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Abstract 

Individual cells in a genetically identical population can show highly variable behavior. Single-cell 

measurements allow us to study this variability, but the available measurement techniques have 

limitations: live-cell microscopy is typically restricted to one or a few molecular markers, while 

techniques that simultaneously measure large numbers of molecular markers are destructive and 

cannot be used to follow cells over time. To help overcome these limitations, we present here scMeMo 

(single cell Mechanistic Modeler): a mechanistic modeling framework that can leverage diverse sets of 

measurements in order to infer unobserved variables in heterogeneous single cells. We used this 

framework to construct a model describing cell cycle progression in human cells, and show that it can 

predict the levels of several proteins in individual cells, based on live-cell microscopy measurements of 

only one marker and information learned from other experiments. The framework incorporates an 

uncertainty calibration step that makes the posterior distributions robust against partial model 

misspecification. Our modeling framework can be used to integrate information from separate 

experiments with diverse readouts, and to infer single cell variables that may be difficult to measure 

directly. 
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Introduction 

Individual cells in a genetically identical population often differ from each other in various ways. This 

heterogeneity can have a major impact on how cells behave in response to stimuli, stress or treatments. 

One major aspect in which cells differ from each other is in the cell division cycle. Each cell proliferates 

at its own speed and timing (Chao et al, 2019), and a specific cell can be in any of the phases of the cell 

cycle. This affects, for example, how a cell responds to DNA damage (Shaltiel et al, 2015) and anticancer 

drugs (Bhuyan et al, 1972). Another important difference between cells can be the intracellular 

concentrations of particular biomolecules. Among others, levels of proteins regulating apoptosis can 

affect whether a cell dies after exposure to an apoptosis inducer (Spencer et al, 2009), and distinct 

patterns of p21 dynamics can affect whether individual cells continue to proliferate or go into a cell 

cycle arrest (Hsu et al, 2019). Another example is our recent observation that variability in E2F 

transcription factor activity determines whether cells exit the cell cycle after DNA damage (Segeren et 

al, 2020).  

Single-cell measurements allow us to study this variability in behavior within populations of cells. 

However, there are limitations in the molecular features that can be measured in one experiment. Live-

cell microscopy makes it possible to follow single cells over time, but usually requires transduction of 

cells with relevant biosensors or fluorescent tags to obtain molecular measurements. Typically only up 

to four molecular markers can be measured simultaneously, as done for example in (Bajar et al, 2016). 

Various other techniques allow measurement of many more molecular features in individual cells, such 

as through single-cell RNA sequencing (Kolodziejczyk et al, 2015), mass cytometry (Bandura et al, 2009), 

iterative immunofluorescence (Gut et al, 2018) or single-cell sequencing of DNA-labeled antibodies (van 

Eijl et al, 2018). However, these techniques are destructive and hence only cross-sectional 

measurements can be obtained. For either of these types of measurements, it would be useful to be 

able to infer unobserved aspects of individual cells: either infer unobserved molecular species in the 

case of live-cell imaging, or infer time courses in the case of cross-sectional measurements. 

Mechanistic computational models are in principle able to make such single-cell inferences. Various 

approaches for modeling heterogeneous populations of cells have been developed, with different ways 

of describing intracellular signaling and different ways of accounting for variability between cells 

(Zechner et al, 2014; Loos et al, 2018; Dharmarajan et al, 2019; Letort et al, 2019; Dixit et al, 2020; 

Lambert et al, 2021; Browning et al, 2022a, 2022b).  These publications have focused on fitting models 

to data in order to attribute cell-to-cell variability to potential sources of heterogeneity, and to describe 

or predict distributions of molecular features. We wanted to explore if mechanistic simulations of 

heterogeneous cell populations can also infer aspects of individual cells – such as the level of a particular 

protein in a particular cell – rather than inferences about the distribution over all cells. In addition, we 

wanted to make predictions throughout the cell cycle. This requires integration of several sets of 

measurements, since it is currently not possible to measure all relevant aspects of the cell cycle in the 

same cell over time. 

To perform single-cell inference with multiple sets of information, we set up a Bayesian inference 

framework combined with mechanistic simulations of heterogeneous cell populations, which we call 

scMeMo (single cell Mechanistic Modeler). In scMeMo, we simulate populations of cells, where the 

individual cells in a population can differ from each other, and use Bayesian inference to estimate the 

model parameters and the extent of variation in those parameters between cells. To make this 
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computationally tractable, we made several simplifying assumptions. In particular, we assumed that 

variation in only a subset of model parameters is sufficient to represent the dominant sources of 

variability between cells. Furthermore, we assumed that these variable rate constants follow a 

parametric distribution across cells. When these assumptions are applicable, the proposed framework 

has the benefit that it allows transferring information between experiments.  

Models of intracellular signaling networks have to be strong simplifications of the underlying 

biochemistry, since many details of intracellular processes are not known. In addition, many aspects that 

are known still have to be left out for computational or practical reasons. To create models that are still 

reliable, we incorporated a posterior calibration step into scMeMo, that makes the posterior 

distributions (i.e., the conditional probability of model parameters and predictions, based on the 

measurements) robust to partial model misspecification. Using the resulting framework, we constructed 

a model of human cell cycle progression. We trained this model on six available sets of protein and 

transcript measurements, which were obtained with several different experimental techniques, with 

three different cell lines, and in different laboratories. These measurements constrained several of the 

parameters on the model. We then asked the model to make predictions of the levels of six cell cycle 

proteins, based on traces of only a CDK2 biosensor, and found significant correlations between the 

predicted and observed levels for five of the six proteins. Thus, we demonstrate that mechanistic 

simulations of heterogeneous cell populations are a viable strategy to make inferences about protein 

levels and cell cycle behavior of individual cells. 

Results 

Simulating a population of heterogeneous cells 

To describe the behavior of individual cells in a heterogeneous cell population, and to use this model to 

infer information about individual cells, we aimed to create a robust modeling framework which allowed 

sufficient variation between cells while keeping the computational cost manageable. We opted to use 

heterogeneous ordinary differential equations (ODEs) for this. Specifically, each cell is represented by 

one instance of a system of ODEs, where all cells have the same ODE structure, but the dynamic 

variables and model parameters can differ between the cells. In principle all model parameters could 

differ between individual cells, but we made the assumption that variability in only some model 

parameters is important for the question of interest, and that most model parameters can be assumed 

to be the same in all cells. It then suffices to simulate a limited number of cells to describe the variability 

in a whole population, making it is feasible to simulate the entire population during parameter 

inference. An example model is shown in Figure 1A, and the terminology on model parameters, 

inference variables and the variability between cells is illustrated in Figure 1B. 

