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1  |  INTRODUCTION

Rooted terrestrial plants are highly sensitive to the water sta-
tus of the soil in which they grow, with too little soil moisture 
causing drought stress whereas excess soil moisture and (partial) 
submergence causes flooding stress. These stress responses to 

opposing water conditions can be understood from the fact that 
the functioning of these plants requires sufficient liquid water 
uptake from the soil as well as rapid exchange of CO2 and oxy-
gen with the environment to enable photosynthesis and support 
aerobic respiratory processes in the roots, stems, and leaves 
(Kozlowski, 1984). Crucially, excess soil moisture and (partial) 
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Abstract
Drought and flooding occur at opposite ends of the soil moisture spectrum yet their 
resulting stress responses in plants share many similarities. Drought limits root water 
uptake to which plants respond with stomatal closure and reduced leaf gas exchange. 
Flooding limits root metabolism due to soil oxygen deficiency, which also limits root 
water uptake and leaf gas exchange. As drought and flooding can occur consecutively 
in the same system and resulting plant stress responses share similar mechanisms, a 
single theoretical framework that integrates plant responses over a continuum of soil 
water conditions from drought to flooding is attractive. Based on a review of recent 
literature, we integrated the main plant eco- physiological mechanisms in a single the-
oretical framework with a focus on plant water transport, plant oxygen dynamics, and 
leaf gas exchange. We used theory from the soil– plant– atmosphere continuum mod-
eling as “backbone” for our framework, and subsequently incorporated interactions 
between processes that regulate plant water and oxygen status, abscisic acid and 
ethylene levels, and the resulting acclimation strategies in response to drought, wa-
terlogging, and complete submergence. Our theoretical framework provides a basis 
for the development of mathematical models to describe plant responses to the soil 
moisture continuum from drought to flooding.
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submergence limit the gas diffusion between the plant and its 
environment.

Insufficient soil moisture results in reduced root water uptake 
and is typically followed by stomatal closure to limit water loss 
through transpiration (Sperry, 2000). Stomatal closure subsequently 
also limits CO2 diffusion across the stomata and thereby photosyn-
thesis under conditions when light and other factors are not limiting 
assimilation of CO2 (Farquhar et al., 1982). Depending on the extent 
of stomatal closure and the drought severity, this condition may lead 
to carbon starvation or result in vascular dysfunction due to embo-
lism (Adams et al., 2017). Under conditions of excess soil moisture, 
oxygen diffusion through the soil is limited and root oxygen status 
declines over time to trigger a transition from aerobic to anaerobic 
root metabolism at a specific threshold (Kosmacz & Weits, 2014). 
This decline in root metabolism limits root water transport while 
prolonged root anoxia may cause root decay or even plant death 
(Colmer et al., 2014). Despite the apparent opposing character of 
these two water stresses, both conditions result in a reduction of 
plant water transport, photosynthesis, and transpiration at the leaf 
level and, therefore, have similar consequences for fluxes of water 
and carbon between the vegetation and atmosphere.

Environmental conditions associated with drought and flooding 
can occur consecutively in the same system in any order. To under-
stand and predict responses of individual plants and ecosystems to 
periods of drought and flooding and propose mitigating measures 
enhancing ecosystem robustness in future climates, the develop-
ment of models capable of operating across this range of conditions 
is essential. Moreover, continuous development of the land surface 
component of climate models leads to the inclusion of more detailed 
plant eco- physiological processes which are relevant for the surface 
exchange of water, carbon, and energy (e.g., Fisher & Koven, 2020; 
Harrison et al., 2021). However, a model with sufficient mechanistic 
biological details needed to simulate the interrelated changes in plant 
water transport, gas exchange, and photosynthesis to this range of 
hydrological conditions is, to our knowledge, currently lacking.

The aim of our paper is to develop an integrated mechanistic 
framework for a model that can describe plant responses across a 
continuum of moisture conditions that range from drought through 
waterlogging to submergence, building on the biophysics of plant 
water transport and gas exchange and its dependence on envi-
ronmental conditions. Hereto, we review the major known eco- 
physiological responses of plants to drought, waterlogging, and 
submergence, with a specific focus on mechanisms that govern plant 
water transport and gas exchange. Key variables to be integrated 
into such a framework are stomatal conductance, shoot and root 
oxygen content, as well as shoot and root ethylene levels, given 
that ethylene mediates a series of acclimation mechanisms in flood- 
tolerant plants, such as aerenchyma formation and adventitious root 
development, as well as “escape” and “quiescence” strategies under 
submergence (Voesenek & Sasidharan, 2013).

