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1 | INTRODUCTION

Toon Haer' ® | Hans de Moel' ® | Philip Orton® |
| Jeroen C. J. H. Aerts"°
Abstract

Coastal flood risk is expected to increase as a result of climate change effects, such as
sea level rise, and socioeconomic growth. To support policymakers in making adapta-
tion decisions, accurate flood risk assessments that account for the influence of com-
plex adaptation processes on the developments of risks are essential. In this study, we
integrate the dynamic adaptive behavior of homeowners within a flood risk modeling
framework. Focusing on building-level adaptation and flood insurance, the agent-based
model (DYNAMO) is benchmarked with empirical data for New York City, USA. The
model simulates the National Flood Insurance Program (NFIP) and frequently pro-
posed reforms to evaluate their effectiveness. The model is applied to a case study of
Jamaica Bay, NY. Our results indicate that risk-based premiums can improve insur-
ance penetration rates and the affordability of insurance compared to the baseline NFIP
market structure. While a premium discount for disaster risk reduction incentivizes
more homeowners to invest in dry-floodproofing measures, it does not significantly
improve affordability. A low interest rate loan for financing risk-mitigation invest-
ments improves the uptake and affordability of dry-floodproofing measures. The bench-
mark and sensitivity analyses demonstrate how the behavioral component of our model
matches empirical data and provides insights into the underlying theories and choices
that autonomous agents make.
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ior of the social system (Hallegatte et al., 2013; Hirabayashi
et al,, 2013; Jongman et al., 2014; Rojas et al., 2013).

Floods are devastating natural disasters, costing billions in
damages annually. Flood risk is projected to increase as a
consequence of driving forces such as socioeconomic devel-
opment (Winsemius et al., 2016), population growth (Jong-
man et al., 2012), and climate change (IPCC, 2014). Although
human adaptation responses can limit trends in flood risks,
risk projections often do not consider the interplay between
the flood risk environment and the dynamic adaptive behav-

Addressing such an interplay is important for accurate risk
assessments and the evaluation policies that influence adap-
tive behavior. Disaster risk reduction (DRR) and risk transfer
instruments are examples of measures for coping with flood
risk (UNISDR, 2015). However, there are many unanswered
questions regarding the effectiveness of DRR over time or the
way in which risk transfer policies can incentivize the imple-
mentation of DRR. For instance, insurance is a useful tool to
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cope with flood losses as it provides financial compensation
for those impacted during a flood event. Moreover, pure risk-
based premiums may incentivize policyholders to implement
DRR measures, often referred to as a discount on the origi-
nal premium to reflect the risk decrease from the DRR mea-
sure (Mol et al., 2018); however, few flood insurance schemes
actively encourage DRR, and the amount of risk that can be
reduced through such insurance incentives remains unclear
(Hudson, de Ruig, et al., 2019b).

Flood insurance is one of the main means of transferring
risk for households in the United States. Since 1968, the
National Flood Insurance Program (NFIP) has provided fed-
eral government-guaranteed flood insurance to homeowners
and businesses, holding over 5 million policies in force and
covering $1.2 trillion in assets by 2015 (FEMA, 2016). This
makes the NFIP the largest flood insurance market world-
wide. However, the program has been criticized for incen-
tivizing policyholders to stay in flood-prone areas, making
inaccurate risk assessments, setting premiums that do not
reflect risk, and having a lack of incentives to implement
DRR (Dixon & Clancy, 2006; FEMA, 2019a; Michel-Kerjan
& Kousky, 2009). Even after Congress canceled $16 billion to
enable the NFIP to pay claims for Hurricanes Harvey, Irma,
and Maria, the NFIP has been $20.5 billion in debt since 2019
(Horn & Webel, 2019; Miller et al., 2019). As a result, these
problems contribute to political turmoil regarding the reau-
thorization and continuation of the NFIP (Kruse & Hochard,
2019).

Implementing risk-based premiums has extensively
been discussed as a possible reform measure (Kousky &
Kunreuther, 2014; Michel-Kerjan & Kunreuther, 2011;
Michel-Kerjan et al., 2014; Miller et al., 2019), as it informs
households of the true exposure of their residence to poten-
tial flood damage (Michel-Kerjan & Kunreuther, 2011). The
NFIP moved toward implementing risk-based premiums in
2012, but the changes were reverted in 2014 due to concerns
about the affordability of premiums (Michel-Kerjan et al.,
2014). Current policies are again steering toward risk-based
premiums, such as the expected implementation of the Fed-
eral Emergency Management Agency’s (FEMA) Risk Rating
2.0 program in October 2021 (FEMA, 2019b), especially
because the subsidized premiums are a barrier for the private
sector to enter the market. However, some worry exists that
affordable risk-based premiums are not feasible in high-risk
areas (Kruse & Hochard, 2019; Kunreuther, 2019). There-
fore, Kousky and Kunreuther (2014) have suggested coupling
risk-based premiums with a discount for policyholders who
take risk-reduction measures, which means that the premium
remains a pure risk-based premium. Moreover, they proposed
the introduction of an accessible loan structure to cover the
high upfront investment of DRR measures.

Several risk assessment studies have attempted to simu-
late the effects of different NFIP reform measures (Kousky
& Kunreuther, 2014; Michel-Kerjan et al., 2014; National
Research Council, 2015). However, they have not addressed
the dynamic interaction between homeowners and the chang-
ing flood risk environment. For example, studies suggest that

risk perception is high after a major flood event occurs, which
leads to a higher uptake of insurance and DRR measures
(Brilly & Polic, 2005; Ruin et al., 2007; Siegrist & Gutscher,
2006). Such adaptation processes in turn imply reduced vul-
nerability and a decline in flood risk. Therefore, recent socio-
hydrology studies have stressed the importance of accounting
for the interactions between social and hydrological systems,
but these studies often focus on macroprocesses and lack indi-
vidual household decisions (Di Baldassarre et al., 2013, 2015;
Viglione et al., 2014). While studies such as those by Haer
et al. (2019, 2020), Tonn and Guikema (2018) or Han and
Peng (2019), Tonn et al. (2019) have demonstrated that agent-
based or multiagent models are able to capture the behavior
of households in relation to flood risk, they are often lim-
ited by computational power and a lack of empirical data to
calibrate or benchmark the behavioral elements of the mod-
els. This challenge with calibrating behavioral rules in agent-
based models applies more broadly to climate change risk
applications, and studies consequently have had to resort to ad
hoc rules with simplified assumptions based on expert judg-
ment (Aerts et al., 2018).