Even with a limited number of cells and inferring only a subset of parameters, multivariate parameter 

inference with such heterogeneous ODEs is still computationally expensive. We therefore incorporated 

several computational performance optimizations in the model simulation, and furthermore 

implemented a novel locally adaptive sampling algorithm that efficiently explores the posterior 

probability distributions. Together, this reduced computation time by a factor fifteen (see the text 

section Supplementary Result 1 for details). With these optimizations, multivariate parameter inference 

of 10-20 unknown parameters became feasible, with a parameter inference run typically requiring 24-48 

hours on a high performance compute server with 128 cores (with cell populations of several hundred 

cells and intracellular ODE systems containing several dozen dynamic variables). 
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Testing scMeMo with a model of mitosis 

To explore whether the scMeMo modeling framework can be used to describe populations of cells, we 

first focused on progression through mitosis as a test case. We created a simple model that describes 

several key mitotic events: the production of cyclin B, activation of cyclin B/CDK1 including a positive 

feedback loop through CDC25C, assembly of the mitotic spindle, and destruction of cyclin B by CDC20 

after spindle assembly, followed by chromatid separation (Figure 1A). To illustrate the effect of 

parameter variability, Figure 1C shows the simulation of a group of cells with this model (using 

parameter values obtained from model fits described in the next paragraph), where we separately 

varied two parameters between the cells. When the mitotic spindle assembly rate is varied between 

cells, the dynamic variable describing the assembled spindle rises faster in some cells than in others. As 

a result of this variable rate of spindle assembly, the levels of the active cyclin B-CDK1 complex are high 

for only a brief period of time in some cells, whereas they stay high for a longer period in other cells. On 

the other hand, when the rate constant describing entry into mitosis is varied but the rate of spindle 

assembly is held constant, there is variability in when the active cyclin B-CDK1 complex starts to form, 

while the duration of high cyclin B-CDK1 activity is roughly the same in all cells. 

In addition to the cell-to-cell variability described above, there is statistical uncertainty in the 

trajectories of the dynamic variables. Figure 1D shows this statistical uncertainty by depicting the 90% 

confidence interval region. Hence, together, there are two sources of variation: a variation between 

cells due to variability in model parameter values between cells, which we refer to as cell-to-cell 

variability, and variation for every dynamic variable due to uncertainty in the model parameter values, 

which we refer to simply as uncertainty.  

We fitted the simple mitosis model described above to two sets of measurements: measurements of a 

CDK1 activity sensor in HeLa cells (Gavet & Pines, 2010), and measurements of eYFP-tagged cyclin B in 

U2OS cells (Akopyan et al, 2014). In fitting these data we allowed three rate constants to vary between 

cells: the rate controlling when a cell enters mitosis, the rate at which the spindle is assembled, and the 

rate of FOXM1 synthesis. FOXM1 is a transcription factor responsible for the induction of cyclin B1 

expression during late S and G2 phase (Laoukili et al, 2007). The reasoning behind choosing only these 

three rates to vary, is that cell-to-cell variability in these three parameters may be sufficient to describe 

the main cell-to-cell variability in the population, and that cell-to-cell variability in other model 

parameters, such as the rate at which CDC25C is phosphorylated, is less important and can be ignored 

for the present analysis.  

Figure 2A shows the fit to the CDK1 FRET sensor measurements. Two sets of measurements were 

available from the publication of Gavet & Pines; two traces of individual cells (top two panels), as well as 

the average over six (different) cells aligned at the point of nuclear envelope breakdown (bottom left 

panel) or at mitotic exit (bottom right panel). The model was fitted to both of these sets of 

measurements together. The two individual cells clearly differ from each other, with cell 1 having a 

much shorter duration of high CDK1 activity than cell 2. The model can fit this difference between cells, 

as shown by the overlay of the measurements and the model fit (Figure 2A). The model used variability 

in spindle assembly to describe this difference between cells, as indicated by the marginal posterior 

distribution for the variability of spindle assembly that has a clear peak for values higher than zero 

(Figure 2B, bottom left panel). Another potential source of cell-to-cell variability, the rate of FOXM1 

synthesis, had a much wider marginal posterior probability distribution (Figure 2B, bottom right panel), 
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showing that the extent of cell-to-cell variability in FOXM1 synthesis rate cannot be inferred from these 

measurements. 

The fit to the eYFP-tagged cyclin B measurements from the publication of Akopyan et al is shown in 

Figure 2C. In this case individual traces of cells were not available; only the average of the 

measurements across multiple cells, after individual traces were aligned at mitotic entry, was provided. 

However, since we simulate individual cells, we can still fit the model to these averaged data by aligning 

the simulated single-cell trajectories at mitotic entry and taking the population average at every time 

point (this was also done for the population average measurements of Gavet & Pines in the previous 

paragraph). Figure 2D shows simulated trajectories before and after alignment; the left panel illustrates 

the cyclin B trajectories in the way they are simulated, and the right panel shows the alignment of the 

individual trajectories at mitotic entry. These aligned trajectories were then averaged across the cells at 

every time point to fit the averaged measurements. As seen in Figure 2C, the simple mitosis model could 

describe the averaged trajectory very precisely. In contrast to the measurements from Gavet & Pines, 

the rate and variability of spindle assembly was less identifiable here (Figure 2E). The FOXM1 synthesis 

rate and its variability across cells was identifiable however: the model used a clearly nonzero variability 

of FOXM1 synthesis in order to best describe the fairly long and steady accumulation of cyclin B in the 

averaged population. Such variability in FOXM1 synthesis fits with multiple factors feeding into FOXM1 

expression (Liao et al, 2018). Specifically, E2F transcription factors are transcriptional activators of 

FOXM1 (Millour et al, 2011) and E2F-dependent transcription is highly heterogeneous between cells 

(Segeren et al, 2020). Regardless of the underlying mechanism, these results show that an scMeMo 

model can describe heterogeneity in the process of mitosis in unperturbed human cells. 

