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A B S T R A C T   

Distinctive zones of inundation water during floods were shown to originate from different sources in some major 
floodplains around the world. Recent research showed that the zonation of water in rivers and floodplains is 
related to vegetation patterns. In spite of this, water source zones were not used for vegetation modeling due to 
difficulties in their delineation. In this study, we used simulation results of a fully-coupled groundwater-surface 
water integrated hydrological model (IHM) HydroGeoSphere and the Hydraulic Mixing-Cell method to provide 
standard hydrological predictors (e.g. water depth, inundation length, groundwater depth, exchange flux) and 
the extent of inundation zones having a certain water source (discharged groundwater, river, rainfall, and 
snowmelt). These variables were used to train a vegetation model for the lower Biebrza floodplain (about 290 
km2) using vegetation maps from 1960, 1980, and 2000. We used a one-at-a-time (OAT) approach, where each 
map was validated based on a model trained on the remaining two maps to obtain realistic error estimates. We 
also used a fractional approach in which a fraction of each map was used for training and validation. The single 
model from the fractional approach was used to assess the importance of predictors and to predict vegetation for 
the 20th century and for the 21st century using IHM simulation forced by the Twentieth Century Reanalysis data 
and EURO-CORDEX RCP 2.6, 4.5, and 8.5 model ensembles. The model which used both water sources extent 
and standard predictors performed the best overall and was sensitive to the future trends. The extent of river 
water within the inundation area was by far the most important vegetation predictor. The models that neither 
used the water sources extent predictors nor the exchange flux were not able to predict the trends of areas 
covered by certain vegetation types under future climate. The advantage of the water sources extent predictors 
was their ability to represent the spatial effect of local hydrological phenomena. This was not possible with the 
standard predictors, because they show only the source of the phenomena (e.g. groundwater discharge zone), but 
do not indicate the actual area affected by its physical and chemical properties, which is more relevant for 
vegetation development. Our results highlight the relevance of using water extent predictors due to their ability 
to explain spatiotemporal ecological processes, such as vegetation development. We suggest to use water extent 
predictors in modelling for developing more accurate decision support for wetland floodplains.   

1. Introduction 

Flooding is considered to be the major driver affecting floodplain 
vegetation (Blom and Voesenek, 1996). Over the last decades basic 
surface water properties, such as surface water depths or inundation 
duration (Keddy, 1984; Ferreira and Stohlgren, 1999; Capon, 2005; 
Murray-Hudson et al., 2014), groundwater properties, such as depth of 
the groundwater table, or soil moisture content (Silvertown et al., 1999; 
Dwire et al., 2006; Jabłońska et al., 2011), and water chemistry in-
dicators such, as electrical conductivity (EC) and pH (Ellery et al., 1993; 

Llampazo et al., 2022) were identified as relevant for floodplain vege-
tation development. Gradients in these chemical and physical properties 
can originate from water from different sources that can be present 
undiluted or be mixed with other water types. Due to extensive in-
teractions between groundwater and surface water in wetlands, a 
considerable amount of research sources were invested in studying the 
relation between water chemistry and vegetation. An interesting phe-
nomenon that facilitates suitable conditions for wetland vegetation is 
the mixing of groundwater with atmospheric water (precipitation, 
snowmelt) (Wassen and Joosten, 1996; Almendinger and Leete, 1998). 
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The mixing process is, however, not only depending on local conditions, 
i.e., it does not occur only by on-site groundwater discharge or on-site 
high water tables but is a result of dynamic groundwater flow in the 
topsoil over wider areas which produces a spatial effect. This process of 
spatial interactions between groundwater flow and site conditions is of 
great relevance and was identified as a factor affecting the presence of 
fen species in different landscapes (Grootjans et al., 2006). The rele-
vance of such spatial groundwater mixing was confirmed in a compar-
ison study, which showed that the fen vegetation pattern was explained 
better by a model that used the zone of groundwater-affected soil as a 
predictor than a model that used only the groundwater discharge area i. 
e. the area where groundwater physically discharged (Van Loon et al., 
2009). These studies showed that wetland vegetation can be modeled 
with various predictors that can discern the local or spatial effect of the 
hydrological system. However, the advantage of the latter predictors is 
that they provide a more realistic estimation of the area affected by 
properties of a water source (e.g. base-rich groundwater) that can result 
in a better vegetation model. 

