
American Journal of Epidemiology
© The Author(s) 2023. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of
Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Vol. 192, No. 9
https://doi.org/10.1093/aje/kwad099

Advance Access publication:
April 21, 2023

Original Contribution

Exploring Relevant Time Windows in the Association Between PM2.5 Exposure
and Amyotrophic Lateral Sclerosis: A Case-Control Study in Denmark

Yanelli Nunez∗, Arin Balalian, Robbie M. Parks, Mike Z. He, Johnni Hansen,
Ole Raaschou-Nielsen, Matthias Ketzel, Jibran Khan, Jørge Brandt, Roel Vermeulen,
Susan Peters, Marc G. Weisskopf, Diane B. Re, Jeff Goldsmith, and
Marianthi-Anna Kioumourtzoglou

∗ Correspondence to Dr. Yanelli Nunez, Department of Environmental Health Sciences, Mailman School of Public Health,
Columbia University, 722 W. 168th Street, New York, NY 10032 (e-mail: y.nunez@psehealthyenergy.org).

Initially submitted March 2, 2022; accepted for publication April 17, 2023.

Studies suggest a link between particulate matter less than or equal to 2.5 μm in diameter (PM2.5) and
amyotrophic lateral sclerosis (ALS), but to our knowledge critical exposure windows have not been examined. We
performed a case-control study in the Danish population spanning the years 1989–2013. Cases were selected
from the Danish National Patient Registry based on International Classification of Diseases codes. Five controls
were randomly selected from the Danish Civil Registry and matched to a case on vital status, age, and sex. PM2.5
concentration at residential addresses was assigned using monthly predictions from a dispersion model. We
used conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting
for confounding. We evaluated exposure to averaged PM2.5 concentrations 12–24 months, 2–6 years, and 2–11
years pre–ALS diagnosis; annual lagged exposures up to 11 years prediagnosis; and cumulative associations for
exposure in lags 1–5 years and 1–10 years prediagnosis, allowing for varying association estimates by year. We
identified 3,983 cases and 19,915 controls. Cumulative exposure to PM2.5 in the period 2–6 years prediagnosis
was associated with ALS (OR = 1.06, 95% CI: 0.99, 1.13). Exposures in the second, third, and fourth years
prediagnosis were individually associated with higher odds of ALS (e.g., for lag 1, OR = 1.04, 95% CI: 1.00, 1.08).
Exposure to PM2.5 within 6 years before diagnosis may represent a critical exposure window for ALS.

air pollution; amyotrophic lateral sclerosis; case-control studies; environmental exposure; exposure windows;
fine particulate matter; PM2.5

Abbreviations: AIC, Akaike information criterion; ALS, amyotrophic lateral sclerosis; CI, confidence interval; DEHM, Danish
Eulerian hemispheric model; GIS, geographic information system; ICD, International Classification of Diseases; OR, odds
ratio; PM2.5, particulate matter less than or equal to 2.5 μm in diameter; SES, socioeconomic status; UBM, urban background
model.

Amyotrophic lateral sclerosis (ALS) is a rare and devas-
tating neurodegenerative disease characterized by progres-
sive degeneration of motor neurons. Neuronal degeneration
leads to weakening voluntary muscles, resulting in paraly-
sis and eventually death, primarily from respiratory failure
(1, 2). Neuronal degeneration develops over the course of
years or perhaps decades before clinical symptoms appear
(3, 4), but what triggers degeneration or contributes to its
progression is still unknown (1, 5). Various genetic variants
have been associated with ALS, but only about 5%–10% of

cases are familial with a Mendelian inheritance pattern (2,
6). Nearly 90% of ALS cases are classified as sporadic; that
is, the patient has no family history of the disease (6). There
is also considerable variability in the phenotypic expression
of ALS, even among cases that share genetic variants (5,
7). Phenotypic variability can be observed with regard to
age at symptom onset, type of motor neuron involvement,
nonmotor symptoms, and survival post–clinical diagnosis,
among other parameters (3, 5, 7, 8). Altogether, these indi-
cate that the mechanisms contributing to ALS are complex
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and likely to involve both genetic and environmental factors
(3, 9).