To overcome these limitations, the goal of this paper is to
assess the mean impact of insurance changes on homeowners
based on benchmarked empirical data. Our agent-based
model (DYNAMO) on flood risk and the dynamic adaptive
behavior of households is used to examine the following
research aims: (1) benchmark the behavioral elements in
the model to obtain an accurate set of parameters. (2)
use the benchmarked model to evaluate four proposed
reform changes to the NFIP: (a) a full mandatory purchase
requirement in the 100-year flood zone, (b) risk-based pre-
miums, (c) risk-based premiums with a premium discount
for implementing DRR measures, and (d) a low interest
rate loan for financing DRR—the latter reform measure
is applied in conjunction with the other reforms, and not
a separate case. The reform measures are compared to an
NFIP baseline, resulting in a total of eight variations. The
last aim (3) is to test the robustness of the model using a
sensitivity analysis. The model is applied to Jamaica Bay,
NYC.

2 | CASE STUDY: NEW YORK
CITY—JAMAICA BAY

Jamaica Bay is located at the south end of the boroughs of
Queens and Brooklyn. Many of the neighborhoods surround-
ing Jamaica Bay are low-lying and already vulnerable to
flooding from high tides (Freudenberg et al., 2016). Storm
surges, wetland degradation, and sea level rise are there-
fore major threats to the coastal communities. For example,
Jamaica Bay was one of the most heavily flooded areas during
Hurricane Sandy in 2012. Since then, several plans have been
proposed, such as by Fischbach et al. (2018) and Jones et al.
(2018), to reduce flood risk in the area. In total, $14.7 bil-
lion was assigned to city repairs and resiliency, of which only
54% has been spent because of slow federal bureaucracy and
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TABLE 1 Flood exposure for three different return periods for current
and future climate conditions

Flood exposure

(Number of 10,000-
buildings) 100-year 500-year year
2010 26,319 51,552 84,576
2055 33,843 57,000 90,958

a lack of urgency, despite the future threats of climate change
(Stringer, 2019).

Seven years after Hurricane Sandy, insurance penetration
rates have decreased by 18%, 8%, and 2% for Staten Island,
Queens, and Brooklyn respectively, even though Staten Island
and Queens were one of the hardest hit boroughs (Choi et al.,
2019). Current flood insurance rate maps (FIRMs) are from
1983.! Updating of these maps began in 2010, and they were
preliminarily released in 2013 (known as preliminary flood
insurance rate maps: PFIRMs)(Miller et al., 2019). However,
in 2016, the de Blasio administration won its appeal against
FEMA, claiming that the maps present overestimations of
risk and incorrect base flood elevations (City of New York
Mayor’s Office of Recovery & Resiliency, 2015). Current
insurance rates for Jamaica Bay are still based on a 1983
modeling study (Dixon et al., 2013) while the new maps are
being revised, with new FIRMs expected in 2022 or 2023. To
highlight the severity, Table 1 shows the exposure in terms of
buildings at risk of floods for different return periods. Even
under current climate conditions, 26,319 buildings are in a
high-risk flood zone. With the current flaws of the NFIP and
the political turmoil worsening the program’s effectiveness
by delaying updated FIRMs in Jamaica Bay, our model is
suitable for analyzing the effects and interactions regarding
improving the insurance market structure and reflecting risk
to homeowners.

3 | METHODS

Figure 1 illustrates our methodological framework. The input
data, and climate change and socioeconomic scenarios are
shown in the top-left box. The first analysis entails a bench-
mark of the model to derive a reliable set of parameters,
indicated in the left-most box. The model, consisting of a
flood risk model and behavioral modules, subsequently sim-
ulates four NFIP market structures: NFIP baseline, NFIP full
mandatory, NFIP risk-based, NFIP risk-based with premium
discounts. In addition, the impact of an accessible loan struc-
ture is applied to those four market structures. Lastly, a sen-
sitivity analysis is conducted to test the robustness of the
model. The model runs and sensitivity analysis are both visu-
alized by indicators of flood risk, insurance, and disaster risk
reduction by homeowners.

! Only minor changes were made in 2007 to the riverine part of the FIRM, though not
relevant for this study (Dixon et al., 2013).

This section is structured as follows: first, the flood risk
model, the input datasets, and the scenario settings of the
models’ runs are described in Section 3.1. We build upon
DYNAMO - DYNamic climate impact Adaptation Model by
Haer et al. (2019), which is an agent-based model on adap-
tive human behavior within a flood risk modeling framework;
however, it does not include an advanced insurance mar-
ket. Therefore, we expand the agent-based model to include
the NFIP scenarios and account for affordability. Section 3.2
briefly describes the essential modeling features and focuses
on the changes made to DYNAMO compared with the one
by Haer et al. (2019). Lastly, the benchmark and sensitivity
analyses are described in Section 3.3.

3.1 | Flood risk model, data, and scenarios
The flood risk component of the model is a commonly
applied hazard-exposure-vulnerability model (de Moel et al.,
2013; Kron, 2005). The flood hazard is represented by water
depth data from hydrodynamic model simulations for a set
of nine storms that span a wide range of intensity from 5- to
10,000-year return periods. The relationship between prob-
ability and water level was previously determined using a
joint probability method-based hazard assessment that was
an ensemble simulation of a diverse set of thousands of pos-
sible storms, including both tropical and extratropical cyclone
events (Orton et al., 2016). Here, nine representative storms
were selected that matched the water levels inside the bay for
the 5-, 10-, 30-, 50-, 100-, 300-, 500-, 1000-, and 10,000-year
flood events. Lastly, two-dimensional flood simulations for
these storms were run on a 30-m resolution nested grid for
Jamaica Bay (Fischbach et al., 2018; Orton et al., 2020), and
water levels were differenced with the model’s land eleva-
tions to compute water depth. In the agent-based model runs,
risk calculations over time are based on an interpolation of the
present day inundation data and future projections. In addi-
tion, a flood can stochastically occur each year during each
model run, based on the probability of occurrence of each
storm.

The National Land Cover Database (NLCD) 2016 (USGS
and The Multi-Resolution Land Characteristics (MRLC)
Consortium n.d.) was used for exposure. Depth-damage
curves and maximum damage values represent the vulnera-
bility of the model and were taken from FEMA’s HAZUS
Multihazard model (FEMA, 2013a). Depth-damage curves
describe the relationship between inundation depth and
percentage damage to a land-use class. These curves can
subsequently be altered to represent a household that has
implemented dry-floodproofing measures to its property.
Dry-floodproofing is preventing water from entering the
property, which will lead to a decrease in damages up to
85% for the first meter of inundation (Aerts et al., 2013;
de Ruig et al., 2019). However, inundation > 1 m will
cause overtopping and will result in full damages. It should
be noted that FEMA recommends the implementation of
dry-floodproofing measures, but does not provide a discount
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FIGURE 1 Methodological framework

on insurance premiums for taking these measures. By cal-
culating the damages per return period, the expected annual
damage (EAD) or flood risk (in $/year) can be computed as
the integral of the exceedance probability curve.