In this paper, we first describe the soil– plant– atmosphere contin-
uum, which describes the biophysical processes of water movement 
in plants, as an eco- physiological basis for the development of our 

mechanistic framework and define the main conditions that occur 
from drought to flooding. We then briefly review the main plant eco- 
physiological responses during drought conditions. Subsequently, we 
derive the mechanisms needed to describe these key plant responses 
across the moisture continuum with an emphasis on responses that 
occur during waterlogging and submergence. We specifically focus on 
feedback between acclimation responses in our mechanistic framework 
and highlight the resulting similarities between drought and flooding re-
sponses. We end with a discussion focused on potential research ques-
tions that can be addressed with the proposed mechanistic framework.

2  |  THE SOIL– PLANT– ATMOSPHERE 
CONTINUUM FROM DROUGHT TO 
FLOODING

Water transport is an essential aspect of plant life and a major factor 
through which plants affect our climate. There is thus a rich scientific 
tradition aimed at understanding and modeling plant water transport. 
The most widely acknowledged plant hydraulics theory thus far is the 
“cohesion- tension theory” (Tyree, 2003). This theory indicates that 
transpiration makes use of the capillary force created by the hydro-
gen bonds between water molecules (cohesion) and between water 
molecules and cell walls (adhesion) to create “tension,” a negative (sub- 
atmospheric) pressure throughout the water column. Thus, the water 
molecules are pulled out in the xylem, and due to the cohesion, the 
other water molecules are continuously pulled along the tension gra-
dient from the roots to the leaves. This results in the generation of a 
water potential gradient along the xylem, with a lower (more negative) 
potential at the canopy and a higher (less negative) potential at the roots 
(Steudle, 2001). A typical model that describes plant water transport is 
the soil– plant– atmosphere continuum model (Elfving et al., 1972). The 
model makes use of a so- called “Ohm's analogy,” essentially treating 
water flow as current and the soil– plant– atmosphere system as a se-
ries of resistances. The water potential of each plant compartment (i.e., 
root, stem, and canopy) together with the resistance between these 
compartments determine the amount of water flow (Bonan, 2019). The 
soil– plant– atmosphere continuum model is usually coupled with a pho-
tosynthesis model via stomatal behavior to simulate plant hydraulics 
and leaf- level gas exchange processes during normal growth conditions 
and drought (Bonan et al., 2014). Therefore, we propose the soil– plant– 
atmosphere continuum- photosynthesis model to serve as the “back-
bone” of our model framework, which is then extended to couple plant 
biochemical processes in response to flooding as well.

In our review and theoretical framework development, we discuss 
four distinct scenarios, which, in the order of increasing wetness are 
drought, non- stressed condition, waterlogging (sometimes referred 
to as soil flooding (M. B. Jackson & Armstrong, 1999)), and complete 
submergence (Figure 1). Under non- stressed conditions, the soil water 
content is by definition between the wilting point and the field capacity. 
The soil oxygen state is generally below atmospheric level but still has 
sufficient supply for root functioning (O'Connell et al., 2018), and is thus 
considered as normoxia, while the shoot ambient oxygen and CO2 are 
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at atmospheric level, and light intensity is uninhibited during daytime. 
During drought, soil water content is below the wilting point which 
means that available soil water for plants is lacking, while the aeration sta-
tus of root and shoot and the available light intensity are similar to those 
during non- stressed conditions (O'Connell et al., 2018). Waterlogging 
and complete submergence are two distinct states of flooding. During 
waterlogging, soil water content exceeds field capacity, and soil pores 
are nearly or fully filled with water while the shoot remains exposed 
to air and light (Sasidharan et al., 2017). Gas diffusion coefficients in 
water are typically 1/10000 of that in air (Armstrong, 1980), and dis-
solved oxygen in saturation is at a very low concentration of 8.3 mg L−1 
under 25°C and 1 atm pressure. In this case, the soil is severely hypoxic 
and the root functioning is disturbed (Parent et al., 2008), whereas the 
above- ground shoot remains aerated. During submergence, the soil is 
waterlogged and hypoxic like waterlogging, and the aboveground shoot 
is also underwater. The available light intensity depends on the tur-
bidity of the floodwater (Vervuren et al., 2003). Photosynthesis under 
floodwater with low turbidity tends to be sustained, while that under 
highly turbid floodwater is often largely inhibited (Mommer et al., 2005; 

Oladosu et al., 2020). Owing to the theoretical complexity beyond the 
scope of the intended application of our theoretical framework, we only 
discuss the submergence scenario with high turbidity, and thus do not 
consider specific mechanisms involved in underwater photosynthesis, 
despite its importance for understanding some plant responses to sub-
mergence (Pedersen et al., 2013). Meanwhile, plants in our proposed 
framework are assumed to be mature, therefore, processes related to 
life history are also not considered.