Regular Bayesian posteriors are overconfident and require a correction to be robust across datasets 

The model used so far is a strong simplification of the complicated mitosis process. Nevertheless, we 

wondered if this model, using the two limited sets of measurements, can already make accurate 

predictions. In principle, the cell traces from Gavet & Pines and the averaged traces of Akopyan et al, 

when combined with the assumptions codified in the model, provide important information on the 

duration of mitosis. We reasoned that measurements of either cyclin B or CDK1 activity over the course 

of an unperturbed cell cycle reliably predicts the duration of mitotic processes, given the model 

assumptions on how activation of CDK1 by cyclin B leads to nuclear envelope breakdown and eventual 

onset of anaphase. To test this, we let the model predict the duration from nuclear envelope breakdown 

to the onset of anaphase, and compared these predictions to observations of this duration, in the same 

cell line, in multiple other datasets; either measured by us (denoted Liu et al), or from three publications 

(Meraldi et al, 2004; Lu et al, 2013; Zhou et al, 2017). The predicted durations were fairly consistent with 

the observed measurements (Figure 3A). However, two sets of measurements (Meraldi et al, and Zhou 

et al) contain a large number of individual cells that progressed from nuclear envelope breakdown to 

the onset of anaphase more rapidly than the fastest cell in the model prediction. Two explanations for 

this discrepancy could be that the cell line has diverged between labs, or that experimental conditions 

differed between experiments. However, we would like model predictions to be robust against such 

differences, and the posterior uncertainty should therefore have allowed for the apparently faster cells 

that were seen in the data of Meraldi et al and Zhou et al.  

This problem is consistent with previous work showing that regular Bayesian inference can lead to 

overconfident posterior distributions when a model is partially misspecified (Grünwald & van Ommen, 

2017; Miller & Dunson, 2019). Several methods have been developed to make posterior distributions 
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robust against misspecification (Grünwald & van Ommen, 2017; Syring & Martin, 2019; Huggins & 

Miller, 2023). However, these methods are far too computationally intensive when combined with 

lengthy simulations of populations of cells. In addition, these methods rely on the assumption that the 

data is independent and identically distributed.  The data necessary for fitting cell cycle models are 

neither independent nor identically distributed: the measurements at individual time points in a time-

series are not independent, and measurements from separate experiments are also not identically 

distributed. The measurements in separate experiments may not even describe the same physical 

quantities (for example, time durations and concentrations). We therefore took a more pragmatic 

approach and decided to use (at least) one set of measurements as inference data, and (at least) one set 

of orthogonal measurements as calibration data to make the posterior distributions robust against 

partial misspecification.  

Specifically, we used a learning rate and a log-loss measure similar to what is used in SafeBayes 

(Grünwald & van Ommen, 2017), but rather than using forward-validation within the inference dataset 

as done in SafeBayes, we calculated the log loss of the entire calibration dataset. We selected the 

learning rate giving the minimum log loss of the calibration dataset as the learning rate for the 

calibrated posterior (see the Methods section for details). For the mitosis model, we used Gavet & Pines’ 

CDK1 sensor dataset as inference data, and the four sets of mitotic duration measurements as 

calibration data. Figure 3B shows the sum of the log-loss for the four calibration datasets, as a function 

of the learning rate. The log loss initially drops quickly as the parameter inference learns realistic 

parameter values, but rises again at higher learning rates when the model starts to overfit the inference 

data. Figure 3C shows the model prediction at the selected optimal learning rate. The uncertainty in the 

calibrated predictions is now much larger. With these larger confidence intervals, even the cell with the 

shortest duration observed in any of the external datasets still fell within the 90% confidence interval of 

the model predictions. Given the strong simplifications and assumptions in the model, and the limited 

data used for inference, it is realistic that the confidence intervals should indeed not be so small as was 

the case in Figure 3A, and the confidence intervals of Figure 3C are more appropriate. At the same time, 

the calibration did not lead to unusably wide posterior distributions. For example, the likely set of values 

for the average rate of spindle assembly is still constrained compared to the prior (Figure 3D). These 

results indicate that using a learning rate and log-loss of a set of orthogonal calibration measurements 

provides a method for obtaining realistic confidence intervals on the predictions in mitosis duration of 

individual cells. 

Calibration makes posterior distributions robust against partial misspecification 

To test whether this process of posterior calibration indeed makes the posterior distributions robust 

against misspecification, we further investigated the resulting posteriors with a simulation study. We 

used the mitosis model to simulate a new dataset of CDK1 sensor measurements, using the maximum a 

posteriori parameter values from the fit to the Gavet & Pines data, so that we know the true parameter 

values for the simulated data (Figure 4A). We then fitted this simulated data with the same model that 

was used to generate the data, as well as with a model where we removed the positive feedback loop 

through CDC25C (the ‘correct’ and ‘misspecified’ models respectively, shown in Figure 4B and 4C). 

Without the positive feedback loop through CDC25C, the model misses an important mechanism that 

produces the typical switch-like activation of the cyclin B/CDK1 complex. Both the correct and the 

misspecified models can actually describe the data accurately (Figure 4D). However, while the 

misspecified model is able to describe the data, the inferred parameter values are entirely wrong (Figure 
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4E, second row), especially the cyclin B synthesis rate. The correct model did recover the true parameter 

values correctly (Figure 4E, first row). The misspecified model used the option of a very high synthesis 

rate of cyclin B to describe the switch-like increase of active cyclin B/CDK1 in the simulated data.  

We then applied the posterior calibration, which, as desired, made the uncertainty larger (Figure 4D). In 

the calibrated posterior distributions, the mode of the posterior distribution is still at incorrect values, 

but the posterior now correctly placed non-zero probability on the true values (Figure 4E, third row). 

That is, the parameter values that were used to generate the data are not ruled out by the calibrated 

posterior, whereas the non-calibrated posterior did rule out the true values. The calibrated posteriors 

still constrained the parameters compared to the prior distribution. Hence, the posterior calibration 

made the posterior distribution reliable, even though the model is partially incorrect. 

The more reliable posterior distribution due to the calibration is not just an effect of adding additional 

data. The bottom row of Figure 4E also shows the posterior distributions that are obtained when using 

the external mitotic duration measurements as additional inference data rather than as calibration data. 

In this case, the posterior distribution is still wrong; it placed zero posterior probability on the true 

parameter values. Together, this shows the importance of using part of the available measurements as 

calibration data, rather than just using all available measurements for parameter inference.  