Mixing of water from different sources occurs not only below the 
ground surface but also and probably even more prominently in the 
inundation zone. Mixing of sediment-rich river water with sediment- 
poor water originating from floodplains or from tributaries was identi-
fied in several wetland floodplains of the world’s largest rivers (Mertes, 
1997). Yet the relationship between wetland vegetation and the zones of 
water from different sources in inundated conditions was investigated 
only in several studies. Identification of water zones conducted down-
stream of the confluence of the sediment-poor river Negro and the 
sediment-rich river Solimes-Amazon has shown that flooding of these 
two water types occurs on the opposite side of the floodplain (Park and 
Latrubesse, 2015) and corresponds to the presence of white-water and 
black-water vegetation types (Junk et al., 2012; Junk et al., 2015). 
Another study showed that the sediment concentration gradient occur-
ring downstream the confluences of rivers in the Amazon catchment can 
define patterns of bird diversity by influencing floodplain productivity 
and forest structure (Laranjeiras et al., 2021). Except for the Amazon 
floodplain, several studies analyzed the relation between zones of water 
from different sources and vegetation in the Biebrza floodplain located 
in N-E Poland. The analysis of water sources extent in the Biebrza 
floodplain showed that the most productive vegetation (e.g. reed) is 
located in the river water zones, whereas in remote parts of the flood-
plain, where the continuous inundation was predominately formed by 
groundwater discharge and precipitation less productive fen vegetation 
(e.g. sedge-moss) was present (Chormański et al., 2011). Further anal-
ysis of this topic confirmed that the total extent of inundation is a poor 
predictor for the most productive vegetation, but also showed that the 
nutrient-rich sedimentation pattern is a better predictor for vegetation 
zonation than the river water extent (Keizer et al., 2018). In the scope of 
these studies, the spatial extent of water from different sources can be an 
important predictor for vegetation modeling, yet this research topic was 
not fully explored. 

Hydrological predictors for floodplain vegetation models are usually 
obtained by interpolation (Peters et al., 2007; Todd et al., 2010; 
Anderson et al., 2023), hydrodynamic modelling (Mosner et al., 2015; 
Yao et al., 2020; Liang et al., 2020), or derived directly from point 
measurements (Ndehedehe et al., 2021; Peng et al., 2022). Alterna-
tively, the integration of hydrodynamic and vegetation models can be 
used to simulate the water-vegetation interactions and to trace the 
development of vegetation over time. This approach has been applied by 
using CASIMIR (Benjankar et al., 2011) and other recently developed 
models (Zhu et al., 2020; Dang et al., 2022). In spite of being quite often 
applied, these approaches still do not or only very limited account for 
interactions between water sources, because they do not simulate water 
fluxes between the groundwater and surface water domains and do not 
trace the spatial extent of each water source. Effectively the influence of 
water from different sources on vegetation is not depicted by these 
approaches. 

A solution for this issue is to use integrated hydrological models 
(IHM), which solve coupled 3D groundwater and 2D surface water flow 
(Sebben et al., 2013). Yet, IHMs are rarely used in ecological applica-
tions despite their advantages in solving complex problems, inter- 
domain interactions, and 2D/3D flow (Brewer et al., 2018). In a study 
aiming at the identification of riparian vulnerability an IHM was driven 
by historical meteorological data and the output was used to develop 
vegetation models, which were further used to predict future vegetation 
based on future climate scenarios (Fernandes et al., 2016). This 
appeared to be possible because IHMs are physically based and a model 
calibrated for the historical data should be valid also for future pre-
dictions. Another study used IHM output to model the distribution of 
meadow vegetation including endangered species (Gattringer et al., 
2019). As shown in that study, vegetation modes performed significantly 
better when the IHM output was used for modeling in comparison to 
scenarios that used groundwater level observations, or interpolated 
river water level observations. 

Although integrated hydrological models (IHMs) are useful in 
simulating interactions between sources of water and allow to simulate 
their collective hydrodynamic effect, they do not allow to quantitatively 
separate the effect of each water source spatially. To do this, one can use 
the Hydraulic Mixing-Cell (HMC) method (Partington et al., 2011), 
which allows to calculate and label time-varying fractions of each water 
source based on IHM simulated water fluxes. Application of HMC 
allowed to investigate streamflow generation mechanisms (Partington 
et al., 2013; Gutiérrez-Jurado et al., 2019), identify the sources of water 
in a riparian-stream continuum (Glaser et al., 2021), quantify ground-
water and river water mixing in the groundwater domain (Nogueira 
et al., 2022), or delineate river-floodplain water zones (Berezowski 
et al., 2019). The latter study was conducted in the lower Biebrza 
floodplain to show that distinctive zones of water sources are present 
during flooding. These zones could serve as indicators of floodplain 
vegetation that, contrary to local predictors, would allow to investigate 
the spatial effect of water from different sources. Yet the HMC simula-
tions of water zones were not used in vegetation modeling so far, nor 
was their suitability compared to local predictors such as surface water 
or groundwater levels. 

In this study, we use simulation of water sources extents and other 
hydrological predictors for floodplain vegetation modelling. We will set 
up a vegetation model for the Biebrza River floodplain, where relations 
between vegetation and water sources extent during inundation were 
documented before and which, due to its well-studied use as a reference 
area for other river floodplains, allows to transfer the results to similar 
wetland floodplains. Our aim is to test several sets of model predictors 
that reflect the most common modelling practice with using only stan-
dard, local groundwater, and surface water predictors, with a less 
common practice, i.e. more complex interactions between groundwater 
and surface water by use of a novel approach based on water source 
extent predictors. We hypothesize that predictors based on the simu-
lated extent of certain water sources increase the accuracy of the 
floodplain vegetation model in comparison to predictors based on 
standard groundwater and surface water variables. The results of this 
study may demonstrate the relevance of using hydrological predictors 
that depict the spatial effect of a water source on wetland vegetation 
types. To assure reliable validation of our hypothesis we test the vege-
tation models using three vegetation maps (from 1960, 1980, and 2000). 
The deep investigation of each model behavior is investigated by anal-
ysis of the difference in prediction under the past (since 1900) and future 
(till 2099; three greenhouse gas emission scenarios) hydrological and 
climatic conditions. 

