopic. Since G is fully faithful, the counit natural
transformation F ◦G→ id is an equivalence in the ∞-category Fun(D,D). Thus, the
morphism λ((G ◦ F )(X)) is an equivalence in C, which implies that (G ◦ F )(λ(X))
is also an equivalence in C since the two maps are homotopic. See also [HTT,
Proposition 5.2.7.4] for a stronger statement.

1.1.2.7. Corollary. — In the situation of Proposition 1.1.2.6 let L denote the
composition G ◦ F . The induced natural transformation L→ L ◦ L is an equivalence
in the ∞-category Fun(C,C).

1.1.2.8. Definition. — Let C be an ∞-category and let W be a set of morphisms
in C.

(i) An object X of C is W -local if for every morphism f : A→ B in W the induced
morphism MapC(B,X) → MapC(A,X) of mapping spaces is an equivalence
in Ho.(2)

(2)Our definition is equivalent to [HTT, Definition 5.5.4.1], since an equivalence in an ∞-category
is defined as a morphism that becomes an isomorphism in the homotopy category [HTT, §1.2.4].
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(ii) A morphism f : Y → Z in C is a W -equivalence if for every W -local object X
the induced morphism MapC(Z,X) → MapC(Y,X) of mapping spaces an
equivalence in Ho.

1.1.2.9. Notation. — In the situation of Definition 1.1.2.8, if the set W consists of
single morphism f , we abbreviate “W -local” and “W -equivalence” by “f-local” and
“f -equivalence”, respectively.

1.1.2.10. Definition. — Let C be an ∞-category admitting small colimits. A set S
of morphisms of C is strongly saturated if it satisfies the following conditions:

(i) Given a pushout diagram

X X ′

Y Y ′

f f ′

⌜

in C, the map f ′ is in S if f is in S.
(ii) The full ∞-subcategory of Fun(∆1,C) whose objects are morphisms in S is

closed under small colimits.
(iii) Let f, g and h be morphisms in C such that f ◦ g ≃ h. If any two of the three

maps are in S, so is the remaining one.

1.1.2.11. Example. — Let C be an ∞-category admitting small colimits.
(i) The set of equivalences in C are strongly saturated.
(ii) In the situation of Definition 1.1.2.8 the set of W -equivalences is strongly

saturated, see [HTT, Lemma 5.5.4.11].

1.1.2.12. Definition. — A strongly saturated class S of morphisms is generated by a
set S0 ⊆ S if S is the smallest strongly saturated class of morphisms containing S0. We
say that S is of small generation if S0 is a small set. See also [HTT, Remark 5.5.4.7].

1.1.2.13. Definition. — An ∞-category C is presentable if there exists a regular
cardinal κ and a small ∞-subcategory C0 such that

(i) C admits small colimits,
(ii) for every object X ∈ C0 the functor MapC(X,−) commutes with κ-filtered

colimits, and
(iii) every object of C is equivalent to a small colimit in C of objects in C0.

1.1.2.14. Definition. — A functor between presentable ∞-categories is
(i) continuous if it preserves small limits;
(ii) cocontinuous if it preserves small colimits;
(iii) accessible if it preserves κ-filtered colimits for some regular cardinal κ, see [HTT,

Definitions 5.4.2.5 and 5.3.4.5].
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1.1.2.15. Notation. — Let PrL denote the ∞-category of presentable ∞-categories
whose morphisms are cocontinuous functors. Let PrR denote the ∞-category of
presentable ∞-categories whose morphisms are accessible and continuous functors.
See [HTT, Definition 5.5.3.1].

1.1.2.16. Remark. — By the Adjoint Functor Theorem a functor is an morphism
in PrL (respectively PrR) if it admits a right adjoint (respectively left adjoint), see [HTT,
Corollary 5.5.2.9].

1.1.2.17. Theorem. — Let C be a presentable ∞-category and S be a strongly
saturated class of morphisms of C generated by a small set S0 ⊆ S. The following
statements holds:

(i) The ∞-category CS0 of S0-local objects is presentable.
(ii) The inclusion CS0 ↪→ C admits a left adjoint L.
(iii) A morphism f in C is an S0-equivalence if and only if it is in S.
(iv) The functor L : C→ CS0 exhibits CS0 as the localisation of C at S. In particular,

it is a reflective localisation.

Proof. — See [HTT, Proposition 5.5.4.15].

1.1.2.18. Example. — Let C be a presentable ∞-category and let f be a mor-
phism in C. The ∞-category Cf of f -local objects is the localisation of C at the
set of f -equivalences. In Part I we are concerned with such localisations of the
∞-category Ho of homotopy types. We refer interested readers to [Law20b, §4] to
more concrete examples of such localisations.
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1.2. Stable chromatic homotopy theory

Many ideas and methods from stable chromatic homotopy theory are indispensable
for the development of unstable periodic homotopy theory. Fix a prime number p.
In this section we give a very brief exposition of the stable chromatic localisations of
the ∞-category Sp(p) of p-local spectra and include necessary prerequisites from this
subject for later applications.

Denote the suspension of a spectrum by Σ, and the sphere spectrum by S. We
begin by explaining the role of “self-maps” of finite spectra played in studying the
stable homotopy groups πst

• (S) of the sphere spectrum. Let F be a finite spectrum,
i.e. a spectrum that is equivalent to, up to desuspension, the suspension spectrum of a
finite CW-complex. Given a morphism f : ΣdF → F of spectra, where d ∈ N, one can
define the following composition

ψt
f : Sn ↪→ ΣdtF

f◦t

−−→ F → Sk ∈ πst
n (Sk) ∼= πn−k(S)

for any t ∈ N, where
(i) the first map (from the left) is induced by the inclusion of a bottom cell

into ΣdtF ,
(ii) the middle map denotes the composition

f◦t : ΣdtF
Σ(d−1)tf−−−−−−→ · · · → Σ2dF

Σdf−−→ ΣdF
f−→ F, and

(iii) the last map F → Sk is induced by the collapse map onto a top cell of dimen-
sion k.

Thus the family {ψt
f} of maps supplies us with an infinite family of elements in πst

• (S).
It would be good to know that, with a suitable choice of f , the above procedure
produces some non-trivial elements in πst

• (S). An obvious candidate for f is the
degree n self-map S ×n−−→ S for n ∈ Z, which gives us every element in πst

0 (S) ∼= Z. The
next example of f is constructed by Adams [Ada66] using complex K-theory KU. Fix
a prime number p. Consider the following cofibre sequence

S ×p−−→ S→ S/p

It is shown in [Ada66] that for p ≥ 3 there exists a map

v1 : Σ2(p−1)S/p→ S/p,

called a v1 self-map of S/p, which induces an isomorphism on their complex K-theory
homology.(3) Furthermore, it was observed one can construct more such self-maps by
taking the cofibre of the existing self-maps; we clarify this by giving two more examples.
Denote the cofibre of the self-map v1 by S/(p, v1). It is shown in Smith [Smi70] that

(3)There is also similar construction in the case p = 2 [Ada66], which we omit for the simplicity of
this exposition.
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for p > 3 there exists a non-trivial map

v2 : Σ2(p2−1)S/(p, v1)→ S/(p, v1),

which is called a v2 self-map of the finite spectrum S/(p, v1). Let S/(p, v1, v2) denote
the cofibre of the v2 self map. Toda proves that for p > 5 there exists a non-trivial
self-map

v3 : Σ2(p3−1)S/(p, v1, v2)→ S/(p, v1, v2)

of the finite spectrum S/(p, v1, v2).
In [MRW77] Miller, Ravenel and Wilson develop a program to show that the infinite

families ψt
v1

, ψt
v2

and ψt
v3

of elements of πst
• (S) constructed using the above v1, v2

and v3 self-maps are non-trivial. Their methods is to reduce the questions purely
algebraic computations. We list the ingredients of this algebraic approach and give
references to the definitions and details for the interested reader. Recall that we work
with a fixed prime number p. Denote the p-local Brown–Peterson spectrum by BP,
which was constructed in [BP66]. The BP-homology BP•(S(p)) of the p-local sphere
spectrum admits the structure of a (left) BP•(BP)-comodule of the so-called Hopf
algebroid (BP•,BP•BP); see [Hov04] for an introduction of Hopf algebroids. The
Ext group ExtBP•(BP)

(
BP•,BP•

(
S(p)

))
of (BP•,BP•BP)-comodules is isomorphic,

as a bi-graded abelian group, to the E2-page of the BP•-based Adams–Novikov
spectral sequence converging to the stable homotopy groups πst

• (S(p)) of the p-local
sphere spectrum. It is explained in [MRW77] how to detect non-trivial elements in
ExtBP•(BP)

(
BP•,BP•

(
S(p)

))
which survives to the E∞-page of the spectral sequence

and their images on the E∞-page represent elements of πst
• (S(p)) constructed from the

v1, v2 or v3 self-maps (that we mentioned at the beginning of this paragraph).
In order to compute the group ExtBP•(BP)

(
BP•,BP•

(
S(p)

))
, an algebraic chromatic

resolution
BP•(S)→M0 →M1 → · · · →Mh → · · · (1.2.0.1)

of BP•BP-comodules was constructed in [MRW77]. This resolution induces
the so-called chromatic spectral sequence converging to the bi-graded group
ExtBP•(BP)(BP•,BP•(S(p))). Recall the p-local Morava K-theory spectrum K(h)
of height h, where h ∈ N. The E1-page of the spectral sequence, given by
the Ext group ExtBP•(BP)

(
BP•,M

h
)
, can be computed using the Ext groups

ExtK(h)•K(h)(K(h),K(•)) of K(h)•K(h)-comodules. Finally, the spectrum K(h) relates
closely to the so-called Morava stabiliser groups of automorphisms of the so-called
Honda formal group Γh,p of height h over the algebraic closure Fp of Fp. This gives
the possibility to obtain partial information of the group ExtK(h)•K(h)(K(h),K(h))
from the continuous group cohomology of the Morava stabiliser group; the latter
involves very complicated computations.
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Denote the ∞-category of p-local spectra by Sp(p). The p-local Lubin–Tate spec-
trum Eh of height h is a spectrum associated with the universal deformation ring of the
Lubin–Tate formal group law over the p-adic integers; we recommend the non-expert
reader to view Eh as a auxiliary spectrum with certain properties that we will explain
later, since several pages prerequisites from chromatic homotopy theory are needed to
make full sense of this definition of Eh. Let Lh denote the localisation functor of Sp(p)
at Eh-homology equivalences. By ¶1.2.0.15 we obtain the following tower

· · · → Lh+1 → Lh → · · · → L1 → L0 (1.2.0.2)

of localisations of Sp(p). Evaluation this tower at the p-local sphere spectrum S(p), we
obtain the commutative diagram

S(p)

· · · Lh+1
(
S(p)

)
Lh

(
S(p)

)
· · · L1

(
S(p)

)
L0
(
S(p)

)
.

(1.2.0.3)

In [Rav84] Ravenel observed that the lower horizontal tower in (1.2.0.2) relates to the
algebraic chromatic resolution (1.2.0.1) as follows: The truncated chromatic spectral
sequence induced by the truncated resolution

BP•(S)→M0 →M1 → · · · →Mh

converges to the the bi-graded Ext group ExtBP•(BP)
(
BP•,BP•

(
Lh

(
S(p)

)))
, which

is isomorphic to the E2-page of the BP•-based Adams–Novikov spectral sequence con-
verging to the stable homotopy groups of πst

•
(
Lh

(
S(p)

))
. Because of this relationship,

we view the tower (1.2.0.2) as a realisation of the resolution (1.2.0.1) on the spectral
level. Thus, the tower (1.2.0.2) is known as the chromatic tower of p-local spectra.

We have already mentioned the concept of formal group here and there in the
exposition above. Let us make a side remark that there is a very close tie between
stable chromatic homotopy theory and the theory of the moduli stacks of formal
groups. See [HopCOC; LurCHT; PetFG; PstFHC] for more detailed explanations of
this algebro-geometric viewpoint of chromatic homotopy theory.

In his seminal paper [Rav84] Ravenel made conjectures saying that the problems
about finding non-trivial self-maps ΣdF → F of a finite spectrum F can be answered
using chromatic homotopy theory. The related conjectures were proven in [HS98],
which we recall in the following. Denote by ⊗ the smash product of spectra, which
makes Sp a symmetric monoidal ∞-category (see Definition 5.2.1.30). Recall that we
work with a fixed prime number p. We set K(0) := HQ and K(∞) := HFp.
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1.2.0.1. Definition. — Let E be a spectrum and let d ∈ N. A map f : ΣdE → E

is nilpotent if there exists a n ∈ N such that the composition

f◦n : ΣndE
Σ(n−1)df−−−−−−→ Σ(n−1)dE

Σ(n−2)df−−−−−−→ · · · → ΣdE
f−→ E

is the zero map.

1.2.0.2. Theorem (Nilpotence Theorem). — Let F be a p-local finite spectrum
and let d ∈ N. A map f : ΣdF → F is nilpotent if and only if, for all h ∈ N ∪ {∞},
the induced map K(h)•(f) on K(h)-homology is nilpotent.

Proof. — See [HS98, Theorem 3].

1.2.0.3. Definition. — Let h be a natural number. A p-local finite spectrum F is
of type at least h if its K(n)-homology K(n)•(F ) is trivial for every 0 ≤ n ≤ h− 1. If
in addition its K(h)-homology K(h)•(F ) is non-trivial, we say F is of type h.

1.2.0.4. Theorem (Ravenel). — Let F be a p-local finite spectrum and let h be a
natural number. If K(h)•(F ) = 0, then F is of type at least h.

Proof. — See [Rav84, Theorem 2.11].

1.2.0.5. Theorem (Mitchell). — For every h ∈ N, there exists a finite p-local
spectrum of type h.

Proof. — See [Mit85].

1.2.0.6. Theorem (Periodicity Theorem). — Let F be a finite spectrum of type
at least h for a natural number h. Then there exists a vh self-map ΣdhF → F for
some natural number dh which induces an isomorphism of K(h)-homology and induces
the zero map of K(j)-homology for all j ̸= h.

Proof. — See [HS98, Theorem 9].

1.2.0.7. Definition. — Let C be a stable ∞-category. A full ∞-subcategory C0 ⊆ C

is thick if the homotopy category ho(C0) is a thick subcategory of the triangulated
category ho(C). In other words C0 is thick if it is closed under equivalences, cofibre
sequences and retracts. By closed under cofibre sequences we mean that if two of the
three objects of a cofibre sequence is contained in C0, then so is the remaining one.

1.2.0.8. Example. — Denote the ∞-category of p-local finite spectra by Spfin
(p). The

full ∞-subcategory P≥h, whose objects are p-local finite spectra of type at least h, is
a thick subcategory of Spfin

(p). By convention we denote the full ∞-subcategory whose
objects are finite contractible p-local spectra by P≥∞.
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1.2.0.9. Theorem (Thick Subcategory Theorem). — If T is a thick subcategory
of the ∞-category Spfin

(p), then there exists a unique h ∈ N ∪ {∞} such that T is
equivalent to the ∞-category P≥h.

Proof. — See [HS98, Theorem 7].

1.2.0.10. Remark. — In the situation of Theorem 1.2.0.9, one can regard the full
∞-category P≥h as the “prime ideals” of Spfin

(p), using the theory of tensor-triangulated
geometry, see [Bal20].

1.2.0.11. Corollary. — Let F be a non-trivial finite p-local spectrum. There exists
a unique natural number h such that F is of type h.

Using the family of thick subcategories P≥h of Spfin
(p), we can construct another

tower of localisations of Spfin
(p), known as the p-local finite chromatic localisation tower.

This is the stable analogue of the unstable chromatic localisation tower (3.4.0.1) that
will be introduced in §3.4.

1.2.0.12. The finite chromatic localisation tower of Sp(p). — Consider the
nested sequence

· · · ⊆ P≥h+1 ⊆ P≥h ⊆ · · · ⊆ P≥1 ⊆ P≥0

of thick ∞-subcategories of Spfin
(p). For h ∈ N, denote by Sp≥h the full ∞-subcategory

whose objects are equivalent to small colimits of objects of P≥h. Thus, this gives
a filtration

· · · ⊆ Sp≥h+1 ⊆ Sp≥h ⊆ · · · ⊆ Sp≥1 ⊆ Sp≥0 = Sp(p)

of the ∞-category Sp(p) of p-local spectra. The Verdier quotient

Lf
h : Sp(p) → Lf

h

(
Sp(p)

)
:= Sp(p)

/
Sp≥h+1

is a reflective localisation of Sp(p), characterised by the property that it is the initial
functor from Sp(p) to a stable ∞-category sending every object of Sp≥h+1 to the zero
object. The finite chromatic localisation tower denotes the following sequence

· · · → Lf
h → Lf

h−1 → · · · → Lf
0 ≃ LQ → pt (1.2.0.4)

of localisations of the Sp(p); here Lf
0 ≃ LQ is the localisation of Sp(p) at the set of

rational equivalences. The comparison between the tower (1.2.0.2) and (1.2.0.4) is
known as the telescope conjecture.

1.2.0.13. The spectra S(h) and T(h). — There are two p-local spectra related
closely to the finite chromatic localisations, which we introduce now. They will also
be used in later applications. Let h ∈ N.

(i) The p-local spectrum S(h) is the evaluation Lf
h

(
S(p)

)
of the localisation func-

tor Lf
h at the p-local sphere spectrum S(p).
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(ii) Let Fh be a finite spectrum of type h together with a vh self-map ΣdFh → Fh.
The p-local telescope spectrum T(h) of height h is defined as the colimit

lim−→

(
Fh

Σ−dvh−−−−→ Σ−dFh → · · ·
Σ−ndvh−−−−−→ Σ−ndFh → · · ·

)
in the ∞-category Sp(p).

The construction of T(h) depends on the choices of Fh and the vh self-map. However,
these choices are elided from the notation by the following reason: By the Thick
Subcategory Theorem and the asymptotically uniqueness of the vh-self maps [HS98,
Corollaries 3.7 and 3.8], the notion of T(h)-homology equivalence does not depend on
these choices, see [Bou01, §3]. In this thesis, we are only concerned with T(h)-homology
equivalences, and not with any specific T(h)-spectrum.

Moreover, an S(h)-homology equivalence is a T(n)-homology equivalence for ev-
ery 0 ≤ n ≤ h, and vice versa. The localisation Lf

h is equivalent to the localisation of
the ∞-category Sp>1

(p) at the set of S(h)-homology equivalences, see [Bou01, §3].

1.2.0.14. Homology localisations of spectra. — We recall some basic notions of
homological localisation of spectra, which we have been using throughout the section.

Let E be a spectrum. A spectrum Y is E•-acyclic if the smash product E ⊗ Y
is the zero spectrum, i.e. the E-homology E•(Y ) of Y is zero. A spectrum X is
E•-local if the mapping spectrum Map∗ (Y,X) ≃ pt for every E•-acyclic spectrum Y .
A morphism Z1 → Z2 of spectra is a E-homology equivalence, or E•-equivalence,
if it induces an isomorphism on E-homology. Denote the ∞-category of E•-local
spectra by SpE . It is shown in [Bou79b] that SpE is a reflective ∞-subcategory
of Sp, i.e. there exists a left adjoint LE to the fully faithful inclusion SpE ↪→ Sp.
Furthermore, the functor LE exhibits the ∞-category SpE as the localisation of Sp at
the set of E•-homology equivalences. Thus the functor LE is called the E-homology
localisation, and is also denoted by E•-localisation.

Fix a prime number p. The p-local Moore spectrum S(p) is characterised by the
property that HZ•(S(p)) ∼= Z(p), as an isomorphism of graded abelian groups. One can
construct S(p) by formally inverting the degree ℓ self-map on the sphere spectrum S,
for all prime number ℓ ̸= p. A spectrum is p-local if it is (S(p))•-local. There is
the following characterisation of p-local spectra: A spectrum is p-local if and only
if its stable homotopy groups are p-local abelian groups in all degrees, see [Bou79b,
Proposition 2.4]. Furthermore, a bounded below spectrum is p-local if and only if its
HZ-homology groups are p-local abelian groups in all degrees. Let Sp(p) denote the
∞-category of p-local spectra. The (S(p))•-localisation LS(p) : Sp→ Sp(p) is called the
p-localisation. For a spectrum E, we denote

E(p) := LS(p)(E).
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1.2.0.15. The Bousfield class of spectra. — Closely related to homological
localisations of spectra is the notion of Bousfield class of spectra. For E1, E2 ∈ Sp, we
say E1 and E2 are Bousfield equivalent if a spectrum X is (E1)•-acyclic exactly when
it is (E2)•-acyclic. This gives an equivalence relation of spectra. For a spectrum E,
we denote the equivalence class of E under the above Bousfield equivalence relation
by ⟨E⟩, called the Bousfield class of E. We write

⟨E1⟩ ≥ ⟨E2⟩

if every (E1)•-acyclic spectrum is also (E2)•-acyclic. For example, fix a prime number p,
we have the following comparisons of Bousfield classes: Let h be a natural number.

(i) ⟨S(h)⟩ = ⟨T(0) ∨ T(1) ∨ · · · ∨ T(h)⟩;
(ii) ⟨Eh⟩ = ⟨E(h)⟩ = ⟨K(0) ∨K(1) ∨ · · · ∨K(h)⟩, where E(h) denotes the so-called

Johnson–Wilson spectrum;
(iii) ⟨S(h)⟩ ≥ ⟨E(h)⟩;
(iv) ⟨T(h)⟩ ≥ ⟨K(h)⟩;

We refer the reader to [Rav84] and [Bou01] for the proofs of above comparisons.
Let E1 and E2 be two spectra such that ⟨E1⟩ ≥ ⟨E2⟩. Then there exists a natural

transformation
LE1 → LE2 ,

given on object by E2-homology localisation. Using this and the above comparisons
of the Bousfield classes, we obtain a natural transformation Lf

h → Lh from the finite
chromatic localisation of height h to the (Eh)•-localisation Lh.
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1.3. Prerequisites on unstable homotopy theory

In this section we recall some prerequisites, conventions and notations concerning
homotopy types.

1.3.0.1. Convention. — Let X and Y be pointed homotopy types. We denote the
∞-groupoid of pointed maps from X to Y by Map∗(X,Y ), called the pointed mapping
space from X to Y . Choosing the constant morphism sending X to the basepoint of Y
as the basepoint, Map∗(X,Y ) becomes a pointed homotopy type. Let [X,Y ] denote
the set of pointed homotopy classes of pointed maps from X to Y .

1.3.0.2. Adding a disjoint basepoint. — Let Ho∗ denote the ∞-category of
pointed homotopy types. There exists an adjoint pair

(−)+ : Ho ⇄ Ho∗ : (−)

given on objects as follows:
(i) The functor (−)+ assigns to a homotopy type W the pointed homotopy

type (W+,+) given by the disjoint union of W and a one-point space {+}.
(ii) The functor (−) assigns to a pointed homotopy types (X,x0) its underlying

homotopy type X.

1.3.0.3. Convention. — Let (X,x0) be a pointed homotopy type. By abuse
of notation we abbreviate most of the time homotopy groups π•(X,x0) of (X,x0)
by π•(X); it will be either clear from the context which basepoint we choose, or the
choice of the basepoint does not matter.

1.3.0.4. Definition. — Let n ∈ N. A homotopy type X is n-connected if the
homotopy groups πi(X,x0) are zero for all i ≤ n and for any choice of basepoint x0 ∈ X.
The connectivity of X is a natural number conn(X) such that X is conn(X)-connected
and the homotopy group πconn(X)+1(X) of X in degree conn(X) + 1 is non-trivial. We
say that a homotopy type is connected if it is 0-connected, and a homotopy type is
simply-connected if it is 1-connected.

1.3.0.5. The Postnikov tower. — Let X be a pointed connected homotopy type.
There exists the following commutative diagram

X

· · · τ≤n+1(X) τ≤n(X) · · · τ≤1(X) τ0(X) ≃ pt

in ∞-category Ho∗ of pointed homotopy types satisfying the following properties:
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(i) For every n ∈ N, the homotopy groups of τ≤n(X) in all degrees above n

are trivial.
(ii) For every n ∈ N, the map X → τ≤n(X) induces an isomorphism of homotopy

groups in every degree 0 ≤ i ≤ n.
(iii) The inverse limit of the lower horizontal tower in Ho∗ is equivalent to X.

In particular, for every n ∈ N, we obtain a fibre sequence

τ>n(X)→ X → τ≤n(X)

in Ho∗. The fibre τ>n(X) is n-connected, and the pointed map τ>n(X)→ X induces
an isomorphism of homotopy groups in all degrees larger than n. The pointed homotopy
type τ>n(X) is called the n-connected cover of X; sometimes we denote it equivalently
by τ≥n+1(X).

1.3.0.6. Fiber sequences. — Let F → X
f−→ B be a fibre sequence in the

∞-category Ho∗ of pointed homotopy types, and assume that B is connected. We
introduce two ways to construct X using F and B, up to equivalence.

(i) Consider F → X
f−→ B as morphisms in the ∞-category Ho of unpointed

homotopy types. Let Ho/X denote the over-∞-category of objects in Ho together
with a morphism to X (see [HTT, §§1.2.9 and 4.2.1]). The morphism f induces
a functor f! : Ho/X → Ho/B by composing with f . By the proof of [HTT,
Lemma 6.1.3.14] the functor f! admits a right adjoint f∗. For (Y → B) ∈ Ho/B ,
we have f∗(Y → B) ≃ X×Y B. For a point b ∈ B, consider the pullback diagram

Fb X

pt X.

⌟
f

b

in Ho. Thus we have f∗(pt b−→ B) = (Fb → X). Furthermore, the functor f∗

preserves colimits. This implies that f∗ sends

B ≃ lim−→
B

(pt b−→ B) ∈ Ho/B

to the object
lim−→
B

(Fb → X) ∈ Ho/X .

Since the continuous functor f∗ preserves terminal objects, lim−→B
(Fb → X) is

equivalent to the terminal object X of Ho/X . Therefore, we have

X ≃ lim−→
B

Fb ∈ Ho,

where the limit is taken over the diagram B → Ho sending a point b to the
fibre Fb over B.
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(ii) The pointed homotopy type ΩB is a group object in the ∞-category Ho∗

of pointed homotopy types. Thus we can consider the induced fibre se-
quence ΩB → F → X as a (ΩB)-principal ∞-bundle in Ho∗, classified by the
map X → B ≃ Bar(ΩB), where Bar denotes the classifying space Bar construc-
tion. By [NSS15, §3] we have the following commutative diagram

· · · F F F F

· · · F × ΩB × ΩB F × ΩB F X

· · · ΩB × ΩB ΩB pt Bar(ΩB) ≃ B

f

(1.3.0.1)

in Ho∗ where
(a) each column is a fibre sequence,
(b) every vertical fibre sequences except for the right most one is a trivial

fibration, and
(c) the right most object of each horizontal row is equivalent to the geometric

realisation of the simplicial objects (where we only drew the face maps)
to its left.

In particular, we obtain an equivalence

X ≃ lim−→
(
· · · F × ΩB × ΩB F × ΩB F

)
of pointed homotopy types.

1.3.0.7. Definition. — Let E be a spectrum and let X be a pointed homotopy
type. The reduced E-homology of X is defined as the graded abelian group

Ẽ•(X) := πst
• (E ⊗ Σ∞X).

The E-homology of X is defined as the graded abelian group

E•(X) := πst
• (E ⊗ Σ∞(X+)) .

1.3.0.8. Nilpotent groups and nilpotent homotopy types. — Let G be a
group. The lower central series (Γi(G))i≥1 of G is defined inductively as follows:

Γ1 := G

Γi+1 := [G,Γi(G)], for all i ≥ 1,

where [−,−] denotes the commutator bracket. The group G is nilpotent if there exists
a natural number n such that Γn(G) is the trivial group (and thus Γm(G) are trivial
for all m ≥ n). Abelian groups are nilpotent.

Let H be a group and a G-module. The G-lower central series (ΓG
i (H))i≥1 of H is

defined inductively as follows: ΓG
1 (H) := H, and for all i ≥ 1 the group ΓG

i+1(H) is
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the normal subgroup of ΓG
i (H) generated by elements of the form h(g.a)h−1a−1 for

all h ∈ H, all g ∈ G and all a ∈ ΓG
i (H). We say H is G-nilpotent if there exists a

natural number n such that ΓG
n (H) is the trivial group (and thus ΓG

m(H) are trivial
for all m ≥ n).

Let X be a pointed connected homotopy type. The homotopy group πn(X) in
every degree n ≥ 2 admits an action by the fundamental group π1(X), see [HatAT,
p.341] for a detailed construction of this action. The homotopy type X is nilpotent if

(i) π1(X) is nilpotent, and
(ii) πn(X) is π1(X)-nilpotent, for all natural numbers n ≥ 2.

Examples of nilpotent homotopy types are simple homotopy types (the action of π1(−)
on πn(−) are trivial for all n ≥ 2), in particular simply connected homotopy types,
and connected H-spaces.

Let R be a subring of the rational numbers Q. For a nilpotent group G, the
notation G ⊗ R denotes the R-Malcev completion of G, see [BK, §V.2.3] for the
definitions. If G is abelian, then G⊗R is isomorphic to the tensor product G⊗Z R

of Z-modules.
See [Dro71; Hil82; BK] for more details about these topics.

1.3.0.9. Homological localisations of homotopy types. — Let E be a spectrum.
A morphism f : X → Y ∈ Ho∗ is an E-homology equivalence, or E•-equivalence, if it
induces an isomorphism f∗ : E•(X) ≃−→ E•(Y ). A pointed connected homotopy type Z
is E•-acyclic if the map Z → pt is an E•-equivalence. Equivalently, Z is E•-acyclic
if Ẽ•(X) = 0. The localisation of Ho∗ at the set of E•-equivalences exists and is
denoted by LE : Ho∗ → Ho∗, see [Bou75]. This is a reflective localisation and it
assigns to every pointed homotopy type X a pointed homotopy type LE(X) together
with a morphism λE(X) : X → LE(X) in Ho∗ such that

(i) the map λE(X) is an E•-equivalence, and
(ii) every E•-equivalence g : X → Y ∈ Ho∗ admits an extension g′ : Y → LE X

with g′ ◦ g ≃ λE(X).
A pointed homotopy type is E•-local if it is the map X → LE(X) is an equivalence.

Fix a prime number p and recall the mod-p Moore spectrum S(p) from ¶1.2.0.14.
A pointed homotopy type is p-local if it is (S(p))•-local.(4) For a nilpotent group G,
we say G is p-local if there exists a group isomorphism G ∼= Z(p) ⊗G. For a pointed
nilpotent homotopy type Z, there are the following characterisations of being p-local:

(i) Z is p-local if and only if its HZ-homology groups are p-local abelian groups in
every degrees.

(ii) Z is p-local if and only if its homotopy groups are p-local in all degrees.

(4)By [Bou75, Proposition 4.1] it is equivalently (HZ(p))•-local.
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In general, homological localisations of non-nilpotent homotopy types are compli-
cated, see [BK, Chapter VII]. Let Ho(p) denote the ∞-category of pointed p-local ho-
motopy types. The (S(p))•-localisation LS(p) : Ho∗ → Ho(p) is called the p-localisation
of homotopy types, as constructed in [Bou75]. For X ∈ Ho∗, we denote

X(p) := LS(p)(X).

When restricted to nilpotent homotopy types, the above p-localisation LS(p) coincide
with other constructions of p-localisations of homotopy types, see [BK; CP93; SulGT]
for alternative constructions. However, these constructions become inequivalent for
non-nilpotent homotopy types, see [MP, Remark 19.3.11]. In our later applications,
we are only concerned with p-localisation of nilpotent homotopy types.

1.3.0.10. Definition. — A finite homotopy type is an object of Ho which is
equivalent the homotopy type of a finite CW-complex, i.e. a CW-complex having only
finitely many cells. Thus, we also often call a finite homotopy type a finite complex.
For a fixed prime number p, a finite p-local homotopy type (complex), or equivalently
denoted as p-local finite homotopy type (complex), is a p-local homotopy type that is
equivalent to the p-localisation of a finite homotopy type (complex).

1.3.0.11. Remark. — A finite p-local homotopy type doesn’t have to be a finite
homotopy type, for example, consider the p-local spheres. However, let F be a
nilpotent finite p-local homotopy type such that its singular homology with rational
coefficient is trivial, then F is equivalent to a finite complex: The hypotheses on
F imply that the integral singular homologies of F is bounded and are degree-wise
finitely generated p-primary abelian groups.



Part I

Unstable Periodic Homotopy Theory





CHAPTER 2

The contraction of a homotopy type

2.1. The W -contraction

We introduce the theory of W -contraction of a homotopy type W (also known
as the W -nullification or the W -localisation), following [Bou94] and [DroCS]. This
section is expository, where we supplement [Bou94, §2] with more details of the proofs
of certain theorems. In particular, we discuss the W -contraction for pointed and
unpointed homotopy types in detail (see for example Proposition 2.1.1.15).

We begin with the basic definitions and properties in §2.1.1, and proof the existence
of the W -contraction functor in §2.1.2 and discuss some closure properties in the last
subsection §2.1.3.

2.1.1. W -less homotopy types and W -equivalences. —

2.1.1.1. Definition. — Let W be a homotopy type. We say a homotopy type X
is W -less if the map W → pt induces an equivalence

X ≃Map(pt, X)→Map(W,X)

on the mapping spaces.

2.1.1.2. Example. — Let us first consider some trivial examples.
(i) If W is contractible, then every homotopy type is W -less.
(ii) If X is contractible, then X is W -less for every homotopy type W .
(iii) For a non-connected homotopy type W , then a homotopy type X is W -less if

and only if X is contractible. A section of the map W → π0(W ) makes the
discrete homotopy type π0W a retract of W . Assuming X is W -less, we have
that

∏
i∈π0(W ) X is a retract of X ≃Map(W,X), which holds if and only if X

is contractible.

2.1.1.3. Proposition. — Let W be a connected homotopy type. A homotopy type X
is W -less if and only if each connected component of X is W -less.
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Proof. — Write X as the disjoint union ⊔α∈π0(X)Xα of its connected components.
Denote the map W → pt by t. Since W is connected, we obtain the following
commutative diagram

Map(pt, X) Map(W,X)

∐
α∈π0(X) Map(pt, Xα)

∐
α∈π0(X) Map(W,Xα),

t∗

≃ ≃∐
α∈π0(X)

t∗

where the lower horizontal map is the disjoint union of maps

t∗ : Map(pt, Xα)→Map(W,Xα)

for every α ∈ π0(X). Thus the upper horizontal arrow is an equivalence if and only if
the lower horizontal arrow is an equivalence. In other words, X is W -less if and only
if the connected component Xα is W -less for all α ∈ π0(X).

2.1.1.4. Definition. — Let W be a homotopy type and let f : A→ B be a map of
homotopy types. We say f ∈ Ho is an W -equivalence if for every W -less homotopy
type Y the induced map f∗ : Map(B, Y )→Map(A, Y ) is an equivalence. In this case,
we say A and B are W -equivalent.

2.1.1.5. Example. — Here are some trivial examples of W -equivalences.
(i) By Definition 2.1.1.1 the unique map W → pt is a W -equivalence.
(ii) If W is a non-connected homotopy type, then every morphism of homotopy

types is a W -equivalence, by Example 2.1.1.2.(iii).

2.1.1.6. Notation. — Let f : A→ B be a map of homotopy types. Write A as the
disjoint union

∐
α∈π0(A) Aα of its connected components. For α ∈ π0(A), denote the

restriction of f to Aα by fα : Aα → Bα, where Bα is the connected component of B
such that f(Aα) ⊆ Bα.

2.1.1.7. Proposition. — Let W be a connected pointed homotopy type. A mor-
phism f : A → B of homotopy types is a W -equivalence if and only if the following
two conditions hold:

(i) The induced map f∗ : π0(A) → π0(B) is an isomorphism of the set of con-
nected components.

(ii) For every α ∈ π0(A) and for every W -less connected homotopy type Z, the map
fα induces an equivalence Map(Bα, Z) ∼−→Map(Aα, Z).

Proof. — Assume f is a W -equivalence. Since W is connected, every set S with
discrete topology is W -less. Thus the induced map f∗ : Map(B,S) → Map(A,S)
is an equivalence. Furthermore, note that we have Map(B,S) ≃ HomSet(π0(B), S)
and Map(A,S) ≃ HomSet(π0(A), S) where the set HomSet(−,−) is regarded as a



2.1. The W -contraction 23

discrete homotopy type. By Yoneda’s lemma f induces an isomorphism π0(A) ∼= π0(B).
Since Z is connected, we obtain the following commutative diagram

Map(B,Z) Map(A,Z)

∏
α∈π0(A) Map(Bα, Z)

∏
α∈π0(A) Map(Aα, Z),

f∗

≃ ≃

∏
α∈π0(X)

f∗
α

where we identified the set π0(B) with π0(A) under the isomorphism π0(A) ∼= π0(B).
By assumption f∗ is an equivalence. Thus, the map

∏
α∈π0(X) f

∗
α is an equivalence.

Conversely, assume (i) and (ii) hold. Let Y be a W -less homotopy type, which
we write as the disjoint union ⊔υ∈π0(Y )Yυ of its connected components. By Proposi-
tion 2.1.1.3 each connected component Yυ is W -less. Thus, for every υ ∈ π0(Y ) and
for every α ∈ π0(A) we obtain an induced equivalence

f∗
α : Map(Bα, Yυ)→Map(Aα, Yυ)

by assumption (ii). Therefore, the induced map f∗ : Map(B, Y ) → Map(A, Y ),
equivalent to the following induced map∐

υ∈π0(Y )

∏
α∈π0(A)

Map(Bα, Yυ)→
∐

υ∈π0(Y )

∏
α∈π0(A)

Map(Aα, Yυ),

is an equivalence. In other words, the map f is a W -equivalence.

2.1.1.8. Proposition. — Let (W,w0) and (X,x0) pointed homotopy types. Then
the (underlying homotopy type) X is W -less if and only if the pointed map W+ → pt+
induces an equivalence

Map∗(pt+, X) ∼−→Map∗(W+, X)

of pointed mapping spaces.

Proof. — The adjunction in ¶1.3.0.2 gives the following commutative diagram

Map∗(pt+, X) Map∗(W+, X)

Map(pt, X) Map(W,X)

≃ ≃

in Ho (or Ho∗). Thus, the upper horizontal arrow is an equivalence if and only if the
lower horizontal arrow is an equivalence.

2.1.1.9. Proposition. — Let (W,w0) and (X,x0) be pointed homotopy types, and
assume that X is connected. Then X is W -less if and only if the pointed mapping
space Map∗(W,X) ∈ Ho∗ is contractible.
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Proof. — The mapping space Map(W,X) becomes a pointed homotopy type by
choosing the basepoint to be the morphism W → {x0} ↪→ X. There is a fibre sequence

Map∗(W,X)→Map(W,X) ev−→ X (2.1.1.1)

in the ∞-category Ho∗ of pointed homotopy types where ev is given by evaluating a
map W → X at w0. If X is W -less, we have Map(W,X) ≃ X. Thus the homotopy
fibre Map∗(W,X) is contractible. Note that in this implication we don’t need to
assume that X is connected.

If Map∗(W,X) ≃ pt, the mapping space Map(W,X) is equivalent to the connected
component of X where the basepoint x0 lies. Since X is connected, we have the
equivalence Map(W,X) ≃ X.

2.1.1.10. Corollary. — Let (W,w0) be a connected pointed homotopy type. A ho-
motopy type X ∈ Ho is W -less if and only if Map∗(W,X) is contractible for every
choice of basepoint in X.

Proof. — We can apply the proof of Proposition 2.1.1.9 to each connected component
of X. Then the statement follows from Proposition 2.1.1.3.

2.1.1.11. Proposition. — Let (W,w0) and (X,x0) be pointed homotopy types and
assume that X is connected. Then X is W -less if and only if the set [ΣkW,X] of
pointed homotopy class of maps is the one-point set for every k ≥ 0.

Proof. — By Proposition 2.1.1.9 the homotopy type X is W -less if and only
if Map∗(W,X) is contractible. The latter condition is equivalent to

πk (Map∗(W,X)) ∼= [ΣkW,X] = 0, for every k ∈ N.

2.1.1.12. Corollary. — Let (W,w0) be a pointed connected homotopy type. If a
homotopy type X is W -less, then X is also ΣW -less.

Proof. — By Corollary 2.1.1.10 the pointed mapping space Map∗(W,X) is contractible
for every choice of basepoint in X. Thus we have

Map∗(ΣW,X) ≃ ΩMap∗(W,X) ≃ pt

for any choice of basepoint in X, which implies that X is ΣW -less.

2.1.1.13. Example. — Let n be a natural number.
(i) Considering the n-dimensional sphere Sn. A pointed connected homotopy

type X is Sn-less if and only if its homotopy groups πi(X) vanishes in every
degrees i ≥ n.

(ii) A pointed homotopy type X is n-connected if and only if K(G, i) is X-less for
every abelian group G and for every i with 0 ≤ i ≤ n where K(G, 0) is the
discrete homotopy type G. For every k ∈ N, the set [ΣkX,K(G, i)] is isomorphic,



2.1. The W -contraction 25

as an abelian group, to the reduced singular cohomology group H̃
i−k

(X;G)
of X with coefficient in G. Then the statement follows from Proposition 2.1.1.11
and the Hurewicz Theorem.

2.1.1.14. Definition. — Let (W,w0) be a pointed homotopy type. Given a mor-
phism f : (Y, y0)→ (Z, z0) in Ho∗, we say f is a W -equivalence (of pointed homotopy
types) if for every pointed W -less homotopy type (X,x0) the induced map

f∗ : Map∗(Z,X)→Map∗(Y,X)

is an equivalence of pointed mapping spaces.

2.1.1.15. Proposition. — Let (W,w0) be a pointed homotopy types. A mor-
phism f : (Y, x0) → (Z, z0) of pointed homotopy types is a W -equivalence if and
only if the induced morphism f : Y → Z in Ho of the underlying homotopy types is
a W -equivalence.

Proof. — If W is non-connected, the proposition follows from Example 2.1.1.5. In
the following we consider the case where W is connected.

Let (X,x0) be a pointed W -less homotopy type. Assume that f : Y → Z is a
W -equivalence. It induces an equivalence (f)∗ : Map(Z,X) ∼−→Map(Y,X) of (un-
pointed) mapping spaces. By the proof of Proposition 2.1.1.9 we see that f∗ is an
equivalence.

Assume that f∗ is an equivalence for every W -less pointed homotopy type (X,x0),
we show that f is a W -equivalence by the following claims.

Claim. The morphism f induces an isomorphism π0(Y ) ≃−→ π0(Z) on the sets of
connected components.

The proof of this claim works similarly as the proof of Proposition 2.1.1.7.(i); we
use the fact that every pointed sets with discrete topology is W -less and apply the
Yoneda’s lemma on the category of pointed sets.

Claim. Let C be a connected W -less homotopy type. Then f induces an equivalence

(f)∗ : Map(Z,C) ∼−→Map(Y,C).

Choose a point c0 ∈ C and consider the W -less pointed connected homotopy
type (C, c0). Setting (X,x0) = (C, c0), the claim follows from Proposition 2.1.1.9,
since the homotopy type C is connected.

Claim. If Y and Z are connected, then f is a W -equivalence.
Let U be a W -less homotopy type. If U is connected, we see from the previous claim

that f induces an equivalence of mapping spaces. Assume that U is not connected,
and write U as the disjoint union ⊔µ∈π0(U)Uµ of its connected components. By the
previous claim, for each connected component Uµ, the map f induces an equivalence

(f
µ
)∗ : Map(Z,Uµ) ∼−→Map(Y,Uµ).
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Furthermore, we have the following commutative diagram

Map(Z,U) Map(Y, U)

⊔µ∈π0(U) Map(Z,Uµ) ⊔µ∈π0(U) Map(Y, Uµ)

f∗

≃ ≃

⊔µ∈π0(U)f∗
µ

in Ho. The vertical arrows are equivalences since Z and Y are connected. Thus, the
morphism f∗ is an equivalence since the other three arrows in the above diagram are.
In other words f is a W -equivalence.

Claim. The morphism f is a W -equivalence.
By the previous claim it remains to check the case where Y and Z are not connected.

We write Y = Y0 ⊔ Y ′ and Z = Z0 ⊔ Z ′ where Y0 is the connected component of Y
containing the basepoint y0 and Z0 is the connected component of Z containing
the basepoint z0. Note that we have f(Y0) ⊆ Z0 and f(Y ′) ⊆ Z ′ by the first
claim. Let U = ⊔µ∈π0(U)Uµ be a W -less homotopy type where Uµ’s are its connected
components. If U is connected, we see in the second claim that f induces an equivalence
on mapping spaces. Otherwise, we have

Map(Z,U) ≃Map (Z0 ⊔ Z ′, U)

≃Map (Z0, U)×Map (Z ′, U)

≃Map
(
Z0,⊔µ∈π0(U)Uµ

)
×Map (Z ′, U)

≃
(
⊔µ∈π0(U) Map (Z0, Uµ)

)
×Map (Z ′, U)

≃ ⊔µ∈π0(U) (Map (Z0, Uµ)×Map (Z ′, U))

(2.1.1.2)

Replacing Z by Y , we obtain

Map(Y, U) ≃ ⊔µ∈π0(U) (Map (Y0, Uµ)×Map (Y ′, U)) .

In particular, the above equivalences are compatible with induced map (f)∗ on mapping
spaces. Choose a basepoint uµ ∈ Uµ of U and consider the W -less pointed homotopy
type (U, uµ). We have

Map∗(Z,U) ≃Map∗(Z0 ⊔ Z ′, Uµ ⊔ (U ′ \ Uµ))

≃Map∗(Z0, Uµ)×Map (Z ′, U)

and similar equivalences of the pointed mapping spaces if replace Z by Y . Since f
induces an equivalence on the pointed mapping spaces mapping into (U, uµ), we have
an equivalence

Map∗(Z0, Uµ)×Map (Z ′, U)→Map∗(Y0)×Map(Y ′, U)

in Ho, which induces an equivalence

Map(Z0, Uµ)×Map (Z ′, U)→Map(Y0, Uµ)×Map(Y ′, U) (2.1.1.3)
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for every µ ∈ π0(U), since Z0, Y0 and Uµ are connected (2.1.1.1). Taking the disjoint
union over the indexing set π0(U) of the equivalences (2.1.1.3) and using (2.1.1.2) give
the induced equivalence

(f)∗ : Map(Z,U) ≃Map(Y,U),

for a non-connected W -less homotopy type U . Combining with the second claim, we
conclude that f is a W -equivalence.

2.1.1.16. Remark. — The proof of Proposition 2.1.1.15 provides an explanation
for [Bou94, §2.5.(a)–(d)].

2.1.1.17. Remark. — Let (W,w0) be a pointed homotopy type. Thus, a morphism
of pointed homotopy types is a W -equivalence if and only if the induced morphism of
the underlying homotopy types is a W -equivalence, cf. Definitions 2.1.1.4 and 2.1.1.14.

2.1.2. W -contraction. — In this section we show that the localisation of Ho (re-
spectively Ho∗) at the set of W -equivalences exists and it is a reflective localisation.

2.1.2.1. Theorem. — Let W be a homotopy type. There is a functor PW : Ho→ Ho
together with a natural transformation λW : idHo → PW such that for every homo-
topy type X

(i) the homotopy type PW (X) is W -less,
(ii) the map λW (X) : X → PW (X) is a W -equivalence
(iii) the induced natural transformation PW → PW ◦PW is an equivalence in the

∞-category Fun(Ho,Ho).

Proof. — Let HoW denote the full∞-subcategory of Ho whose objects are W -less ho-
motopy types. Denote the morphism W → pt by t. By Definition 2.1.1.1 being W -less
is the same as being t-local (see Definition 1.1.2.8). By Theorem 1.1.2.17 the reflective
localisation LW : Ho → HoW at W -equivalences exists and it is the left adjoint to
the fully faithful inclusion I : HoW ↪→ Ho.

Define the functor PW := I ◦ LW . The natural transformation λW : id→ PW is the
unit of the adjunction LW ⊣ I. Thus, for every homotopy types X, we have PW (X)
is W -less by definition. The other two properties follows from Proposition 1.1.2.6
and Corollary 1.1.2.7. See also [Bou94, Theorem 2.10].

2.1.2.2. Theorem. — Let (W,w0) be a pointed homotopy type. There exists a func-
tor PW,w0 : Ho∗ → Ho∗ together with a natural transformation λW,w0 : idHo∗ → PW,w0

such that for every pointed homotopy type (X,x0)
(i) the pointed homotopy type PW,w0(X) is W -less,
(ii) the pointed map λW,w0(X) : X → PW (X) a W -equivalence in Ho∗, and
(iii) the induced natural transformation PW,w0 → PW,w0 ◦PW,w0 is an equivalence

in Fun(Ho∗,Ho∗)
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Proof. — Recall from Proposition 2.1.1.8 that a pointed homotopy type is W -less
if and only if it is t+-local for the morphism t+ : W+ → pt+ in Ho∗ induced by the
morphism t : W → pt. The construction of the functor PW,w0 is the same as that
for PW . In other words, the natural transformation id→ PW,w0 is the unit natural
transformation of the adjunction associated with the reflective localisation of Ho∗

at the set of W -equivalences in Ho∗. The properties (i), (ii) and (iii) also follows by
using the similar arguments as in the proof of Theorem 2.1.2.1.

2.1.2.3. Convention. — Let (W,w0) be a pointed homotopy type. In the
∞-category Ho∗ of homotopy types, the notion of being W -less is defined on the
underlying (unpointed) homotopy types, see Proposition 2.1.1.8. From Proposi-
tion 2.1.1.15 we see that a W -equivalence in Ho∗ is the same as a W -equivalence
of the underlying homotopy types. Thus, we abbreviate by abuse of notation the
functor P(W,w0) by PW . When we use the functor PW , we will be explicit about
whether we are working in the pointed or unpointed settings.

2.1.2.4. Definition. — Let (W,w0) be a homotopy type. We call the functors PW ,
both the pointed and the unpointed version, the contraction of W or W -contraction.
For a (pointed) homotopy type X, we call the (pointed) homotopy type PW (X)
together with the morphism λW (X) : X → PW (X) the W -contraction of X.

2.1.2.5. Explanation. — In the situation of Definition 2.1.2.4 one can regard the
contraction of W as the universal functorial way to “quotient out” the W -information
in a (pointed) homotopy type. We include both the pointed and the unpointed version
of this construction because of the following reasons: On the one hand, the notion of
being W -less appears more naturally in the unpointed setting, and on the other hand,
it is a bit more convenient to work with pointed homotopy types in certain situations,
e.g. when we consider homotopy groups and fibre sequences.

One might consider the reflective localisation of Ho∗ at (W t−→ pt)-equivalences as
a candidate for W -contraction for pointed homotopy types. However, this localisation
does not behave well on pointed non-connected homotopy types. The following example
illustrates the problem. Let (X,x0) be a W -less connected pointed homotopy type.
The pointed homotopy type (X ⊔ W,x0) is t-local, but not W -less (it contains a
connected component which is W !), since Map∗(W,W ) is contractible if and only if W
is contractible.

In the literature [Bou94; DroCS] the functor PW is often called “W -nullification”
or “W -localisation”. We prefer the name W -contraction because under the construc-
tion PW the homotopy type W becomes contractible instead of becoming “null”.

2.1.2.6. Proposition. — Let W be a homotopy type. The homotopy type PW (X)
together with the morphism X → PW (X) enjoys the following universal properties:
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(i) For every W -less homotopy types Y , there is an induced equivalence

Map(PW (X), Y )→Map(X,Y );

(ii) For every W -equivalence f : X → Z, there exists a morphism f ′ : Z → PW (X),
unique up to contractible choice, such that f ′ ◦ f ≃ λW (X).

Replacing W by a pointed homotopy type (W,w0) and mapping space by pointed
mapping spaces, the statements hold for the pointed map λW : X → PW (X).

Proof. — The statement follows from properties (i) and (ii) of Theorem 2.1.2.1
and Theorem 2.1.2.2.

2.1.2.7. Example. — Let W be a homotopy type. Recall the example of W -less
homotopy types from Example 2.1.1.2.

(i) If W is contractible, then PW (X) ≃ X, for every homotopy type X.
(ii) If W is non-connected, then PW (X) ≃ pt, for every homotopy type X.
(iii) If X is W -less, then we have an PW (X) ≃ X in Ho.
(iv) Let X be a connected homotopy type and let n ∈ N. The natural map

X → PSn+1(X) is the n-th Postnikov truncation τ≤n for X.

2.1.2.8. Definition. — Let W be a homotopy type. We say a connected homotopy
type X is W -full if the morphism X → pt is a W -equivalence, i.e. PW (X) ≃ pt. A
homotopy type is W -full if each of its connected component is W -full.

Replacing W and X by pointed homotopy types gives the notion of W -full pointed
homotopy types.

2.1.2.9. Example. —
(i) A (pointed) homotopy type X is Sn+1-full if and and only if X is n-connected.
(ii) A (pointed) homotopy type W is W -full.

Recall the terminologies of homological localisations of homotopy types
from ¶1.3.0.9.

2.1.2.10. Proposition. — Let W be a pointed homotopy type and let E be a spectrum.
If W is E•-acyclic, then each E•-local homotopy type is W -less, and each W -equivalence
in Ho∗ is an E•-equivalence. In particular, there is a natural transformation PW → LE

of localisation functors.

Proof. — We can verify the proposition on pointed connected homotopy types and the
general case can be done by considering each connected components separately. Let X
be a pointed connected E•-local homotopy type. Then Map∗(W,X) ≃ pt, because W
is E∗-acyclic. Thus, X is W -less. Let f : Y → Z be a W -equivalence in Ho∗. Since X
is W -less, the morphism f induces an equivalence Map∗ (Z,X) ∼−→ Map∗ (Y,X), that
is, f is an E•-equivalence. See also [Bou94, Proposition 5.6].
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2.1.3. Closure properties of W -equivalences and of being W -less. — From
the constructions (see Theorems 2.1.2.1 and 2.1.2.2) of the W -contraction we obtain
the following straightforward closure properties.

2.1.3.1. Proposition. — Let W be a pointed homotopy type.
(i) The set of W -equivalences of homotopy types is closed under small colimits in

the ∞-category Fun(∆1,Ho) of morphisms in Ho.
(ii) The set of W -equivalences of pointed homotopy types is closed under small

colimits in the ∞-category Fun(∆1,Ho∗) of morphisms in Ho∗.
(iii) The set of W -less (pointed) homotopy types is closed under small limits in the

∞-category Ho (respectively Ho∗) of (pointed) homotopy types.

Proof. — The proposition follows from the fact that the notion of W -equivalence
and of W -less are defined via mapping spaces Map(−,−) (respectively Map∗(−,−)),
which commutes with small colimits of the source and small limits of the target. See
also [Bou94, §§2.5–2.6].

2.1.3.2. Convention. — We call the colimit of a diagram in Ho an unpointed
colimit, and the colimit of a diagram in Ho∗ a pointed colimit.

2.1.3.3. Corollary. — In particular, we have the following examples:
(i) Let K → Ho∗ be a small diagram mapping every vertex of the simplicial set K

to W . Then its colimit in Ho∗ is W -full.
(ii) Let X be a homotopy type and f : Y → Z be a W -equivalence in Ho. Then the

induced morphism idX ×f : X × Y → X × Z is a W -equivalence in Ho. This
also holds for pointed homotopy types.

Proof. — (i) follows from Example 2.1.2.9 and Proposition 2.1.3.1.(ii). The cartesian
product X × Y is equivalent to the colimit in Ho of the constant diagram X → Ho
sending each point in X to Y , and the same holds for X×Z. Thus, (ii) is an application
of Proposition 2.1.3.1.(i). The underlying homotopy type of the cartesian product of
pointed homotopy types is the cartesian product of the underlying homotopy types.
So, (ii) for pointed homotopy types holds by Proposition 2.1.1.15.

2.1.3.4. Remark. — Let K → Ho be a diagram in Ho mapping every vertex of the
simplicial set K to W . An (unpointed) colimit of K in Ho doesn’t have to be W -full.
See for example [DroCS, Chapter 2, §D.3] for more explanation of the differences
between unpointed and pointed colimits.

2.1.3.5. Proposition. — Let W be a homotopy type and let (X1, X2, · · · , Xn) be a
finite sequence of homotopy types. There exists an equivalence

PW (X1 ×X2 × · · ·Xn) ∼−→ PW (X1)× PW (X2)× · · · × PW (Xn).

The same statement holds for pointed homotopy types.



2.1. The W -contraction 31

Proof. — By Proposition 2.1.3.1.(iii) the product PW (X1)×PW (X2)× · · · ×PW (Xn)
is W -less. Thus, we have the following commutative diagram

X1 ×X2 × · · ·Xn PW (X1)× PW (X2)× · · · × PW (Xn)

PW (X1 ×X2 × · · ·Xn)

λW

∏n

i=1
λW (Xi)

from the universal property of W -contraction Proposition 2.1.2.6. The upper horizontal
map is also a W -equivalence by Corollary 2.1.3.3.(ii): For example, take n = 2, the
map is given by

X1 ×X2
λ(X1)×idX2−−−−−−−−→ PW (X1)×X2

idPW (X1) ×λ(X2)
−−−−−−−−−−−→ PW (X1)× PW (X2).

Thus the dashed arrow is an equivalence in Ho by Proposition 2.1.2.6. The proof for
pointed version works the same. See also [Bou94, Proposition 2.7].

2.1.3.6. Proposition. — Let W be a pointed homotopy type and let F → X → B

be a fibre sequence in Ho∗ where B is connected. If PW F ≃ pt, then X → B is
a W -equivalence.

Proof. — For a point b ∈ B, denote the fibre of X → B at b by Fb. Recall
from ¶1.3.0.6.(i) that the morphism X → B is equivalent to the following map

X ≃ lim−→
b∈B

Fb → lim−→
B

pt ≃ B,

since B is connected. Then the proposition follows from Proposition 2.1.3.1.(i).
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2.2. Commutations with loop spaces and fibration theorems

For a pointed homotopy type W the W -contraction functor does not always preserve
small limits. In this section we summarise the interactions of the functor PW with
loop spaces (see §2.2.1) and fibre sequences (see §2.2.2), following [Bou94; Har18].
Here we rewrite some of the proofs in [Bou94, §4] using more modern languages and
techniques; in particular Theorems 2.2.1.2 and 2.2.2.3. In the last subsection §2.2.3
we discuss some useful properties of the infinite symmetric product and Ω∞Σ∞X of
a pointed homotopy type X (they are both infinite loop spaces), following [Har18,
Lecture 3] and [Bou94, §6].

Results stated in this section are important technical tools for the later sections,
where some of the proofs become rather technical. Therefore, the reader may also
chose to skip this section first and come back later for specific theorems. We work in
the ∞-category Ho∗ of pointed homotopy types.

2.2.1. Interactions of the W -contraction with loop spaces. —

2.2.1.1. Proposition. — Let W and X be pointed connected homotopy types.
Then X is ΣW -less if and only if ΩX is W -less.

Proof. — The homotopy type ΩX is W -less if and only if the induced map

Map∗
(
pt+,ΩX

)
→Map∗ (W+,ΩX) (2.2.1.1)

is an equivalence. By the Σ⊣ Ω-adjunction, the map (2.2.1.1) is equivalent to the
morphism

Map∗
(
Σ(pt+), X

)
→Map∗ (Σ(W+), X) . (2.2.1.2)

Since Σ(Y+) ≃ ΣY ∨ S1 for Y ∈ Ho∗, the previous morphism (2.2.1.2) is equivalent
to the one below

i× idΩX : pt× ΩX →Map∗ (ΣW,X)× ΩX, (2.2.1.3)

where i denotes the unique pointed map pt→Map∗(W,X). Finally, the homotopy
type X is ΣW -less if and only if the last morphism (2.2.1.3) is an equivalence.

2.2.1.2. Theorem. — Let W be a connected pointed homotopy type. For a pointed
connected homotopy type X, there exists a commutative diagram

ΩX PW (ΩX)

Ω(PΣW (X))

Ω(λΣW (X))

λW (ΩX)

Ωf

≃

in the ∞-category Alggpl
E1

(Ho∗) of grouplike E1-algebras in Ho∗.
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Proof. — We follow the proof idea of [Bou94, Theorem 3.1].
Claim. The homotopy type PW (ΩX) is a grouplike E1-algebra in the cartesian

monoidal ∞-category Ho∗ of pointed homotopy types.
This is a corollary of Proposition 2.1.3.5. In particular, the localisation mor-

phism λW (ΩX) is also a morphism of grouplike E1-algebras, since PW preserves
finite products.

The statement of the theorem follows by applying the loop functor Ω to the
commutative diagram (2.2.1.4) in the following claim.

Claim. There is a commutative diagram

X ≃ B(ΩX) B(PW (ΩX))

PΣW (X)

B(λW (ΩX))

λΣW (X)
f

≃ (2.2.1.4)

in the ∞-category Ho≥1
∗ of connected homotopy types where B denotes the Bar

construction(1) of augmented E1-algebras in the symmetric monoidal ∞-category Ho∗

with cartesian monoidal structure.
Applying the functor

B: Alggpl
E1

(Ho∗)→ Ho≥1
∗

to λW (ΩX) gives the horizontal arrow in the above commutative diagram. For the
existence of the equivalence f , we need to show that B(PW (ΩX)) is ΣW -less and the
morphism B (λW (ΩX)) is a ΣW -equivalence. Note that we have equivalences

Map∗(ΣW,B(PW (ΩX))) ≃Map∗(W,ΩB(PW (ΩX))) ≃Map∗(W,PW (ΩX)) ≃ pt.