Over the last decade, several experimental studies have
shown that fine particulate matter, defined as particulate
matter with an aerodynamic diameter less than or equal
to 2.5 μm (PM2.5), can initiate biological responses that
may be of relevance to the pathology of neurodegenera-
tive diseases, including oxidative stress, proteinopathy (10–
12), mitochondria damage (13), glutamatergic neurotoxicity
(14), and systemic inflammation, in turn linked to neuroin-
flammation (15, 16). Whether these PM2.5-triggered cellular
and system-level biological responses contribute to disease
remains inconclusive. Epidemiologic studies increasingly
suggest a positive link between PM2.5 exposure and several
neurodegenerative diseases, including dementia (17, 18), but
only a few studies have evaluated this association in ALS
(19–22).

Although significant advances have been made in our
understanding of the genetic contributors to ALS, the role
of environmental factors, such as PM2.5 exposure, has been
more challenging to assess. In contrast to the genome, which
is consistent throughout the lifetime, environmental expo-
sures vary over time. Adding to this complexity, environ-
mental exposures may have delayed effects or be adverse
only after a cumulative exposure threshold is reached (3).
This means that in ALS, which manifests in adulthood
and has an unknown latency period, PM2.5 exposures that
occurred years before overt symptoms appear could poten-
tially be of relevance. However, the rare nature of ALS
creates data limitations that restrict statistical power and,
as a result, the feasibility of evaluating long-term exposure
history in epidemiologic studies.

In this study, we leveraged data from nationwide Danish
registries to compile a population-based data set of 3,983
cases and 19,915 controls spanning the years 1989–2013 and
PM2.5 estimates at the residential address from a prediction
model (23) to evaluate time windows of exposure up to 11
years before ALS disease diagnosis. This is one of the most
extensive ALS studies of environmental factors carried out
to date, and it provides a unique opportunity to evaluate the
influence of time on PM2.5 exposure. We examined 1-, 5-,
and 10-year PM2.5 exposure averages preceding the date
of the first hospitalization and also assessed both cumula-
tive and delayed associations using a distributed-lag model.
Identifying susceptible time windows of exposure to modi-
fiable environmental factors, such as PM2.5, can open new
avenues to reduce the health and financial burden of ALS
and provide insight into potentially critical time points of
pathological processes.

METHODS

Study population and data collection

This was a population-based case-control study in the
Danish population spanning the period 1989–2013. We
obtained patient data from the Danish National Patient
Registry, which was established in 1977 and includes
nationwide inpatient hospital records for ALS and, as of
1995, outpatient data as well. We identified ALS cases

based on their International Classification of Diseases
(ICD) discharge codes. We used International Classification
of Diseases, Eighth Revision (ICD-8) code 348.0 (ALS)
until 1993 and after that International Classification of
Diseases, Tenth Revision (ICD-10) code G12.2 (motor
neuron disease) and the Danish subcategory code DG12.2G
(ALS). We only considered primary diagnosis codes. Given
the generally rapid progression of ALS after symptom onset
(24), we used the date of the first hospital visit with the
relevant ICD code as a proxy for the diagnosis date (the
terms “first hospitalization” and “diagnosis date” are used
interchangeably hereafter). We included only patients aged
20 years or older at the time of first hospitalization and
restricted the analyses to cases identified after 1988 to ensure
that we had complete PM2.5 exposure histories for at least 11
years before diagnosis. Additionally, given the short survival
of ALS patients postdiagnosis (median of 2–3 years) (24,
25), excluding cases from prior to 1989 removed some of
the potentially prevalent cases.

We linked patient data from the Danish National Patient
Registry to the Danish Civil Registration System via a
unique personal identifier number. The Danish Civil Regis-
tration System was established in 1968 and includes admin-
istrative records (e.g., date, sex, place of birth, vital status,
and history of civil status and residential addresses) on all
persons living in Denmark—records are kept even after a
person dies or emigrates (26).

We selected controls from the Danish Civil Registration
System as any persons with no mention of ICD-8 code 348.0
or ICD-10 code G12.2 or Danish National Patient Registry
code DG12.2G up to the matched patient’s diagnosis date.
We matched 5 randomly selected controls to an individual
case on age (i.e., same birth year), sex, and vital status (i.e.,
alive on the date of the case’s diagnosis). The matching
design has been described in more detail elsewhere (27, 28).

The institutional review boards of Columbia University
and the Danish Data Protection Agency approved this study.
Participants in our analyses were not required to provide
informed consent; by Danish legislation, participants are not
required to provide informed consent when no biological
samples are obtained.