3  |  INTEGRATING ECO- PHYSIOLOGICAL 
RESPONSES FROM DROUGHT TO 
FLOODING

3.1  | Generic responses to drought

The plant response to drought has been well captured by exist-
ing soil– plant– atmosphere continuum models (Elfving et al., 1972; 
Manzoni et al., 2014; Zhang et al., 2021), in which the key processes 

F IGURE  1 The boundary conditions in terms of environmental boundary conditions (i.e., soil water content, soil oxygen level, leaf- 
surface oxygen level, leaf- surface CO2 level, and leaf- surface light intensity) under drought, non- stressed, soil waterlogged, and completely 
submerged conditions.
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are outlined in Figure 2 (blue). In response to the soil water defi-
cit, plants regulate their stomatal aperture to restrict water loss and 
abate the decline of their water status (Buckley, 2005). This pro-
cess is generally implemented via two pathways— passive hydraulic 
control and active hormonal control, which are additive in effect 
(McAdam & Brodribb, 2014). The passive hydraulic control involves 
the reduction of hydraulic conductance from soil to leaf (Müllers 
et al., 2022), which mostly results from the air gaps between soil 
and root (North & Nobel, 1997), the gating of aquaporins (Domec 
et al., 2021), root suberization (Kim et al., 2022), or xylem embolisms 
(Martínez- Vilalta & Garcia- Forner, 2017; Tyree, 2003). The limited 
whole- plant water transport and the leaf- level transpiration demand 
will lower leaf water potential (Ehrler et al., 1978), with resulting 

guard cell turgor loss and stomatal closure (Brown et al., 1976). 
Active hormonal control occurs when leaf water potential drops 
below a certain level, causing leaf turgor loss and triggering the bio-
synthesis of abscisic acid (ABA) (Cardoso et al., 2020; McAdam & 
Brodribb, 2014; Sussmilch et al., 2017). ABA is able to trigger a se-
ries of processes that eventually leads to membrane polarization and 
potassium ion efflux, causing further guard cell turgor loss resulting 
in enhanced stomatal closure (Hauser et al., 2017). The resulting re-
duced stomatal conductance causes a lower transpiration rate and 
a lower photosynthetic rate. This is based on Fick's law of diffusion 
that the amount of gas exchange (i.e., water vapor diffusing out and 
CO2 diffusing in) is determined by stomatal conductance and the 
partial pressure deficit inside and outside the leaves.

F IGURE  2 Conceptual framework to describe plant responses across a range of soil moisture conditions that span from drought to 
flooding. The framework integrates responses involving changes in plant water status, plant oxygen status, and hormonal signaling ABA 
and ethylene. During drought conditions, plant water status is regulated through passive (hydraulic) and active (hormonal) stomatal control 
pathways. The passive hydraulic pathway of stomatal control is represented by that soil water deficit causes a reduction in root water 
uptake, leading to more negative leaf water potential and reduced stomatal conductance. The active hormonal pathway of stomatal control 
is represented by the reduction of leaf water potential induces ABA biosynthesis and signaling that reduces stomatal conductance. During 
waterlogging conditions, excessive soil water prevents the gas diffusion between soil and root, limiting the root oxygen level, which then 
relies on the shoot oxygen supply. Root oxygen deficit then causes the gating of aquaporins, thereby limiting root water uptake through a 
reduced root water conductance. This mechanism links the flooding response to the drought response. Oxygen deficit also induces the local 
biosynthesis of ethylene, and due to that reduced soil- root gas diffusion limits the ethylene efflux, root ethylene abruptly accumulates after 
flooding. When there is complete submergence with high- turbid floodwater, photosynthesis is largely impeded due to reduced light tensity 
and leaf- surface CO2. The floodwater also entraps the oxygen and ethylene inside the shoot due to the impeded air- shoot gas diffusion, 
causing an abrupt increase in shoot ethylene. Ethylene mediates a series of specialized flooding response strategies in flood- tolerant plant 
species, including aerenchyma and adventitious root development, and the employment of “escape” and “quiescence” strategies under 
submergence. Examples of these flood- tolerant plant species and their corresponding acclimation strategies are briefly summarized in 
Table 1. Ethylene also inhibits ABA biosynthesis and signaling, which serves as another link between the drought and flooding response. The 
reduced air- shoot gas diffusion from floodwater entrapment also impedes transpiration, thereby shutting down the soil– plant– atmosphere 
continuum system.
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Plant species differ in their tendency to decrease stomatal 
conductance in response to drought stress. On the one end of the 
spectrum are plant species using a so- called isohydric strategy (e.g., 
maize and pea) (Bates & Hall, 1981; Tardieu, 1993) in which plants 
produce more ABA and as a consequence substantially reduce 
their stomatal conductance during soil water dry- down (Coupel- 
Ledru et al., 2017), thus maintaining a relatively high (less negative) 
and stable leaf water potential but sacrificing photosynthesis rate 
(Bonan, 2019). On the other end of the spectrum are plant species 
employing an anisohydric strategy (e.g., soybean and wheat) (Allen 
et al., 1994; Henson et al., 1989), in which less ABA is produced in 
vascular tissues (Coupel- Ledru et al., 2017), and plants maintain 
relatively high photosynthesis rate by keeping their stomatal con-
ductance relatively stable, resulting in leaf water potential becoming 
very negative and thereby rendering the plant prone to desiccation 
in case of prolonged drought (Bonan, 2019).