In other words, B(PW (ΩX)) is ΣW -less. Let Y be a connected ΣW -less homotopy
type. The morphisms B (λW (ΩX)) and λW (ΩX) induce the horizontal arrows in the
commutative diagram

Map∗ (B(PW (ΩX)), Y ) Map∗ (B(ΩX), Y )

Map∗ (PW (ΩX),ΩY ) Map∗ (ΩX,ΩY )

≃ ≃

∼

which implies that the upper horizontal is a equivalence. In other words, it shows
that the morphism B (λW (ΩX)) is a W -equivalence. Note that it suffices to verify
this on connected homotopy types Y , since the source and target of B (λW (ΩX))
are connected.

(1)In this special case it is also known as the classifying space functor
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2.2.1.3. Corollary. — Let W be a connected pointed homotopy type. For X ∈ Ho∗

and for every n ∈ N the iterated loop map Ωn(λΣnW (X)) : ΩnX → Ωn(PΣnW (X))
induces an equivalence

PW (ΩnX) ∼−→ Ωn(PΣnW (X))

of pointed homotopy types.

2.2.1.4. W -contractions of infinite loop spaces. — One can generalise the
statement of Corollary 2.2.1.3 to infinite loop spaces. We sketch the argument now
and refer the readers to [Bou96, §2] and [CG05] for more details.

Let W be a pointed connected homotopy type. A spectrum E ∈ Sp is Σ∞W -less
if the mapping space Map (Σ∞W,E) is contractible. Let SpΣ∞W denotes the full
∞-subcategory of Sp of Σ∞W -less spectra. Similar as for homotopy types, one can
define the reflective localisation functor LΣ∞W : Sp→ SpΣ∞W . Define the functor

PΣ∞W : Sp→ SpΣ∞W ↪→ Sp .

Using similar proof strategy as for Theorem 2.2.1.2, there exists an equivalence

PW (Ω∞E) ≃ Ω∞(PΣ∞W (E))

of pointed homotopy types for every spectrum E. Let R be a commutative ring
spectrum. For a R-module spectrum M , the localisation PΣ∞W (M) admits the
structure of a R-module spectrum such that the natural map M → PΣ∞W (M) is a
morphism of R-module spectra.

Let G be an abelian group and consider the Eilenberg–MacLane spectrum HG
(characterised by the property that πst

• (HG) ∼= G). For every z ∈ Z, there exist abelian
groups G1 and G2 such that

PΣ∞W (Σz(HG)) ≃ ΣzHG1 ∧ Σz+1HG2

In the special cases such as G is free or G is finitely generated, we have G2 = 0. These
statements are mentioned in [Bou96] and proven in [CG05, §5].

2.2.1.5. Corollary. — Let W be a pointed connected homotopy type.
(i) The W -contraction of a product of Eilenberg–MacLane spaces is equivalent to a

product of Eilenberg–MacLane spaces.
(ii) The W -contraction of a Eilenberg–MacLane space K(G,n) has trivial homotopy

groups in all degrees other than n or n+ 1.

Proof. — See [CG05, Proposition 5.6].

2.2.2. Fibration theorems. — In this subsection we work in the following situation.

2.2.2.1. Situation. — Let F → X
f−→ B be a fibre sequence of pointed homotopy

types where B is connected. Let W be a pointed connected homotopy type.
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2.2.2.2. Proposition. —
(i) If F and B are W -less, then X is W -less.
(ii) If F is W -less and X is ΣW -less, then B is ΣW -less.
(iii) If X is W -less and B is ΣW -less, then F is W -less.

Proof. — For (i), consider the commutative diagram

Map∗(pt+, F ) Map∗(pt+, X) Map∗(pt+, B)

Map∗(W+, F ) Map∗(W+, X) Map∗(W+, B),

(2.2.2.1)

induced by the fibre sequence F → X → B and the pointed map W+ → pt+. The
horizontal rows are induced fibre sequences. If F and B are W -less, then the first and
the third vertical arrows are equivalences. Then the middle vertical arrow is also an
equivalence, that is, X is W -less.

As for (ii), replace W+ in the above diagram (2.2.2.1) by (ΣW )+. Then the left
and the middle vertical arrows are equivalences by assumptions and Corollary 2.1.1.12.
Thus, the right arrow is also an equivalence, since B is connected. In other words, the
homotopy type B is ΣW -less.

For (iii), consider the (ΩB)-principal ∞-bundle ΩB → F → X (see ¶1.3.0.6.(ii)).
Since B is connected, the fibre over any point in X is equivalent to ΩB, see [NSS15,
Lemma 3.9].(2) By our assumption and Proposition 2.2.1.1, the fibre ΩB is W -less.
Therefore, we can apply (i) and Corollary 2.1.1.10 to obtain (iii). See also [Bou94,
Proposition 4.2].

2.2.2.3. Theorem. — There exists a pointed homotopy type X ∈ Ho∗ together with
a W -equivalence L : X → X in Ho∗ satisfying the following properties:

(i) The homotopy type X is ΣW -less,
(ii) There exists a fibre sequence PW (F )→ X → PΣW (B)
(iii) The fibre sequence from (ii) fits in the commutative diagram

F X B

PW (F ) X PΣW (B)

L

in the ∞-category Ho∗.

Proof. — Recall that we can consider the map F → X as a (ΩB)-principal ∞-bundle
and the fibre sequence F → X → B is equivalent to a geometric realisation of trivial

(2)This lemma is updated recently in the arxiv preprint of the paper [NSS15].
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fibrations, see ¶1.3.0.6 Applying the functor PW to each of the trivial fibre sequences,
we obtain the following commutative diagram

· · · PW (F ) PW (F ) PW (F )

· · · PW (F × ΩB × ΩB) PW (F × ΩB) PW (F )

· · · PW (ΩB × ΩB) PW (ΩB) PW (pt) ≃ pt

(2.2.2.2)

in Ho∗ induced by (1.3.0.1). Each column is a trivial fibre sequence since PW preserves
finite products (see Proposition 2.1.3.5).

Denote the geometric realisation of the simplicial object in the second row of the
diagram (2.2.2.2) by X, and note that the geometric realisation of the third row in
the same diagram is equivalent to PΣW (B). The induced diagram of colimits

· · · PW (F × ΩB) PW (F ) X

· · · PW (ΩB) pt PΣW (B)

(2.2.2.3)

exhibits PW (F ) → X as a ΩPΣW (B) ≃ PW (ΩB)-principal ∞-bundle, by [NSS15,
Definitions 3.1 and 3.4]. Moreover, the right most square is a pullback diagram in Ho∗

by [NSS15, Proposition 3.13], and thus each square and each composite rectangle in
the diagram (2.2.2.3) is a pullback in Ho∗ by [NSS15, Proposition 2.3]. Therefore, we
can take the take the fibre of each vertical arrow in (2.2.2.3) and obtain the following
induced diagram

· · · PW (F ) PW (F ) PW (F )

· · · PW (F × ΩB) PW (F ) X

· · · PW (ΩB) PW (pt) ≃ pt PΣW (B),

where the first row is equivalent to the colimit diagram of the first row in (2.2.2.2). In
the induced fibre sequence

PW (F )→ X → PΣW (B),

of pointed homotopy types X is ΣW -less by Proposition 2.2.2.2, since both PW (F )
and PΣW (B) are. The natural transformation λW : id → PW induces a map from
the diagram (1.3.0.1) to the diagram (2.2.2.2) Therefore, we obtain the commutative
diagram in (iii) by the universal property of colimits. See also [Bou94, Theorem 4.1].
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2.2.2.4. Remark. — One can generalise the above theorem where the W -contraction
is replaced by the localisation with respect to a morphism of pointed homotopy
types [Bou97, Theorem 6.5]. Another variant of the theorem is [Bou97, Theorem 6.1]
where the map L is constructed for the base space of a fibre sequence.

There are many works by Dror Farjoun and his coauthors on the interaction of fibra-
tions with various homotopical localisations of homotopy types, see for example [DroCS;
BD03; DS95; DD09].

2.2.2.5. Theorem. — If PΣW (B) ≃ PW (B), then PW (F )→ PW (X)→ PW (B) is
a fibre sequence.

Proof. — By Theorem 2.2.2.3 we obtain a commutative diagram

F X B

PW (F ) X PW (B).

L

in Ho∗ where the rows are fibre sequences. If the base and the fibre of a fibre sequence
is W -less, then the total space is W -less, by considering the induced fibre sequence on
mapping spaces. Thus X is W -less. Since the map L is a W -equivalence whose target
is W -less, it follows from Proposition 2.1.2.6 that X ≃ PW (X). Under the former
identification the morphism L is equivalent to λW (X) : X → PW X. See also [Bou94,
Theorem 4.3].

2.2.2.6. Proposition. — Assume that W is n-connected for a natural number n.
For a pointed homotopy type X, its W -contraction λW (X) : X → PW (X) induces
an isomorphism on the homotopy groups in all degree less than n+ 1 and induces a
surjection on the homotopy groups in degree n+ 1.

Proof. — Since λW (X) : X → PW (X) is a W -equivalence, it induces an isomor-
phism on connected components, as we have shown in the second claim of the proof
of Proposition 2.1.1.15.

Assume that X is connected; otherwise we treat each connected component sep-
arately. Let F be the fibre of λW (X). According to Corollary 2.1.1.12 we know
that PW (PW (X)) ≃ PΣW (PW (X)). Thus, applying PW we obtain a fibre sequence

PW (F )→ PW (X) ∼−→ PW (PW (X))

by Theorem 2.2.2.5. Thus, PW (F ) ≃ pt. Since W is n-connected, W is Sn+1-full.
So, F is also Sn+1-full, which implies that F is also n-connected. The proposition
follows by considering the long exact sequence of homotopy groups induced by the
fibre sequence F → X → PW (X). See also [Bou94, Proposition 2.9].
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2.2.2.7. Corollary. — Assume that W is n-connected for a natural number n. For
a connected pointed homotopy type X, there is a natural equivalence

PW (τ>n(X)) ∼−→ τ>n (PW X)

induced by the fibre sequence τ>n(X)→ X → τ≤n(X).

Proof. — This is [Bou94, Corollary 4.4]. By connectivity we have an equivalence

PΣW (τ≤nY ) ≃ PW (τ≤nY )

Thus, we can apply Theorem 2.2.2.5. Note that the homotopy type PW (τ>nX) is
n-connected by Proposition 2.2.2.6.

2.2.2.8. Proposition. — Let X be a pointed connected homotopy type whose ho-
motopy groups are non-trivial in finitely many degrees. The homotopy groups of the
homotopy type PΣW (X) are non-trivial homotopy groups in finitely many degrees.

Proof. — We prove the proposition inductively. First, we show that the classifying
space BG for a discrete group G satisfies the proposition. Recall the canonical
equivalence ΩBG ≃ G. Thus by the second claim in the proof of Theorem 2.2.1.2,
we obtain

ΩPΣW (BG) ≃ PW (ΩBG) ≃ PW (G) ≃ G

So we have
PΣW (BG) ≃ BG.

Assume that the statement is true for all pointed connected homotopy types Y
such that πi(Y ) = 0 for i ≥ n for a natural number n ≥ 2. Let Z be pointed
connected homotopy type such that πj(Z) = 0 for j ≥ n+ 1 and πn(Z) ̸= 0. We can
apply Theorem 2.2.2.3 to the fibre sequence

K(πn(Z), n)→ Z → τ<n(Z),

which produces a fibre sequence

PΣW (K(πn(Z), n))→ Z → PΣ2W (τ<n(Z))

such that the first and the last terms has non-trivial homotopy groups in finitely many
degrees by Corollary 2.2.1.5 and our inductive assumption. Thus, Z ≃ PΣW (Z) also
has non-trivial homotopy groups in finitely many degrees, by considering the long
exact sequence of homotopy groups associated with fibre sequences.

2.2.2.9. Remark. — In the situation of Proposition 2.2.2.8, if X is simply connected,
or the fundamental group of X is abelian, then the proposition holds when we
replace ΣW by W . The proof of the induction start is given by Corollary 2.2.1.5 and
the rest of the proof still works if we replace W by ΣW .
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2.2.3. Properties of SP∞(X) and Ω∞Σ∞X. — Let X be a pointed connected ho-
motopy type. We discuss several properties of the infinite symmetric product SP∞(X)
and the underlying infinite loop space Ω∞Σ∞X of the suspension spectrum Σ∞X

of X, applying results from the previous two subsections.

2.2.3.1. Proposition. — Let X be a pointed connected homotopy type. Then the
homotopy type Ω∞Σ∞(X) is X-full.

Proof. — By our observation ¶2.2.1.4 we have

PX (Ω∞Σ∞X) ≃ Ω∞PΣ∞X(Σ∞X) ≃ pt.

We give another proof here, since we didn’t prove the first equivalence in the above.
Since X is connected, the homotopy type Ω∞Σ∞(X) is connected. It suffices to show
that for a connected X-less homotopy type Y , Map∗(Ω∞Σ∞(X), Y ) is contractible.
By the equivalence Ω∞Σ∞(X) ≃ lim−→n≥0 ΩnΣnX of pointed homotopy types we obtain

Map∗(Ω∞Σ∞(X), Y ) ≃Map∗

(
lim−→
n≥0

ΩnΣnX,Y

)
≃ lim←−

n≥0
Map∗ (ΩnΣnX,Y ) .

For every n ∈ N, Corollary 2.2.1.3 gives an equivalence

PX (ΩnΣnX) ≃ Ωn(PΣnX(ΣnX)) ≃ pt

for n ∈ N. Thus, the pointed mapping space Map∗ (ΩnΣnX,Y ) is contractible and so
is Map∗(Ω∞Σ∞(X), Y ).

2.2.3.2. Lemma. — Let X and W be pointed connected homotopy types. If X
is W -full, then ΣnX is ΣnW -full, for all n ∈ N.

Proof. — Let Y be a pointed connected ΣnW -less homotopy type. Since X is con-
nected, we know that ΣnX is n-connected. The statement follows by considering the
following sequence of equivalences

Map∗ (ΣnX,Y ) ≃Map∗ (ΣnX, τ≥nY ) ≃Map∗ (X,Ωn(Y )) ≃ pt,

where the last equivalence holds because ΩnY is W -less by Proposition 2.2.1.1.

Recall that −⊗− denotes the tensor product of spectra.

2.2.3.3. Proposition. — Let X and W be pointed connected homotopy types such
that X is W -full. Let E be a (n− 1)-connected spectrum for a natural number n. The
homotopy type Ω∞(Σ∞X ⊗ E) is ΣnW -full.

Proof. — We model E by a CW-spectrum and denote by skk (E) its k-th skeleton.
We show inductively that Ω∞(Σ∞X ⊗ skk (E)) is ΣnW -full for every k ≥ n, and use
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the equivalence E ≃ lim−→k≥n
skk(E) and Proposition 2.1.3.1.(ii) to prove the statement.

We also use the fact that the functor Ω∞ : τ≥0 (Sp) → Ho∗ from the ∞-category of
(−1)-connected spectra to Ho∗ preserves filtered colimts, see [HA, Proposition 1.4.3.9]
and [HTT, Corollary 5.5.8.17].

Since E is (n − 1)-connected, we have skn (E) is equivalent to a wedge sum
of the n-fold suspensions Sn ≃ ΣnS of the sphere spectrum E. The homotopy
type Ω∞(Σ∞X ⊗Sp skn (E)) is ΣnW -full. Indeed, we have

Ω∞(Σ∞X ⊗ skn (E)) ≃ Ω∞Σ∞(∨i∈I ΣnX)

and the latter is ΣnX-full by Propositions 2.1.3.1 and 2.2.3.1. By Lemma 2.2.3.2
and Proposition 2.3.1.4 the homotopy type Ω∞(Σ∞X ⊗ skn (E)) is ΣnW -full.

For the induction step consider the following cofibre sequence

Σ∞X ⊗ skk−1 (E)→ Σ∞X ⊗ skk (E)→ Σ∞X ⊗Sp
(
∨i∈ISk

)
in spectra for an indexing set I, which is also a fibre sequence. Applying the Ω∞ functor
we obtain an induced fibre sequence

Ω∞(Σ∞X ⊗ skk−1 (E))→ Ω∞(Σ∞X ⊗ skk (E))→ Ω∞Σ∞(∨i∈I ΣkX
)

in Ho∗. By Proposition 2.1.3.6 and our induction assumption it suffices to show that
the right most homotopy type in the above fibre sequence is ΣnW -full, which holds
by similar arguments as we explained in induction begin. Furthermore, since ΣnX

is ΣnW -full, we have ΣmX is ΣnW -full for all m ≥ n.

2.2.3.4. Corollary. — The infinite symmetric product SP∞(X) = Ω∞(Σ∞X ⊗HZ)
of X is X-full.

2.2.3.5. Proposition. — Let X and W be pointed connected homotopy types such
that X is W -full. The morphism

Ω∞Σ∞(X) = Ω∞(Σ∞X)→ SP∞(X) = Ω∞(Σ∞X ⊗HZ)

of pointed homotopy types induced by the Hurewicz map S h−→ HZ is a ΣW -equivalence.
In particular, it is a ΣX-equivalence.

Proof. — We consider the fibre sequence

E → S h−→ HZ

of spectra. Since h is an isomorphism on π0, the spectrum E is connected. In the
induced fibre sequence

Ω∞(Σ∞X ⊗ E)→ Ω∞Σ∞(X) h∗−→ SP∞(X)

the fibre is ΣW -full by Proposition 2.2.3.3. Applying Proposition 2.1.3.6 we obtain
that the induced map h∗ is a ΣW -equivalence
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2.2.3.6. Lemma. — Let X and W be pointed connected homotopy types where X
is ΣW -full. For a pointed simply-connected homotopy type Y , the inclusion

X ∨ Y → X × Y

is a Σ2W -equivalence.

Proof. — Consider the fibre sequence

Σ(ΩX ∧ ΩY )→ X ∨ Y → X × Y.

in Ho∗. It suffices to show that the fibre Σ(ΩX ∧ ΩY ) ≃ ΩX ∧ (ΣΩY ) is Σ2W -full,
by Proposition 2.1.3.6. Since PΣW (X) ≃ pt, we obtain

PW (ΩX) ≃ ΩPΣW (X) ≃ pt.

Since ΣΩY is simply connected, we can use induction along the skeleton of ΣΩY to
show that ΩX ∧ (ΣΩY ) is Σ2W -full, as we did for the proof of Proposition 2.2.3.3.

2.2.3.7. Proposition. — Let X and W be pointed connected homotopy types
where PΣW (X) ≃ pt. The induced map

PΣ2W (X)→ PΣ2W (Ω∞Σ∞(X))

admits a retract.

Proof. — It suffices to show that PΣ2W (X) is an infinite loop space. Recall the
commutative ∞-operad Com⊗ from Example 5.2.1.7. The pointed homotopy type X
together with the fold map X ∨X → X equipps X the structure of a commutative
monoid in symmetric monoidal∞-category (Ho∗,∨,pt), which corresponds to a functor

∨ : Com⊗ → Ho∗, ⟨n⟩ 7→ ∨nX,

see Definition 5.2.1.20. Define a functor

F : Com⊗ ∨−→ Ho∗
PΣ2W−−−−→ Ho∗, ⟨n⟩ 7→ PΣ2W (∨nX) .

Since PΣW X ≃ pt, the homotopy type X is simply connected by Proposition 2.2.2.6.
Thus we can apply Lemma 2.2.3.6 and have

PΣ2W (∨nX) ≃ PΣ2W (X×n) ≃
∏
n

PΣ2W (X)

for every n ∈ N by Proposition 2.1.3.5. Thus the functor F exhibits PΣ2W (X) as a
commutative monoid in the cartesian symmetric monoidal ∞-category (Ho∗,×,pt).
Moreover, the homotopy type PΣ2W (X) is grouplike since X is simply-connected. So
we have that PΣ2W (X) is an infinite loop space.
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2.3. Unstable Bousfield classes and the W -Postnikov tower

Let W be a pointed homotopy type. Inspired by the case W = Sn (see Exam-
ple 2.1.2.7), we can consider W -contraction as a generalisation of the Postnikov
truncation of X. More precisely, the homotopy type PΣnW (X) discards the informa-
tion about the k-th W -homotopy group [ΣkW,X] of X for all k ≥ n. Since a W -less
homotopy type is also ΣW -less (see Corollary 2.1.1.12), we obtain the following
commutative diagram

X

· · · PΣ2W X PΣW X PW X.

(2.3.0.1)

of (pointed) homotopy types. If W = S0, this recovers the Postnikov tower of X. Thus,
we call the diagram the W -Postnikov tower of X. Recall that in the classical Postnikov
tower (W = S0), the fibre of the map PSn+1 X → PSn X is an Eilenberg–MacLane
space for all n ∈ N. Therefore, we may ask, whether the fibres in the tower (2.3.0.1)
are also related to Eilenberg–MacLane spaces.

We begin this section with an introduction of unstable Bousfield classes (see §2.3.1),
which provides the notational convenience to compare contraction of different homotopy
types. Then we discuss the W -Postnikov tower and give a description of the layers of
the tower using Eilenberg–MacLane spaces (see §2.3.2). This section is expository and
mainly follows [Bou94; Bou96; DS95].

2.3.1. Unstable Bousfield classes. — Recall the notion of Bousfield class for
spectra, see ¶1.2.0.15. One can similarly define this notion of equivalence for (pointed)
homotopy types, which we discuss in this subsection.

2.3.1.1. Definition. — Let W and W ′ be homotopy types. We say W and W ′ are
unstably Bousfield equivalent if every W -less homotopy type is W ′-less and vice versa.

2.3.1.2. Remark. — It is straightforward to verify that the above definition gives
an equivalence relation on the set of objects of Ho. We denote the equivalence class
of W by ⟨W ⟩, called the (unstable) Bousfield class of W .

2.3.1.3. Definition. — Let W and W ′ be homotopy types. We write

⟨W ⟩ ≤ ⟨W ′⟩

if every W ′-less homotopy type is W -less.

2.3.1.4. Proposition. — Let W and W ′ be homotopy types. The following state-
ments are equivalent:
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(i) ⟨W ⟩ ≤ ⟨W ′⟩.
(ii) Each W -equivalence is a W ′-equivalence.
(iii) PW ′(W ) ≃ pt.

Proof. — We will prove the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Let f : A → B be
a W -equivalence and Y ′ ∈ Ho be a W ′-less homotopy type.

Assume (i), then Y ′ is also W -less. Thus, Map(B, Y ′)→ Map(A, Y ′) is an equiva-
lence. Hence, the map f is a W ′-less equivalence.

Now, assume (ii). Recall that W → pt is a W -equivalence. It is then also
a W ′-equivalence by assumption. Thus, PW ′ W ≃ pt.

Assuming (iii), we show that Y ′ is W -less. Since PW ′(W ) ≃ pt, the map W → pt
is an W ′-equivalence. Thus, Map(pt, Y )→ Map(W,Y ) is an equivalence by definition.
Therefore, Y ′ is also W -less.

2.3.1.5. Corollary. — Let W and W ′ be homotopy types such that ⟨W ⟩ ≤ ⟨W ′⟩.
Then there exists a natural transformation λW ′ : PW → PW ′ of endo-functors of Ho
which fits in the commutative diagram

id

PW PW ′

λW

λW ′

λW ′

in the ∞-category Fun (Ho,Ho) of functors.

Proof. — By Proposition 2.3.1.4 we obtain the following commutative diagram

Ho Ho

Ho .

PW

PW ′
PW ′

This gives the desired commutative diagram in the statement. In particular, for
a homotopy type X, the evaluation PW (X) → PW ′(X) of the natural transforma-
tion PW → PW ′ is given by λW ′(PW (X)) : PW (X) → PW ′ (PW (X)). This justifies
our choice (or abuse) of the notation λW ′ .

2.3.1.6. Conjunction and disjunction of Bousfield classes. — Consider a
set {⟨Wi⟩ | Wi ∈ Ho}i∈I of Bousfield classes of homotopy types. We can define the
conjunction

∧i∈I⟨Wi⟩ := ⟨∧i=IWi⟩

and the disjunction
∨i∈I⟨Wi⟩ := ⟨∨i=IWi⟩

operations. The conjunction ∧i∈I⟨Wi⟩ is a lower bound for {⟨Wi⟩}i∈I in the sense
that ∧i∈I⟨Wi⟩ ≤ ⟨Wi⟩ for all i ∈ I. The disjunction is the least upper bound
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of {⟨Wi⟩}i∈I , i.e. ⟨Wi⟩ ≤ ∨i∈I⟨Wi⟩ for all i ∈ I, and ∨i∈I⟨Wi⟩ ≤ ⟨W ⟩ if ⟨Wi⟩ ≤ ⟨W ⟩
for every i ∈ I. Note that a homotopy type is Wi-less for every i ∈ I if and only if
it is ∨i=IWi-less. The naming of these operations comes from the theory of Boolean
algebras. In [Bou79a] Boolean algebra structure of certain subsets of the set of
Bousfield classes of spectra are discussed. In the unstable setting, it is yet unclear how
to define complement Bousfield class of a homotopy type.

We list some properties about Bousfield classes [Bou94; Bou96] that are useful for
our later applications.

2.3.1.7. Proposition. — Let A→ X → C be a cofibre sequence in Ho∗. We have
(i) ⟨X⟩ ≤ ⟨A⟩ ∨ ⟨C⟩,
(ii) ⟨C⟩ ≤ ⟨X⟩ ∨ ⟨ΣA⟩ ≤ ⟨X⟩ ∨ ⟨A⟩, and
(iii) ⟨ΣA⟩ ≤ ⟨C⟩ ∨ ⟨ΣX⟩ ≤ ⟨C⟩ ∨ ⟨X⟩

Proof. — Statement (ii) and (iii) follows from (i) by extending the cofibre sequence
to the right using suspensions. (i) follows from the fact that the functor Map∗(−, Y )
induces a fibre sequence

Map∗(C, Y )→Map∗(X,Y )→Map∗(A, Y ).

Thus if Y is C- and A-less it is X-less. See also [Bou94, Proposition 9.2].

2.3.1.8. Proposition. — Let F → X → B be a fibre sequence in Ho∗ where B is
connected. We have

(i) ⟨B⟩ ≤ ⟨F ⟩ ∨ ⟨X⟩,
(ii) ⟨X⟩ ≤ ⟨B⟩ ∨ ⟨F ⟩, and
(iii) ⟨F ⟩ ≤ ⟨X⟩ ∨ ⟨ΩB⟩.

Proof. — Recall that there exist equivalences

X ≃ lim−→
b∈B

Fb and B ≃ lim−→
B

pt

of homotopy types where the colimits is taken in Ho, see ¶1.3.0.6.(i) Since B is
connected, we have Fb ≃ F for every point b ∈ B. Let Y be a homotopy type.

(i) We assume that Y is F -less and X-less. Then we have

Y ≃Map (X,Y ) ≃Map
(

lim−→
b∈B

(F ), Y
)

≃ lim←−
b∈B

Map (F, Y ) ≃ lim←−
b∈B

Map(pt, Y ) ≃Map(B, Y )

where the first and the fourth equivalences are due to our assumption on Y and
other equivalences are by universal property of limits and colimits.

(ii) Assuming that Y is F -less and B-less, we see that Y is X-less by reading the
above sequence of equivalence starting from the second one.
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(iii) If X is not connected, then the last inequality holds tautologically; since
being X-less means being contractible. Otherwise, the last inequality holds by
applying (i) to the fibre sequence ΩB → F → X.

2.3.1.9. Corollary. — Let B ∈ Ho∗ be connected. Then ⟨B⟩ ≤ ⟨ΩB⟩.

Proof. — Apply Proposition 2.3.1.8 to the fibre sequence ΩB → pt→ B.

2.3.1.10. Example. — We can compare Bousfield classes of Eilenberg–MacLane
spaces. Let G be an abelian group. Then

⟨K(G, 1)⟩ ≥ ⟨K(G, 2)⟩ ≥ · · · ≥ ⟨K(G,m)⟩ ≥ ⟨K(G,m+ 1)⟩ ≥ · · · (2.3.1.1)

A short exact sequence 0 → H → G → K → 0 of abelian groups induces a
fibre sequence

K(H,n)→ K(G,n)→ K(K,n)

for every n ∈ N. Fix a prime number p. Consider the following short exact sequence

0→ Z/pmZ ×p−−→ Z/pm+1Z→ Z/pZ→ 0

for every natural number m ≥ 1. By Proposition 2.3.1.8 we have that

⟨K(Z/pm+1Z, n)⟩ = ⟨K(Z/pmZ, n)⟩ (2.3.1.2)

for natural numbers n and m ≥ 1.

2.3.1.11. Example. — The Prüfer group Z/ p∞ is a p-primary torsion abelian
group, which has several equivalent definitions. For example, we have

Z/ p∞ ∼= lim−→
(
Z/ pZ ×p−−→ Z/ p2Z ×p−−→ · · · → Z/ pmZ ×p−−→ Z/ pm+1Z ×p−−→ · · ·

)
,

where the colimit is taken in the category of abelian groups. Alternatively, there is a
group isomorphism

Z/ p∞ ∼= Z[1/p]/Z,

induced by the canonical inclusion Z ↪→ Z[1/p], where Z[1/p] denotes the localisation
of Z away from p. The Prüfer group is p-divisible, i.e. for every x ∈ Z/ p∞, we
have x = py for some y ∈ Z/ p∞. For more details and properties of the group Z/ p∞,
see [RotITG, Chapter 10].

For n ∈ N, there exists an equivalence

K(Z/ p∞, n) ≃ lim−→
m≥1

K(Z/pmZ, n).

Therefore, by (2.3.1.2), we obtain

⟨Z/ p∞, n)⟩ = ⟨K(Z/pmZ, n)⟩. (2.3.1.3)

for every n ∈ N and every natural number m ≥ 1.
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2.3.1.12. Proposition. — Let W and W ′ be pointed homotopy types where W is
connected. Then ⟨W ⟩ ≤ ⟨ΣW ′⟩ if and only if ⟨ΩW ⟩ ≤ ⟨W ′⟩.

Proof. — This follows from Theorem 2.2.1.2.

2.3.1.13. Corollary. — Let n ≥ 1 be a natural number. We have the following
comparison of Bousfield classes:

(i) ⟨ΩnΣnV ⟩ ≤ ⟨V ⟩ for every V ∈ Ho∗.
(ii) ⟨W ⟩ ≤ ⟨ΣnΩnW ⟩ for every pointed (n− 1)-connected homotopy type.
(iii) Let W and W ′ be (n− 1)-connected. If ⟨W ⟩ ≤ ⟨W ′⟩, then ⟨ΩnW ⟩ ≤ ⟨ΩnW ′⟩.

2.3.1.14. Proposition. — Let W and W ′ be pointed connected homotopy types. We
have the following comparisons of Bousfield classes:

(i) ⟨W ⟩ ≥ ⟨SP∞W ⟩.
(ii) If W is a product of Eilenberg–MacLane spaces, then ⟨W ⟩ = ⟨SP∞W ⟩
(iii) If ⟨W ⟩ ≥ ⟨W ′⟩, then ⟨SP∞W ⟩ ≥ ⟨SP∞W ′⟩.

Proof. — (i) and (iii) hold by Proposition 2.2.3.3 and Corollary 2.2.3.4. (ii) holds
because W is a retract of SP∞(W ).

2.3.2. The W -Postnikov tower. — Let W be a pointed homotopy type. By Corol-
lary 2.1.1.12 we have that ⟨W ⟩ ≥ ⟨ΣW ⟩. Thus we obtain a tower

· · · → PΣn+1W → PΣnW → · · · → PΣW → PW

of contraction functors, generalising the classical Postnikov tower (take W = S0).
Thus we call this tower the W -Postnikov tower. In this subsection we discuss the
fibres of the morphisms in this tower.

2.3.2.1. Theorem. — Let W and X be pointed connected homotopy types. Assuming
that PΣW (X) is contractible, then the homotopy type PΣ2W (X) is equivalent to a
product of Eilenberg–MacLane spaces.

Proof. — By Proposition 2.2.3.5 the morphism

PΣ2W (Ω∞Σ∞X)→ PΣ2W (SP∞(X))

is an equivalence. Therefore, using Proposition 2.2.3.7, we see that PΣ2W (X) is a
retract of PΣ2W (SP∞(X)), which is a product of Eilenberg–MacLane spaces by Corol-
lary 2.2.1.5.

2.3.2.2. Theorem. — Let W and X be pointed connected homotopy types. For
all natural numbers i ≥ 1, the fibre of the natural map PΣi+1W (X)→ PΣi(W )(X) is
equivalent to a product of Eilenberg–MacLane spaces.
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Proof. — It suffices to show the theorem for the case i = 1. Denote the fibre of the
map PΣ2W (X) → PΣW (X) by F . We know that PΣW (F ) ≃ pt and PΣ2W (F ) ≃ F

by Theorem 2.2.2.5 and Proposition 2.1.3.1, respectively. By Theorem 2.3.2.1 the
pointed homotopy type F is equivalent to a product of Eilenberg–MacLane spaces.

2.3.2.3. Remark. — In the situation of the Theorem 2.3.2.2, we can not drop the
suspension functor in the assumption in general. A counterexample is given by the
homotopy type W = BS3. It is shown in [Zab87] that the connected component
of Map∗(BS3,BS3) where the constant map sending BS3 to the basepoint lies is con-
tractible. And all other connected components of this mapping space have non-trivial
homotopy groups, see [DM87, Theorem 1.1]. Thus we obtain the following equivalences

Map∗
(
Σ(BS3),BS3) ≃Map∗

(
S1,Map∗

(
BS3,BS3)) ≃ pt,

where the second equivalence holds because the image of S1 lies in the connected
component where the basepoint (the constant map) lies. Thus we have the equiva-
lences PBS3(BS3) ≃ pt and PΣBS3(BS3) ≃ BS3. However, we know that BS3 is not a
product of Eilenberg–MacLane space, since S3 is not.

2.3.2.4. Question. — The counterexample above is the contraction of a homotopy
type that is not finite. What is the fibre of the maps PΣV (X)→ PV (X) where V is a
finite pointed homotopy type?

Let X be a pointed connected homotopy type. In §3.1.1 we will see that, under
certain extra assumptions on the pointed homotopy type W , the fibre of the mor-
phism PΣi+1W (X) → PΣiW (X) in the W -Postnikov tower of X is equivalent to an
Eilenberg–MacLane space, for every i ≥ 1 (see Theorem 3.1.1.5).
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2.4. Arithmetic localisations

A connected homotopy type M is a Moore space if its non-trivial reduced singular
homology groups are concentrated in one single degree, i.e. H̃n(M ;Z) ∼= G for a
fixed natural number n ≥ 1 and H̃m(M ;Z) = 0 for m ≠ n. Contraction of a Moore
space is very well-understood. We give an exposition of this topic in this section,
summarising results from [Bou94; Bou96; Bou97]. Such contractions are also among
the first examples of contractions of finite complexes, which will be discussed further
in the next chapter.

We begin with some prerequisites and discuss the contraction of a single Moore
space in §2.4.1. Then in §2.4.2 we summarise some results about the contraction of a
wedge of Moore spaces. In the end of this section we present an example about the
contraction of a wedge sum of Moore spaces associated with the singular homology
groups of a pointed simply-connected homotopy type (see ¶2.4.2.6). Later in §3.1 we
will see an applications of this example.

2.4.0.1. Notation. — We will use the following notations for Moore spaces. Let G
be an abelian group.

(i) Let M(G, 1) denote a Moore space modelled by a CW-complex which has only
cells in dimension 0, 1 and 2 and H̃1(M(G, 1);Z) ∼= G and H̃i(M(G, 1);Z) = 0
for every i ̸= 1. Define M(0, 1) ≃ pt.

(ii) Let n ≥ 2 be a natural number. Let M(G,n) denote the simply connected Moore
space with Hn(M(G,n);Z) ∼= G and H̃i(M(G,n);Z) = 0 for every i ̸= n.

2.4.0.2. Convention. — In this section, let Hom(−,−) denote set of group homo-
morphisms, i.e. the morphism set of the category Grp of groups.

2.4.0.3. Proposition. — Let G be an abelian group and let X be a pointed connected
homotopy type.

(i) The homotopy type X is M(G, 1)-less if and only if the following joint condi-
tions hold:

(a) Hom(π1 (M(G, 1)) , π1(X)) = {pt};
(b) Hom(G, πiX) = {pt} for every natural number i ≥ 2;
(c) Ext1

Z(G, πi(X)) = 0 for every natural number i ≥ 2.
(ii) Let n ≥ 2 be a natural number. The homotopy type X is M(G,n)-less if and

only if the following joint conditions hold:
(e) Hom(G, πiX) = {pt} for every natural number i ≥ n;
(f) Ext1(G, πi(X)) = 0 for every natural number i ≥ n+ 1.

Proof. — The proposition follows from Lemma 2.4.0.5 below, which also provides a
proof of [Bou94, Lemma 5.4].
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2.4.0.4. Lemma. — Let k ≥ n ≥ 1 be natural numbers. Let X be a pointed
connected homotopy type. Any morphism f : M(G,n) → τ≤kX in Ho∗ can be lifted
to a morphism f̃ : M(G,n)→ X along the truncation X → τ≤kX, i.e. there exists a
commutative diagram

X

M(G,n) τ≤k(X)f

f̃

of pointed homotopy types.

Proof. — The obstructions of finding a lift f̃ of f lie in the cohomology groups

Hi (M(G,n);πi−1(τ>k(X)))

with local coefficients for every natural number 1 ≤ i ≤ n + 1, which are all zero.
See [DK, Theorem 7.37].

2.4.0.5. Lemma. — Let G be an abelian group and let X be a pointed connected
homotopy type.

(i) The set [M(G, 1), X] of pointed homotopy class of maps consists of a single class
if and only if Hom(π1 (M(G, 1)) , π1X) = {pt} and Ext1(G, π2(X)) = 0;

(ii) Let n ≥ 2 be a natural number. The set [M(G,m), X] consists of a single class
if and only if Hom(G, πnX) = {pt} and Ext1

Z(G, πn+1(X)) = 0.

Proof. — In this proof we abbreviate the homotopy type M(G, 1) by M . Recall
that X ≃ lim←−k≥0 τ≤k(X), see ¶1.3.0.2. Therefore, by Lemma 2.4.0.4, we have
that [M,X] = {pt} exactly when [M, τ≤jX] = {pt} for every j ≥ 1. For j = 1,
we have

[M, τ≤1(X)] = [τ≤1(M), τ≤1(X)] = [B(π1(M)),B(π1(X))].

So, [M, τ≤1X] = {pt} if and only if Hom(π1(M), π1(X)) = {pt}.
Assume that we have [M, τ≤1X] = {pt}. Then any pointed map f : M → τ≤2(X)

induces a pointed map f ′ : M → K(π2(X), 2), by the universal property of the fibre
sequence K(π2(X), 2)→ τ≤2(X)→ τ≤1(X). Therefore, [M, τ≤2X] = {pt} if and only
if H̃

2
(M ;π2(X)) = 0. By the Universal Coefficient Theorem [M, τ≤2(X)] = {pt} if

and only if Ext1(G, π2(X)) = 0. For j ≥ 3, assume that [M, τ≤j−1X] = {pt}, we
have [M, τ≤j(X)] = H̃

j
(M ;πj(X)) = 0. Using exactly the same procedure, we can

prove (ii).

2.4.0.6. Nullification of groups. — The contraction of a Moore space relates
closely with the theory of nullifications of groups. We will record necessary background
on this topic and refer the interested reader to [Bou97, §7.1] and [Cas95, §3] for
more details.
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2.4.0.7. Definition. — Let G be a group. A group M is G-null if the set Hom (G,M)
of group homomorphisms consists of the zero morphism.

2.4.0.8. Theorem. — Let G be a group. There exists a functor LG : Grp→ Grp
together with natural transformations λG : id→ LG such that for every group H,

(i) the group LG(H) is G-null, and
(ii) every group homomorphism H → M , where M is a G-null, factors

through LG(H), i.e. there exists the following commutative diagram

H M

LG(H).

of groups.

Proof. — See [Cas95, Theorem 3.1].

2.4.0.9. Definition. — In the situation of Theorem 2.4.0.8, the functor LG together
with the natural transformation id → LG is called the G-nullification. Let H be a
group. We call the group LG(H) together with the group homomorphism H → LG(H)
the G-nullification of H.

2.4.0.10. Proposition. — For a pair (G,H) of groups, the G-nullification
map λG(H) : H → LG(H) of H is a surjection.

Proof. — See [Cas95, Theorem 3.2].

2.4.0.11. Notation. — By Proposition 2.4.0.10 we can consider LG(H) as a quotient
group of G. For a pair (G,H) of groups, define

H//G := LG(H).

2.4.1. Contraction by a single Moore space. —

2.4.1.1. Notation. — Let G be an abelian group. Define the subset PG of the set
of prime numbers as follows: A prime number p is in PG if the multiplication-by-p
map p : G→ G is an isomorphism. Define the ring RG via

RG :=

Z(PG), if G is torsion

⊕p∈PG
Z/pZ, otherwise.

Let HRG denote the Eilenberg–MacLane spectrum with π0 (HRG) ∼= RG.

2.4.1.2. Proposition. — Let n ≥ 1 be a natural number. For a pointed n-connected
homotopy type Y , there exists a natural equivalence

PM(G,n)(Y ) ∼−→ LHRG
(Y ).
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Sketch. — We follow the proof idea of [Bou94, Theorem 5.2] and omit group theoretic
technicalities. The Moore space M(G,n) is (HRG)•-acyclic by the definition of PG.
By Proposition 2.1.2.10 we obtain a natural transformation

PM(G,n) → LHRG
.

given by (HRG)•-localisation. In other words, for every Z ∈ Ho∗, the evalu-
ation PM(G,n)(Z) → LHRG

(Z) is an (HRG)•-equivalence. Thus, it suffices to
show that PM(G,n)(Y ) is (HRG)•-local. Since Y is n-connected, the homotopy type
PM(G,n)(Y ) is n-connected by Proposition 2.2.2.6. The homotopy groups of PM(G,n)(Y )
satisfy the conditions from Proposition 2.4.0.3, which implies that PM(G,n)(Y )
is (HRG)•-local by [Bou94, Lemma 5.5] and [Bou75, Theorem 5.5].

2.4.1.3. Remark. — Because of the property exhibits in Proposition 2.4.1.2, we
call the contraction of a Moore space an arithmetic localisation.

2.4.1.4. Remark. — The hypothesis of being simply connected is important in Propo-
sition 2.4.1.2. For example, we have PM(Z/pZ,1) S1 ≃ S1, because Hom(Z/pZ,Z) = 0.
However, S1 is not HZ[p−1]-local.

2.4.1.5. Theorem. — Let G be an abelian group and let n ≥ 2 be a natural number.
For a pointed homotopy type X ∈ Ho∗, the following statements hold:

(i) For every natural number i ≤ n− 1, we have an group isomorphism

πi

(
PM(G,n)(X)

) ∼= πi(X).

(ii) There exists the following isomorphism of groups

πn

(
PM(G,n)(X)

) ∼= πn(X)//G.

(iii) If G is torsion, then

πi

(
PM(G,n)(X)

) ∼= πi(X)⊗ Z(PG)

for every natural number i ≥ n+ 1.
(iv) If G is not torsion, then there is a splittable natural short exact sequence

0→
∏

p∈PG

Ext1(Z/ p∞, πiX)→ πi(PM(G,n)(X))→
∏

p∈PG

Hom(Z/ p∞, πi−1Y )→ 0

for every natural number i ≥ n+ 1.

Sketch. — Statement (i) follows from Proposition 2.2.2.6. For proving the other state-
ments, we can make the assumption that X is (n− 1)-connected by Corollary 2.2.2.7.

To prove (ii), we show that the morphism πn(X)→ πn

(
PM(G,n)(X)

)
, induced by

the M(G,n)-contraction λM(G,n) : X → PM(G,n)(X) of X, exhibits πn

(
PM(G,n)(X)

)
as the G-nullification of πn(X).
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Note that πn

(
PM(G,n)(X)

)
is G-null by Proposition 2.4.0.3.(ii). For a G-null

abelian group M let f : πn(X) → M be a group homomorphism. It remains to
show that f factors through πn(X) → πn

(
PM(G,n)(X)

)
. First, there exists a mor-

phism f : X → τ≤n(X)→ K(M,n) of pointed homotopy types such that the in-
duced morphism πn(f) ∼= f . Furthermore, f factors through X → PM(G,n)(X),
since K(M,n) is M(G,n)-less by Proposition 2.4.0.3.(ii). Thus the map f factors
through πn(X)→ πn(PM(G,n)(X)).

Statements (iii) and (iv) is a consequence of Proposition 2.4.1.2 and the explicit
description of the homotopy type of LHRG

(X) [Bou75, Proposition 4.3].

2.4.1.6. Contraction of M(G, 1). — Recall from Notation 2.4.0.1.(i) the construc-
tion the Moore space M(G, 1). Let X be a pointed connected homotopy type. Because
of the uncertainty with the fundamental group, the homotopy types PM(G,1)(X) is
harder to determine completely in terms of that of X. However, there exists similar
results as Theorem 2.4.1.5 for nilpotent homotopy types.

2.4.1.7. Theorem. — Let Y be a nilpotent homotopy type. The following state-
ments hold:

(i) We have an isomorphism π1(PM(G,1)(Y )) ∼= π1(Y )//G of groups.
(ii) If G is torsion, then πi

(
PM(G,1)(Y )

) ∼= πi(Y )⊗ Z(PG), for every i ≥ 2.
(iii) If G is not torsion, there exists a splittable natural short exact sequence

0→
∏

p∈PG

Ext1(Z/ p∞, πiY )→ πi(PM(G,1)(X))→
∏

p∈PG

Hom(Z/ p∞, πi−1Y )→ 0

for every i ≥ 2.

Sketch. — The idea of the proof is to reduce the computation to the simply con-
nected M(G, 1)-less homotopy types and apply Proposition 2.4.1.2.

Consider the fibre sequence

Ỹ → Y → K(π1(Y )//G, 1)

where the second map induced by the group homomorphism π1(Y )→ π1(Y )//G. Note
that we have πi(Ỹ ) ∼= πi(Y ) for every i ≥ 2 and π1(Ỹ )//G = 0. Since K(π1(Y )//G, 1)
is M(G, 1)-less, applying PM(G,1) to the above fibre sequence gives a fibre sequence

PM(G,1)(Ỹ )→ PM(G,1) (Y )→ K(π1(Y )//G, 1),

by Theorem 2.2.2.5. Using the same proof as Theorem 2.4.1.5.(ii), we obtain an
isomorphism π1(PM(G,1)(Ỹ )) ∼= π1(Ỹ )//G. For this we also use that π1(Ỹ ) ⊆ π1(Y )
is nilpotent and [Bou97, Theorem 7.2]. Therefore, the homotopy type PM(G,1)(Ỹ ) is
simply connected and π1(PM(G,1)(Y )) ∼= π1(Y )//G.

Since πi

(
PM(G,1) (Y )

) ∼= πi(PM(G,1)(Ỹ )) by the above fibre sequence, (ii) and (iii)
follow from Proposition 2.4.1.2 and [Bou75, Proposition 4.3].
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2.4.2. The Contraction of a wedge of Moore spaces. —

2.4.2.1. Notation. — Let G = (Gi)i≥1 be a sequence of abelian groups and let n ≥ 1
be a natural number. Define

M(G) :=
∞∨

i=1
M(Gi, i),

M(G,n) := M(G1, 1) ∨M(G2, 2) ∨ · · · ∨M(Gn, n).

2.4.2.2. Theorem. — Let G = (Gi)i≥1 be a sequence of abelian groups and let G′

be an abelian group. For natural numbers n′ > n ≥ 1, define the pointed homotopy
type W := M(G,n) ∨ M(G′, n′) and N := M ((⊕n

i=1Gi)⊕G′, n′). Then for every
pointed homotopy type X, there exists a natural equivalence

PW (X) ≃ PN

(
PM(G,n)(X)

)
.

Sketch. — We show that PN

(
PM(G,n)(X)

)
is the W -contraction of X; the theorem

then follows from the uniqueness of W -contractions (see Proposition 2.1.2.6). Consider
the following composition

LW : X λM−−→ PM(G,n)(X) λN−−→ PN

(
PM(G,n)(X)

)
.

Claim. The morphism LW is a W -equivalence.
By ¶2.3.1.6 the map λM (X) is a W -equivalence. Thus it suffices to show that λN

is a W -equivalence. Let Y ∈ Ho∗ be W -less, i.e. Y is M(G′, n′)-less and M(Gi, i)-less
for every 1 ≤ i ≤ n. Using Proposition 2.4.0.3.ii), we see that Y is N -less. Since λN is
an N -equivalence by definition, the induced map

(λN )∗ : Map∗(PN

(
PM(G,n)(X)

)
, Y )→ Map∗(PM(G,n)(X), Y )

is an equivalence. This shows that λN is a W -equivalence.
Claim. The homotopy type PN

(
PM(G,n)(X)

)
is W -less.

By Proposition 2.4.0.3.ii) we have ⟨N⟩ ≥ ⟨M(G′, n′)⟩. Thus PN

(
PM(G,n)(X)

)
is M(G′, n′)-less. Therefore, it suffices to show that it is also M(G,n)-less. Note
that PN

(
PM(G,n)(X)

)
is N -less and πi

(
PN

(
PM(G,n)(X)

)) ∼= πi

(
PM(G,n)(X)

)
for

every i < n′, by Proposition 2.2.2.6. Thus, by Theorem 2.4.1.5 and Proposition 2.4.0.3,
it suffices to show that for every natural number k ≥ n′ the abelian group

Hk := πn′(PN

(
PM(G,n)(X)

)
) ∼= πn′

(
PM(G,n)(X)

)
// ((⊕n

i=2Gi)⊕G′)

satisfies
Hom(Gi, Hk) = 0 and Ext1

Z(Gi, Hk) = 0. (2.4.2.1)

for every 1 ≤ i ≤ n. Since PM(G,n)(X) is M(Gi, n)-less for every 1 ≤ i ≤ n, the
homotopy group πk

(
PM(G,n)(X)

)
satisfies

Hom(Gi, πn′
(
PM(G,n)(X)

)
) = 0 and Ext1

Z(Gi, πn′
(
PM(G,n)(X)

)
) = 0
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for every k ≥ n′ and for every 1 ≤ i ≤ n, by Proposition 2.4.0.3. Using [Bou94,
Lemma 5.5] we see the quotient group Hk satisfies the conditions (2.4.2.1): If Gi is
torsion, we apply [Bou96, Lemma 4.2]; Otherwise, we use [Bou94, Lemma 5.9]. See
also [Bou94, Theorem 5.3].

2.4.2.3. Situation. — Let G = (Gi)i≥1 be a sequence of abelian groups, where the
abelian group G1 is trivial. Then the wedge M(G) of Moore spaces is simply-connected
and is uniquely determined by (Gi)i≥2 up to equivalence.

Let n ≥ 2 be a natural number. Define the subset P(G,n) of the set of prime
numbers as follows: A prime number p is contained in P(G,n) if for every natural
number 2 ≤ i ≤ n, the multiplication-by-p map p : Gi → Gi is an automorphism of Gi.

2.4.2.4. Theorem. — Let X be a pointed homotopy type. In Situation 2.4.2.3 we
can understand the homotopy groups of PM(G,n)(X) in terms of that of X. Let n ≥ 2
be a natural number.

(i) If Gi is torsion for every i ≥ 2, then for every m ≥ n+ 1, there exists a natural
isomorphism

πm

(
PM(G,n)(X)

) ∼= πm(X)⊗ Z(P(G,n)).

(ii) If there exists a 2 ≤ i ≤ n such that Gi is not torsion, then for every m ≥ n+ 1,
there exists a splittable natural short exact sequence

0→
∏

p∈P(G,n)

Ext1(Z/ p∞, πm(X))→ πm(PM(G,n)(X))

→
∏

p∈P(G,n)

Hom(Z/ p∞, πm−1(X))→ 0

(iii) There exist natural isomorphisms

π1
(
PM(G)(X)

) ∼= π1(X) and

πn

(
PM(G)(X)

) ∼= πn(PM(G,n−1)(X))//(⊕n
i=2Gi)

for every n ≥ 2.

Proof. — (i) and (ii) follows from Theorem 2.4.1.5 and iterated applications of Theo-
rem 2.4.2.2.

As for (iii), define N := M(⊕n
i=1Gi, n). By Theorem 2.4.2.2 and Proposition 2.2.2.6

there exist isomorphisms

πn

(
PM(G)(X)

) ∼= πn

(
PM(G,n)(X)

) ∼= πn

(
PN PM(G,n−1)(X)

)
.

Therefore, (iii) follows from Theorem 2.4.1.5.ii). See also [Bou96, Theorems 4.1
and 4.3].
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2.4.2.5. Corollary. — Let Y be a pointed homotopy type. In Situation 2.4.2.3 the
following statements hold:

(i) The homotopy type Y is M(G)-less if and only if K(πi(Y ), i) is M(G)-less for
every i ≥ 2;

(ii) The homotopy type Y is M(G)-full if and only if Y is simply connected and
K(πi(Y ), i) is M(G)-full for every i ≥ 2.

Proof. — These are consequences of Proposition 2.4.0.3 and Theorem 2.4.2.4.
See also [Bou96, Corollary 4.5].

2.4.2.6. An example. — We conclude this subsection with an example of the
contraction of the wedge M(H•(W )) of Moore spaces obtained from a pointed simply
connected homotopy type W . In particular, we show that the contraction of W
and the contraction of M(H•(W )) coincide for a certain family of homotopy types,
see Theorem 2.4.2.9. Later we will use this theorem to prove Theorem 3.1.2.15 in the
next chapter.

2.4.2.7. Definition. — Let W be a simply connected pointed homotopy type.
Define the sequence

H•(W ) := (H̃i(W ;Z))i≥2

of abelian groups associated with W .

2.4.2.8. Proposition. — In the situation of Definition 2.4.2.7, the homotopy type W
is M(H•(W ))-full.

Proof. — In other words, we need to prove that ⟨W ⟩ ≤ ⟨M(H•(W ))⟩.
Claim. Let G be an abelian group and let n ≥ 2 be a natural number. If the

Eilenberg–MacLane space K(G,n) is M(H•(W ))-less, then K(G,n) is W -less.
It is equivalent to show that H̃

m
(W ;G) = 0 for every 0 ≤ m ≤ n, by Proposi-

tion 2.1.1.11. Consider the short exact sequence

0→ Ext1
Z(H̃m−1(W ;Z), G)→ H̃

m
(W ;G)→ Hom(H̃m(W ;Z), G)→ 0.

obtained from the Universal Coefficient Theorem. Since K(G,n) is M(H•(W ))-less, it
is M(H̃i(W ;Z)), i)-less for every i ≥ 2 (see ¶2.3.1.6). By Proposition 2.4.0.3 we have
that Ext1

Z(H̃m−1(W ;Z), G) = 0 = Hom(H̃m(W ;Z), G) for every 0 ≤ m ≤ n. Thus we
obtain H̃

m
(W ;G) = 0.

Claim. Let Y be a connected M(H•(W ))-less homotopy type. Then Y is W -less.
By Corollary 2.4.2.5 and the previous claim, the Eilenberg–MacLane space K(πjY, j)

is W -less, for every natural number j ≥ 2. Also, K(π1Y, 1) is W -less because W is sim-
ply connected. Since W -less homotopy types are closed under small limits (see Propo-
sition 2.1.3.1), we obtain that Y is W -less by considering Y as the inverse limit of its
Postnikov tower.
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2.4.2.9. Theorem. — Let W be a simply connected homotopy type and let Y be a
pointed connected homotopy type whose homotopy groups are non-trivial in finitely
many degrees. Then canonical morphism

λM(H•(W ))(PW (Y )) : PW (Y )→ PM(H•(W ))(Y )

given by the natural transformation λM(H•(W )) is an equivalence.

Proof. — We follow the proof of [Bou96, Theorem 4.6]. By Proposition 2.4.2.8, the ho-
motopy type PM(H•(W ))(Y ) is W -less. Thus it suffices to show that λM(H•(W ))(PW (Y ))
is a W -equivalence.

Denote the fibre of the map λM(H•(W ))(PW (Y )) by F . The homotopy type F is
simply connected by Proposition 2.2.2.6, and it is M(H•(W ))-full by Theorem 2.2.2.5.
Thus, by Corollary 2.4.2.5, we have ⟨M(H•(W ))⟩ ≥ ⟨K(πnF, n)⟩ for every natural
number n ≥ 2. So, by Proposition 2.3.1.14, we obtain

⟨W ⟩ ≥ ⟨SP∞W ⟩ = ⟨SP∞(M(H•(W )))⟩ ≥ ⟨SP∞(K(πnF, n))⟩ = ⟨K(πnF, n)⟩.

Furthermore, by Proposition 2.2.2.8, the homotopy groups of F are non-trivial in finitely
many degrees. Therefore, we have that F is W -full by applying Proposition 2.1.3.6
finitely many times.

2.4.2.10. Remark. — Combining Theorem 2.4.1.7 and Theorem 2.4.2.2, one can
completely determine the homotopy type of the M(G)-contraction PM(G)(Y ) of a
nilpotent homotopy type Y , where M(G) is a wedge of Moore spaces, cf. [Bou97,
Theorem 7.5]. As an application, one can generalise Theorem 2.4.2.9 to a lager
family of homotopy types, the so-called nilpotent generalised polyGEM, see [Bou97,
Theorem 8.8]. The interested reader shall check [Bou97, §§7–8] for more details and
applications in this direction.

2.4.2.11. Proposition. — Let W be a simply connected homotopy type. If there ex-
ists a natural number r such that ⟨ΣrW ⟩ = ⟨ΣrM(H•(W ))⟩, then ⟨W ⟩ = ⟨M(H•(W ))⟩.

Proof. — We follow the proof of [Bou96, Theorem 4.7]. It suffices to show the impli-
cation under the assumption ⟨ΣW ⟩ = ⟨ΣM(H•(W ))⟩. Because ⟨W ⟩ ≤ ⟨M(H•(W ))⟩
by Proposition 2.4.2.8, it remains to show that the canonical morphism

λM(H•(W ))(PW (X)) : PW (X)→ PM(H•(W ))(X)

given by the natural transformation λM(H•(W )) is a W -equivalence for every X ∈ Ho∗;
this would imply that λM(H•(W ))(PW (X)) is an equivalence since the homotopy
type PM(H•(W ))(X) is W -less.

Since we have ⟨W ⟩ ≥ ⟨ΣW ⟩ = ⟨ΣM(H•(W ))⟩ by assumption, the homotopy
type PW (X) is ΣM(H•(W ))-less and thus

PW (X) ≃ PΣM(H•(W ))(PW (X)).
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So λM(H•(W ))(PW (X)) is equivalent to the following morphism

L : PΣM(H•(W ))(PW (X))→ PM(H•(W ))(PW (X)),

induced by the comparison ⟨M(H•(W ))⟩ ≥ ⟨ΣM(H•(W ))⟩.
Let F be the fibre of L. We have by Theorem 2.3.2.2 that F is equivalent to a

product of Eilenberg–MacLane spaces, since M(H•(W )) (a wedge of simply connected
Moore spaces) is equivalent to a suspension of a homotopy type. By the same argument
as in the proof of Theorem 2.4.2.9, the homotopy type F is simply connected and
the Eilenberg–MacLane space K(πnF, n) is W -full for every natural number n ≥ 2.
Therefore, the homotopy type F is W -full, by Propositions 2.1.3.1 and 2.1.3.5; an
infinite product of Eilenberg–MacLane spaces is equivalent to a filtered colimit of all
finite sub-products of those Eilenberg–MacLane spaces. By Proposition 2.1.3.6 the
morphism L, equivalently λM(H•(W ))(PW (X)), is a W -equivalence.





CHAPTER 3

The vh-periodic localisation of homotopy types

3.1. The Unstable Class Invariance Theorem

Fix a prime number p. The (stable) Class Invariance Theorem (see Theo-
rem 3.1.2.6) says that the Bousfield class of a finite p-local spectrum depends only
on its type (see Definition 1.2.0.3). The goal of this section is to present a similar
theorem (see Theorem 3.1.2.1) for the unstable Bousfield classes of finite p-local
homotopy types, due to Bousfield, see §3.1.2. For this purpose, we begin in §3.1.1
by showing that the fibre of each morphism in the W -Postnikov tower for a p-local
homotopy type W consists of a single p-local Eilenberg–MacLane space. In the last
subsection §3.1.3 we discuss some fibration theorems in the p-local setting, which
will be used extensively in later sections. The references for this expositional section
are [Bou94; Bou96; DS95; Har18].

3.1.1. Layers of a W -Postnikov tower. —

3.1.1.1. Situation. — We fix a prime number p and work in the ∞-category Ho∗

of pointed homotopy types. In particular, we consider a contraction functor as an
endofunctor of Ho∗.

3.1.1.2. Definition. — Recall the following definitions for abelian groups.
(i) An abelian group G is p-local if for every prime number ℓ ̸= p, the multiplication-

by-ℓ map ℓ : G→ G is an automorphism of G.
(ii) An abelian group G is p-primary if the order of every element of G is pn for

some n ∈ N.

3.1.1.3. Definition. — Let n ≥ 1 be a natural number. A pointed homotopy
type W satisfies the n-supported p-torsion condition if

(i) W is (n− 1)-connected,
(ii) H̃•(W ;Z) is p-primary, and
(iii) Hn(W ; Z/ pZ) ̸= 0.
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3.1.1.4. Situation. — Let n ≥ 1 be a natural number, and let W be a pointed
connected homotopy type satisfying the n-supported p-torsion condition.