Covariates

We used the 5-category socioeconomic status (SES) defi-
nitions developed by the Danish Institute of Social Sciences,
based on job titles obtained primarily from income tax
forms. Group 1 refers to the highest status and includes
corporate managers and academics; group 2 comprises pro-
prietors, managers of small businesses, and teachers; group
3 includes technicians and nurses; group 4 includes skilled
workers (persons who received about 3 years of formal
theoretical and practical training (e.g., a mason, carpenter, or
hairdresser)); group 5 includes unskilled workers (persons
who received no formal training and usually have a lower
salary); and group 9 includes unknown and unemployed
individuals. If a case/control was married, we used the
higher of the couple’s individual SES ranks. We also added
covariates on civil status (nonmarried, married, divorced, or
widowed); place of birth (Greater Copenhagen, other major
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Figure 1. Exposure time windows used in a case-control study of the association between PM2.5 exposure and amyotrophic lateral sclerosis,
Denmark, 1989–2013. The figure illustrates the time windows analyzed for the average exposures (10 years, 5 years, and 1 year) and the lags
included in the distributed-lag analysis (lags of 1–10 years). The cumulative associations for exposure to lags 1–5 and 1–10 were also estimated.
The dotted area on the right depicts the 12 months before hospitalization, which was excluded from all exposure windows. PM2.5, particulate
matter less than or equal to 2.5 μm in diameter.

cities, the rest of Denmark, Greenland, a foreign country, or
unknown), to adjust for location-specific early-life potential
confounders; and place of residence on the date of the
first hospitalization (capital region of Denmark, cities with
populations greater than 50,000, Greenland, or the rest of
Denmark), to adjust for concurrent exposures that could be
associated with air pollution and ALS ascertainment. Lastly,
to improve SES characterization, we included a variable on
neighborhood-level educational attainment (percentage of
the population with a high school diploma or higher).

We obtained neighborhood-level SES data (educational
attainment) from Statistics Denmark (29) for 2009 at the
parish level. We assigned neighborhood-level SES to cases
and controls based on residence on the diagnosis date, which
may or may not have been in 2009. This resulted in several
participants (3.6%) missing parish-level SES data, because
some Danish parishes changed over time (e.g., merged into
new parishes or split from 1 parish into 2 or more).

Exposure assessment

We obtained all historical addresses of cases and controls
from the Danish Civil Registration System from January 1,
1979, to the diagnosis date, including the dates of moving to
and leaving an address. We extracted the geographic coordi-
nates at the house’s door of each residence in the residential
history of the participants and used this information to assign
PM2.5 concentrations.

We used PM2.5 predictions (in μg/m3) obtained from a
spatiotemporal model (30) that has been used in previous
epidemiologic studies in Denmark (31, 32). The model
estimates PM2.5 concentrations using a multiscale disper-
sion modeling system, DEHM/UBM/AirGIS (30). Based
on the Danish Eulerian hemispheric model (DEHM), the
urban background model (UBM), and a geographic infor-
mation system (GIS), DEHM/UBM/AirGIS is a highly spa-
tiotemporally resolved human exposure modeling system

that integrates air pollution dispersion models, digital maps,
national and local administrative databases, concentrations
of air pollutants at the regional, urban background, and
street levels, meteorological data, and a GIS. Specifically,
DEHM/UBM/AirGIS predicts air pollution concentrations
at each residential address as the sum of 3 contributions:
1) local air pollution from street traffic, calculated from
the intensity and type of traffic, emission factors for the
vehicle fleet, street and building geometry, and meteorology
(33); 2) urban background concentrations calculated via
the UBM (34) using a local scale model based on a high-
resolution emission database at a 1 km × 1 km resolution
that covers all of Denmark; and 3) regional background
concentrations, using a regional chemical transport model,
the DEHM (35), covering Denmark (5.6 km × 5.6 km),
Northern Europe, and the whole Northern Hemisphere. The
final product is highly spatially resolved PM2.5 predictions
with an average predictive accuracy of R = 0.83. In general,
underlying uncertainties in the model are slightly higher for
earlier years as compared with more recent years, and the
model performs similarly in urban and rural sites (30). We
estimated monthly PM2.5 exposure at the address level for
each participant. Then, we averaged the monthly estimates
into various exposure windows as described below.