3.2  | Generic responses to waterlogging and 
complete submergence

The fundamental plant physiological stress that results from soil wa-
terlogging is root oxygen deficit, which forces a switch from aerobic 
to anaerobic root metabolism (Kozlowski, 1984). According to the 
so- called Pasteur effect, to generate the same amount of ATP, about 
15 times as much glucose is required in anaerobic respiration as in 
aerobic respiration, and plants are therefore prone to mortality from 
energy exhaustion. Meanwhile, root oxygen deficit causes dysfunc-
tion of root water uptake due to gating of aquaporins (Törnroth- 
Horsefield et al., 2006). This is the key process through which the 
soil– plant– atmosphere continuum compartment and the flooding 
response compartment (green in Figure 2) are coupled in our the-
oretical framework. As the shoot remains well- oxygenated due to 
exposure to the atmosphere, the loss in root water uptake, similar 
to the case under drought stress, can then lead to the imbalance be-
tween transpiration demand and limited internal plant water trans-
port (Aroca et al., 2012). Therefore, water potential in root, stem, 
and canopy becomes more negative, and xylem water conductance 
is reduced (Ashraf, 2012; Nicolás et al., 2005). To reduce the result-
ing risk to desiccation of the above- ground tissues due to excess 
transpiration, plants downregulate their stomatal aperture which ul-
timately results in a lower photosynthesis level (Ahmed et al., 2002; 
Jackson & Drew, 1984; Liu et al., 2014). Although oxygen can diffuse 
from shoot to root, the overall flux is limited to the high resistance of 
low- porosity tissues (Armstrong & Armstrong, 2014). Additionally, 
the waterlogged root suffers from radial oxygen loss to the anoxic 
soil (Armstrong, 1971). These effects further trap roots in hypoxic 
and even anoxic conditions under prolonged waterlogging.

Under complete submergence, as the turbid flood waters can 
severely limit light availability and this in combination with lim-
ited gas diffusion largely impedes underwater photosynthesis. In 
such cases, the shoot oxygen mainly comes from the direct diffu-
sion from the floodwater. Logically, plant water transport in the 

soil– plant– atmosphere continuum system is halted during submer-
gence as there is no longer an atmospheric demand driving the evap-
oration flux.