A simplified model of cell cycle progression can describe a variety of data 

Having a methodology to simulate heterogeneous populations of cells and obtain reliable posterior 

distributions, we next wanted to explore if the methodology can be used to describe populations of cells 

going through an entire cell cycle. To this end we iteratively built a model of the cell cycle until it could 

describe the dynamics of various important cell cycle controls proteins. Specifically, we wanted the 

model to describe the dynamics of the total levels of cyclin E, cyclin A, cyclin B, geminin, p21, p27, E2F1 

and E2F7, and the activity levels of CDK1 and CDK2. We started with a small model, and subsequently 

added regulatory mechanisms until the model could adequately describe the dynamics of these proteins 

and activities, in six sets of measurements obtained with a variety of measurement methodologies 

(Eward et al, 2004; Westendorp et al, 2012; Akopyan et al, 2014; Barr et al, 2016, 2017; Cappell et al, 

2018; Clijsters et al, 2019). The resulting model is shown in Figure 5A and Supplementary Figure 3, and 

described in more detail in the Supplementary Materials & Methods. 

While many iterations were necessary to reach this model, we illustrate the process of model 

refinement with the example of cyclin E and cyclin A regulation. Cyclin E and cyclin A are both E2F target 

genes (Ohtani et al, 1995; Schulze et al, 1995); however cyclin A levels rise later in the cell cycle than 

cyclin E (Martínez-Alonso & Malumbres, 2020). To accurately describe the levels of cyclin E and cyclin A, 

we therefore need to include the mechanisms responsible for the delay in cyclin A expression relative to 

cyclin E. Specifically, it has been shown that the promotor of cyclin A contains a repressive element that 

needs to be relieved before cyclin A is transcribed (Schulze et al, 1995; Zwicker et al, 1995). This process 

was represented in the model by the Cyclin E-CDK2 complex removing the repression of cyclin A. In 

addition to the delay in accumulation of cyclin A transcripts, cyclin A transcription is also maintained 

when cyclin E transcripts are already declining. This can be explained by the finding that the repressive 

E2F7 binds the cyclin E promoter, but not the cyclin A promoter (Di Stefano et al, 2003; Westendorp et 

al, 2012).  

We created a model that contains both of these mechanisms, as well as two models which lacked either 

of the two mechanisms respectively. Simulating a population of synchronized cells with these three 
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models, shows that the model containing both mechanisms can describe the consecutive waves of cyclin 

E and cyclin A transcripts, while models that miss either of these mechanisms are inadequate (Figure 5B, 

C). The model without the cyclin A repressive element could not adequately describe the cyclin A 

dynamics simultaneously with the cyclin E dynamics, and likewise, the model excluding E2F7 is not able 

to describe the cyclin E transcript dynamics correctly together with the cyclin A dynamics. The 

coefficients of determination are clearly higher for the full model, and the marginal likelihood for the full 

model is indeed significantly higher than the two models excluding the two mechanisms (log Bayes 

factors of 3.5 and 4.7 in favor of the full model, meaning that the full model is approximately 35 and 113 

times more likely respectively, given these data). 

Through such steps of model refinement, we came to the full model shown in Figure 5A.  To simulate 

the variability between cells, we again assumed that the rates of several main cellular processes were 

most important in describing the variability between cells. These processes were, 1) the rate of 

mitogenic signal accumulation, 2) the rate of DNA licensing, 3) the rate of DNA replication, 4) the rate of 

endogenous replication stress-induced DNA damage, and 5) the rate at which cells progress through G2 

(representing delay due to reasons other than endogenous replication stress-induced DNA damage). For 

asynchronous experiments, a sixth cell-to-cell variability, namely variability in the cell start time, was 

used to generate asynchronous cells. In contrast to the mitosis model described earlier, the rate of 

mitotic spindle assembly was assumed to be constant across cells in the current part of the analysis, as 

the magnitude of variability in the duration of mitosis is typically smaller than of the other cell cycle 

phases (Chao et al, 2019). Further details of the specific choices for parameter inference are described in 

the Supplementary Materials & Methods. 

The model could describe each of six chosen datasets accurately (Figure 6 and Supplementary Figure 5). 

These datasets included several measurement techniques:  live cell imaging of GFP-tagged proteins 

(Figure 6A and B), averaged immunofluorescence after live cell imaging (Figure 6C) as well as bulk 

measurements done through western blotting of experimentally synchronized cells (Figure 6D). In some 

of the measurements there is clear variability between cells; for example, in the data of Barr et al, 2016 

(Figure 6A), the bottom-right cell has a cyclin E peak that occurred much earlier (relative to the onset of 

S-phase) than the peak observed in the top-right cell, and this can be recapitulated by the model. 

Similarly, in the data of Barr et al, 2017 (Figure 6B), one cell has flat levels of p21, another cell has a 

small increase in p21 levels which drops again after several hours, and a third cell has p21 levels that 

continue to rise. The model seems to be able to describe all of these variabilities between cells.  

The cell cycle progression model can predict levels of proteins based on CDK2 sensor measurements 

One of the reasons to create these models was to use them to infer unobserved aspects of single cells, 

such as the levels of unmeasured proteins during live-cell imaging. To test whether the cell cycle model 

can make such predictions, we focused on the measurements from Gookin et al (Gookin et al, 2017). In 

their study, Gookin et al tracked MCF10A cells with a CDK2 activity sensor for 24 hours, after which the 

cells were fixed and the levels of one of nine proteins was measured through immunofluorescence. Six 

of the nine proteins that were measured were included in our model and could therefore be used as 

validation. To obtain single-cell predictions for these protein measurements, we used the following 

procedure (illustrated in Figure 7A). First, we fitted the model separately to the six inference datasets 

(this was described in the previous section). We then used two datasets of S-phase duration 

measurements (Burgess et al, 2012; Grant et al, 2018) to calibrate the posterior (see Supplementary 

Result 2). Next, we fixed the parameter values of the rate constants for which the six inference datasets 
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provided information to the calibrated maximum a posteriori estimate. After this, we fitted the model to 

a subset of the CDK2 sensor traces of Gookin et al, leaving only the rates and variabilities of the main 

cellular processes free as inference variables, to allow the model to adapt to the MCF10A cell line. 