2. Methods 

Below we present the outline of the methods used in this study: 
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1. The integrated hydrological model (Section 2.3) for groundwater 
and surface water simulated water levels, water fluxes, and fractions 
of river, groundwater, snowmelt, and rainfall water in the Biebrza 
River catchment (Section 2.1) for the 1881–2099 period.  
a. The future simulations (2006–2099) were conducted using an 

ensemble of models for three greenhouse gas emission scenarios.  
2. A subset of the hydrological model output was selected for the nodes 

in the floodplain area and aggregated to yearly values (Table 1) to 
develop the predictors for the vegetation model.  

3. Floodplain vegetation maps from 1960, 1980, and 2000 were 
generalized to present the same vegetation types, which are used as a 
response variable in the vegetation model (Section 2.2).  

4. A random forest model was trained to predict vegetation type based 
on hydrological predictors in each hydrological model node with a 
valid vegetation type (Section 2.4).  

b. Four scenarios were used to identify the optimal hydrological 
predictors for floodplain vegetation modelling.  

c. Final vegetation type prediction in a given year was obtained by 
majority voting from predictions in eight preceding years and the 
given year.  

d. A fraction of data from all three maps was used to train the model 
for the prediction of vegetation change in the 1910–2099 period. 
For the future period, vegetation prediction was conducted for 
each ensemble member.  

e. A one-at-a-time procedure was used for a fair assessment of the 
vegetation model accuracy for each map. 

2.1. Study area 

The Biebrza catchment, located in north-eastern Poland, comprises 
7091 km2 (Fig. 1). The lower Biebrza valley (about 290 km2), where we 
perform the vegetation modeling, is located along the river section 
downstream of the town Osowiec and upstream of the confluence with 
the Narew River. For several reasons, we choose the lower Biebrza valley 
(hereinafter referred to as floodplain) for vegetation modelling. First, 
the relationship between vegetation and hydrology was documented in 
the floodplain for a long period of time (Pałczyński, 1984). Next, the 
floodplain is considered a reference site for similar wetlands in the 
temperate zone where river floodplain and fen vegetation show near- 
natural patterns (Wassen et al., 2006). Finally, the floodplain as well 
as the catchment were not subjected to major river regulation works. 
The melioration of the floodplain was finished in the middle of the 19th 
century, whereas the major interference into the Biebrza River, which 
was the construction of a waterway to the Neman River, was finished in 
the first half of the 19th century (Banaszuk, 2004). Also, the human 
influence is rather low because currently, the Biebrza catchment is the 
least populated region in Poland (Statistics Poland, 2021), population 
density is expected to decline in the 21st century (Eurostat, 2019) and 
the Biebrza National Park is protected. Therefore, the study area is 
suitable for naturally driven vegetation development modeling over the 
19th-21st centuries period and the results of this study are to some 
extent transferable to similar temperate zone wetlands elsewhere. 

Vegetation in the floodplain has a predominantly lateral zonation 
perpendicular to the river. Nearest to the river narrow patches of 
compact willow (Salix) bushes and tall grass vegetation (Phalaridetum 
arundinaceae, cf Pałczyński, 1984) are present. Next, up to about 900 m 
from the river reed vegetation belonging to Phragmitetum communis 
and Glycerietum maximae can be observed. Further away, up to about 
2500 m from the river, tall sedge vegetation belonging to Caricetum 
elatae and Caricetum gracilis are present. Finally, up to the upland 
margin fen vegetation, consisting of short growing sedges, forbs and 
mosses referred to as sedge-moss vegetation (e.g. Carici-Agrostietum 
caninae, Caricetum appropinquata, Caricetum diandrae) is present. 
The floodplain contains several dunes, which are mostly covered with 
forest. Alder and birch forests are also located close to the upland 
margin, around the dunes, and in a large complex in the southern part of 
the floodplain. The Biebrza floodplain was used for grazing and mowing 
in the last centuries, but the intensity of this management decreased in 
the end of the 20th century. Since the establishment of the Biebrza 
National Park grazing and mowing have been continued as a conser-
vation practice (Kotowski et al., 2013; Berezowski et al., 2018). 

The floodplain soils consist in the majority of various types of peat 
(Gnatowski et al., 2010) with depths up to 3 m, which were formed on 
top of the Quaternary sands and tills (Banaszuk, 2004). Near the river, 
fluvio-soils were formed consisting of alluvial deposits in a 300–1500 m 
belt. The upland around the floodplain consists of sands and glacial tills 
deposited during the Riss glaciation (Banaszuk, 2004). 

The climate is humid continental according to the Köppen classifi-
cation with a yearly precipitation (1970–2005) of 672 mm (88 mm 
snowfall), and a yearly potential evapotranspiration of 621 mm (IMGW- 

Table 1 
Predictors calculated based on daily simulations in each node of the IHM for 
each year in the 1900–2000 period using the 20CR forcing data and in the 
2006–2099 period using the RCP 2.6, 4.5, and 8.5 EURO-CORDEX forcing data 
ensembles.  