3.3  |  Specialized flooding responses— The 
“escape” and “quiescence” strategy

Flood- tolerant plants have developed specialized acclimation 
mechanisms to survive waterlogging and complete submergence. In 
Figure 2, we briefly illustrated the induction and effect of these ac-
climation mechanisms, of which the processes are more detailedly 
depicted in Figure 3. Ethylene serves as a principle phytohormone 
that mediates these mechanisms (Shiono et al., 2008; Voesenek & 
Sasidharan, 2013). Ethylene is a gas, and during flooding its outward 
diffusion is largely inhibited by the surrounding floodwater (Stünzi 
& Kende, 1989), causing an abrupt increase of endogenous ethyl-
ene in submerged plant tissues (Sasidharan et al., 2018). Endogenous 
ethylene accumulation induces the expression and stabilization of 
ethylene response factor (ERF) VII transcription factors that trigger 
low- oxygen acclimation mechanisms (Bailey- Serres et al., 2012; Van 
Dongen & Licausi, 2015). There are two major submergence sur-
vival strategies, typically referred to as “escape” and “quiescence.” 
The escape strategy is observed in deep- water rice and involves 
accelerated internodal elongation to facilitate shoot emergence 
above water. This shoot elongation promotes plant endogenous 
oxygenation and maintenance of photosynthesis through aeren-
chyma formation and adventitious root development (Bailey- Serres 
& Voesenek, 2008). In contrast, the quiescence strategy is conserva-
tive and energy- saving (Pradhan & Mohanty, 2013) and involves the 
repression of energy and carbon consumption, including growth, 
thereby promoting the maintenance of carbohydrates and energy 
reserves (Voesenek & Bailey- Serres, 2015). We have included brief 
descriptions of these specialized responses in our conceptual model 
displayed in Figure 2. A summary of the common flood- tolerant spe-
cies that employ these strategies is listed in Table 1. Further details 
on the processes involved in these specialized flooding responses 
will be discussed in the following section.

Ethylene accumulation in waterlogged roots can mediate aeren-
chyma and adventitious root formation. Ethylene accumulation can 
activate the plasma membrane- located respiratory burst oxidase ho-
molog (RBOH) protein that converts molecular oxygen to apoplastic 
reactive oxygen species (ROS) (Steffens, 2014). The apoplastic ROS 
further leads to programmed cell death in the parenchyma and epi-
dermis, inducing aerenchyma formation and adventitious root emer-
gence, respectively (Steffens, 2014). The aerenchyma can largely 
reduce the resistance to plant internal gas diffusion and thus pro-
mote plant internal oxygen diffusion from shoot to root. Adventitious 
roots serve as an aerated root system alternative to the waterlogged 
primary root system; it is aerenchyma- rich, and can therefore trans-
port oxygen at low resistance (Voesenek & Bailey- Serres, 2015). The 
development of aerenchyma- rich adventitious roots takes approxi-
mately 3– 7 days after the onset of flooding (Brailsford et al., 1993; 
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Guan et al., 2019). Root oxygen deficiency upon flooding promotes 
the accumulation of the ethylene precursor 1- aminocyclopropane- 
1- carboxylic acid (ACC) (Rodrigues et al., 2014) via upregulation of 

ACC synthases. In addition, oxygen depletion limits the oxidation 
of ACC to ethylene (Vanderstraeten & Van Der Straeten, 2017). 
Ethylene produced in the shoots of waterlogging plants is linked to 

F IGURE  3 Schematic of the main processes involved in the specialized flooding response, characterized by aerenchyma formation, ROL 
barrier formation, adventitious root development, shoot elongation, and the “quiescence” strategy. Shoot and root ethylene increases due 
to the entrapment by floodwater and the ethylene biosynthesis induced by low oxygen levels. Under complete submergence, depending on 
the species and ecotype, plants employ either “escape” strategy, characterized by developing aerenchyma- rich adventitious roots and shoot 
elongation, or “quiescence” strategy, characterized by a downregulation of metabolism and energy- consuming activities.

Flooding- response 
strategy Condition Example species Reference

Aerenchyma & 
adventitious root

Waterlogging Maize
Deep- water rice
Soybean

(Yamauchi 
et al., 2016)

(Colmer, 2003)
(Ploschuk 

et al., 2022)

ROL barrier Waterlogging Teosinte
Deep- water rice

(Abiko et al., 2012)
(Colmer, 2003)

“Quiescence” Complete 
submergence

Low- land rice
Lotus tenuis*
Rumex acetosa

(Fukao et al., 2006; 
Xu et al., 2006)

(Manzur 
et al., 2009)

(Van Veen 
et al., 2013)

“Escape” with shoot 
elongation and 
aerenchyma 
formation

Complete 
submergence

Deep- water rice
Rumex palustris

(Kende et al., 1998)
(Voesenek 

et al., 2003)

Note: Lotus tenuis can switch between the “escape” and “quiescence” strategy according to the 
depth of submergence (Manzur et al., 2009).

TABLE  1 Examples of plant species 
employing specialized flooding responses.
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ACC transported from hypoxic roots and is associated with the in-
duction of various shoot- level acclimation processes (Bailey- Serres 
& Voesenek, 2010; Voesenek & Bailey- Serres, 2013).