Finally, we aligned all of the CDK2 sensor traces to the simulated population, in order to predict the 

protein levels at the end of the trace, and compared the predictions to the observed 

immunofluorescence measurements. The immunofluorescence measurements were never used during 

inference or the construction of the model. 

For inference of the main cellular process rates from the CDK2 sensor traces (that is, for the adaptation 

of the model to MCF10A cells), we selected 40 cells from their dataset at random (including their 

daughter cells if a cell divided, giving a total of 78 cell traces). We fitted these traces with a simulated 

population of 128 cells (growing up to 500 cells depending on cell divisions), to allow sufficient 

variability between the simulated cells. To reduce computation time, we simulated only the second half 

of the 24-hour traces. Figure 7B shows the fit to several of traces, illustrating the diversity in cell 

behaviors: the top left cell spends several hours in G1 and then enters S-phase (as shown by the rise in 

CDK2 sensor signal), the bottom left cell is arrested for the entire 12 hours, and the right cells both 

divided during the 12-hour window, with the two daughter cells at the top immediately progressing to S-

phase with barely any time in G1, while the bottom two daughter cells both arrest at least for the 12-

hour window. The simulated population can describe all these behaviors simultaneously.  

To then obtain a prediction for all thousands of cells in Gookin’s set of measurements, we took the 

maximum a posteriori parameter value from the fit, and selected the cell from the simulation that has 

the best fit to each trace. The simulated protein level at the end of the trace of the selected cell was 

used as prediction. Figure 7C shows the comparison of the predicted protein levels plotted against the 

observed immunofluorescence intensities. Even though the measurements of Gookin et al were done in 

a different cell line than those used to build the model (MCF10A rather than RPE, HeLa and U2OS), five 

of the six proteins had a clearly significant correlation. Only one of the proteins was not predicted 

correctly, CDT1. It should be noted that we did not actually use any CDT1 measurements during the 

inference and model building, so in hindsight it is understandable that the levels of this protein could 

not be predicted well. In the Gookin et al measurements, CDT1 levels appear to drop very rapidly in 

newly born cells (Gookin et al, 2017), while the model requires some time in G1 before CDT1 is 

degraded. Indeed, cells may already commit to a new cell cycle before mitosis (Min et al, 2020), while 

our model always requires new mitogenic signal to be accumulated.  Notwithstanding, these data show 

that we could accurately predict the heterogeneous levels of multiple proteins in single cells. These 

findings demonstrate that our computational approach can be used to infer unobserved protein levels in 

individual cells. 

Discussion 

Understanding the molecular underpinnings of cell-to-cell variability is a major challenge. It is an 

important goal in -among other fields- cancer research, because cancer drug resistance often arises from 

subpopulations of cells within a tumor that somehow manage to continue to proliferate (Dagogo-Jack & 

Shaw, 2018; Marusyk et al, 2020). The mechanisms underlying cell decisions are complex and involve 

many different proteins, and computational modeling can help in understanding these complex 

processes.  
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We here presented a computational framework, scMeMo, for parameter inference of models of 

heterogeneous cell populations. We used this framework to construct a model describing the 

heterogeneous dynamics of several important cell cycle proteins during cell cycle progression.  By using 

a parametric distribution of the variability between cells and Bayesian inference, this approach allowed 

transferring information between different sets of measurements, as well as making single cell 

predictions with reliable uncertainty estimates. A major advantage of scMeMo is that it can integrate 

different batches of experiments and experimental readouts, while providing biologically meaningful 

information about cell cycle control proteins. This is crucial, because differences between cell culture 

conditions, lab environments and assays can obscure true biologically relevant cell-to-cell heterogeneity 

(Lähnemann et al, 2020; Eisenstein, 2020). 

The presented computational framework is an important step forward, but challenges remain. Currently 

we could vary relatively few parameters between cells, because otherwise prohibitively many cells need 

to be simulated to adequately cover the multivariate variation in parameter values. Since the 

computational cost scales (in the worst case) exponentially for both the number of unknown parameters 

as well as the number of parameters that vary between cells, there is a trade-off between these two 

aspects. Ways forward in this respect may be to use dedicated experiments to constrain parameters, so 

that available computation time can be shifted to simulating larger populations of cells rather than 

inferring many parameters. Alternatively, it may be possible that cell-to-cell variability can be described 

on a low-dimensional manifold, such that a limited number of cells can still adequately describe 

extensive intracellular heterogeneity. 

A second limitation is that the simulations are deterministic, and stochasticity in biochemical reactions is 

not taken into account. Stochasticity for some reactions could still be incorporated by specifying a rate 

constant that varies between cells for those reactions. More extensive stochasticity however, such as 

bursting gene expression or stochastic intra-cellular variability in signaling pulses, cannot currently be 

incorporated. Other methods of parameter inference can enable inference for stochastic simulations, 

such as with likelihood-free methods (Frazier & Drovandi, 2021; Ward et al, 2022) or dynamic prior 

propagation (Zechner et al, 2014). However, the computational cost of such methods is currently 

prohibitive for extensive models of signaling networks like the cell cycle model we investigated here. 

Despite these limitations, the advantage of the assumptions we made is that the populations of cells can 

be simulated sufficiently fast to enable elaborate statistical inference. Specifically, the framework 

allowed for multivariate parameter inference, with multiple datasets, such that models could be 

constrained with several complementary types of measurements. It furthermore allowed for posterior 

calibration to make uncertainty estimates robust against partial model misspecification. As a result, the 

presented modeling approach can be used to integrate bulk and single-cell measurements, and to make 

single-cell inferences even when cells in a population differ from each other. 

Materials and Methods 

Terminology 

For reference, Table 1 specifies the symbols and meanings for specific terms used in this manuscript. 

Throughout the formulas, the indices i enumerate cells, j enumerates dynamic variables, k enumerates 

model parameters and l enumerates inference variables. In the equations, bold letters indicate vectors 

and italic letters indicate scalars. 
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Table 1: Terms and symbols used in the text and equations. 

Term Symbol Description 

Dynamic variable  xi,j 

Level of molecular species j in cell i. The term ‘molecular species’ is meant 

loosely and also includes dynamic variables that represent abstract 

concepts like the amount of mitogenic signal or progress in cytokinesis. 

Measurement value yi,j,t A measurement of observable j in cell i at time point t. 

Modeled data value zi,j,t The modeled data value corresponding to a particular measurement. 

Model parameter φi,k 
A parameter of the intracellular computational model; either a kinetic rate 

constant or an initial value of a dynamic variable. 