The initial setup of the population was based on United
States Census data (U.S. Census Bureau, 2010b). Shared
socioeconomic pathway (SSP) (Crespo Cuaresma, 2017;
Dellink et al., 2017; Jiang & O’Neill, 2017; KC & Lutz, 2017;
Leimbach et al., 2017; Riahi et al., 2017) scenarios were used
to represent population growth and economic growth, which
have proven to be major drivers in flood risk (Winsemius
et al., 2016). We applied the SSP2 and SSP5 scenarios, as
they are most commonly applied in similar studies. SSP2 is
a middle-of-the-road scenario (Fricko et al., 2017), and SSP5
is an energy- and resource-intensive scenario (Kriegler et al.,
2017); the former is used throughout the paper, and the results
of the SSP5 scenario can be found in the Supporting Informa-
tion S4. The GDP growth from the SSPs was used to increase
value of properties and income over time.

3.2 | Agent-based flood risk model and
market reforms

Flood risk models are commonly modeled as a function of
the hazard, the exposure of assets, and the vulnerability of
assets (e.g., to flood events). However, these often assume
vulnerability to be static over time, although no adaptation
measures are taken in response to changing risk from cli-

mate change. In contrast, the agent-based flood risk model,
as developed by Haer et al. (2019), integrates the dynamic
adaptive behavior of homeowners and governments within
a flood risk framework. Homeowners can decide to (a) take
flood risk insurance and (b) invest in DRR measures, such as
dry-floodproofing. Furthermore, they make decisions follow-
ing a subjective, (discounted) expected utility theory, which is
the standard economic theory of decision making under risk.
Governments can make decisions on macro-scale adaptation,
such as elevating dike heights, following a cost-benefit anal-
ysis. For this study, we adapted DYNAMO by Haer et al.
(2019) and primarily focus on homeowners and their adap-
tive behavior in relation to that of insurance markets, as we
are particularly interested in the interaction between the two.
While governmental interaction is included, it only statically
maintains the protection standard over time. The sensitivity
analysis includes the effects of different protection standards.
The following subsections explain specific parts of the model
that were adjusted to the needs of the research aims set in
this paper. For a detailed description of original version of
DYNAMO, refer to the Supporting Information of Haer et al.
(2019).

3.2.1 |
insurance

Homeowners’ decisions regarding flood

The dynamic behavior of homeowners is represented per
30-m resolution grid cell, with in total 324,900 unique
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representative agents. Each year homeowners make a deci-
sion about purchasing or canceling flood insurance. The anal-
ysis ran the following four market reforms twice (once with
personal loans and once with a reformed accessible loan,
Figure 1):

a. The NFIP baseline. This market structure simulates the
current NFIP practices as closely as possible. Part of the
NFIP is a mandatory purchase requirement for federally
funded mortgages in a 100-year flood zone (Zhao et al.,
2015). Dixon and Clancy (Dixon & Clancy, 2006) have
estimated that, on average, only 55% of the properties
are bound to the mandatory requirement, and 78% of
those households comply (Dixon & Clancy, 2006; Zhao
et al., 2015). Based on this mandatory share and compli-
ance rate, households in the 100-year flood zone are ran-
domly selected as mandatorily required policyholders in
the setup.

b. The NFIP with a full 100-year flood zone mandatory
requirement. This second market structure enforces a
full mandatory requirement in the 100-year flood zone
(regardless of mortgage type), but without risk-based
premiums.

c. The NFIP with risk-based premiums. This third market
structure applies risk-based premiums to all flood zones,
without a mandatory requirement.

d. The NFIP with risk-based premiums and a premium dis-
count. Similar to market structure C, but in addition a
premium discount on the original risk-based premium is
offered to policyholders who floodproof their homes, to
incentivize disaster risk-reducing behavior.

For homeowners without a mandatory requirement, the
choice to take insurance follows a subjective expected util-
ity (Haer et al., 2019; Hudson et al., 2019a; Von Neumann &
Morgenstern, 1947) (EU) model, which accounts for bounded
rationality in understanding risk, as indicated in Equation 1.
For each time step and for each grid cell, the EU was calcu-
lated and compared for two strategies:

Strategy 1: take insurance, accepting the
deductible; or

Strategy 2: do not take or cancel insurance.

The strategy that yields the highest EU will be chosen. If
Strategy 1 is followed, then affordability of the annual pre-
mium is first calculated. If the premium is deemed unafford-
able, then insurance is not adopted (see Section 3.2.4). The
subjective EU equation is as follows:

Pr
EUS = f ﬁij (Wt - yDi,t X 55' - Cpremium,t - dpremium,t) dp'
Di
ey
Equation 1 calculates EU, for each strategy s. Each flood

event i has a probability p; of occurring. The total set of events
1 are the return periods of each flood event and the probability

of no flood event: a return period of 5 years. The EU, is sub-
sequently calculated as the approximation of the integral over
I. Individuals are assumed to be boundedly rational in under-
standing the flood risk they face, which is represented by the
risk perception factor 8, which is uniform between agents but
is based on survey data as described in Section 3.3.

Utility is calculated as a function of wealth W, uncov-
ered damage D, premium C, and a premium discount d (if
applicable for the scenario). Damage D per event i for year ¢
is calculated using the hazard-exposure-vulnerability model;
however, it can be misperceived per individual by factor y,
described in more detail in Section 3.3. For Strategy 1, home-
owners must pay a deductible of 10% of the incurred dam-
ages (6 = 0.1), while Strategy 2 has full damages (as no
damage is covered, so that §, = 1, C = 0, and d = 0). The
NFIP offers policyholders a choice in flat rate deductibles
($500; $1,000; $2,000; $3,000; $4,000; and $5,000 (Michel-
Kerjan & Kousky, 2009) and a choice of coverage. Collier
and Ragin (2019) have highlighted the difficulty of accurately
explaining these decisions in behavioral models; for exam-
ple, they have demonstrated that approximately 12% of new
policyholders over-insure, selecting a coverage exceeding the
expected replacement value of their property. Furthermore,
adding the additional choice of selecting the coverage amount
and a deductible would have significantly increased the com-
putational cost of the model. Therefore, we followed Haer
et al. (2019) and Hudson et al. (2019a), who applied a 10%
deductible and full coverage.