Besides ethylene- induced aerenchyma formation and adventi-
tious root development, some plant species can also induce a ra-
dial oxygen loss (ROL) barrier, a suberin- rich structural layer at the 
exodermis to prevent radial oxygen loss from the root to the wa-
terlogged soil (Table 1). Although ROL barrier formation is found 
in plant species that are able to form aerenchyma, the controlling 
pathway of ROL barrier formation is ethylene- independent (Shiono 
et al., 2011). Instead, it is triggered by the reductive phytotoxins pro-
duced by anaerobic microorganisms (Pedersen et al., 2021), such as 
Fe2+ (Mongon et al., 2014), sulfide (Armstrong & Armstrong, 2005), 
and some organic acids (Armstrong & Armstrong, 2001). In order to 
constrain the complexity of our framework, in Figure 3 the induction 
of ROL barrier is drawn directly downstream of soil oxygen deficit.

In plant species displaying the submergence escape strategy, 
petiole/internode elongation is triggered by the accumulation of 
shoot ethylene which induces gibberellin signaling (gibberellin 
not shown in Figure 3) (Fukao et al., 2006). With the aerenchyma 
formed in the elongated shoot and adventitious roots (Bailey- Serres 
& Voesenek, 2008), oxygen can diffuse via the emergent shoots to 
the root, thus maintaining energy production through aerobic me-
tabolism and root functioning. In deep- water rice, ethylene mediates 
this via induction of the SNORKEL (SK) locus encoding two ethylene 
inducible group VII ERFs, SK1 and SK2, (Hattori et al., 2009; Mittal 
et al., 2022; Nishiuchi et al., 2012). Adventitious root development 
and shoot elongation require input of energy and carbohydrates 

(Voesenek & Bailey- Serres, 2015). Therefore, for the low- land rice 
ecotype that is often exposed to flash flooding and prolonged sub-
mergence, energy and carbohydrate reserves of plants can hardly 
afford to “escape” the floodwater, and thus the “quiescence” strat-
egy is preferred (Ismail, 2018). In this ecotype the SUBMERGENCE 
1 (SUB1) locus encodes a group VII ERF, SUB1A, induced by accu-
mulated shoot endogenous ethylene, and which represses energy 
and carbohydrate consumption, including the “escape” processes 
via gibberellin signaling (gibberellin not shown in Figure 3) (Xu 
et al., 2006). SUB1A also enhances ethanolic fermentation, further 
promoting the conservation of energy and carbohydrates (Kuroha 
& Ashikari, 2020). The induction of “quiescence” strategy and its 
relationship with plant metabolism and “escape” strategy is also dis-
played in Figure 3.

3.4  |  Eco- physiological feedback during flooding

Finally, we consider how feedback between the various processes 
involved in flooding responses result in the acclimation of flood- 
tolerant species. For non- tolerant plant species under waterlogging 
conditions (Figure 4), the root suffers from oxygen deficit whereas 
the shoot is fully aerated. Still, photosynthesis is reduced as root 
hypoxia causes reduced root water uptake and lowered stomatal 
conductance (Bradford & Hsiao, 1982; Toral- Juárez et al., 2021). 
The resulting reduced photosynthesis limits carbohydrate produc-
tion, which is required for plant metabolism. Even though shoots 
remain normoxic, roots might still suffer severe hypoxia with very 

F IGURE  4 The feedback loop of plant response to waterlogging conditions, coupled with plant hydraulics and photosynthesis. 
Feedback related to non- tolerant plant responses are shown in black arrows, the “escape” strategy (i.e., aerenchyma- rich adventitious root 
development) shown in the pink box and pink arrows imposes an overall negative feedback loop on root oxygen that serves as the self- 
rescuing mechanism.
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limited shoot- root oxygen diffusion in the absence of aerenchyma 
(Pedersen & Colmer, 2014). Energy production is then facilitated by 
the switch to anaerobic metabolism, although it is much less effi-
cient (Parent et al., 2008). For waterlogging- tolerant plant species, 
the acclimation processes through ethylene signaling can serve as 
a negative feedback loop that ameliorates root oxygen conditions 
(pink arrows in Figure 4). In these species, root ethylene accumula-
tion resulting from the entrapment by the waterlogged soil triggers 
aerenchyma formation and adventitious root development, promot-
ing shoot- root oxygen diffusion and providing an oxygenated alter-
native root system, thereby serving as self- rescuing mechanisms.

Plant responses to complete submergence are shown in Figure 5. 
The responses of non- tolerant plant species are displayed with black 
arrows, including the inhibition of oxygen diffusion from the ambi-
ent environment to both root and shoot, the largely impeded photo-
synthesis due to high turbidity and limited CO2, and a transition from 
aerobic to anaerobic metabolism (Mommer et al., 2005). Shoot- root 
oxygen diffusion is low due to the high resistance to gas diffusion 
resulting from the low tissue porosity. Consequently, root oxygen 
deficit is further exacerbated by limited shoot- root oxygen diffusion, 
which can reach anoxia within 24 h after shoot hypoxia (Sasidharan 
& Voesenek, 2015).