Inference variable Θl 

A variable which is inferred from measurements; this can correspond to 

particular model parameters or variables related to a dataset including the 

error parameter and offset/scale if applicable. 

 

Cell populations 

The population of cells is simulated as a set of ordinary differential equation systems. Each cell in the 

population uses the same model structure, but has a separate instance of the ODE system. The 

dynamics of the population of cells is described by the differential equation 

���(�)
��

= �(�	(
), �	), 

where xi is the vector of molecular species levels in cell i, and φi is the vector of model parameters in cell 

i, which includes both kinetic rate constants and initial values. There are two scenarios for determining 

the initial conditions of each molecular specie in a cell. At the start of the simulation, the initial 

conditions are specified as part of the model, or can be included as inference variable. Alternatively, 

when new daughter cells are generated through cytokinesis, the initial conditions are copied over from 

the mother cell, with some specific exceptions (for instance, the amount of DNA is divided in half for 

each daughter cell; see Supplementary Materials & Methods for details). The function f is determined by 

the rate laws of the reactions in the model; these rate laws are specified in the SBML file describing the 

model. For the two models described in this manuscript, we used a combination of mass action kinetics, 

Michaelis-Menten and hill kinetics, as described in more detail in the Supplementary Materials & 

Methods. 

A model can contain a dynamic variable for cytokinesis. When this is the case, this variable will be used 

to control the generation of new daughter cells. When the cytokinesis variable reaches a value of 1 

during the simulation, the parent cell simulation is stopped, and two new daughter cells are generated 

and added to the set of cells. A dynamic variable for apoptosis can also be included in the model, which 

will stop the simulation of that cell without generating new children cells, when it reaches a value of 1. 

The ODE systems were integrated using an optimized version of the CVODE algorithm of the SUNDIALS 

package (Hindmarsh et al, 2005; Gardner et al, 2022). The model structures and rate equations were 

specified using CellDesigner (Funahashi et al, 2003) and stored in SBML format, the data sets are stored 

in NetCDF files, and the priors and likelihoods are specified in XML description files. All code for 

simulation of scMeMo models, as well as the calculation of the likelihoods described below, are included 

in a module “cellpop” included in version 3 of BCM (Thijssen et al, 2016), available at 

https://github.com/NKI-CCB/bcm3. 
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Variability between cells 

To keep the computational burden manageable, we set most kinetic rate parameters and initial values 

to be the same for all cells; that is, most elements of φi are the same for all cells. Only some of the 

model parameters are allowed to vary between cells. The decision of which parameters are allowed to 

vary depends on the research question the model is used for. For the mitosis model and cell cycle model 

these decisions are described in the results section. 

When a parameter varies between cells, we assume that the rates are normally distributed on a log2 

scale: 

�	,� = 2��,�  �� 

�	,� ∼ �(0, ��
�), 

where μk indicates the mean parameter value and σk indicates the extent of variability for parameter k. 

μk and σk are typically included as unknowns in the inference variables θ. If so, μk is given the same prior 

as when it is a parameter that does not vary between cells, and σk is given a uniform prior between 0 

and 2, so that the resulting variabilities can be anything between no variability at all and an 

approximately 100-fold difference between the 5th and 95th percentile across cells. To keep the 

simulations deterministic, the cell-specific values for these varying parameters are drawn from the 

normal distribution through a Sobol sequence with dimension equal to the number of parameters that 

vary between cells.  

Likelihood 

Since we want to use the model to make predictions between distinct sets of measurements, we need a 

way to set the expected prediction error of the unseen set of measurements. However, the types of 

measurements can be entirely different physical quantities (for example, we wanted to predict the 

duration of a cell cycle phase, based on measurements of protein levels, meaning we have to go from 

concentration measurements to time measurements). To accommodate this, we do not use a specific 

standard deviation of the error for each dataset, but describe the error relative to the observed 

dispersion of the measurements. Specifically, the standard deviation of the error is specified as a 

fraction of the interquartile range of the measurements, and the following likelihood function is used: 

���	,�,�� 	,�,�! = ���	,�,��� =  	,�,�, � = "#�! 

#� = $
%

∑ iqr(*	,�)%+,--.
	/$ , 

where yi,j,t is the observed value for observable j in cell i at timepoint t, zi,j,t is the modeled data value for 

observable j in cell i at timepoint t, ε is the fractional error term and yi,j indicates the vector of the entire 

observed time course for observable j in cell i. As described in the equation, when the measurements 

are cell-specific, we took the mean of the interquartile ranges of the individual cells. When the 

measurements come from bulk cells, we took the single interquartile range of the bulk time course 

measurement (if there were no replicate measurements), or the average interquartile ranges over 

biological replicates (if there were replicates). When the set of measurements is cross-sectional rather 

than longitudinal, we take the interquartile range of the cross-section. When fitting to an average over 

single-cell measurements, the standard deviation of the error is divided by the square root of the 

number of cells being averaged over. An ε with a value of 1 indicates an error equal to the dispersion of 
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the data, meaning that the model is not able to describe the data at all, whereas an ε approaching 0 

indicates the model can describe the data very accurately. Using this setup, the model uncertainty can 

be transferred between distinct sets of data; when a model can describe a particular dataset reasonably 

well, we would a priori expect the uncertainty in other datasets to be on a similar level, whereas when a 

model cannot describe a dataset well, we would not expect it to predict other datasets well either. We 

included this fractional error parameter as inference variable, on a log10 scale with a uniform prior with 

lower and upper bounds of -2 and 0, corresponding to an error between 1% and 100% relative to the 

interquartile range. 

Since all measurements of molecular species that were used provided relative values, we normalized all 

measurements between 0 and 1, to match them with the dynamic variables of the kinetic model that 

were also constrained between 0 and 1. When a measurement directly corresponds to a dynamic 

variable, the modeled data value z is set directly equal to the value of the corresponding dynamic 

variable y at that time point. In some cases a measurement does not directly correspond to the level of 

one molecular species in the model; for example, a measurement of the total amount of cyclin E would 

include both of the dynamic variables inactive Cyclin E and active Cyclin E in complex with CDK2. In these 

cases the modeled data values z are set to the sum of relevant dynamic variables. Likewise a biosensor 

measurement may be a log ratio between two dynamic variables, in which case the modeled data value 

is also calculated as a log ratio. For measurements based on antibodies, including western blots and 

immunofluorescence, we further included an offset and scale parameter, which were included as 

inference variables, to allow for signal from background staining. 