Time windows of exposure

The time windows of exposure are illustrated in Figure 1.
All exposure windows excluded the 12 months preceding
the date on which patient was first hospitalized and given
an ALS ICD code for the first time. These 12 months
provided a time buffer for the likely delay between diagnosis
and the first hospitalization (36, 37). We evaluated 3 time
windows that captured averaged PM2.5 concentrations in
the 13–24 months, 2–6 years, and 2–11 years preceding the
first hospitalization (hereafter referred to as 1-, 5-, and 10-
year averaged exposures). Additionally, to evaluate potential
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delayed and cumulative associations from persisting PM2.5
exposures over time, we analyzed yearly exposure lags back
to 11 years (lags 1–10) prediagnosis and estimated cumula-
tive associations in the lag periods 1–5 years and 1–10 years.
The lag analysis excluded lag 0, corresponding to the 12
months preceding hospitalization. The averaged association
estimates differ from the cumulative estimates in that the
former assume equally distributed risk over time while the
latter allow estimates to vary across years.

We set an inclusion criterion for each exposure window
(see Web Figure 1, available at https://doi.org/10.1093/aje/
kwad099). For the 1-year time window and lag analysis, we
included only cases and controls with exposure estimates for
at least 9 out of 12 months and at least one month measure-
ment for each season (spring, summer, fall, and winter). For
the 5- and 10-year time windows, we only included partici-
pants with at least 50% of exposure estimates (30 months
and 60 months, respectively).

Statistical analysis

We used ALS as the binary outcome in a conditional logis-
tic regression analysis, which accounts for the case-control
matching factors (age, sex, and vital status), to estimate odds
ratios (ORs) and their corresponding 95% confidence inter-
vals (CIs) per 1-μg/m3 increase in PM2.5 concentration. We
fitted separate models for the 1-, 5-, and 10-year averaged
exposures. For the lag analysis, we applied conditional logis-
tic regression within the distributed-lag modeling framework
(38). Distributed-lag modeling simultaneously models the
shape of the exposure-response relationship within lag and
across lags (i.e., lag-response relationship) (38). We mod-
eled the exposure-response relationship linearly and allowed
the coefficient on each lag to vary across years in a smooth
(nonlinear) way. We explored lag constraints of 3 and 4 de-
grees of freedom (df) in the lag response and used the
Akaike information criterion (AIC) to select the best-fitting
model. From the distributed-lag model, we extracted lag-
specific and cumulative associations for lag periods 1–5
and 1–10 years and the corresponding 95% CIs. All of the
models adjusted for potential socioeconomic and geographic
confounding through the inclusion of civil status, place of
birth, residence, and occupational category.

Sensitivity analysis

We tested for deviations from linearity in the exposure-
response relationship in the 5- and 10-year averaged expo-
sure models using 3-df natural splines and compared model
fitness (i.e., linear vs. nonlinear) using the AIC. We also
ran all models from the main analysis without adjusting for
parish-level SES to evaluate the robustness of our results to
neighborhood-level SES adjustment. In addition, we ran all
models from the main analysis without adjusting for parish-
level SES and including the individuals with missing parish-
level SES.

We tested for effect modification by sex (male vs. female),
age (>65 years vs. ≤ 65 years), and year of diagnosis (1989–
1999 vs. 2000–2013). We used separate distributed-lag mod-

els for each of the categories. We modeled the exposure-
response relationship linearly and allowed the coefficient
on each lag to vary across years in a smooth (nonlinear)
way using a constraint of 3 df. We extracted the lag-specific
estimates from each model and the cumulative estimates in
lags 1–5 and 1–10 (OR and corresponding 95% CI). All
models adjusted for potential socioeconomic and geographic
confounding by including the same variables as those in the
main analysis.

Lastly, we performed a sensitivity analysis to evaluate po-
tential outcome misclassification resulting from the inclu-
sion of outpatient hospitalizations. This model had the same
structure as that in the main analysis (e.g., exposure-response
relationship modeled linearly, 3 df in the lag constraint, con-
founder adjustment), but the analysis was restricted to only
inpatient data.