Submergence- tolerant plants can, depending on the species 
and/or ecotype, either self- rescue through an “escape” strategy or 

self- preserve through a “quiescence” strategy. Both strategies are 
mediated by shoot endogenous ethylene, which quickly accumu-
lates due to floodwater entrapment. In plants that typically employ 
the “escape” strategy, a self- rescuing negative feedback loop can be 
completed through shoot elongation promoting maintained photo-
synthesis, shoot- derived adventitious roots promoting shoot oxygen 
levels, and aerenchyma promoting shoot- root oxygen diffusion (pink 
arrows in Figure 5). In parallel, as shoot elongation and adventitious 
root development consume carbohydrate and energy reserves, also 
an exacerbating positive feedback loop occurs. In plants that typi-
cally employ a “quiescence” strategy, self- preservation arises shoot 
ethylene triggering SUB1A expression that represses shoot ethylene 
biosynthesis, gibberellin signaling, and energy and carbohydrate 
consumption (Das et al., 2005) (purple arrows in Figure 5).

4  | DISCUSSION, CONCLUDING 
REMARKS, AND OUTLOOK

Our proposed model framework considers the soil– plant– 
atmosphere continuum as a “backbone,” to which hormone- 
mediated flooding- response processes can be coupled to extend 
the theoretical framework to flooding scenarios, including water-
logging and complete submergence. Efforts of integrating flooding 

F IGURE  5 The feedback loop of plant response to complete submergence. Here we consider floodwater with high turbidity so that the 
light intensity for underwater photosynthesis is limited. The general plant responses shown (black arrows) illustrate plant oxygen deficiency 
during complete submergence and even carbon starvation. The “escape” strategy (pink box and pink arrows) imposes an overall negative 
feedback loop on shoot oxygen but an overall positive feedback loop on carbohydrate and energy reserve, while “quiescence” strategy 
(purple box and purple arrows) imposes an overall negative feedback loop on carbohydrate and energy reserve. Depending on the species 
and ecotype, plants can either self- rescue through “escape” strategy or self- preserve through “quiescence” strategy.
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responses to plant hydraulic and photosynthetic models have 
been made previously. Compared to these efforts, for example, 
the model developed by Feddes (1982) that phenomenologically 
simulated stomatal activity in response to soil water content from 
drought to waterlogging and extended by more process- based 
knowledge on oxygen stress (e.g., Bartholomeus et al. (2008)), 
our proposed model framework attempts to step further by in-
troducing biological mechanistic processes operating under both 
drought and flooding stress. These processes include oxygen dy-
namics in the root and shoot and consequences for metabolism in 
these organs. Also, we include hormonal signaling processes, in 
which the central flooding hormone ethylene accumulates in af-
fected tissues within a couple of hours after waterlogging or sub-
mergence, prior to drop in oxygen levels. The hormonal signaling 
processes resulting in either “escape” or “quiescence” that are cen-
tered on the regulation of gibberellic acid and ABA production and 
signaling impose a negative feedback loop upon the main skeleton 
or abate the positive feedback loop of the main skeleton, result-
ing in a self- rescuing mechanism or self- preservation mechanism, 
respectively.

Following the proposed theoretical framework, mathematical 
models can be developed to simulate plant responses to the soil 
moisture continuum from drought to flooding. Different acclimation 
strategies, such as the discussed an/isohydry in drought response 
and “escape” and “quiescence” strategies in flooding response can 
be modeled by varying the sensitivity coefficients that govern key 
responses. An/isohydry can be simulated by varying the sensitivity 
of ABA production and stomatal aperture to leaf water potential as 
previously performed by Tardieu et al. (2015). “Escape” and “quies-
cence” strategies can be simulated by varying the sensitivity of the 
extent of aerenchyma formation, adventitious root development, 
shoot elongation, and plant oxygen consumption in response to 
ethylene accumulation. For instance, rice is known to have higher 
aerenchyma content than maize under waterlogging (Pedersen 
et al., 2021). Therefore, in the model, the sensitivity coefficient that 
controls aerenchyma induction in response to ethylene of rice can 
be assigned with a higher value compared to that of maize.