A general utility function is assumed, as shown in Equa-
tion 2, as a function following constant relative risk aversion
(Bombardini & Trebbi, 2012; Harrison et al., 2007; Wakker,
2008):

y(1=0)
1 —

UK = @)

The following different variations of risk aversion o were
analyzed: risk seeking (—1), risk neutral (0), and risk averse
(1, 2, and 4). Note that when o = 1, the Equation 2 is
U(x) = In(x) instead.

While homeowners are aware of increasing risk over time,
it is assumed that they are not fully informed due to their
bounded rationality, which implies that they have limited cog-
nitive capabilities in processing risk (i.e., imperfect infor-
mation). Therefore, at the start of each 2010—2080 simula-
tion each agent is assigned a different risk increase value
picked from a random-uniform distribution of the objective
risk increase and no increase at all.

3.2.2 | Premium setting

For this study, we applied the 100-year flood zone as defined
by our own probabilistic flood data, which is slightly larger
than the NFIP 100-year flood zone based on the 1983
FIRMs, as shown in Figure 2. We require a wide range of
probability storms from 5-year (20% annual chance) to
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FIGURE 2 Jamaica Bay, NYC with green indicating the 1983 FIRM 100-year flood zone, and blue the newly defined 100-year flood zone by our
inundation model. Buildings outside the 100-year flood zone that have a chance of coastal flooding are also included in the analysis

10,000-year (0.001% annual chance) for our integration
across all probability events, and this data is not available
from FEMA'’s studies. Moreover, given the large differences
between the 1983 FIRM and the 2013 PFIRMs (that were
successfully appealed as inaccurate), it is ambiguous which
FEMA flood data should be used.

However, this has significant implications for the pre-
mium setting of the current NFIP market structure, as about
16,000 properties are located in the 1983 FIRM 100-year
flood zone, whereas the newly defined 100-year flood zone
includes about 26,000 properties. Dixon et al. (2017) show
that properties that would be included in the PFIRM 100-
year flood zone would see large increases in premiums, to
about the same price as current high-risk premiums. How-
ever, the NFIP applies a discount to properties built before the
flood risk was mapped in that area (referred to as pre-FIRM
properties)(FEMA, 2013b; Kousky & Kunreuther, 2014). In
addition, grandfathering is a practice where homeowners are
allowed to keep their old premiums when an update to FIRMs
reclassifies them into a higher risk zone (Kousky & Kun-
reuther, 2014). If grandfathering and pre-FIRM discounts
are allowed, increases of premiums might be less severe
(Dixon et al., 2017). Notwithstanding the potential change
in mean premiums, the benchmark of this study will be
conducted with a survey based on 1983 FIRM rates. Alto-
gether, we assume no grandfathering, pre-FIRM or other
building-specific effects on the premium, as this would over-
complicate the behavioral module of the model, but use
a county-wide mean premium of $1,275 per household in
high-risk zones, and $820 per household for low risk zones

for the current NFIP market structure (Czajkowski et al.,
2017). To correct for future changes in risk, the current NFIP
premiums are adjusted with percentual risk changes over
time.

For the risk-based market structures, the annual premium
Cpremium, Was calculated as an actuarially fair premium for
each 30 m resolution cell by the flood risk module, as
described in Section 3.1. The premiums are converted to
household-level using population data, with the addition of
a loading factor and minus the deductible. The loading factor
was the same for all market structures and was based on the
current NFIP loading factors and additional costs that are esti-
mated at 37% (FEMA, 2013b). Only for the fourth scenario,
a premium discount d,, opjym  Was offered when homeowners
implemented dry-floodproofing, equivalent to the reduction
of risk due to the implementation of floodproofing measures
(i.e., the premium remains a pure risk-based premium).

Figure 3 compares the distribution of risk-based premiums
for all households in the 100-year flood zone with the mean
NFIP baseline high-risk premium (as the dotted line). Michel-
Kerjan et al. (2014) have demonstrated that NFIP premiums
can be more than 15 times the actuarial premium for some
areas, while for other areas, premiums can be three times
lower than the actuarial premium. As seen in Figure 3, risk-
based premiums have significant spatial variation within the
100-year flood zone. As a result, a share of households might
experience a decrease in premiums, while others will expe-
rience an increase. Because of some extreme outliers, mean
risk-based premiums for the 100-year flood zone is estimated
at $3373.
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FIGURE 3  NFIP risk-based premium distribution for all homeowners in the 100-year flood zone. The dotted line indicates the current mean NFIP

premium for high-risk flood zones

3.2.3 | Homeowners’ decisions regarding
adaptation

In terms of adaptation, homeowners can decide to implement
dry-floodproofing measures. These measures are often found
to be the most economically efficient option compared with
wet-floodproofing or elevation of existing buildings (Aerts &
Botzen, 2011; de Ruig et al., 2019). Dry-floodproofing mea-
sures are assumed to reduce damages by 85%, unless inun-
dation exceeds 1 m, in which case full damages are assumed
(Aerts & Botzen, 2011). Per annual time step, Equation 3 cal-
culates the subjective discounted expected utility (Haer et al.,
2019; Von Neumann & Morgenstern, 1947) (DEU) per home-
owner for two strategies:

Strategy 1: implement dry-floodproofing mea-
sures; or

Strategy 2: do nothing.

The homeowners will follow the strategy that yields the
highest DEU. For Strategy 1, the affordability of invest-
ing in dry-floodproofing measures is first determined. If the
investment appears to be unaffordable, then no action is
taken for that year. The unaffordability is further described in
Section 3.2.4. The DEU equation is as follows:

pi
DEU; = [ Bp;U (NPV)dp
pi

T L
P W, —yD; Cnnus
_ / ﬁp,‘U Z t Y z[,t,s _ dnnual,j dp
i =1 d+n fmod+7r
T L nxCo
Pr W, =vD,, 1=(1+n)"
= [BpU| Y, ——= - Y )
pi =1 (d+nr =0 (I+r)

The DEU model is calculated for strategy s. The variables
D, B, v, W, p, and i and the general utility function U(x)
are similar to those in Equation 1. The NPV is the sum of
the wealth W, minus the (reduced) damages D;,, over the
lifespan of dry-floodproofing 7, discounted to the present
value using discount rate r. The lifespan of dry-floodproofing
is assumed to be 75 years, following Aerts et al. (2011).
The discount rate is the pure time preference for residents
and is assumed to be 3%, following Tol (2011). Lastly, the
investment cost for dry-floodproofing Cy (assumed to be
$100 per m?, following Aerts, 2018) is funded through a loan
structure with an interest rate n and a length of L. Therefore,
residents are valuing their annual loan payment C,, 015
against the benefits. For Strategy 2 without action, the NPV
contains full perceived damages and no investment costs.