Predictor Symbol Description Group 

Yearly mean of daily 
surface water 
depth 

hsw Daily surface water depth (h) 
is an output of the IHM. 

surface 
water 

Number of days with 
water depth > 1 
cm per year 

l1 Sum of days with h > 1 cm in 
a given year. 

surface 
water 

Number of days with 
water depth > 10 
cm per year 

l10 Sum of days with h > 10 cm 
in a given year. 

surface 
water 

Yearly mean depth 
to groundwater 
table 

hgw Daily groundwater head 
(output of the IHM) in the 
top layer subtracted from the 
surface elevation. 

groundwater 

Yearly mean soil 
saturation 

m Daily soil saturation in the 
top layer is an output of the 
IHM. 

interactions 

Yearly mean 
exchange flux 

e Mean daily exchange flux 
(e0) between groundwater 
and surface water. e0 is an 
output of the IHM. 

interactions 

Yearly mean surface 
water infiltration 

ei Mean e0 only if e0 < 0 interactions 

Yearly mean 
groundwater 
discharge 

ed Mean e0 only if e0 > 0 interactions 

Yearly mean rainfall 
fractions 

frain Fractions of water sources 
represent the volume 
fraction of each water source 
in the IHM node contributing 
area and are an output of the 
HMC module (Partington 
et al., 2011). 

mixing 

Yearly ean snowmelt 
water fractions 

fsnow mixing 

Yearly mean 
groundwater 
fractions 

fgroundwater mixing 

Yearly mean river 
water fractions 

friver mixing 

Yearly mean mixing 
degree 

d Dimensionless mixing 
degree between the river and 
floodplain water Berezowski 
et al. (2019), calculated as d 
= 1-(|friver-ffloodplain|/(1- 
finitial)), where ffloodplain =

frain + fsnow + fgroundwater, 
and finitial is a very small 
fraction of water from initial 
conditions. The d values 
range between 0 and 1 and d 
= 1 indicates 1:1 mixing 
between floodplain and river 
water, whereas d =
0 indicates that only one 
water source is present in the 
model node. 

mixing  
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PIB, 2019; JRC, 2019). The long-term yearly runoff (1970–2005) of 
Biebrza River is 169 mm, which corresponds to a mean daily discharge 
of 38.1 m3s− 1 (IMGW-PIB, 2019). 

2.2. Vegetation maps processing 

We used three vegetation maps, which were developed by field 
surveys and represent actual vegetation in the floodplain around 1960 
(Oświt, 1968), 1980 (Pałczyński, 1984), and 2000 (Matuszkiewicz et al., 
2000) (Fig. 2). Each map was developed by different authors and had 
methodological differences. We expect that the older maps might be 
characterized by lower accuracies, due to lower resources available at 
that time. Moreover, each map has slightly different vegetation types. To 
minimize the effect of the methodological differences between the maps 
and to reduce the uncertainty related to the older maps we performed 
generalization of the vegetation maps into generic wetlands vegetation 
types: Phragmition (reeds), Magnocaricion (tall sedges), sedge-moss, 
and other. All vegetation that could be unambiguously classified as 
Magnocaricion, Phragmition, or sedge-moss were merged respectively. 
Small vegetation patches that were not possible to resolve, but were 
within or adjacent to identifiable patches were merged accordingly. The 
other vegetation type consisted in majority of forests, however, it also 
included open water, non-wetland vegetation (present on sand dunes), 

and anthropogenic vegetation that could not be resolved. The exact 
merging approach for each map is presented in Table S1-S4. 

2.3. Hydrological model 

We used the HydroGeoSphere (Beumer et al., 2007; Hwang et al., 
2014) IHM for the simulation of 2D surface water flow and 3D 
groundwater flow in the 7091 km2 Biebrza catchment (Fig. 1 left panel). 
The model was chosen due to its robustness illustrated by previous 
ecohydrological applications (e.g. Werner et al., 2021; Nogueira et al., 
2021; Houzé et al., 2022) and its ability to simulate the water source 
fractions of inundation water. The fraction of river flooding, ground-
water discharge, snowmelt, and rainfall water volume in each model 
node was calculated based on the IHM output using the HMC method 
(Partington et al., 2011), which can be included in the HydroGeoSphere 
IHM. The model was forced using the Twentieth Century Reanalysis 
(20CR) data (Slivinski et al., 2019) for the period 1881–2015 and using 
an ensemble of ten EURO-CORDEX (Jacob et al., 2014) simulations for 
representative concentration pathways (RCP) 2.6, 4.5, and 8.5 for the 
2006–2099 period (Table S5; only five-member ensemble in RCP 2.6). 
The detailed model description and validation are presented in Bere-
zowski and Partington (2023), whereas the simulation output along with 
the vegetation maps used in this study are accessible in a repository 

Fig. 1. Lower Biebrza valley floodplain with the river network and vegetation in 2000 (Matuszkiewicz et al., 2000) (right panel). Location of the Biebrza catchment 
study area (black outline) and the floodplain (black patch) in Poland (left panel); the major rivers Wisla, Bug, Narew and Biebrza are indicated with blue lines. The 
legend concerns only the right panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(Berezowski, 2023). The water levels error magnitude in two stations in 
the floodplain estimated by the root mean square error (RMSE) were 
low: 0.37 m, which corresponds to 9% and 10% of the data range for 
Burzyn gauge station (1930–2017 with gaps) and Osowiec gauge station 
(1881–2017 with gaps) respectively. Nine groundwater wells level in 
the floodplain area had also a low average RMSE of 0.28 m or 23% of the 
data range in the 1998–2019 period (with gaps). The low errors mean 
that the IHM was capable to simulate the hydrodynamics of the study 
area properly. Therefore the predictors derived from the IHM output can 
be used for explaining hydrology-related phenomena in the study area. 
In the surface layer, the model consisted of 19,297 nodes and 38,081 
triangular elements of which 10,436 were in the floodplain, hence the 
median element size in the floodplain was 20037 m2 and the minimum 
element area was 1017 m2. 