As the plants in the proposed framework were assumed to be 
mature, except for adventitious root development and shoot elonga-
tion that serve as specialized flood- response morphological devel-
opments, the growth of root and shoot is currently not considered. 
Furthermore, we included a simplified set of hormonal signaling 
processes. The plant stress response signaling network involved 
is highly complex, involving a diverse set of hormones, secondary 
messengers, and genes, between which there is a complex network 
of crosstalk (Sasidharan et al., 2018). Classically the major phyto-
hormones are subdivided into two categories, the stress response 
hormones ABA, ethylene, salicylic acid (SA), and jasmonate (JA), 
and the growth hormones gibberellin, cytokinin, and auxin (Verma 
et al., 2016). Phenotypically plastic stress responses often arise 
through the crosstalk between these two categories of hormones. 
For instance, auxins play a key role in root development, and their 
transport and signaling are affected by ABA under drought (Rock 

& Sun, 2005), while under flooding stress, ethylene directly and/or 
indirectly affects gibberellin signaling, triggering “escape” or “quies-
cence” strategies, respectively (Bashar et al., 2019). Here we propose 
to model the dynamics of the stress response hormones and sec-
ondary messengers explicitly, incorporating their effects on auxin, 
cytokinin, and gibberellin only implicitly. Specifically, we propose to 
incorporate ABA, ethylene, and ROS since the stress hormones JA 
and SA mainly function during biotic stresses (Verma et al., 2016).

Given the aforementioned simplifications, we suggest that the 
proposed framework can be used to model short- term (i.e., days to a 
couple of weeks) responses to drought and flooding stress. A key hy-
pothesis we propose this framework can test is that prior exposure 
to water stress alters future stress responses through the occurrence 
of a “memory,” which can be formed through both plant morpholog-
ical changes and preconditioning of hormone levels. For instance, 
flooding- induced aerenchyma formation may promote plant toler-
ance to subsequent drought due to a reduction in root metabolic 
cost (Klein et al., 2020), yet may simultaneously impede root water 
transport through the cortex (Yang et al., 2012). Aerenchyma for-
mation can also reduce ABA biosynthesis because ABA biosynthesis 
can occur in parenchyma cells (Brunetti et al., 2019), which undergo 
apoptosis during aerenchyma formation. The ROL barrier formed 
under flooding can also improve plant tolerance to drought by reduc-
ing radial water loss to the dry soil (Song et al., 2022). Importantly, 
hormonal and physiological crosstalk is highly tissue and species- 
specific. As an example, it is found that an ethylene pre- treatment 
enhances ROS scavenging capacity and thereby tolerance to ROS- 
mediated oxidative stress in roots (Peng et al., 2014; Liu et al., 2022). 
On the contrary, in aerenchyma- forming species, ethylene reduces 
ROS scavenging to enhance ROS levels and induce aerenchyma for-
mation in specific cell types (Steffens et al., 2011). It is exactly this 
complexity that makes predicting plant responses and their potential 
dependence on prior conditions and soil moisture conditions across 
the full spectrum from drought to flooding impossible without mod-
eling the processes presented in our mechanistic framework.

A possible future extension of the mechanistic framework is to 
incorporate the life history of plants and the changes in plant archi-
tecture and physiology this results in, thus enabling the simulation 
at longer time scales, say months to years or even decades. Besides 
this extension on the temporal scale, we also envision straightfor-
ward extensions on the spatial scale. This proposed framework can 
serve to represent individuals within individual- based models that 
scale up to the community and ecosystem level. Incorporating only 
horizontal water transport would already enable one to investigate 
competition for water and the impact of species composition and 
distribution on ecosystem water stress responses. Additionally, 
these models can be extended to incorporate, for example, inter-
plant differences in their efficiency of nutrient and light acquisition 
and their competition for these resources.

A natural application for our model framework is its incorpora-
tion into land- surface models. So far, the incorporation of plant hy-
draulics into land- surface models has been used to investigate the 
feedback between climate and vegetation in terms of water cycle 
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during non- stressed conditions and drought, yet mechanistic plant 
responses to excessive soil water content are still lacking in these 
models (Li et al., 2021; Nguyen et al., 2020). With climate change 
expected to enhance surface evaporation and atmospheric vapor 
accumulation, the intensity and duration of droughts as well as the 
chances of flooding are both increased, underlining the demand for 
a framework capable of integrating both drought and flooding re-
sponses of plants (Trenberth, 2011). Therefore, through the incor-
poration of the model framework proposed here or simplifications 
thereof into larger- scale land- surface models, we aim to contribute 
to the improvement of our understanding of how plants help shape 
the climate.
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