324 |
loans

(Un-)affordability: Providing accessible

The affordability of insurance and DRR investments is impor-
tant to consider because market structures or incentives for
risk reduction do not work if one is simply not able to afford
it. While the affordability of insurance is well discussed in
the literature (Hudson, 2018; Kousky & Kunreuther, 2014;
National Research Council, 2015; Zhao et al., 2015), the
affordability of homeowner-level DRR, such as floodproof-
ing of buildings, has not been extensively studied (Hudson,
2020). Following Kousky and Kunreuther (2014) and Hud-
son (2018), we applied an expenditure cap definition for unaf-
fordability. For insurance, it is assumed that households can
afford flood insurance if their annual premium is within the
2.5% expenditure cap of their annual income. Income is dis-
tributed per county (i.e., Queens, Nassau, and Kings county)
through a log-normal distribution based on mean and median
income from the United States Census Bureau (U.S. Census
Bureau, 2010a).
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TABLE 2 The observed perception factors of damages and probabilities of a flood event
Subjective over Subjective over
objective damage objective storm
factor probabilities factor
FEMA 100-year flood zone Mean 1.2456 7.9773
N 310 234
Std. Deviation 3.35611 38.80917
FEMA 500-year flood zone Mean 1.0855 12.1462
N 167 129
Std. Deviation 2.60621 37.62726

The investment for dry-floodproofing is a long term-
investment, and its affordability is more difficult to assess
using an annual income. For example, households save, on
average, 6.9% of their disposable annual income (OECD,
2019), but these savings might not be intended for adap-
tation investments. Therefore, we assume that homeowners
can take personal loans and that the annual loan payment is
used to evaluate affordability. We applied different variations
of personal loan interest rates and lengths in the benchmark
assessment to accurately represent the implementation rates
of dry-floodproofing. A reform measure was also evaluated,
as suggested by Kousky and Kunreuther (2014), with fed-
erally funded loans for floodproofing measures, with a 4%
interest rate for 20 years.

3.3 | Benchmark using post-Sandy survey
data and sensitivity analysis

Many have argued that calibrating or benchmarking a mul-
tiagent or agent-based model that simulates human behavior
is important; however, this is difficult due to a lack of data
(Crooks et al., 2008; Moss, 2008; Smajgl & Barreteau, 2017).
In our case, such data are available, and we benchmarked
a set of six model parameters using a survey conducted by
Botzen et al., and Michel-Kerjan (2015). These parameters
are risk aversion, governmental protection standards, invest-
ment costs of dry-floodproofing, both the length and the
interest rate of personal loans, and the expenditure cap of
dry-floodproofing.

The survey by Botzen et al. (2015) was conducted 6
months after Hurricane Sandy, and it focused on the flood
risk perception, flood experiences, and flood preparedness of
property owners in flood-prone areas in NYC. For our study,
we subset the survey for Brooklyn and Queens, which are
most relevant for Jamaica Bay. Literature suggests that resi-
dents are likely to overestimate their risk after a flood event
(Brilly & Polic, 2005; Ruin et al., 2007; Siegrist & Gutscher,
2006), while they underestimate their risk after a period of
no flood events (Fox & Hadar, 2006; Hertwig et al., 2004).
This form of bounded rationality of residents is modeled
as a variable perception of storm probabilities and damages
per individual. Table 2 shows the perceived probability fac-

tor 8 and perceived damage factor y for the 100-year and
500-year flood zones. For example, a household in a 100-
year flood zone with a perceived probability factor of 7.9773,
will perceive a 500-year flood as a 63-year flood instead
(Equation 4a, b).

Objective flood probability X perceived factor

= Subjective flood probability. (4a)

Objective flood damage X perceived factor

= Subjective flood damage. (4b)

In DYNAMO, immediately after a storm event (i.e., the
grid cell experiences some level of inundation), § and y
increase to the observed overestimation from the NYC survey
(1.2456 for flood damage and 12.1462 for storm probabili-
ties), and will adjust the objective probabilities and damages
per flood event (p; and D; in Equations | and 3) to their sub-
jective equivalent. In years with no storm events (i.e., the grid
cell experiences no inundation), § and y will subsequently
decay to the inverse of the observed values in approximately
six years after the storm event, in line with empirical evidence
(Bin & Landry, 2013; Kunreuther, 1996; Kunreuther et al.,
1985). Equations 5a and b mathematically portray the per-
ceived probability and damage factor function respectively.
If a flood occurs, then o, = 1, and if no flood occurs, then
o, =a,/1.6.

B = 12.0639 x «,>71657 +0.08233, (5a)

y = 0.442774 x a,'1671 4+ 0.802826. (5b)

The benchmark aims to match the observed penetra-
tion rates of insurance and the implementation rate of dry-
floodproofing measures (Table 4) with modeling outcomes
when risk perceptions (8 and y) are at post-Sandy levels, as
listed in Table 2. Starting values for the benchmark of 8 and
y are based on Table 2 and differ per flood zone, while for
regular model runs 8 and y have an average starting value of
a; = 0.1). In addition, the benchmark is used to gain a better
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TABLE 3  Observed dry-floodproofing and insurance penetration rates TABLE 4  The parameter setting of the model as an outcome of the
based on a household survey in Jamaica Bay benchmark
Number of Benchmarked
dry- Parameter setting
floodproof Frequency Frequency - -
measures® Count (%) Insurance Count (%) Risk aversion 4

Protection standard 30 years
0 210 29.96 Yes 462 65.91

Investment costs of dry-floodproofing 100 $/m?
1 257 36.66 No 232 33.1

Expenditure cap of dry-floodproofing investment 2.5%
2 155 22.11 Don’t 7 1

know Loan interest rate 15%
3 79 11.27 Loan duration 5 years
Total 701 100 Total 701 100 Test run outcome: Dry-floodproofing 12.8%
implementation rate

“For dry-floodproofing, three questions on individual measures were asked, and when .

Test run outcome: Insurance penetration rate 68.2%

combined, they counted as a fully floodproofed property.

understanding of the underlying theories and processes and
how they respond to different sets of parameters. The bench-
mark was run for the NFIP baseline scenario; it ran 1215 dif-
ferent combinations of all six parameter variations for 50 rep-
etitions.

Dry-floodproofing is often seen as a package of individual
measures (e.g., shields in front of doors, water-resistant
coating on walls, and a backflow valve). The survey asked
respondents whether they implemented individual mea-
sures of dry-floodproofing, and Table 3 lists how many of
those measures respondents implemented. FEMA (2014)
recommends implementing all three measures for optimal
protection, and 11.27% was thus used in the benchmark eval-
uation. When benchmark outcomes were equifinal, literature
was used to support the final selection of the parameter set.