In a former study, the IHM simulations using HMC were analyzed in 
the scope of the length of the period in which a given water source was 
dominant in a model node, i.e., whether it persists longer or shorter in 
the inundation (Berezowski and Partington, 2023). In the 1881–1949 
period a stable composition of river flooding, groundwater discharge, 
snowmelt, and rainfall water was present in the inundation. In the 
1950–2015 period, which includes the years for which vegetation maps 
were used, several local trends were observed in the composition of 
water sources and in the period of surface water levels greater than 1 cm. 
In the 1950–2015 period, the water sources’ composition, inundation 
period and mean water depth showed very clear changes in simulation 
for the future climate RCP scenarios. 

We extracted the IHM output for the 290 km2 floodplain area (Fig. 1 
right panel) and aggregated the daily temporal resolution to a yearly 
scale to extract predictors for vegetation modeling in each IHM node 
(Table 1). The surface water domain properties, such as HMC output, 
exchange flux, and water depth were calculated directly from the surface 
water nodes. The groundwater properties, such as soil saturation and 
groundwater head were calculated for the top layer of the groundwater 
domain model grid. The spatially averaged predictors in the floodplain 
area for the 1900–2015 period are presented in Figure S1. 

2.4. Vegetation modeling 

We used the random forest classifier to model the vegetation type 
(Phragmition, Magnocaricion, or sedge-moss) using the IHM predictors 
(Table 1). The random forest algorithm was selected due to its ability to 
handle noisy predictors, parameter importance estimation feature, and 
resistance to overfitting (Breiman, 2001; Fox et al., 2017). Random 
forest was used in recent studies concerning floodplain vegetation 
modelling (Jing et al., 2023; Illeperuma et al., 2023). In this algorithm, a 
subset of predictors and samples are chosen randomly to form splits in 
each tree. The final predictor (vegetation type) is determined by ma-
jority voting over all trees in the forest. The number of trees (ntree) and 
the number of predictors sampled on each split (mtry) are the random 
forest meta-parameters. The ntree was 500 and the maximum mtry was 
10 in this study. 

The response variable (vegetation type) of the random forest model 
was aggregated for each IHM node to match the spatial representation of 
the predictors. The aggregation was realized by selecting the major 
vegetation type in the node contributing area. If no vegetation type 
covered more than 50% of the node contributing area then the node was 
excluded from the data set. 

To test the hypothesis that predictors based on simulated water 
sources’ extents increase the accuracy of the floodplain vegetation 
model, we used the following scenarios of the predictors set based on the 
groups indicated in Table 1:  

1. only predictors from the “surface water” group, hereinafter referred 
to as SW, 

2. predictors from “surface water” and “groundwater” groups, herein-
after referred to as GW-SW,  

3. predictors from “surface water”, “groundwater”, and “interactions” 
groups, hereinafter referred to as GW-SW interactions,  

4. only predictors from the “mixing” group hereinafter referred to as 
Mixing,  

5. predictors from all groups, hereinafter referred to as Full. 

Fig. 2. Comparison of the vegetation maps used in this study after generalization into four types.  
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We used two approaches for training and validation. The first 
approach was used to test the skill of the model for the prediction of 
vegetation in a period that was not present in the training set. In this 
approach, we used random 150 samples per vegetation type from two 
out of three vegetation maps to train the model (i.e. 300 samples per 
vegetation type in total). The prediction and validation were done on all 
samples from the third vegetation map, that is 3620 for the 1960 map, 
3351 for the 1980 map, and 3069 for the 2000 map. Since the training 
and validation process was repeated three times - once for each vege-
tation map, hereinafter we name this approach one-at-a-time (OAT). The 
OAT approach provides more realistic accuracy estimates for the pre-
diction of data not used for training. Yet, three models are developed in 
this approach, which is unsuitable for prediction in real-life applica-
tions. The second approach was used to train and validate a single 
prediction model based on all available vegetation maps. In this 
approach, we used random 150 samples per vegetation type for all three 
maps to train the model (i.e. 450 samples per vegetation type in total). 
The validation was done for the samples not used for training in each 
vegetation map, that is 2079 for Magnocaricion, 2533 for Phragmition, 
and 3579 for sedge-moss. We name this approach hereinafter fractional. 
The model obtained from the fractional approach was used to predict the 
vegetation types for the IHM predictors in the historical and future pe-
riods 1900–2099. 