RESULTS

Descriptive analysis

We identified 3,983 cases (438 persons diagnosed using
ICD-8 code 348.0, 3,119 diagnosed using ICD-10 code
G12.2, and 426 diagnosed with the subcategory code
DG12.2G) and 19,915 controls and found no differences
in mean PM2.5 exposure level between cases and controls in
any window of exposure. Age, sex, and family SES informa-
tion was available for all cases and controls. A total of 154
(0.6%) participants (23 cases and 131 controls) had missing
data on place of birth, which we categorized as “unknown”; 3
controls were missing data on civil status and were removed.
Greenland residents (41 (0.2%) in total; 5 cases and 36
controls) were also removed to facilitate model convergence.
The parish-level SES variable had the highest amount of
missingness, with 827 (3.5%) participants (153 cases and
674 controls) missing this information. Participants with
missing parish-level SES data were removed from the main
analysis but included in the sensitivity analyses. Lastly, 173
(0.7%) participants (23 cases and 150 controls) did not have
residence information and were removed from all analyses.

We also removed cases/controls missing exposure esti-
mates as per the criteria described in the Methods section
(Web Figure 1). On average, we had 97.3% of cases and
95.5% of controls retained from the initial total in each expo-
sure window analysis. There was great overlap across the
participants included in each exposure window analysis, and
the summary demographic and exposure characteristics did
not differ. Demographic characteristics of the participants
included in the 5-year exposure time window assessment
are summarized in Table 1 and are representative of the
participants included in the other exposure analyses. The
average PM2.5 exposure concentrations (across controls and
patients) decreased over time, from approximately 16 μg/m3

in 1989 to approximately 9 μg/m3 in 2013 (Web Figure 2).

Exposure time windows

Averaged exposures. The estimated associations between
ALS diagnosis and averaged PM2.5 exposure in 1-year
(OR = 1.01, 95% CI: 0.98, 1.05), 5-year (OR = 1.00, 95% CI:
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Table 1. Characteristics of ALS Cases and Controls Included in the 5-Year Time Window in a Study of the ALS-
PM2.5 Association, Denmark, 1989–2013a,b

Characteristic

Overall
(n = 23,063)

Cases
(n = 3,906)

Controls
(n = 19,157)

No. % No. % No. %

Sex

Female 10,876 47.0 1,838 47.0 9,038 47.0

Male 12,187 53.0 2,068 53.0 10,119 53.0

Average age, yearsc 65 (12) 65 (12) 65 (12)

Civil status

Married 14,074 61.0 2,400 61.0 11,674 61.0

Divorced 2,685 12.0 427 11.0 2,258 12.0

Widowed 4,188 18.0 722 18.0 3,466 18.0

Never married 2,116 9.2 357 9.1 1,759 9.2

Place of birth

Greater Copenhagen 4,816 21.0 826 21.0 3,990 21.0

Large cityd in Denmark 7,866 34.0 1,349 35.0 6,517 34.0

Rest of Denmark 8,951 39.0 1,535 39.0 7,416 39.0

Greenland 239 1.0 52 1.3 187 1.0

Foreign country 1,057 4.6 121 3.1 936 4.9

Unknown 134 0.6 23 0.6 111 0.6

Place of residence

Greater Copenhagen 7,721 33.0 1,321 34.0 6,400 33.0

Large cityd in Denmark 3,675 16.0 612 16.0 3,063 16.0

Rest of Denmark 11,667 51.0 1,973 51.0 9,694 51.0

Family SES

Group 1 (highest) 2,325 10.0 451 12.0 1,874 9.8

Group 2 2,816 12.0 497 13.0 2,319 12.0

Group 3 4,340 19.0 783 20.0 3,557 19.0

Group 4 6,547 28.0 1,066 27.0 5,481 29.0

Group 5 (lowest) 4,385 19.0 709 18.0 3,676 1.0

Group 9 (unknown) 2,650 11.0 400 10.0 2,250 12.0

PM2.5 concentration, μg/m3c 12.62 (2.64) 12.65 (2.68) 12.62 (2.63)

Abbreviations: ALS, amyotrophic lateral sclerosis; PM2.5, particulate matter less than or equal to 2.5 μm in
diameter; SES, socioeconomic status.

a Participants in the 5-year time window were representative of participants included in the other exposure
windows.

b The counts presented in this table are slightly lower than the total counts reported in the text because the table
presents data only for the cases/controls included in the 5-year exposure window.

c Values are expressed as mean (standard deviation).
d City with a population greater than 50,000.