A local, one-at-a-time sensitivity analysis was conducted
with the same set of parameters as those used for the
benchmark. The sensitivity analysis only used the SSP2
middle-of-the-road scenario and risk-based scenarios, and it
purely focused on the variation of parameter values. This
allowed for a better understanding of the robustness of the
model and how individual parameters influence modeling
results.

4 | RESULTS

4.1 | Benchmarked parameter setting
Table 4 presents the outcome of the benchmarked parameter
set, and Section SI1 of the supplementary information pro-
vides a sample of the most relevant outcomes out of the 1215
unique runs. In addition, Table 4 lists the implementation rate
of dry-floodproofing and the penetration rate of insurance for
a single model run with a forced 500-year flood, similar to
the estimated 400- to 500-year return period of Sandy (Lin
et al., 2012, 2016). Both values are slightly higher than the
observed values in Table 3; however, they are within accept-
able margins.

To further explore the benchmark results, we made den-
sity plots for each parameter over the penetration rate of

dry-floodproofing and insurance policies, as illustrated in
Figure 4, wherein the dotted line denotes the observed pen-
etration rates from Table 3. For each of the density plots
in Figure 4, all the observations are shown, with different
groupings per variable. Figure 4 indicates that a large variety
of unique parameter combinations could match the bench-
mark outcome with the observed penetration rate of dry-
floodproofing. However, the observed insurance penetration
rate is in the tail end of most density plots, meaning that
only a limited combination of parameters will result in the
observed insurance penetration rate. Risk aversion in particu-
lar only has matching outcomes with a value of 4.

Moreover, the results from Figure 4 can be used to gain
a better understand of the underlying interactions and the-
ories due to changes in parameter settings, such as tipping
points. Two tipping points are highlighted. First, Figure 4B
illustrates that dry-floodproofing penetration rates increase
with rising risk aversion (the highest peak of —1 is found
at an implementation rate of 18%, while the highest peak
of 2 is found at 40%), except for a risk aversion value of 4
(which reveals a more flattened out pattern). With rising risk
aversion, homeowners start to increasingly value protection
against low-probability events. This initially causes a higher
uptake of dry-floodproofing. However, dry-floodproofing is
not effective for extreme events with high inundation depths
that cause overtopping. A tipping point consequently occurs
where homeowners’ risk aversion is so high that they begin
to value extreme events even more. Simply put, increasing
the coefficient for risk aversion does not necessarily increase
the penetration rate of dry-floodproofing, as a resident with
high-risk aversion can find dry-floodproofing to be ineffec-
tive in reducing flood risk. We did not observe this behavior
for flood insurance demand in Figure 4A, as insurance pro-
vides benefits for all storm probabilities.

The second tipping point is observed in Figure 4C. The
three highest peaks in Figure 4C are associated with insur-
ance penetration rates of approximately 47%, 52%, and 47%
for a protection standard of 10, 30, and 50 years respectively.
As Equation 2 indicates, the EU for insurance policy uptake
is a balance between how much perceived damage is covered
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FIGURE 4 Density plots for the different parameters over the penetration rate of insurance and the implementation rate of dry-floodproofing. The
dotted, vertical lines indicate the observed values, also found in Table 2
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take insurance (excluding mandatory policyholders)

due to the deductibles and how high premiums are. Higher
protection standards prevent more flood events, thus reduc-
ing risk and resulting in a lower premium; however, this also
translates to a less effective insurance policy (i.e., the pre-
vented floods no longer require insurance). We observed an
increase in penetration rate if the assumed protection standard
increases from 10 to 30 years—the lower premium outweighs
the lower coverage. Moreover, a tipping occurs when the pro-
tection increases from 30 to 50 years—the lower coverage
outweighs the lower premium.

4.2 | Application on Jamaica Bay

4.2.1 | Insurance indicators

Figure 5 illustrates the mean outcomes of 50 modeling runs
for the four different scenarios using the benchmarked param-
eter settings (see Supporting Information S2 for convergence
tests that confirm stability of results). Figure 5SA portrays
the number of households with a policy in force over time
(including the mandatory share), while Figure 5B depicts
the number of households with an unaffordable premium,

and Figure 5C presents the number of households willing to
obtain insurance based on their EU (excluding the mandatory
share).

The number of policies within the baseline NFIP mar-
ket structure increases over time, from approximately 60,000
policies in 2010 to 75,000 policies in 2080, which implies
penetration rates of about 19% and 25%, respectively.
Although the penetration rate might seem low compared to
the observed values in Table 2, note that the observed values
from Table 2 are directly after Hurricane Sandy (estimated
as a 400- to 500-year storm (Lin et al., 2012, 2016) and thus
under high-risk perception conditions. In the model, storms
occur stochastically, based on their return period, and they
influence risk perceptions accordingly. Our model demon-
strates that for Jamaica Bay for the NFIP baseline market
structure, roughly 60,000 policies are in force, 27,000 of
which are due to the mandatory requirement. The mandatory
share is expected to be slightly larger than current NFIP prac-
tice, as our 100-year flood zone is based on our inundation
data instead of FEMA’s FIRM.

For the NFIP mandatory market structure, penetration
rates are higher, with 85,000 total policies in force in 2010,
increasing to around to 115,000 policies in 2080 (34% and
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35%, respectively). However, the mandatory share increases
to around 65,000 policies, which also translates to the highest
unaffordability out of all scenarios. Note that the mandatory
requirement is not only enforced in the 100-year flood zone
but for all properties and without a compliance rate.

The NFIP risk-based (with or without premium discount)
market structures performed best out of all scenarios, with
penetration rates of around 65% in 2010 to about 74% in
2080, corresponding to roughly 180,000 policies in force in
2010 and increasing to 215,000 in 2080. The market struc-
ture with a discount yielded slightly higher uptake and pene-
tration rates, as seen in Figure 5A. Unaffordability was also
lowest, with about 11,000 households in 2010 and increasing
to 18,000 households in 2080. Part of the increase in penetra-
tion rates and affordability is that a large share of high-risk
zone households have a lower premium for the risk-based
market structure, than the mean observed NFIP premium. For
2010, the mean premiums in the high-risk zone are $818 for
risk-based premiums (based on agents with insurance) and
$1,275 for the current NFIP baseline market-structure. How-
ever, the distribution of premiums (as shown in Supporting
Information S3), shows that there is a tail-end with a share
of households with significantly more costly premiums than
the NFIP baseline average. The share of households with very
large changes in premiums, as shown in Figure 3, did not pur-
chase insurance.