The predictors were calculated for a yearly period. We, however, 
expected that vegetation is an effect of hydrological processes over a 
longer period. Therefore both in OAT and fractional approaches we use 
two-level vegetation modeling. On the first level, we predicted the 
vegetation in a year x based on hydrological predictors from each year 
between x and x-n. In the second level, we choose the final predicted 
vegetation for the year x by majority voting out of all predictions in the 
period x to x-n years. In a preliminary study, we estimated experimen-
tally that the best n = 8 in our case, i.e., in total each model uses 9 years 
of data. For n = 8 the accuracy of our models was greater than for n < 8, 
while for n greater than 8 accuracy did not increase considerably. 

The overall model performance was evaluated using overall accuracy 
[%]:  

acc = 100 * yp/y                                                                              (1) 

where yp is the number of IHM nodes with correctly predicted 
vegetation type and y is the total number of nodes used for validation. 
We calculated the confidence interval for the accuracy using the exact 
binomial test (Hollander et al., 2015). We assumed that the accuracy 
distribution could be approximated by the normal distribution and used 
a two-tailed Z-test with the p = 0.05, to check if the accuracies are 
significantly different one from another. We evaluated the model per-
formance for each vegetation type using the F1 score [-], which is a 
harmonic mean of precision and recall [-]:  

F1 = 2(precision * recall) / (precision + recall)                                    (2) 

where precision is a ratio of true positive predictions to all pre-
dictions in a given vegetation type and recall is a ratio of true positive 
predictions to all validation samples of a given vegetation type observed 
in the map. The maximum value is F1 = 1 and in this case, the predicted 
and observed vegetation samples match exactly. The lower the precision 
or recall the lower the F1 and the minimum value of F1 = 0 is obtained 
when precision or recall is 0. The F1 score is calculated for individual 
samples (i.e. IHM nodes with a vegetation type label) and does not take 
into account uneven node area. Therefore, to quantify the misclassified 
area in each vegetation type we calculated the difference in the pre-
dicted and observed vegetation type for each map. 

We tested the importance of the predictors for the models using the 
permutation importance in the fractional approach, which provided a 
single model per scenario. The permutation importance compares the 
performance of a model with the original values of a predictor with a 
model with randomly permuted values of the predictor. If the 

performance of both models is similar the predictor is not important. If 
the model with permuted predictor performed worse than the predictor 
is important. We choose to quantify the model’s performance in the 
permutation importance experiment using the mean decrease of accu-
racy, which calculates the difference between accuracy in the original 
and permuted predictor model and averages over all trees in the random 
forest. We estimated the importance of the entire model and each 
vegetation type predicted in the model. The permutation importance 
used the models from the fractional approach, which provided a single 
model per scenario. 

3. Results 

3.1. Modelling scenarios validation 

The overall accuracy of the models in the OAT approach was the 
highest for each map in the Full scenario (Fig. 3) with a mean of 82%. 
The Mixing scenario performed similarly (mean accuracy was 81%) to 
the Full scenario with the accuracy of the Mixing scenario not being 
significantly different between these two scenarios for each map. The 
GW-SW interactions scenario had lower accuracy (mean of 79%) than 
the Mixing scenario and the difference was significant except for the 
2000 map. The SW and GW-SW scenarios performed similarly one to 
another (not significantly different) with the lowest accuracy in all maps 
(the mean was 74% in each scenario). In all scenarios, accuracy 
decreased with the increasing year of vegetation maps development 
(from 1960 through 1980 to 2000) and the accuracy was significantly 
different between the 1960 and 2000 maps. 

In the fractional approach, the accuracy was higher (except for the 
1960 and 1980 maps in the GW-SW interactions) for the corresponding 
cases in the OAT approach but the differences were not significant 
except for the 2000 map in the Mixing scenario (Fig. 3). The mean ac-
curacy was 74% for SW, 75% for GW-SW, 78% for GW-SW interactions, 
83% for Mixing, and 83% for Full scenarios. The accuracy pattern was 
similar to that in the OAT approach except that the Mixing scenario had 
higher accuracies than the Full scenario for 1960 and 2000 maps (not 
significantly different), and the GW-SW interactions scenario accuracy 
was significantly different from the Mixing scenario accuracy for the 
2000 map. As in the OAT approach, the accuracy decreased with the 
increasing year of vegetation maps development but the difference be-
tween the 1960 and 2000 maps was significant only for SW, Mixing, and 
Full scenarios. 

The F1 score in the OAT approach was highest for the sedge-moss 
and lowest for the Magnocaricion vegetation type (Fig. 4). The Mixing 
and Full scenarios performed similarly in each vegetation map with the 
highest F1 score for all vegetation types. The SW, GW-SW, and GW-SW 
interaction scenarios had similar F1 scores for the Magnocaricion in both 
approaches. The GW-SW interaction had higher F1 for Sedge-moss and 
Phragmition than SW and GW-SW scenarios in the OAT approach. The 
Magnocaricion vegetation type was the only one that decreased over 
time (1960–2000; Fig. 4). A similar pattern of F1 score as in OAT was 
observed for the fractional approach. The differences between corre-
sponding scenarios and vegetation types from Fractional and OAT ap-
proaches were smaller than 0.01 except for the Magnocaricion and 
Phragmition vegetation in the SW scenario (-0.017 and 0.021 difference 
respectively), Phragmition vegetation in the GW-SW scenario (0.024 
difference), and Magnocaricion and Phragmition vegetation in the 
Mixing scenario (-0.021 and 0.030 difference respectively). 