0.97, 1.03), and 10-year (OR = 1.00, 95% CI: 0.97, 1.03)
lag periods before the first hospitalization were similar in
magnitude and null.

Lag and lag-cumulative exposures. We analyzed yearly
lag exposures from 11 years before diagnosis to assess po-
tential delayed effects of exposure. Lags were minimally
autocorrelated (Web Figure 3). Based on the AIC, the
distributed-lag model with 3 df on the lag constraint had a

slightly better fit relative to the model with 4 df. The results
from these 2 models were similar, and here we present only
the results from the better-fitting model (3 df). We found
stronger associations with the outcome for exposure time
windows closer to the date of diagnosis (lag 1: OR = 1.04
(95% CI: 0.99, 1.08); lag 2: OR = 1.02 (95% CI: 1.01, 1.04);
lag 3: OR = 1.00 (95% CI: 0.99, 1.02)). The ORs decreased
from lag 4 onward and became null (Figure 2). The lag-
cumulative ORs in periods 1–5 and 1–10 years prior to the
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Figure 2. Association between PM2.5 exposure and amyotrophic lateral sclerosis (ALS) in a case-control study (distributed-lag model),
Denmark, 1989–2013. The odds ratios represent the estimated odds of ALS per 1-μg/m3 increase in PM2.5 concentration in the given lag;
bars represent 95% confidence intervals (CIs). Lag 1 refers to average exposure during the 12–24 months preceding the date of the patient’s
first hospitalization, lag 2 represents average exposure during the 25–37 months before the first hospitalization, and so on up to 11 years.
Results from models that adjusted for parish-level socioeconomic status (SES) are shown with solid 95% CIs, and results from models that
did not adjust for parish-level SES are shown with dashed 95% CIs. All models adjusted for individual-level SES, temporal confounding, and
geographic confounding using the individual-level covariates civil status, place of birth, place of residence, and occupation. PM2.5, particulate
matter less than or equal to 2.5 μm in diameter.

first hospitalization were 1.06 (95% CI: 0.99, 1.13) and
1.02 (95% CI: 0.98, 1.05), respectively. Overall, we found
a stronger association between 5-year cumulative PM2.5
exposure and ALS diagnosis. These results are shown in
Figure 3.

Sensitivity analysis. In the sensitivity analyses, we found
that adjusting for parish-level SES, in addition to individual-
level SES, had a minimal impact on the OR estimates overall
(Figures 2 and 3). Our results were also robust to inclusion of
the participants with missing data on parish-level SES (Web
Figures 4 and 5).

We also conducted a sensitivity analysis to check for
potential nonlinearity in the exposure-outcome relationship
in the averaged exposure models by adding a natural spline
with 3 df on the exposure variable. Based on the AIC, the
best-fitting models were models with linear exposure terms.

We detected no differences by sex in the sex-stratified
models. The cumulative and lag association estimates for
males and females were similar and aligned with the main
analysis findings (Web Figure 6). Specifically, we found
positive estimates in the lag 1–3 period for both the male
and female groups; the cumulative estimates for exposure in
the period 1–10 years before the first hospitalization were
the same for males (OR = 1.03, 95% CI: 0.99, 1.08) and

females (OR = 1.03, 95% CI: 0.99, 1.08), and the cumulative
estimates were also similar in the period 1–5 years (males:
OR = 1.09 (95% CI: 1.00, 1.19); females: OR = 1.05 (95%
CI: 0.96, 1.15)). Nonetheless, we found differences across
the age categories (Web Figure 7). The results for patients
over 65 years of age reflected the results from the main
analyses; we found positive associations between ALS and
PM2.5 for lag 1–3 and the cumulative exposures. We did not
detect an association, however, for patients aged 65 years or
younger. We observed the largest difference for lags 1 and
2. We note, however, that the 95% CIs between age groups
mostly overlapped.

We also conducted a sensitivity analysis stratified by
the year of diagnosis (1989–1999 vs. 2001–2013). In the
1989–1999 group, we found no association between PM2.5
exposure and ALS (Web Figure 8). In the 2000–2013 group,
we found a positive association between ALS and PM2.5
exposure in all lags, with estimates steadily increasing from
lag 1–5 and decreasing—but still positive—after lag 6 (Web
Figure 8). The cumulative associations were also positive for
patients diagnosed during this period, and the 5-year cumu-
lative exposure had the strongest association (OR = 1.16,
95% CI: 1.04, 1.30).