While unaffordability was relatively low, it increased over
time by approximately 7000 households. To analyze unaf-
fordability, only households with mandatory forced policies
and those that were willing to buy insurance were considered.
Offering a premium discount when risk-reduction measures
are in place does not seem to improve affordability, as seen in
Figure 5B. If the annual insurance premium is unaffordable
for a household, then it most likely does not have the funds to
invest in dry-floodproofing measures, not even through a per-
sonal loan, and thus cannot apply for the premium discount.

4.2.2 | Dry-floodproofing indicators

Figure 6A illustrates the number of households that imple-
mented dry-floodproofing, and Figure 6B indicates the
number of households that were unable to afford dry-
floodproofing, assuming households have access to a per-
sonal loan structure. Note that flood-proofing costs between
market structures does not change, and thus unaffordabil-
ity is almost identical in Figure 6B. The NFIP baseline, the
NFIP full mandatory, and the NFIP risk-based without a pre-
mium discount revealed no significant differences in terms of
implementation rates. Approximately 15,000 households ini-
tially invested in dry-floodproofing measures for all market
structures, increasing to about 20,000 in 2080. This number
translates to an implementation rate of roughly 5% and 8%
in 2010 and 2080, respectively. The increase of households
who invested in dry-floodproofing over time, as depicted in
Figure 6, is primarily caused by the increase in flood risk over
time. Similar to the observed insurance market penetration,

the observed dry-floodproof implementation rates in Table 2
are higher than those found in the modeling runs. Note again
that the values in Table 2 should be interpreted as high-risk
perceptions, causing homeowners to overestimate the proba-
bility and damages of floods.

Providing a premium discount to incentivize the adoption
of dry-floodproofing resulted in a distinct increase in imple-
mentation rates compared to the other three market structures
(Figure 6A). With about 15,000 policies in force in 2010
to roughly 23,000 policies in force in 2080 (implementation
rate of 5.5% to 9.2%, respectively), the premium discount
demonstrates the effectiveness of incentivizing DRR through
an insurance market structure. The increase is the result of
households that are likely to have insurance with or without
a discount, but because of the discount are incentivized to
invest in flood-proofing measures as well. Hence, unafford-
ability is unchanged between market structures.

The implementation rate as seen in Figure 6A stagnates
over time. The willingness of homeowners to invest in dry-
floodproofing is hence decreasing over time, despite sea level
rise exacerbating risk. Dry-floodproofing is not effective dur-
ing events that cause overtopping of the floodproofing height.
Therefore, with increasing risk, some homeowners are no
longer willing to invest in dry-floodproofing measures. This
also explains the patterns found in Figure 6B—affordability
is decreasing over time to close to zero. Unaffordability was
only measured for households that were willing to implement
dry-floodproofing. If no households were willing to invest
in dry-floodproofing measures, then there would also be no
households that cannot afford dry-floodproofing. The lifes-
pan of dry-floodproofing is assumed to be 75 years. Home-
owners who were initially investing in dry-floodproof mea-
sures might have changed their minds later in time and would
not have reinvested in measures after their lifespan had been
depleted. However, as the lifespan covers the total modeling
run, this is not visible in the results. Exactly this emergence
of patterns is the unique benefit of agent-based models.

4.2.3 | Alternative loan structure

For the regular scenarios, we used a personal loan structure
for funding dry-floodproofing measures. However, personal
loans (modeled here as a 15% interest rate over 5 years) can
be expensive by themselves; therefore, we also analyzed the
effects of providing a governmentally funded loan with a 4%
interest rate and a length of 20 years, based on proposals by
Kousky and Kunreuther (2014). Figure 7 presents both the
number of households that implemented dry-floodproofing
and those that were unable to afford dry-floodproofing in
graphs a and b; graphs ¢ and d depict the penetration rate
and unaffordability of insurance. As expected, investments in
dry-floodproofing increase significantly, starting at approxi-
mately 25,000 households in 2010 and increasing to about
40,000 households in 2080 (equivalent to implementation
rates of 10% to 15%, respectively). Including a premium
discount has a positive effect on the implementation rate of
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dry-floodproofing, starting at roughly 33,000 households in
2010 and increasing to 46,000 households in 2080 (or 13%
and 17%, respectively). In addition, the reformed loans
decrease unaffordability for all scenarios compared with
Figure 7B, with approximately 11,000 households being
unable to afford dry-floodproofing in 2010, which is a
decrease of 45%.

In terms of insurance, the NFIP baseline market structure
yielded a slightly larger growth compared to Figure 5A, but
overall, no significant differences were found. In terms of
affordability, all market structures improved slightly due to
the new loan structure. Even though the insurance market
structures without a premium discount do not offer a pre-
mium discount, their affordability still improves. Risk is low-
ered as more households invested in dry-floodproofing due
to the more affordable loans. The lower expected damage
causes households that were willing to buy insurance but
were unable to afford it, to no longer want insurance.

4.3 | Sensitivity analysis

The figures displaying the results of the sensitivity analysis
can be found in Supporting Information S5. They present the
mean of 50 repetitions of the model with variations in one
variable to test the robustness of the model.

Insurance outcomes demonstrated robustness for all
variables except risk aversion. The benchmark picked a
specific set of variables that resulted in the observed pen-
etration rates of insurance and the implementation rate of
dry-floodproofing for high-risk perception. As we applied
a one-at-a-time, local sensitivity analysis, it is not surpris-
ing that lower values of risk aversion result in the lowest
penetration rates of insurance.

For dry-floodproofing, the results vary more than the insur-
ance outcomes but are relatively robust with no major out-
liers. As we based our values on the benchmark and liter-
ature, we are confident in the selection of variables; how-
ever, the sensitivity analysis results do suggest that these
variables have an impact on the decision of investing in
dry-floodproofing. For example, it is unsurprising that when
investment costs decrease, the implementation rates of dry-
floodproofing increase, and vice versa.

S | DISCUSSION AND CONCLUSION

Hurricane Sandy induced nearly $70 billion in damages in
2012, and recent flood events in the Midwest have caused
an estimated $2.9 billion in damages. These events illus-
trate flood risk as we are experiencing it today, and it is
expected to worsen over time, driven by climate change
and socioeconomic development. Flood insurance can be
an essential tool in transferring risk and incentivizing indi-
viduals to implement risk-reduction measures. However, the
NFIP is criticized for incentivizing policyholders to stay
in flood-prone areas and having inaccurate premiums, and

the program is over $30 billion in debt. Many suggestions
have been made to reform the NFIP (Kunreuther, 2018;
Michel-Kerjan & Kunreuther, 2011), although predicting
their effects is difficult due to the lack of systematic evalua-
tions of these reforms using flood risk assessment models that
account for dynamic human adaptation behavior. We applied
an agent-based model coupled with a flood risk model to
evaluate several reform changes: a full mandatory purchase
requirement in 100-year flood zones, risk-based premiums
with and without a premium discount, and an accessible loan
structure to help finance DRR measures.