Since we simulated populations of cells, we had to match individual simulated cells to individual 

observed cells. To do this, we calculated the likelihood for all possible pairs of simulated and observed 

cells, and used the Hungarian matching algorithm to select the optimal matching. When the time course 

data included information on cell divisions and tracked the daughter cells belonging to a specific mother 

cell, we matched the entire hierarchy of mother/daughter cells between the simulations and 

observations. This can lead to situations where there is no simulated data for a particular measurement, 

when a simulated cell does not divide while the observed cell does. We penalized such a matching based 

on the amount of time during which matchings cannot be made because of a lack of cell division, with a 

normal error model with a standard deviation that is either fixed or included as inference variables. For 

bulk measurements, we calculated the average of all cells in the simulated population at a specific time 

point. If the bulk or averaged measurements contained selection (for instance, the bulk measurement 

may include only cells that went through mitosis); then we did the same selection in the simulation). 

Parameter inference 

We used Bayesian inference to estimate the parameter values and their uncertainty from the 

measurements. When a parameter or parameter variability was set to be an inference variables, the 

prior for it was set to a weakly informative uniform distribution, with upper and lower bounds based on 

biochemically plausible limits (specified in Supplementary Table 1 and 2 for the mitosis and full cell cycle 

model respectively). 

The posterior distributions were estimated using parallel-tempered Markov chain Monte Carlo (MCMC) 

sampling (Earl & Deem, 2005). The parallel-tempering benefits the convergence to the target MCMC 

chain by providing a way to move between local optima, but also directly gives a range of fractional 

posterior distributions that are used for the posterior calibration process described in the next section. 
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In addition to the parallel-tempering, an efficient proposal distribution for mutation moves was needed, 

as the posterior distributions that arose with the present model and data often contained ridges and 

modes that differed in shape. We therefore implemented a novel locally adaptive proposal distribution 

based on shrunken Gaussian mixtures to efficiently sample from the posterior distributions (described in 

more detail in the Supplementary Materials & Methods). This sampling scheme was added to version 3 

of the BCM sampling software so that it can be used for other inference problems as well (available at 

https://github.com/NKI-CCB/bcm3). Convergence was assessed by visual inspection of the posterior 

sample traces, and the number of samples was increased as necessary until autocorrelation patterns in 

the sample traces were minimal. 

Posterior calibration 

The posterior calibration was inspired by the SafeBayes procedure (Grünwald & van Ommen, 2017). 

However, SafeBayes assumes that the data under consideration are independent and identically 

distributed. This means SafeBayes cannot be directly applied here, as longitudinal data are not 

independent, and the separate datasets are not identically distributed. We therefore cannot build on 

the theoretical guarantees of SafeBayes. Instead, we just assume that the log-loss of an orthogonal 

dataset is a good quantity to optimize in order to calibrate the posterior. Instead of the point-wise 

forward-validation, we calculated the log-loss of all external validation datasets based on the fractional 

posteriors of the inference dataset. These fractional posteriors were directly available from the parallel 

tempering scheme used during the sampling procedure. We then selected the learning rate that gave 

the lowest mean log-loss of the validation datasets, and used the fractional posterior corresponding to 

that learning rate as the calibrated posterior.  

The fractional posterior distributions are given by 

�0(1|*) ~ �(*|1)0�(1) 

where η is the learning rate (i.e., the ‘fraction’ in the term ‘fractional posterior’), y is the set of 

measurements and θ are the parameters to be inferred. We evaluated the log loss of the external 

validation sets and selected the optimal learning rate by: 

40 = 51~67�1�*![9(:|1)] 

<=>?	@A>�B� = arg min0{40} 

where z are the external validation measurements, l is the log loss, where the log loss is set to the 

negative log likelihood of the validation measurements, and rη is the expected log-loss at learning rate η, 

calculated as the average log loss given the posterior samples obtained from the inference dataset at 

that learning rate. The present models are highly nonlinear, and the distribution of log likelihood values 

can be highly skewed; we therefore used the geometric mean to estimate the expected log-loss. 

External data 

Where possible, data was obtained from supplementary information of the corresponding publications. 

When the raw data was not provided, we derived the data from the figures as follows. When the figures 

were included in the publication as a vector graphic, we exported the figure to SVG format, imported 

them to R and regressed the data points against the tick marks to obtain the measurement values. 
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When the figures were in bitmap format, we traced the points or lines and the tick marks manually, 

exported the traces to SVG format and used the same regression procedure. 

Nuclear envelope breakdown to anaphase onset duration measurement 

We measured the duration of nuclear envelope breakdown until the onset of anaphase in HeLa cells. 

These measurements were part of another investigation into atypical E2F transcription factors (Liu et al, 

manuscript in revision), but are included here as well. HeLa Cells were transduced with the lentiviral 

expression vector pLenti-H2B-iRFP720 (a gift from Carlos Carmona-Fontaine (Addgene plasmid # 

128961; RRID:Addgene_128961) to express fluorescently labeled H2B proteins according to 

methodology described previously (Segeren et al, 2022). Stable expression was achieved by 3 days of 

Zeocin selection. Twenty-five thousand cells were plated in 4-well CELLview culture dishes (627975, 

Greiner), and transfected with scrambled siRNA after one day. Twenty-four hours after siRNA 

transfection, cells were treated with 0.2 mM thymidine for 16 hours. Cells were subjected to imaging 

after 8 hours of thymidine release. Images were acquired every 3 minutes for 6 hours on a Nikon A1R-

STORM microscope using a 10x objective in a humidified chamber at 37℃, 5% CO2. Cell tracking was 

performed manually with NIS Elements software. 