3.1.1.5. Theorem (Bousfield). — Let X be a pointed homotopy type and let i ≥ 1
be a natural number. In Situation 3.1.1.4 there exists a fibre sequence

K(Gi, n+ i)→ PΣi+1W X → PΣiW X,

where Gi is a p-primary abelian group.

We will prove this theorem below.

3.1.1.6. Remark. — Bousfield proved a more general result, where he can consider
several prime numbers at a time, see [Bou94, Theorem 7.2]. We will only present
the p-torsion case, since we work later in the ∞-category Ho(p) of p-local homotopy
types. See also [DS95, Theorem A] for a more general statement.

3.1.1.7. Proposition. — Let G be a p-primary abelian group. In Situation 3.1.1.4,
for every natural number ℓ ≥ n, the Eilenberg–MacLane space K(G, ℓ) is W -full.

Proof. — Let Y be a pointed connected W -less homotopy type and let ℓ ≥ n be a
natural number. By Corollary 2.2.3.4 we have that Map∗(K(H̃ℓ(W ), ℓ), Y ) is con-
tractible. Since K(H̃ℓ(W ), ℓ) is connected, it is W -less. By Proposition 2.1.3.6 the class
of abelian groups G such that K(G, ℓ) is W -less is closed under extensions, cokernels
and directed colimits. Because the abelian group H̃ℓ(W ) is p-primary, we obtain
that K(G, ℓ) is W -less for every p-primary torsion abelian group G. See also [Bou94,
Lemma 7.4].

Proof of Theorem 3.1.1.5. — We follow the proof ideas presented in [Har18, Lecture
3]. It suffices to show the i = 1 case. Denote the fibre of PΣ2W X → PΣW X by F . The
homotopy type F is n-connected by Proposition 2.2.2.6, and it is equivalent to a product
of Eilenberg–MacLane spaces by Theorem 2.3.2.2. Write F =

∏
m≥n+1 K(Gm,m).

Claim. For every m ≥ n+ 1, the Eilenberg–MacLane space K(Gm,m) is Σ2W -less
and ΣW -full.

By construction F is Σ2W -less and ΣW -full. Since K(Gm,m) is a retract of F , it
also enjoys these two properties.

Claim. For every m ≥ n+ 1, the abelian group Gm is p-primary.
It suffices to show that Gm ⊗ Z[1/p] = 0 for every m ≥ n+ 1. Consider the fibre

sequence
K(Gm ⊗ Z/ pZ,m− 1)→ K(Gm,m) ×p−−→ K(Gm,m).

The fibre K(Gm ⊗ Z/ pZ,m− 1) is ΣW -full by Proposition 3.1.1.7. Thus the map ×p
is a ΣW -equivalence by Proposition 2.1.3.6. As ΣW -equivalences are preserved under
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passing to colimits (see Proposition 2.1.3.1), we obtain a ΣW -equivalence

f : K(Gm,m)→ K(Gm ⊗ Z[1/p],m);

recall that there is a group isomorphism Gm ⊗ Z[1/p] ≃ lim−→(Gm
×p−−→ Gm

×p−−→ · · · ).
Thus the Eilenberg–MacLane space K(Gm ⊗ Z[1/p],m) is ΣW -full by the first claim.
Note that K(Gm⊗Z[1/p],m) is also ΣW -less: By the Brown Representability we have
an isomorphism [ΣkW,K(Gm ⊗ Z[1/p],m)] ∼= H̃

m−k
(W ;Gm ⊗ Z[1/p]) = 0, for every

natural number k. So
K(Gm ⊗ Z[1/p],m) ≃ pt,

that is, Gm ⊗ Z[1/p] = 0. From this we see that Gm is p-primary for every m ≥ n+ 1.
Claim. For every m ≥ n+ 2, the abelian group Gm is p-torsion free.
Let Tp,m denote the p-power torsion subgroup of Gm, i.e.

Tp,m = {x ∈ G | ∃n ∈ N, such that pn(x) = 0}

Consider the fibre sequence

K(Tp,m,m)→ K(Gm,m) qm−−→ K(Gm/Tp,m,m)

induced by the quotient map qm : Gm → Gm/Tp,m. The fibre K(Tp,m,m) is Σ2W -full
by Proposition 3.1.1.7. Thus the map qm is a Σ2W -equivalence by Proposition 2.1.3.6.
Moreover, K(Gm/Tp,m,m) is Σ2W -less, as one can check that the reduced singular
cohomology groups of Σ2W with Gm/Tp,m-coefficients vanish. This implies that the
map qm is an equivalence since both its source and target are Σ2W -less. Therefore,
we obtain Gm

∼= Gm/Tp,m, that is, Gm is p-torsion free.
The second and the third claims combined imply that
(i) Gn+1 is a p-primary torsion abelian group,
(ii) Gm = 0 for every natural number m ≥ n+ 2.

This concludes the proof of the theorem.

3.1.1.8. Remark. — In the situation of Theorem 3.1.1.5 the group Gi is not p-torsion
in general, cf. [Har18, Lecture 3, Theorem 2.12]. For example, let W ≃ K(Z/ pZ, n)
and X ≃ K(Z/ p2Z, n+ 1). We have PΣW (X) ≃ pt and thus

K(G1, n+ 1) ≃ PΣ2W (X) ≃ K(Z/ p2Z, n+ 1).

There are some other variants of Theorem 3.1.1.5

3.1.1.9. Definition. — Let n ≥ 1 be a natural number. A pointed homotopy
type W satisfies the n-supported p-local condition if

(i) W is (n− 1)-connected,
(ii) H̃•(W ;Z) is p-local, and
(iii) Hn

(
W ;Z(p)

)
̸= 0.
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3.1.1.10. Remark. — In the situation of Theorem 3.1.1.5, if we replace
the n-supported p-torsion condition by n-supported p-local condition, we obtain
instead a fibre sequence

K(Gi, n+ i)→ PΣi+1W (X)→ PΣiW (X)

where Gi is a p-local abelian group. The proof works the same, where we use a “p-local
version” of Proposition 3.1.1.7: If W satisfies the n-supported p-local condition, the
Eilenberg–MacLane spaces K(G, ℓ) is W -full for every ℓ ≥ n.

3.1.1.11. Remark. — In Bousfield’s original definition of the n-supported p-torsion
(respectively p-local) condition [Bou94, §7], the hypothesis (i) is replaced by the
assumption that H̃i(W ;Z) = 0 for all i < n. Both definitions imply that the pointed
homotopy type ΣW is n-connected. We make this simplification in our definition since
we are mostly concerned with contraction of ΣW in our later applications.

3.1.1.12. — A p-local homotopy type satisfies the n-supported p-local condition
for some n ∈ N. Let W be a p-torsion homotopy type, i.e. the homotopy groups
of W are p-primary torsion groups in all degrees. Then W satisfies (i) and (ii)
of Definition 3.1.1.3. However, W doesn’t have to satisfy (iii). For these p-torsion
homotopy types, we have a supplemental version of the Theorem 3.1.1.5, which is
proved similarly.

3.1.1.13. Definition. — Let n ≥ 1 be a natural number. A homotopy type W ∈ Ho
satisfies the n-supported divisible p-torsion condition if

(i) W is (n− 1)-connected,
(ii) H̃•(W ;Z) is p-primary, and
(iii) Hn(W ;Z) is a non-trivial divisible abelian group.

3.1.1.14. Example. — Recall the Prüfer group Z/ p∞, see Example 2.3.1.11.
For every natural number n ≥ 1, the Eilenberg–MacLane space K(Z/ p∞, n)
satisfies the n-supported divisible p-torsion condition. In particular, we have
that Hn (K(Z/ p∞, n);Z/pZ) = 0 and Hn (K(Z/ p∞, n);Z/pZ) = 0.

3.1.1.15. Theorem (Bousfield). — Let W be a homotopy type satisfying
the n-supported divisible p-torsion condition. For X ∈ Ho∗ and i ≥ 1, the fibre of the
map PΣi+1W X → PΣiW X is equivalent to a product

K(Gi, n+ i)×K(Gi+1, n+ i+ 1),

where Gi is a divisible p-primary abelian group and Gi+1 is a p-primary abelian group
such that HomAbGrp(Z/ p∞, G) = 0.

Proof. — See [Bou94, Theorem 7.7].
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3.1.2. Unstable Class Invariance Theorem. — The goal of this subsection is to
prove the following theorem. Recall that we work with a fixed prime number p and
recall the definition of the type of a p-local spectrum (see Definition 1.2.0.3).

3.1.2.1. Theorem (Unstable Class Invariance Theorem). — Let V and V ′

be p-local finite homotopy types whose rational homology groups are trivial. The fol-
lowing statements are equivalent:

(i) ⟨ΣV ⟩ ≤ ⟨ΣV ′⟩
(ii) type(Σ∞V ) ≥ type(Σ∞V ′) and conn(ΣV ) ≥ conn(ΣV ′).

Proof. — The proof idea is to relate the unstable Bousfield classes with the Bous-
field classes of their suspension spectra (see ¶1.2.0.15). The theorem is a corollary
of Theorem 3.1.2.7 and Theorem 3.1.2.6, which we prove in the following.

To apply Theorem 3.1.2.7, note that the hypothesis of the connectivities of the
cohomology groups H̃

•
(−; Z/ pZ) is satisfied from the finiteness assumption on V

and V ′.

3.1.2.2. Definition. — Two homotopy types W and W ′ are stably Bousfield equiva-
lent if there exist natural numbers j and k such that ⟨ΣjW ⟩ ≤ ⟨W ′⟩ and ⟨ΣkW ′⟩ ≤ ⟨W ⟩.
This defines an equivalence relation of homotopy types.

3.1.2.3. Definition. — Let W and W ′ be homotopy types. Denote the stable
Bousfield equivalence class of W by ⟨W ⟩Σ . We write ⟨W ⟩Σ ≤ ⟨W ′⟩Σ if there exists a
natural number j such that ⟨ΣjW ⟩ ≤ ⟨W ′⟩.

3.1.2.4. Remark. — Let W and W ′ be homotopy types. If there exist natural
numbers h and i such that ⟨ΣhW ⟩ = ⟨ΣiW ′⟩, then ⟨W ⟩st = ⟨W ′⟩st. However, the
converse is not true in general. For example, the homotopy types S1 ∨ S2 and S1 ∨ S3

are stably Bousfield-equivalent, but non of their iterated suspensions are (unstably)
Bousfield-equivalent.

3.1.2.5. Theorem (Class Invariance Theorem). — Let F and F ′ be two p-local
finite spectra. Then ⟨F ⟩ ≤ ⟨F ′⟩ if and only if type(F ) ≥ type(F ′).

Sketch. — This is a consequence of the Thick Subcategory Theorem, see Theo-
rem 1.2.0.9. See also [HS98, Theorem 14].

3.1.2.6. Theorem. — Let V and V ′ be pointed p-local finite homotopy types. The
following statements are equivalent

(i) ⟨V ⟩Σ ≤ ⟨V ′⟩Σ.
(ii) type(Σ∞V ) ≥ type(Σ∞V ′).
(iii) ⟨Σ∞V ⟩ ≤ ⟨Σ∞V ′⟩.
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Proof. — The equivalence between (ii) and (iii) follows from Theorem 3.1.2.5. It
suffices to show the equivalence between (i) and (ii). Recall from Definition 1.2.0.3
the p-local Morava K-theory spectrum K(h) of height h for h ∈ N, which was used to
define the type of a finite spectrum.

Assume (i). Let m be a natural number such that the Morava K-theory cohomol-
ogy K(m)•(V ′) is trivial. Representing K(m) by an Ω-spectrum (Ek)k∈Z. Thus, for
all k ∈ Z, the pointed homotopy type Ek is V ′-less. By our assumption the homotopy
type Ek is also ΣjV -less for some natural number j. This implies that K(m)•(V ) = 0.
Since V and V ′ are finite homotopy types, the acyclicity of K(m)-homology of V
and V ′ follows from [AdaSH, Part III, Lemma 13.1], which is a universal coefficient
theorem for generalised cohomology theories.

Assume (ii), we define a full ∞-subcategory C of the ∞-category Spfin
(p) of p-local

finite spectra as follows: A p-local spectrum F is object of C if there exist an inte-
ger z and a p-local finite complex VF such that ⟨VF ⟩Σ ≤ ⟨V ′⟩Σ and F ≃ ΣzΣ∞VF .
By Proposition 2.3.1.7 the ∞-subcategory C is a thick ∞-subcategory of Spfin

(p). By
the Thick Subcategory Theorem (see Theorem 1.2.0.9), we have that Σ∞V ∈ C,
because Σ∞V ′ ∈ C and type(Σ∞V ) ≥ type(Σ∞V ′). In particular, we conclude
that ⟨V ⟩Σ ≤ ⟨V ′⟩Σ. See also [Bou94, Theorem 9.14].

3.1.2.7. Theorem. — Let W and W ′ be pointed homotopy types such that H̃•(W ;Z)
and H̃•(W ′;Z) are p-primary abelian groups. Then ⟨ΣW ⟩ ≤ ⟨ΣW ′⟩ if and only if the
following combined conditions hold:

(i) ⟨ΣW ⟩Σ ≤ ⟨ΣW ′⟩Σ,
(ii) conn(ΣW ) ≥ conn(ΣW ′) (see Definition 1.3.0.4), and
(iii) conn(H̃

•
(ΣW ; Z/ pZ)) ≥ conn(H̃

•
(ΣW ′; Z/ pZ)),

where the connectivity conn(H̃
•
(ΣW ; Z/ pZ)) of the cohomology is the degree of the

lowest non-trivial cohomology group minus one.

3.1.2.8. — In the above theorem the homotopy types W and W ′ satisfy either
the n-supported p-torsion, or the n-supported divisible p-torsion condition. The
proof of the theorem is at the end of this section, where we uses Theorem 3.1.2.10
and Theorem 3.1.2.12 below.

3.1.2.9. Remark. — Example 3.1.1.14 shows that the connectivity of the cohomology
groups does not necessarily coincide with the connectivity of the homotopy type.

3.1.2.10. Theorem. — Let n ≥ 1 be a natural number, and let W be a pointed
homotopy type satisfying the n-supported p-torsion condition. Then for every natural
number k ≥ 1, we have

⟨ΣW ⟩ = ⟨ΣkW ⟩ ∨ ⟨K(Z/ pZ, n+ 1)⟩.
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Proof. — We present the proof of [Bou94, Theorem 9.10]. By Corollary 2.1.1.12 we
have ⟨ΣW ⟩ ≥ ⟨ΣkW ⟩ and by Proposition 3.1.1.7 we have ⟨ΣW ⟩ ≥ ⟨K(Z/ pZ, n+ 1)⟩.
Theses gives the following comparison

⟨ΣW ⟩ ≥ ⟨ΣkW ⟩ ∨ ⟨K(Z/ pZ, n+ 1)⟩.

For the other direction, let Y be a pointed connected homotopy type such
that Y is ΣkW -less and K(Z/ pZ, n + 1)-less. Denote the fibre of the canonical
map λΣW (Y ) : Y → PΣW Y by F , given by the natural transformation λΣW . To show
that Y is ΣW -less, it is equivalent to show that F is contractible.

By Theorem 3.1.1.5 we know that πi(F ) is p-primary for n + 1 ≤ i ≤ n + k − 1
and trivial otherwise. Since PΣW Y is ΣW -less, it is K(Z/ pZ, i)-less for all i ≥ n+ 1,
by Proposition 3.1.1.7. Thus F is K(Z/ pZ, i)-less for all i ≥ n + 1, by Proposi-
tion 2.1.3.1. Now we can show that the homotopy groups of F are all trivial using its
Postnikov tower, which has finitely many non-trivial stages. Consider the fibre sequence

K(πn+k−1(F ), n+ k − 1)→ F → τ≤n+k−2F.

By the universal property of the fibre any morphism K(Z/ pZ, n+ k − 1)→ F factors
through the fibre K(πn+k−1(F ), n+ k − 1). Since F is K(Z/ pZ, n+ k − 1)-less, every
morphism K(Z/ pZ, n + k − 1) → K(πn+k−1(F ), n + k − 1) is the null map, which
implies that πn+k−1(F ) = 0. Repeating this procedure we conclude that F is weakly
contractible. Therefore, Y ≃ PΣW Y and we obtain

⟨ΣW ⟩ ≤ ⟨ΣkW ⟩ ∨ ⟨K(Z/ pZ, n+ 1)⟩.

3.1.2.11. Remark. — Recall that we have the “p-local” or “multiple prime” version
of the n-supported p-torsion condition, see Definition 3.1.1.3 and Remark 3.1.1.6.
Theorem 3.1.2.10 has also corresponding generalisations, see [Bou94, Theorem 9.10].

3.1.2.12. Theorem. — Let n ≥ 1 be a natural number, and let W be a pointed
homotopy type satisfying the n-supported divisible p-torsion condition. Then for every
natural number k ≥ 1, we have

⟨ΣW ⟩ = ⟨ΣkW ⟩ ∨ ⟨K(Z/ p∞, n+ 1)⟩.

Proof. — The proof strategy is the same as that of Theorem 3.1.2.10, where we make
use of Theorem 3.1.1.15. See also [Bou94, Theorem 9.11].

Proof of Theorem 3.1.2.7. — We follow the proof of [Bou94, Theorem 9.12]. Assum-
ing that ⟨ΣW ⟩ ≤ ⟨ΣW ′⟩, we have ⟨ΣW ⟩Σ ≤ ⟨ΣW ′⟩Σ by definition. Consider the
ΣW ′-contraction λΣW ′(ΣW ) : ΣW → PΣW ′(ΣW ) of ΣW . We have PΣW ′(ΣW ) ≃ pt
by assumption. Thus the map λΣW ′(ΣW ) induces isomorphisms on homotopy groups
of degree less than or equal to conn(ΣW ′), by Proposition 2.2.2.6. So we have

conn(ΣW ) ≥ conn(ΣW ′).
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Denote d := conn
(

H̃
•

(ΣW ′;Z/pZ)
)

. The Eilenberg–MacLane space K(Z/pZ,m)
is ΣW ′-less for every natural number m ≤ d, because of the Brown Representabil-
ity [Σ•ΣW ′,K(Z/pZ, d)] ∼= H̃

d−•
(ΣW ′;Z/pZ). By assumption K(Z/pZ,m) is

also ΣW -less, for every m ≤ d. Therefore, we obtain

conn
(

H̃
•

(ΣW ;Z/pZ)
)
≥ conn

(
H̃

•
(ΣW ;Z/pZ)

)
.

Now assume that (i)-(iii) hold. The stable Bousfield class inequality means
that ⟨ΣkW ⟩ ≤ ⟨ΣW ′⟩ for some natural number k ≥ 1. Denote the connectivities
of ΣW and ΣW ′ by c and c′, respectively. Define the abelian groups

G =

Z/pZ, if H̃
n+1

(ΣW ;Z/pZ) ̸= 0

Z/ p∞, otherwise

and

G′ =

Z/pZ, if H̃
n+1

(ΣW ′;Z/pZ) ̸= 0

Z/ p∞, otherwise
Then we have

⟨ΣW ⟩ = ⟨ΣkW ⟩ ∨ ⟨K(G, c+ 1)⟩ ≤ ⟨ΣW ⟩ ∨ ⟨K(G′, c′ + 1)⟩ = ⟨ΣW ′⟩;

here middle comparison holds by (2.3.1.1) and (2.3.1.3)

3.1.2.13. Definition. — A pointed homotopy type X is a suspension homotopy
type if there exists a pointed homotopy type W such that X ≃ ΣW .

3.1.2.14. Remark. — Theorem 3.1.2.1 is about the comparison between the Bous-
field classes of suspension homotopy types. However, statement (ii) of the theorem
does not depends on the suspension. It is unclear whether there is a similar state-
ment for all p-torsion finite complexes. Applying Proposition 2.4.2.11 we obtain a
small extension of Theorem 3.1.2.1 to the Bousfield classes of simply connected finite
complexes (that are not necessarily suspension homotopy types).

3.1.2.15. Theorem. — Let V and W be pointed simply-connected p-local finite
homotopy types. Assume that type(Σ∞V ), type(Σ∞W ) ∈ {0, 1}. Then ⟨V ⟩ = ⟨W ⟩ if
and only if the following combined conditions hold:

(i) conn(V ) = conn(W ), and
(ii) type(Σ∞V ) = type(Σ∞W ).

Proof. — Assuming that ⟨V ⟩ = ⟨W ⟩, we have type(Σ∞V ) = type(Σ∞W ), be-
cause ⟨V ⟩Σ = ⟨W ⟩Σ. The W -contraction λW (V ) : V → PW (V ) ≃ pt induces an
isomorphism of homotopy groups in every degree i < conn(W ). By the same reasons,
the V -contraction λV (W ) : W → PV (W ) ≃ pt induces an isomorphism of homotopy
groups in every degree i < conn(V ). These combined shows that conn(V ) = conn(W ).
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Assume that type(Σ∞V ) = type(Σ∞W ) ∈ {0, 1} and conn(V ) = conn(W ). Apply-
ing Theorem 3.1.2.1 we obtain that ⟨M(H∗(V ))⟩ = ⟨M(H∗(W ))⟩, because they are sus-
pension homotopy types. Furthermore, we have type(Σ∞V ) = type(Σ∞(M(H∗(V ))))
by the following reasons:

(i) The suspension spectrum Σ∞V is of type 0 if and only if its the HZ-homology
of V is torsion free in some degrees. Since the wedge M(H∗(V )) of Moore spaces
encodes exactly the HZ-homology of V , its suspension spectrum is also of type 0.

(ii) If Σ∞V is of type 1, the reduced homology groups H̃
•
(V ;Z) of V are p-primary in

all degrees. Since V is p-locally finite, the Bousfield class of a wedge component
of M(H∗(V )) is the same as a mod p Moore space M(Z/pZ, n) for a natural
number n ≥ 2, by Example 2.3.1.10. From this, we see that the suspension
spectrum of M(H∗(V )) is of type 1.

By the same arguments we have type(Σ∞W ) = type(Σ∞(M(H∗(W )))). Using Theo-
rem 3.1.2.1 again we obtain that

⟨ΣW ⟩ = ⟨ΣM(H∗(W ))⟩ and ⟨ΣV ⟩ = ⟨ΣM
(

H∗(V )
)
⟩.

Therefore, we have ⟨V ⟩ = ⟨W ⟩ by Proposition 2.4.2.11.

3.1.2.16. Question (Bousfield). — Can we extend Theorem 3.1.2.15 to p-local
finite homotopy type of other types? See also the end of [Bou96, Section 4].

3.1.3. Fibration theorems. — In this subsection we discuss the interaction of the
contraction of an n-supported p-torsion (respectively p-local) homotopy type with
fibre sequences. We work in the following situation.

3.1.3.1. Situation. — Fix a prime number p. Let n ≥ 1 be a natural number,
and let W be a pointed homotopy type satisfying the n-supported p-torsion (respec-
tively p-local) condition. Consider the functor PΣW : Ho∗ → Ho∗.

3.1.3.2. Theorem. — Let F → X
f−→ B be a fibre sequence in Ho∗ where B is

connected. In Situation 3.1.3.1 there exists an induced fibre sequence

K(G,n)→ PΣW (F )→ fib
(

PΣW (X) f∗−→ PΣW (B)
)
,

where G is a p-primary (respectively p-local) abelian group.

Proof. — This is [Bou94, Theorem 8.1] and we give an outline of the proof. Using The-
orem 2.2.2.3 we obtain a commutative diagram

F X B

PΣW (F ) X PΣ2W (B)

f

L
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where the rows are fibre sequences, the map L is a ΣW -equivalence and the homo-
topy type X is Σ2W -less. Applying PΣW to the lower fibre sequence induces the
commutative diagram

E1 E2 E3

PΣW (F ) X ≃ PΣ2W (X) PΣ2W (B)

fib (PΣW (f)) PΣW (X) ≃ PΣW (X) PΣW (B)

λΣW (X) λΣW (B)

PΣW (f)

where the rows and columns are fibre sequences. By Theorem 3.1.1.5 the fi-
bres E2 and E3 are Eilenberg–MacLane spaces whose non-trivial homotopy groups
are p-primary torsion (respectively p-local) abelian groups. One can calculate the
homotopy type of E1 from that of E2 and E3 using the long exact sequence of
homotopy groups associated to upper horizontal fibre sequence.

3.1.3.3. Remark. — The fibre of of the induced map

PΣW (F )→ hofib (PΣW (X)→ PΣW (B))

is called the error term of PΣW (f).
(i) Dror Farjoun–Smith gives a generalisation of Theorem 3.1.3.2 where they don’t

make the assumption that W is n-supported p-torsion (respectively p-local),
see [DS95, Theorem D]. In this more general case, the error terms is a product
of Eilenberg–MacLane spaces.

(ii) Later Bousfield proves more general versions of the above theorem where
the ΣW -contraction is replaced by the localisation of Ho∗ at g-equivalences for
a fixed morphism g of pointed homotopy types, see [Bou97, Theorems 6.1 and 9.7].
However, in this general setting, the error term is also more complicated.

3.1.3.4. Theorem. — Consider a pullback diagram

U V

Y Z

⌟

in Ho∗. In Situation 3.1.3.1 define a pointed homotopy type F by the induced pullback
diagram in Ho∗ below

F PΣW (V )

PΣW (Y ) PΣW (Z).

⌟
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Then there exists an induced fibre sequence

K(G,n)→ PΣW (U)→ F

of pointed homotopy types, where G is a p-primary torsion (respectively p-local)
abelian group.

Proof. — This is proven using Theorem 3.1.3.2 and Proposition 3.1.1.7. See
also [Bou94, Theorem 8.2].

3.1.3.5. Theorem. — Let V and Y be connected pointed homotopy types, where V
is a finite complex. In Situation 3.1.3.1 the pointed mapping space Map∗ (V,PΣW (Y ))
is ΣW -less. Furthermore, the fibre Fϕ of the induced map

PΣW (Map∗(V, Y ))→Map∗ (V,PΣW (Y ))

at a map ϕ ∈ Map∗ (V,PΣW (Y )) satisfies the following properties:
(i) In every degrees i ≥ n+ 1 the homotopy group πi(Fϕ) = 0
(ii) In every degree j ≥ 1 the homotopy group πj(Fϕ) is a p-torsion (respec-

tively p-local) and nilpotent.
(iii) The action of π1 (PΣW Map∗(V, Y )) on πj(Fϕ) is nilpotent for j ≥ 1.

Proof. — Let f : A → B be a ΣW -equivalence in Ho∗. Consider the following
commutative diagram

Map∗ (B,Map∗ (V,PΣW (Y ))) Map∗ (A,Map∗ (V,PΣW (Y )))

Map∗ (B ∧ V,PΣW (Y )) Map∗ (A ∧ V,PΣW (Y )) ,

f∗

≃ ≃

(f∧id)∗

where the vertical equivalences are given by the “tensor–Hom” adjunction. The
lower horizontal arrow is also an equivalence, since f ∧ idV is a ΣW -equivalence
by Proposition 2.1.3.1 and PΣW (Y ) is ΣW -less. Therefore, the morphism f∗ is an
equivalence, which implies that Map∗ (V,PΣW (Y )) is ΣW -less. For the rest of the
proof, see [Bou94, Theorem 8.3].

3.1.3.6. Remark. — Recall that there is an equivalence

PW

(
Map∗(Sk, Y )

)
≃ Map∗(Sk,PSk∧W (Y ))

for every pointed connected homotopy type Y , see Corollary 2.2.1.3. In [DroCS,
§3.A.2] Dror Farjoun posts the question whether PW (Map∗(V, Y )) is equivalent to a
mapping space of the form Map∗(V, Ỹ ), for some suitable choices of pointed homotopy
type Y and finite complex V .
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3.2. vh-periodic homotopy groups

From now on we fix a prime number p. In this section we recall the p-local vh-periodic
homotopy groups of a homotopy type and vh-periodic equivalences of homotopy types.
Everything is in this section is standard material, which one can also find for instance
in [Bou01; Kuh08; Heu20b]. Recall the p-local Morava K-theory K(h) of height h,
where h ∈ N (see §1.2).

3.2.0.1. Theorem. — Let V be a p-local finite homotopy type. Then there exists
a natural number h such that its suspension spectrum Σ∞V is of type h (see Defini-
tion 1.2.0.3). Moreover, there exist natural numbers n and dh such that the n-fold
suspension ΣnV of V admits a map

vh : Σdh+nV → ΣnV

which induces an isomorphism on K(h)-homology and induces the zero map on
K(m)-homology for every natural numbers m ̸= h.

Proof. — This is the “unstable version” of the Periodicity Theorem, and it follows
from Theorem 1.2.0.6 and the Freundenthal Suspension Theorem, see [KocB, Corol-
lary 3.2.3].

3.2.0.2. Convention. — In the situation of Theorem 3.2.0.1, we say V is of type h
and call the map vh a vh self-map of Vh. Strictly speaking, the map vh is not a
self-map (a map from Vh to itself) of Vh. However, we follow this traditional abuse of
notation, for example, cf. [Ada66; MRW77; HS98].

3.2.0.3. Situation. — Let h ≥ 1 be a natural number, and let Vh ∈ Ho(p) be
a p-local finite complex of type h together with a vh self-map vh : ΣdVhVh → Vh.

3.2.0.4. Definition. — Let X be a pointed connected homotopy type. In Situa-
tion 3.2.0.3, define a pointed homotopy type TVh

(X) as the colimit of the following
diagram in Ho∗

Map∗ (Vh, X)→ Map∗
(
ΣdVhVh, X

)
→ · · · → Map∗

(
ΣkdVhVh, X

)
→ · · ·

induced by the vh self-map of Vh.

3.2.0.5. Proposition. — Let X be a pointed connected homotopy type. In Situa-
tion 3.2.0.3 there exist equivalences

TVh
(X) ≃ ΩdVh TVh

(X) ≃ TΣdVh Vh
(X)

of pointed homotopy types. In particular, TVh
(X) is an infinite loop space.

Proof. — Since TVh
(X) is formed by a filtered colimit in Ho∗ and the dVh

-dimensional
sphere SdVh is a compact object of Ho∗, the dVh

-fold loop space ΩdVh TVh
(X) is
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equivalent to the colimit of the following diagram in Ho∗

ΩdVh Map∗ (Vh, X)→ · · · → ΩdVh Map∗
(
ΣkdVhVh, X

)
→ · · · ,

because a compact object commutes with filtered colimits (see [HTT, §5.3.4]). We
obtain the equivalence in the proposition by observing that

ΩdVh Map∗
(
ΣkdVhVh, X

)
≃ Map∗

(
Σ(k+1)dVhVh, X

)
.

3.2.0.6. Definition. — Let X be a pointed connected homotopy type. In Situa-
tion 3.2.0.3, define a spectrum ΦVh

(X) modelled by an Ω-spectrum (En)n≥0 where
(i) En+kdVh

:= ΩdVh
−n(TVh

(X)) for every natural number k, and
(ii) the structure maps are given by either the identity maps on iterated loop spaces

of TVh
(X) or the equivalence TVh

(X) ≃ ΩdVh TVh
(X) from Proposition 3.2.0.5.

3.2.0.7. Proposition. — Let X be a pointed connected homotopy type. In Situa-
tion 3.2.0.3, there exist equivalences

(i) Ω∞ΦVh
(X) ≃ TVh

(X) of pointed homotopy types, and
(ii) ΩdVh ΦVh

(X) ≃ ΦVh
(X) of spectra.

Proof. — This is by definition and by Proposition 3.2.0.5.

3.2.0.8. Definition. — Let X be a pointed connected homotopy type and
let k be a natural number. In Situation 3.2.0.3, define the vh-periodic homotopy
group v−1

h πk(X;Vh) of X with coefficient Vh in degree k as the stable homotopy
group πk (ΦVh

(X)) of ΦVh
(X) in degree k, or equivalently, as the homotopy

group πk (TVh
(X)) of TVh

(X) in degree k.

3.2.0.9. Remark. — In the situation of Definition 3.2.0.8 we consider the vh-periodic
homotopy groups of X as a graded abelian group, denoted by v−1

h π•(X;Vh). For a
non-connected homotopy type, its vh-periodic homotopy groups are defined separately
on each of its connected components.

For c ∈ N, recall that τ>cX denotes the c-connected cover of X, see ¶1.3.0.5.

3.2.0.10. Proposition. — Let X be a pointed connected homotopy type and let c be
a natural number. In Situation 3.2.0.3 the natural map τ>cX → X induces a canonical
isomorphism

v−1
h π• (X;Vh) ∼= v−1

h π• (τ>cX;Vh) ,

for every c ≥ 0.

Proof. — By the (Σ⊣ Ω)-adjunction there exists an equivalence

Map∗
(
Σt+kdVnVh, X

)
≃Map∗

(
Vh,Ωt+kdVhX

)
,
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for every t ≥ 0 and every k ≥ 0. For a natural number n > c there exists an
equivalence ΩnX ≃ Ωn(τ>cX). Therefore, if k is large enough so that t+ kd > c, we
have an equivalence Map∗

(
Σt+kdVh, X

)
≃Map∗

(
Σt+kdVh, τ>cX

)
.

3.2.0.11. Proposition. — Let f : X → Y be a morphism of pointed connected
homotopy types. The following two statements are equivalent:

(i) The map f induces an isomorphism v−1
h π•(X;Vh) f∗−→ v−1

h π•(X, ;Vh) for
one p-local finite complex Vh of type h together with a vh self-map.

(ii) The map f induces an isomorphism v−1
h π•(X;Vh) f∗−→ v−1

h π•(X, ;Vh) for ev-
ery p-local finite complex Vh of type h together with a vh self-map.

Proof. — (i) is a special case of (ii). We show that (i) implies (ii). Let Vh be the
finite complex of type h in (i). First, note that the isomorphism f∗ does not depend
on the choice of vh self-maps of Vh, since any two vh self-maps become homotopic
after suitable iterations, see [HS98, Corollary 3.7]. So, we just need to show the
independence of f∗ on the choice of Vh.

Define a full ∞-subcategory C of the ∞-category Spfin
(p) of p-local finite spectra as

follows: A p-local spectrum F is object of C if there exist an integer z and a p-local
finite complex VF of type h such that

(i) F ≃ ΣzΣ∞VF , and
(ii) for a natural number n there exists a vh self-map of ΣnVF inducing an isomor-

phism f∗ on vh-periodic homotopy groups with coefficient ΣnVF .
One can check that C is a thick∞-subcategory of Spfin

(p). Since C contains a type h finite
spectra Σ∞Vh by (i), we see that C is the full ∞-subcategory of Spfin

(p) whose objects
are finite spectra of type at least h, by the Thick Subcategory Theorem (see Theo-
rem 1.2.0.9).

3.2.0.12. Definition. — If a morphism f : X → Y of pointed connected homotopy
types satisfies one of the equivalent conditions in Proposition 3.2.0.11, we say f is
a vh-periodic equivalence. If X and Y are nilpotent, we say by convention that f
is a v0-periodic equivalence if f is a rational homotopy equivalence, i.e. the induced
map f∗ : π•(X)⊗Q→ π•(Y )⊗Q is an isomorphism (see ¶1.3.0.8).

3.2.0.13. Definition. — Let f : X → Y be a morphism of pointed homotopy types.
We say f is a vh-periodic equivalence if

(i) f induces an isomorphism on the sets of connected components, and
(ii) the restriction of f to each connected component of X, with an arbitrary chosen

basepoint, is a vh-periodic equivalence of pointed connected homotopy types.

3.2.0.14. Proposition. — Let h ≥ 1 be a natural number, and let f : X → Y be
a vh-periodic equivalence of pointed connected homotopy types. Then the vh-periodic
homotopy groups of the fibre F of f vanish.
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Proof. — Let Vh be a finite complex as in Situation 3.2.0.3. For every k ∈ N there is
an induced fibre sequence

Map∗
(
ΣkdVhVh, F

)
→Map∗

(
ΣkdVhVh, X

)
→Map∗

(
ΣkdVhVh, Y

)
in of pointed homotopy types. Since filtered colimits commutes with finite limits, we
obtain the following fibre sequence

TVh
(F )→ TVh

(X)→ TVh
(Y )

of pointed homotopy types. Recall the definition of vh-periodic homotopy groups
from Definition 3.2.0.8. By the hypothesis the second map in the above fibre sequence
is an equivalence. Thus TVh

F is contractible, which implies that the vh-periodic
homotopy groups of F are trivial.
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3.3. The contraction of a p-local finite complex

In this section we consider the contraction of the suspension of a p-local homotopy
type which has the same stable Bousfield class as a p-local finite complex, see Situa-
tion 3.3.0.1. These kind of contractions relates closely with vh-periodic equivalences of
homotopy types, as we will present in §3.3.2. This section is expository, which also
supplements [Bou94, §§10–13] with more details. We fix a prime number p and a
natural number h throughout this section.

3.3.0.1. Situation. — Let Wh+1 be a pointed p-local homotopy type satisfying the
following hypotheses:

(i) There exists a finite complex Vh+1 of type h+ 1 such that ⟨Wh+1⟩Σ = ⟨Vh+1⟩Σ.
Denote c+(ΣWh+1) := conn(ΣWh+1) + 1.

(ii) The homotopy type ΣWh+1 satisfies the c+(ΣWh+1)-supported p-torsion condi-
tion (see Definition 3.1.1.3)

3.3.0.2. Remark. —
(i) The properties (i), (ii) in Situation 3.3.0.1 and the number c+(ΣWh+1) determine

the Bousfield class of ΣWn+1, by Theorem 3.1.2.7. In particular, there exist
natural numbers j and k such that ⟨ΣjVh+1⟩ = ⟨ΣkWh+1⟩.

(ii) Comparing with [Bou94, §10.1], we don’t make the assumption that Wh+1 is
of minimal connectivity among the p-local homotopy types satisfying (i) and
(ii), because we won’t need it for the results concerning vh+1-periodic homotopy
theory in this chapter.

3.3.0.3. Proposition. — In Situation 3.3.0.1, conn(ΣWh+1) ≥ h + 1. In other
words, c+(ΣWh+1) ≥ h+ 2.

Proof. — By assumption ⟨Wh+1⟩Σ = ⟨Vh+1⟩Σ and K̃(h)
•

(ΣVh+1) = 0. Thus we
have that K̃(h)

•
(ΣWh+1) = 0. By Proposition 3.1.1.7 the Eilenberg–MacLane

space K(Z/pZ, j) is K̃(h)
•
-acyclic for j = conn(ΣWh+1). The K(h)•-acyclicity

of K(Z/pZ, i), where i ∈ N, is completely determined in [RW80]: It is K(h)•-acyclic if
and only if i ≥ h+ 1 [RW80, Theorem 11.1]. Thus conn(ΣWh+1) ≥ h+ 1.

3.3.0.4. Example. — Here are some examples of p-local homotopy types satisfying
the hypotheses of Situation 3.3.0.1.

(i) Every p-local finite complex of type h+ 1.
(ii) Let n ≥ 1 be a natural number and let G be a finitely generated p-primary

abelian group. The Moore space M(G,n) is an example of W1.
(iii) For every natural number m ≥ h+ 1, the homotopy type Vh+1 ∨K(Z/pZ,m)

is an example of Wh+1, for every finite complex Vh+1 of type h + 1,
see Theorem 4.2.0.8. In particular, for m = h + 1, the connectivity
of Σ(Vh+1 ∨K(Z/pZ,m)) reaches the lower bound in Proposition 3.3.0.3.
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3.3.0.5. Proposition. — Let X be a pointed connected homotopy type whose ho-
motopy groups are non-trivial in finitely many degrees. The ΣWh+1-contraction
map λΣWh+1(X) : X → PΣWh+1(X) of X induces isomorphisms

πi

(
PΣWh+1(X)

) ∼=

πiY, if i < c+(ΣWh+1),

(πiY )//(Z/pZ), if i = c+(ΣWh+1),

πiY ⊗ Z[1/p], otherwise.

Proof. — We show that the M(Z/pZ, c+(ΣWh+1))-contraction of X is equivalent
to PΣWh+1(X). Then the isomorphisms follow from the calculation results in The-
orem 2.4.1.5. Recall the definition of the wedge M(H•(ΣWh+1)) of Moore spaces
from Notation 2.4.2.1 and Definition 2.4.2.7. By Theorem 2.4.2.9 there exists a natural
equivalence

PΣWh+1(X) ≃ PM(H•(ΣWh+1))(X).

Since ΣWh+1 is (c+(ΣWh+1)−1)-connected and its homology groups are p-primary,
the Bousfield class ⟨M(H•(ΣWh+1))⟩ is equal to

⟨M(Z/pZ, c+(ΣWh+1))⟩ ∨
(∨

i∈I

⟨M(Z/pZ, ci)⟩
)
,

where ci ≥ c+(ΣWh+1) for every i ∈ I, by Example 2.3.1.10. Moreover, for ev-
ery c ≥ c+(ΣWh+1), we have ⟨M(Z/pZ, c+(ΣWh+1))⟩ ≥ ⟨M(Z/pZ, c)⟩. Thus by Theo-
rem 2.4.2.2 we obtain

PM(H•(ΣWh+1))(X) ≃ PM(Z/pZ, c+(ΣWh+1))(X).

See also [Bou94, Proposition 10.5].

3.3.1. Properties of the ΣWh+1-contraction. — In this section we list several
consequences of the general theory of W -contraction applied to the ΣWh+1-contraction
for the pointed homotopy type Wh+1 in Situation 3.3.0.1. Recall that Vh+1 denotes
a p-local finite complex of type h+ 1.

3.3.1.1. Proposition. — let E be a spectrum with Ẽ•(Vh+1) = 0 and let X be a
pointed connected homotopy type. Then the ΣWh+1-contraction λΣWh+1(X) : X →
PΣWh+1(X) is an E•-equivalence and an E•-equivalence (the latter notation means
E-cohomology equivalence).

Proof. — By the hypothesis ⟨Wh+1⟩Σ = ⟨Vh+1⟩Σ there exist natural numbers j

and k such that ⟨W ⟩ ≥ ⟨ΣjV ⟩ and ⟨V ⟩ ≥ ⟨ΣkW ⟩. Because Vh+1 is finite, we
have that Ẽ•(Vh+1) = 0. Since ΣkW is a V -full, we see that W is E•-acyclic
by Proposition 2.1.2.10. By loc. cit. the ΣWh+1-equivalence X → PΣWh+1 X is
an E•-equivalence.
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Consider E = (Ei)i≥0 as an Ω-spectrum. The condition Ẽ•(Vn+1) = 0 means
that the pointed homotopy type Ei is Vh+1-less for each i ≥ 0. Thus the homotopy
type Ei is also ΣkWn+1-less for every i ≥ 0. So Ẽ• (ΣkWh+1

)
= 0, which also implies

that Ẽ•(ΣWh+1) = 0. In other words, Ei is ΣWh+1-less for each i ≥ 0. There-
fore, the ΣWh+1-equivalence X → PΣh+1W X is a E•-equivalence. See also [Bou94,
Proposition 12.1]

3.3.1.2. Example. — Recall we work with a fixed prime number p. Some exam-
ples of spectra that satisfy the hypothesis of Proposition 3.3.1.1 are the Eilenberg–
MacLane spectrum HZ[1/p], the BP-module spectrum v−1

h BP, the Johnson–Wilson
spectrum E(h), the Morava K-theory spectrum K(h) of height h, the telescopic spec-
trum T(h) of height h and the spectrum S(h), see §1.2 and ¶1.2.0.13 for an introduction
of some of those p-local spectra.

3.3.1.3. Proposition. — Let F → X → B be a fibre sequence in Ho∗ where B

is connected. Denote the fibre of the induced map PΣWh+1(X) → PΣWh+1(B) by F ′.
There exists an induced fibre sequence

K(G, c+(ΣWh+1)− 1)→ PΣWh+1(F )→ F ′

where G is a p-primary torsion abelian group.

Proof. — Note that Wh+1 is (c+(ΣWh+1)− 1)-supported p-torsion. The proposition
is an application of Theorem 3.1.3.2.

3.3.1.4. Proposition. — The ΣWh+1-contraction functor PΣWh+1 commutes with
taking c+(ΣWh+1)-connected covers, i.e. for every pointed connected homotopy type X,
there exists a natural equivalence

τ>c+(ΣWh+1)
(
PΣWh+1(X)

)
≃ PΣWh+1

(
τ>c+(ΣWh+1)(X)

)
.

Proof. — We apply Proposition 3.3.1.3 to the fibre sequence

τ>c+(ΣWh+1)(X)→ X → τ≤c+(ΣWh+1)(X).

Denote the fibre of the induced map PΣWh+1(X)→ PΣWh+1

(
τ≤c+(ΣWh+1)(X)

)
by F ′.

Applying the computation results in Proposition 3.3.0.5 to PΣWh+1

(
τ≤c+(ΣWh+1)(X)

)
,

we obtain
πi(F ′) ∼= πi

(
PΣWh+1(X)

)
for every i ≥ c+(ΣWh+1) + 1. So the map PΣWh+1

(
τ>c+(ΣWh+1)(X)

)
→ PΣWh+1(X)

induces an isomorphism of homotopy groups in all degree i ≥ c+(ΣWh+1) + 1,
by Proposition 3.3.1.3. It remains to show that PΣWh+1

(
τ>c+(ΣWh+1)(X)

)
is

c+(ΣWh+1)-connected, which holds by Proposition 2.2.2.6. See also [Bou94,
Proposition 13.1].
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3.3.1.5. Remark. — Recall that the ΣWh+1-contraction functor also commutes
with taking (c+(ΣWh+1)− 1)-connected cover, see Corollary 2.2.2.7.

3.3.1.6. Remark. — Let Ho>c+(ΣWh+1)
∗ denote the full∞-subcategory of Ho∗ whose

objects are c+(ΣWh+1)-connected pointed homotopy types. The functor τ>c+(ΣWh+1)

of taking c+(ΣWh+1)-connected covers is right adjoint to the fully faithful inclu-
sion Ho>c+(ΣWh+1)

∗ ↪→ Ho>0
∗ .

3.3.1.7. Theorem. — The functor

τ>c+(ΣWh+1) ◦ PΣWh+1 : Ho∗ → Ho>c+(ΣWh+1)
∗

preserves finite limits.

Proof. — By [HTT, Corollary 4.4.2.5] it is equivalent to show that the func-
tor τ>c+(ΣWh+1) ◦ PΣWh+1 preserves the terminal objects and pullbacks. Since every
contractible object is ΣWh+1-less, the functor preserves terminal objects. Using
Theorem 3.1.3.4 and Remark 3.3.1.6 wee see that τ>c+(ΣWh+1) ◦ PΣWh+1 preserves
pullback diagrams.

3.3.2. ΣWh+1-equivalences and vh-periodic equivalences. — We continue
to work in Situation 3.3.0.1. In this subsection we discuss the relationship be-
tween ΣWh+1-equivalences and vn-periodic equivalences.

3.3.2.1. Proposition. — Let n be a natural number such that 1 ≤ n ≤ h, and let Vn

be a p-local finite complex of type n together with a vn self-map. For every pointed
connected homotopy type X, the pointed homotopy type TVn

(X) is ΣWh+1-less.

Proof. — Recall from Situation 3.3.0.1 that ⟨ΣjWh+1⟩ ≤ ⟨ΣVh+1⟩ for some natural
number j ≥ 1. It suffices to show that TVn

(X) is ΣVh+1-less. Indeed, assuming this,
we have that TVn

(X) is Σj+iWh+1-less for all i ≥ 0, i.e.

Map∗
(
Σj+iWh+1,TVn

(X)
)
≃ pt.

By the Σ⊣ Ω-adjunction of Ho∗, we obtain an equivalence

Map∗
(
ΣWh+1,Ωj+i−1TVn

(X)
)
≃ pt.

Choose i such that j + i− 1 = kdVn
for some natural number i. Since the homotopy

type TVn(X) is dVn-periodic with respect to taking the loop functor (see Proposi-
tion 3.2.0.5), we obtain

Map∗ (ΣWh+1,TVn
(X)) ≃Map∗

(
ΣWh+1,ΩkdVn TVn

(X)
)
≃ pt,

that is, TVn(X) is ΣWh+1-less.
Therefore, we would like to show that Map∗ (ΣVh+1,TVn

(X)) is contractible.
Since TVn

(X) is constructed via a filtered colimit and ΣVh+1 is finite, the mapping
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space Map∗ (ΣVh+1,TVn(X)) is equivalent to the colimit of the filtered diagram

Map∗ (ΣVh+1 ∧ Vn,TVn
(X))→ Map∗

(
ΣVh+1 ∧ ΣdVnVn,TVn

(X)
)
→ · · · (3.3.2.1)

The induced self-map

idΣVh+1 ∧vn : ΣdVn (ΣVh+1 ∧ Vn)→ ΣVh+1 ∧ Vn

induces the zero map on K(j)-homology for all j ≥ 0, because Vh+1 and Vn are
of different type. Thus, by the Nilpotence Theorem (see Theorem 1.2.0.2), the
map idΣVh+1 ∧vn is nilpotent. This implies that almost all terms in the diagram (3.3.2.1)
are contractible. So its colimit is contractible. See also [Bou94, Lemma 11.4].

3.3.2.2. Theorem. — Let X be a pointed connected homotopy type. For every
natural number 1 ≤ n ≤ h, the canonical map λΣWh+1(X) : X → PΣWh+1(X) given
by ΣWh+1-contraction is a vn-periodic equivalence. If X is simply connected, then
λΣWh+1(X) induces an isomorphism

π•(X)⊗ Z[1/p] ≃−→ π•(PΣWh+1(X))⊗ Z[1/p]

of graded abelian groups.

Proof. — Let n be a natural number such that 1 ≤ n ≤ h, and let Vn be a p-local finite
complex of type n together with a vn self-map. We begin by showing the following
claim.

Claim. The canonical morphism λΣVh+1(X) : X → PΣVh+1(X) given by ΣVh+1-con-
traction is a vn-periodic equivalence.

The map X → PΣVh+1(X) and the vn self-map of Vn induce a commutative diagram

PΣVh+1 (Map∗ (Vn, X)) PΣVh+1

(
Map∗

(
ΣdVnVn, X

))
· · ·

Map∗
(
Vn,PΣVh+1(X)

)
Map∗

(
ΣdVnVn,PΣVh+1(X)

)
· · ·

in Ho∗, where each vertical map is given by Theorem 3.1.3.5. The colimit of the upper
row is equivalent to PΣVh+1 (TVn

(X)): Indeed, since ΣVh+1 is equivalent to a finite
complex (see Definition 1.3.0.10), the functor PΣVh+1 preserves filtered colimits in Ho∗,
see [Bou94, Lemma 11.6]. By Proposition 3.3.2.1 the homotopy type PΣVh+1 (TVn(X))
is equivalent to TVn(X). By Theorem 3.1.3.5 each vertical map induces an isomorphism
on homotopy groups in all degree i ≥ conn (ΣWh+1) + 2. Thus, the induced map

TVn
X → TVn

(PΣWh+1(X)) (3.3.2.2)

of the colimits of the rows in the above diagram also induces an isomorphism on
homotopy groups in all degree i ≥ conn (ΣWh+1) + 2. This actually shows that
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the map (3.3.2.2) is an equivalence, since TVn(X) and TVn(PΣVh+1(X)) are peri-
odic (see Proposition 3.2.0.5). Since the vn-homotopy groups of X are isomorphic to
the homotopy groups of TVn

X, the canonical morphism λΣVh+1(X) induces isomor-
phisms of vn-periodic homotopy groups for every 1 ≤ n ≤ h− 1.

Recall the hypothesis ⟨Wh+1⟩Σ = ⟨Vh+1⟩Σ from Situation 3.3.0.1. Using the
fact that TVn

(PΣVh+1(X)) and TVn
(PΣWh+1(X)) are periodic, there exists an nat-

ural equivalence TVn(PΣVh+1(X)) ∼−→ TVn(PΣWh+1(X)), similarly as we did in the
proof of Proposition 3.3.2.1. Together with the claim, this shows that the natural
map λΣWh+1(X) is a vn-periodic equivalence for every 1 ≤ n ≤ h.

By Proposition 2.1.2.10 the map λΣWh+1(X) is a HZ[1/p]-homology equivalence.
The last part of the theorem follows since X and thus PΣWh+1(X) are simply connected.
See also [Bou94, Theorem 11.5].

3.3.2.3. Corollary. — Every ΣWh+1-equivalence in Ho∗ is a vn-periodic equivalence
for each 1 ≤ n ≤ h. A ΣWh+1-equivalence of simply connected p-local homotopy types
is also a v0-periodic equivalence, i.e. a rational homotopy equivalence.

3.3.2.4. Proposition. — Let X be a pointed connected homotopy type. For every
natural number n ≥ h+ 1, the vn-periodic homotopy groups of PΣWh+1(X) vanish.

Proof. — Let Vn be a finite complex of type n together with a vn-self map. We have
(i) ⟨Vn⟩Σ ≤ ⟨Wh+1⟩Σ = ⟨Vh+1⟩Σ
(ii) conn

(
ΣkVn

)
≥ conn(ΣWh+1) for sufficiently large k ∈ N.

By Theorem 3.1.2.7 we have ⟨Σk−1V ⟩ ≤ ⟨ΣWh+1⟩, i.e. a ΣWh+1-less homotopy
type is Σk−1V -less. So the pointed mapping space Map∗

(
Σk−1Vn,PΣWh+1(X)

)
is

contractible. Thus TVn(PΣWh+1(X)) is also contractible, that is, the vn-periodic
homotopy groups of X vanish.

3.3.2.5. Theorem. — Let f : X → Y be a morphism of pointed connected homotopy
types. The following statements are equivalent:

(i) The induced map f∗ : πi

(
PΣWh+1(X)

)
→ πi

(
PΣWh+1(X)

)
is an isomorphism

for sufficiently large i.
(ii) The map f is a vn-periodic equivalence for all 1 ≤ n ≤ h and f induces an

isomorphism f∗ : πj(X)⊗ Z[1/p]→ πj(Y )⊗ Z[1/p] for sufficiently large j > 1.

Proof. — We follow the proof idea of [Bou94, Theorem 11.10]. By Proposition 3.3.1.3
it suffices to show that for a pointed connected homotopy type F , the following
statements are equivalent:

(i) The homotopy groups πi

(
PΣWh+1(F )

)
vanish for sufficiently large i.

(ii) We have that πj(F )⊗Z[1/p] = 0 for sufficiently large j > 1, and the vn-periodic
homotopy groups of F vanish for every 1 ≤ n ≤ h.



80 Chapter 3. The vh-periodic localisation of homotopy types

Assume (i). By Proposition 3.2.0.10 and Theorem 3.3.2.2 the vn-periodic homotopy
groups of F vanish for all 0 ≤ n ≤ h. Choose a Moore space M(Z/pZ, c) such
that ⟨M(Z/pZ, c)⟩ ≥ ⟨ΣWh+1⟩. Then

PM(Z/pZ,c)(F ) ≃ PM(Z/pZ,c)
(
PΣWh+1(F )

)
.

For sufficiently large j, we have that

πj(F )⊗ Z[1/p] ∼= πj

(
PM(Z/pZ,c)(F )

)
= 0

by Theorem 2.4.1.5.
Assume (ii). First we show the following claim.
Claim. There exists a (sufficiently large) natural number k ≥ 1 such

that PΣWh+1(F ) is ΣM(Z/pZ, k)-less.
Let Vh be a finite complex of type h together with a vh self-map ΣdVhVh → Vh.

The cofibre C of the vh self-map is a finite complex of type at least h + 1. Choose
a natural number kh ≥ 1 such that the connectivity of ΣkhCh is no less than the
connectivity of ΣWh. Then ⟨ΣkhC⟩ ≤ ⟨ΣWh+1⟩ by Theorem 3.1.2.7. Consider the
induced fibre sequence

Map∗(ΣkhCh,PΣWh+1(F ))

Map∗(ΣkhVh,PΣWh+1(F ))

Map∗(Σkh+dVhVh,PΣWh+1(F )).

Then the lower arrow in the above fibre sequence is an equivalence. In particular,

π•
(
Map∗(ΣkhVh,PΣWh+1(F ))

) ∼= v−1
h π•

(
PΣWh+1(F )); ΣkhVh

)
= 0.

In other words, the homotopy type PΣWh+1(F ) is ΣkhVh-less. Iterating this procedure
and using the assumption that the vn-periodic homotopy groups of F vanish for all
natural number 1 ≤ n ≤ h, we can find a (sufficiently large) k ≥ 1 such that PΣWh+1(F )
is ΣM(Z/pZ, k)-less.

By this claim, we have PΣWh+1(F ) ≃ PΣM(Z/pZ,k)(F ). Therefore for sufficiently
large j we have by Theorem 2.4.1.5

πj

(
PΣWh+1(F )

) ∼= πj

(
PΣM(Z/pZ,k)(F )

) ∼= πj(F )⊗ Z[1/p] = 0.

3.3.2.6. Theorem. — Let f : X → Y be a morphism of c+(ΣWh+1)-connected
pointed homotopy types. The following statements are equivalent:

(i) The map f is a ΣWh+1-equivalence,
(ii) The map f is a vn-periodic equivalences for every 1 ≤ n ≤ h and f induces an

isomorphism
π•(X)⊗ Z[1/p] f∗−→ π•(Y )⊗ Z[1/p]. (3.3.2.3)
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Proof. — By Theorem 3.3.2.2 (i) implies (ii). Assuming (ii), let F ′ be the fibre of the
induced map PΣWh+1(X)→ PΣWh+1(Y ). Thus F ′ is ΣWh+1-less by Proposition 2.1.3.1
and the vn-homotopy groups of F ′ vanish for every 1 ≤ n ≤ h, by Proposition 3.2.0.14.

Let F be the fibre of f . Then F is p-torsion by (3.3.2.3) and the vn-homotopy
groups of F ′ vanish for every 1 ≤ n ≤ h, by assumption and by Proposition 3.2.0.14.
Thus πj(PΣWh+1(F )) = 0 for sufficiently large j by Theorem 3.3.2.5.

Therefore by Proposition 3.3.1.3 the fibre F ′ is also p-torsion and the homotopy
groups of F vanish in sufficiently large degrees. Using Proposition 3.3.0.5 to cal-
culate the homotopy groups of F ′ we obtain that πi(F ) ∼= πi(PΣWh+1(F )) = 0
for every natural number i ≥ c+(ΣWh+1). By the assumption that X and Y

are c+(ΣWh+1)-connected, the other homotopy groups of F ′ also vanish. In other
word F ′ is contractible. Therefore, the induced map PΣWh+1(X)→ PΣWh+1(Y ) is an
equivalence, that is, f is a ΣWh+1-equivalence. See also [Bou94, Theorem 13.3].

3.3.2.7. Corollary. — Let X be a pointed homotopy type. Then PΣWh+1(X) ≃ pt
if and only if the following combined conditions hold:

(i) The homotopy type X is (c+ (ΣWh+1)− 1)-connected.
(ii) The homotopy group of X in each degree is a p-primary torsion abelian group.
(iii) The vn-periodic homotopy groups of X vanish for every 1 ≤ n ≤ h.

Proof. — Recall that c+ (ΣWh+1) = conn(ΣWh+1)+1. Assume that PΣWh+1(X) ≃ pt.
Then (i) follows from Proposition 2.2.2.6, and (ii) and (iii) follow from Theorem 3.3.2.2
and Proposition 3.3.0.3.

For the other direction of implication, we make use of the commutative diagram
below

τ>c+(ΣWh+1)(X) X τ≤c+(ΣWh+1)(X)

PΣWh+1

(
τ>c+(ΣWh+1)(X)

)
X PΣ2Wh+1

(
τ≤c+(ΣWh+1)(X)

)
,

λ> L λ≤

obtained by Theorem 2.2.2.3; the rows are fibres sequences in Ho∗, the pointed
homotopy type X is Σ2Wh+1-less and L is a ΣWh+1-equivalence. Conditions (ii) and
(iii) together with Theorem 3.3.2.6 imply that PΣWh+1

(
τ>c+(ΣWh+1)(X)

)
is contractible.

Thus we have X ≃ PΣ2Wh+1

(
τ≤c+(ΣWh+1)(X)

)
in the above diagram. Therefore, we

obtain equivalences

PΣWh+1(X) ∼−→ PΣWh+1

(
X
) ∼−→ PΣWh+1

(
τ≤c+(ΣWh+1)(X)

)
.

Using the calculation in Proposition 3.3.0.5 and (i) we see that PΣWh+1(X) ≃ pt. See
also [Bou94, Corollary 13.4].
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3.4. vh-periodic-localisations of homotopy types

Consider a sequence (Wh+1)h∈N of p-local homotopy types, where each Wh+1

satisfies the hypotheses of Situation 3.3.0.1 and conn (Wm) ≥ conn (Wl) for every
pair (m, l) of natural numbers with m ≥ l. Then ⟨ΣWm⟩ < ⟨ΣWl⟩ for m ≥ l

by Theorem 3.1.2.7. Thus we obtain a tower

· · · → PΣWh+1 → PΣWh
→ · · · → PΣW2 → PΣW1 (3.4.0.1)

of functors. This is known as the unstable chromatic tower, because of Theorem 3.3.2.2
and Proposition 3.3.2.4, cf. [Bou94, §11.9]. The main content of this section is the
construction of the localisation Hovh

of the ∞-category Ho∗ of pointed connected
homotopy types at the set of vh-periodic equivalences, using the natural transforma-
tions in the unstable chromatic tower, following [Heu21] and [Har18]. In §3.4.1 we
discuss briefly the relationship between the stable and unstable periodic equivalences
and recall the Bousfield–Kuhn functor, following [Bou01; Kuh08]. We work in the
following situation.