The temporal change of vegetation types in the three maps was well 
reflected by the vegetation models both in fractional and OAT ap-
proaches (Fig. 5) The exception was the Phragmition for the 1960 and 
1980 maps, where all models predicted the opposite trend of vegetation 
change than observed. Both in the OAT and fractional approaches the 
biggest difference in the area was observed for the Phragmition vege-
tation type and the lowest for Sedge-moss (Table 2). The mean absolute 
differences between the predicted and observed vegetation were 6.4% 
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for SW, 7.3% for GW-SW interactions, 10.0% for Full, 10.1% for GW-SW, 
and 11.9 for Mixing scenarios in the OAT approach, and 9.5% for Full, 
10.5% for GW-SW, 10.9% for Mixing, 11.5% for SW, and 12.2% for GW- 
SW interactions scenarios in the fractional approach. 

3.2. Predictors importance 

The highest importance in the Full scenario was observed for the 
mean river water fractions, friver, with the next most important pre-
dictors also belonging to the “mixing” group: fsnow, and frain (Fig. 6). The 

most important predictors in the Full scenario which did not belong to 
the “mixing” group were related to the exchange flux between ground-
water and surface water (ed and e). Scenarios, which did not use pre-
dictors from the “mixing” group had the highest importance for the 
number of days with water depth greater than 10 cm (l10) in SW and GW- 
SW, and e in GW-SW interactions. The SW and SW-GW scenarios had a 
similar pattern of the predictors’ importance except for mean surface 
water depth (hsw). The mean mixing degree predictor (d), used in the 
Full and Mixing scenarios, had moderately low importance in compar-
ison to other predictors. 

Fig. 3. Overall accuracy and the 95% confidence interval from the fractional (left) and OAT (right) validation approach for the five scenarios and three vegeta-
tion maps. 

Fig. 4. The F1 score from the fractional (left) and OAT (right) validation approach for the five scenarios, three vegetation maps, and three vegetation types.  
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The predictors’ importance for individual vegetation types resem-
bled the general pattern of the overall predictors’ importance, however, 
some differences were observed (Fig. 7). In the Full scenario, a predictor 
from the “mixing” group was the most important for each vegetation 
type, however, friver was not always the most important predictor. 

In the Magnocaricion vegetation type, the most important predictor 
was frain with the mean decrease of accuracy (MDA) of 44% and was 
followed by ei (MDA 43%), and fsnow (MDA 42%) in the Full scenario 
(Fig. 7). The friver predictor (MDA 37%) was not distinctively high. In 
this vegetation type in the Mixing scenario, fsnow and frain were the two 
most important predictors and fgroundwater had the lowest importance. 
The d predictor importance (MDA 37%) was moderate and accounted 

for 42% of the fsnow importance in the Mixing scenario. The l1 predictor 
was the most important in the SW scenario, the second most important 
in the GW-SW scenario, and the fifth most important in the GW-SW 
interactions scenario. The importance of l1 was higher than l10 in SW, 
SW-GW interactions, and Full scenarios. 

In the Phragmition vegetation type, the friver predictor was pre-
dominant and fsnow, frain, and fgroundwater were the next three most 
important predictors in the Full scenario (Fig. 7). The d predictor (MDA 
30%) had similar importance as e (MDA 36%, top predictor from groups 
other than “mixing”). The l10 predictor was the most important in the 
SW, and GW-SW scenarios, while l1 was the least important predictor 
therein. In the GW-SW interactions, the four predictors from the “in-
teractions” group were the most important (mean decrease of accuracy 
47–53%). 

In the sedge-moss vegetation type, the friver predictor was predomi-
nant in the Full scenario and the ed predictor (MDA 57%) was the second 
most important (Fig. 7). The fgroundwater (MDA 30%) was more important 
than mean depth to groundwater, hgw, and mean soil saturation, m, 
however, was less important than all exchange-flux-related predictors. 
In the SW scenario, hsw and l1 had negative importance, i.e., the models 
performed better without these predictors. Effectively, l10 was the sole 
predictor in the SW scenario that was relevant for Phragmition vegeta-
tion modeling. In the GW-SW scenario, hsw was the most important 
predictor and was followed by hgw. In the GW-SW interactions, the hgw 
(MDA 63%) was the most important predictor, but the importance of e 
was 0.8 percent points lower. 

3.3. Past and future vegetation predictions 

A shift in the Magnocaricion and sedge-moss vegetation area was 
predicted between 1950 and 1960 (Fig. 8). The shift was for 26% of the 
1950 area in SW, 21% in GW-SW, 19% in GW-SW interactions, 14% in 
Full, and 14% in Mixing scenarios for Magnocaricion vegetation type 
and − 17% of the 1950 area in SW, − 14% in GW-SW, − 12% in GW-SW 
interactions, − 8% in Full, and − 8% in Mixing scenarios for the sedge- 
moss vegetation type. There were no significant trends in the 

Fig. 5. Predicted and observed (from the map) areas of vegetation types in the fractional (left) and OAT (right) validation approach for the five scenarios, three 
vegetation maps, and three vegetation types. Areas of vegetation types are smaller in the fractional than in the OAT approach, because in the fractional approach, 
validation was made only on the validation sub-sample in each map. 