Lastly, we conducted a sensitivity analysis including only
inpatient hospitalizations. Overall, the results from that anal-
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Figure 3. Associations of average and cumulative PM2.5 exposures with amyotrophic lateral sclerosis (ALS) in a case-control study, Denmark,
1989–2013. The figure shows the associations between ALS diagnosis and PM2.5 exposure 1, 5, and 10 years preceding the date of the first
hospitalization; bars represent 95% confidence intervals (CIs). In the averaged exposure models (black points), we used the average PM2.5
concentration over each time window as the exposure; thus, the odds ratios represent the estimated odds of ALS per 1-μg/m3 increase in the
PM2.5 average. The odds ratios from the cumulative exposure models (blue points) represent the estimated cumulative association for sustained
exposure of each lag over the respective time window—that is, the odds of ALS per 1-μg/m3 PM2.5 increase in each lag within the exposure
window. Results from models that adjusted for parish-level socioeconomic status (SES) are shown with solid 95% CIs, and results from models
that did not adjust for parish-level SES are shown with dashed 95% CIs. All models adjusted for individual-level SES, temporal confounding, and
geographic confounding using the individual-level covariates civil status, place of birth, place of residence, and occupation. PM2.5, particulate
matter less than or equal to 2.5 μm in diameter.

ysis aligned with the findings of the main analysis (Web
Figure 9).

DISCUSSION

In this study, we compiled one of the largest ALS
population-based case-control databases to date by leverag-
ing information from the Danish health and civil registries,
and we used a sophisticated GIS-based dispersion modeling
system to assign PM2.5 exposures to participants at the ad-
dress level. We evaluated long-term exposure to PM2.5 (aver-
aged and cumulative exposures) and yearly exposure lags
back to 11 years prediagnosis. Our results suggest that
years closer to the disease diagnosis date may be a critical
window of exposure to PM2.5 in ALS. Specifically, we found
that PM2.5 exposure during the 6 years preceding diagnosis
was associated with ALS risk, but earlier exposures were
not.

To our knowledge, only 4 epidemiologic studies have pre-
viously evaluated the association between PM2.5 exposure
and ALS, and only 1 evaluated time windows of exposure.
In a county-level analysis in New York State, Nunez et al.
(20) evaluated 1-year exposure to predicted PM2.5 concen-

trations associated with ALS disease aggravation and found
a positive association. Two Netherlands-based case-control
studies evaluated long-term (>1 year) exposure to PM2.5 and
other air pollutants (19, 22). The authors assigned exposure
at the address level by extrapolating and then averaging
yearly pollutant estimates prior to the date of diagnosis; the
number of years averaged varied across participants. Both of
those studies also found a positive PM2.5-ALS association.
To our knowledge, the current study is the first to have
analyzed long-term time windows of exposure. The long-
term averaged exposures we estimated were similar to what
Seelen et al. (19) and Yu et al. (22) applied, but we estimated
monthly exposure concentrations at the address level for
each participant rather than extrapolating concentrations
from a single year, which should have resulted in better
exposure assessment accuracy.

The clinical phase of ALS is easily recognized based on
progressive muscle weakness, but the underlying disease
process (e.g., at the molecular, cellular, or systemic level)
that eventually leads to clinical symptoms almost certainly
begins before the clinical phase emerges (4, 39, 40). Broadly,
the clinical literature divides ALS into 2 phases: 1) the
symptomatic phase, which includes the clinical stages, and
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2) the presymptomatic stage, which is divided into the pre-
manifest stage and the prodromal stage (4). The premanifest
stage within the presymptomatic stage refers to the early
stage with a molecular, cellular, or systemic phenotype but
without symptoms of disease; the prodromal stage of the
presymptomatic stage includes possible symptoms or signs
(e.g., behavioral, emotional, cognitive, and others) that are
too subtle to be noticed by most individuals. The symp-
tomatic phase is when diagnosis occurs and is characterized
by overt symptoms (4). The length of the presymptomatic
stage is uncertain and probably variable among patients,
but it is hypothesized to be on the scale of years (4, 39,
40). In this study, our results suggest that PM2.5 exposure
during the 2–4 years preceding diagnosis is associated with
ALS. If this critical window of exposure falls within the
prodromal or premanifest stage of ALS, which is likely, we
can hypothesize that PM2.5 exposure in these stages adds to
the ongoing cellular or molecular process of the disease to
the point where the body can no longer compensate (39) and
thus crosses into the clinical phase.