3.4.0.1. Situation. — We fix a prime number p and a natural number h ≥ 1.
Let Wh+1 and Wh be pointed p-local homotopy types satisfying Situation 3.3.0.1.(i)
and (ii). Furthermore, we assume that conn(Wh+1) ≥ conn(Wh). In particular,
we have that c+ (ΣWh+1) ≥ c+ (ΣWh). By Corollary 2.3.1.5 there exists a natural
transformation PΣWh+1 → PΣWh

, given by ΣWh-contraction.

3.4.0.2. Construction. — Consider the natural transformation PΣWh+1 → PΣWh

as a morphism in ∞-category Fun (Ho∗,Ho∗) of functors. Denote its fibre
by FΣWh+1,ΣWh

. In particular, for every pointed connected homotopy type X, there
exists a fibre sequence

FΣWh+1,ΣWh
(X)→ PΣWh+1(X)→ PΣWh

(X)

of pointed connected homotopy types, since limits of functors are computed pointwise.

3.4.0.3. Corollary. — Let X be a pointed homotopy type. Then the homotopy
type FΣWh+1,ΣWh

(X) is ΣWh+1-less and ΣWh-full.

Proof. — This is by Proposition 2.1.3.1 and Theorem 2.2.2.5, respectively.

3.4.0.4. Proposition. — Let X be a pointed connected homotopy type. Then the
homotopy type FΣWh+1,ΣWh

(X) is also connected. Furthermore:
(i) For every natural number n ̸= h and n ≥ 1, the vn-periodic homotopy groups of

the homotopy type FΣWh+1,ΣWh
(X) vanishes.

(ii) The vh-periodic homotopy groups of the homotopy type FΣWh+1,ΣWh
(X) are

isomorphic to those of X.

Proof. — This is a consequence of Proposition 3.2.0.14 and Theorem 3.3.2.2.
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3.4.0.5. Proposition. — Let f : X → Y be a morphism of pointed connected
homotopy types. The following statements are equivalent:

(i) The map f is a vh-periodic equivalence.
(ii) The induced map (τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh

)(f) is a vh-periodic equivalence.
(iii) The induced map (τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh

)(f) is an equivalence in Ho∗.

Proof. — It suffices to prove the proposition for connected homotopy types. For the
general case, we can consider each connected component separately. We show the
implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Consider the commutative diagram

FΣWh+1,ΣWh
(X) PΣWh+1(X) PΣWh

(X)

FΣWh+1,ΣWh
(Y ) PΣWh+1(Y ) PΣWh

(Y )

iX

f̃ fh+1 fh

iY

of pointed homotopy types, where the rows are fibre sequences and the vertical maps
are induced by f .

Assume (i). Since f is a vh-periodic equivalence, the middle map fh+1 is also
a vn-periodic equivalence, by Theorem 3.3.2.2. Recall that the vh-periodic homo-
topy groups of PΣWh

(X) and PΣWh
(Y ) are both trivial, see Proposition 3.3.2.4.

Therefore, the maps iX and iY are also vh-periodic equivalences, by the proof of Propo-
sition 3.2.0.14. Thus f̃ is a vh-periodic equivalence. Using Proposition 3.2.0.10 we
conclude that the map (τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh

)(f) is a vh-periodic equivalence.
Assume (ii). By Proposition 3.4.0.4 the map (τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh

)(f) is
a vn-periodic equivalence for 1 ≤ n ≤ h; for i ≥ h the vi-periodic homotopy groups of
the source and the target are trivial.

Claim. The pointed homotopy types

(τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh
)(X) and (τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh

)(Y )

are ΣWh-full. In particular, their homotopy groups are p-primary torsion abelian
groups by Corollary 3.3.2.7.

Since FΣWh+1,ΣWh
(X) is ΣWh-full, its homotopy groups are p-primary by Corol-

lary 3.3.2.7. In particular, its c+(ΣWh+1)-connected cover is a p-torsion homotopy
type. The claim then follows from Corollary 3.4.0.3 and Corollary 3.3.2.7. The same
proof works for Y in place of X.

Claim. The map (τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh
)(f) is a ΣWh+1-equivalence.

This is follows from the previous claim and the fact that the map is a vn-periodic
equivalence for 1 ≤ n ≤ h, by applying Theorem 3.3.2.6.

Claim. The pointed homotopy types

(τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh
)(X) and (τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh

)(Y )

are ΣWh+1-less.
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We show it for X and the same proof works for Y . We have

(PΣWh+1 ◦τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh
)(X)

≃(τ>c+(ΣWh+1) ◦ PΣWh+1 ◦FΣWh+1,ΣWh
)(X)

≃(τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh
)(X)

by Proposition 3.3.1.4 and Corollary 3.4.0.3.
The second and the third claim combined implies (iii).
Assuming (iii), the first statement follows Propositions 3.2.0.10 and 3.4.0.4.

See [Heu21, Theorem 3.7].

3.4.0.6. Definition. — We define the functor

Lvh
: Ho∗ → Ho>c+(ΣWh+1)

∗

X 7→
(
τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh

)
(X).

Let Hovh
denote the full ∞-subcategory of Ho∗ whose objects are pointed connected

homotopy types that are equivalent to
(
τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh

)
(X) for some

pointed homotopy type X.

3.4.0.7. Theorem. — The functor Lvh
exhibits Hovh

as a localisation of the
∞-category Ho∗ at vh-periodic equivalences. In particular, for every ∞-category C,
composing with Lvh

induces an equivalence

Fun (Hovh
,C) ∼−→ Funvh (Ho∗,C)

of∞-category of functors where Funvh denotes the∞-category of functors that send vh-
periodic equivalences in Ho∗ to equivalences in C.

Proof. — We follow the proof of [Heu21, Theorem 2.2], which goes through without
the p-local assumption. First, note that the composition

Hovh

i
↪→ Ho∗

Lvh−−→ Hovh

is equivalent to the identity by the proof of Proposition 3.4.0.5, that is, the homotopy
type

(
τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWh

)
(X) is ΣWh+1-less and ΣWh-full for every pointed

homotopy type X. Thus, the induced composition

Fun(Hovh
,C)

(Lvh
)∗

−−−−→ Fun (Ho∗,C) i∗

−→ Fun(Hovh
,C)

is equivalent to the identity functor on Fun (Hovh
,C). Furthermore, the image of (Lvh

)∗

is contained in Funvh (Ho∗,C) by construction. Now we show that the composition

Fun (Ho∗,C) i∗

−→ Fun(Hovh
,C)

(Lvh
)∗

−−−−→ Fun (Ho∗,C)

restricts to the identity functor on the full ∞-subcategory Funvh (Ho∗,C). For ev-
ery F ∈ Funvh (Ho∗,C), we need show that F (X) ≃ F (Lvh

(X)). It suffices to show
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that there are vh-periodic equivalences connecting X and Lvh
(X). The following

X τ>c+(ΣWh+1)(X)

τ>c+(ΣWh+1)
(
PΣWh+1(X)

)
τ>c+(ΣWh+1)

(
FΣWh+1,ΣWh

(X)
)
≃ Lvh

(X)

provides such a zig-zag of vh-periodic equivalences.

3.4.0.8. Theorem. — Let Vh be a pointed p-local (c+(ΣWh+1)− 1)-connected finite
complex of type h. The ∞-category Hovh

is compactly generated and PΣWh+1(ΣVh) is
a compact generator.

Proof. — See [Heu21, Proposition 3.14] for a detailed proof.

3.4.0.9. Situation. — Recall the p-local homotopy type Wh+1 from Situation 3.4.0.1.
Let 1 ≤ k < h be a natural number, and let Wk be a pointed p-local homotopy type
satisfying the hypotheses of Situation 3.3.0.1 and c+(ΣWk) ≤ c+(ΣWh). Thus we
obtain a natural transformation PΣWh+1 → PΣWk

of endo-functors of Ho∗.

3.4.0.10. Construction. — Let FΣWh+1,ΣWk
denote the fibre of the natural trans-

formation PΣWh+1 → PΣWk
, i.e. there exists a fibre sequence

FΣWh+1,ΣWk
→ PΣWh+1 → PΣWk

in the ∞-category Fun (Ho∗,Ho∗) of functors. Define the functor

Lv[k,h] : Ho∗ → Ho>c+(ΣWh+1)
∗

X 7→
(
τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWk

)
(X).

Let Hov[k,h] denote the full ∞-subcategory of Ho∗ whose objects are connected
pointed homotopy types that are equivalent to

(
τ>c+(ΣWh+1) ◦ FΣWh+1,ΣWk

)
(X) for

some X ∈ Ho∗.

3.4.0.11. Theorem. — The functor Lv[k,h] exhibits Hov[k,h] as the localisation of
the ∞-category Ho∗ at vn-periodic equivalences for all k ≤ n ≤ h.

Proof. — The proof is the same as that of Theorem 3.4.0.7.

3.4.1. Stable and unstable periodic localisations. — In this subsection we
discuss briefly the relationship between unstable and stable periodic localisations and
recall the Bousfield–Kuhn functor, following [Bou01]. We continue to work with a
fixed prime number p and recall that Sp(p) denotes the ∞-category of p-local spectra.

3.4.1.1. Finite chromatic localisation of spectra. — For every natural number h,
recall the finite localisation

Lf
h : Sp(p) → Lf

h

(
Sp(p)

)
≃ Sp(p)

/
Sp≥h+1



86 Chapter 3. The vh-periodic localisation of homotopy types

of height h from §1.2. This localisation functor can alternatively be constructed in
an analogous way to the contraction functor of a homotopy type. Let Fh+1 be a
(p-local) finite spectrum of type h + 1. A p-local spectrum E is Fh+1-null if the
mapping spectrum Map(Fh+1, E) is equivalent to the zero spectrum, cf. ¶2.2.1.4.
A morphism E1 → E2 of p-local spectra is a Fh+1-equivalence if the induced map
Map(E2, E) → Map(E1, E) of spectra is an equivalence for every Fh+1-null p-local
spectrum E. By the Thick Subcategory Theorem (see Theorem 1.2.0.9) a morphism
of p-local spectra is a Fh+1-equivalence if and only if it is a F ′

h+1-equivalence for
any p-local finite spectrum F ′

h+1 of type h+ 1.
The functor Lf

h exhibits Lf
h

(
Sp(p)

)
as the localisation of the ∞-category Sp(p) at

the set of Fh+1-equivalences of p-local spectra, see [Bou01, §2, §3.2]. Let Fh be a p-local
type n spectrum together with a vhself-map. For every E ∈ Sp(p), one can define
analogues the vh-periodic homotopy groups v−1

h π•(E;Fh) of E and define vh-periodic
equivalences of p-local spectra: In Definitions 3.2.0.8 and 3.2.0.12 replace the finite
complex Vh by the finite spectrum Fh. In a similar proof as Theorem 3.3.2.6, one
can show that a morphism of p-local spectra is a Fh+1-equivalence if and only if it is
a vn-periodic equivalence for all 0 ≤ n ≤ h.

By the (stable) Class Invariance Theorem, we have a fibre sequence

Mf
h → Lf

h → Lf
h−1

of functors for h ≥ 1. We say a p-local spectrum E is vh-periodic if it is in the
essential image of Mf

h, i.e. E ≃ Lf
h(E) and the vi-periodic homotopy groups of E

vanishes for i ̸= h. Let Mf
h(Sp(p)) denotes the full ∞-subcategory of Sp(p) whose

objects are vh-periodic spectra. A morphism in Mf
h(Sp(p)) is an equivalence if and

only if the underlying morphism of spectra is a vh-periodic equivalence.
Recall from Definition 3.2.0.4 that the vh-periodic homotopy groups of a homotopy

type are the homotopy groups of the infinite loop space TVh
(X) defined as the colimit

Map∗ (Vh, X)→Map∗
(
ΣdVhVh, X

)
→ · · · →Map∗

(
ΣkdVhVh, X

)
→ · · ·

of mapping spaces. Replace Vh by Fh, and X by E and the mapping spaces by mapping
spectrum, we see that the above colimit is equivalent to T(h)⊗Sp E where T(h) is the
telescope spectrum defined using the Spanier–Whitehead dual of Fh+1, see ¶1.2.0.13.
Thus, a morphism of p-local spectra is a vh-periodic equivalence if and only if it is
a T(h)-homology equivalences of spectra. Moreover, we have an equivalence

Mf
h(Sp(p))

∼−→ SpT(h)

of ∞-categories, see [Bou01, Theorem 3.3].

3.4.1.2. Situation. — Let Wh+1 be a p-local homotopy type satisfying the conditions
in Situation 3.3.0.1, where h ≥ 1. Recall the number c+(ΣWh+1) = conn(ΣWh+1) + 1.
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3.4.1.3. Proposition. — Let Vh be a p-local finite complex of type h together with
a vh self-map. For every p-local spectrum E, there exists an isomorphism

v−1
h π•(Ω∞E;Vh) ∼= v−1

h π•(E; Σ∞Vh).

Proof. — The proposition follows from the definition of vh-periodic homotopy groups
and the Σ∞⊣ Ω∞-adjunction. See [Bou01, Proposition 5.1].

3.4.1.4. Proposition. — For a p-local spectrum E, there are equivalences

τ>c+(ΣWh+1)
(
PΣWh+1 (Ω∞E)

)
≃ τ>c+(ΣWh+1)

(
Ω∞Lf

h(E)
)

Lvh
(Ω∞E) ≃ τ>c+(ΣWh+1)

(
Ω∞Mf

h(E)
)
.

Proof. — Since the homotopy types involved are c+(ΣWh+1)-connected and p-local,
it suffices to check that the induced maps on vi-periodic homotopy groups are iso-
morphisms for every 0 ≤ i ≤ h, by Theorem 3.3.2.6 and Proposition 3.4.0.5. The
proposition then follows by applying Proposition 3.4.0.5.

3.4.1.5. Theorem (Bousfield–Kuhn functor). — Let h ≥ 1 be a natural number.
There exists a functor Φ̃h : Ho∗ → Sp satisfying the following properties:

(i) For every X ∈ Ho∗, the spectrum Φ̃h(X) is T(h)•-local.
(ii) For every p-local finite complex Vh of type h, there exist isomorphisms

v−1
h π•(X;Vh) ∼= π• Map(Σ∞Vh, Φ̃h(X)) ∼= v−1

h π•(Φ̃h(X); Σ∞Vh),

which are natural in X.
(iii) For every spectrum W , there exists a natural equivalence Φ̃h(Ω∞E) ≃ LT(h)(E).
(iv) The functor Φ̃h send a vh-periodic equivalence of pointed homotopy types to an

equivalence of spectra.

Proof. — See [Bou01, Theorem 5.3]. We refer the reader to [Bou01] and [Kuh08] a
more detailed study of the Bousfield–Kuhn functor.

3.4.1.6. Theorem. — Let h ≥ 1 be a natural number. The the induced func-
tor Φ̃h : Ho∗ → SpT(h) factors through Hovh

, i.e. there exists a functor

Φh : Hovh
→ SpT(h)

such that Φ̃h ≃ Φh ◦Lvh
. Moreover, the functor Φh admits a left adjoint Θh.

Proof. — The factorisation follows from Theorem 3.4.1.5.(iv). See [Bou01, Theo-
rem 5.4 and Corollary 5.6] for the existence of the left adjoint. The functor Φh is also
known under the name the Bousfield–Kuhn functor.





CHAPTER 4

Homological and homotopical periodic localisations

4.1. Properties of homological localisations of homotopy types

In this section we include several useful properties of homological localisations of
homotopy types for later use. Fix a prime number p. We prove that the localisations
of homotopy types with respect to certain p-local homology theories preserves suitable
highly connectedness: For example, the K(h)•- and T(h)•-homology localisations
preserve d ≤ h-connectedness. This is original work, see Theorem 4.1.0.14.

4.1.0.1. Definition. — Let p be a prime number. The mod-p Moore spectrum S/p
is a spectrum whose HZ-homology is concentrated in degree 0 and is isomorphic to
the abelian group Z/pZ. One can construct S/p by the following cofibre sequence

S ×p−−→ S→ S/p

where the first map is the degree p map of the sphere spectrum S.

Let E be a spectrum. For later applications, we record without proofs several useful
properties about the relationships between E•-equivalences of spectra and rational
homology equivalences or mod-p homology equivalences of spectra. Recall that ⊗
denote the smash product of spectra.

4.1.0.2. Notation. — Let E be a spectrum.
(i) For a prime number p, denote the spectrum E ⊗ S/p by E/p.
(ii) Define the subset P(E•) of the set of prime numbers as follows: A prime

number p is in P(E•) if the multiplication-by-p map is not an isomorphism of
the coefficient group E• ∼= πst

• (E) of E.
(iii) Recall that Z(P(E•)) denotes the localisation of Z where every prime number q

not contained in P(E•) is inverted. Define the abelian group

G(E•) :=

⊕p∈P(E•)Z/pZ, if E ⊗HQ = 0

Z(P(E•)), otherwise.
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4.1.0.3. Lemma ([Bou82, Lemma 3.3]). — Let E be a spectrum and let f : X → Y

be a morphism of pointed homotopy types. If E ⊗ HQ ̸≃ 0, then the following
are equivalent.

(i) The map f is an E•-equivalence.
(ii) The map f is a HQ•-equivalence, and is an (E/p)•-equivalence for each prime

number p ∈P(E•).

4.1.0.4. Lemma ([Bou82, Lemma 3.4]). — Let E be a spectrum and let f : X → Y

be a morphism of pointed homotopy types. If E ⊗ HQ = 0, then the following
are equivalent:

(i) The map f is an E•-equivalence.
(ii) The map f is an (E/p)•-equivalence for each p ∈P(E•).

4.1.0.5. Proposition ([Bou82, Proposition 2.1]). — Let f : X → Y be a mor-
phism of pointed homotopy types and let E be a spectrum. Fix a prime number p, and
assume that Ẽ• (K(Z/pZ, n)) ̸= 0 for a natural number n ≥ 1.

If f is an E•-equivalence, then f induces an isomorphism

f∗ : Hn (X;Z/pZ) ≃−→ Hn (Y ;Z/pZ) .

4.1.0.6. Theorem ([Bou82, Theorem 3.1]). — Let E be a spectrum. Abbreviate
the abelian group G(E•) by G. The following statements are equivalent:

(i) A morphism of pointed homotopy types is an E•-equivalence if and only if it is
a HG-homology equivalence.

(ii) For every natural number n ≥ 1 and for every p ∈ P(E•), we have
that Ẽ• (K(Z/pZ, n)) ̸= 0.

4.1.0.7. Remark. — Let E be a spectrum. The reader can find a detailed explanation
of types of E•-acyclicity of Eilenberg–MacLane spaces in [Bou82].

4.1.0.8. Situation. — We fix a prime number p for the rest of this section.

4.1.0.9. Definition. — Let E be a spectrum. Define the (mod p) transitional dimen-
sion(1) tranpE of E to be the largest natural number n such that Ẽ• (K(Z/pZ, n)) ̸= 0.
Define tranpE =∞ if Ẽ• (K(Z/pZ, n)) is non-trivial for every n ∈ N.

4.1.0.10. Theorem. — Let E be a spectrum.
(i) If tranp(E) = 0, then E/p ≃ 0.
(ii) If tranp(E) = ∞, then (E/p)•-equivalences of homotopy types are the same

as (HZ/pZ)•-equivalences.

(1)We take the definition from [Bou97, §10], which is slightly different from the one in [Bou82, 8.1]
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Proof. — (i) is by [Bou82, Proposition 2.2], which proves that the multiplication-
by-p endomorphism of the coefficient group E• is an isomorphism of under the
assumption tranp(E) = 0. (ii) is by Theorem 4.1.0.6.

4.1.0.11. Example. — Let h ≥ 1 be a natural number. The Morava K-theory K(h),
the Johnson–Wilson spectrum E(h), the telescope spectrum T(h) and S(h) all have
transitional dimension h, as shown in [RW80] and [CSY22], respectively.

4.1.0.12. Theorem ([Bou82, Theorems 8.2]). — Let E be a p-local spectrum
and let f : X → Y be an E•-equivalence of pointed homotopy types.

If E ⊗ HQ = 0, then f induces an isomorphism f∗ : Hi (X;Z/pZ) ≃−→ Hi (Y ;Z/pZ)
for every i ≤ tranpE.

If E ⊗ HQ ̸= 0, then f induces an isomorphism f∗ : Hi

(
X;Z(p)

) ≃−→ Hi

(
Y ;Z(p)

)
for every i ≤ tranpE.

4.1.0.13. Theorem ([Bou82, Theorems 8.3]). — Let E be a p-local spectrum
and let X be a pointed homotopy type.

If E⊗HQ = 0, then the map LHZ/pZ(X)→ LE(X) given by E•-localisation induces
an isomorphism of homotopy groups in degrees less than tranp(E) and induces an
epimorphism of homotopy groups in degree tranpE.

If E ⊗ HQ ̸= 0, then the map LHZ(p)(X)→ LE(Y ) given by E•-localisation induces
an isomorphism of homotopy groups in degrees less than tranp(E) and induces an
epimorphism of homotopy groups in degree tranpE.

4.1.0.14. Theorem. — Let E be a p-local spectrum such that 0 < tranpE <∞. For
a d-connected pointed homotopy type X with 1 ≤ d ≤ tranpE, the localisation LE(X)
is also d-connected.

Proof. — Denote

R =

Z/pZ, if E ⊗HQ = 0

Z(p), otherwise.

By Theorem 4.1.0.13 the induced map πk (LHR(X)) → πk (LE(X)) is an isomor-
phism for every k ≤ tranpE − 1 and is an epimorphism for k = tranpE. Furthermore,
we know that πi (LHR(X)) = 0 for i ≤ d, e.g. by [Bou75, Proposition 4.3].

Therefore, we have that πi(X) → πi (LE(X)) is an isomorphism for i < d and
is an epimorphism for i = d. In other words, the localisation functor LE preserves
d-connectedness for d ≤ tranpE.

4.1.0.15. Remark. — Let h ∈ N. As a consequence, the chromatic localisation func-
tors LK(h), LE(h), LT(h) and LS(h) preserve d-connectedness for d ≤ h. Thus, the above
theorem generalises the result in [Tai98] where it is shown that the (KU/p)•-localisation
of homotopy types preserves 1-connectedness.
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4.1.1. Homology localisations and fibre sequences. — In this subsection we
recall several useful interactions of homology localisation of homotopy types with
fibre sequences.

4.1.1.1. Theorem. — Consider the following commutative diagram

F X B

F ′ X ′ B′

f g h (4.1.1.1)

in Ho∗ where the rows are fibre sequences and B and B′ are connected. As-
sume that the maps f and Ωh induce equivalences f∗ : Map(F ′, Y ) ∼−→ Map(F, Y )
and (Ωh)∗ : Map(ΩB′, Y ) ∼−→Map(ΩB, Y ) for a homotopy type Y . Then the map g
also induces an equivalence g∗ : Map(X ′, Y ) ∼−→Map(X,Y ).

Proof. — We show that the map f × Ωh induces an equivalence

Map(F ′ × ΩB′, Y ) ∼−→Map(F × ΩB, Y ).

Then the theorem follows from ¶1.3.0.6.(ii). We have

Map(F ′ × ΩB′, Y ) ≃Map(F ′,Map(ΩB′, Y ))

≃Map(F ′,Map(ΩB, Y ))

≃Map(F ′ × ΩB, Y )

≃Map(ΩB,Map(F ′, Y ))

≃Map(ΩB,Map(F, Y ))

≃Map(F × ΩB, Y )

See also [Bou94, Theorem 4.6].

4.1.1.2. Corollary. — Let E be a spectrum. In the commutative diagram (4.1.1.1),
if f and Ωh are E•-equivalences, then g is also an E•-equivalence.

Proof. — In Theorem 4.1.1.1 we can replace the unpointed mapping spaces Map by
pointed mapping spaces Map∗ if Y is pointed and connected. As a corollary, if f
and Ωh induces an isomorphism on E-cohomology, then so does g. The statement
for E-homology follows by applying a universal coefficient theorem for generalised
homology theories, see [Kai71; Yos75]. See also [Bou94, Theorem 4.6].

4.1.1.3. Corollary. — Let E be a spectrum and let f : X → Y be a morphism of
pointed connected homotopy types. If the induced map Ωf is an E•-equivalence, then
the map f is an E•-equivalence.

4.1.1.4. Remark. — The converse of the above corollary does not always hold, see
also Theorem 4.4.0.2.
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4.2. Telescopic homological and homotopical localisations

Fix a prime number p for this section. Recall the p-local telescope spectrum T(h) of
height h and the spectrum S(h) from ¶1.2.0.13. In this expositional section we discuss
the relationship between T(h)-homology equivalences and vh-periodic equivalences
of homotopy types. Here we update several results in [Bou94, §13] using the recent
work [CSY22]: Starting from Theorem 4.2.0.8 the reader can compare our formulations
of the statements with Bousfield’s original ones.

4.2.0.1. Situation. — Let Vh be a p-local finite complex of type h together with a
vh self-map ΣdVhVh → Vh, where h ≥ 1. Modelling Vh by a finite CW-complex (see Re-
mark 1.3.0.11), let dim(Vh) denote the dimension of the top cells of Vn+1.

4.2.0.2. Proposition. — Let φ : X → Y be a morphism of pointed homotopy types.
In Situation 4.2.0.1, assuming that there exists a natural number k ≥ dim(Vh) such
that ΩkX → ΩkY is a T(h)•-equivalence, then φ induces an isomorphism

φ∗ : v−1
h π• (X;Vh)→ v−1

h π• (Y ;Vh)

of vh-periodic homotopy groups.

Proof. — We follow the proof idea of [Bou94, Theorem 12.5]. Since vh-periodic
homotopy groups are independent of taking higher connected covers, we can assume
thatX and Y are k-connected. By Corollary 4.1.1.3 the map Ωjφ is a T(h)•-equivalence
for every 0 ≤ j ≤ k. Thus, the induced map Map∗ (Vh, X) → Map∗ (Vh, Y ) is a
T(h)•-equivalence, because Vh is equivalent to a colimit of spheres of dimension at
most k.

Recall the homotopy type TVh
(X) from Definition 3.2.0.4, which is T(h)•-local

by Proposition 3.3.2.1, Proposition 3.3.1.1 and Example 3.3.1.2. Thus we obtain the
following commutative diagram

Map∗ (Vh, X) TVh
X

Map∗ (Vh, Y ) TVh
Y,

φ∗ φ∗
λ (4.2.0.1)

where the vertical maps are induced by φ, the horizontal maps are the canonical
maps obtained from the colimit construction of TVh

(X) and TVh
(Y ), and the lift λ

exists because TVh
(X) and TVh

(Y ) are T(h)•-local and φ∗ is a T(h)•-equivalence.
Furthermore, the map vh : ΣdVhVh → Vh induces the commutative diagram below

Map∗ (Vh, Y ) TVh
(X)

ΩdVh Map∗ (Vh, Y ) ΩdVh (TVh
(X)) .

λ

≃

ΩdVh λ
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Thus the diagram (4.2.0.1) induces the following commutative diagram on vh-periodic
homotopy groups

v−1
h π• (X;Vh) v−1

h π• (X;Vh)

v−1
h π• (Y ;Vh) v−1

h π• (Y ;Vh) .

id

φ∗ φ∗

id

λ∗

As shown in the above diagram, the map λ∗ is a two-sided inverse of φ∗. Therefore,
the induced map φ∗ of vh-periodic homotopy groups is an isomorphism.

4.2.0.3. Remark. — The proposition is not very practical for applications, since
it depends on the choice of the CW-structures of the finite complex Vh: Given
a T(h)•-equivalence of k-fold loop spaces, it is not trivial to find a type h finite
complex of dimension at most k and equipped with a vh-self map. The corollary below
is a bit more convenient.

4.2.0.4. Corollary. — Let h ≥ 1 be a natural number. If φ is a T(h)•-equivalence of
pointed connected homotopy types, then there exists a natural number k such that Σkφ

is a vh-periodic equivalence.

Proof. — It is shown in the proof of [Tho93, Lemma 2.3] that the functor ΩmΣm

preserves generalised homology equivalences of pointed connected homotopy types, for
all natural numbers. Let Vh a finite complex as in Situation 4.2.0.1. Thus, for every
natural number k ≥ dim(Vh), the morphism Σkφ induces an isomorphism of vh-periodic
homotopy groups by Proposition 4.2.0.2, because ΩkΣk(φ) is a T(h)•-equivalence. See
also [Bou94, Corollary 12.6].

4.2.0.5. Corollary. — Let h ≥ 1 be a natural number. If a map ψ : X → Y of
pointed connected homotopy types is an S(h)•-equivalence, then there exists a natural
number k such that Σkψ is a vn-periodic equivalences for all 0 ≤ n ≤ h.

Proof. — Recall that an S(h)•-equivalence is a T(n)•-equivalences for every 0 ≤ n ≤ h,
where T(0) = HQ, see ¶1.2.0.15. Thus the map ψ and any iterated suspensions of ψ
are rational homology equivalences. Then iterated suspensions of ψ is a rational
homotopy equivalence, since the source and target become simply connected.

For each 1 ≤ n ≤ h, choose a finite complex Vn as in Situation 4.2.0.1. Define

k := max{1,dim(V1), . . . ,dim(Vn), . . . ,dim(Vh)}.

By Corollary 4.2.0.4 the map ψ induces an isomorphism

v−1
n π•

(
ΣkX;Vn

)
→ v−1

n π•
(
ΣkY ;Vn

)
,

for all 1 ≤ n ≤ h. See also [Bou94, Theorem 13.5].

Recall the stable Bousfield class ⟨−⟩Σ of homotopy types from Definition 3.1.2.3.
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4.2.0.6. Proposition. — Let X be a pointed homotopy type, and let Vh+1 be a
finite complex of type h + 1, where h ∈ N. Then ⟨X⟩Σ ≤ ⟨Vh+1⟩Σ if and only if X
is S(h)•-acyclic and H̃•(X;Z) is p-local.

Proof. — Assume we have ⟨X⟩Σ ≤ ⟨Vh+1⟩Σ. Thus, ⟨ΣjX⟩ ≤ ⟨Vh+1⟩ for some j ∈ N.
By Proposition 2.1.2.10 the homotopy type X is S(h)•-acyclic, since ΣjX is Vh+1-full
and Vh is S(h)•-acyclic. The same arguments show that H̃∗ (X;Z/qZ) = 0 for any
prime number q ̸= p, because H̃∗ (Vh;Z/qZ) = 0. This shows that H̃∗(X;Z) is p-local.

As for the other direction of implication, we can apply Corollary 4.2.0.5 to show
that PΣVh+1(ΣkX) ≃ pt, for sufficiently large k. Indeed, for k ≥ conn(ΣVh+1) + 1,
recall that PΣVh+1(ΣkX) ≃ pt if and only if the vn-periodic homotopy groups of ΣkX

vanish for all 1 ≤ n ≤ h + 1 and π•(ΣkX) ⊗ Z[1/p] = 0, see Corollary 3.3.2.7. The
latter condition is guaranteed by the assumptions and Corollary 4.2.0.5. Thus we
obtain ⟨ΣkX⟩ ≤ ⟨ΣVh+1⟩. Therefore, we have ⟨X⟩Σ = ⟨Vh+1⟩Σ. See also [Bou94,
Proposition 13.6].

4.2.0.7. Remark. — In Corollary 4.2.0.4 and Corollary 4.2.0.5, the choice of k
can be very large, depending on our choice of the finite complexes. However, recall
that vh-periodic equivalences of homotopy types should not depend on the choices of
the “coefficients” Vh, cf. Proposition 3.2.0.11. In the rest of this section we present
stronger versions of these two corollaries which are in particular independent of the
choice of the finite complex Vh. The idea is to use the relationship between vh-periodic
equivalences and ΣWh-equivalences for a specific p-local homotopy type Wh which
satisfies the conditions of Situation 3.3.0.1. Recall that ΣWh is of connectivity at
least h+ 1, see Proposition 3.3.0.3.

4.2.0.8. Theorem. — Let h be a natural number. There exists a pointed p-local
homotopy type Wh+1,0 such that

(i) it satisfies the hypotheses in Situation 3.3.0.1, and
(ii) its suspension ΣWh+1,0 has connectivity conn(ΣWh+1,0) = h+ 1.

As a result, we have c+(ΣWh+1,0) = h+ 2.

Proof. — In [CSY22, Theorem 5.3.5] Carmeli–Schlank–Yanovski show that the
Eilenberg–MacLane space K(Z/pZ,m) is T(h)• acyclic if and only if m ≥ h+ 1, which
verifies [Bou94, Conjecture 12.4]. The theorem follows by applying this result to
[Bou94, Proposition 13.7, §§13.8–13.9]. More concretely, we can choose Wh+1,0 to be
of the form

Vh+1 ∨K(Z/pZ, h+ 1)

for any p-local finite complex Vh+1 of type h+1. To verify (i), we see that K(Z/pZ, h+1)
is S(h)•-acyclic and its reduced integral homology is p-local. So by Proposition 4.2.0.6
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we have ⟨K(Z/pZ, h+ 1)⟩Σ ≤ ⟨Vh+1⟩Σ. Therefore, we have

⟨Vh+1⟩Σ ≤ ⟨Vh+1 ∨K(Z/pZ, h+ 1)⟩Σ = ⟨Vh+1⟩Σ ∨ ⟨K(Z/pZ, h+ 1)⟩Σ ≤ ⟨Vh+1⟩Σ.

In other words, ⟨Wh+1⟩Σ = ⟨Vh+1⟩Σ.

4.2.0.9. Construction. — We can use the construction in the proof of The-
orem 4.2.0.8 to build a homotopy type Wh+1,i satisfying Situation 3.3.0.1
and conn(Wh+1,i) = h+ i for any i ∈ N. For example, we let

Wh+1,i := Vh+1 ∨K(Z/pZ, h+ i)

where Vh+1 is a p-local finite complex of type h+ 1.

4.2.0.10. Theorem. — Let h be a natural number and let X be an S(h)•-acyclic
pointed homotopy type. Then for every k ≥ 1 and for every 0 ≤ n ≤ h, the vn-periodic
homotopy groups of the p-localisation

(
ΣkX

)
(p) vanish.

Proof. — We present the proof of [Bou94, Theorem 13.10]. We show that the homo-
topy type PΣWh+1,0

(
(ΣkX)(p)

)
is contractible. Then the theorem follows from Corol-

lary 3.3.2.7. Since S̃(h)•(X) = 0, we have that H̃∗(X;Q) = 0 and H̃∗(X;Z(p))
is p-primary. Let H̃m(X;Z(p)) be the first non-trivial singular homotology group of X
with Z(p)-coefficient. Set

G :=

Z/ p∞, if H̃m(X;Z(p)) is divisible by p,

Z/pZ, otherwise.

Then Ω∞(Σ∞X ⊗Sp HZ(p)
)

and K(G,m) are S(h)•-acyclic by Proposition 2.2.3.3
and Theorem 4.1.1.1, respectively.

Hence, we have m ≥ h + 1 by [CSY22, Theorem 5.3.5], in particular m ≥ 2.
Let k ≥ 1 be a natural number. The p-localisation X(p) of X satisfies

H̃∗(X(p);Z) ∼= H̃∗(X;Z(p)) and (ΣkX)(p) ≃ Σk(X(p)).

So (ΣkX)(p) is (m+k)-supported and p-torsion or p-divisible. Thus we can apply The-
orem 3.1.2.10 to obtain the equality of unstable Bousfield class

⟨(ΣkX)(p)⟩ = ⟨(Σj+kX)(p)⟩ ∨ ⟨K(G,m+ k)⟩,

for any natural number j. Furthermore, we know PΣWh+1,0(Σj+kX)(p)) = 0 for suffi-
ciently large j by Corollary 4.2.0.5, PΣWh+1,0(K(G,m+k)) ≃ pt by Proposition 3.3.0.5,
and the fact that m+ k ≥ h+ 2. Therefore, we obtain ⟨(ΣkX)(p)⟩ ≤ ⟨ΣWh+1,0⟩, that
is PΣWh+1,0

(
(ΣkX)(p)

)
≃ pt.

4.2.0.11. Corollary. — Let h ∈ N, and let f : X → Y be an S(h)•-equivalence of
pointed homotopy types. Then for every k ≥ 2 and every 0 ≤ n ≤ h, the induced
map (ΣkX)(p) → (ΣkY )(p) induces isomorphisms on vn-periodic homotopy groups.
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Proof. — The cofibre cofib(f) of f is S(h)•-acyclic. For every natural number k ≥ 2,
we have PΣWh+1,0

(
(Σk−1cofib(ψ))(p)

)
≃ pt, by Theorem 4.2.0.10. Consider the cofi-

bre sequence
(Σk−1cofib(f))(p) → (ΣkX)(p)

Σkf−−−→ (ΣkY )(p)

of pointed connected homotopy types. Let Z be a pointed connected ΣWh+1,0-less
homotopy type. The above cofibre sequence induces a fibre sequence

Map∗
(
(ΣkY )(p), Z

)
→Map∗

(
(ΣkY )(p), Z

)
→Map∗

(
(Σk−1cofib(f))(p), Z

)
,

where Map∗
(
(ΣkY )(p), Z

)
is contractible. Thus the map Σkf is a ΣWh+1,0-equivalence.

By Corollary 3.3.2.3 it is a vn-periodic equivalence for every 0 ≤ n ≤ h. See [Bou94,
Corollary 13.11].

4.2.0.12. Corollary. — Let h and k ≥ 2 be natural numbers. If a pointed homotopy
type Y is ΣWh+1,0-less and its homotopy groups πiY is p-local for all i ≥ k + 1,
then ΩkY is S(h)•-local.

Proof. — This is a consequence of applying the Σ⊣ Ω-adjunction to Corollary 4.2.0.11.
See [Bou94, Corollary 13.12].

4.2.0.13. Theorem. — Let k ≥ 1 and h be natural numbers. For a k-connected
pointed p-local homotopy type X with S̃(h)•(ΩkX) = 0, the vn-periodic homotopy
groups of X vanish for every 0 ≤ n ≤ h.

Proof. — We have the following comparisons of Bousfield classes

⟨X⟩ ≤ ⟨ΣkΩk(X)⟩ = ⟨(ΣkΩkX)(p)⟩ ≤ ⟨ΣWh+1,0⟩

of homotopy types. The first inequality is due to Corollary 2.3.1.13, the second equality
holds because X is p-local and the last inequality is by Theorem 4.2.0.10. Then
the vn-periodic homotopy groups of X vanish for every 0 ≤ n ≤ h, by Corollary 3.3.2.7.
See [Bou94, Theorem 13.13].

4.2.0.14. Corollary. — Let h and k ≥ 2 be natural numbers. Let f : X → Y be a
morphism of pointed k-connected homotopy types such that Ωkf is a S(h)•-equivalence
and f∗ : π•(X)⊗ Z[1/p]→ π•(Y )⊗ Z[1/p] is an isomorphism, then f is a vn-periodic
equivalences for every 0 ≤ n ≤ h.

Proof. — By assumption we see that the fibre fib(f) is p-local and (k − 1)-connected.
Furthermore, the homotopy type Ωk−1(fib(f)) is S(h)•-acyclic by Corollary 4.1.1.2.
Thus, the vn-periodic homotopy groups of fib(f) vanish for every 0 ≤ n ≤ h, by Theo-
rem 4.2.0.13. Therefore, f is vn-periodic equivalences for every 0 ≤ n ≤ h. See [Bou94,
Corollary 13.14].
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4.3. Virtual homology equivalences

In this section we recall the basics of the theory of virtual homology equivalences
of pointed connected homotopy types, following [Bou97].

4.3.0.1. Definition. —
(i) A spectrum E has h-elevated acyclicity if K(Z/pZ, h+ 1) is E•-acyclic for each

prime number p.
(ii) A spectrum E has elevated acyclicity if it has h-elevated acyclicity for some

natural number h.

4.3.0.2. Remark. — By Corollary 4.1.1.3, if K(Z/pZ, h + 1) is E•-acyclic,
then K(Z/pZ,m) is E•-acyclic for all m ≥ h+ 1. Note that if E is p-local, the notion
of h-elevated acyclicity coincides with the notion of mod-p transitional dimension,
cf. Definition 4.1.0.9.

4.3.0.3. Example. — Let p be a prime number. The p-local Morava K-theory
spectrum K(h), the telescope spectrum T(h), the Johnson–Wilson spectrum E(h) and
the spectrum S(h) have h-elevated acyclicity for h ∈ N, see ¶1.2.0.15 and [CSY22,
Theorem 5.3.5].

4.3.0.4. Proposition. — Let p be a prime number. A p-local spectrum E has
elevated acyclicity if E-homology equivalences of homotopy types is not the same
as H(Z/pZ)-homology equivalences or HZ(p)-homology equivalences of homotopy types.

Proof. — This follows from Theorem 4.1.0.6.

4.3.0.5. Theorem. — Let E be a spectrum of h-elevated acyclicity.
(i) Let F → X → B be a fibre sequence of pointed connected homotopy types.

Consider the E•-localisation applied to the fibre sequence ΩF → ΩX → ΩB.
Then there exist a double loop space Ω2D, whose homotopy groups in degrees
above h+ 1 are trivial, fitting into the fibre sequence

Ω2D → LE(ΩF )→ fib (LE(ΩX)→ LE(ΩB)) .

(ii) Let Y be a connected H-space, considered as an object in the homotopy cate-
gory ho(Ho∗) of the ∞-category of pointed homotopy types. Then the natural
map LE(ΩY )→ Ω(LE(Y )) induces a fibre sequence

F → Bar (LE(ΩY ))→ LE(Y )

where the fibre F is a loop space whose homotopy groups in degree above h+ 2
are trivial.
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(iii) Let Hf → Ht → Hb be a fibre sequence in ho(Ho∗) of pointed connected H-space.
Then there exists a fibre sequence

F → LE(Hf )→ fib (LE(Ht)→ LE(Hb))

where the homotopy groups of the fibre F in degrees above h+ 1 are trivial.

Proof. — See [Bou97, Theorem 11.2]. If we make further assumptions on the funda-
mental groups of the homotopy types involved in the statement, e.g. simply connected,
one can show that the non-trivial homotopy groups of the error terms concentrates in
three single degrees, see [Bou97, Theorems 10.8, 10.9, and 10.10].

4.3.0.6. Situation. — Let h be a natural number. In the rest of this section, let E
be a spectrum of h-elevated acyclicity.

4.3.0.7. Definition. —
(i) A morphism f : X → Y of pointed homotopy types is a virtual E•-equivalence

if the induced map LE(f) : LE(ΩX)→ LE(ΩY ) is an equivalence after taking
sufficiently highly connected covers. In this case, we say X and Y are virtually
E•-equivalent.

(ii) If a pointed homotopy type X is virtually E•-equivalent to a point, we say X is
virtually E•-acyclic

4.3.0.8. Remark. — In the situation of Definition 4.3.0.7, the morphism f is a
virtual E•-equivalence if the induced map πi (LE(ΩX))→ πi (LE(ΩY )) of homotopy
groups, with every choice of basepoints, is an isomorphism for all sufficiently large
natural number i.

4.3.0.9. Proposition. — Consider the commutative diagram

F X B

F ′ X ′ B′

f g h

of pointed homotopy types where the rows are fibre sequences. If any two of the maps
in {f, g, h} are virtual E•-equivalences, then so is remaining one.

Proof. — A map ψ : Y → Z of pointed homotopy types is a virtual E•-equivalence
if and only if τ≥1(ψ) is a virtual E•-equivalence, because Ω(τ≥1(Y )) ≃ ΩY for every
pointed connected homotopy type Y . Thus, we can assume that all homotopy types
in the commutative diagrams are connected. Consider induced commutative diagram

ΩF ΩX ΩB

ΩF ′ ΩX ′ ΩB′.

Ωf Ωg Ωh
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Applying E•-localisation, we obtain by Theorem 4.3.0.5.(i) the commutative dia-
gram below

M LE (ΩX) LE (ΩB)

M ′ LE (ΩX ′) LE (ΩB′) ,

f g h

where the rows are fibre sequences, πi(M) ∼= πi(LE (ΩF )), and πi(M ′) ∼= πi(LE (ΩF ′))
for every i ≥ h + 2. The theorem now follows by applying the Five Lemma to the
induced maps of long exact sequence of homotopy groups of fibre sequences. See
also [Bou97, Theorem 11.4].

4.3.0.10. Corollary. — Let F → X → B be a fibre sequence of homotopy types.
(i) The homotopy type F is virtually E•-acyclic if and only if the map X → B is a

virtual E•-equivalence.
(ii) The homotopy type B is virtually E•-acyclic if and only if the map F → X is a

virtual E•-equivalence.
(iii) The homotopy type X is virtually E•-acyclic if and only if the induced mor-

phism ΩB → F is a virtual E•-equivalence.

Proof. — (i) and (ii) follows from applying Proposition 4.3.0.9 to the following two
maps of fibre sequences respectively

F X B F X B

pt B B, X X pt.

(iii) follows by applying (ii) to the fibre sequence ΩB → F → X.

4.3.0.11. Corollary. — Let f : X → Y be a morphism of pointed homotopy types.
Then the following statements are equivalent.

(i) The map f is a virtual E•-equivalence.
(ii) The induced map Ωif is a virtual E•-equivalence for all i ∈ N.
(iii) The induced map Ωif is a virtual E•-equivalence for some i ∈ N

Proof. — We apply Proposition 4.3.0.9 to the following commutative diagram

· · · Ωi+1X pt ΩiX · · · ΩX pt X

· · · Ωi+1Y pt ΩiY · · · ΩY pt Y.

Ωif f

See [Bou97, Corollary 11.5].
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4.3.0.12. Corollary. — Let f : X → Y be a morphism of pointed homotopy types.
Then the following statements are equivalent:

(i) The map f is a virtual E•-equivalence.
(ii) The induced map τ>i(f) : τ>i(X)→ τ>i(Y ) is a virtual E•-equivalence for every

natural number i.
(iii) The induced map τ>i(f) : τ>i(X)→ τ>i(Y ) is a virtual E•-equivalence for some

natural number i.

Proof. — Consider the following commutative diagram

τ>i(X) X τ≤i(X)

τ>i(Y ) Y τ≤i(Y )

f>i f f≤i

in Ho∗. By Corollary 4.3.0.12 the morphism f≤i is a virtual E•-equivalence. Now the
corollary follows from Proposition 4.3.0.9. See also [Bou97, Corollary 11.6].

4.3.0.13. Theorem. — Assume that π•E is torsion. Let G be an abelian group.
Then the Eilenberg–MacLane space K(G,n) is E•-acyclic for n ≥ h+ 2.

Proof. — Bousfield calculates the (E/p)•-localisation of every Eilenberg–MacLane
spaces, see [Bou82, §6]. Our situation corresponds to [Bou82, §§ 6.3–6.4].

4.3.0.14. Proposition. — Assume that π•E is torsion. Let f : X → Y be a mor-
phism of pointed homotopy types. If f is a virtual E•-equivalence, then the induced
map τ>i(f) : τ>i(X)→ τ>i(Y ) is an E•-equivalence for all i ≥ h+ 2.

Proof. — The canonical maps τ>h+3(X) → τ>h+2(X) and τ>h+3(Y ) → τ>h+2(Y )
are E•-equivalences, because their fibres are E•-acyclic Eilenberg–MacLane spaces
by Theorem 4.3.0.13. Thus it suffices to show that τ>i(f) is an E•-equivalence for
every i ≥ h + 3. By Corollary 4.3.0.12, the map τ>i(f) is a virtual E•-equivalence.
Denote the fibre of τ>i(f) by Fi, which is virtually E•-acyclic by Corollary 4.3.0.10.
We show that Fi is E•-acyclic.

The homotopy type LE (ΩFi) is an E•-local with non-trivial homotopy groups in
finitely many degrees, by Theorem 4.3.0.5.(i). Moreover, the homotopy type LE (ΩFi)
is K(Z/pZ, j)-less for each j ≥ h+ 1 and for each prime number p, since the latter
are E•-acyclic. By Theorem 2.4.2.9 and Corollary 2.4.2.5 the Eilenberg–MacLane
space K(πi(F ), i) is K(Z/pZ, j)-less for every i ≥ 2 and every j ≥ h+ 1 and for every
primer number p. Thus the homotopy groups of LE (ΩFi) in degree above h + 1 is
trivial, since π•(E) is torsion, see also [Bou97, Theorem 10.7]. This implies that the
localisation map ΩFi → LE (ΩFi) is null, because ΩFi is (h+ 1)-connected. So ΩFi

is E•-acyclic and thus Fi is E•-acyclic by Corollary 4.1.1.2. Therefore, the map τ>i(f)
is an E•-equivalence for all i ≥ h+ 2. See [Bou97, Theorem 11.7].
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4.3.0.15. Theorem. — Assume that π•E is torsion. Let f : X → Y be a morphism
of pointed homotopy types. Then the following statements are equivalent:

(i) The map f is a virtual E•-equivalence.
(ii) The map τ>i(Ωkf) : τ>i(ΩkX)→ τ>i(ΩkY ) is an E•-equivalence for all k ≥ 1

and all i ≥ h+ 2.
(iii) The map τ>i(Ωkf) is an E•-equivalence for some k ≥ 1 and some i ≥ h+ 2.

Proof. — This theorem is the combination of Corollary 4.3.0.11, Corollary 4.3.0.12
and Proposition 4.3.0.14.

4.3.0.16. Remark. — In the situation of Theorem 4.3.0.15, a map f satisfying (ii)
is also known as f being a durable E•-equivalence, introduced in [Bou94, Section 13].

4.3.0.17. Situation. — From now on we fix a prime number p.

4.3.0.18. Definition. — Let X be a pointed nilpotent homotopy type. The p-
torsion component of X is a p-torsion nilpotent homotopy type torspX together with
a map η : torspX → X such that η induces an isomorphism of their mod-p singular
homology groups. See [Bou94, §14.1].

4.3.0.19. Example. — Let X be a pointed nilpotent homotopy type. A model
of torspX is given by the fibre of the localisation X → LHZ[1/p](X). Recall that for
an n-connected pointed homotopy type X, a model of the localisation LHZ[1/p](X) is
given by M(Z/pZ, n)-contraction, see Proposition 2.4.1.2.

4.3.0.20. Proposition. — For a pointed 2-connected homotopy type X, the natural
map η : torspX → X is a T(h)•-equivalence and a vh-periodic equivalence for all h ≥ 1.

Proof. — This proposition is a more general version of [Bou94, Lemma 14.2]. By Propo-
sition 2.4.1.2 there exists a natural equivalence LHZ[1/p](X) ≃ PM(Z/pZ,2) X. Note that
the homotopy type M(Z/pZ, 2) ≃ ΣM(Z/pZ, 1) satisfies Situation 3.3.0.1. Therefore,
the vh-periodic homotopy groups of LHZ[1/p](X) vanish for all h ≥ 1 by Proposi-
tion 3.3.2.4. This implies that η induces an isomorphism on vh-periodic homotopy
groups for all h ≥ 1, as we showed in the proof of Proposition 3.2.0.14. Furthermore,
the map η induces an isomorphism of T(h)-homology for all h ≥ 1 because η is
a (HZ/pZ)•-equivalence.

4.3.0.21. Theorem. — Let f : X → Y be a map of pointed homotopy types and
let h ≥ 1 be a natural number. If f is a vn-periodic equivalence for every 1 ≤ n ≤ h,
then f is a virtual T(h)•-equivalence.

Proof. — By assumption τ>j(Ωf) is a vn-equivalence for every 1 ≤ n ≤ h and
all j ≥ 0. Let ΣWh+1 be a pointed p-local homotopy type satisfying the hypotheses
of Situation 3.3.0.1. Then for sufficiently large j, the induced map torsp (τ>j(Ωf)) on
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the p-torsion component is a ΣWh+1-equivalence, by Theorem 3.3.2.6 and Proposi-
tion 4.3.0.20. Using Proposition 2.1.2.10 and Proposition 4.3.0.20 we can choose large
enough j such that τ>j(Ωf) is a T(h)•-equivalence. Therefore, the morphism f is a
virtual T(h)•-equivalence by Theorem 4.3.0.15. See also [Bou97, Theorem 11.13].

4.3.0.22. Theorem. — A morphism f : X → Y of pointed homotopy types is a
virtual K(1)•-equivalence if and only if f is a v1-periodic equivalence.

Proof. — One direction follows from Theorem 4.3.0.21. For the other direction,
assume that f is a virtual K(1)•-equivalence. Thus τ>3

(
Ω2(f)

)
is a K(1)•-equivalence,

by Theorem 4.3.0.15. Note that τ>3
(
Ω2(f)

)
= Ω2(τ>5(f)). It suffices to show

that τ>5(f) is a v1-periodic equivalence.
Denote the fibre of τ>5(f) by F . Applying Corollary 4.1.1.2 to the commutative

diagram in Ho∗ below

Ω2(τ>5(Y )) ΩF Ω(τ>5(X))

Ω2(τ>5(Y )) pt Ω(τ>5(Y ))

id Ω(τ>5(f))

where the horizontal rows are fibre sequences with connected bases, we obtain that ΩF
is K(1)•-acyclic. Thus, its p-torsion component torsp(ΩF ) is K(1)•-acyclic. Moreover,
the rational homology of the loop space Ω(torsp(F )) ≃ torsp(ΩF ) is trivial. Hence,
Ω(torsp(F )) is S(1)•-acyclic; recall that ⟨S(1)⟩ = ⟨HQ⟩ ∨ ⟨K(1)⟩. Then, by Theo-
rem 4.2.0.13, the v1-periodic homotopy groups of Ω(torsp(F )) vanish. By Proposi-
tion 4.3.0.20 the v1-periodic homotopy groups of F also vanish. Therefore, the map
τ>5(f) and thus f induces isomorphisms of v1-periodic homotopy groups, by Proposi-
tion 3.2.0.14. See also [Bou97, Theorem 11.11] and [Bou94, §14].

4.3.0.23. Conjecture (Bousfield). — Let h ≥ 1 be a natural number. A vir-
tual K(h)•-equivalence of pointed homotopy types is a vh-periodic equivalence.

4.3.0.24. Theorem ([Bou01, Theorem 6.5].) — For every natural number h ≥ 1,
the above conjecture is equivalent to the (stable) telescope conjecture.

4.3.0.25. Remark. — Burklund–Hahn–Levy–Schlank announced recently at a con-
ference [BHLS23] that the telescope conjecture, which suggests that ⟨T(h)⟩ = ⟨K(h)⟩,
is wrong.
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4.4. Chromatic localisations of H-spaces

Let p be a fixed prime number. In this section we prove that an S(h)•-equivalence
of connected H-spaces is a vn-periodic equivalence for all 0 ≤ n ≤ h, improv-
ing Corollary 4.2.0.11 for H-spaces, see Theorem 4.4.0.4. Based on this and the
results in [Bou99a] we conjecture a relationship between the T(h)•-equivalences of
homotopy types and vh-periodic equivalences of loop spaces, see Conjecture 4.4.0.8.

We begin this section with some nice properties of homological localisations of
H-spaces. From Theorem 4.4.0.4 on the content of this section is original.

4.4.0.1. Theorem. — Let E be a spectrum of elevated acyclicity. If a morphism of
connected H-space is an E•-equivalence, then it is a virtual E•-equivalence.

Proof. — This follows from Theorem 4.3.0.5.(iii). See [Bou97, Theorem 11.3].

4.4.0.2. Theorem. — Let h ≥ 1 be a natural number. Let E be a p-local spectrum
whose mod-p transitional dimension tranpE is h (see Definition 4.1.0.9). If X is
a (h+1)-connected E•-acyclic H-space and πh+2(X) is torsion, then ΩX is E•-acyclic.

Proof. — See [Bou96, Theorem 7.4]. Compare this with Corollary 4.1.1.3.

4.4.0.3. Corollary. — Let f be a morphism of connected H-space such that f is
a T(1)•-equivalence. Then f is a v1-periodic equivalence.

Proof. — This is a consequence of Theorem 4.3.0.22 and Theorem 4.4.0.1.

4.4.0.4. Theorem. — Let f : X → Y be a morphism of connected H-space. If f is
a S(h)•-equivalence and f induces an isomorphism

f∗ : π•(X)⊗Z Z[1/p] ≃−→ π•(Y )⊗Z Z[1/p],

then f a vn-equivalence for every 0 ≤ n ≤ h.

Proof. — Since f is a S(h)•-equivalence, it is a T(n)•-equivalence for every 0 ≤ n ≤ h.
By Theorem 4.4.0.1 the map f is a virtual T(n)•-equivalences for every 0 ≤ n ≤ h.

By Proposition 4.3.0.14 the induced morphism τ≥h+2
(
Ω2(f)

)
is a T(n)•-equivalences

for every 1 ≤ n ≤ h. Recall that we have τ≥h+2
(
Ω2(f)

)
≃ Ω2(τ≥h+4(f)).

By assumption f is a rational homology equivalence. Since f is a morphism of con-
nected H-spaces, it is also a rational homotopy equivalence by [BK, Chapter V, Propo-
sition 3.2]; connected H-spaces are nilpotent. Then the induced map Ω2(τ≥h+4(f))
is a rational homotopy equivalence of simply connected spaces, thus it is a rational
homology equivalence.

In all the map Ω2(τ≥h+4(f)) is a S(h)•-equivalence. Therefore, by Corollary 4.2.0.14
the map f is a vn-periodic equivalence for every 0 ≤ n ≤ h
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4.4.0.5. Remark. — In the situation of Theorem 4.4.0.4, if we assume in addition
that X and Y are p-local, then the induced map f∗ : π•(X)⊗ZZ[1/p]→ π•(Y )⊗Z[1/p]
is an isomorphism.

4.4.0.6. Situation. — Let h be a natural number and let Wh+1 be a pointed
homotopy type satisfying Situation 3.3.0.1. Recall from Proposition 3.3.0.3 the
notation c+(ΣWh+1) = conn(ΣWh+1) + 1 ≥ h+ 2.

4.4.0.7. Theorem. — In Situation 4.4.0.6 let X be a p-local H-space such
that it is c+(ΣWh+1)-connected and ΣWh+1-less. Then X is S(h)•-local in the
∞-category Ho>c+(ΣWh+1)

∗ of c+(ΣWh+1)-connected homotopy types.

Proof. — Denote the localisation map X → LS(h)(X) by λ. We prove the theorem in
the following steps

Claim. The induced map

τ>c+(ΣWh+1)(λ) : X ≃ τ>c+(ΣWh+1)(X)→ τ>c+(ΣWh+1)
(
LS(h)(X)

)
is a ΣWh+1-equivalence.

By Theorem 4.4.0.4 λ : X → LS(h) X is vn-equivalence for 0 ≤ n ≤ h. The claim
then follows from Theorem 3.3.2.6.

Claim. The morphism τ>c+(ΣWh+1)(λ) exhibits the pointed homotopy type

τ>c+(ΣWh+1)
(
LS(h)(X)

)
as the ΣWh+1-contraction of X.

Indeed, the homotopy type τ>c+(ΣWh+1)
(
LS(h)(X)

)
is ΣWh+1-less by Proposi-

tion 3.3.1.4, since LS(h)(X) is ΣWh+1-less by Proposition 2.1.2.10. The statement
then follows from the previous claim.

In particular, we have

X ≃ τ>c+(ΣWh+1)
(
LS(h)(X)

)
,

since X is ΣWh+1-less.
To finish the proof, let Y be a c+(ΣWh+1)-connected S(h)•-acyclic homotopy type.

The fibre sequence

τ>c+(ΣWh+1)
(
LS(h)(X)

)
→ LS(h)(X)→ τ≤c+(ΣWh+1)

(
LS(h)(X)

)
induces the following fibre sequence

Map∗
(
Y, τ>c+(ΣWh+1)

(
LS(h)(X)

))
Map∗

(
Y,LS(h)(X)

)
Map∗

(
Y, τ≤c+(ΣWh+1)

(
LS(h)(X)

))
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on the pointed mapping spaces. The second and the third pointed mapping spaces
are contractible, using that Y is S(h)•-acyclic and c+(ΣWh+1)-connected respectively.
Thus the mapping space Map∗

(
Y, τ>c+(ΣWh+1)

(
LS(h)(X)

))
is contractible. Therefore,

we obtain that the homotopy type X ≃ τ>c+(ΣWh+1)
(
LS(h)(X)

)
is S(h)•-local in

the ∞-category Ho>c+(ΣWh+1)
∗ .

4.4.0.8. Conjecture. — Let f : X → Y be a morphism of pointed simply connected
homotopy types such that the homotopy groups of X and Y are p-primary torsion
abelian groups. Fix a natural number h ≥ 1. The following statements are equivalent

(i) The map Ωf is a T(h)•-equivalence.
(ii) The map Ωf is a S(h)•-equivalence.
(iii) The map f is a vn-periodic equivalence for every 0 ≤ n ≤ h and f induces an

isomorphism πk(f) on homotopy groups of degree k ≤ h+ 1.