Data Availability 

The scMeMo simulation and Bayesian inference code is available in the BCM software package version 3 

available at https://github.com/NKI-CCB/bcm3. All other code used in the analysis in this paper is 

provided at https://github.com/NKI-CCB/scMeMo-paper. 
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Figures 

 

Figure 1: Illustration of the simulation of a population of cells with a simple model of mitosis with scMeMo. (A) Structure of 

the ODE model that is simulated inside every cell, shown in a slightly liberal interpretation of the Systems Biology Graphical 

Notation format. (B) Diagram illustrating the terminology of parameters and variables, and the distinction based on variability 

across the cell population and whether the values are fixed during inference or not. (C) Three simulations illustrating the effect 

of variability in rate parameters across cells. (D) Visualization of the uncertainty. With the Bayesian setup each parameter that 

is included as inference variable has an uncertainty and this results in a posterior distribution for every dynamic variable, shown 

here for two dynamic variables. These posterior distributions show only the uncertainty in the dynamic variables in every cell; 

when fitting data in later figures there is an additional uncertainty on top of the uncertainty in the dynamic variables, describing 

the residual uncertainty of measurement noise and model error.  
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Figure 2: Fit of the simple mitosis model to measurements of a CDK1 sensor and GFP-tagged cyclin B. (A) Measurements and 

90% posterior confidence interval of the model fit to the CDK1 sensor measurements of Gavet & Pines, for two individual cells 

and for the average of 6 cells (these are the measurements that were available). In all figures of model fits, crosses and a green 

shaded area indicates that the measurement and the posterior confidence interval represents an individual cell, and circles and 

blue shaded area indicates that the measurement and posterior confidence interval represents the average of the entire 

population. (B) Marginal posterior probability distributions of the six inference variables related to the cell-to-cell variability, 

based on the fit to the measurements from Gavet & Pines. (C) Measurements and model fit for the endogenous GFP-tagged 

cyclin B measurements of Akopyan et al. NEBD = nuclear envelope breakdown. (D) Illustration of the alignment of cell 

trajectories, which produce the steady increase of signal in the averaged population. (E) Marginal posterior probability 

distributions of the six inference variables related to the cell-to-cell variability, based on the fit to the measurements from 

Akopyan et al.  
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Figure 3: Posterior calibration to obtain robust uncertainty estimates. (A) Predictions of the duration from nuclear envelope 

breakdown (NEBD) to the onset of anaphase (AO), based on the fit to the measurements of Gavet & Pines (Figure 2), compared 

to four external sets of measurements of these durations. Vertical bars indicate the 90% confidence interval for every individual 

cell. (B) Posterior calibration curve used to select the calibrated posterior distribution; that is, the fractional posterior 

distribution that gives the minimum mean log loss in the external duration measurements. Each grey dot represents one 

sample from the Markov chain targeting the fractional posterior distribution at the denoted learning rate, and corresponds to 

the summed log loss of the four duration measurements; based on the fit to the measurements of Gavet & Pines (see Methods 

for details). The blue line shows the geometric mean log loss at each learning rate, and the red star marks the learning rate at 

which the minimum average log loss is achieved; this point gives the calibrated learning rate. (C) Predictions as in (A), but now 

with calibrated posterior confidence intervals. Some of the predicted confidence intervals extend beyond the end of the y-axis. 

(D) Comparison of the marginal posterior probability distributions of several parameters given the regular Bayesian posterior 

and the calibrated posterior.  
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Figure 4: Validation of calibration process with simulated data. (A) A set of thirty-two CDK1 sensor traces generated from the 

model, given the maximum a posteriori parameter value of the fit to Gavet & Pines data, with 10% artificial noise added. (B) 

Zoom of the relevant part of the mitosis model that was used to generate the data (i.e., the correct model), the full model is 

shown in Figure 1A. (C) Zoom of the misspecified model; the positive feedback loop through CDC25C was removed. The rest of 

the model is identical to the correct model. The full misspecified model is shown in Supplementary Figure 2. (D) Model fits 

illustrated by three representative cells, given the correct, misspecified and calibrated misspecified model in the rows 

respectively; the measurements are the same for each fit. (E) Marginal posterior probability distributions of several parameters. 

The black vertical line indicates the true value that was used to generate the measurements. 
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Figure 5: Cell cycle model and illustration of model selection with one of the sets of measurements. (A) Structure of the cell 

cycle model that is simulated in every cell in the population; a larger version is shown in Supplementary Figure 3. (B) 

Visualization of a simulated population of thirty-two initial cells and their population average, with the initial population 

synchronized at the start of the cell cycle. In this simulation fifteen cells divided and produced two daughter cells each. When a 

cell divides, one daughter takes the row of its parent and the other daughter is added at the bottom of the chart. Gray areas 

indicate that the cell did not exist yet. The charts show the levels of two of the dynamic variables; the mRNA levels of cyclin E 

and A respectively. (C) Measurements and posterior confidence intervals of the simulation based on the data of Ewart et al. 

(which was also synchronized at the start of the cell cycle), for three model versions. Coefficients of determination R2 were 

calculated as one minus the sum of squared errors given the model divided by the sum of squared errors given the data mean. 

Additional trajectory heatmaps and posterior predictive plots for all three models are provided in Supplementary Figure 4. 
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Figure 6: Cell cycle model simulations and fits to four additional sets of measurements. Each subfigure first shows a simulated 

population (given the maximum a posteriori parameter values obtained from fitting the data), followed by the 90% confidence 

interval of the fit to the measurements. (A) Measurements of endogenous GFP-tagged cyclin A, cyclin E and p27 from Barr et al 

(2016); times are relative to the start of S-phase. (B) Measurements of endogenous GFP-tagged p21 from Barr et al (2017); 

times are relative to the start of a cell cycle (mitosis of the parent cell). (C) Measurements of cyclin E, emi1, geminin and DNA 

content (as inferred from EdU incorporation signal) from Cappell et al. Immunofluorescence was obtained after live cell imaging 

of H2B-mTurquoise and individual cells were computationally aligned; times are relative to the start of a cell cycle (anaphase of 

the parent cell). (D) Measurements of E2F1 and E2F7 from Westendorp et al, through western blotting of hydroxyurea-

synchronized cells; times are relative to the start of S-phase.  
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Figure 7: Prediction of single-cell protein levels. (A) Outline of the procedure to obtain single-cell protein level predictions. (B) 

Fit of the cell cycle model to CDK2 sensor measurements from the data of Gookin et al, allowing only the rates of the main cell 

cycle processes to be inferred from these CDK2 sensor traces. Four of the forty initial cells are shown, with two cells dividing 

into two daughter cells each. (C) Predicted protein levels at the end of the CDK2 trace compared to the measurements. The 

predicted value is the level of the protein predicted by the model for that cell, and the observed value is the level of the protein 

measured by immunofluorescence intensity. The r values correspond to Spearman’s rank correlation coefficient. 
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