Inhaled PM2.5 is known to reach the lower respiratory
system, where it can permeate the lung alveoli and enter
the blood circulation (41). The presence of PM2.5 in blood
circulation damages endothelial and epithelial barriers,
including the blood-brain barrier (41, 42). Subsequently,
PM2.5-induced breakage of the blood-brain barrier can initi-
ate oxidative stress, inflammation, endoplasmic reticulum
stress, mitochondrial dysfunction, autophagy, apoptosis,
and other damaging processes (41, 43, 44). Thus, a
potential mechanism is that molecular and cellular reactions
triggered by PM2.5-induced breakage of the blood-brain
barrier may combine with ongoing cellular processes in
the presymptomatic stages (e.g., altered glutamate release,
astrocyte activation, altered synaptic circuits (45–47)) to
initiate clinical ALS. This hypothesis would also suggest
that PM2.5 exposure post–clinical diagnosis may contribute
to more rapid disease progression and thus shorter survival.
Future studies that evaluate long-term exposure to PM2.5 in
different time windows and its influence on patient survival
are necessary to confirm our findings and the contribution
of PM2.5 exposure to ALS.

The results from the sensitivity analysis suggested that
PM2.5 exposure is associated with ALS among persons
older than 65 years but not among those aged 65 years or
younger. Patients diagnosed at a younger age might have
a more aggressive phenotype of the disease resulting from
genetic risk factors or other environmental exposures that
are more substantial contributors to the disease than PM2.5
(48); this could mask an association between ALS and PM2.5
exposure. These results contradict previous findings from a
New York State study (20). Differences in findings, among
others, may arise from variations in PM2.5 composition. In
our analysis, we also found a PM2.5-ALS association in
patients diagnosed after 2000 but not among those diagnosed
in earlier years. Source apportionment studies indicate that
sources of PM2.5 may be changing (49), which may influ-
ence its composition. Thus, differences in association by
year of diagnosis may also be due to variations in PM2.5
composition, which a previous study suggested may influ-
ence its association with ALS (50).

Our study leveraged a large ALS case-control population
and well-validated air pollution predictions to explore the
PM2.5-ALS association at the individual level. We had com-
plete address histories for cases and controls and estimated
PM2.5 concentrations at the address level up to 11 years
prediagnosis. The population-based control selection min-
imized the risk of selection bias. Our analysis was one of the
most comprehensive epidemiologic studies of PM2.5 expo-
sure and ALS carried out to date. However, our study still
had several limitations. We used predictions of PM2.5 expo-
sure at the residential address rather than measurements of
personal exposures. This is expected to have resulted in some
exposure measurement error. However, differential exposure
misclassification related to the outcome is unlikely, and there
is no reason to believe that any error would be associated
with ALS diagnosis; thus, any resulting bias would likely
have been towards the null (51). The model uncertainties in
earlier years were higher. This might have led to a larger
exposure measurement error for cases diagnosed earlier in
our study and their corresponding controls, which could
explain the null results in the pre-2000 analysis. We used the
first hospitalization as a proxy for disease diagnosis rather
than a clinical diagnosis. However, previous studies in the
Danish population indicated that hospital discharge data are
an accurate proxy for ALS disease diagnosis (52). Addition-
ally, we excluded the 12 months preceding hospitalization as
a buffer for the possible delay between diagnosis and the first
hospitalization. Other limitations include potential residual
confounding by individual-level factors we did not have
information about. However, adjustment for personal factors
in analyses that use proxy exposure estimates may have a
minimal influence on study results (53). Lastly, the chemical
composition of PM2.5 in Denmark may not be generalizable
to other countries, particularly to middle- and lower-income
countries where the primary sources of PM2.5 are more
likely to differ from those in Denmark and concentrations
of PM2.5 are likely to be higher.

In conclusion, examining time windows of PM2.5 expo-
sure in ALS can provide insight into important time points
of pathological processes and improve the characterization
of the PM2.5-ALS association. Our results suggest that the
6 years preceding ALS diagnosis are possibly a critical time
window of exposure in the PM2.5-ALS association.
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