4.4.0.9. Explanation. — (ii) implies (i) by comparison of the Bousfield classes of
spectra. We conjecture that (i) implies (ii) because of the fact that K(m)∗-equivalence
of homotopy types implies K(m− 1)-equivalence of homotopy types for every m ≥ 2,
see [Bou99a]. Assuming (ii), using Theorem 4.4.0.4 we obtain that Ωf and thus f is
a vh-periodic equivalence for 0 ≤ n ≤ h.
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CHAPTER 5

Introduction on ∞-operads

5.1. Operads, categories of operators and symmetric sequences

In this section we recall the classical (1-categorical) theory of operads, in order to
motivate the theory of∞-operads in §5.2. For this purpose we present three equivalent
ways to think about operads with values in a symmetric monoidal category: We begin
by recalling the classical definition of operads using operations and structure maps,
then discuss in §5.1.1 the category of operators associated with an operad and close
with a brief exposition about monads and symmetric sequences (§5.1.2). The latter
two approaches will be generalised to define ∞-operads in the next section. Examples
of operads in this section lead to examples of ∞-operads, which are important for
later applications.

This section is expository and the main references are [FreHO; HM22; HA].

5.1.0.1. Notation. — We write a (symmetric) monoidal category as

V = (V,⊗,1V),

where V is the underlying category, ⊗ : V×V→ V is the (symmetric) monoidal
product, and 1V is the unit of the (symmetric) monoidal structure.

5.1.0.2. Definition. — Let V be a symmetric monoidal category. An operad O
with values in V consists of

(i) a set Col(O) of colours, and
(ii) an object O(ci)r

i=1; c) ∈ V, for every pair ((ci)r
i=1, c) of a colour c ∈ Col(O) and

an r-tuple (ci)r
i=1 ∈ Col(O)r of colours, for every r ∈ N,

together with the following structure maps:
(iii) A unit map 1c : 1V → O(c, c), for every colour c ∈ Col(O).
(iv) A morphism σ∗ : O(c1, c2, . . . , cr; c) → O(cσ(1), cσ(2), · · · , cσ(r), c) in V, for

every element σ of the symmetric group Sr, and every pair ((ci)r
i=1, c) of an

r-tuple (ci)r
i=1 of colours and a colour c, for every r ∈ N.
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(v) A morphism

O((ci)r
i=1; c)⊗

(
r⊗

i=1
O
(
(ci,j)mi

j=1; ci

))
→ O

(
(c1,j1)m1

j1=1, . . . , (cr,jr )mr
jr=1; c

)
in V, called a composition map, for every r-tuple (ci)r

i=1 of colours, ev-
ery r-tuple ((ci,j)mi

j=1)r
i=1 of finite sequences (ci,j)mi

j=1 of colours and every
colour c, for every r ∈ N,

satisfying a number of axioms (which we omit writing them down here) requiring that
(vi) the composition maps are associative and unital,
(vii) for every r ∈ N and every colour c, the set {σ∗ | σ ∈ Sr} of morphisms induces

a right Sr-action on the set {O((ci)r
i=1; c) | (ci)r

i=1 ∈ Col(O)r} of objects, and
(viii) the right symmetric group actions are compatible with the composition maps.
We refer the reader to [HM22, Definition 1.1] for a detailed and rigorous presentation
of these axioms.

5.1.0.3. Definition. — In the situation of Definition 5.1.0.2, a one-coloured operad
is an operad O with values in V whose set of colours contains only one element.

5.1.0.4. Remark. — In the situation of Definition 5.1.0.2, one should think of
the object O(c1, c2, . . . , cr; c) as describing an operation having r-number of inputs
of “types” c1, c2, · · · cr respectively and has one output of “type” c. We call the
object O(c1, c2, . . . , cr; c) an operation of O of arity r. See [FreHO, §1.1.5] for a
graphical representation and a detailed explanation of the definition of an operad from
this point of view.

Assume that O is an one-coloured operad with Col(O) = {c}. For each r ∈ N and
for every r-tuple (c)r

i=1 of colours, we denote

O(r) := O((ci)r
i=1; c).

We call O(r) the operations of O of arity r. In particular, the object O(r) admits a
right symmetric group Sr action by definition, for every r ∈ N.

5.1.0.5. Definition. — Let V be a symmetric monoidal category. For two operads O
and P with values in V, an operad map O→ P consists of

(i) a morphism f : Col(O)→ Col(P) of sets, and
(ii) a morphism

f((ci)r
i=1; c)) : O(c1, c2, . . . , cr; c)→ P(f(c1), f(c2), . . . , f(cr); f(c))

in V, for every operation of O of arity r, for every r ∈ N,
such that they are compatible with the structure maps of O and P. See [YauCO,
Definition 11.2.12] for the commutative diagrams describing those compatibility.
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5.1.0.6. Definition. — In the situation of Definition 5.1.0.5 the operad map O→ P
is an inclusion of O in P if

(i) f is an injective morphism of sets, and
(ii) the morphism f((ci)r

i=1; c)) is an isomorphism in V, for every operation of O of
arity r, for every r ∈ N.

In this case, we say O is a suboperad of P.

5.1.0.7. Example. — In the situation of Definition 5.1.0.2, let C be a symmetric
monoidal category enriched over V. For objects Y and Z of C, let MapC(Y, Z) denote
the object of V underlying the set of of morphisms from Y to Z in C. Let S be a
set of objects of C. We can define the mapping operad Map(C, S) with values in V
as follows:

(i) The set Col (Map(C, S)) of colours is the set S.
(ii) For every object X ∈ S, define the operation of arity 0 as

Map(C, S)(0, X) := MapC(1C, X).

(iii) For every natural number r ≥ 1, an operation of arity r is defined as

Map(C, S)(X1, X2, . . . , Xr;X) := MapC(X1 ⊗X2 ⊗ · · · ⊗Xr, X),

for X ∈ S and Xi ∈ S for every 1 ≤ i ≤ r.
The unit maps are given by taking the identity morphism, symmetric groups

act by permuting the indices of the colours and composition maps are induced by
compositions of morphisms and tensor products of morphisms. If S = {X}, we denote
the operad Map(C, {X}) by End(X), called the endomorphism operad of X.

5.1.0.8. Definition. — Let C = (C,⊗C,1C) be a symmetric monoidal category
enriched over a closed symmetric monoidal category V = (V,⊗V,1V). We say C is
copowered over V if the following two conditions hold:

(i) The category C is tensored over V: For every object V of V there ex-
ists a functor V ⊗− : C→ C such that, for every pair (V, V ′) of ob-
jects of V and every pair (C,C ′) of objects of C, there exist isomor-
phisms V ′ ⊗ (V ⊗ C) ∼= (V ′ ⊗V V )⊗ C and (V ⊗ C)⊗C C ′ ∼= V ⊗ (C ⊗C C ′).

(ii) The functor V ⊗ − defined in (i) satisfies the following property: For every
object V ∈ V and every pair (C,C ′) of objects of C, there exists a natural
isomorphism MapC (V ⊗ C,C ′) ∼= MapV (V,MapC(C,C ′)) in V.

5.1.0.9. Definition. — Let C be a symmetric monoidal category enriched over
a closed symmetric monoidal category V. Let O be an operad with values in V.
An O-algebra in C is a set SO = {Xi}i∈Col(O) of objects of C together with a
map O→Map(C, SO) of operads with values in V.
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5.1.0.10. Example. — In the situation of Definition 5.1.0.9, let O be a one-coloured
operad with values in V. Then an O-algebra in C is an object X ∈ C together with a
structure map (as a morphism in V)

O(r)→ MapC
(
X⊗r, X

)
for every r ≥ 0, compatible with the structure maps of O and End(X).

Assume that C is copowered over V. Then an O-algebra in C is equivalently an
object X ∈ C together with a structure map (as s morphism in C)

ar : O(r)⊗X⊗r → X. (5.1.0.1)

for every r ≥ 0 with suitable compatibilities, by Definition 5.1.0.8.(ii). The mor-
phisms (5.1.0.1) resemble the structure maps of a left module over an algebra. Thus
one can think of an O-algebra as a left module over the operad O. Later we will
make this point of view precise by considering an operad as an associative algebra in a
suitable category and an algebra over the operad as a left module over this associative
algebra, see Theorem 5.1.2.10.(iv).

5.1.0.11. Notation. — Let (Set,×, {pt}) denote the symmetric monoidal category
of sets with the cartesian monoidal structure.

5.1.0.12. Example. — The trivial operad Triv is a one-coloured operad with values
in (Set,×, {pt}) where Triv(1) = {pt} and Triv(r) = ∅ for all r ̸= 1. The structure
maps of Triv are obvious.

Every object X in a symmetric monoidal category C admits a unique triv-
ial algebra structure: The structure maps are given by the trivial multiplica-
tions ∅ → HomC(X⊗r, X) for every r ≥ 2 and r = 0.

5.1.0.13. Example. — The unital operad E0 is a one-coloured operad with values
in (Set,×, {pt}) where E0(0) = E1(1) = {pt} and E0(r) = ∅ for all r ≥ 2. The
structure maps of E0 are again rather obvious.

An E0-algebra in a symmetric monoidal category C is an object X ∈ C together
with a morphism 1C → X.

5.1.0.14. Example. — The associative operad Ass is a one-coloured operad with
values in (Set,×, {pt}) where Ass(0) = {pt} and Ass(r) = Sr for every r ≥ 1. The
right symmetric group action is given by group multiplication. The composition maps

Sr ×Sb1 × · · · ×Sbr
→ Sb1+···+br

are given by the so-called block permutations as we explain now. Given a tu-
ple (σ0, σ1, · · · , σr) with σ0 ∈ Sr and σi ∈ Sbi for i ∈ {1, 2, . . . , r}, we will define a
permutation σ ∈ Sb1+···+br

of a set S of b1 + · · · + br elements. We can consider a
decomposition S = ⊔r

i=1Si of S where Si = {ai,1, ai,2, . . . , ai,bi
} is a set of bi elements.
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Define the bijection

σ : S → S

ai,j 7→ aσ0(i),σi(j).

Informally speaking, one decompose the set S into r-number of “blocks” of cardinality bi,
for 1 ≤ i ≤ r, respectively. The element σ0 ∈ Sr permutes the blocks and the
element σi ∈ Sbi permutes the elements in the block with with cardinality bi.

An Ass-algebra in a symmetric monoidal category C is a ⊗-monoid in C, i.e. it
is an object X ∈ C together with a unit morphism 1C → X and a multiplication
morphism X ⊗X → X such that the multiplication is unital and associative.(1) See
[HM22, Example 1.14 ii)] for more details. We also say that X is an associative algebra
(object) in C.

5.1.0.15. Example. — The left module operad LM is an operad with values
in (Set,×, {pt}), defined as follows:

(i) Col(LM) := {a,m}.
(ii) For every ordered pair 1 ≤ j ≤ r of natural numbers, let Sr

(
j
r

)
denote the

subgroup of Sr whose elements send j to r. Then define

LM((ci)r
i=1; c) :=


Sr, if c = ci = a for all 1 ≤ i ≤ r,

Sr

(
j
r

)
, if c = cj = m for exactly one j and

ci = a for i ̸= j,

∅, otherwise.

The structure maps of the associative operads give the structure maps of LM; take
the restriction of the structure maps of Ass to the subgroups Sr

(
j
r

)
for every r ≥ 1

and every r ≥ j ≥ 1 if necessary. There exists a canonical inclusion Ass ↪→ LM of
operads sending the single colour of Ass to a.

An algebra over the operad LM in a symmetric monoidal category C is a pair (A,M)
of objects of C such that A is an associative algebra object in C and M is a left
module over A.

5.1.0.16. Example. — Let C be a symmetric monoidal category. The commutative
operad ComC with ComC(r) = 1C for every r ∈ N is a one-coloured operad with
values in C. The structure maps are obvious.

A ComC-algebra in C is a commutative ⊗-monoid, i.e. an object X ∈ C together
with a multiplication X ⊗ X → X and a unit morphism 1C → X such that the
multiplication is unital, associative and commutative.

(1)A monoid in a category C with finite products and terminal objet pt is an object X together
with a multiplication X × X → X and a unit morphism pt → X such that the multiplication is unital
and associative, see [MacCWM, §III.6].
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5.1.0.17. Definition. — A Lie algebra over Z is a Z-module g together with a Z-
bilinear operation [−,−] : g× g→ g, called the Lie bracket, such that

(i) for every pair (x, y) of elements of g the antisymmetry relation

[x, y] = −[x, y]

holds, and
(ii) for every tuple (x, y, z) of elements of g the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

condition holds.

5.1.0.18. Definition. — Let S be a finite set. Denote the cardinality of S by ♯S.
(i) Let Lie⟨S⟩ denote the free Lie algebra generated by the elements of S. A Lie

monomial of S is an elements of Lie⟨S⟩ given by iterated bracketing of elements
of S. For the set r = {1, 2, . . . , r}, denote the free Lie algebra Lie⟨r⟩ by Lie⟨r⟩.

(ii) Let Lie(S) denote the submodule of Lie⟨S⟩ generated by Lie monomials which
contain each element of S exactly once. The symmetric group S♯S acts on Lie(S)
on the right by permutation. For S = r, denote Lie(S) by Lie(r), which is
also known as the degree r Lie representation of the permutation group Sr,
see [ReuFLA, Section 8.2].

5.1.0.19. Example. — The Lie operad Lie is a one-coloured operad with values in
the symmetric monoidal category (ModZ,⊗Z,Z) of Z-modules. The operations Lie(r)
of arity r are given by Lie(r) for every r ≥ 1 and Lie(0) = 0, the trivial abelian
group. The unit map Z→ Lie(1) ∼= Z is the identity morphism and the action by the
permutation groups is described in Definition 5.1.0.18.(ii). The composition map is
given by “inserting Lie monomials”, see [AB21, Definition 4.10] for more details. An
algebra over the Lie operad Lie is a Lie algebra (see Definition 5.1.0.17).

5.1.0.20. Definition. — A topological operad is an operad with values in the
symmetric monoidal category (CGH,×,pt) of (compactly generated weakly Hausdorff)
topological spaces.

5.1.0.21. Example. — Fix a natural number n. For every r ∈ N, recall the
set r = {1, 2, . . . , r} and 0 := ∅. Denote the open unit disc in Rn with the Euclidean
norm by D̊n. Consider the embedding space Emb(D̊n× r, D̊n) (with the compact-open
topology) of labelled open discs, for every r ∈ N. Define the subspace Dn(r) of the
embedding space Emb(D̊n × r, D̊n) as follows: An embedding f is a point in Dn(r) if
the restriction fj of f to the j-th disc D̊n × {j} is an affine map of the form

D̊n → D̊n, (xi)1≤i≤n 7→ (axi + bi)1≤j≤n

for some a ∈ R and bi ∈ R.
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The sequence (Dn(r))r∈N admits the structure of a one-coloured topological operad,
called the little n-disc operad Dn. The structure maps are given by composition
of embeddings:

Dn(r)×Dn(b1)× · · · ×Dn(br)→ Dn(b1 + · · · br)

(fj)r
j=1 × (gj1)b1

j1=1 × · · · × (gjr
)br
jr=1 7→ (fm ◦ ((gjm

)bm
jm=1))r

m=1.

We refer the reader to [FreHO, §4.1] for pictorial presentations of the structure maps.
An En-operad is a topological operad En admitting a map f : En → Dn of operads

which is arity-wise a weak homotopy equivalence. In other words, the map f induces a
weak homotopy equivalence En(r) ∼−→ Dn(r), for all r ∈ N. A topological operad O is a
model for the En-operad if there exists a map O→ En of operads which is arity-wise a
weak homotopy equivalence. Some other well-known models for the En-operad are the
little n-cubes operad [HM22, Example 1.8] and the Fulton–MacPherson operad [HM22,
§§1.8–1.9]. We refer the reader to [BM23b] for an exposition about the En-operad
and to [CS22] for an application of various models for the En-operad.

The set {Dn ↪→ Dn+1, x 7→ (x, 0) | n ∈ N} induces a sequence

D0 ↪→ D1 ↪→ · · · ↪→ Dn ↪→ Dn+1 ↪→ · · · (5.1.0.2)

of inclusions of topological operads. We form the following colimit

D∞(r) := lim−→
n≥0

Dn(r)

in CGH. The sequence (D∞(r))r∈N admits the structure of a one-coloured topological
operad, denoted by D∞.

An E∞-operad is a topological operad E∞ such that
(i) the symmetric group action on the operations of each arity is free, and
(ii) E∞ admits a map f : E∞ → D∞ of operads which is arity-wise a weak homo-

topy equivalence.
Similarly, we say D∞ is a model for the E∞-operad. In particular, we obtain a sequence

E0 ↪→ E1 ↪→ · · · ↪→ En ↪→ En+1 ↪→ · · · ↪→ E∞

of inclusions of topological operads.

5.1.0.22. Remark. —
(i) By definition the operad D0 is isomorphic, as an operad with values

in (Set,×,pt), to the operad E0 (see Example 5.1.0.13).
(ii) Taking arity-wise the set π0 of connected components of En, we obtain an

operad π0(En) with values in (Set,×,pt). In particular, we have isomorphisms

π0(E1) ∼= Ass and π0(En) ∼= Com

of operads for every n ≥ 2.
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(iii) There exists an equivalence E1 → π0(E1) ∼= Ass of topological operads, i.e. an
operad map which is an arity-wise weak homotopy equivalence.

(iv) For every pair (r, n) of natural numbers, the topological space En(r) is weakly
homotopy equivalent to the ordered configuration space Confr(Rn) of r-points
in Rn.

(v) There exists an equivalence E∞ → π0(E∞) ∼= Com of topological operads,
becuase, for every r ≥ 0, the connectivity of the topological space En(r)
increases with n.

See [FreHO, §§4.1–4.2] for more details.

5.1.0.23. Example. — Let C be a topologically enriched symmetric monoidal
category. By Remark 5.1.0.22 one shall think about an E1-algebra in C as an
object X of C together with a multiplication morphism X ⊗X → X which is unital
and associative up to homotopy; in particular X becomes an Ass-algebra in the
homotopy category of C. Similarly, an E∞-algebra in C is an object X equipped
with a multiplication X ⊗X → X which is unital, associative and commutative up
to homotopy. For every 1 ≤ m < ∞, the Dunn Additivity Theorem [Dun88] shows
that an En-algebra structure on an object X ∈ C is the same as n-many E1-algebra
structures on X which satisfy certain compatibility conditions.

The theory of En-algebras is motivated by the following example: The n-fold loop
space ΩnX of a pointed topological space X is an En-algebra in CGH. Moreover,
any group-like En-algebra in CGH is weakly homotopy equivalent to an n-fold loop
space,(2) known as the Recognition Principle. For more details about those iterated loop
spaces, see [MayGIL]. We also refer the interested reader to [Law20a] for applications
of En-algebras in spectra.

5.1.0.24. Example. — Let n ∈ N. Define an operad H•(En;Z) by setting

H•(En;Z)(r) := H•(En(r);Z), for r ∈ N.

We consider H•(En;Z) as an operad with values in the symmetric monoidal cat-
egory (ChZ,⊗Z,Z) of chain complexes over Z; in each arity r ∈ N the opera-
tion H•(En;Z)(r) is a chain complex with zero differentials.

The structure maps H•(En;Z) are the maps on singular homology groups induced by
the structure maps of the En-operad; the homology functor H•(−;Z) is lax monoidal,
see [FreHO, Proposition 4.2.11] for more details.

We abbreviate the commutative operad with values in (ChZ,⊗Z,Z) by ComZ.
The operad H•(En;Z) relates to ComZ via the following theorem. Recall the inclu-
sion in+1

n : En ↪→ En+1 of operads, see (5.2.5.1).

(2)A topological space is group-like if its set of connected components with the operation of taking
disjoint union is an abelian group.
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5.1.0.25. Theorem. — Let n ≥ 1 be a natural number.
(i) There exists a map πc : H•(En;Z)→ ComZ of operads.
(ii) For every m ≥ 2, there exists a map

ιc : ComZ → H•(Em;Z)

of operads. Moreover, we have πc ◦ ιc = id.
(iii) There exists the following commutative diagram

H•(En;Z) ComZ

H•(En+1;Z) ComZ .

(in+1
n )∗

πc

id

ιc

Proof. — Recall the little n-disks operad Dn as a model for the En-operad.
(i) The map πc is induced by the unique map π : Dn(r)→ pt of topological spaces

for every r ∈ N
(ii) The map ιc is induced by an inclusion ι : pt ↪→ Dm(r) for every r ∈ N. This is

a well-defined map of operads because Dm(r) is connected for every m ≥ 2. In
particular, πc ◦ ιc is induced by the composition π ◦ ι.

(iii) The commutativity of the diagram follows from the observation that in each
arity r ∈ N the map in+1

n (r) : En(r)→ En+1(r) is homotopic to the following
null-homotopic map

(Confr(Rn), (e1, . . . , en)) ↪→
(
Confr(Rn+1), ((e1, 0), . . . , (en, 0))

)
(5.1.0.3)

(x1, . . . , xn) 7→ ((x1, 0), . . . , (xn, 0))

of pointed topological spaces. We construct an explicit null-homotopy of the
map (5.1.0.3). Fix an r ∈ N. Define the null-homotopy

ha : Rn × [0, 1]→ Rn+1, (x, t) 7→ (tax, 0),

for every natural number 1 ≤ a ≤ r, of the inclusion Rn → Rn+1, x 7→ (x, 0).
The following map

(Confr(Rn), (e1, . . . , en))× [0, 1]→
(
Confr(Rn+1), ((e1, 0), . . . , (en, 0))

)
((xi)1≤a≤r, t) 7→ (ha(xa, t))1≤a≤r

is a null-homotopy of the map (5.1.0.3). See also [Fre11, Proposition 0.3.5.a].

5.1.0.26. Remark. — This theorem is actually part of a structural theorem about
the operad H•(Em;Z) with m ≥ 2: There exists an isomorphism

Gerstm → H∗(Em;Z)

of operads where Gerstm denotes the m-Gerstenhaber operad. We refer the reader to
[FreHO, §4.2] for a detailed exposition on this topic.
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5.1.1. The category of operators associated to an operad. — To generalise
the notion of operads to an ∞-category C, we might start with a coloured sequence of
objects in C together with structure maps, similar as in Definition 5.1.0.2. However, it
is then not straightforward how we could document the unitality, associativity and
equivariance of the structure maps up to coherent homotopy in an efficient way.

In this subsection we give a brief introduction to the theory of categories of operators
and explain why it is equivalent to the theory of operads. Generalising this approach,
one can define ∞-operads with values in the ∞-category Ho of homotopy types,
see §5.2.1.

5.1.1.1. Definition. — Let O be an operad with values in (Set,×, {pt}). The
category O⊗ of operators associated to O consists of the following data:

(i) An object of O⊗ is a finite sequence of colours of O.
(ii) Let C = (ci)m

i=1 and D = (dj)ℓ
j=1 be two objects of O⊗. A morphism from C

to D consists of a pair of
(a) a morphism α : {pt, 1, 2, . . . ,m} → {pt, 1, 2, . . . , ℓ} of pointed sets, and
(b) a ℓ-tuple (ϕ1, ϕ2, . . . , ϕℓ) ∈ O

(
(ci)i∈α−1(1); d1

)
×· · ·×O

(
(ci)i∈α−1(ℓ); dℓ

)
of operations where (ci)i∈α−1(j) denotes the subsequence of C where the
indices of the elements are the preimages of j under α, for j = 1, 2, . . . , ℓ.

(iii) The composition of two morphisms in O⊗ is given pairwise by the composition
of the morphisms of pointed sets and the composition maps of operations of O.

5.1.1.2. Definition. — Define a category Fin∗ as follows: An object of Fin∗ is a
finite pointed set

⟨n⟩ := {pt, 1, 2, . . . , n}

for a natural number n, where pt denotes the basepoint. We set ⟨0⟩ := {pt}. For a
pair (n,m) of natural numbers, a morphism ⟨n⟩ → ⟨m⟩ is a morphism of pointed sets.

5.1.1.3. Remark. — The inclusion functor of Fin∗ to the category of finite pointed
sets is an equivalence of categories. Because of this we call Fin∗ the category of finite
pointed sets.

5.1.1.4. Definition. — A morphism i : ⟨m⟩ → ⟨n⟩ in Fin∗ is inert if for every
element pt ̸= k ∈ ⟨n⟩ the preimage i−1(k) of k contains exactly one element.

5.1.1.5. Definition. — For 1 ≤ i ≤ n, let ρi : ⟨n⟩ → ⟨1⟩ be the inert morphism
in Fin∗ sending i to 1 and everything else to the basepoint.

5.1.1.6. Definition. — Let p : C→ Fin∗ be a functor and let n ∈ N. Define the
subcategory C⟨n⟩ of C as follows: An object X ∈ C is in C⟨n⟩ if p(X) = ⟨n⟩. Given
two objects X and Y in C⟨n⟩, a morphism f : X → Y in C is in C⟨n⟩ if p(f) = id⟨n⟩.
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5.1.1.7. Definition. — Let p : C → Fin∗ be a functor. A morphism f : X → Y

in C is p-cocartesian if the following condition is satisfied: For every tuple (Z, g, α),
where Z is an object of C and g : X → Z is a morphism in C and α : p(Y )→ p(Z) is a
morphism in Fin∗, satisfying p(g) = α◦p(f), there exists a unique morphism h : Y → Z

such that p(h) = α.

5.1.1.8. Proposition. — In the situation of Definition 5.1.1.1 the category O⊗ is
equipped with a functor p : O⊗ → Fin∗ satisfying the following properties:

(i) For every object (ci)m
i=1 in O⊗ and every inert morphism i : ⟨m⟩ → ⟨ℓ⟩ of pointed

finite sets, there exists a p-cocartesian lift i : (cj)m
j=1 → (dk)ℓ

k=1 of i, i.e. the
morphism i is p-cocartesian and p(i) = i.

(ii) For every natural number m ≥ 1 and every 1 ≤ n ≤ m, the inert morphism ρi

induces a functor Rm,n : O⊗
⟨m⟩ → O⊗

⟨1⟩ by taking p-cocartesian lifts: It assigns
an object (cj)m

j=1 in O⊗
⟨m⟩ the object cn in O⊗

⟨1⟩.
(iii) For every natural number m ≥ 1, the sequence (Rm,i)m

i=1 of functors in (ii)
induces the equivalence of categories below

Rm : O⊗
⟨m⟩

∼−→
(

O⊗
⟨1⟩

)×m

.

Sketch. — For r ∈ N, the functor p assigns to a an r-tuple of colours the pointed
set ⟨r⟩, and p maps a morphism (α, ϕ1, ϕ2, . . . , ϕl) to its component α.

(i) We define dk := ci−1(k) for 1 ≤ k ≤ ℓ; the preimage i−1(k) is well-defined
because i is inert. Recall the unit map 1c for a colour c in O (Definition 5.1.0.2).
Define i := (i, (1ci−1(k)

)1≤k≤ℓ). The uniqueness follows from the unitality of
the structure maps of operads. We leave it for the reader to check that i
is p-cocartesian.

(ii) It follows from the construction in (i).
(iii) The functor Rm sends an object (c1, c2, . . . , cm) to c1×c2×· · ·×cm, which is es-

sentially surjective. The morphism set from (cj)m
j=1 to (dj)m

j=1 is
∏m

j=1 O(cj ; dj),
which implies that Rm is fully faithful.

5.1.1.9. Notation. — Let p : C → Fin∗ be a functor. For a tuple (α,X, Y )
of a morphism α : ⟨m⟩ → ⟨ℓ⟩ of pointed finite sets, an object X of C⟨m⟩ and an
object Y of C⟨ℓ⟩, let Homα

C(X,Y ) denote the subset of HomC(X,Y ) whose elements
are morphisms f such that p(f) = α.

5.1.1.10. Proposition. — Let p : C → Fin∗ be a functor satisfying Proposi-
tion 5.1.1.8.(i), (iii) and the following condition: For every tuple (α,X, Y ) as in No-
tation 5.1.1.9 and every sequence (ρi : Y → Yi)ℓ

i=1 of p-cocartesian lifts ρi of ρi, there
exists an isomorphism Homα

C(X,Y ) ∼=
∏ℓ

i=1 Homρi◦α
C (X,Yi) induced by composition

of morphisms. Then there exists an operad OC with values in (Set,×, {pt} whose
associated category O⊗

C of operators is equivalent to C.
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Sketch. — We construct the set of colours, the sets of operations and the structure
maps of the operad OC and omit the verification of the axioms/compatibilities.

The set of colours of OC is the set of objects of C⟨1⟩. Then a finite sequence (ci)r
i=1 of

colours of OC corresponds to an object (c1, c2, · · · , cr) ∈ C⟨r⟩ under the equivalence Rr

in Proposition 5.1.1.8.(iii). For each r ≥ 0, denote by fr : ⟨r⟩ → ⟨1⟩ the unique
morphism in Fin∗ with f−1(pt) = {pt}. The set OC((ci)r

i=1; c) of operations is
defined as the set Homfr

C ((c1, c2, . . . , cr), c) morphisms in C.
The unit morphism {pt} → OC(c; c) is given by choosing the identity morphism

of c ∈ C⟨1⟩. Now let us consider the construction of the composition map

Homfr

C ((ci)r
i=1, c)×

(
r∏

i=1
Homfmi

C (di, ci)
)
→ Homfm

C (d, c) , (5.1.1.1)

where di := (ci,j)mi
j=1 ∈ C⟨mi⟩, and m :=

∑r
i=1 mi and d := (di)r

i=1 ∈ C⟨m⟩. Con-
sider the pointed set ⟨m⟩ as the wedge sum ∨r

i=1⟨mi⟩, and define the inert mor-
phism vi : ⟨m⟩ → ⟨mi⟩ which sends the wedge component ⟨mi⟩ identically to ⟨mi⟩ and
everything else to the basepoint, for every 1 ≤ i ≤ r. Then there exists a p-cocartesian
lift vi : d→ di of the morphism vi, by Proposition 5.1.1.8.(iii). Precomposing with vi

induces a morphism

Homfr

C ((ci)r
i=1, c)×

(∏r
i=1 Homfmi

C (di, ci)
)

Homfr

C ((ci)r
i=1, c)×

(∏r
i=1 Homfmi◦vi

C (d, ci)
)
.

Define the map α : ⟨m⟩ → ⟨r⟩ sending every non-basepoint element in the wedge
component ⟨mi⟩ to i, for every 1 ≤ i ≤ r. The condition (iii) implies that

Homα
C (d, (ci)r

i=1) ∼=
r∏

i=1
Homfmi◦vi

C (d, ci) .

Thus, composition

Homfr

C ((ci)r
i=1, c)×Homα

C (d, (ci)r
i=1)→ Homfm

C (d, c)

in C gives the resulting composition map (5.1.1.1) of OC. Every element σ ∈ Sr gives
an automorphism σ∗ of ⟨r⟩. The symmetric group action on OC(c1, c2, . . . , cr; c) is
induced by the p-cocartesian lift of σ∗.

5.1.1.11. Remark. — A category satisfying the hypotheses of Proposition 5.1.1.10
is called a category of operators. With Propositions 5.1.1.8 and 5.1.1.10 we present
the idea that there exists a one-to-one correspondence between operads with values
in (Set,×, {pt}) and categories of operators. One can also generalise this to give a
correspondence between operads with values in a nice symmetric monoidal category
and enriched categories of operators, using similar proofs.
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The notion of algebras over an operad (see Definition 5.1.0.9) can also be translated,
under the above correspondence, to the setting of categories of operators. Let O and P
be two operads with values in (Set,×, {pt}). The data of an operad map (see Def-
inition 5.1.0.5) O → P is the same as a functor F : O⊗ → P⊗ of their associated
categories of operators such that the diagram

O⊗ P⊗

Fin∗

F

of categories commutes and F preserves morphisms that are are p-cocartesian and are
lifts of inert morphisms of pointed finite sets.

5.1.1.12. Remark. — In §5.2 we will generalise the notion of categories of operators
to ∞-categorical setting to define ∞-operads, i.e. ∞-categorial version of operads with
values in topological spaces. In later chapters we will need∞-categorical generalisations
of operads with values in other symmetric monoidal categories, e.g. the category of
spectra. For this purpose, we introduce another viewpoint on operads using the theory
of monads in this last part of the section.

5.1.2. Monads and symmetric sequences. — The aim of this short subsection
is to point out the relationship among operads, monads and symmetric sequences, in
order to motivate the construction of ∞-operads in §5.2.4.

5.1.2.1. Definition. — Let M be a monoidal category. A ⊗-monoid in M is an
object A ∈M together with morphisms

µ : A⊗A→ A and ι : 1M → A

such that µ is associative and unital, expressed by the commutativity of the following
commutative diagrams:

A⊗A⊗A A ◦A A⊗A A A ◦A

A⊗A A A.

µ◦idA

id ◦µ µ
µ

id ⊗ι ι⊗id

id µ

µ

5.1.2.2. Situation. — Let C be a symmetric monoidal category. The functor
category Fun(C,C) equipped with the composition ◦ of functors and the identity
natural transformation becomes a monoidal category.

5.1.2.3. Definition. — In Situation 5.1.2.2 a monad on C is a ◦-monoid in the
monoidal category (Fun(C,C), ◦, idC).
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5.1.2.4. Definition. — Let C be a symmetric monoidal category and let T be
a monad on C. A left module over T in C is an object M ∈ C together with a
morphism a : T (M)→M in C such that the following diagrams commute:

(T ◦ T )(M) F (M) M M

T (M) M, T (M).

µ(M)

T (a) a

id

ι(M)

a

a

5.1.2.5. Notation. —
(i) Let Fin denote the full subcategory of the category Set of sets whose objects are

n = {1, 2, . . . , n} for n ∈ N,

where 0 := ∅. The category Fin is equivalent to the category of finite sets.
(ii) Let Fin∼= denote the maximal subgroupoid of Fin. In other words, Fin∼= has the

same set of objects as Fin and morphisms in Fin∼= are bijections of finite sets.

5.1.2.6. Definition. — Let V be a symmetric monoidal category. The cate-
gory SymSeq(V) of symmetric sequences in V is the functor category Fun(Fin∼=, V ).
An object of SymSeq(V) is called a symmetric sequence in V.

5.1.2.7. Remark. — A symmetric sequence in V is a sequence M = (M(r))r∈N of
objects of V where each M(r) is equipped with a symmetric group Sr action.

5.1.2.8. Example. — Let V be a symmetric monoidal category admitting an
initial object.

(i) Every object X ∈ V defines a symmetric sequence XS where XS(1) := X

and XS(r) is the initial object of V for every r ̸= 1.
(ii) Let O be a one-coloured operad with values in V. The sequence

MO := (O(r))r∈N

of operations (see Remark 5.1.0.4) is a symmetric sequence in V.

5.1.2.9. Construction. — Let C be a cocomplete symmetric monoidal category
copowered over (see Definition 5.1.0.8) a closed symmetric monoidal category V. Every
symmetric sequence M = (M(r))r≥0 in V induces a functor

FM : C→ C, X 7→
∐
r≥0

(
M(r)⊗X⊗r

)
Sr
.

5.1.2.10. Theorem (Kelly). — In the situation of Construction 5.1.2.9, we obtain
the following statements:

(i) There exists a functor ⊚ : SymSeq(V)× SymSeq(V)→ SymSeq(V), called
the composition product, such that (SymSeq(V),⊚,1S

V) is a monoidal category.
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(ii) There exists a one-to-one correspondence between one-coloured operads with
values in V and ⊚-monoids in SymSeq(V), given by assigning to a one-coloured
operad its underlying sequence of operations (see Example 5.1.2.8.(ii)).

(iii) Construction 5.1.2.9 leads to a monoidal functor

F(−) : SymSeq(V)→ Fun(C,C)

of categories of ⊗-monoids.
(iv) Under the correspondence in (ii), an algebra in C over an operad with values

in V is a left module over the associated monad FMO .

Proof. — See [Kel05, §3] for (i) and [Kel05, §4] for (ii), (iii) and (iv).

5.1.2.11. Remark. — In this section we omit the detailed construction of the
composition product and refer the reader to [Chi12, §2] for an alternative exposition
of the above theorems and to [Tri] for a construction of the composition product that
is different than the standard approach as in [Kel05; Chi05]. We will give a more
detailed presentation about monads, symmetric sequences and composition products
in the ∞-categorical setting, see §§5.2.3 and 5.2.4.

5.1.2.12. Remark. — One can also relate an operad with “coloured” symmetric
sequences, see [BM07, Appendix 7]. For some textbook references, see also [HM22,
§1.4] or [YauCO, Definition 9.3.2].
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5.2. A quick course on ∞-operads

We give an introduction on the theory of ∞-operads in this section, including
necessary prerequisites that we need for later chapters. First we recall Lurie’s theory of
∞-operads with values in the ∞-category Ho of homotopy types (§5.2.1). Using this
theory we can define, among others, (symmetric) monoidal ∞-categories, and associa-
tive algebras and left modules in a monoidal ∞-category (see §5.2.2). We also review
briefly the theory of monads and monadic adjunctions for later applications (see §5.2.3).
The main reference is [HA].

The above prepares us well to introduce the theory of ∞-operads with values in
an arbitrary presentable symmetric monoidal ∞-category, where we use the theory
of symmetric sequences and monads (see §5.2.4). This point of view of ∞-operads
is known to experts, but not much has been written about it in full details. Our
exposition on this topic supplements [Bra17, §4.1.2]. To conclude we prove that
the notions of algebras over an ∞-operad with values in Ho, obtained from §5.2.1
and §5.2.4 respectively, are equivalent (§5.2.5). To the best of our knowledge, this is
not available in the literature.

5.2.1. ∞-operads as ∞-categories of operators. — In this subsection we recall
the basic notions of Lurie’s theory of ∞-operads, following [HA, §2]. This theory gen-
eralises the notion of topological operad to ∞-categorical settings.

5.2.1.1. Notation. — Let Fin∗ denote the∞-category N(Fin∗) of the nerve of Fin∗.
Note that morphisms in Fin∗ are represented by morphisms of Fin∗. We therefore
use the same definitions and the properties of the morphisms in Fin∗ as for those
in Fin∗. For example, a morphism in Fin∗ is inert if it is represented by an inert
morphism (see Definition 5.1.1.4) in Fin∗.

5.2.1.2. Definition. — Let p : C→ Fin∗ be a functor of ∞-categories.
(i) Let n be a natural number. Define the ∞-subcategory C⟨n⟩ of C via the

following pullback diagram of ∞-categories:

C⟨n⟩ C

∆0
Fin∗ .

⌟
p

⟨n⟩

(ii) Let (α,X, Y ) be a tupe of a morphism α : ⟨m⟩ → ⟨ℓ⟩ in Fin∗, an object X
of C⟨m⟩ and an object Y of C⟨ℓ⟩. Define the ∞-subgroupoid Mapα

C(X,Y ) as the
union of connected components of MapC(X,Y ) where a morphism f : X → Y

is in Mapα
C(X,Y ) if p(f) ≃ α.

(iii) We refer the reader to [HTT, Definition 2.4.1.1] for the definition of p-cocartesian
morphisms, which is the ∞-categorical generalisation of Definition 5.1.1.7.
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5.2.1.3. Definition. — An ∞-operad is an ∞-category O⊗ together with a func-
tor p : O⊗ → Fin∗ of ∞-categories satisfying the following conditions:

(i) For every inert morphism i in Fin∗, there exists a p-cocartesian morphism i

in O⊗ such that p(i) ≃ i.
(ii) Let (α,C,D) be a tuple as in Definition 5.2.1.2.(ii), and let (ρi : D → Di)ℓ

i=1
be a sequence of p-cocartesian lifts i of ρi (see Definition 5.1.1.5). Then there
exists an equivalence

Mapα
O⊗(C,D) ≃

l∏
i=1

Mapρi◦α
O⊗ (C,Di)

of ∞-groupoids, induced by composition of morphisms.
(iii) Let m ≥ 1. For every m-tuple of objects (C1, C2, . . . , Cm) of O⊗

⟨1⟩, there exists an
object X of O⊗

⟨m⟩ and a p-cocartesian lift ρi : C → Ci of ρi for every 1 ≤ i ≤ n.
We call O⊗

⟨1⟩ the ∞-groupoid of colours of O⊗ and p the structure map of O⊗. An
object of O⊗

⟨1⟩ is called a colour of O⊗.

5.2.1.4. Remark. — This definition is a natural generalisation of that of ordinary
categories of operators, cf. Remark 5.1.1.11. In particular, for every m ≥ 1 we obtain
from Definition 5.2.1.3.(ii) and (iii) an equivalence

O⊗
⟨m⟩ ≃

(
O⊗

⟨1⟩

)m

(5.2.1.1)

of ∞-categories; (iii) provides the construction of an essentially surjective functor and
(ii) gives the fully faithfulness of this functor.

5.2.1.5. Definition. — A one-coloured ∞-operad is an ∞-operad O⊗ → Fin∗

together with an essentially surjective functor ∆0 → O⊗
⟨1⟩. In writing we usually omit

the latter functor from the notation.

5.2.1.6. Example. — Let O be an operad with values in (Set,×, {pt}). Recall
the associated category p : O⊗ → Fin∗ of operators of O. By taking the nerves, the
induced functor N(p) : N(O⊗)→ N(Fin∗) = Fin∗ exhibits N(O⊗) as an ∞-operad.

5.2.1.7. Example. — Applying the construction of Example 5.2.1.6 to some of the
examples of operads in §5.1, we obtain the following ∞-operads:

(i) The trivial ∞-operad Triv⊗ := N
(
Triv⊗). The category Triv⊗ is the sub-

category of Fin∗ of finite pointed sets with inert morphisms. The structure
map p : Triv⊗ → Fin∗ is induced by the canonical inclusion Triv⊗ ↪→ Fin∗.

(ii) The unital ∞-operad E⊗
0 := N

(
E⊗

0
)
. The category E⊗

0 has the same set of
objects as Fin∗. A morphism in E⊗

0 is a morphism f of finite pointed sets
such that f−1(i) contains at most one element for every element i ̸= pt in
the target. The structure map p : E⊗

0 → Fin∗ is induced by the canonical
inclusion E⊗

0 ↪→ Fin∗.
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(iii) The associative ∞-operad Ass⊗ := N
(
Ass⊗). See [HA, Remark 4.1.1.4] for a

detailed description of the ∞-category Ass⊗.
(iv) The commutative ∞-operad Com⊗ := N

(
Com⊗

Set
)
. Under the isomor-

phism Com⊗
Set
∼= Fin∗ of ordinary categories the structure map of Com⊗ is

the identity functor of Fin∗.
(v) The left module ∞-operad LM⊗ := N

(
LM⊗). The inclusion Ass → LM

of operads induces a fully faithful functor Ass⊗ → LM⊗ of ∞-categories,
compatible with their structure maps.

5.2.1.8. Definition. — A simplicial operad is an operad with values in the sym-
metric monoidal category (sSet,×,pt) of simplicial sets with the cartesian symmetric
monoidal structure.

5.2.1.9. Remark. — Let O be a simplicial operad. Then its category O⊗ of
operators is a simplicially enriched category. The structure map p : O⊗ → Fin∗

induces a morphism N(π) : N(O⊗) → N(Fin∗) of simplicial sets, where N denotes
the simplicial nerve functor (see [HTT, Definition 1.1.5.5]). It is shown in [HTT,
Proposition 1.1.5.10] that N(O⊗) is an ∞-category if O⊗ is a fibrant simplicially
enriched category, i.e. if all mapping simplicial sets of O⊗ are Kan complexes.(3)

5.2.1.10. Definition. — Let O be a simplicial operad. We say O is a fibrant
simplicial operad if O((ci)r

i=1; c) is a fibrant simplicial set (Kan complex), for every
pair ((ci)r

i=1, c) of a finite sequence (ci)r
i=1 of colours and a colour c of O.

5.2.1.11. Proposition. — Let O be a fibrant simplicial operad. The simplicial
nerve N(O⊗) of the category p : O⊗ → Fin∗ of operators together with the induced
functor N(p) is an ∞-operad.

Proof. — See [HA, Proposition 2.1.1.27].

5.2.1.12. Example. — There is a Quillen equivalence(4)

| − | : sSet ⇄ CGH : Sing,

where | − | denotes the geometric realisation of a simplicial set and Sing denotes the
singular simplicial complex functor, see [QuiHA; Hir19]. In particular, the functor Sing
preserves fibrant objects.

Let O be a topological operad (Definition 5.1.0.20). Thus, we obtain a fibrant
simplicial operad Sing (O) by applying the functor Sing to O(c1, c2, . . . , cr; c), for
every pair ((ci)r

i=1, c) of a finite sequence (ci)r
i=1 of colours and a colour c of O.

Using Proposition 5.2.1.11 we obtain an ∞-operad N(Sing (O)⊗).

(3)Here we consider the Quillen model structure on sSet, see [QuiHA]
(4)The categories on both sides are equipped with the Quillen model structures, see [QuiHA]
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5.2.1.13. Example. — Recall the topological operad En from Example 5.1.0.21.
The En ∞-operad is defined by applying the construction in Example 5.2.1.12 to En.

5.2.1.14. Definition. — Let p : O⊗ → Fin∗ be an ∞-operad. We say a morphism f

in O⊗ is inert if p(f) is inert and f is p-cocartesian.

5.2.1.15. Definition. — Let O⊗ and P⊗ be two ∞-operads. An ∞-operad map
from O⊗ to P⊗ is a morphism f : O⊗ → P⊗ of underlying simplicial sets such that

(i) the following diagram

O⊗ P⊗

Fin∗

f

pO pP

of simplicial sets commutes, and
(ii) the map f preserves inert morphisms.

5.2.1.16. Definition. — Let p : O⊗ → Fin∗ be an ∞-operad and let q : C⊗ → O⊗

be a cocartesian fibration of ∞-categories. We say q exhibits C⊗ as an O-monoidal
∞-category if the composition C⊗ → O⊗ → Fin∗ exhibits C⊗ as an ∞-operad. For an
object X ∈ O⊗, let C⊗

X denote the ∞-category C⊗ ×O⊗ ∆0 of fibres over X.

5.2.1.17. Proposition. — Let p : O⊗ → Fin∗ be an ∞-operad and let q : C⊗ → O⊗

be a cocartesian fibration of ∞-categories. Recall the inert morphism ρi from Defi-
nition 5.1.1.5. Then q : C⊗ → O⊗ is an O-monoidal ∞-category if and only if every
sequence (ρi : C → Ci)m

i=1 of p-cocartesian lifts ρi of ρi induces an equivalence

C⊗
C ≃

m∏
i=1

C⊗
Ci

(5.2.1.2)

of ∞-categories, for every m ≥ 1.

Proof. — See [HA, Proposition 2.1.2.12].

5.2.1.18. Definition. — Let p : O⊗ → Fin∗ be an ∞-operad and let q : C⊗ → O⊗

be an O-monoidal ∞-category. The underlying O-monoidal ∞-category C of C⊗ is
defined as the fibre product C⊗ ×O⊗ O⊗

⟨1⟩.
By abuse of notation, we conflate C⊗ → O⊗ and C whenever convenient.

5.2.1.19. Definition. — Let p : O⊗ → Fin∗ be an ∞-operad. For O-monoidal
∞-categories qC : C⊗ → O⊗ and qD : D⊗ → O⊗, an O-monoidal functor from C

to D is an ∞-operad map from C⊗ to D⊗ which carries qC-cocartesian morphisms
to qD-cocartesian morphisms. Let Fun⊗

O (C,D) denote the ∞-category of O-monoidal
functors from C to D.
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5.2.1.20. Definition. — Let D be an ∞-category admits finite products and
let p : O⊗ → Fin∗ be an ∞-operad. An O-monoid in D is a functor F : O⊗ → D of
∞-categories such that every sequence (ρi : C → Ci)m

i=1 of p-cocartesian lifts ρi of ρi

induces an equivalence

F (C) ∼−→
m∏

i=1
F (Ci) (5.2.1.3)

in the ∞-category D, for every m ≥ 1.

5.2.1.21. Remark. — Definition 5.2.1.20 is a generalisation of Segal’s condi-
tion [Seg74] for commutative topological monoid to an arbitrary ∞-operad. In the
situation of Definition 5.2.1.16, a cocartesian fibration C⊗ → O⊗ is equivalent to a func-
tor O⊗ → Cat∞ of ∞-categories, by straightening [HTT, Theorem 3.2.0.1]. Under this
correspondence, an O⊗-monoidal ∞-category is an O-monoid in the ∞-category Cat∞

of ∞-categories, by Proposition 5.2.1.17.

For every natural number r, recall the unique morphism fr : ⟨r⟩ → ⟨1⟩ of finite
pointed sets such that f−1

r (pt) = pt.

5.2.1.22. Definition. — Let p : O⊗ → Fin∗ be an ∞-operad. For r ∈ N, an r-ary
operation fr(O) consists of the following data:

(i) A colour C and a sequence (Ci)1≤i≤r of colours of O⊗ (see Definition 5.2.1.3).
(ii) An object Cr of O⊗

⟨r⟩ corresponding to the sequence (Ci)1≤i≤r under the equiv-
alence (5.2.1.1).

(iii) A morphism fr(O) : Cr → C such that p (fr(O)) ≃ fr.

5.2.1.23. Example. — In the situation of Definition 5.2.1.20, an O-monoid in D

consists of the following data (informally speaking):
(i) For each colour Ci ∈ O⊗

⟨1⟩, an object XCi
:= F (Ci) in D.

(ii) For each r-ary operation fr(O), an “O-multiplication”

(fr)∗ : XC1 ×XC2 × · · ·XCr
≃ F (Cr)→ F (C) = XC ,

induced by the morphism fr and the equivalence (5.2.1.3), for every r ∈ N.
(iii) Suitable structures and compatibilities among the O-multiplication maps up to

coherent homotopy, which are described by the evaluations of F at morphisms
of O⊗.

For example, let O be the commutative ∞-operad Com. Then a Com-monoid is an
object X = F (⟨1⟩) of D together with a multiplication

X ×X ∼−→ F (⟨2⟩) f∗−→ F (⟨1⟩) = X

induced by the morphism f : ⟨2⟩ → ⟨1⟩, and a unit map F ({pt}) → X, where the
multiplication is unital and commutative up to coherent homotopy. In other word, it
is a (∞-categorical) commutative monoidal in D.
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5.2.1.24. Definition. — Let f : P⊗ → O⊗ be an∞-operad map and let q : C⊗ → O⊗

be an O-monoidal ∞-category. A P-algebra in C is a map α : P⊗ → C⊗ of ∞-operads
such that q ◦ α ≃ f .

The ∞-category AlgP/O(C) of P-algebras in C is defined as the full ∞-subcategory
of the ∞-category Fun/O⊗(P⊗,C⊗) of functors over O⊗ whose objects are P-algebras
in C.

5.2.1.25. Notation. — In the situation of Definition 5.2.1.24, we write Alg/O(C)
instead of AlgO/O(C) if f is the identity map of O⊗. If O⊗ is Com⊗ ≃ Fin∗ and f

becomes the structure map of the ∞-operad P⊗, we simplify AlgP/O(C) by AlgP(C).

5.2.1.26. Remark. — Using the notation of Definition 5.2.1.24, one can define
a more general notion of algebra over an ∞-operad by assuming only that q is a
categorical fibration of the underlying simplicial sets of the ∞-operads,(5) see [HA,
Remark 2.1.1.13, Definition 2.1.3.1]. In this thesis, we work only with the definition of al-
gebras over an∞-operad as Definition 5.2.1.24. Also note that our notation AlgP/O(C)
differs in certain situations from Lurie’s notation, cf. [HA, Definition 2.1.2.7].

5.2.1.27. Proposition. — In the situation of Definition 5.2.1.24, the fibre prod-
uct (C×O P)⊗ := C⊗ ×O⊗ P⊗ together with the canonical map

(C×O P)⊗ → P⊗

is a P-monoidal ∞-category whose underlying P-monoidal ∞-category is

C×O P ≃ C×O⊗
⟨1⟩

P⊗
⟨1⟩.

Furthermore, there exists the following equivalence of ∞-categories:

Alg/P (C×O P) ≃ AlgP/O(C).

Proof. — The proposition follows from the fact that cocartesian morphisms are stable
under base change, see [HTT, Proposition 2.4.2.3].

5.2.1.28. Remark. — Let O⊗ → Fin∗ be an ∞-operad and let q : C⊗ → O⊗

be an O-monoidal ∞-category. Recall that q is equivalently to an O-monoid in
the ∞-category Cat∞ of small ∞-categories (see Remark 5.2.1.21). Thus the
O-multiplications on q, as described in Example 5.2.1.23, are functors

⊗C : CC1 × CC1 × · · ·CCr → CC ,

for every pair ((Ci)1≤i≤r, C) of an r-tuple (Ci) of colours of O⊗ and a colour C of O.

(5)A categorical fibration is a fibration in the Joyal model structure for simplicial sets [HTT,
Theorem 2.2.5.1].
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Recall the notations about operations of O⊗ from Definition 5.2.1.22. An O-algebra
in C is a ∞-operad map A : O⊗ → C⊗ together with a commutative diagram

O⊗ C⊗

O⊗

A

id q

of ∞-categories, which we can informally consider as the following data:
(i) For every colour C ∈ O⊗

⟨1⟩, an object XC := A(C) in CC .
(ii) For every r-ary operation fr(O) : Cr → C, a morphism

mr : XC1 ⊗C XC2 ⊗C · · · ⊗C XCr
→ XC ,

obtained as follows: Setting Xr = A(Cr), there are two morphisms

fr(O) : Xr → XC1 ⊗C XC2 ⊗C · · ·XCr
and A(fr(O)) : Xr → XC

lifting fr(O), where fr(O) is the q-cocartesian lift. Thus the universal property
of q-cocartesian morphisms induces the morphism mr.

(iii) Structures and compatibility of the “multiplications” mr for r ≥ 0 up to coherent
homotopy, obtained from operations of O⊗ and the universal property of the
cocartesian fibration q, see also [HTT, Remark 2.4.1.4].

Therefore, we regard Definition 5.2.1.24 is an infinity categorical generalisation of
the classical definition of algebras over an operad, cf. Definition 5.1.0.9.

5.2.1.29. Proposition. — Let O⊗ → Fin∗ be an ∞-operad and let q : C⊗ → O⊗

be an O-monoidal ∞-category. Assume that there exists a map f : Triv⊗ → O⊗ of
∞-operads. Then the evaluation of f at ⟨1⟩ induces a trivial Kan fibration

AlgTriv /O(C) ∼−→ C⊗
f(⟨1⟩).

Proof. — This is a consequence of [HA, Example 2.1.3.5, Remark 2.1.3.6].

5.2.1.30. Definition. — Recall the commutative ∞-operad Com⊗ from Exam-
ple 5.2.1.7.(iv).

(i) A symmetric monoidal ∞-category is a Com-monoidal ∞-category C⊗ → O⊗.
By Example 5.2.1.23, the underlying∞-category C is equipped with a symmetric
monoidal product ⊗C : C × C → C and a symmetric monoidal unit 1C ∈ C

where ⊗C is associative, commutative and unital up to coherent homotopy.
(ii) A symmetric monoidal functor is a Com-monoidal functor between symmetric

monoidal ∞-categories.
(iii) A lax symmetric monoidal functor between symmetric monoidal ∞-categories is

an ∞-operad map between the underlying ∞-operads of the source and target
symmetric monoidal ∞-categories.
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5.2.1.31. Example. —
(i) The ∞-category of Ho of homotopy types can be endowed with the cartesian

symmetric monoidal structure: the symmetric monoidal product is the cartesian
product of homotopy types and the symmetric monoidal unit is the point pt.

(ii) The ∞-category Sp of spectra admits a unique symmetric monoidal structure
where the symmetric monoidal product ⊗ is the smash product of spectra
and the unit of the symmetric monoidal structure is the sphere spectrum.
Furthermore, the smash product preserves small colimits in each variable,
see [HA, Corollary 4.8.2.19].

5.2.1.32. Proposition. — let F : C → D be a lax symmetric monoidal functor
between symmetric monoidal ∞-categories. Let p : O⊗ → Fin∗ be an ∞-operad. Then
there exists an induced functor

F∗ : AlgO(C)→ AlgO(D)

of ∞-categories of O-algebras.

Proof. — This follows from Definitions 5.2.1.24 and 5.2.1.30.

5.2.1.33. Proposition. — Let C be a symmetric monoidal ∞-category. There exists
an equivalence AlgE0(C) ≃ C1C/ of ∞-categories.

Proof. — See [HA, Proposition 2.1.3.9].

5.2.1.34. Example. — A commutative algebra object in a symmetric monoidal
∞-category C is an object of AlgCom(C). By Remark 5.2.1.28 it is an object X ∈ C

together with a unit map 1C → X and a multiplication µ : X ⊗C X → X such that µ
is unital, associative and commutative up to coherent homotopy.

5.2.1.35. Example. — Let p : O⊗ → Fin∗ be an ∞-operad. For a natural number
m ≥ 1 recall the set m = {1, 2, . . . ,m}. Let κ : m→ O⊗

⟨1⟩ ↪→ O⊗ be a diagram in O⊗.
For every 1 ≤ i ≤ m denote Ci := κ(i). Let Cm be an object of O⊗

⟨m⟩ corresponding
to the sequence (C1, C2, . . . , Cm) of colours under the equivalence (5.2.1.1). By Defi-
nition 5.2.1.3.(ii) the p-limit κ : m◁ → O⊗ of κ exists and is given by κ(◁) ≃ Cm.

Let q : C⊗ → Com⊗ be a symmetric monoidal ∞-category and F : O⊗ → C⊗ be
an O-algebra in C. By the definition of maps of ∞-operads we see that F (Cm) is
a q-limit of F ◦κ. In particular, if the symmetric monoidal structure on C (modelled by
q) is cartesian, i.e. ⊗C is equivalent to the cartesian product, then F (Cm) is equivalent
to the product of F (Ci)’s, that is, F is an O-monoid, cf. Definition 5.2.1.20 and
see [HA, Proposition 2.4.2.5].
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5.2.2. Associative algebras and left modules. —

5.2.2.1. Definition. — A monoidal ∞-category is an Ass-monoidal category. Simi-
larly as in Definition 5.2.1.30 we can define monoidal functors (Ass-monoidal functors)
and lax monoidal functors.

5.2.2.2. Corollary. — Let F : C→ D be a lax monoidal functor between monoidal
∞-categories. Then there exists an induced functor

F∗ : Alg/ Ass(C)→ Alg/ Ass(D)

of ∞-categories of associative algebras.

5.2.2.3. Remark. — By Definition 5.2.1.16 and Example 5.2.1.23, the underlying
∞-category C is equipped with a unit 1C object and a monoidal tensor product
functor ⊗C : C× C→ C which is unital and associative up to coherent homotopy.

5.2.2.4. Definition. — Let C be a monoidal ∞-category. The ∞-category of
associative algebras in C is defined as the ∞-category Alg/ Ass(C).

5.2.2.5. Remark. — By similar analysis as in Remark 5.2.1.28, one can consider
an associative algebra in C, i.e. an object of Alg/ Ass(C), as an object X of C together
with a unit map 1C → X and a multiplication X ⊗C X → X which is associative and
unital up to coherent homotopy.

5.2.2.6. Example. — Let C be an∞-category. The∞-category Fun(C,C) of functors
is the underlying monoidal∞-category of a monoidal∞-category Fun(C,C)⊗ → Ass⊗.
The monoidal tensor product is given by the composition of functors and the monoidal
unit is the identity functor. See [HA, Example 4.1.8.7, §4.7].

A monad of C is an associative algebra in the monoidal ∞-category Fun(C,C),
cf. Definition 5.1.2.3.

5.2.2.7. Situation. — Recall the left module∞-operad LM⊗ (see Example 5.1.0.15)
and the map Ass⊗ ↪→ LM⊗ of ∞-operads (see Example 5.2.1.7). Let C⊗ → LM⊗ be
a LM-monoidal ∞-category. Denote

C⊗
a := C⊗ ⊗LM⊗ Ass⊗ .

Then C⊗
a → Ass⊗ is a monoidal ∞-category whose underlying monoidal ∞-category

is denoted by Ca.
By Example 5.2.1.23 we can consider the underlying LM-monoidal∞-category of C⊗

as a pair (Ca,Cm) of∞-categories together with a functor Ca×Cm → Cm exhibiting Cm

as a left module over Ca, see also [HA, Remark 4.2.1.2].
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5.2.2.8. Proposition. — In Situation 5.2.2.7, the map Ass⊗ → LM⊗ of ∞-operad
induces a functor

forgm : Alg/ LM(C)→ AlgAss / LM(C) ≃ Alg/ Ass(Ca),

which is a cartesian fibration.

Proof. — The first arrow is induced by the composition of functors and the second
equivalence is given by Proposition 5.2.1.27. It is proven in [HA, Corollary 4.2.3.2]
that forgm is cartesian.

5.2.2.9. Remark. — An object of Alg/ LM(C) is a pair (A,M) ∈ Ca × Cm together
with morphisms

A⊗A→ A and A⊗M →M

in C satisfying certain compatibility conditions, see Remark 5.2.1.28. In particular, A
is an associative algebra object of Ca and these data exhibits M as a left module
over A. The functor forgm shall be considered as the forgetful functor sending (A,M)
to A.

5.2.2.10. Definition. — In Situation 5.2.2.7, let A ∈ AlgAss(Ca) be an associative
algebra of C.

(i) The ∞-category LModA(C) of left A-modules is defined as the fibre prod-
uct Alg/ LM(C)×Alg/ Ass(Ca) ∆0 where the functor ∆0 → AlgAss / LM(C) sends
the vertex to A.

(ii) There exists a forgetful functor

forgA : LModA(C)→ Cm

defined as the composition

LModA(C) (a)−−→ Alg/ LM(C) (b)−−→ Fun(LM⊗
⟨1⟩,C) evm−−→ Cm,

where (a) is the canonical functor in the pullback diagram defining LModA(C)
and (b) is given by restricting to the ∞-subcategory LM⊗

⟨1⟩ of LM⊗.