While most studies have employed ad hoc rules with
parameter values based on assumptions and expert judge-
ment, we applied a benchmark with survey data to ground
our behavioral rules in economic theories. The benchmark
demonstrated the wide variety of model outcomes that can be
obtained by different sets of parameters. While most of the
variables are in line with literature, the risk aversion parame-
ter that best matched observed flood adaptation behavior has
a relatively high coefficient value of 4. Many similar mod-
eling studies have applied a risk aversion coefficient of 1,
representing slight risk aversion (Haer et al., 2019; Hudson
et al., 2019a), which is often based on evidence found in
Bombardini and Trebbi (2012), Falk et al. (2018), or Viei-
der et al. (2015). However, risk aversion estimates vary highly
across different studies and contexts. For example, some stud-
ies have found a difference in risk aversion between genders
(Falk et al., 2018; Vieider et al., 2015), whereas others have
not (Niederle, 2014). In addition, Eckel et al. (2009) found
risk-seeking choices from Hurricane Katrina evacuees, sug-
gesting a varying value of risk aversion over time. For agent-
based models, collecting more empirical data designed for
modeling applications is essential to allow for more exten-
sive calibration and validation of the models, preferably over
an extended period of time. Further refinements in behav-
ioral rules of the model are possible in case more empirical
information becomes available through future research. For
example, the increase of perceived probabilities and damages
by homeowners following a flood event is based on Hurri-
cane Sandy, but applied in our model to each of the flood
return periods, while in reality a lower intensity storm might
trigger a different response. This aspect of the behavioral
rule could be calibrated in more detail if information on the
updating of flood risk perceptions following floods with var-
ious intensities becomes available. Moreover, future research
could assess how start-values of risk aversion, perceived flood
probability and perceived flood damage based on distribu-
tions instead of start-values affect the initial agent’s purchas-
ing behavior.

We found that for Jamaica Bay, risk-based premiums
would overall increase penetration rates and decrease unaf-
fordability compared to the NFIP baseline market structure,
although a share of policyholders might still experience
significant increases in their rates and higher unaffordability.
This is surprising because the Biggert-Waters Flood Insur-
ance Reform Act of 2012 was designed to move toward
risk-based premiums and was almost entirely reverted in
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2014 due to unaffordability issues (Dixon & Clancy, 2006;
Kousky & Kunreuther, 2014; Miller et al., 2019). In terms
of unaffordability, NYC is relatively wealthy, and thus unaf-
fordability might not be as much of a problem compared to
other regions; however, a US-scale study would be necessary
to confirm this. Furthermore, a major problem of the NFIP
is the inaccuracy of current inundation mapping, based on
historic losses and national averages (FEMA, 2013b; Kousky
et al., 2016). The increased accuracy of the 30 m resolution
flood risk model shows that within the 100-year flood zone
there is still a large variability of risk. This variability results
in a large share of households benefiting from risk-based
premiums (Michel-Kerjan et al., 2014). Still, a subset of
households will experience a significant increase in premi-
ums. These households are unlikely to purchase insurance,
either due to affordability issues or not perceiving the risk
as high enough, or in other words they believe the insurance
policy not to be a worthwhile investment. The current NFIP
high-risk coastal zone for NYC is based on FIRMs from
1983 (City of New York Mayor’s Office of Recovery &
Resiliency, 2015; Miller et al., 2019); this zone is smaller
than the 100-year flood zone of our high-resolution inun-
dation data, capturing only extremely high-risk properties.
Our larger 100-year flood zone is more nuanced and includes
properties that are still vulnerable for a 100-year flood event
but have a relatively lower risk than those within the NFIP
high-risk zone. This can cause the current NFIP premiums
to be overestimations of premiums for high-risk areas. With
the release of FEMA'’s risk rating 2.0 program and the
introduction of FEMA’s new methodology on assessing local
flood risk (FEMA, 2019b), a more extensive comparison can
be made with local scale inundation models, and how they
related to the 1983 FIRMs and 2013 PFIRMs. In addition, we
recommend that application of the model to different areas to
assess the impact of risk-based premiums.

The current NFIP has a little under 20% of all policies
receiving discounts for being pre-FIRM properties or proper-
ties that follow grandfathering benefits (Kousky et al., 2016).
These properties sustain more damages and have higher
claims, although they pay less, and the NFIP is not compen-
sated for these lower premiums. Changing to a risk-based
premium setting will have a financial impact on these specific
households. To relieve financial but also political stress, com-
pensation for managed retreat or a voucher incentivizing risk
reduction can be offered to policyholders for whom premi-
ums are unaffordable due to a transition, although that is not
explored in this paper. Our model captured the discounts by
applying mean observed NFIP premiums for the NFIP base-
line premium setting and therefore should not have caused
the differences found in penetration rates or unaffordability.
Despite some of these stylistic changes to the NFIP baseline
market structure, our model demonstrates the interactions
between insurance and risk-reduction indicators for different
market structures and reform changes. For example, most of
the unaffordability caused in both NFIP scenarios is due to
the mandatory requirement, forcing homeowners to obtain
insurance despite not being able to afford it. Though it should

be noted that households that cannot afford insurance are
probably not equipped to deal with uninsured flood damage
either. Even for the NFIP baseline market scenario, the initial
unaffordability is caused by 65% of the mandatory policies.
As NYC is relatively wealthy, future research should explore
and compare the results with different areas.

Following our findings, premium discounts, and a loan
structure to incentivize the implementation of risk reduc-
tion are recommended reform changes, in addition to the
aforementioned risk-based premiums. Offering a premium
discount that reflects the reduction in risk can significantly
increase the uptake of risk-reduction measures. In addition,
we find that a premium discount does not reduce the unafford-
ability of insurance or risk-reduction measures. If a house-
hold is unable to afford an annual insurance premium, then
they are unlikely to be able to afford a personal loan to
fund dry-floodproofing measures to receive the discount.
Instead, the proposed loan structure is demonstrated to sig-
nificantly improve the penetration rates and affordability of
DRR. While we evaluated the current state of the NFIP and
some of the most discussed reform changes, there are still
many other proposed reform changes, such as the entry of
private insurers, that should be addressed in future research.
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