5.2.2.11. Proposition. — In Situation 5.2.2.7 a morphism f : A→ B ∈ Alg/ Ass(Ca)
of associative algebras of Ca induces a commutative diagram

LModB(C) LModA(C)

Cm

f∗

forgB forgA

of ∞-categories.
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Proof. — Recall the cartesian fibration forgm from Proposition 5.2.2.8. By straight-
ening it corresponds to a functor

Alg/ Ass(Ca)op → CAT∞

sending an associative algebra A to the ∞-category LModA(C). Furthermore, a
morphism g ∈ Alg/ LM(C) is a forgm-cartesian morphism if and only if the induced
map evm(g) is an equivalence.

The functors f∗ and forgB and forgA are defined as the forgm-cartesian lifts of
the morphisms f and 1Ca

→ B and 1Ca
→ A, respectively, where we consider the

monoidal unit 1Ca an associative algebra with trivial multiplication.

5.2.2.12. Example. — Let C be an∞-category. There exists a LM-monoidal∞-cate-
gory M(C)⊗ → LM⊗ such that

M(C)a ≃ Fun(C,C) and M(C)m ≃ C.

Thus an object of the ∞-category Alg/ LM (M(C)) is a pair (T,M) of a monad T of
C and a left module M over the monad T . See [HA, §4.7] for more details about
∞-categorical monads and left modules over a monad.

5.2.3. Monads and monadic adjunctions. — We need the following statements
about monadic adjunctions for our later applications.

5.2.3.1. Proposition. — Let F : C ⇄ D :G be an adjunction of ∞-categories. The
following statement hold:

(i) The composition G ◦ F admits the structure of a monad on C: The unit map is
the adjunction-unit idC → G◦F and the multiplication (G◦F )◦(G◦F )→ G◦F
is induced by the adjunction-counit.

(ii) The functor G admits the following factorisation

C D

LModG◦F (C).

G

G′forgG◦F

Proof. — See [HA, Proposition 4.7.3.3].

5.2.3.2. Definition. — In the situation of Proposition 5.2.3.1, the adjunction F ⊣ G
is monadic if the induced morphism G′ is an equivalence of ∞-categories.

5.2.3.3. Theorem (Barr–Beck, Lurie). — Let F : C ⇄ D :G be an adjunction
of ∞-categories. Then the following statements are equivalent:

(i) The adjunction (F,G) is a monadic adjunction.
(ii) The right adjoint G satisfies the following properties:
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(a) It is conservative, i.e. a morphism f in D is an equivalence if and only
if G(f) is an equivalence.

(b) The colimit of every G-split simplicial object (see [HA, Definition 4.7.2.2])
in D exists and is preserved by G.

5.2.3.4. Example. — In the situation of Example 5.2.2.12, let T be a monad on C.
The forgetful functor forgT : LModT (C) → C admits a left adjoint freeT , see [HA,
Corollary 4.2.4.8]. Furthermore, this adjunction freeT ⊣ forgT is monadic by the
Barr–Beck theorem, see [HA, Lemma 3.2.2.6, Example 4.7.2.5]. In particular, there
exists an equivalence T ≃ forgT ◦ freeT of monads.

5.2.3.5. Proposition. — Let F : C ⇄ D :G be an adjunction of ∞-categories.
Let T : C → C be a monad on C such that G admits a factorisation G ≃ forgT ◦G′

T

where G′
T : D→ LModT (C).

Then there exists a morphism h : T → G ◦ F of monads, uniquely up to contractible
choice, inducing the following commutative diagram of ∞-categories:

C D

LModG◦F (C)

LModT (C).

G

G′

G′
T

forgG◦F

h∗
forgT

Proof. — This follows from the universal property of G ◦ F , being the endomorphism
object of G, see [HA, p.658, §4.7.1, Lemma 4.7.3.1]. It suffices to show that the
factorisation G′

T induces a natural transformation T ◦ G → G. Note that we can
write T ◦G as the following composition

D
G′

T−−→ LModT (C) forgT−−−→ C
freeT−−−→ LModT (C) forgT−−−→ C.

Thus the morphism h is induced by the counit freeT ◦ forgT → id of the adjunction.

5.2.4. ∞-operads in a presentable symmetric monoidal ∞-category. —
The notion of ∞-operad generalises the classical notion of simplicial or topological op-
erads to∞-categorical settings; the collection of r-ary operations of an∞-operad (Def-
inition 5.2.1.22) with a fixed sequence of colours forms an ∞-groupoid, unique up to
homotopy, see [HA, Notation 2.1.1.16]. For our later applications, we need the notion of
∞-categorical operad with values in some other ∞-categories, e.g. the ∞-category Sp
of spectra. The goal of this section is to introduce a model for one-coloured∞-operads
with values in an arbitrary presentable symmetric monoidal ∞-categories C using
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symmetric sequences and monads on C, generalising the correspondence between
operads and monads in 1-categorical setting Theorem 5.1.2.10.

5.2.4.1. Definition. — Let O⊗ → Fin∗ be an ∞-operad and let q : C⊗ → O⊗ be
an O-monoidal ∞-category. For a set K of simplicial sets, we say that C is compatible
with K -indexed colimits if for every K ∈ K

(i) K-indexed colimits exists in C⊗
⟨m⟩ for every m ≥ 0, and

(ii) the (O-monoidal) tensor product ⊗C of C preserves K-indexed colimits in each
variable, cf. [HA, Definition 3.1.1.18].

5.2.4.2. Definition. — An ∞-category C⊗ together with a functor q : C⊗ → Com⊗

is a presentable symmetric monoidal ∞-category if
(i) C⊗ with q is a symmetric monoidal ∞-category,
(ii) C⊗ with q is compatible with small colimits, and
(iii) the underlying Com-monoidal ∞-category is a presentable ∞-category.

We say C is the underlying presentable symmetric monoidal ∞-category of C⊗. By
abuse of notation we conflate C⊗ → Com⊗ and C whenever convenient.

5.2.4.3. Remark. — Endow the ∞-category PrL of presentable ∞-categories and
cocontinuous functors (see Definition 1.1.2.14) with the symmetric monoidal structure
constructed in [HA, Proposition 4.8.1.15]. Then a presentable symmetric monoidal
∞-category is a commutative algebra object in PrL.

Let C and D be presentable symmetric monoidal ∞-categories. A morphism from
C to D in AlgCom(PrL) is a cocontinuous symmetric monoidal functor. Let

Fun⊗
PrL(C,D) := MorAlgCom(PrL)(C,D)

denote the ∞-category of cocontinuous symmetric monoidal functors from C to D.

5.2.4.4. Situation. — In the rest of this section we work with a presentable sym-
metric monoidal ∞-category C.

5.2.4.5. Definition. — Recall the category Fin of finite sets and its maximal
subgroupoid Fin∼= from Notation 5.1.2.5. Define the ∞-category

Fin := N (Fin)

of finite sets and the ∞-category

Fin≃ := N
(
Fin∼=)

of finite sets and bijections. Note that Fin≃ is the maximal ∞-groupoid of Fin.

5.2.4.6. Definition. — Define the ∞-category SymSeq(C) of symmetric sequences
in C as the∞-category Fun(Fin≃,C) of functors. For F ∈ SymSeq(C), let F (r) denote
the evaluation of F on the object r = {1, 2, . . . , r} for r ∈ N, where 0 := ∅.
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5.2.4.7. Example. — Let X be an object of C.
(i) Define the symmetric sequence XS in C as XS(1) := X and XS(r) is the initial

object of C for every r ̸= 1.
For X = 1C we call 1S

C the unit symmetric sequence in C.
(ii) Define the symmetric sequence X in C as X(0) := X and X(r) is the initial

object of C for every r ̸= 0.

5.2.4.8. Construction. — Here we construct a monoidal structure on the
∞-category SymSeq(C) of symmetric sequences where the monoidal tensor product

⊚ : SymSeq(C)× SymSeq(C)→ SymSeq(C),

is called the composition product and the unit of the monoidal structure is the
unit symmetric sequence 1S

C . We learnt the construction from [Bra17, §4.1.2]. As
the name suggests, we consider this as the ∞-categorical generalisation of the ordi-
nary-categorical composition product (see Theorem 5.1.2.10), see also (5.2.4.3). Briefly
speaking, this monoidal structure is induced by the composition of endofunctors of
the ∞-category SymSeq(C).

First let us review some ∞-categories:
(i) The ∞-category Fin≃ admits a symmetric monoidal structure where the sym-

metric monoidal product is given by disjoint unions of sets and the symmetric
monoidal unit is the empty set. Endowed with this symmetric monoidal struc-
ture, the∞-category Fin≃ is the free symmetric monoidal∞-category generated
by the one-point set. For a proof, see [Hei18, §2.2.1, Proposition 6.82].

(ii) The ∞-category Ho of homotopy types is the free presentable ∞-category
generated by a point under small colimits, see [HTT, Theorem 5.1.5.6].

(iii) The∞-category SymSeq(Ho) of symmetric sequences in homotopy types admits
a symmetric monoidal structure by Day convolution [HA, §2.2.6]. The symmetric
monoidal unit is the symmetric sequence pt (see Example 5.2.4.7). With this
symmetric monoidal structure SymSeq(Ho) is the free presentable symmetric
monoidal ∞-category generated by the unit symmetric sequence 1S

Ho, by the
universal property of the Day convolution, see [Hei18, §6.1.2].

The Day convolution endows the ∞-category SymSeq(C) with the structure of a
presentable symmetric monoidal∞-category, where the symmetric monoidal unit is 1C.
Evaluation on the generator induces the following commutative diagram

FunPrL(Ho,C) C

FunPrL(SymSeq(Ho), SymSeq(C)) SymSeq(C)

∼
evpt

(−)

evpt

where the left vertical arrow is given by compositions.
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Using the functor (−) we can consider SymSeq(C) as an object in the
slice (∞, 2)-category AlgCom(PrL)C/ of presentable symmetric monoidal ∞-categories
under C. Let

Fun⊗
PrL,C/

(−,−)

denote (∞, 1)-category of morphisms in AlgCom(PrL)C/. The ∞-category SymSeq(C)
is the free presentable symmetric monoidal ∞-category under C generated by the unit
symmetric sequence 1S

C , by the equivalences

Fun⊗
PrL,C/

(SymSeq(C),D)
(a)
≃ Fun⊗

PrL(SymSeq(Ho),D) ≃ D (5.2.4.1)

for every D ∈ AlgCom(PrL)C/. The equivalence (a) is obtained from the adjunction [HA,
Remark 4.3.3.3]

−⊗PrL C : AlgCom(PrL) ⇄ AlgCom(PrL)C/ : forgC

and the following equivalences

SymSeq(Ho)⊗PrL C ≃ FunR (SymSeq(Ho),C) ≃ SymSeq(C).

of ∞-categories, where FunR(−,−) denotes the ∞-category of functors admitting
left adjoints. The above two equivalences hold by [HA, Proposition 4.8.1.16,
Lemma 4.8.1.17].

Taking D = SymSeq(C) the equivalence (5.2.4.1) becomes the equivalence

ev : Fun⊗
PrL

C/
(SymSeq(C), SymSeq(C)) ∼−→ SymSeq(C), (5.2.4.2)

given by evaluating at 1S
C . Via this equivalence, the monoidal structure on the∞-cate-

gory Fun⊗
PrL

C/
(SymSeq(C), SymSeq(C)) (with compositions of endofunctors as the

monoidal product) induces a monoidal structure on the ∞-category SymSeq(C). The
monoidal unit is the unit symmetric sequence 1S

C . Note that we need to make a choice
of the monoidal structures, since compositions of endofunctors is not commutative.

Let (F = ev(F ), G = ev(G)) be a pair of two symmetric sequences in C. The
composition product F ⊚G of F with G is defined as

F ⊚G := ev(G ◦ F ).

Furthermore, we have the evaluation

(F ⊚G)(r) ≃
∐
n≥0

 ∐
r=⊔n

i=1Si

F (n)⊗Sn (⊗n
i=1G(Si))

 (5.2.4.3)

for every r ∈ N. We postpone the calculation of (5.2.4.3) to Appendix A.1.

5.2.4.9. Convention. — Let q⊚ : SymSeq(C)⊗ → Ass⊗ denote the (just-defined)
monoidal ∞-category whose underlying monoidal ∞-category is SymSeq(C) and the
monoidal tensor product is the composition product (5.2.4.3).
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5.2.4.10. Proposition. — We can generalise results of Theorem 5.1.2.10 to
∞-categorical settings:

(i) The composition product induces a monoidal functor

SymSeq(C)→ Fun(SymSeq(C), SymSeq(C))

F 7→ (G 7→ F ⊚G) ,

with respect to the composition product and the composition of endofunctors of
the ∞-category SymSeq(C).

(ii) Recall the symmetric sequence X (see Example 5.2.4.7) for an object X ∈ C.
We have the following equivalences in C:

(F ⊚X)(r) ≃


∐

r≥0 (F (n)⊗X⊗r)Sr
, for r = 0,

the initial object of C, otherwise.

(iii) Consider C as an ∞-subcategory of SymSeq(C) via the functor (−). Then there
exists an induced monoidal functor

SymSeq(C)→ Fun(C,C)

F 7→ (X 7→ F ⊚X) ,

with respect to the composition product and the composition of endofunctors of
the ∞-category C

Proof. — (i) The inclusion PrL ↪→ CAT∞ is lax symmetric monoidal, by [HA, Proposi-
tions 4.8.1.4 and 4.8.1.15]. Thus we can consider SymSeq(C) as a monoidal∞-category
in the cartesian monoidal ∞-category CAT∞ (see [HA, Remark 4.8.1.5, p.185]).(6)

Therefore, the composition product induces a morphism

SymSeq(C)→ Fun(SymSeq(C), SymSeq(C))

F 7→ (G 7→ F ⊚G) ,

in CAT∞ by the (Tensor ⊣ Hom)-adjunction, since the symmetric monoidal structure
on CAT∞ is closed [HA, Remark 4.8.1.6]. The monoidality of the above functor
(morphism) follows from the associativity of the composition product.

(ii) This follows by computations with the formula (5.2.4.3).
(iii) It is a corollary of (i) and (ii).

5.2.4.11. Definition. — A (one-coloured) ∞-operad with values in C is an asso-
ciative algebra object in the monoidal ∞-category q⊚ : SymSeq(C)⊗ → Ass⊗. Define
the ∞-category Opd(C) of ∞-operads with values in C as

Opd(C) := Alg/ Ass (SymSeq(C))

(6)A monoidal ∞-category is cartesian if the monoidal product is given by the cartesian product.
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5.2.4.12. Corollary. — The monoidal functor from Proposition 5.2.4.10.(iii) in-
duces a functor

Opd(C) ≃ AlgAss (SymSeq(C))→ AlgAss (Fun(C,C))

assigning to an ∞-operad O with values in C its associated monad TO. Moreover, we
obtain an equivalence

TO(X) ≃
∐
r≥0

(
O(r)⊗X⊗r

)
Sr

for every object X ∈ C.

5.2.4.13. Definition. — Let O be an ∞-operad with values in C. An O-algebra
in C is a left module in C over the associated monad TO (see Example 5.2.2.12). We
set the following notations:

(i) Let AlgO(C) denote the ∞-category LModTO
(C) of O-algebras in C.

(ii) Whenever we denote LModTO
(C) by AlgO(C), we abbreviate the forgetful

functor forgTO
: LModTO

(C)→ C (see Definition 5.2.2.10.(ii)) by forgO.

5.2.4.14. Example. — Consider the following elementary example. The unit sym-
metric sequence 1S

C is an∞-operad with values in C, since it is the image of the identity
functor under the equivalence (5.2.4.2). Moreover, every object of C is canonically
an algebra over 1S

C via the identity morphism of X. Thus we say that 1S
C is the

trivial ∞-operad with values in C, denoted also by TrivC.

5.2.4.15. Proposition. — A morphism f : O→ P of ∞-operads with values in C

induces a forgetful functor f∗ : AlgP(C)→ AlgO(C) such that forgO ◦f∗ ≃ forgP. This
is illustrated by the following commutative diagram of ∞-categories:

AlgP(C) AlgO(C)

C.

f∗

forgP forgO

Proof. — This is an example of Proposition 5.2.2.11. In particular, the forgetful
functor forgO and forgP are induced by the canonical morphisms TrivC → O and
TrivC → P in Opd(C) respectively, see Example 5.2.4.14.

5.2.4.16. Proposition. — Let f : O→ P be a morphism of ∞-operads with values
in C. There exists an adjunction

f! : AlgO(C) ⇄ AlgP(C) :f∗.

Proof. — It is shown in [HA, Corollary 4.2.3.3] that f∗ preserves small limits. Since C

is presentable, the ∞-category LModF (C) is presentable for every monad on C and f∗

is accessible by [HA, Corollary 4.2.3.7]. Thus, the existence of the adjunction follows
from the Adjoint Functor Theorem [HTT, Corollary 5.5.2.9].
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5.2.4.17. Corollary. — The forgetful functor forgO admits a left adjoint

freeO : C→ AlgO(C),

and the monad forgO ◦ freeO is equivalent to the monad TO, i.e. the adjunction
is monadic.

Proof. — The existence of the adjunction follows from Proposition 5.2.4.16. The
monadicity of the adjunction is explained in Example 5.2.3.4.

5.2.4.18. Proposition. — In the situation of Proposition 5.2.4.16, for every
O-algebra X ∈ AlgO(C), the P-algebra f!(X) is equivalent to the geometric realisation
of the following simplicial object

Bar(freeP,TO, forgO(X)) :=
(
· · · (freeP T2

O)(X) (freeP TO)(X) freeP(X)
)
,

where X in the formula is an abbreviation for forgO(X) (meaning the underlying object,
not to be confused with the symmetric sequence).

Proof. — Let X be an O-algebra. Then X is equivalent, as an O-algebra, to the
geometric realisation of the following simplicial object

Bar(freeO,TO, forgO(X)) :=
(
· · · (freeO T2

O)(X) (freeO TO)(X) freeO(X)
)

in AlgO(X). Indeed, the simplicial object Bar(freeO,TO, forgO(X)) admits an aug-
mentation to X given by the counit of the adjunction freeO ⊣ forgO, which induces
the following morphism in AlgO(C).

c : |Bar(freeO,TO, forgO(X))| → X,

where |−| denotes the geometric realisation. Applying forgO to c induces an
equivalence between the geometric realisations of the induced simplicial ob-
ject forgO (Bar(freeO,TO, forgO(X))) and forgO(X). Since the functor forgO is
conservative (see Theorem 5.2.3.3), the morphism c is an equivalence in AlgO(C) at
the first place.

Applying the cocontinuous functor f!, we obtain

f!X ≃ f!

(
lim−→Bar(freeO,TO, X)

)
≃ lim−→

(
· · · f!((freeO T2

O)(X)) f!((freeO TO)(X)) f!(freeO(X))
)

≃ lim−→

(
· · · (freeP T2

O)(X) (freeP TO)(X) freeP(X)
)
,

where the last equivalence holds by the equivalence f! ◦ freeO) ≃ freeP (the functor f!

preserves free algebras) which is a consequence of Proposition 5.2.4.15 and Corol-
lary 5.2.4.17.
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5.2.4.19. Definition. — An augmentation of an ∞-operad O with values in C is a
morphism ϵ : O→ 1S

C of∞-operads. An augmented ∞-operad is an∞-operad together
with an augmentation.

5.2.4.20. Example. — Let ϵ : O→ 1S
C be an augmented ∞-operad with values in C.

The augmentation ϵ induces an adjunction

indecO : AlgO(C) ⇄ C : trivO .

Every object X ∈ C is canonically an algebra over the unit symmetric se-
quence (see Example 5.2.4.14). The induced O-algebra structure on X is given by
TO(X)→ T1S

V
(X)→ X. Thus the right adjoint is denoted as the trivial O-algebra

functor trivO. By adjunction we have an equivalence

MapC (indecO(Y ), X) ≃ MapAlgO(C) (Y, trivO(X)) .

Informally, for a morphism Y → trivO(X) of O-algebras, any decomposable elements
in Y , i.e. elements that are “O-multiplications” of other elements must be sent to zero,
since the O-algebra multiplication on trivO(X) is trivial. Therefore, we call the left
adjoint indecO the “indecomposables”.

5.2.4.21. Example. — Let ϵ : O→ 1S
C be an augmented ∞-operad with values in C.

We have the following composition of adjunctions:

C
free
⇄
forg

AlgO(C)
indec
⇄
triv

C

from Corollary 5.2.4.17 and Example 5.2.4.20, where we omitted the subscript O from
the notations. In particular, the compositions indec ◦ free and forg ◦ triv are both
equivalent to the identity functor of C, since ϵ ◦ i = id1S

C
.

5.2.5. Comparison of models of ∞-operads with values in Ho. — We have
given two definitions of∞-operads with values in Ho, one using the∞-category of oper-
ators (see §5.2.1) and the other using symmetric sequences and monads (see §5.2.4). In
this subsection we show that given an∞-operad O⊗ (Definition 5.2.1.3) there exists an
associated∞-operad O (Definition 5.2.4.11) with values in Ho such that the∞-category
of O⊗-algebras in C (Definition 5.2.1.24) are equivalent to the∞-category of O-algebras
in C (Definition 5.2.4.13), for a presentable symmetric monoidal ∞-category C.

5.2.5.1. Proposition. — Let F : C→ D be a symmetric monoidal functor in PrL.
Then F induces a monoidal functor

SymSeq(C)→ SymSeq(D),

which assigns to a symmetric sequence (M(r))r≥0 in C the symmetric se-
quence (F (M(r)))r≥0 in D.
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Proof. — Post-composing with F induces a symmetric monoidal functor

F∗ : SymSeq(C)→ SymSeq(D)

in PrL with respect to the Day convolution symmetric products. We show that this
functor is also monoidal with respect to composition products from Construction 5.2.4.8,
defined using (5.2.4.2).

The functor F induces an adjunction

−⊗C D : AlgCom(PrL)C/ ⇄ AlgCom(PrL)D/ : forgC
D

where we have

SymSeq(D) ≃ SymSeq(C)⊗C D ∈ AlgCom(PrL)D/.

Thus we can define a functor

F ′ : Fun⊗
PrL,C/

(SymSeq(C), SymSeq(C))→ Fun⊗
PrL,D/

(SymSeq(D), SymSeq(D))

via the composition depicted below

Fun⊗
PrL,C/

(SymSeq(C), SymSeq(C))

Fun⊗
PrL,C/

(SymSeq(C), SymSeq(D))

Fun⊗
PrL,D/

(SymSeq(D), SymSeq(D)),

F ′

F∗◦−

≃

where the equivalence is given by the adjunction. This gives us the following commu-
tative diagram

Fun⊗
PrL,C/

(SymSeq(C), SymSeq(C)) Fun⊗
PrL,D/

(SymSeq(D), SymSeq(D))

SymSeq(C) SymSeq(D)

F ′

ev
1S
C

≃ ev1S
D

≃

F∗

which shows that F∗ is monoidal with respect to the composition product on the
source and target ∞-category, since the upper horizontal arrow preserves composition
of functors by functoriality.

5.2.5.2. Remark. — Since the induced monoidal functor SymSeq(C)→ SymSeq(D)
in Proposition 5.2.5.1 is given by level-wise applying the functor F on objects, we abuse
the notation F for the monoidal functor SymSeq(C)→ SymSeq(D). In particular, we
obtain an induced functor

F : Opd(C)→ Opd(D).
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5.2.5.3. Situation. — Let p : O⊗ → Fin∗ together with an essentially surjective
morphism ∆0 → O⊗

⟨1⟩ be a one-coloured ∞-operad. Let c denote the image of ∆0

in O⊗
⟨1⟩, which is considered as the colour of O⊗. For every r ∈ N, recall

(i) the equivalence (see Remark 5.2.1.4)

Rr : O⊗
⟨r⟩

∼−→
(
O⊗

⟨1⟩

)×r

of ∞-categories, induced by the sequence (ρi)i≥1 of morphisms of pointed finite
sets (see Definition 5.1.1.5), and

(ii) the morphism fr : ⟨r⟩ → ⟨1⟩ of pointed finite sets satisfying f−1
r (pt) = pt.

For every r ∈ N, fix an inverse Qr of Rr and define the ∞-groupoid

O(r) := Mapfr

O⊗

(
Qr(c×r), c

)
of morphisms lifting fr (see Definition 5.2.1.2). Note that O(r) admits a Sr-action
induced by the permutation group action on ⟨r⟩. We call

O := (O(r))r≥0 ∈ SymSeq(Ho)

the underlying symmetric sequence of the ∞-operad O⊗.

5.2.5.4. Situation. — Let C be a presentable symmetric monoidal ∞-category.
Then there exists a symmetric monoidal functor F : Ho → C in PrL, unique up
to contractible choice, since Ho is symmetric monoidal and is the free presentable
∞-category generated by a point.

5.2.5.5. Theorem. — In Situations 5.2.5.3 and 5.2.5.4, we obtain the following
statements:

(i) The symmetric sequence O admits the structure of an associative algebra object
in the monoidal ∞-category q⊚ : SymSeq(Ho)⊗ → Ass⊗.

(ii) Consider O as an∞-operad with values in Ho by (i). There exists an equivalence

AlgO/ Com (C) ≃ LModTF (O)(C)

of ∞-categories, cf. Definitions 5.2.1.24 and 5.2.4.13.

Proof. — The idea is to show that the free-forgetful adjunction for AlgO/ Fin∗
(C) is

monadic and the associated monad is equivalent to TF (O). For the detailed proof see
the proof of Theorem A.2.0.3.

5.2.5.6. Definition. — Using the notations from Situations 5.2.5.3 and 5.2.5.4, we
define the∞-category AlgO(C) of O-algebras in C as the∞-category LModTF (O)(C). By
the previous proposition this should not cause confusion with the notation introduced
in Notation 5.2.1.25

5.2.5.7. Convention. — Consider an ∞-operad O with values in Ho and an
∞-operad P with values in C. Recall that there exists a unique symmetric monoidal
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functor F : Ho → C in PrL. A morphism O→ P of ∞-operads denotes a mor-
phism F (O)→ P of ∞-operads with values in C.

5.2.5.8. Remark. — Note that we denote an ∞-operad from Definition 5.2.1.3 by
O⊗ and an ∞-operad with values in Ho via symmetric sequences by O, because the
reader should think of O⊗ the ∞-category of operators associated to O, analogous to
the ordinary categorical situation, cf. Definition 5.1.1.1.

5.2.5.9. Convention. — We have already omited the adjective “one-coloured” when
we consider∞-operads as symmetric sequences. If it is clear from the context in which
∞-category C we are working, we will also abbreviate “∞-operads with values in C”
by “∞-operads”.

5.2.5.10. Remark. — Let V be a symmetric monoidal ∞-category compatible
with colimits indexed by ∞-groupoids (see Definition 5.2.4.1). In [Hau22] Haugseng
gives a model of (not necessarily one-coloured) ∞-operads with values in V using
(“coloured”) symmetric sequences. To obtain the composition product monoidal struc-
ture on the ∞-category of symmetric sequences, he generalises another construction
of the ordinary-categorical composition product by Dwyer and Hess [DH14] to the
∞-categorical settings. A key ingredient in doing the generalisation is the construc-
tion of a monoidal structure on a certain “double ∞-category”, using the theory
of spans [Bar17], see [Hau22, Definition 4.2.5], and relates algebras in this double
∞-category with∞-operads with values in V, see [Hau22, Corollary 4.2.8].(7) If V is in
addition presentable, then the formula for the composition product of two symmetric
sequences by the above construction coincides with our formula (5.2.4.3), see [Hau22,
Remark 4.1.18].

Haugseng shows that his model of ∞-operads with values in Ho is equivalent to
Lurie’s model of ∞-operads (Definition 5.2.1.3), by comparing both to Barwick’s
model of ∞-operads [Bar18], see [Hau22, Corollaries 4.1.12, 4.2.8]. Restricting to
one-coloured ∞-operads, it is expected that these models are also equivalent to our
model of ∞-operad with values in Ho (defined using symmetric sequences in §5.2.4).
Let O⊗ be an ∞-operad (Lurie’s model), denote the equivalent ∞-operad with values
in Ho using Haugseng’s construction by OHau. In [Hau19] Haugseng defines the notion
of algebras over OHau in V and shows that it is equivalent to Lurie’s notion of algebras
over O⊗ in V. Thus, by Theorem 5.2.5.5, it is also equivalent to our notion of algebras
over the ∞-operad O (see Definition 5.2.4.13), if V is presentable.

Haugseng’s approach to ∞-operads with values in V is certainly more general.
However, our model in the special case where V is presentable requires much fewer
prerequisites and suffices for the purpose of the thesis.

(7)For the theory of double ∞-categories, see [Hau21].
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5.2.5.11. Example. — Define the symmetric sequence ComC with values in C

by ComC(n) := 1C for n ≥ 0. Then, by Proposition 5.2.5.1, ComC is an ∞-operad
with values in C, called the commutative ∞-operad: The underlying symmetric
sequence Com of the commutative ∞-operad Com⊗ is of the form Com(r) ≃ pt for
every r ∈ N. There exists a unique symmetric monoidal functor F : Ho→ C in PrL

and it sends the symmetric monoidal unit pt of Ho (with the cartesian monoidal
structure) to the symmetric monoidal unit 1C of C. Thus, by Theorem 5.2.5.5, the
∞-category AlgComC

(C) is equivalent to the ∞-category of commutative algebras in C.

5.2.5.12. Example. — Recall the presentable symmetric monoidal∞-categories Ho
and Sp from Example 5.2.1.31. The suspension spectrum functor Σ∞

+ : Ho→ Sp is
symmetric monoidal, see [HA, Proposition 4.8.2.18]. Let O⊗ → Fin∗ be an ∞-operad.
Then the functor Σ∞

+ induces an equivalence AlgO(Sp) ≃ AlgΣ∞
+ (O)(Sp) of∞-categories

by Theorem 5.2.5.5.

5.2.5.13. Example. — Recall the ∞-operad E⊗
n from Example 5.2.1.13. The

tower (5.1.0.2) of embeddings of the topological En-operads induces the tower

E0 ↪→ E1 ↪→ · · · ↪→ En ↪→ En+1 · · · (5.2.5.1)

of ∞-operads whose colimit in Opd(Ho) is equivalent to the commutative
∞-operad Com, also denoted by E∞. Therefore, we obtain by Proposition 5.2.4.15 a
tower

· · · → AlgEn+1(C)→ AlgEn
(C)→ · · · → AlgE0(C)

of ∞-categories whose inverse limit is the ∞-category AlgCom(C).
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5.3. Operadic Koszul duality

Koszul duality is a classical notion in the theory of algebras and modules over
a field [Pri70], which is generalised to the theory of operads and algebras over an
operad by Ginzburg–Kapranov [GK94]. The goal of this expositional section is to
present operadic Koszul duality between ∞-operads and ∞-cooperads, and discuss the
relationship between the associated∞-categories of algebras and coalgebras. We begin
with a brief introduction of ∞-cooperads and coalgebras (see §5.3.1). Then we discuss
the (Bar ⊣ Cobar)-adjunction between∞-cooperads and∞-operads (see §5.3.2). In the
end we specialise to the context of stable presentable symmetric monoidal∞-categories
and give some examples of operadic Koszul duality from a historical point of
view (see §5.3.3).

5.3.1. Coalgebras over an ∞-cooperad. — In this subsection we introduce the
notion of ∞-cooperad with values in a presentable symmetric monoidal ∞-category.

5.3.1.1. Construction. — Let p : O⊗ → Fin∗ be an ∞-operad and q : C⊗ → O⊗

be an O-monoidal ∞-category. There exists an induced O-monoidal structure on the
opposite ∞-category Cop, as we define in the following.

The cocartesian fibration q : C⊗ → O⊗ corresponds to a functor F : O⊗ → Cat∞

satisfying the (∞-categorical) Segal condition (5.2.1.2). The composition

O⊗ F−→ Cat∞
(−)op

−−−→ Cat∞

of functors is equivalent to a cocartesian fibration

(q∨)op : (Cop)⊗ → O⊗,

where (q∨)op satisfies the Segal’s condition (5.2.1.2) and (Cop)⊗ ⊗O⊗ O⊗
⟨1⟩ ≃ Cop.(8) In

other words, the functor (q∨)op exhibits (Cop)⊗ as an O-monoidal ∞-category whose
underlying O-monoidal ∞-category is equivalent to Cop.

5.3.1.2. Definition. — Let p : O⊗ → Fin∗ be an ∞-operad and q : C⊗ → O⊗ be
a O-monoidal ∞-category. An O-coalgebra X in C is an O-algebra in the opposite
monoidal∞-category Cop. Denote the∞-category of O-coalgebras in C by coAlg/O(C).
In particular, there exists the following equivalence of ∞-categories

coAlg/O(C) ≃
(
Alg/O(Cop)

)op
.

5.3.1.3. Remark. — Unravelling the definition, an O-coalgebra in C is an object X
in C together with comultiplication maps O(r)⊗X → X⊗r for every r ∈ N which are
compatible with each other up to coherent homotopy. Here ⊗ denotes the symmetric
monoidal product of C, see Remark 5.2.1.28.

(8)We use the notation from [BGN18, §1.1].
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5.3.1.4. Example. — Let C⊗ → LM⊗ be a LM-monoidal∞-category exhibiting Cm

as left-tensored over Ca (see Situation 5.2.2.7). The ∞-category coLMod(M) of
left comodules in C is defined as the ∞-category (Alg/ LM(Cop))op. There exists a
forgetful functor

forgm : coLMod(C)→ coAlg/ Ass(Ca)

induced by the inclusion Ass⊗ ↪→ LM⊗.
Let B ∈ coAlg/ Ass(Ca) be a coalgebra in Ca. The ∞-category coLModB(C) of

left B-comodules in C is defined as

coLModB(C) := coLMod(C)×coAlg/ Ass(Ca) {B}.

5.3.1.5. Proposition. — The ∞-category coLModB(Cm) admits small colimits. In
particular, the forgetful functor

forgm : coLMod(C)→ coAlg/ Ass(C)

creates small colimits: A diagram in coLMod(C) is a colimit diagram if and only if
its image in coAlg/ Ass(C) under forgm is a colimit diagram.

Proof. — This follows from [HA, Proposition 4.2.3.1].

5.3.1.6. Proposition. — In the situation of Example 5.3.1.4, assume that
(i) the ∞-category Cm is a presentable, and
(ii) the functor B ⊗ − : Cm → Cm preserves κ-filtered colimits where κ is an un-

countable regular cardinal such that Cm is κ-accessible.
Then the ∞-category coLModB(M) is presentable.

Proof. — By [Pér22, Proposition 2.8] the∞-category LMod(C) and coAlg/ Ass(C) are
presentable ∞-categories. Then the theorem follows from [HTT, Theorem 5.5.3.13],
which says that presentable ∞-categories are closed under small limits in PrL and
these limits can be calculated in the ∞-category CAT∞ of ∞-categories.

5.3.1.7. Situation. — From now on till §5.3.3 we work with a presentable symmetric
monoidal ∞-category C (see Definition 5.2.4.2).

5.3.1.8. Definition. — An ∞-cooperad with values in C is a coassociative coalgebra
in the monoidal ∞-category q⊚ : SymSeq(C)⊗ → Ass⊗ of symmetric sequences (see
Convention 5.2.4.9). Define the ∞-category of ∞-cooperads with values in C as

coOpd(C) := coAlg/ Ass (SymSeq(C)) .

Recall the monoidal functor

SymSeq(C)→ Fun(C,C), F 7→ (X 7→ F ⊚X) ,

from Proposition 5.2.4.10.(iii).
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5.3.1.9. Comonad. — A comonad on C is a coassociative coalgebra object in
the ∞-category Fun(C,C). For an ∞-cooperad L with values in C, the associated
functor TL := L⊚ (−) is a comonad, by Corollary 5.2.2.2. Moreover, we have

TL(X) ≃
∐
r≥0

(
L(r)⊗X⊗r

)
Sr

for every object X ∈ C, by Proposition 5.2.4.10.(ii).

5.3.1.10. Comonads and comonadic adjunctions. — Working in the opposite
categories, we obtain the “comonadic version” of §5.2.3. For example, given an
adjunction F ⊣ G of ∞-categories, the composition F ◦ G admits the structure
of a comonad: The coassociative multiplication is given by the canonical natural
transformation F ◦G ◦ F ◦G→ F ◦G and the counit map is given by the adjunction-
counit. Moreover, the functor F factors through the ∞-category coLModF ◦G(D) of
left comodules over F ◦G. The reader can find a precise formulation of the comonadic
Barr–Beck theorem in [BM23a, Theorem 4.5]

5.3.1.11. Definition. — Let L be an ∞-cooperad with values in C. A conilpotent
divided power coalgebra over L is a left comodule in C over TL (Example 5.3.1.4).
Define the ∞-category of conilpotent divided power L-coalgebras as

coAlgndp
L (C) := coLModFL

(C).

5.3.1.12. Remark. — In the situation of Definition 5.3.1.11, a conilpotent divided
power coalgebra is an object X ∈ C together with the comultiplication map

X →
∐
r≥0

(
L(r)⊗X⊗r

)
Sr

(5.3.1.1)

which is coassociative and unital up to coherent homotopy. We explain now the added
adjectives “conilpotent” and “divided power” in our definition of coalgebras.

Unprecisely speaking, there might be another notion of coalgebras over an
∞-cooperad L. Recall that for an ∞-operad with values in C an O-algebra is an
object X together with the structure map∐

r≥0

(
O(r)⊗X⊗r

)
Sr
→ X

satisfying certain compatibility conditions (see Definition 5.2.4.13). Following the
intuition that “a coalgebra in C over L is an L-algebra in the opposite category Cop” we
would like to consider an L-coalgebra as an object Y together with the structure map

Y →
∏
r≥0

(
L(r)⊗ Y ⊗r

)Sr
, (5.3.1.2)

since colimits becomes limits and the arrow of morphisms are reversed in Cop. For
example, ordinary-categorically, the formula (5.3.1.2) is sometimes used to give the
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definition for coalgebra over an cooperad, for example, see [LV, §5.7.3]. As another
example, let C be the ∞-category of spectra and assume that O(r) is a finite spectrum
for every r ∈ N. Then an object Z ∈ coAlg/O(Sp) (see Definition 5.3.1.2) is an object
in C together with the structure map

Z →
∏
r≥0

(
O(r)∨ ⊗ Z⊗r

)Sr
,

where O(r)∨ denotes the Spanier–Whitehead dual of O(r)∨. In particular, the sym-
metric sequence (O(r)∨)r≥0 forms an ∞-cooperad, as we will explain in ¶5.3.4.7. Back
to a general presentable symmetric monoidal ∞-category C, the technical problem to
define an coalgebra over L as (5.3.1.2) is that the functor

SymSeq(C)→ Fun(C,C), F →
∏
r≥0

(
F (r)⊗ (−)⊗r

)Sr

is not oplax monoidal with respect to the composition product and the composition of
endofunctors, i.e. it does not send an ∞-cooperad to a comonad.

In Definition 5.3.1.11 “conilpotent” refers to taking the coproducts and “divided
power” refers to taking the orbit of the Sr-action in the structure map (5.3.1.1), as
opposed to (5.3.1.2).

5.3.1.13. Proposition. — Let L be an ∞-cooperad with values in C.
(i) There exists a forgetful functor

forgL : coAlgndp
L (C)→ C

assigning to an L-coalgebra its underlying object in C.
(ii) A morphism u : L→ K of ∞-cooperads induces a functor

u∗ : coAlgndp
L (C)→ coAlgndp

K (C),

such that forgK ◦u∗ ≃ forgL. Furthermore, the functor u∗ preserves small
colimits and admits a right adjoint u!.

Proof. — This is the “coalgebra version” of Proposition 5.2.4.15. The construction
of the functors forgL and u∗ is similar to that for algebras, see Definition 5.2.4.13
and Proposition 5.2.4.15, where we work instead in the opposite ∞-categories. The
fact that u∗ preserves small colimits follows by applying [HA, Corollary 4.2.3.3] in the
opposite ∞-categories. The existence of the right adjoint is due to the presentability
of coAlgndp

L (C) (see Proposition 5.3.1.6) and the Adjoint Functor Theorem [HTT,
Corollary 5.5.2.9].

5.3.1.14. Definition. — A coaugmentation of an ∞-cooperad L with values in C is
a morphism η : 1S

C → L of ∞-cooperads An augmented ∞-cooperad is an ∞-cooperad
together with an coaugmentation.
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5.3.1.15. Example. — Let L and K be ∞-cooperads with values in C, where K

is coaugmented. There exist the following adjunctions for coalgebras, as analogues
to Corollary 5.2.4.17, Example 5.2.4.20 and Example 5.2.4.21.

(i) The counit L→ 1S
C induces the (forgetful ⊣ cofree)-adjunction

forgL : coAlgndp
L (C) ⇄ C : cofreeL .

(ii) The coaugmentation η : 1S
C → K induces the (trivial ⊣ primitive)-adjunction

trivK : C ⇄ coAlgndp
K (C) : primK .

(iii) The horizontal compositions forg ◦ triv and prim ◦ cofree in the diagram

C
trivK

⇄
primK

coAlgndp
K (C)

forgK

⇄
cofreeK

C

are equivalent to the identity functor of C.

5.3.2. Bar and Cobar constructions. — The starting point of operadic Koszul
duality is a Bar ⊣ CoBar adjunction between ∞-operads and ∞-cooperads, which
induces an adjunction between the associated ∞-categories of algebras and coalgebras.
We explain these adjunctions in this subsection.

5.3.2.1. Construction. — Let Opdaug(C) (respectively coOpdcoaug(C)) denote the
∞-categories of augmented ∞-operads (respectively coaugmented ∞-cooperads) with
values in C. In [HA, Theorem 5.2.2.7] Lurie constructs a (Bar ⊣ Cobar)-adjunction
between the ∞-category of augmented associative algebras and the ∞-category
of coaugmented coassociative coalgebras in a monoidal ∞-category which ad-
mits geometric realisations and totalisations. Thus, we can apply the adjunction
to Opdaug(C) ≃ Algaug

/ Ass (SymSeq(C)) and coOpdcoaug(C) ≃ coAlgcoaug
/ Ass (SymSeq(C)),

which leads to an adjunction

Bar: Opdaug(C) ⇄ coOpdcoaug(C) : Cobar .

Let O be an augmented ∞-operad with values in C. As shown in [HA, Proposi-
tion 5.2.2.5, Remark 5.2.2.8], the underlying symmetric sequence forgcoOpd(Bar(O)) of
the∞-cooperad Bar(O) is equivalent to the geometric realisation of the simplicial object

Bar
(
1S
C ,O,1

S
C

)
:=
(
· · ·O⊚ O O 1S

C

)
in SymSeq(C). Similarly, the underlying symmetric sequence forgOpd(Cobar(L)) of a
coaugmented ∞-cooperad L is equivalent to the totalisation of the cosimplicial object

Cobar
(
1S
C ,L,1

S
C

)
:=
(

1S
C L L⊚ L · · ·

)
in SymSeq(C). See [HA, p.826, c)] for some remarks regarding these explicit expressions.
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5.3.2.2. Construction. — Recall that a monad on C is an associative algebra in the
monoidal∞-category Fun(C,C). A monad T is augmented if it is equipped with a mor-
phism T → idC of associative algebras in Fun(C,C). In the same manner, one can define
the notion of coaugmented comonads. Let Monadaug(C) (respectively coMndcoaug(C))
denote the ∞-categories of augmented monads (respectively coaugmented comonads)
with values in C.

We can apply [HA, Theorem 5.2.2.7] again and obtain the (Bar ⊣ Cobar)-adjunction

Bar: Monadaug(C) ⇄ coMndcoaug(C) : Cobar

between augmented monads and coaugmented comonads of C. As in the case with
∞-operads and ∞-cooperads, see Construction 5.3.2.1, one can write down explicit
formulas for the evaluations of Bar and Cobar on a given augmented monad and
coaugmented comonad respectively.

5.3.2.3. Proposition. — The following diagram of ∞-categories commutes:

Opdaug(C) coOpdcoaug(C)

Monadaug(C) coMndcoaug(C);

Bar

T(−) T(−)

Bar

(5.3.2.1)

recall the functor T(−) from Corollary 5.2.4.12 and ¶5.3.1.9.

Proof. — The commutativity follows by the following arguments:
(i) The functor T(−) preserves the property of being augmented/coaugmented,

since the ∞-operad/∞-cooperad structure on the unit symmetric sequence 1C

is unique.
(ii) The functor T(−) results from a colimit construction (as one can see from its

formula), which commutes with the cocontinuous functors Bar in the rows.

5.3.2.4. Proposition. — Let O → 1S
C be an augmented ∞-operad with values

in C. Recall the adjunction (indecO ⊣ trivO) induced by the augmentation (see Ex-
ample 5.2.4.20). The functor indecO factors through the ∞-category coAlgndp

Bar(O)(C),
given by the following commutative diagram

AlgO(C) C

coAlgndp
Bar(O)(C)

indecO

BarO forgBar(O)

of ∞-categories.
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Proof. — We will prove that the comonad indecO ◦ trivO is equivalent to the
comonad TBar(O). Then the factorisation follows from ¶5.3.1.10. By Proposi-
tion 5.2.4.18 we have

(indecO ◦ trivO) (X) ≃ lim−→Bar
(

free1S
C
,TO, forgO (trivO(X))

)
≃ lim−→Bar

(
free1S

C
,TO, free1S

C
(X)

)
≃ Tlim−→Bar(1S

C
,O,1S

C )(X)

≃ TBar(O)(X),

where the second equivalence holds by forgO ◦ trivO ≃ idC (see Example 5.2.4.21),
and the third equivalence holds by calculation of the colimits and our assumption
on C that the symmetric monoidal product of C commutes with small colimits in each
variable (see Definition 5.2.4.2).

5.3.2.5. Remark. — In other words, for every O-algebra X in C, its “indecompos-
ables” indecO(X) admits the structure of a conilpotent divided power Bar(O)-coalgebra.
By Proposition 5.2.3.5., if there exists another comonad T of C such that indecO fac-
tors through the forgetful functor coLModT (C) → C, then there exists an induced
morphism Bar(O)→ T of comonads, unique up to contractible choice.

5.3.2.6. Proposition. — Let 1S
C → L be an coaugmented ∞-cooperad with values

in C. Recall the adjunction trivL ⊣ primL induces by the coaugmentation (see Ex-
ample 5.3.1.15). The functor primL factors through the ∞-category AlgCobar(L)(C),
given by the following commutative diagram

coAlgndp
L (C) C

AlgCobar(L)(C).

primL

CobarL forgCobar(L)

of ∞-categories.

Proof. — By Proposition 5.2.3.5 it suffices to show that there exists a mor-
phism TCobar(L) → primL ◦ trivL of monads. By the same proof as in Proposi-
tion 5.2.4.18 we have

(primL ◦ trivL)(X) ≃ lim←−

(
X TL(X) (TL ◦ TL)(X) · · ·

)
.

In other words there exists the equivalence of monads below

primL ◦ trivL ≃ Cobar (TL) .
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Abbreviate the functor T(−) in the diagram (5.3.2.1) by T, we need to show that
there exists a natural transformation

T ◦Cobar→ Cobar ◦T .

By adjunction and commutativity of (5.3.2.1) the existence of the above natural trans-
formation is equivalent to the existence of one of the following natural transformations

Bar ◦T ◦Cobar→ T and T ◦Bar ◦Cobar→ T .

Composing T with the counit natural transformation of the (Bar ⊣ Cobar)-adjunction
gives the second natural transformation.

5.3.2.7. Remark. — In the situation of Proposition 5.3.2.6 we don’t have an
equivalence of monads between TCobar(L) and primL ◦ trivL, in contrary to Proposi-
tion 5.3.2.4. This is due to the fact that the symmetric monoidal product of C does
not commute with totalisations of cosimplicial objects in general. One may consider
just adding this extra assumption to C. However, it is also not often possible to find
concrete examples of presentable symmetric monoidal ∞-category whose symmetric
monoidal product commutes with both geometric realisations and totalisations.

5.3.2.8. Proposition (Francis–Gaitsgory). — Let O be an augmented ∞-operad
with values in C and let f : Bar(O) → L be a morphism of coaugmented
∞-cooperads. Denote the morphism adjoint to f under the (Bar ⊣ Cobar)-adjunction
by g : O→ Cobar(L) (see (5.3.2.3)). Then the functor

AlgO(C) BarO−−−→ coAlgndp
Bar(O)(C) f∗−→ coAlgndp

L (C)

is left adjoint to

coAlgndp
L (C) CobarL−−−−−→ AlgCobar(L)(C) g∗

−→ AlgO(C).

Proof. — Let L denote the left adjoint to CobarL, which exists by the Adjoint Functor
Theorem (see [HTT, Corollary 5.5.2.9]). Recall that the left adjoint to g∗ is denoted
by g! (see Proposition 5.2.4.16).

We show that the composition L ◦ g! is equivalent to the functor f∗ ◦ BarO. Recall
from the proof of Proposition 5.2.4.18 that every O-algebra X is equivalent to a colimit
of free O-algebras. Thus it suffices to show that the functors L ◦ g! and f∗ ◦BarO agree
on their evaluations on free O-algebras, since both of them preserve small colimits.

Propositions 5.3.2.4 and 5.3.2.6 and Examples 5.2.4.21 and 5.3.1.15 provide the
following equivalences

L ◦ (g! ◦ freeO) ≃ L ◦ freeCobar(L) ≃ trivL and

f∗ ◦ (BarO ◦ freeO) ≃ f∗ ◦ trivBar(O) ≃ trivL,

of functors, which concludes the proof. See also [FG12, Corollary 3.3.13].
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5.3.2.9. Example. — Let O be an augmented∞-operad with values in C. Then iden-
tity morphism id: Bar(O)→ Bar(O) and its adjoint morphism δ : O→ Cobar(Bar(O))
under the (Bar ⊣ Cobar)-adjunction induce an adjunction

BarO : AlgO(C) ⇄ coAlgndp
Bar(O)(C) :δ∗ ◦ CobarBar(O), (5.3.2.2)

which is sometimes called the Koszul duality between O-algebras and Bar(O)-coalgebras.
In §5.3.3 we will discuss the cases where δ∗ is equivalent to the identity morphism, i.e.
the right adjoint to BarO is just given by CobarBar(O).

5.3.2.10. Non-unital symmetric sequences. — Let Fin≃
≥1 denotes the full

∞-subcategory of Fin≃ (see Definition 5.2.4.5) whose objects are finite sets n for
natural numbers n ≥ 1. The canonical inclusion i : Fin≃

≥1 ↪→ Fin≃ induces a functor

i∗ : Fun(Fin≃,C)→ Fun(Fin≃
≥1,C).

The functor i∗ admits a two-sided adjoint (both a left and right adjoint to i∗)

(−)+ : Fun(Fin≃
≥1,C)→ Fun(Fin≃,C), F 7→ F+

obtained by the left/right Kan extension, where F+(r) ≃ F (r) for every r ≥ 1
and F+(0) is equivalent to the initial object of C.

One can check that (−)+ is fully faithful and the ∞-subcategory Fun(Fin≃
≥1,C)

is closed under forming composition products. Thus Fun(Fin≃
≥1,C) becomes a

monoidal ∞-subcategory of Fun(Fin≃,C) and the functor (−)+ becomes a monoidal
functor. The ∞-category of non-unital symmetric sequences is defined as

SymSeq≥1(C) := Fun
(
Fun≃

≥1,C
)
⊆ SymSeq(C).

By [HA, Corollary 7.3.2.7] the functor i∗ is lax and oplax monoidal. Thus it in-
duces functors on the ∞-categories of associative algebras (∞-operads) and on the
∞-categories of coassociative coalgebras (∞-cooperads), respectively.

5.3.2.11. Definition. — Let O be an ∞-operad with values in C.
(i) We say O is non-unital if its underlying symmetric sequence is equivalent to an

object of SymSeq≥1(C).
(ii) The deunitalisation Onu of O is defined as the non-unital ∞-operad

Onu := (i∗(O))+.

(iii) We say O is reduced if O is non-unital and O(1) ≃ 1C.
(iv) The ∞-category of Onu-algebras is denoted by Algnu

O (C).
In the same way we can make these definitions and notations for ∞-cooperads.

5.3.2.12. Remark. — Assume that O is a unital ∞-operad in C, i.e. O(0) ≃ 1C. An
algebra X over O is equipped with a “unit map” O(0)→ X. Informally speaking, we
think about algebras over Onu as an “O-algebra” without the unit map.



156 Chapter 5. Introduction on ∞-operads

5.3.2.13. Remark. — Note that a reduced ∞-operad (respectively ∞-cooperad) is
(co)augmented. For a reduced ∞-operad (respectively ∞-cooperad) M with values
in C, its associated monad (respectively comonad) TM is of the form

TM(X) ≃
∐
r≥1

(
M(r)⊗X⊗r

)
Sr
.

Indeed, M(0) ⊗ X is equivalent to the initial object since the symmetric monoidal
product of C preserves small colimits in each variable. For the initial object I ∈ C, the
coproduct I

∐
X is equivalent to X for every X ∈ C.

5.3.3. Koszul duality. — In this subsection we discuss Koszul duality be-
tween ∞-operads and ∞-cooperads with values in a stable presentable symmetric
monoidal ∞-category.

5.3.3.1. Definition. — An ∞-category C⊗ together with a functor q : C⊗ → Com⊗

is a stable symmetric monoidal ∞-category if
(i) q : C⊗ → Com⊗ is a symmetric monoidal ∞-category,
(ii) C⊗

⟨m⟩ is a stable ∞-category for m = 1 (and thus for all m ≥ 1), and
(iii) the symmetric monoidal product of C is exact in each variable.
We say C is the underlying stable symmetric monoidal ∞-category. Furthermore,

we call q : C⊗ → Com⊗ is presentable stable symmetric monoidal if it satisfies in
addition to (i)-(iii) the hypotheses in Definition 5.2.4.2. Again by abuse of notation
we conflate C⊗ → Com⊗ and C whenever convenient.

5.3.3.2. Situation. — For the rest of this section we work with a presentable stable
symmetric monoidal ∞-category C.

5.3.3.3. Theorem (Heuts). — In Situation 5.3.3.2 the (Bar ⊣ Cobar)-adjunction
in Construction 5.3.2.1 restricts to an equivalence between the ∞-categories of reduced
∞-operads and the ∞-categories of reduced ∞cooperads with values in C.

5.3.3.4. Remark. — We include Theorem 5.3.3.3 for the completeness of our
exposition on ∞-categorical operadic Koszul duality. Similar results in the ordinary
category of differential graded chain complexes over a commutative ring and in certain
model category of spectra can be found in [Fre04] and [Chi05], respectively. We learnt
about Theorem 5.3.3.3 from communications with Gijs Heuts and we read the proof
in a draft of the manuscript. For a report of the work [Heu], see [Heu20a].

We use this theorem for Proposition 5.3.3.6, and the latter is not necessary for later
applications (because the existence of such an adjunction as in Proposition 5.3.3.6 is
already given by Proposition 5.3.2.8).
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5.3.3.5. Definition. — Let O be a reduced ∞-operad and L be a reduced
∞-cooperad with values in C. We call K(O) := Bar(O) the Koszul dual ∞-cooperad
of O and K(L) := Cobar(L) the Koszul dual ∞-operad of L.

5.3.3.6. Proposition. — Let O be a reduced ∞-operad with values in C. The BarO
and CobarK(O) functor defined in Propositions 5.3.2.4 and 5.3.2.6, respectively, form
an adjunction

BarO : AlgO(C) ⇄ coAlgndp
K(O)(C) : CobarK(O) . (5.3.3.1)

Proof. — This is due to Proposition 5.3.2.8 and Theorem 5.3.3.3.

5.3.3.7. Spectral ∞-operads. — A spectral ∞-operad (respectively ∞-cooperad)
is an ∞-operad (respectively ∞-cooperad) with values in the presentable stable
symmetric monoidal ∞-category Sp of spectra (see Example 5.2.1.31).

The ∞-category Sp is the presentable stable ∞-category freely generated by the
sphere spectrum S, see [HA, Corollary 1.4.4.6]. Thus, for every presentable stable
symmetric monoidal ∞-category C, there is a symmetric monoidal functor F : Sp→ C

in PrL, unique up to contractible choice; F is determined by its evaluation F (S) ≃ 1C.
By Proposition 5.2.5.1 we obtain induced functors

F : Opd(Sp)→ Opd(C) and

F : coOpd(Sp)→ coOpd(C).

Let O be a spectral ∞-operad and let L be a spectral ∞-cooperad. The
∞-category AlgO(C) of O-algebras in C is defined as the ∞-category AlgF (O)(C).
Similarly, the ∞-category coAlgndp

L (C) of conilpotent divided power L-coalgebras in C

is defined as the∞-category coAlgndp
F (O)(C). Assuming in addition that O is augmented,

we obtain an equivalence (F ◦ Bar)(O) ≃ (Bar ◦F )(O) of spectral ∞-cooperads, since
both functors preserve small colimits. Thus in this situation the adjunction (5.3.2.2)
is still valid.

5.3.4. Examples of operadic Koszul duality. — We present in this subsection
several important examples of operadic Koszul duality. For this purpose we need
to introduce suspensions of spectral ∞-operads. Recall that we work with a stable
presentable symmetric monoidal ∞-category C.

5.3.4.1. Construction (Suspension an ∞-operad). — For the analogous ordi-
nary categorical construction for operads, see [GJ94; AK14; CS22]. We learnt the
∞-categorical construction from [Hei18], which we explain now.

The suspension functor ΣC on C induces the suspension functor ΣS
C on SymSeq(C),

given on objects by applying ΣC pointwise, i.e. ΣS
C (F ) ≃ ΣC◦F for a symmetric

sequence F . For simplicity, we make the following abbreviation in this construction:

Σ:= ΣC and ΣS:= ΣS
C and 1S := 1S

C
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By calculation with the explicit formula (5.2.4.3) of the composition product
we obtain

ΣS(1S) ⊚ (ΣS)−1(1S) ≃ (ΣS)−1(1S) ⊚ ΣS(1S) ≃ 1S.

Under the monoidal equivalence (5.2.4.2)

Fun⊗
PrL,C

(SymSeq(C), SymSeq(C)) ev−→ SymSeq(C),

the symmetric sequence ΣS(1S) corresponds to an equivalence s1 in the functor
∞-category Fun⊗

PrL,C
(SymSeq(C), SymSeq(C)), and an inverse equivalence s−1

1 is given
by the symmetric sequence (ΣS)−1(1S). By conjugation s1 induces a monoidal auto-
equivalence of Fun⊗

PrL,C
(SymSeq(C), SymSeq(C)) and thus of SymSeq(C), illustrated

by the following commutative diagram

Fun⊗
PrL,C

(SymSeq(C), SymSeq(C)) SymSeq(C)

Fun⊗
PrL,C

(SymSeq(C), SymSeq(C)) SymSeq(C).

ev
∼

s1◦(−)◦s−1
1 (ΣS)−1(1S)⊚(−)⊚ΣS(1S)

ev
∼

of ∞-categories.
Recall the monoidal functor SymSeq(C) → Fun(C,C) from Proposition 5.2.4.10,

which sends ΣS(1S) to the suspension functor Σ: C→ C. A functor F ∈ Fun(C,C) is
reduced if it preserves the zero object of C. Denote the full ∞-subcategory of reduced
functors by Funred(C,C). Restricting to non-unital symmetric sequences (see ¶5.3.2.10)
we obtain the following commutative diagram

SymSeq(C))≥1 Funred(C,C)

SymSeq(C))≥1 Funred(C,C).

(ΣS)−1(1S)⊚(−)⊚ΣS(1S) Σ−1◦(−)◦Σ (5.3.4.1)

of ∞-categories.

5.3.4.2. Definition. — Let F be a symmetric sequence in C. Define the operadic
suspension ΣF and operadic desuspension Σ−1F of F as the symmetric sequences

ΣF := (ΣS
C )−1(1S) ⊚ F ⊚ (ΣS

C )(1S)

Σ−1F := (ΣS
C )(1S) ⊚ F ⊚ (ΣS

C )−1(1S)

Similarly, the functional suspension ΣF̃ and functional desuspension Σ−1F̃ of a
functor F̃ ∈ Fun(C,C) is defined as

ΣF̃ := Σ−1
C ◦F̃ ◦ ΣC

Σ−1F̃ := ΣC◦F̃ ◦ Σ−1
C
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5.3.4.3. Corollary. — The operadic suspension functors in Definition 5.3.4.2 in-
duces to an auto-equivalence on the∞-category of∞-operads (respectively∞-cooperads)
with values in C.

Proof. — By Construction 5.3.4.1 the operation Σ on SymSeq(C) is a monoidal auto-
equivalence, with monoidal inverse given by Σ−1.

5.3.4.4. Remark. — In the situation of Definition 5.3.4.2, explicit calculations of
the composition products gives an equivalence

(ΣzF )(r) ≃ Σzr−z
C F (r)

in C, for every integer z and every natural number r ≥ 0.

5.3.4.5. Proposition. — Let O be an non-unital ∞-operad with values in C. There
exists an equivalence between the ∞-categories AlgΣO(C) and AlgO(C) given by taking
the suspensions of the underlying objects, illustrated by the following commutative
diagram of ∞-categories

AlgΣO(C) AlgO(C)

C C.

∼

forgΣO forgO

ΣC

∼

Proof. — Recall the LM-monoidal ∞-category q : M(C)⊗ → LM⊗ exhibiting C as
left-tensored over Fun(C,C) (see Example 5.2.2.12). The functor q corresponds to a
functor LM⊗ → CAT∞ of∞-categories by straightening. The functional suspension Σ
of Fun(C,C) and the suspension ΣC of C fit in the commutative diagram

Fun(C,C)× C C

Fun(C,C)× C C,

ev

(Σ−1(−))×ΣC
ΣC

ev

which induces a natural transformation of the functor LM⊗ → CAT∞ to itself.
Recall that Σ−1(−) denotes the functional suspension of functors. Thus, we obtain a
LM-monoidal functor ϕ : M(C)⊗ →M(C)⊗, illustrated by the following commutative
diagram of ∞-categories

M(C)⊗ M(C)⊗

LM⊗ .

ϕ

∼

q q
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Therefore, it induces the following commutative diagram

LMod(M(C)) LMod(M(C)) (ΣF,M) (F,ΣC(M))

Alg/ Ass(C) Alg/ Ass(C), ΣF F,

ϕ∗

∼

forgm forgm

ϕ∗

∼

(5.3.4.2)

where we illustrated the assignments on the underlying objects on the right side.
By Definition 5.3.4.2 and the diagram (5.3.4.1) there exits a natural equiva-

lence TΣO ≃ ΣTO between the associated monads of the ∞-operads ΣO and O (Here
we use the non-unital assumption on the ∞-operads). Recall that we have

AlgΣO(C) ≃ LMod(M(C))×Alg/ Ass(C) {ΣTO}, and

AlgO(C) ≃ LMod(M(C))×Alg/ Ass(C) {TO},

see Definitions 5.2.2.10 and 5.2.4.13. Then the commutative diagram (5.3.4.2) induces
an equivalence

ϕ∗ : AlgΣO(C) ∼−→ AlgO(C)

of the fibres ∞-categories of the vertical arrows. Finally, by the definition of the
forgetful functors (see Definition 5.2.2.10) we obtain the following commutative diagram

AlgΣO(C) AlgO(C)

C C.

∼
ϕ∗

forgΣO forgO

ΣC

∼

of ∞-categories.

5.3.4.6. Remark. — We use the convention that the notation ΣF , where F is a
symmetric sequence, always refers to the operadic suspension (see Definition 5.3.4.2).

5.3.4.7. Spectral operads. — The examples of spectral ∞-operads and operadic
Koszul duality that we will explain next are obtained from results carried out in the
context of model categories. Therefore, let us say a few words about the comparison
between model categorical operads and ∞-operads. We learnt this from [Bra17, §4,
Appendix D].

Let Sp denote the cofibrantly generated model category of S-modules [EKMM]. Its
underlying ∞-category is equivalent to the ∞-category Sp of spectra. The ordinary
categorical Day convolution endows the category SymSeq(Sp) := Fun(Fin∼=,Sp)
of symmetric sequences in Sp a symmetric monoidal model structure, which is
induced from that of Sp. Denote the subcategory of fibrant and cofibrant ob-
jects of SymSeq(Sp) (with the just-defined model structure) by SymSeq(Sp)◦,
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and the set of weak equivalences in SymSeq(Sp) by W . Then the underly-
ing ∞-category N(SymSeq(Sp)◦)[W−1], see [HA, Definition 1.3.4.15], is equivalent
to the ∞-category SymSeq(Sp).

One can define the a strict composition product between two symmetric sequences
in Sp. This induces a binary operation on the underlying ∞-category SymSeq(Sp),
which is equivalent to the composition product ⊚ defined in Construction 5.2.4.8.
With this strict composition product and the symmetric sequence S, the cate-
gory SymSeq(Sp) becomes a monoidal category. Furthermore, there exists the
following functor of monoidal ∞-categories:

Φ: N(SymSeq(Sp)◦)[W−1]→ SymSeq(Sp)

An operad (respectively cooperad) with values in Sp is defined as an associative
algebra (respectively coassociative coalgebra) in the monoidal category SymSeq(Sp).
Most of the definitions we give for ∞-operads/∞-cooperads can be adapted to oper-
ads/cooperads with values in SymSeq(Sp), such as being augmented, reduced and
non-unital (these are defined on the underlying symmetric sequences). The category
Opdred(Sp) of reduced operads with values in Sp admits a cofibrantly-generated
simplicial model category structure, where weak equivalences are arity-wise weak
equivalences of spectra. The functor Φ induces a functor

Φ: N(Opdred(Sp))→ Opdred(Sp),

of ∞-categories, where N denotes the simplicial nerve (see Example 1.1.1.1)
and Opdred(Sp) denotes the ∞-category of reduced ∞-operads with values in Sp.
See [Bra17, p.81] for more details.

Using this functor, one can construct many examples of spectral ∞-operads from
operad with values in (the model category) of spectra. In [Chi05] Ching defines the
(Bar ⊣ Cobar)-adjunction between reduced operads and reduced cooperads with values
in Sp. Under the functor Φ it is shown that Ching’s (Bar ⊣ Cobar)-adjunction is com-
patible with our ∞-categorical (Bar ⊣ Cobar)-adjunction (see Construction 5.3.2.1),
see [Bra17, Lemma 5.4.14, Proposition 5.4.19].

Let L be a reduced cooperad with values in Sp. It is shown in [Chi05, Lemma 6.1]
that one can define a reduced operad L∨ with values in Sp by taking the arity-wise
Spanier–Whitehead dual, i.e.

L∨(r) := Map(L(r),S)

for every r ≥ 1, where Map denotes the mapping spectrum. Let O be a reduced
operad with values in Sp. Denote the reduced cooperad obtained from O via the
(ordinary categorical) Bar construction by Bar(O). Denote

O := Φ(O) ∈ Opdred(Sp).
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Define the symmetric sequence Bar(O)∨ ∈ SymSeq(Sp) by applying arity-wise the
Spanier–Whitehead dual functor to the underlying symmetric sequence Bar(O) of the
∞-cooperad Bar(O). One can check by the explicit construction of Φ that Bar(O)∨

is equivalent to the underlying symmetric sequence of Φ(Bar(O)∨), which in turn
equips the symmetric sequence Bar(O)∨ the structure of an ∞-operad with values
in Sp. Thus we denote

Bar(O)∨ := Φ(Bar(O)∨) ∈ Opd(Sp).

5.3.4.8. Definition. — Given two operads O and P with values in Sp, we say O
and P are Koszul dual if there exists an (model categorical) equivalence

Bar(O)∨ ≃ P .

Denote P := Φ(P). We say that the ∞-operads O and P are Koszul dual if

Bar(O)∨ ≃ P.

5.3.4.9. Example. — Consider the non-unital commutative operad Comnu with
values in Sp, given by Comnu(r) := S for every r ≥ 1. In particular, we obtain an
equivalence

Comnu ≃ Φ(Comnu)

of ∞-operads with values in Sp, see Example 5.2.5.11.

5.3.4.10. Example. — Recall the Lie operad Lie from Example 5.1.0.19. In this
example we construct the (shifted) spectral Lie ∞-operad Lie such that

Lie(r) ∼= H̃0((ΣLie)(r);Z)

in every arity r ∈ N.
For the set n = {1, 2, . . . , n}, we can define the poset Π̂n of partitions of n: An

element λ of Π̂n is an equivalence relation on n. Two equivalence relations λ ≤ λ′

if λ is finer than λ′, i.e. if x ∼λ′ y then x ∼λ y. The minimal equivalence relation 0̂ is
given by x ∼ y if x = y, and the maximal equivalence relation 1̂ is given by x ∼ y for
every pari (x, y) of elements in n. We define the subset

Πn := Π̂n \
{

0̂, 1̂
}
⫅ Π̂n.

It inherits the poset structure from Π̂n. We consider the poset Πn as a category. It is
shown in [AB21, §4.6] that there exists an isomorphism of Sr-representations

Lie(n) ∼= sgnSr
⊗ H̃

r−1
(Σ(|Πr|⋄) ;Z)

∼= H̃0
(
Map

(
S1, (S1)r

)
⊗Sp (Σ(|Πr|⋄))∨ ;Z

)
.

(5.3.4.3)

In the above isomorphisms,
(i) sgnSr

denotes the sign representation of Sr,
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(ii) ⊗ in the first isomorphism denotes the tensor product of Sr-representations,
(iii) (−)⋄ denotes the unreduced suspension of a homotopy type,(9)

(iv) S1 := ΣSpS, and
(v) (−)∨ denotes the Spanier–Whitehead dual.

It is shown in [AB21] that the symmetric sequence sLie =
(
(Σ(|Πr|⋄))∨)

r≥1 forms an
operad with values in Sp.

The spectral Lie ∞-operad Lie is defined as Φ(sLie). In particular, for every r ≥ 1,
we have Lie(r) := (Σ(|Πr|⋄))∨ and Lie(0) = 0 (the zero spectrum). By Remark 5.3.4.4
and (5.3.4.3) we obtain the isomorphism Lie(r) ∼= H̃0 (ΣLie(r)) . of abelian groups for
every r ≥ 0 by calculation.

5.3.4.11. Definition. — A spectral Lie algebra in a presentable stable symmetric
monoidal ∞-category C is an algebra over the spectral Lie ∞-operad Lie.

5.3.4.12. Remark. — Alternatively the spectral Lie ∞-operad is defined as the
derivatives, in the sense of Goodwillie calculus (see ¶6.2.2.10), of the identity functor
of the ∞-category Ho∗ of pointed homotopy types, see [Chi05]. Furthermore we refer
the interested reader to [Cam20, Proposition 5.2] and [Kja18, §3.2] for a discussion
about the Lie bracket and the Jacobi identity relation for spectral Lie algebras.

5.3.4.13. Example. — Koszul duality between Lie algebras and cocommutative
coalgebras can be traced back to Quillen’s work on rational homotopy theory [QuiHA].
In loc. cit. Quillen shows that the Chevalley–Eilenberg functor CE induces a Quillen
equivalence between a model category of connected differential graded (dg) Lie algebras
and a model category of simply connected dg-cocommutative coalgebras over the
rational numbers. The functor CE is an example of the functor BarO in (5.3.3.1). Later
in [Moo71] the adjunction (5.3.3.1) between dg-Lie algebras and dg-cocommutative
coalgebras over a field of characteristic other than 2 is established.

In characteristic zero situations, Ginzburg and Kapranov show that the Lie operad
and the cocommutative cooperad are Koszul dual, where they use the theory of
quadratic operads [GK94, Theorem 2.1.11]. This duality is generalised to the Lie
operad and cocommutative cooperad over an arbitrary commutative ring in [Fre04,
Fact 6.2]. In [Chi05, Corollary 8.8] Ching defines the Koszul duality between the
spectral Lie operad sLie and the spectral cocommutative cooperad Comnu.(10)

Therefore by Definition 5.3.4.8 we obtain the Koszul duality

Bar(Comnu)∨ ≃ Lie

between the spectral Lie ∞-operad and the non-unital commutative ∞-operad.

(9)Model a homotopy types by a CW complex X, we have X⋄ = X × I/(X × {0} ⊔ X × {1})
(10)The spectral Lie operad is defined as the linear dual of the Bar construction of the cocommutative

cooperad in [Chi05]
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5.3.4.14. Example. — One of the first appearances of the notion of Koszul duality for
(associative) algebras was in [Pri70], where the notion of a Koszul algebra and the Koszul
dual coalgebra over a field is introduced [Pri70, §3]. The (Bar ⊣ Cobar)-adjunction
between dg-algebras and dg-coalgebras over a commutative ring appears in [Moo71]. In
[GK94, 2.1.11] Ginzburg–Kapranov prove the Koszul duality of the associative operad
with itself [GK94, Theorem 2.1.11], known as the self-Koszul duality. See [Chi05,
Example 4.8] for a more recent demonstration of this example of Koszul duality.

5.3.4.15. Example. — The self-Koszul duality of the associative operad generalises
to self-Koszul duality of the En ∞-operad (see Example 5.2.1.13) for every natural
number n ≥ 1. Recall the homology operad H•(En;R) with coefficient in a commuta-
tive ring R from Example 5.1.0.24. In [GJ94, Theorem 3.1] Getzler and Jones show the
self-Koszul duality Bar (H•(En; k))∨ ≃ Σ−nH•(En; k) for every natural number n ≥ 1
over a field k of characteristic zero. This is upgraded to a self-Koszul duality for
the En operad with values in the category ChZ of chain complexes over the integers
by Fresse [Fre11].

Recently, it is shown that the previous result also holds for spectral En operad,
which is the operad with values in Sp obtained by applying the suspension spectrum
functor arity-wise, for every natural number n ≥ 1, see [CS22]. Translating the result
in loc. cit. to ∞-categorical settings using ¶5.3.4.7, we obtain the self-Koszul duality
of the non-unital spectral En ∞-operad. In other words, there exists an equivalence

Bar (Enu
n )∨ ≃ Σ−nEnu

n

of spectral ∞-operads for every natural number n ≥ 1; here En denotes Σ∞
+ (En),

see Example 5.2.5.12.



CHAPTER 6

Higher enveloping algebras in monochromatic layers

6.1. Higher enveloping algebras of spectral Lie algebras

Let C be a presentable stable symmetric monoidal ∞-category. Recall that a
commutative algebra in C has an underlying En-algebra structure for every n ∈ N,
induced by the tower (5.2.5.1)

E0 ↪→ E1 ↪→ · · · ↪→ En ↪→ En+1 · · · ↪→ Com

of ∞-operad inclusions. In this section we are interested in the Koszul dual picture of
this. We construct the following commutative diagram in PrL

AlgLie (C)

· · · Algnu
En

(C) Algnu
En−1

(C) · · · Algnu
E1

(C) C,

U1
Un

Bn Bn−1 B1

(6.1.0.1)

exhibiting a relationship between spectral Lie algebras and non-unital (or aug-
mented) En-algebras in C, originally due to [Knu18]. Although the results in this section
are not original, we provide a different construction of the above commutative diagram
than that in [Knu18], using the self Koszul duality of the En ∞-operads (see Exam-
ple 5.3.4.15). Our construction allows more explicit presentations of the functors Un

and Bn, which are useful in later applications. In the next sections we will investigate
in concrete situations whether the ∞-category AlgLie(C) is equivalent to the inverse
limit, taken in the ∞-category CAT∞ of ∞-categories, of the lower horizontal tower
in the above diagram.

6.1.0.1. Situation. — In this section we use En-algebras in various∞-categories and
not all of them are stable ∞-categories. We do not write explicit each time about in
which ∞-categories the En ∞-operad takes value, because of Theorem 5.2.5.5, Exam-
ple 5.2.5.12 and ¶5.3.3.7. For example, when we write the operadic suspension Σ−nEn,



166 Chapter 6. Higher enveloping algebras in monochromatic layers

we implicitly mean that we are considering the En ∞-operad in a stable ∞-category,
as this is our situation where we defined the operadic suspension (see §5.3.4).

Let C be a fixed presentable stable symmetric monoidal ∞-category throughout
this section. Denote the suspension functor of C by ΣC and the loop functor of C

by ΩC; they are auto-equivalences of C.

6.1.0.2. Construction. — We give a construction of the diagram (6.1.0.1) us-
ing Koszul duality. Recall that the Koszul dual of the non-unital commutative
∞-operad Comnu is the spectral Lie ∞-operad Lie (see Example 5.3.4.13), and the
Koszul dual of Enu

n is the n-fold operadic desuspension Σ−nEnu
n of itself (see Exam-

ple 5.3.4.15). Thus, the tower (5.2.5.1) induces the following tower of ∞-operads

Lie · · · → Σ−(n+1)Enu
n+1

cn+1
n−−−→ Σ−nEnu

n → · · · → Σ−1Enu
1 → Enu

0 , (6.1.0.2)

by taking the Koszul dual. In particular, we have Lie ≃ lim←−Σ−nEnu
n from the definition

of Koszul duality (see Definition 5.3.3.5 and Proposition 5.3.2.3). Denote the induced
morphism cn : Lie→ Σ−nEnu

n .

For each n ∈ N, the canonical morphism cn induces a commutative diagram

Algnu
En

(C) Algnu
Σ−nEn

(C) AlgLie(C)

C C C

∼

forgEnu
n

(cn)∗

forgΣ−nEnu
n

forgLie

Σn
C

∼
id
∼

(6.1.0.3)

in PrR, by Proposition 5.2.4.15 and Proposition 5.3.4.5. The cocontinuous functor Un

is defined as the left adjoint to the composition of the upper row in (6.1.0.3). In
particular, it fits in the following commutative diagram

AlgLie(C) Algnu
En

(C)

C C.

Un

freeLie

Ωn
C

∼

freeEnu
n

(6.1.0.4)

in the ∞-category PrL. Similarly, for each n ∈ N, the morphism

cn+1
n : Σ−(n+1)Enu

n+1 → Σ−nEnu
n

induces the following commutative diagram in PrR

Algnu
En

(C) Algnu
Σ−nEn

(C) Algnu
Σ−(n+1)En+1

(C) Algnu
En+1

(C)

C C C C

∼

forgEnu
n

(cn+1
n )∗

forg

∼

forg forgEnu
n+1

Σn
C

∼
id
∼

Ωn+1
C

∼



6.1. Higher enveloping algebras of spectral Lie algebras 167

The cocontinuous functor Bn is defined as the left adjoint to the composition of upper
row in the above diagram. Thus, it also fits in the following commutative diagram

Algnu
En+1

(C) Algnu
En

(C)

C C

Bn

freenu
En

ΣC

∼

freenu
En

(6.1.0.5)

in PrL. Assembling the functors together gives the desired commutative dia-
gram (6.1.0.1) in PrL.

6.1.0.3. Comparison map. — The commutative diagram (6.1.0.1) in PrL induces
an adjunction

U∞ : AlgLie(C) ⇄ lim←−
n

Algnu
En

(C) : T∞ .

by the universal property of ∞-categorical limits. We are interested in the question of
how close this adjunction comes to being an equivalence of ∞-categories, for various
choices of the ∞-category C.

6.1.0.4. Construction (Knudsen). — Before the work [CS22] on Koszul duality
of the spectral En ∞-operad, Knudsen already constructed the functor Un using the
theory of constructible cosheaves and the theory of factorisation homology, see [Knu18].
Let us give a brief summary of the approach his approach.

It is shown that the Algnu
En

(C) is equivalent to the ∞-category of spectral Lie
algebras in a symmetric monoidal ∞-category (D,⊗⨿) of constructible cosheaves with
values in C, and AlgLie(C) is equivalent to the symmetric monoidal ∞-category of
spectral Lie algebras in the symmetric monoidal ∞-category (D,⊗∪). The functor Un

is induced by the identity natural transformation (D,⊗⨿)→ (D,⊗∪) of the underlying
∞-category D. See [Knu18, §3.3] for more details.

6.1.0.5. Remark. — We can consider the functor U1 as the universal enveloping
algebra functor, which assigns to a free Lie algebra over a field k a free associative alge-
bra over k. By (6.1.0.4) the functor U1 assigns to a free spectral Lie algebra freeLie(X)
generated by an objectX ∈ C the free non-unital associative algebra freeE1(ΩC(X)) gen-
erated by the object ΩC(X). One may expect the image U1 (freeLie(X)) to be freeE1(X)
instead of freeE1(ΩC(X)), by the property of the classical universal enveloping algebra
functor. Here we have a degree shift (ΩC) because of our choice of the definition of
the spectral Lie ∞-operad Lie: The homology of Lie is isomorphic to the shifted Lie
operad (Example 5.3.4.10).

Because of this analogy, we call Un the higher enveloping algebra functor, following
the convention of [Knu18].
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6.1.0.6. Question. — Both the En ∞-operad and the spectral Lie ∞-operad relate
to configuration spaces of points in Euclidean spaces, see for example [Aro06, Proposi-
tion 2.1]. Is there a more geometric way to construct the morphism ΣnLie→ En of
spectral ∞-operads?

6.1.0.7. Augmented algebras and coalgebras. — To give a more explicit
construction of the functors Un and Bn, we need the notion of augmented algebras
over an ∞-operad.

A unital ∞-operad with values in Ho is an∞-operad O such that O(0) is equivalent
to the symmetric monoidal unit pt of Ho. Let D be a symmetric monoidal∞-category.
Define the∞-overcategory D/1D

of objects over the symmetric monoidal unit 1D of D
via the following pullback diagram

D/1D
∆0

Fun(∆1,D) D

⌟
i 1D

target

of∞-categories. There exists a symmetric monoidal structure on the∞-category D/1D

such that the canonical functor

S : D/1D
→ Fun(∆1,D) source−−−−→ D

is symmetric monoidal, see [HA, Theorem 2.2.2.4, Remark 2.2.2.5]. Informally speaking,
given two objects X → 1D and Y → 1D of D/1D

, their symmetric monoidal product
in D/1D

is given by
X ⊗D Y → 1D ⊗D 1D

∼−→ 1D.

The ∞-category Algaug
O (D) of augmented O-algebras in D is defined as the

∞-overcategory AlgO (D)/1D
. Moreover, the symmetric monoidal functor D/1D

→ D

induces a functor
SO : AlgO(D/1D

)→ AlgO(D).

By the universal property of the ∞-overcategory AlgO (D)/1D
and the construction of

the symmetric monoidal structure on D/1D
, the functor SO induces an equivalence

AlgO(D/1D
)→ AlgO (D)/1D

,

see [HA, Definition 2.2.2.1 and Notation 2.2.2.3]. Whenever we denote AlgO(D/1D
)

by Algaug
O (C), we denote the forgetful functor AlgO

(
D/1D

)
→ D/1 by

forgaug
O : Algaug

O (D)→ D/1.

In a similar manner, one can define a coaugmented coalgebra in D over a unital
∞-cooperad L with values in Ho (that is L(0) ≃ pt).
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6.1.0.8. Definition. — Let O be a unital ∞-operad with values in Ho. The
augmentation ideal functor is defined as the following composition

ĨO : Algaug
O (C)

forgaug
O−−−−→ C/1C

fib−→ C

where fib denotes the composition C/1C
→ Fun(∆1,C) fibre−−−→ C, assigning to an

object X → 1C of C/1C
its fibre (recall that C is stable).

6.1.0.9. Proposition. — In the situation of Definition 6.1.0.8 the augmentation ideal
functor admits a left adjoint ÃO, called the trivial augmentation functor. Furthermore,
the adjunction ÃO ⊣ ĨO is monadic, and its associated monad is given by

ĨO ◦ ÃO : C→ C, X 7→
∐
r≥1

O(r)⊗Sr
X⊗r

where ⊗ denotes the tensor product of C.

Proof. — We abbreviate the symmetric monoidal unit 1C of C by 1 in this proof.
Recall the unit ∞-operad E0 (Example 5.2.1.7). The functor IO admits the following
factorisation

Algaug
O (C) C/1 C ≃ Algnu

E0
(C)

AlgE0

(
C/1

)
≃ Algaug

E0
(C).

forgO

u∗

fib

forgE0
≃

I0

The functors in the diagram are defined as follows:
(i) The functor u∗ is induced by the morphism u : E0 → O of ∞-operads. The left

triangle commutes because it is induced by the morphisms Triv→ En → O of
∞-operads.

(ii) The functor I0 is an equivalence because C is stable; an inverse of I0 is given
by X 7→ X ⊕ 1.

Thus, the functor left adjoint to ĨO is given by composing the inverse of I0 with functor
left adjoint to u∗. Since I0 is an equivalence, it suffices to show that u∗ is monadic,
which follows from [HA, Proposition 4.7.3.22].

Note that the functor fib is right adjoint to the functor C→ C/1 sending an object X
to the zero morphism X → 1. The formula of the monad ĨO ◦ ÃO follows from the
computation and the formula for the monad forgO ◦ freeO (see Proposition 5.2.4.10).

6.1.0.10. Corollary. — In the situation of Proposition 6.1.0.9 there exists the
following commutative diagram of ∞-categories:

Algaug
O (C) Algnu

O (C)

Algaug
E0

(C) Algnu
E0

(C).

forgaug
O

∼

forgOnu

I0

∼

(6.1.0.6)
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Proof. — The associated monad of the monadic adjunction in Proposition 6.1.0.9
is equivalent to the monad forgOnu ◦ freeOnu , see Remark 5.3.2.13. See also [HA,
Proposition 7.3.4.5].

6.1.0.11. Notation. — In the situation of Corollary 6.1.0.10, we denote the functor
left adjoint to forgaug

O by freeaug
O . The upper horizontal equivalence in (6.1.0.6) is

denoted by
AO : Algnu

O (C)
∼
⇄ Algaug

O (C) : IO
On the underlying objets AO is given by the inverse

A0 : C ≃ Algnu
E0

(C)→ Algaug
E0

(C) , X 7→ X ⊕ 1C.

to the functor I0.

6.1.0.12. Remark. — Let L be a unital ∞-cooperad with values in Ho. In the
same way, one can construct the augmentation ideal functor ĨL : coAlgaug

L (C) → C

functor, which is right adjoint to the trivial augmentation functor ÃL. By the same
arguments this adjunction induces an equivalence

IL : coAlgaug
L (C) ⇄ coAlgnu

L (C) : AL

of ∞-categories.

6.1.0.13. Theorem. — Let D be a symmetric monoidal ∞-category admitting
geometric realisations of simplicial objects and totalisations of cosimplicial objects.
Then for every natural number n ≥ 1, we obtain the following statements:

(i) There exists a cocontinuous functor, called the iterated Bar construction,

Barn : Algaug
En

(D)→ Algaug
E0

(D).

(ii) Under the equivalence

Algaug
En

(D) ≃
(
AlgEn

(D)
)

/1D
≃ AlgEn

(D/1D
),

the functor Barn is equivalent to the composition

Algaug
En

(D) ≃ Algaug
E1

(
AlgEn−1(D)

)
Bar1−−−→ Algaug

En−1
(D) Barn−1−−−−−→ Algaug

E0
(D).

(iii) The functor Barn induces an adjunction

Barn : Algaug
En

(D) ⇄ coAlgaug
En

(D) : Cobarn .

Assume now that for every weakly contractible simplicial set K, the ∞-category D ad-
mits K-indexed colimits and the symmetric monoidal product of D preserves K-colimits
in each variable. Then we have

(iv) for every object X ∈ Algaug
E0

(D) an equivalence

Barn

(
freeaug

En
(X)

)
≃ Σn

Algaug
E0

(D)(X).
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Assume furthermore that D is stable, then
(v) we have the following commutative diagram of ∞-categories:

Algnu
En

(D) Algaug
En

(D)

D Algaug
E0

(D)

AEn

∼

Σn
D◦ indecEnu

n
Barn

A0
∼

(6.1.0.7)

Proof. — See [HA, §5.2].

6.1.0.14. Corollary. — The functor Bn : Algnu
En+1

(C) → Algnu
En

(C) from dia-
gram (6.1.0.5) is equivalent to the following composition

Algnu
En+1

(D)
AEn−−−→ Algaug

En+1
(C) ≃ Algaug

E1

(
AlgEn

(C)
) Bar1−−−→ Algaug

En
(C)

IEn−−→ Algnu
En

(D).

In other words, under the equivalence between the augmented and the non-
unital En-algebras, we can regard Bn as the Bar construction.

Proof. — Using the commutative diagram (6.1.0.7) one can check that the composition
also fits in the upper row of diagram (6.1.0.5).

6.1.0.15. Theorem (Knudsen). — For every spectral Lie algebra L ∈ AlgLie(C),
the object (A0 ◦ indecLie)(Ωn

Lie(L)) ∈ C admits the structure of an augmented En-algebra
and the functor Un satisfies

forgEn
(AEn

◦Un) ≃ (A0 ◦ indecLie) (Ωn
Lie(L)).

Proof. — See [Knu18, Theorem A and Theorem B].

6.1.0.16. Situation. — From now on we consider AlgLie(C) as a pointed symmetric
monoidal ∞-category where the symmetric monoidal structure is cartesian. The zero
object of AlgLie(C) is the zero object 0C of C equipped with the trivial Lie algebra
structure. It is also the symmetric monoidal unit of AlgLie(C). Thus we obtain
equivalences

Algaug
E0

(AlgLie(C)) ≃ AlgLie(C)

Algaug
En

(AlgLie(C)) ≃ AlgEn
(AlgLie(C))

of ∞-categories.

6.1.0.17. — Fix a prime number p and recall the p-local telescope spectrum T(h) of
height h from ¶1.2.0.13. In our later application we show that the functor

indec+
Lie := A0 ◦ indecLie : AlgLie(C)→ C

∼−→ Algaug
E0

(C)

is symmetric monoidal, if C is the ∞-category SpT(h) of T(h)•-local spectra with
the standard symmetric monoidal structure of spectra, see Proposition 6.2.2.9. Fur-
thermore, we conjecture that the functor indec+

Lie is symmetric monoidal for any
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presentable stable symmetric monoidal ∞-category C. Assuming that this conjecture
holds, the functor indec+

Lie induces a functor

indec+,n
Lie : AlgEn

(AlgLie(C))→ AlgEn

(
Algaug

E0
(C)
)
≃ Algaug

En
(C)

for every natural number n. Then this would give an equivalence

Un ≃ IEn
◦ indec+,n

Lie (6.1.0.8)

of functors. In the following we explain some steps towards showing that the func-
tor indec+

Lie is symmetric monoidal, and prove the equivalence (6.1.0.8) assuming the
conjecture. In later sections we will specialise to the situation of T(h)•-local spectra.

6.1.0.18. Chevalley–Eilenberg functor. — Recall that the indecomposable
functor indecLie factors through the ∞-category coAlgnu,ndp

Com (C) of nilpotent divided
power non-unital cocommutative coalgebras:

AlgLie(C) C

coAlgnu,ndp
Com (C)

indecLie

BarLie forgCom

by Proposition 5.3.2.4, since we have the Koszul duality Bar(Lie)∨ ≃ Comnu. In [Heu]
Heuts defines a product-preserving natural transformation

forgnil : coAlgaug,ndp
Com → coAlgaug,dp

Com (C)

where one should think of the target∞-category as follows: an object in coAlgaug,dp
Com (C)

is an object of C together with a “comultiplication”

X →
∞∏

r=0

(
X⊗r

)
Sr
.

The functor forgnil is induced by the natural transformation
∞∐

r=0

(
(−)⊗r

)
Sr
→

∞∏
r=0

(
(−)⊗r

)
Sr
.

The Chevalley–Eilenberg functor is defined as the composition

CE: AlgLie(C) BarLie−−−−→ coAlgnu,ndp
Com

∼−→ coAlgaug,ndp
Com

forgnil−−−−→ coAlgaug,dp
Com (C).

Denote forgaug,dp
Com : coAlgaug,dp

Com (C) → C. Then we obtain the following equivalence
of functors.

forgaug,dp
Com ◦CE ≃ AC ◦ indecLie

Therefore, to prove that indec+
Lie ≃ AC ◦ indecLie is symmetric monoidal, one

can show that CE preserves products, that the ∞-category coAlgaug,dp
Com (C) admits a

cartesian monoidal structure and that forgaug,dp
Com is symmetric monoidal.
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6.1.0.19. Proposition. — Let n ∈ N be a natural number. The n-fold loop func-
tor Ωn

Lie of the ∞-category AlgLie(C) admits the following factorisation:

AlgLie(C) AlgLie(C)

AlgEn
(AlgLie(C)) .

Ωn
Lie

Ω̃
n

Lie
forgEn

(6.1.0.9)

Furthermore, the functor Ω̃
n

Lie is an equivalence of ∞-categories.

Proof. — This is a consequence of the following more general results Proposi-
tions 6.1.0.20 and 6.1.0.21

6.1.0.20. Proposition. — Let D be a pointed ∞-category admitting small limits.
Consider D as a cartesian symmetric monoidal ∞-category. For n ∈ N denote
the n-fold iterated loop functor on D by Ωn

D.
Then the object Ωn

D(X) is an En-algebra in D, for every object X ∈ D.

Proof. — Consider the pointed ∞-groupoid S0 modelled by the (pointed) zero di-
mensional sphere. For every object X ∈ Dop, consider the pointed constant func-
tor cX : S0 → D sending the remaining vertex of S0 to X. Since Ho∗ is the free pointed
∞-category generated by S0 under small pointed colimits, we obtain an induced func-
tor (X−)op : Ho∗ → Dop by (the ∞-categorical) left Kan extension, illustrated by the
following diagram

S0 Dop

Ho∗ ≃ Funred ((S0)op,Ho∗
)
,

cX

(X−)op

of ∞-categories, where Funred(−,−) denotes the full ∞-subcategory of functors that
preserves zero objects.(1)

By construction the functor (X−)op preserves small colimits. Denote the induced
functor Hoop

∗ → D by X−. Then X− preserves small limits. By definition of the
left Kan extension the evaluation XY is equivalent to the limit in C of the constant
diagram Y → C sending every vertex of Y to the object X. Thus X− is symmetric
monoidal with respect to the cocartesian symmetric monoidal structure on Hoop

∗ and
the cartesian symmetric monoidal structure on D, see [HA, Corollary 2.4.1.8]. In
particular, we obtain the following functor induced by X−, for every n ∈ N:

coAlgEn
(Ho∗)op ≃ AlgEn

(Hoop
∗ )→ AlgEn

(D),

(1)For more details about the ∞-categorical Kan extension, see [HTT, §4.3]
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Note that the n-dimensional sphere Sn is a En-coalgebra, see [MW19] and [KSV97].
Thus the object XSn admits the structure of a En-algebra. We complete the proof by
observing that

X ≃ (XS0
)op and Ωn

D(X) ≃ XSn

for every n ≥ 1, because (X−)op preserves small colimits and Sn ≃ Σn
Ho∗

(S0).

6.1.0.21. Proposition. — Let O be a non-unital ∞-operad with values in C. Con-
sider AlgO(C) as a symmetric monoidal ∞-category equipped with the cartesian sym-
metric monoidal structure. For n ∈ N the n-fold loop functor Ωn

O on AlgO(C) admits
the following factorisation

AlgO(C) AlgO(C)

AlgEn
(AlgO(C)) .

Ωn
O

Ω̃
n

O
forgEn

Moreover, we have that
(i) The functor Ω̃

n

O admits a left adjoint, which is equivalent to the Bar construc-
tion Barn from Theorem 6.1.0.13.(i).

(ii) The adjunction Barn ⊣ Ω̃
n

O exhibits an equivalence

AlgO(C) ≃ AlgEn
(AlgO(C))

of ∞-categories.

Proof. — The n = 0 case holds because C is pointed. We consider the n ≥ 1 case in
the following.

We obtain the factorisation from Proposition 6.1.0.20 and the functor Ω̃
n

O admits a
left adjoint by construction.

To see (i), note that the functor Ω̃
n

O is equivalent to the Cobar construction

Cobarn : coAlgEn
(AlgO(C)) ≃ AlgO(C)→ AlgEn

(AlgO(C))

from Theorem 6.1.0.13.(iii). Indeed, recall that the symmetric monoidal structure
on AlgO(C) is assumed to be cartesian. Thus for every n ≥ 1 we have

coAlgEn
(AlgO(C)) ≃ coAlgE1 (AlgO(C)) ≃ C

by [HA, Example 3.2.4.4] and [HA, Proposition 2.4.3.9]. Moreover, by [HA, Exam-
ple 5.2.2.4], we have in this case

(forgEn
◦Cobarn)(X) ≃ Ωn

O.

Therefore, the left adjoint to Ω̃
n

O is equivalent to Barn.
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As for (ii), we consider the following diagram

AlgEn
(AlgO(C)) AlgO(C)

C C

Barn

forgO ◦ forgEn
forgO

Ω̃
n

O

Σn
C

freeO

Ωn
C

(6.1.0.10)

where the straight arrows commute among each other and the curved arrows commute
among each other. We show that the unit and counit of the (Barn ⊣ Ω̃

n

O)-adjunction
are both equivalences.

Since the forgetful functors are conservative, it suffices to show that

forgO ◦ forgEn
→ forgO ◦ forgEn

◦Ω̃
n

O ◦ Barn, and

forgO ◦Barn ◦Ω̃
n

O → forgO

are equivalences. Both of these equivalences follow if we provide an equivalence

forgO ◦Barn ≃ Σn
C◦ forgO ◦ forgEn

, (6.1.0.11)

which indeed holds by the following arguments:
(i) It suffices to show this for n = 1 because Barn is n-fold iterated Bar construc-

tion (see Theorem 6.1.0.13).
(ii) The forgetful functors commute with geometric realisations, and Bar1(X) is

equivalent to the geometric realisation of Bar(0C, forgEn
(X),0C) in AlgO(C).

(iii) Consider C as a cocartesian symmetric monoidal ∞-category. By [HA, Corol-
lary 2.4.3.10] we have an equivalence C ≃ AlgE∞

(C) of ∞-categories. Moreover,
the geometric realisation of Bar

(
0C, (forgO ◦ forgEn

)(X),0C

)
becomes equiva-

lent to the Bar construction of the commutative algebra (forgO ◦ forgEn
)(X)

in C. Therefore, we obtain the equivalence in C

lim−→
(
Bar

(
0C, (forgO ◦ forgEn

)(X),0C

))
≃ ΣC((forgO ◦ forgEn

)(X)).

by [HA, Example 5.2.2.4].

6.1.0.22. Proposition. — Recall the notations from ¶6.1.0.17. Assume that the
functor indec+

Lie is symmetric monoidal. Let Un,+ be the composition

AlgLie(C) Ω̃
n

Lie−−−→ AlgEn
(AlgLie(C))

indec+,n
Lie−−−−−→ Algaug

En
(C).

Then there exists the following equivalence of functors:

Un ≃ IEn
◦Un,+ .
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Proof. — It suffices to check that the evaluation of the two functors on free spectral
Lie algebras are equivalent, by [HA, Proposition 4.7.3.14], i.e. IEn ◦Un,+ also fits in
the upper row of the diagram (6.1.0.4). Equivalently by adjunction, we show that the
right adjoint of IEn

◦Un,+ fits in the upper row in the commutative diagram (6.1.0.3).
The functor right adjoint to the symmetric monoidal functor indec+

Lie is

triv+
Lie := trivLie ◦ I0,

which is lax symmetric monoidal by [HA, Corollary 7.3.2.7]. Thus, it also induces a
functor triv+,n

Lie which is the right adjoint to indec+,n
Lie . An inverse of Ω̃

n

Lie is given by
the Bar construction Barn, see Proposition 6.1.0.19. Thus, we obtain the following
commutative diagram

Algnu
En

(C) Algaug
En

(C) AlgEn
(AlgLie(C)) AlgLie(C)

C Algaug
E0

(C) C C,

AEn

≃

forgnu
En

triv+,n
Lie

forgaug
En

Barn

forg forgLie

A0 I0 Σn
C

(6.1.0.12)

where the composition Barn ◦ triv+,n
Lie ◦AEn of the functors in the upper row is right

adjoint to IEn ◦Un,+. The diagram (6.1.0.12) commutes because all the three small
squares commutes:

(i) The first square commutes by Corollary 6.1.0.10,
(ii) The second commutes because triv+

Lie is lax monoidal, and
(iii) The third square commutes by (6.1.0.11).

6.1.0.23. Notation. — Let Tn,+ := Barn ◦ triv+,n
Lie denote the right adjoint to Un,+.

The right adjoint Tn to Un is given by Tn ≃ Tn,+ ◦AEn
.
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6.2. Spectral Lie algebras in monochromatic layers

Let h be a natural number. For the rest of this chapter we explain the behaviour of
the adjunction

U∞ : AlgLie(SpT(h)) ⇄ lim←−
n

Algnu
En

(SpT(h)) : T∞, (6.2.0.1)

where SpT(h) is the∞-category of T(h)•-local spectra, induced by the diagram (6.1.0.1)
when C = SpT(h). In this section we focus mainly on the h = 0 case; recall that SpT(0)
is the ∞-category SpQ of rational spectra. Using the formality theorem of the
rational En ∞-operads we show that the above adjunction exhibits an equivalence
between AlgLie(SpQ) and lim←−n

Algnu
En

(SpQ), see Theorem 6.2.1.17. We can not find a
written account of this theorem in the literature, but the result is probably known
to the experts. In §6.2.2 we record some prerequisites about the ∞-category SpT(h)
for h ≥ 1, as a preparation for later applications.

6.2.1. Lie algebras and En-algebras in characteristic 0. — The goal of this
subsection is to show that the functor U∞ in (6.2.0.1) is an equivalence of∞-categories
when h = 0. We begin by recalling some basic notions from the theory of de-
rived ∞-categories.

6.2.1.1. Situation. — Let R be a commutative ring. Denote the (ordinary) category
of chain complexes of R-modules by ChR. The category ChR admits a projective model
structure where the weak equivalences are quasi-isomorphisms and the fibrations are
degree-wise surjective morphisms of chain complexes, see [HA, Proposition 7.1.2.8].(2)

LetA• andB• be two objects of ChR. The tensor productA⊗B is a chain complex with

(A⊗B)n = ⊕p+q=n(Ap ⊗R Bq),

see [HA, Remark 1.2.3.21]. With these structures ChR becomes a symmetric monoidal
combinatorial model category, see [HA, Proposition 7.1.2.11]. Furthermore, ChR

is a simplicial enriched category by the Dold–Kan correspondence, see [HA, Con-
struction 1.3.1.13], but it is not a simplicial model category with the prescribed
model structure, see [HA, Warning 1.3.5.4]. Let Ch◦

R denote the full subcategory of
cofibrant objects (which are by definition also fibrant) of ChR. Denote the set of
quasi-isomorphisms in Ch◦

R by W ◦.

6.2.1.2. Definition. — In Situation 6.2.1.1 define the derived ∞-category D(R) as
the underlying ∞-category N(Ch◦

R)[(W ◦)−1] of the model category ChR, where N
denotes the nerve of an ordinary category.

(2)A morphism of chain complexes is a quasi-isomorphism if it induces an isomorphism on homology
groups in every degree.
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6.2.1.3. Remark. — One can also define D(R) equivalently as a localisation of
the ∞-category of the differential graded nerve of ChR, see [HA, Definition 1.3.5.8,
Proposition 1.3.5.15].

6.2.1.4. Proposition. — In Situation 6.2.1.1 the ∞-category D(R) is a presentable
stable symmetric monoidal ∞-category.

Sketch. — We outline the ideas and references of the proof. The symmetric monoidal
structure inherits from the symmetric monoidal structure of ChR (and thus Ch◦

R),
see [HA, Example 4.1.7.6]. The ∞-category D(R) is a ∞-subcategory of the stable
∞-category of differential graded nerve of ChR, see [HA, §1.3.1], which implies the
stability of D(R), see [HA, Proposition 1.3.5.9]. The presentability of D(R) is proven
using the following three ingredients [HA, Proposition 1.3.4.22]:

(i) Every combinatorial model category C is Quillen equivalent to a simplicial
combinatorial model category C̃, see [HA, Corollary 1.2].

(ii) Under the categorical equivalence from (i), the underlying ∞-category of C
[HA, Definition 1.3.4.15] and the underlying ∞-category of C̃ are equivalent as
∞-categories, see [HA, Theorem 1.3.4.20].

(iii) The underlying ∞-category of a combinatorial simplicial model category is
presentable, see [HTT, Proposition 3.7.6].

6.2.1.5. Proposition. — Let R be a commutative ring. There exists a symmet-
ric monoidal functor SingR : Ho → D(R) in PrL sending a homotopy type X to
its R-valued singular chains SingR(X).

Proof. — Recall that HR denotes the Eilenberg–MacLane spectrum with πst
• (HR) ∼= R.

Consider the following sequence

F : Ho
Σ∞

+−−→ Sp −⊗HR−−−−→ModHR
∼−→ D(R)

of symmetric monoidal functors in PrL where
(i) ModHR denotes the ∞-category of HR-modules, and
(ii) the third equivalence is given by [HA, Theorem 7.1.2.13].

The R-valued singular chain functor SingR(−) is symmetric monoidal (Eilenberg–Zilber
theorem), and it preserves small colimits. Thus it is equivalent to the functor F .

6.2.1.6. Corollary. — The functor SingR(−) in Proposition 6.2.1.5 induces the
following functor

SingR : Opd (Ho)→ Opd(D(R)).

of the ∞-categories of ∞-operads.

Proof. — This is by Proposition 5.2.5.1 and Remark 5.2.5.2
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6.2.1.7. Proposition. — Let O be an ∞-operad. The functor SingR induces the
following equivalence of ∞-categories:

AlgO (D(R)) ≃ AlgSingR(O) (D(R)) .

Proof. — This is a corollary of Theorem 5.2.5.5 and Proposition 6.2.1.5.

6.2.1.8. Construction. — Let k be a field. The graded homology of a k-valued
chain complex can be regarded as a chain complex with zero differentials. The
homology functor H•(−) : D(k) → D(k) is symmetric monoidal, by the Künneth
Theorem. By Proposition 5.2.5.1 and Remark 5.2.5.2 it induces a functor H•(−) on
the ∞-category of ∞-operads with values in D(k).

Let O be an∞-operad. We denote the induced∞-operad H• (Singk(O)) with values
in D(k) by H•(O; k). In particular, for every r ≥ 0, we have an isomorphism

H•(O; k)(r) ∼= H•(O(r); k)

of graded k-vector spaces.

6.2.1.9. Definition. — Let k be a field and let O be an ∞-operad with values
in D(k).

(i) We say O is formal if there exists an equivalence O ≃ H•(O) in Opd (D(k)).
(ii) Let f : O→ P be a morphism of∞-operads with values in D(k), where O and P

are formal. We say f is formal if there exists a commutative diagram

O H•(O; k)

P H•(P; l)

f

≃

f∗

≃

of ∞-operads with values in D(k).

6.2.1.10. Rectification. — In the following we will use results about En-algebras
which were proven in a model category of En-algebras in chain complexes over a field of
characteristic 0. Thus we need the following rectification theorem by Haugseng [Hau19].

Let k be a field of characteristic 0. For an operad O with values in the model
category Chk with the projective model structure, there exists an equivalence

(AlgO (Chk)) [W−1] ≃ AlgO(D(k))

of ∞-categories where
(i) AlgO (Chk) denotes the model category of O-algebras in Chk with an induced

model structure by the model structure of Chk.
(ii) W denotes the set of weak equivalences in the model category AlgO (Chk), and
(iii) O denotes the (arity-wise) image of O under the localisation Chk → D(k).
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In [Hau19] Haugseng uses another model for ∞-operads with values in a symmetric
monoidal ∞-category than ours, see [Hau19, Theorem 4.10, Corollary 4.11]. However,
the associated monads of his∞-operads are equivalent to ours. Thus, the the associated
∞-category of O-algebras are also equivalent.

6.2.1.11. Theorem (Fresse–Willwacher). —
(i) The ∞-operad SingQ(En) with values in D(Q) is formal, for every n ≥ 0.
(ii) Let in+k

n : En → En+k denote the composition of the morphisms

En → En+1 → · · ·En+k

of ∞-operads in (5.2.5.1). For every n ≥ 0 and every k ≥ 2, the induced
morphism SingQ

(
in+k
n

)
in Opd (D(Q)) is formal.

Proof. — See [FW20, Theorem B’ and Theorem D’]

6.2.1.12. Proposition. — Recall the commutative∞-operad ComD(Q) ∈ Opd (D(Q))
from Example 5.2.5.11.

(i) For every natural number n, there exist morphisms ιc : ComD(Q) ↪→ H• (En;Q)
and πc : H• (En;Q) ↠ ComD(Q) of ∞-operads with values in D(Q). For ev-
ery n ≥ 2, we have πc ◦ ιc = id.

(ii) For every n ≥ 1, there exists the following commutative diagram

H•(En;Q) ComD(Q)

H•(En+1;Q) ComD(Q)

(in+1
n )∗

π

id

ι

of ∞-operads with values in D(Q).

Proof. — This is a translation of Theorem 5.1.0.25 to ∞-categorical language.

6.2.1.13. Corollary. — For every n ≥ 0 and every k ≥ 2, the induced
map SingQ(in+k

n ) of ∞-operads with values in D(Q) factors through the commutative
∞-operad ComD(Q). More precisely, there exists the commutative diagram

SingQ (En) H•(En;Q) ComD(Q)

SingQ (En+k) H•(En+k;Q) ComD(Q) .

(in+k
n )∗

∼

(in+k
n )∗

π

id

∼
ι

of ∞-operads with values in D(k).

Proof. — This is follows from Theorem 6.2.1.11 and Proposition 6.2.1.12.
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6.2.1.14. Remark. — If we replace all the ∞-operads in Proposition 6.2.1.12 and
Corollary 6.2.1.13 by their non-unital versions, the statements still hold and the proof
are the same.

6.2.1.15. Notation. — Let LieQ denote the ∞-operad with values in D(Q) which
is defined as follows: Recall that there exists a unique symmetric monoidal func-
tor F : Sp → D(R) in PrL. It induces a functor F : Opd(Sp)→ Opd(D(Q)). The
∞-operad LieQ is the image of the spectral Lie ∞-operad Lie under the functor F .

By ¶5.3.3.7 the ∞-operad LieQ is Koszul dual to the non-unital cocommutative
∞-cooperad Comnu

D(Q).

6.2.1.16. Corollary. — For every n ≥ 0 and every k ≥ 2, the Koszul dual morphism

SingQ(cn+k
n ) : Σ−(n+k)SingQ (En+k)→ Σ−nSingQ (En)

of SingQ(in+k
n ) factors through LieQ. More precisely, there exists the following com-

mutative diagram
Σ−nSingQ (Enu

n ) LieQ

Σ−n−kSingQ
(
Enu

n+k

)
LieQ

(cn+k
n )∗ id

of ∞-operads with values in D(Q).

Proof. — We apply the Koszul duality functor to the outer commutative diagram
in Corollary 6.2.1.13.

6.2.1.17. Theorem. — The cocontinuous functor

U∞ : AlgLie
(
SpQ

)
→ lim←−Algnu

En

(
SpQ

)
in the adjunction (6.2.0.1) is an equivalence.

Proof. — It is equivalent to show that

U∞ : AlgLie (D(Q))→ lim←−
n

AlgEn
(D(Q))

is an equivalence under the equivalence SpQ ≃ModHQ ≃ D(Q) of symmetric monoidal
∞-categories. Throughout the whole proof we also use the identifications

AlgLie(D(R)) ≃ AlgLieQ(D(R))

by Notation 6.2.1.15 and

AlgO(D(R)) ≃ AlgSingQ(O)(D(R))

for an ∞-operad O ∈ Opd(Ho) by Proposition 6.2.1.7.
Recall that the functor Bn : AlgEn

(D(Q))→ AlgEn−1 (D(Q)) with n ∈ N in the
inverse limit diagram is induced by the morphisms cn+1

n : Σ−(n+1)En+1 → Σ−nEn of
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∞-operads (see (6.1.0.2)). Abbreviate the left adjoint to the induced functor (cn+1
n )∗

on algebras by c!. Denote the composition Bn+k ◦Bn+k−1 ◦ · · · ◦ Bn+1 by Bn+k,n.
By Corollary 6.2.1.16, we obtain the following commutative diagrams

Algnu
En+k

(D(Q)) Algnu
En

(D(Q))

Algnu
Σ−n−kEn+k

(D(Q)) Algnu
Σ−nEn

(D(Q))

AlgLie(D(Q)) AlgLie(D(Q)).

≃

Bn+k,n

c!

≃

id

of∞-categories, for every n ≥ 0 and every k ≥ 2. This gives the commutative diagram
of ∞-categories below:

· · · Algnu
En+2

(D(Q)) Algnu
En

(D(Q)) · · · Algnu
E0

(D(Q))

· · · AlgLie (D(Q)) AlgLie (D(Q)) · · · Algnu
E0

(D(Q)) .

Bn+2,n Bn,n−2 B2,0

id

id id id id

Therefore, the inverse limit of the upper row is equivalent to the inverse limit of lower
horizontal rows, and the latter is equivalent to AlgLie (D(Q)) because the diagram
becomes constant after the first arrow.

6.2.1.18. — Let C be the derived ∞-category D(k) of a field k of characteristic 0.
Then we can also interpret the diagram (6.1.0.1) in terms of deformation theory
and formal moduli problems, see [CG21; DAGX; BM23a] for an introduction for
some introductions for the relationship between Koszul duality and deformation
theory. It is shown in [DAGX; Pri10] that the ∞-category Modulik of (commutative)
moduli problems over k is equivalent to the ∞-category AlgLie(D(k)) of spectral Lie
algebras in D(k). Furthermore, the ∞-category ModuliEn,k of En-moduli problems
is equivalent to the ∞-category AlgEn

(D(k)). The ∞-operad inclusion En ↪→ Com
induces a cocontinuous functor Modulik →ModuliEn,k by left Kan extension, which
is equivalent to the functor Un. Therefore, another interpretation of Theorem 6.2.1.17
is that the ∞-category Modulik of commutative formal Moduli problems over k is
equivalent to the inverse limit of the ∞-category ModuliEn,k of En-formal Moduli
problems over k.

Furthermore, the association between formal moduli problems and Lie algebras is
generalised to positive and mixed characteristic situations, see [BM23a]. This might
help with understanding the functor U∞ in the case where C is the ∞-category of
module spectra over a field of positive characteristic.
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6.2.2. Monochromatic layers and homotopy types. — Fix a prime number p
and a natural number h ≥ 1 throughout this subsection. Recall the ∞-category Hovh

of the localisation of Ho at the set of vh-periodic equivalences, see Definition 3.4.0.6.
This ∞-category relates closely with its stable counterpart SpT(h), which is equivalent
to the localisation of the ∞-category Sp(p) of p-local spectra at the set of vh-periodic
equivalences, via spectral Lie algebras. In this short subsection we review this rela-
tionship and document several prerequisites of T(h)•-local spectra for later use. The
main references for this section are [Heu20b] and [Heu21].

6.2.2.1. Theorem (Quillen [Qui69]). — The ∞-category Ho≥2
Q of pointed simply

connected rational homotopy types is equivalent to the ∞-category AlgLie (D(Q))≥1 of
connected differential graded Lie algebras over Q.

6.2.2.2. Remark. — Note that there exists an equivalence

AlgLie (D(Q))≥1 ≃ AlgLie(SpQ)≥1

of ∞-categories.

6.2.2.3. The ∞-category SpT(h). — The construction of the telescope spec-
trum T(h) can be regarded as a generalisation of one construction of the rational
Eilenberg–MacLane spectrum HQ, given by inverting the degree p self-map of the
p-local sphere spectrum, see ¶1.2.0.13. Recall the finite localisation functor

Lf
h : Sp→ Lf

h

(
Sp(p)

)
from ¶3.4.1.1. Let Fh be a (p-local) finite spectrum of type h. The ∞-category SpT(h)
is compactly generated with a generator given by Lf

h(Fh), by the Thick Subcategory
Theorem (see Theorem 1.2.0.9). Note that any vh self-map vh : ΣdFh → Fh becomes
an equivalence Lf

h(vh) in SpT(h), since it is a vh-periodic equivalence.

6.2.2.4. Theorem (Heuts [Heu21]). — There exists an equivalence

Hovh
≃ AlgLie(SpT(h)).

of ∞-categories.

6.2.2.5. — In the proof of the theorem there are the following two main steps.
(i) The Bousfield–Kuhn functor adjunction (see Theorem 3.4.1.6)

Θh : SpT(h) ⇄ Hovh
: Φh

is monadic, see [EHMM19].
(ii) The monad Φ ◦Θ is equivalent to the arity-wise T(h)•-localisation of the

monad TLie associated with spectral Lie ∞-operad, see [Heu21].
Under the equivalence Ho≥2

Q
∼−→ AlgLie (D(Q))≥1 the rational homotopy groups of

a rational homotopy type are isomorphic, up to a degree shift, to the homology
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groups of the underlying chain complex of the corresponding rational differential
graded Lie algebra. The analogy to this in higher height h is given by the following
commutative diagram

Hovh
AlgLie(SpT(h))

SpT(h),

∼
Φ′

h

Φh forgLie

obtained by the monadicity of the adjunction Θh ⊣ Φh: One can “calculate”
the vh-periodic homotopy groups of X ∈ Hovh

from the stable homotopy groups of the
underlying spectrum of the associated spectral Lie algebra Φ′

h(X), see Theorem 3.4.1.5.

6.2.2.6. Stabilisation of an ∞-category. — A functor between ∞-categories is
excisive if it sends pushout diagrams to pullback diagrams (given that both exist in
the source and target ∞-categories, respectively).

Let D be an ∞-category that admits finite limits. The stabilisation Sp(D) of D is
the stable ∞-category

Sp(D) := Exc∗(Hofin
∗ ,D)

of reduced (preserves terminal objects) excisive functors from the ∞-category Hofin
∗ of

pointed finite homotopy types to D, see [HA, §1.4.2].
Let D∗ := Dpt/ denote the ∞-category of pointed objects of D. The forgetful

functor D∗ → D induces an equivalence Sp(D) ≃ Sp(D∗) of their stabilisations, using
the fact that a stable ∞-category is pointed, see [HA, Remark 1.4.2.18]. Moreover,
there is an equivalence

Sp(D∗) ≃ lim←−
(
· · · ΩD−−→ D∗

ΩD−−→ D∗

)
of stable ∞-categories, see [HA, Proposition 1.4.2.24]. Thus, we think of an object
in Sp(D∗) as a sequence (Xn)n≥0 of objects of C such that ΩD(Xn+1) ≃ Xn for
every n ≥ 0. From this we obtain Sp(Ho∗) ≃ Sp.

The stabilisation Sp(D) is equipped with a canonical functor

Ω∞
D : Sp(D)→ D.

Depending on which definitions one uses for the stabilisation, one can consider this
functor either as

(i) the evaluation of an excisive functor at pt ∈ Hofin
∗ , or

(ii) the functor assigning to (Xn)n≥0 the object X0, if D is pointed.
The functor Ω∞

D satisfies the universal property that it is the terminal finite limit
preserving functor from a stable ∞-category to D, see [HA, Corollary 1.4.2.23].

If D is in addition presentable, the functor Ω∞
D admits a left adjoint, denoted by Σ∞

D .
Sometimes we abbreviate Σ∞

D and Ω∞
D by Σ∞ and Ω∞, respectively.
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6.2.2.7. Theorem (Basterra–Mandell, Lurie). — Let O be a non-unital
∞-operad with values in a presentable stable symmetric monoidal ∞-category C.
The (indecO ⊣ trivO)-adjunction (see Example 5.2.4.20) exhibits C as the stabilisation
of the ∞-category AlgO(C) of O-algebras in C, i.e. we can consider indecO ⊣ trivO

equivalently as the (Σ∞
AlgO(C)⊣ Ω∞

AlgO(C))-adjunction.

Proof. — See also [HA, Theorem 7.3.4.7]. We also refer the reader to [Heu20b,
Theorem 4.3] for a sketch of the proof.

6.2.2.8. Stabilisation of Hovh
. — Under the equivalence of Theorem 6.2.2.4 the

two adjunctions

SpT(h)
free
⇄
forg

AlgLie(SpT(h))
indec
⇄
triv

SpT(h)

associated with AlgLie(SpT(h)) correspond to the following two adjunctions

SpT(h)
Θh

⇄
Φh

Hovh

Σ∞
vh

⇄
Ω∞

vh

SpT(h)

associated with Hovh
, where the adjunction Σ∞

vh
⊣ Ω∞

vh
exhibits SpT(h) as the stabilisa-

tion of Hovh
. In particular, we have Σ∞

vh
≃ LT(h) ◦Σ∞

Ho∗
, see [Heu21, §3.3]

6.2.2.9. Proposition. — Recall the augmentation ideal functor I0 from Corol-
lary 6.1.0.10. The functor

indec+
Lie : AlgLie(SpT(h))

indec−−−→ SpT(h)
I0−→ Algaug

E0
(SpT(h))

is symmetric monoidal with respect to the standard symmetric monoidal structure
on SpT(h) and the cartesian monoidal structure on AlgLie(SpT(h)).

Proof. — The functor Σ∞
+,vh

:= LT(h) ◦Σ∞
+ : Hovh

→ SpT(h) is symmetric monoidal
with respect to the cartesian monoidal structure on Hovh

(given by taking the product
of the underlying pointed homotopy types) and the standard symmetric monoidal
structure on SpT(h) given by the smash product of the underlying spectra, because
each functor in the composition does, see [HA, Proposition 2.2.1.9].

Furthermore, we can lift Σ∞
+,vh

to a symmetric monoidal functor

Σ∞
+,vh

: Hovh
→ Algaug

E0
(SpT(h));

every object X ∈ Hovh
is pointed and the functor Σ∞

+,vh
assigns to the canonical

maps pt→ X → pt the following morphisms

LT(h)(S)→
(
LT(h) ◦Σ∞

+
)

(X) ≃
(
LT(h) ◦Σ∞) (X)⊕ LT(h)(S)→ LT(h)(S),

where the T(h)•-local sphere spectrum LT(h)(S) is the symmetric monoidal unit
of SpT(h). In particular, this shows that I0 ◦Σ∞

+,vh
≃ Σ∞

vh
. Under the equiva-

lence Hovh
≃ AlgLie(SpT(h)), the functor Σ∞

+,vh
corresponds to indec+

Lie.
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6.2.2.10. Goodwillie calculus. — Let F : C→ D be a functor where
(i) C admits finite colimits and final objects,
(ii) D admits finite limits and sequential colimits, and
(iii) sequential colimits commute with finite limits in D.

Using the theory of Goodwillie calculus [Goo03], one can construct the following
commutative diagram

F

· · · Pk+1 F Pk F · · · P1 F P0 F ≃ pt

of functors from C to D where the functor Pk F is the best approximation of F
by “k-polynomial” functors for every k ≥ 0. Very informally speaking, one can
consider the lower horizontal tower as an approximation of the functor F , analogue to
the Taylor approximation of a function.

This diagram, or the lower horizontal tower, is known as the Goodwillie tower of F .
In particular, we have

P1(F ) ≃ lim−→
n≥0

Ωn
D◦F ◦ Σn

C,

known as the “linear approximation” of F , see [HA, Example 6.1.1.28]. For C = D

and F = id we see that P1(F ) ≃ Ω∞
C Σ∞

C , which relates closely to the stabilisation of
C. We refer the reader to [Goo03; HA] for a detailed introduction of this theory and
to [Kuh07] for nice applications.

6.2.2.11. Dual Goodwillie calculus of Endofunctors of SpT(h). — Let F be
the functor in ¶6.2.2.10. Because of the hypotheses (i)-(iii) in ¶6.2.2.10, one can not
simply construct a Goodwillie tower of the functor F op : Cop → Dop: For example, the
opposite category Dop does not satisfy the conditions (ii) and (iii) in general.

However, if D is stable and C admits finite limits and initial objects, then F op does
fulfil the hypotheses (i)-(iii) in ¶6.2.2.10. Assume that we work in this situation. Then
the dual Goodwillie tower of F is defined as the Goodwillie tower of F op : Cop → Dop,
illustrated by the commutative diagram in the ∞-category Fun(C,D) below:

P0 F ≃ pt P1 F · · · Pk F Pk+1 F · · ·

F ,
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This is called the dual Goodwillie tower of F . Similarly, we have the following colinear
approximation

P1(F ) ≃ lim←−
n≥0

Σn
C◦F ◦ Ωn

C.

For k ∈ N, we say
(i) F is k-polynomial if Pk F ≃ F , and
(ii) F is k-homogeneous if Pk F ≃ F and Pi F = pt for i ≤ k.
The Dual Goodwillie tower of a functor F : SpT(h) → SpT(h) has particular nice

properties, see [Heu21, §4.1, Appendix B] for more details. We need the following one
lemma for our latter applications.

6.2.2.12. Lemma. — Consider a functor F : SpT(h) → SpT(h) satisfying the follow-
ing property: There exists a sequence (Fj)j≥1 of endofunctors of SpT(h) such that

(i) F ≃
∐∞

j=1 Fj and
(ii) Fj is j-homogeneous for every j ≥ 1.

Then for every k ≥ 1, the natural map
k∐

j=1
Fj → Pk F

is an equivalence of functors.

Proof. — See [Heu21, Lemma 4.6]. The proof uses a “uniform nilpotence” result
for SpT(h), which uses the fact that the Tate construction in SpT(h) vanishes; this does
not hold for a general stable∞-category, not even for Sp, see [Heu21, Lemma B.4].
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6.3. Higher enveloping algebras in positive chromatic heights

We fix a prime number p and a natural number h ≥ 1 throughout this section.
Recall the adjunction (6.2.0.1)

U∞ : AlgLie(SpT(h)) ⇄ lim←−
n

Algnu
En

(SpT(h)) : T∞ .

Based on Theorem 6.2.1.17 and ¶6.2.2.3, we conjecture that U∞ (and thus T∞) is an
equivalence of ∞-categories. In this section we prove that U∞ is fully faithful, which
is original work.

6.3.0.1. Theorem. — The functor

U∞ : AlgLie(SpT(h))→ lim←−Algnu
En

(
SpT(h)

)
is fully faithful.

6.3.0.2. Proof strategy. — We explain our proof strategy first before going into
detailed arguments. To prove the fully faithfulness of U∞, it is equivalent to show
that the unit natural transformation

id→ T∞ ◦U∞

of the adjunction U∞ ⊣ T∞ is an equivalence, i.e. we need to show that the
evaluation L→ (T∞ ◦U∞)(L) is an equivalence for every spectral Lie alge-
bra L ∈ AlgLie(SpT(h)). By [HTT, Proposition 1.2.4.1] it suffices to show that
for every M ∈ AlgLie(SpT(h)), the induced map

MapAlgLie(SpT(h))(M,L)→MapAlgLie(SpT(h))(M, (T∞ ◦U∞)(L)) (6.3.0.1)

on mapping spaces is an equivalence in Ho.
Let Vh be any pointed finite complex of type h. Recall that SpT(h) is generated

under small colimits by the Lf
h Σ∞Vh, see ¶6.2.2.3. Furthermore, every spectral Lie

algebra is equivalent to a sifted colimit of free spectral Lie algebras. Thus, to verify
that (6.3.0.1) is an equivalence for every spectral Lie algebra M , it suffices to prove it
for M = freeLie(Lf

h Σ∞Vh). Using series of adjunctions and that T∞ ◦U∞ preserves
finite limits (Proposition 6.3.0.8), we reduce the problem to proving that there exists
an equivalence

LVh
∼−→ (T∞ ◦U∞)

(
LVh

)
(6.3.0.2)

for every L ∈ AlgLie(SpT(h)), where LVh denotes the limit of the constant dia-
gram Vh → AlgLie(SpT(h)) sending every vertex of Vh to L (Proposition 6.3.0.6).
As the last step, we choose a finite complex V of type h which admits a vh self-map
and show that (6.3.0.2) is an equivalence in the case Vh = V (Proposition 6.3.0.13),
using the fact that LV is a trivial spectral Lie algebra (Corollary 6.3.0.12).
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6.3.0.3. Proposition. — The functor U∞ is fully faithful if and only if there exists
an equivalence T∞ ◦U∞ ≃ id of functors.

Proof. — See [JohSE, Lemma 1.1.1].

6.3.0.4. Situation. — Let V be a finite complex of type h together with
a vh self-map v : ΣdV → V .

6.3.0.5. Definition. — For L ∈ AlgLie(SpT(h)), define the T(h)•-local spectral Lie
algebra LV as the limit of the constant diagram V → AlgLie(SpT(h)) sending every
point of V to L.

By construction the endo-functor (−)V of AlgLie(SpT(h)) is right adjoint to the
copower functor V ⊗ (−), which assigns to an object L ∈ AlgLie(SpT(h)) the col-
imit V ⊗ L of the just-mentioned constant diagram V → AlgLie(SpT(h)).

6.3.0.6. Proposition. — Consider unit natural transformation η : id→ T∞ ◦U∞

of the adjunction U∞ ⊣ T∞. The following statements are equivalent:
(i) The natural transformation η is an equivalence of functors.
(ii) The natural transformation η induces the equivalence

(T∞ ◦U∞)((−)V ) ≃ (−)V .

of functors below

6.3.0.7. — Recall the notations from §6.1. The (U∞ ⊣ T∞)-adjunction is induced
by the adjunctions Un ⊣ Tn where, for every n ≥ 1,

Un : AlgLie(SpT(h))→ Algnu
En

(SpT(h))

L 7→ (IEn
◦ indec+,n

Lie ◦Ω̃
n

Lie)(L)

Tn : Algnu
En

(SpT(h))→ AlgLie(SpT(h))

Kn 7→ (Barn ◦ triv+,n
Lie ◦AEn

)(Kn),

by Proposition 6.1.0.22, since we showed in Proposition 6.2.2.9 that the functor indec+
Lie

is symmetric monoidal. Denote the right adjoint to the “non-unital” Bar construc-
tion Bn by Cn, see Corollary 6.1.0.14. The family of natural transformations

Tn+1 ◦Un+1 → Tn+1 ◦(Cn+1 ◦Bn+1) ◦Un+1 → Tn ◦Un

for n ≥ 0 induces an equivalence

T∞ ◦U∞ ≃ lim←− (Tn ◦Un)

≃ lim←−
n

(
Barn ◦ trivn,+

Lie ◦ indecn,+
Lie ◦Ωn

Lie
)

of functors, where the limits are taken in∞-category of endofunctors of AlgLie(SpT(h))
and the first equivalence holds by the universal property of the limit.
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To prove Proposition 6.3.0.6, we need to use the following property of the func-
tor T∞ ◦U∞.

6.3.0.8. Proposition. — The functor T∞ ◦U∞ preserves finite limits.

6.3.0.9. Notation. — In the proof of Proposition 6.3.0.8, we make the following
simplification of notations.

(i) Abbreviate the forgetful functor forgEn
by forgn.

(ii) Abbreviate the trivial augmentation AEn
and augmentation ideal IEn

functor
by An and In, respectively.

(iii) Abbreviate the suspension and loop functor of SpT(h) by Σ and Ω, respectively.
(iv) For m,n ∈ N ∪ {∞} with m > n, let forgm

n denote the forgetful functor

AlgEm
(D)→ AlgEn

(D).

for a symmetric monoidal∞-category D, induces by the morphism imn : En → Em

of ∞-operads.
(v) Recall the n-fold loop functor

Ωn
Lie : AlgLie(SpT(h))→ AlgLie(SpT(h))

and its factorisation

Ω̃
n

Lie : AlgLie(SpT(h))→ AlgEn

(
AlgLie(SpT(h))

)
from Proposition 6.1.0.19. In particular, we have

Ωn
Lie= forgn ◦Ω̃

n

Lie.

Proof of Proposition 6.3.0.8. — Since the forgetful functor forgLie is conservative, it
suffices to prove that the composition

forgLie ◦T∞ ◦U∞ : AlgLie(SpT(h))→ SpT(h)

preserves finite limits. Moreover, it is then equivalent to show that forgLie ◦T∞ ◦U∞

preserves the zero object and commutes with the loop functors, because the target
∞-category is stable, see [HTT, Corollary 4.4.2.5] and [Heu21, Lemma 3.9].

Since every single functor in the composition preserves the zero object, the compo-
sition also does. We write the functor forgLie ◦T∞ ◦U∞ explicitly as

forgLie ◦T∞ ◦U∞ ≃ forgLie ◦ lim←−
n

(Tn ◦Un)

≃ lim←−
n

((forgLie ◦Tn) ◦Un)

≃ lim←−
n

(
Σn◦ forgnu

En
◦Un

)
≃ lim←−

n

(
Σn◦ forgnu

En
◦ In ◦ indecn,+

Lie ◦Ω̃
n

Lie

)
(6.3.0.3)
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where the second equivalence holds because forgLie commutes with small limits, and
the third equivalence holds by (6.1.0.3). For every L ∈ AlgLie(SpT(h)), we obtain

(forgLie ◦T∞ ◦U∞)(ΩLie(L))

≃ lim←−
n

(
Σn◦ forgnu

n ◦ In ◦ indec+,n
Lie ◦Ω̃

n

Lie

)
(ΩLie(L))

(a)
≃ lim←−

n

(
Σn◦ forgnu

n ◦ In ◦ indec+,n
Lie ◦ forgn+1

n ◦Ω̃
n+1
Lie

)
(L)

(b)
≃ lim←−

n

(
Σn◦ forgnu

n ◦ In ◦ forgn+1
n ◦ indec+,n+1

Lie ◦Ω̃n+1
Lie

)
(L)

(c)
≃ Ω

(
lim←−

n

(
Σn+1◦ forgnu

n+1 ◦ In+1 ◦ indec+,n+1
Lie ◦Ω̃

n+1
Lie

)
(L)
)

≃Ω((forgLie T∞ U∞)(X)) .

The equivalence (a) holds because of the equivalence

forgn+1
n ◦Ω̃

n+1
Lie ≃ Ω̃

n

Lie ◦ forg1 ◦Ω̃Lie,

since every functor here is a right adjoint. The equivalence (b) holds because the
functor indec+

Lie is symmetric monoidal, and thus induces the following commutative
diagram

AlgEm

(
AlgLie(SpT(h))

)
AlgEm

(
Algaug

E0
(SpT(h))

)
≃ Algaug

Em

(
SpT(h)

)

AlgEn

(
AlgLie(SpT(h))

)
AlgEn

(
Algaug

E0
(SpT(h))

)
≃ Algaug

En

(
SpT(h)

)
,

indec+,m
Lie

forgm
n forgm

n

indec+,n
Lie

for every m,n ∈ N ∪ {∞} with m > n. The equivalence (c) holds by

forgnu
n ◦ In ◦ forgn+1

n ≃ forgnu
n+1 ◦ In+1,

following from Corollary 6.1.0.10.

6.3.0.10. Corollary. — For every spectral Lie algebra L ∈ AlgLie(SpT(h)), there
exists an natural equivalence

(T∞ U∞)(LV ) ≃ ((T∞ U∞)(L))V

of spectral Lie algebras.

Proof. — The object LV is obtained by a finite limit construction.

Proof of Proposition 6.3.0.6. — It is obvious that (i) implies (ii). We show that (ii)
implies (i). Abbreviate the mapping space MapAlgLie(SpT(h)) by MapLie in this proof.
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As we explained in ¶6.3.0.2, it suffices to prove that the unit natural transformation
of the adjunction U∞ ⊣ T∞ induces an equivalence

MapLie

(
freeLie

(
Lf

h Σ∞V
)
, L
)

MapLie

(
freeLie

(
Lf

h Σ∞V
)
, (T∞ ◦U∞)(L)

)≃ (6.3.0.4)

for every L ∈ AlgLie(SpT(h)). Then we have

MapLie

(
freeLie

(
Lf

h Σ∞V
)
, L
)

≃MapSpT(h)

(
Lf

h Σ∞V, forgLie L
)

≃MapSp (Σ∞V, forgLie L)

≃MapSp (V ⊗ S, forgLie L)

≃MapSp

(
S, (forgLie L)V

)
≃MapSp

(
S, forgLie

(
LV
))
,

(6.3.0.5)

where the first equivalence holds by adjunction free ⊣ forg, the second holds by the
universal property of the localisation Lf

n, the third and fourth hold by the copower–
power adjunction (−⊗ V ) ⊣ (−)V and the last equivalence holds because the forgetful
functor preserves small limits.

Similarly for the target mapping space, we have

MapLie

(
freeLie

(
Lf

h Σ∞V
)
, (T∞ ◦U∞)(L)

)

MapSp

(
S, forgLie

(
((T∞ ◦U∞)(L))V

))≃

Thus, the morphism (6.3.0.4) is equivalent to following morphism

MapSp
(
S, forgLie

(
LV
))
→ MapSp

(
S, forgLie

(
((T∞ ◦U∞)(L))V

))
,

which is indeed an equivalence for every L ∈ AlgLie(SpT(h)), by assumption (ii)
and Corollary 6.3.0.10.

6.3.0.11. Proposition. — For every L ∈ AlgLie(SpT(h)), the spectral Lie algebra LV

is an infinite loop object of the ∞-category AlgLie(SpT(h)).

Proof. — Recall the vh periodic self-map v : ΣdV → V from Situation 6.3.0.4, which
becomes an equivalence (Lf

h ◦Σ∞)(v) in SpT(h), see ¶6.2.2.3. Thus, we expect the
following equivalence in AlgLie(SpT(h)).

Claim. The map v induces an equivalence Lv : LV → LΣdV of spectral Lie algebras.
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The equivalence v∗ : Lf
h Σ∞+dV → Lf

h Σ∞V in SpT(h) induces an equivalence

MapSpT(h)

(
Lf

h Σ∞V, forgLie L
)

∼−→ MapSpT(h)

(
Lf

h Σ∞+dV, forgLie L
)
.

With the same arguments as we proved the equivalences in (6.3.0.5) we obtain by
adjunctions an equivalence

forgLie
(
LV
)
→ forgLie

(
LΣdV

)
,

of spectra. The claim follows by the fact that the functor forgLie is conservative.
Considering the (Σ⊣ Ω)-adjunction of pointed homotopy types, we show the follow-

ing claims.
Claim. There exists a natural equivalence

Ωd
Lie(LV ) ≃ LΣdV

of spectral Lie algebras.
Let Sd denote the d-dimensional sphere. The following sequence of natural equiva-

lences proves the claim:

LΣdV ≃ lim←−
ΣdV

L ≃ lim←−
Sd

lim←−
V

L ≃ lim←−
Sd

(LV ) ≃ Ωd
Lie(LV ).

6.3.0.12. Corollary. — For every L ∈ AlgLie(SpT(h)), the spectral Lie algebra LV is
trivial, i.e. it lies in the image of the trivial spectral Lie algebra functor trivLie (see Ex-
ample 5.2.4.20). In particular, there exists a natural equivalence

LV ≃ (trivLie ◦ forgLie)(LV )

in the ∞-category AlgLie(SpT(h)).

Proof. — Recall that the adjunction indecLie ⊣ trivLie exhibits SpT(h) as the stabili-
sation of the ∞-category AlgLie(SpT(h)) (Theorem 6.2.2.7). In other words, the image
of trivLie is exactly the set of infinite loop objects of AlgLie(SpT(h)), see ¶6.2.2.6.
So by Proposition 6.3.0.11, the spectral Lie algebra LV is contained in the image of
trivLie. Thus we have

LV ≃ (trivLie ◦ forgLie)(LV ),

because forgLie ◦ trivLie ≃ idAlgLie(SpT(h)) by Example 5.2.4.21.

6.3.0.13. Proposition. — There exists a natural equivalence

(T∞ ◦U∞)
(
LV
)
≃ LV

of T(h)•-local spectral Lie algebras, for every L ∈ AlgLie(SpT(h)).

Proof. — Since the forgetful functor is conservative, it is enough to show that

(forgLie ◦T∞ ◦U∞)
(
LV
)
≃ forgLie

(
LV
)
.
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We will use the abbreviations for notations as in Notation 6.3.0.9. Recall the expression
of forgLie ◦T∞ ◦U∞ from (6.3.0.3). We have

(forgLie ◦T∞ ◦U∞)
(
LV
)

≃ lim←−
n

(
Σn◦ forgnu

n ◦ In ◦ indec+,n
Lie ◦Ω̃

n

Lie

) (
LV
)

(i)
≃ lim←−

n

(
Σn◦ forgnu

n ◦ In ◦ indec+,n
Lie ◦Ω̃

n

Lie ◦ trivLie

) (
forgLie

(
LV
))

(ii)
≃ lim←−

n

(
Σn◦ forgnu

n ◦ In ◦ indec+,n
Lie ◦ triv+,n

Lie ◦An ◦Ωn
) (

forgLie
(
LV
))

(iii)
≃ lim←−

n

(Σn◦ forgnu
n ◦ In ◦ (A0 ◦ indecLie ◦ trivLie ◦ I0)n ◦An ◦Ωn)

(
forgLie

(
LV
))

(iv)
≃ lim←−

n

(Σn◦ Sym ◦Ωn)
(
forgLie

(
LV
))

(v)
≃
(
P1 (Sym)

) (
forgLie L

V
)

(vi)
≃ forgLie

(
LV
)
.

The reasons for the equivalences are given below:
(i) is by Corollary 6.3.0.12.
(ii) holds by the equivalence Ω̃

n

Lie◦trivLie ≃ triv+,n
Lie ◦An ◦Ωn, which can be checked

by applying the forgetful functor forgn on both sides, since forgn is conservative.
(iii) holds by the equivalence

indec+
Lie ◦ triv+

Lie ≃ A0 ◦ indecLie ◦ trivLie ◦ I0,

and (A0 ◦ indecLie ◦ trivLie ◦ I0)n denotes the functor on the ∞-category of
augmented En-algebras, induced by the composition A0 ◦ indecLie ◦ trivLie ◦ I0.

(iv) is a change of notation

Sym := indecLie ◦ trivLie =
∐
r≥1

(
(−)⊗r

)
Sr
,

by the Koszul duality between the spectral Lie ∞-operad and the non-unital
cocommutative ∞-cooperad, see Proposition 5.3.2.4.

(v) holds by the construction of the first colinear approximation P1(F ) of F in the
dual Goodwillie calculus tower, see ¶6.2.2.11.

(vi) holds because we have P1 Sym ≃ idSpT(h) by Lemma 6.2.2.12.

Proof of Theorem 6.3.0.1. — This is a consequence of Proposition 6.3.0.13, Proposi-
tion 6.3.0.6 and Proposition 6.3.0.3, as we explained in the proof strategy ¶6.3.0.2.

Recall the ∞-category SpK(h) of K(h)•-local spectra, where K(h) is the p-local
Morava K-theory spectrum.
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6.3.0.14. Corollary. — The functor

U∞ : AlgLie(SpK(h))→ lim←−Algnu
En

(
SpK(h)

)
,

obtained from the diagram (6.1.0.1), is fully faithful.

Proof. — The ∞-category SpK(h) is the reflective localisation of SpT(h) at the set
of K(h)•-equivalences of (p-local) spectra. Thus one can prove the corollary using
the same proof strategy ¶6.3.0.2 as for Theorem 6.3.0.1: Every statement holds after
replacing T(h)• by K(h). In particular,

(i) By [HTT, Corollary 5.5.7.3] the ∞-category SpK(h) is compactly generated by
one compact object LK(h) Σ∞Vh.

(ii) Proposition 6.3.0.8 holds with K(h) in place of T(h): In the original proof we
uses that indec+

Lie is symmetric monoidal. This is still true in the K(h)•-local
case, since the localisation functor SpT(h) → SpK(h) is product preserving,
see [HA, Lemma 1.4.4.7].





CHAPTER 7

Costabilisation of vh-periodic homotopy types

7.1. The costabilisation of an ∞-category

In this section we introduce the theory of costabilisation, the dual notion of
stabilisation (¶6.2.2.6).

7.1.0.1. Definition. — Let C be an ∞-category admits finite colimits. The costa-
bilisation coSp(C) of C is the stabilisation Sp(Cop)op of the opposite ∞-category Cop.
An object of coSp(C) is called a cospectrum object of C.

7.1.0.2. Example. — Here are two rather elementary examples.
(i) The costabilisation of the ∞-category Ho of homotopy types is trivial.

Let F : Hofin
∗ → Hoop be a reduced excisive functor. Then we know F (pt) = ∅,

the terminal object in Hoop. Let F (S0) = X. Then the pointed map pt→ S0 is
sent to X → ∅ in Ho under F , which implies that X is also the empty set. More
generally, let C be an ∞-category with strict initial objects(1), then coSp(C) is
trivial by the same arguments.

(ii) Let C be a stable ∞-category. Then we have

coSp(C) =
(
Exc∗(Hofin

∗ ,Cop)
)op (a)
≃ (Funrex(Ho∗,C

op))op (b)
≃ (Cop)op

,

where Funrex denotes the∞-category of right exact functors. The equivalence (a)
holds because pullbacks and pushouts in a stable ∞-category coincide, see [HA,
Proposition 1.1.3.4], and a functor preserves finite colimits if it preserves the
initial object and pushouts [HTT, Corollary 4.4.2.5]. The equivalence (b) holds
because Hofin

∗ the ∞-category freely generated by the pt under finite colimits,
see [HA, Remark 1.4.2.6].

7.1.0.3. Proposition. — In the situation of Definition 7.1.0.1 the costabilisa-
tion coSp(C) of C is a stable ∞-category.

(1)An initial object I is strict if any morphism mapping into I is an equivalence
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Proof. — The stabilisation of an ∞-category admitting finite limits is stable, see [HA,
Proposition 1.4.2.17]. The opposite ∞-category of a stable ∞-category is stable,
see [HA, Remark 1.1.1.3].

7.1.0.4. Notation. — In the situation of Definition 7.1.0.1, let ΣC
∞ : coSp(C)→ C

denote the opposite of the functor Ω∞
Cop : Sp(Cop)→ Cop (see ¶6.2.2.6). We abbrevi-

ate ΣC
∞ by Σ∞ if it is clear from the context which ∞-category C we are working with.

7.1.0.5. Proposition. — The functor Σ∞ : coSp(C)→ C preserves finite colimits.

Proof. — By [HA, Remark 1.4.2.3] the functor Ω∞
Cop preserves finite limits, since finite

limits of functors are computed point-wise. Thus the functor ΣC
∞≃ (Ω∞

C )op preserves
finite colimits.

7.1.0.6. Proposition. — Let C be an ∞-category admits finite colimits. The costab-
lisation coSp(C) together with the functor Σ∞ : coSp(C) → C satisfies the following
universal property: Any finite colimits preserving functor F from a stable∞-category D

to C factors through Σ∞ : coSp(C)→ C, uniquely up to contractible choice. We illus-
trate the universal property by the following commutative diagrams.

D C

coSp (C)

F

∃! Σ∞

Proof. — The functor Ω∞
Cop satisfies the universal property that it is the terminal finite

limits preserving functor from a stable ∞-category to Cop, see [HA, Corollary 1.4.2.23].
Taking the opposite ∞-categories, we obtain the universal property of Σ∞(C).

7.1.0.7. Proposition. — Let C be a pointed ∞-category admitting finite colimits.
There exists an equivalence

coSp(C) ≃ lim←−
(
· · · ΣC−−→ C

ΣC−−→ C
)
, (7.1.0.1)

of stable ∞-categories, where the inverse limit is take in the ∞-category CAT∞ of
(not necessarily small) ∞-categories.

Proof. — The opposite ∞-category Cop is pointed and admits finite limits. By [HA,
Proposition 1.4.2.24], we have

Sp (Cop) ≃ lim←−
(
· · · ΩCop−−−→ Cop ΩCop−−−→ Cop

)
≃
(

lim←−
(
· · · ΣC−−→ C

ΣC−−→ C
))op

.

Then the proposition follows from the definition of the costabilisation.
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7.1.0.8. Remark. — Let C be a pointed ∞-category admitting finite colimits. An
object of the ∞-category

lim←−
(
· · · ΣC−−→ C

ΣC−−→ C
)

is a sequence (Xi)i≥0 of objects in C such that Xi ≃ ΣC(Xi+1) for every i ≥ 0. In
particular, we see that

(i) for every i ≥ 0 the object Xi ∈ C admits infinite desuspensions in C, and
(ii) the functor ΣC

∞ is equivalent to the canonical functor

lim←−
(
· · · ΣC−−→ C

ΣC−−→ C
)
→ C, (Xi)i≥0 7→ X0,

under the equivalence (7.1.0.1).

7.1.0.9. Corollary. — The costabilisation of the ∞-category Ho∗ of pointed homo-
topy types is trivial.

Proof. — The suspension functor increases the connectivity of pointed homotopy
types. In particular, any pointed homotopy types that admits infinite desuspensions
is contractible.

7.1.0.10. Remark. — Let C be an∞-category admits finite limits and finite colimits.
Denote the final object of C by tC. Let C∗ := CtC/ denote the ∞-category of pointed
objects of C, see [HTT, Definition 7.2.2.1]. In the situation of stabilisation, the
canonical forgetful functor C∗ → C induces an equivalence Sp (C∗) ≃ Sp (C) of stable
∞-categories. However, the costabilisations coSp(C∗) and coSp(C) are in general not
equivalent ∞-categories. For example, let C be Hoop. We have (Hoop)∗ ≃ {∅}. Thus,
the costabilisation coSp((Hoop)∗) is trivial, whereas coSp(Hoop) ≃ Sp(Ho)op ≃ Spop

is not trivial.

7.1.0.11. Proposition. — Let C be a pointed presentable ∞-category.
(i) The costabilisation coSp(C) is presentable.
(ii) The functor ΣC

∞ : coSp(C)→ C admits a right adjoint ΩC
∞.

(iii) Let D be a stable presentable ∞-category. An exact functor F : D → coSp(C)
admits a right adjoint if and only if Σ∞◦F : D→ C admits a right adjoint.

Proof. — This is the analogue statement for costabilisation as [HA, Proposition 1.4.4.4]
for stabilisation. Since C is presentable, the functor ΣC admits a right adjoint ΩC,
see [HA, Remark 1.1.2.8]. The inverse limit

lim←−
(
· · · ΣC−−→ C

ΣC−−→ C
)

in PrL is preserved under the inclusion PrL ↪→ CAT∞, see [HTT, Proposition 5.5.3.13].
Thus coSp(C) is an object of PrL and ΣC

∞ is a morphism in PrL, by Proposition 7.1.0.7.
These proved (i) and (ii). Property (iii) follows from the universal property of the
costabilisation Σ∞ : coSp(C)→ C in the ∞-category PrL.
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7.1.0.12. Corollary. — Let C and D be pointed presentable∞-categories and assume
that D is stable. Let G : C→ D be a functor that admits a left adjoint. Then G factors
through Ω∞ : C → coSp(C), uniquely up to contractible choice. We illustrate this
universal property of ΩC

∞ by the following commutative diagram.

C D

coSp(C).

G

Ω∞ ∃!

Proof. — This follows from Proposition 7.1.0.6 by adjunctions.

7.1.0.13. Proposition. — Let C and D be ∞-categories admitting finite colimits
and F : C→ D be a functor preserving initial objects.

(i) If F is right exact, then F induces an exact functor

F : coSp(C)→ coSp(D)

of stable ∞-categories.
(ii) Assuming that C and D are pointed and F ◦ ΣC≃ ΣD◦F , then F induces an

exact functor F of their costabilisations.
(iii) In the situation of (i) and (ii), if F is fully faithful, the induced functor F is

also fully faithful.

Proof. — (i) Since F is right exact, it induces a right exact functor

F : Exc∗

(
Hofin

∗ ,Cop
)op
→ Exc∗

(
Hofin

∗ ,Dop
)op

,

between stable∞-categories, since limits of (excisive) functors are computed pointwise,
see [HA, Remark 1.4.2.3]. By [HA, Proposition 1.1.4.1], the functor F is exact.

(ii) Let G : Hofin
∗ → Cop be a reduced and excisive functor. We show that F op ◦G

is also reduced and excisive, where F op denotes the canonical functor Cop → Dop

associated to F .
Let P be a pushout diagram in Hofin

∗ , so we have G(P ) is a pullback diagram
in Cop. By [Heu21, Lemma 3.9] (ΩDop◦F op)(G(P )) is a pullback diagram in Dop.
Since Exc∗

(
Hofin

∗ ,Dop
)

is stable and its limits are computed pointwise Dop, we have
that F (G(P )) is a pullback diagram in Dop. Similarly, we can show that F is right
exact and thus exact.

(iii) Fully faithfulness of F is checked pointwise on the induced map on mapping
spaces in Cop and Dop, which can be verified by the fully faithfulness of F .

7.1.0.14. — Let C be an ∞-category which admits finite colimits. The ∞-cate-
gory coExc∗ (Ho∗,C) of reduced coexcisive functors from Ho∗ to C is a stable
∞-category, since it is equivalent to the ∞-category Exc∗ ((Ho∗)op,Cop), which is
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stable by [HA, Proposition 1.4.2.16]. Evaluation at a fixed object X ∈ C gives a
functor evX : coExc∗ (Ho∗,C)→ C, which is colimit preserving since the colimit of
functors are computed pointwise. Thus, by universal property of costabilisation, we
obtain the following commutative diagram

coExc∗ (Ho∗,C)op
C

coSp(C) ≃ Exc∗

(
Hofin

∗ ,Cop
)op

evX

(Map∗(−,X))∗ evS0

where the functor (Map(−, X))∗ is given by composing with the functor

Map(−, X) : Hofin
∗ → Hoop

∗ , V 7→Map(V,X).
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7.2. Examples of costabilisations

Let C be a pointed presentable stable symmetric monoidal ∞-category and let O be
a reduced ∞-operad with values in C (see Definition 5.3.2.11.(iii)). The ∞-category
AlgO(C) of O-algebras is pointed: The zero object of AlgO(C) is the zero object
of C endowed with a trivial O-algebra structure. Recall that the free O-algebra
functor freeO : C→ AlgO(C) is cocontinuous, i.e. small colimits preserving. Since C is
stable, the suspension functor ΣC of C gives an autoequivalence of C, with the inverse
given by the loop functor C. Denote the suspension endofunctor of AlgO(C) by ΣO,
which admits a right adjoint ΩO. Thus, for every object X ∈ C, we have

freeO(X) ≃ freeO (ΣCΩCX)

≃ ΣO(freeO(ΩCX))

≃ Σ2
O

(
freeO(Ω2

CX)
)

≃ · · ·

≃ Σ∞
O (freeO(Ω∞

C X)) .

This implies that every free O-algebra admits infinite desuspensions in AlgO(C), which
corresponds by Proposition 7.1.0.7 to a cospectrum object of AlgO(C). Therefore, we
expect that the costabilisation of AlgO(C) is non-trivial, cf. Example 7.1.0.2. In the
following we are going to present some examples of this kind.

7.2.0.1. Proposition (Gaitsgory–Rozenblyum). — Let O be a reduced
∞-operad with values in the ∞-category SpQ of rational spectra. The loop func-
tor ΩO : AlgO

(
SpQ

)
→ AlgO

(
SpQ

)
admits the following factorisation

AlgO

(
SpQ

)
AlgO

(
SpQ

)
SpQ SpQ

ΩO

forgO

ΩSpQ

trivO
(7.2.0.1)

Proof. — See [GR, Chapter 6, Proposition 1.7.2].

7.2.0.2. Corollary. — In the situation of Proposition 7.2.0.1, the suspension func-
tor ΣO : AlgO

(
SpQ

)
→ AlgO

(
SpQ

)
admits a factorisation

AlgO

(
SpQ

)
AlgO

(
SpQ

)
SpQ SpQ .

ΣO

indecO

ΣSpQ

freeO

Proof. — Taking the left adjoints of functors in (7.2.0.1) gives the desired result.
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7.2.0.3. Corollary. — Let O be a reduced∞-operad with values in SpQ. The∞-cate-
gory SpQ together with the free O-algebra functor freeO : SpQ → AlgO(C) is equivalent
to the costabilisation of AlgO(C).

Proof. — Abbreviate ΣSpQ by Σ. By Corollary 7.2.0.2 we obtain the following com-
mutative diagram

· · · AlgO

(
SpQ

)
AlgO

(
SpQ

)
AlgO

(
SpQ

)

· · · SpQ SpQ SpQ,

ΣO

Σ◦ indecO

ΣO

Σ◦ indecO

ΣO

Σ◦ indecOfreeO

Σ

freeO

Σ

freeO

Σ

freeO

in CAT∞. Thus the functor

coSp(freeLie) : SpQ ≃ coSp
(
SpQ

) ∼−→ coSp
(
AlgO

(
SpQ

))
,

induced by freeO, from the inverse limit of the lower row to that of the upper row is
an equivalence of ∞-categories. In other words, we have a commutative diagram

coSp
(
AlgO

(
SpQ

))
AlgO

(
SpQ

)

coSp
(
SpQ

)
SpQ

Σ∞

Σ∞

∼

coSp(freeLie) ≃ freeO

of ∞-categories. From the above diagram we see that freeO is equivalent to the lower
horizontal arrow Σ∞.

7.2.0.4. — In the next section we show that the costabilisation coSp(AlgLie(SpT(h)))
of the ∞-category AlgLie(SpT(h)) of T(h)•-local spectral Lie algebras is equivalent
to SpT(h), for every h ≥ 1, generalising Corollary 7.2.0.3 in the case where O is the
spectral Lie ∞-operad Lie. In particular, this implies that the costabilisation of the
∞-category Hovh

of vh-periodic homotopy types is non-trivial, in contrast to the
costabilisation of Ho∗, cf. Example 7.1.0.2.

7.2.0.5. Theorem (Heuts–Land [HL]). — Let C be a presentable symmetric
monoidal ∞-category. The n-fold suspension functor Σn

En
: Algnu

En
(C) → Algnu

En
(C)

admits the following factorisation

Algnu
En

(C) Algnu
En

(C)

C C.

Σn
En

indecEnu
n

Σn
C

freeEnu
n
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7.2.0.6. Remark. — We learnt about Theorem 7.2.0.5 from communications with
Gijs Heuts and we checked the proof in a draft of the manuscript. We use this theorem
for Corollary 7.2.0.7, Proposition 7.3.0.3, Theorem 7.3.0.4, and Corollary 7.3.0.7.

7.2.0.7. Corollary. — In the situation of Theorem 7.2.0.5, the stable ∞-cate-
gory coSp (C) together with the functor coSp(C) Σ∞−−→ C

freeEnu
n−−−−→ AlgEn

(C) is equivalent
to the costabilisation of Algnu

En
(C).

Proof. — We can use the same proof strategy as the proof of Corollary 7.2.0.3, where
we replace the 1-fold suspension functor by the n-fold suspension functor. In particular,
we obtain the following commutative diagram

coSp
(
Algnu

En
(C)
)

Algnu
En

(C)

coSp(C) C

Σ∞

Σ∞

≃coSp(freeEnu
n

) freeEnu
n

of ∞-categories, which gives an equivalence freeEnu
n
◦ΣC

∞≃ ΣAlgnu
En

(C)
∞ of functors.

7.2.0.8. — We cannot simply dualise the argument for Theorem 6.2.2.7 to give a
general statement about the costabilisation of the ∞-category AlgO(C) of O-algebras
in a stable symmetric monoidal ∞-category C. For simplicity, let O be an ∞-operad
with values in Ho. Almost equivalently, we can consider the problem of determin-
ing the costabilisation of AlgO(C) as the problem of determining the stabilisation
of coAlgO(C) ≃ AlgO(Cop)op. In the situation of Theorem 6.2.2.7 the proof uses
two ingredients:

(i) The adjunction induced by the stabilisation of a monadic adjunction is monadic,
see [HA, Example 4.7.3.10].

(ii) The linear approximation (in the context of Goodwillie calculus) of the func-
tor forgO ◦ freeO satisfies

P1

∐
r≥0

O(r)⊗Sr X
⊗r

 ≃ O(1)⊗X.

None of the two facts generalise to the dual/opposite setting in general. In particu-
lar, we would have to consider the Goodwillie calculus tower for the divided power
functor (O(r)⊗ (−)⊗r)Sr , which is non-trivial, in contrary to the Goodwillie calculus
tower of (O(r)⊗ (−)⊗r)Sr

(this functor is r-homogeneous).
However, if we work with the ∞-category SpT(h) of T(h)•-local spectra, recall that

we do have similar formula of the co-linear approximation P1(F ) of certain endofunctors
of SpT(h), see Lemma 6.2.2.12. This is exactly one of the important ingredients we
use to investigate the costabilisation of AlgLie(SpT(h)) in the next section.
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7.3. The costabilisation of vh-periodic homotopy types

From now on we fix a prime number h and a natural number h ≥ 1. In this section
we prove that the costabilisation of the ∞-category AlgLie(SpT(h)) of T(h)•-local
spectral Lie algebras is equivalent to the ∞-category of T(h)-local spectra, see Theo-
rem 7.3.0.4. Under the equivalence Hovh

≃ AlgLie(SpT(h)) (see Theorem 6.2.2.4), the
∞-category SpT(h) is also equivalent to the costabilisation of Hovh

. As a corollary
we provide a universal property of the Bousfield–Kuhn functor, see Corollary 7.3.0.7.
This section is original work.

7.3.0.1. Situation. — Let O be a reduced ∞-operad with values in the
∞-category SpT(h) of T(h)•-local spectra. Recall the free–forgetful adjunction

freeO : SpT(h) ⇄ AlgO

(
SpT(h)

)
: forgO .

Since the functor freeO preserves small colimits, the adjunction induces an adjunction

FreeO : SpT(h) ⇄ coSp
(
AlgO

(
SpT(h)

))
:GO,

on costabilisations, by Proposition 7.1.0.13.

7.3.0.2. Proposition. — In Situation 7.3.0.1 the functor FreeO is fully faithful.

Proof. — By Proposition 6.3.0.3 it suffices to show that there is an equiva-
lence GO ◦ FreeO ≃ id. Abbreviate the the suspension and the loop functor of the
∞-category SpT(h) by Σ and Ω, respectively.

For every object E ∈ SpT(h), we have

(GO ◦ FreeO)(E) ≃ lim←−
n

(Σn◦ forgO ◦ freeO ◦Ωn) (E)

≃ P1

∐
i≥1

(
O(n)⊗ E⊗i

)
Si


≃ E.

The first equivalence holds by the construction of FreeO and GO. The second equiv-
alence holds by the construction of the colinear approximation, in the sense of dual
Goodwillie calculus, of the endofunctors forgO ◦ freeO of SpT(h). The last equivalence
holds by Lemma 6.2.2.12.

7.3.0.3. Proposition. — In Situation 7.3.0.1, let O be the spectral Lie∞-operad Lie.
Then the functor FreeLie is an equivalence of stable ∞-categories.

Proof. — Recall the fully faithful functor functor (see Theorem 6.3.0.1)

U∞ : AlgLie(SpT(h))→ lim←−Algnu
En

(SpT(h)),
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induced by the commutative diagram (6.1.0.1). Let

pr0 : lim←−
n

Algnu
En

(SpT(h))→ Algnu
E0

(
SpT(h)

)
≃ SpT(h)

denote the canonical map in the inverse limit diagram. Note that we have

indecLie ≃ U0 = pr0 ◦U∞ .

Since indecLie ◦ freeLie ≃ id (see Example 5.2.4.21), the following composition

SpT(h)
freeLie−−−−→ AlgLie(SpT(h))

U∞−−→ lim←−
n

AlgEn

(
SpT(h)

) pr0−−→ SpT(h) (7.3.0.1)

of cocontinuous functors is equivalent to identity functor of SpT(h). Thus the following
composition of functors

SpT(h) coSp
(
AlgLie(SpT(h))

)

coSp
(

lim←−n
Algnu

En
(SpT(h))

)
SpT(h)

FreeLie

coSp(U∞)

coSp(pr0)

on costabilisations, induced by (7.3.0.1), is equivalent to the identity functor of SpT(h)
as well. Thus, to show that FreeLie is an equivalence of ∞-categories, it suffices to
show that coSp(pr0) is an equivalence, since the functor coSp(U∞) is fully faithful
by Proposition 7.1.0.13.

Claim. The functor coSp(pr0) is an equivalence of ∞-categories.
Consider the following commutative diagram

· · · Algnu
En+1

(
SpT(h)

)
Algnu

En
(SpT(h)) · · · Algnu

E0

(
SpT(h)

)

· · · SpT(h) SpT(h) · · · SpT(h)

Bn+1 Bn B1

Σ Σ

freenu
En+1

Σ

freenu
En

Σ

id ≃

in PrL obtained from (6.1.0.5). It induces the commutative diagram below on costa-
bilisations:

· · · coSp
(
Algnu

En

(
SpT(h)

))
· · · coSp

(
Algnu

E0

(
SpT(h)

))

· · · SpT(h) · · · SpT(h),
∼

≃

∼
Σ

FreeEn ≃ ≃

∼
Σ

FreeE0 ≃

where the vertical arrows are equivalences by Corollary 7.2.0.7 Then the claim follows
by the induced map between the colimits of the rows and from the commutativity of
the second diagram.
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7.3.0.4. Theorem. — The stable ∞-category SpT(h) together with the functor freeLie

is equivalent to the costabilisation of the ∞-category AlgLie(SpT(h)).

Proof. — The functor freeLie induces a commutative diagram

SpT(h) SpT(h)

coSp
(
AlgLie(SpT(h))

)
AlgLie(SpT(h)),

Σ∞

∼

FreeLie ≃ freeLie

Σ∞

of ∞-categories; here the left vertical arrow is an equivalence by Proposition 7.3.0.3,
and the upper horizontal arrow is an equivalence because SpT(h) is stable. This
commutative diagram exhibits an equivalence between the functor freeLie and the
canonical functor Σ∞ : coSp

(
AlgLie(SpT(h))

)
→ AlgLie(SpT(h)).

7.3.0.5. Corollary. — The stable∞-category SpK(h) together with the functor freeLie

is equivalent to the costabilisation of the ∞-category AlgLie(SpK(h)).

Proof. — By Corollary 6.3.0.14 the result of Proposition 7.3.0.3 still holds, after
replacing T(h) by K(h). Thus the proof strategry of Theorem 7.3.0.4 works as well in
the K(h)•-local setting.

7.3.0.6. — Recall that under the equivalence AlgLie(SpT(h)) ≃ Hovh
(see Theo-

rem 6.2.2.4) the free–forgetful adjunction of spectral Lie algebras corresponds to the
Bousfield–Kuhn adjunction Θh : SpT(h) ⇄ Hovh

: Φh, see ¶6.2.2.8.
Thus Theorem 7.3.0.4 implies that the functor Θh is equivalent to the costabilisation

of Hoh. This gives a universal property of Θh and Φh.

7.3.0.7. Corollary. —
(i) Let C be a stable ∞-category. Then composing with the functor Θh induces

an equivalence

Funrex(C, SpT(h))
∼−→ Funrex (C,Hovh

) ,

of ∞-categories, where Funrex denotes the ∞-category of right exact functors,
i.e. functors that preserve finite colimits.

(ii) Let D be a presentable stable ∞-category. Composing with the Bousfield–Kuhn
functor Φh induces an equivalence

FunR(SpT(h),D) ∼−→ FunR (Hovh
,D) ,

of ∞-categories, where FunR denote the ∞-category of functors that are acces-
sible and preserves small limits, i.e. functors admitting left adjoints.

Proof. — This is a consequence of Theorem 7.3.0.4, Proposition 7.1.0.6 and Corol-
lary 7.1.0.12.





APPENDIX A

Further details for Chapter 5

A.1. The explicit formula of the composition product

A.1.0.1. Situation. — In this section we verify the equivalence (5.2.4.3). Let F
and G be symmetric sequences in a presentable symmetric monoidal ∞-category C.
We show that there exists an equivalence

(F ⊚G)(r) ≃
∐
n≥0

 ∐
r=⊔n

i=1Si

F (n)⊗Sn
(⊗n

i=1G(Si))

 (A.1.0.1)

in C for every natural number r, where ⊚ denotes the composition product (see
Construction 5.2.4.8).

A.1.0.2. Day convolution. — Let F1 and F2 be symmetric sequences in C. The
Day convolution product F1 ⊛ F2 is a symmetric sequence in C such that

(F1 ⊛ F2)(r) ≃ lim−→
r∼=S1⊔S2

F1(S1)⊗ F2(S2) (A.1.0.2)

for every r ∈ N, where ⊗ denotes the symmetric monoidal product of C. The Day
convolution product endows the ∞-category SymSeq(C) of symmetric sequences with
the structure of a symmetric monoidal ∞-category, where the symmetric monoidal
unit the symmetric sequence 1C (see Example 5.2.4.7). See [HA, §2.2.6] for a more
detailed introduction of the Day convolution.

Recall the unit symmetric sequence 1S
C in C from Example 5.2.4.7. By calculation

the n-fold Day convolution (1S
C )⊛n of 1S

C with itself, where n ≥ 1, is given by

((1S
C )⊛n)(r) ≃

1C, if r = n,

the initial object of C, otherwise.

We define (1S
C )⊛0 := 1C.
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A.1.0.3. Proposition. — Let F be a symmetric sequence in C. Recall the construc-
tion (−) of symmetric sequences from Example 5.2.4.7. Then there exists an equivalence

F ≃
∐
n∈N

((1S
C )⊛n) ⊛ F (n)

of symmetric sequences in C, where the coproduct is taken in SymSeq(C).

Proof. — Using (A.1.0.2) we obtain for every n ∈ N

((1S
C )⊛n ⊛ F (n))(r) ≃

F (n), if r = n,

an initial object, otherwise.

for every n ∈ N. Then the statement follows because the small colimits in the functor
category SymSeq(C) is calculated pointwise.

Proof of (A.1.0.1). — Recall that the composition product is induced by the follow-
ing equivalence

ev : Fun⊗
PrL

C/
(SymSeq(C), SymSeq(C)) ∼−→ SymSeq(C)

G ◦ F 7→ F ⊚G

of ∞-categories, given by evaluation at the unit symmetric sequence 1S
C , that is

F = F̃ (1S
C ) and G = G̃(1S

C ).

Thus we need to calculate the evaluation
(
G ◦ F

)
(1S

C ):

(G̃ ◦ F̃ )(1S
C ) = G̃ (F )

(i)
≃ G̃

(∐
n∈N

((1S
C )⊛n) ⊛ F (n)

)
(ii)
≃
∐
n∈N

G̃
(

(1S
C )⊛n ⊛ F (n)

)
(iii)
≃
∐
n∈N

G̃
(
(1S

C )⊛n
)
⊛ G̃

(
F (n)

)
(iv)
≃
∐
n∈N

(
G̃
(
1S
C

))⊛n

⊛ F (n)

(v)
≃
∐
n∈N

G⊛n ⊛ F (n).

Here are the arguments for the above equivalences:
(i) This follows from Proposition A.1.0.3,
(ii) This holds because G preserves small colimits,
(iii) This holds since G̃ is a symmetric monoidal endofunctor of SymSeq(C) with

respect to the Day convolution products.
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(iv) This holds because G preserves small colimits and the full ∞-subcategory C

of SymSeq(C) (via the (−) functor).
(v) This is by definition.
Calculating the Day convolution products of G with itself, we obtain the equivalence(∐

n∈N
G⊛n ⊛ F (n)

)
(r) ≃

∐
n≥0

 ∐
r=⊔n

i=1Si

F (n)⊗Sn
(⊗n

i=1G(Si))


in C for every r ∈ N.

A.2. ∞-categories of algebras over an ∞-operad with values in Ho

The goal of this section is to prove Theorem 5.2.5.5. We repeat the situations and
the statement of the theorem here for convenience.

A.2.0.1. Situation. — Let p : O⊗ → Fin∗ together with an essentially surjective
morphism ∆0 → O⊗

⟨1⟩ be a one-coloured ∞-operad. Let c denote the image of ∆0

in O⊗
⟨1⟩, which is considered as the colour of O⊗. For every r ∈ N, recall

(i) the equivalence (Remark 5.2.1.4)

Rr : O⊗
⟨r⟩

∼−→
(
O⊗

⟨1⟩

)×r

of ∞-categories, induced by the sequence (ρi)i≥1 of morphisms of pointed finite
sets (see Definition 5.1.1.5), and

(ii) the morphism fr : ⟨r⟩ → ⟨1⟩ of pointed finite sets satisfying f−1
r (pt) = pt.

For every r ∈ N, fix an inverse Qr of Rr and define the ∞-groupoid

O(r) := Mapfr

O⊗

(
Qr(c×r), c

)
of morphisms lifting fr (see Definition 5.2.1.2). Note that O(r) admits a Sr-action
induced by the permutation group action on ⟨r⟩. We call

O := (O(r))r≥0 ∈ SymSeq(Ho)

is the underlying symmetric sequence of the ∞-operad O⊗.

A.2.0.2. Situation. — Let C be a presentable symmetric monoidal ∞-category.
Then there exists a symmetric monoidal functor F : Ho → C in PrL, unique up to
contractible choice, since Ho is the free presentable ∞-category generated by a point.

A.2.0.3. Theorem (Theorem 5.2.5.5). — In Situations A.2.0.1 and A.2.0.2, we
obtain the following statements:

(i) The symmetric sequence O admits the structure of an associative algebra objects
in the monoidal ∞-category q⊚ : SymSeq(Ho)⊗ → Ass⊗.
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(ii) Consider O as an∞-operad with values in Ho by (ii). There exists an equivalence

AlgO/ Com (C) ≃ LModTF (O)(C)

of ∞-categories, cf. Definitions 5.2.1.24 and 5.2.4.13.

Proof. — We will explain in Construction A.2.0.6 that the (free ⊣ forg)-adjunction of
AlgO/ Com (C) is monadic and show that the associated monad is of the form

C→ C, X 7→
∐
r≥0

(
O(r)⊗X⊗r

)
Sr
.

where O(r)⊗X⊗r denotes the tensor of X⊗r with O(r), i.e. the colimit of the constant
diagram O(r)→ C mapping to the object X⊗r, see [HTT, Corollary 4.4.4.9].

By [GHK22, §3.2], which shows an equivalence between the∞-category of “analytic
monads” of Ho and the ∞-category of symmetric sequences in Ho, we conclude that
the symmetric sequence O = (O(r))r≥0 admits the structure of an ∞-operad with
values in Ho (Definition 5.2.4.11). Thus, by Proposition 5.2.5.1, we can consider the
symmetric sequence F (O) as an ∞-operad with values in C.

Finally, we have

TF (O)(X) ≃
∐
r≥0

(
F (O(r))⊗C X

⊗r
)
Sr

≃
∐
r≥0

(
F (O(r)× pt)⊗C X

⊗r
)
Sr

≃
∐
r≥0

(
lim−→
O(r)

(F (pt))⊗C X
⊗r

)
Sr

≃
∐
r≥0

(
lim−→
O(r)

(
1C ⊗C X

⊗r
))

Sr

≃
∐
r≥0

(
O(r)⊗X⊗r

)
Sr
,

where we obtain the last three equivalences by the assumption that F is symmetric
monoidal and preserves small colimits and the symmetric monoidal product ⊗C of C
preserves small colimits in each variable.

A.2.0.4. Proposition. — In Situation A.2.0.1 let q : D⊗ → O⊗ be an O-monoidal
∞-category which is compatible with small colimits (see Definition 5.2.4.1). The
forgetful functor

forgO : Alg/O(D)→ Fun
(
O⊗

⟨1⟩,D
)
≃ D,

defined by restricting a functor O⊗ → D⊗ to the ∞-subcategory O⊗
⟨1⟩, admits a left

adjoint freeO. Furthermore, the adjunction freeO ⊣ forgO is monadic.
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Proof. — The existence of the adjunction is due to [HA, Corollary 3.1.3.5, Example
3.1.3.6]. The monadicity of the adjunction can be proven using the Barr–Beck theorem,
see Theorem 5.2.3.3. The hypotheses of the Barr–Beck theorem are satisfied by [HA,
Lemma 3.2.2.6, Proposition 3.2.3.1]. See also [HA, Example 4.7.3.11].

A.2.0.5. Corollary. — In Situations A.2.0.1 and A.2.0.2 the forgetful functor

forgO : AlgO/ Com(C)→ Fun(O⊗
⟨1⟩,C) ≃ C,

defined by restricting a functor to the ∞-subcategory O⊗
⟨1⟩, admits a left adjoint freeO

and the adjunction is monadic.

Proof. — We abbreviate O⊗
⟨1⟩ by O in this proof. Recall that there is the following

pullback diagram
(O⊗Com C)⊗ C⊗

O⊗ Com⊗ .

pr

p

⌟
r (A.2.0.1)

inducing an equivalence

Alg/O (O⊗Com C) ∼−→ AlgO/ Com(C),

see Proposition 5.2.1.27. The statement of the corollary follows by considering the
following commutative diagram

Alg/O (O⊗Com C) AlgO/ Com(C)

O⊗Com C C

∼

forgO forgO

∼
pr

(A.2.0.2)

of ∞-categories: The left vertical functor belongs to a monadic adjunction by Propo-
sition A.2.0.4. Thus, the right vertical functor also admits a left adjoint, and the
resulting adjunction is monadic.

A.2.0.6. Construction. — In the situation of Corollary A.2.0.5 we would like to
show that the monad forgO ◦ freeO of C is of the form

C→ C, X 7→
∐
r≥0

(
O(r)⊗X⊗r

)
Sr
,

where O(r)⊗X⊗r denotes the tensor of X⊗r by O(r). For this purpose, we begin with
recalling an explicit construction of the functor freeO from [HA, Construction 3.1.3.9].

We continue to abbreviate O⊗
⟨1⟩ by O in this construction. Note that [HA, Construc-

tion 3.1.3.9] works with O-monoidal ∞-categories. Thus to apply it in the situation
of Corollary A.2.0.5, we again make use of the O-monoidal ∞-category defined via the
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pullback diagram (A.2.0.1). We denote the O-monoidal category by

q : D⊗ := O⊗ ×Com⊗ C⊗ → O⊗.

In particular, the underlying O-monoidal category D ≃ O ⊗Com C ≃ C, since O⊗ is
one-coloured. For an object X ∈ C, denote

X̃ := (c,X) ∈ D,

which is an object of D mapped to X under the functor pr. By [HA, Proposition
3.1.3.13] we have

forgO ◦ freeO : D→ D, X̃ 7→
∐
r≥0

Symr
O(X̃), (A.2.0.3)

where Symr
O(−) is a certain colimit construction which we recall now (see also [HA,

Proposition 3.1.3.9]).
Let f : Triv⊗ → O⊗ be the map of ∞-operads sending ⟨1⟩ to c. Let r ∈ N.

Define a full ∞-subcategory P(r) of Triv⊗⊗O⊗O⊗
/c as follows: An object in P(r) is a

pair (⟨r⟩, f(⟨r⟩)→ c) of the object ⟨r⟩ of Triv⊗ and an object f(⟨r⟩)→ c of O⊗
/c such

that f(⟨r⟩)→ c, considered as a morphism in O⊗, is a lift (under p) of the morphism fr

of pointed finite sets. Note that P(r) is a Kan complex since morphisms in P(r) is
induced by the automorphisms Sr of the pointed set ⟨r⟩. Thus projecting to the first
component induces a functor

π : P(r)→ N(Sr),

where N(Sr) denotes the nerve of the groupoid Sr. The fibre of the func-
tor/morphism π is equivalent to the ∞-groupoid O(r) by construction. Here we
consider N(Sr) as the ∞-subcategory of Triv⊗

⟨r⟩: It has a single object ⟨r⟩ and the
morphisms are bijections of ⟨r⟩. Thus we obtain a natural transformation

H : P(r)×∆1 → O⊗

between h0 : f |N(Sr) ◦ π and the constant map h1 : P(r) → O⊗
⟨1⟩ ↪→ O⊗ mapping to

the vertex c. The object X̃ ∈ D determines a lift

f
X̃

: Triv⊗ → D⊗

of f satisfying f
X̃

(1) = X̃. Since q is cocartesian, we obtain a q-cocartesian natu-
ral transformation(1)

H : P(r)×∆1 → D⊗

between h0 = f
X̃

∣∣∣
N Sr

◦ π and a morphism h1 : P(r) → D ↪→ D⊗, unique up to
contractible choice.

(1)The natural transformation H is equivalent to a morphism P(r) → Map(∆1,D⊗). We say H is
q-cocartesian if the essential image of the latter map are q-cocartesian edges in D⊗ lifting f(⟨r⟩) → c.
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The object Symr
O(X̃) is defined as the colimit of h1.

Recall that a q-cocartesian lift of f(⟨r⟩)→ c corresponds to a morphism ∆1 → D⊗

in D⊗ represented by

(X̃1, . . . , X̃r)→ X̃1 ⊗D · · · ⊗D X̃r

using Straightening, see Remark 5.2.1.21, Example 5.2.1.23 and Remark 5.2.1.28. Thus
the following composition

P(r) π−→ N(Sr)
f

X̃−−→ D⊗
⟨r⟩

⊗D−−→ D

is a candidate for h1. The induced diagram

hX : P(r) q−→ N(Sr)→ D⊗
⟨r⟩ → D

pr−→ C.

maps every vertex of P(r) to X⊗Cr. Denote the colimit of the diagram hX in
C by Symr

O(X). Together with (A.2.0.3), the pullback diagram (A.2.0.2) relat-
ing O-algebras objects in D and C implies the following equivalence in C:

(forgO ◦ freeO)(X) =
∐
r≥0

Symr
O(X). (A.2.0.4)

We can compute Symr
O(X) by left Kan extensions. Consider the following diagram

P(r) C

N(Sr)

pt

hX

π
h

′
X

h
′′
X

where h′′

X is the left Kan extension of hX along the constant functor from P(r) to a
point. Thus there exists an equivalence

h
′′

X(pt) ≃ Symr
O(X).

To calculate h′′

X , we first construct the left Kan extension h′

X of hX along π, and then
consider the left Kan extension of h′

X along the constant functor to the point. By
[HTT, Definition 4.3.3.2] we know that h′

X(⟨r⟩) is equivalent to the colimit of the
induced diagram

P(r)×N(Sr) (N(Sr))/⟨r⟩ → P(r) hX−−→ C. (A.2.0.5)

Using the equivalence ∆0 ∼−→ (NSr)/⟨r⟩ mapping to the vertex id⟨r⟩, the dia-
gram (A.2.0.5) is equivalent to the constant diagram below

O(r) ≃ P(r)×N(Sr) ∆0 → P(r) hX−−→ C.



216 Appendix A. Further details for Chapter 5

Therefore we obtain the equivalence

h
′

X(⟨r⟩) ≃ lim−→
O(r)

X⊗Cr ≃ O(r)⊗X⊗Cr

by the definition of tensor [HTT, Corollary 4.4.4.9]. Now, left Kan extending h′

X by
the constant functor to pt is the same as taking the colimit of h′

X , which is equivalent
to taking the orbit of the Sr-action. Therefore, we have

Symr
O(X) ≃

(
O(r)⊗X⊗Cr

)
Sr
,

for every r ∈ N. Together with (A.2.0.4) we obtain the desired equivalence

(forgO ◦ freeO)(X) ≃
∐
r≥0

(
O(r)⊗X⊗Cr

)
Sr
.

in C, for every object X of C.



Summaries

Samenvatting

In dit proefschrift bestuderen we onstabiele vh-periodieke homotopietheorie, waar-
bij h een natuurlijk getal is; hier gebruiken we de term ‘onstabiel’ voor de homotopi-
etheorie van topologische ruimten. Het werk bestaat uit twee delen. In deel I geven
we een gedetailleerde uiteenzetting van de grondslagen van onstabiele vh-periodieke
homotopietheorie, verscherpen we een bestaand resultaat over vh-periodieke equivalen-
ties van H-ruimten, en formuleren we concrete vragen en vermoedens voor toekomstig
onderzoek. Dit expositorische gedeelte volgt papers van Bousfield, Dror Farjoun en
Heuts en heeft als doel de centrale noties en stellingen van onstabiele lokalisaties
op één plek te verzamelen, met een focus op onstabiele periodieke homotopietheorie.
Het doel van deel II is om onstabiele vh-periodieke verschijnselen te begrijpen vanuit
het gezichtspunt van Lie-algebra’s in de stabiele vh-periodieke homotopie categorie.
We analyseren de costabilisatie van vh-periodieke homotopie types en verkrijgen een
universele eigenschap van de Bousfield–Kuhn functor.
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