Table 2 
The absolute difference in area between predicted and observed vegetation type 
averaged from three maps (1960, 1980, and 2000) in the fractional and OAT 
approaches. Values in brackets show the difference as a percentage of the 
observed vegetation type area. Areas of vegetation types are smaller in the 
fractional than in the OAT approach, because in the fractional approach, vali-
dation was made only on the validation sub-sample in each map.  

Vegetation type Scenario Predicted vegetation area absolute 
difference [km2] 

Fractional One at a time (OAT) 

Magnocaricion SW 5.2 (15%) 3.7 (9%) 
GW-SW 4.5 (13%) 5.8 (14%) 
GW-SW interactions 5.8 (17%) 4.6 (11%) 
Mixing 5.3 (16%) 7.2 (18%) 
Full 5 (15%) 5.8 (14%) 

Phragmition SW 3.1 (17%) 3.5 (17%) 
GW-SW 2.7 (15%) 3.8 (18%) 
GW-SW interactions 3.6 (20%) 4.1 (20%) 
Mixing 3.1 (17%) 5.5 (26%) 
Full 2.7 (15%) 3.9 (19%) 

Sedge-moss SW 4.7 (8%) 1.2 (2%) 
GW-SW 4.7 (7%) 3.7 (5%) 
GW-SW interactions 4.2 (7%) 1.1 (2%) 
Mixing 3.7 (6%) 2.9 (4%) 
Full 2.8 (4%) 3.4 (5%)  
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1910–1950 period, while in the 1960–2010 period for the Magnocar-
icion vegetation, a significant trend was observed in the Mixing scenario 
(-0.061 km2year− 1, p = 0.037). 

Response of the predicted vegetation area varied with the RCP and 
predictors scenarios for the future period (Fig. 9). The highest Magno-
caricion area was predicted for Mixing and Full scenarios, and the lowest 
for SW and GW-SW, with GW-SW interactions in between. For the sedge- 
moss vegetation, the situation was the opposite, but the area predicted 
for GW-SW interactions aligned with SW and GW-SW. In the case of 
Phragmition vegetation, each scenario predicted a similar area except 

for GW-SW interactions, which were lower than the remaining 
scenarios. 

Under RCP 2.6 the vegetation area was predicted to be stable over 
time with a significant trend observed only for sedge-moss vegetation in 
the Full scenario (-0.039 km2year− 1, p = 0.014). Under RCP 4.5 Mag-
nocaricion vegetation area shows significant trends in GW-SW in-
teractions (0.023 km2year− 1, p = 0.021), Mixing (0.085 km2year− 1, p <
0.001), and Full (0.023 km2year− 1, p = 0.014) scenarios. The sedge- 
moss vegetation area had significant trends in the Mixing scenario 
(-0.093 km2year− 1, p < 0.001). In RCP 8.5 the Magnocaricion vegetation 

Fig. 6. The predictors’ importance quantified by the decrease of accuracy in all vegetation types (overall accuracy) in the fractional approach.  

Fig. 7. The predictors’ importance quantified by the decrease of accuracy in each vegetation type in the fractional approach.  
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area shows a significant trend for SW (0.020 km2year− 1, p = 0.046), GW- 
SW (0.028 km2year-1, p = 0.031), GW-SW interactions (0.032 
km2year− 1, p = 0.025), Mixing (0.196 km2year− 1, p < 0.001), and Full 
(0.050 km2year− 1, p < 0.001) scenarios. Opposite significant trends 
were observed for Sedge-moss vegetation area in SW (-0.033 km2year− 1, 
p = 0.042), GW-SW (0.038 km2year− 1, p = 0.017), GW-SW interactions 
(0.037 km2year− 1, p = 0.017), Mixing (0.189 km2year− 1, p < 0.001), 
and Full (0.053 km2year− 1, p < 0.001) scenarios (Fig. 9). 

Predicted vegetation maps for the historical period primarily vary in 
the degree of spatial scatter in the homogeneous vegetation patches 
which were less present in the Mixing and Full scenarios than in the 
remaining scenarios (Fig. 10). The Phragmition belt around the river 
was the widest and most continuous in the Full scenario map. A similar 
situation was observed for Mixing and GW-SW interactions (more 
spatially scattered) while for SW and GW-SW the Phragmition belt was 
less continuous and narrower. In SW and GW-SW scenario Phragmition 

Fig. 8. Predicted vegetation area for the 1910–2010 period. Predictors in each scenario were simulated using IHM forced with the 20CR data for the 
period 1902–2010. 

Fig. 9. Predicted vegetation area for the 2020–2099 period. Predictors in each scenario were simulated using IHM forced with the bias-corrected EURO-CORDEX 
ensemble for RCP 2.6 (5 models), 4.5 (10 models), and 8.5 (10 models) data for the period 2012–2099. Lines represent the mean and ribbons represent 2.5–97.5% 
ranges of the vegetation area ensembled predictions. 
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and Magnocaricion vegetation was predicted along local relief denive-
lation such as ditches in the central part of the floodplain, within the 
sedge-moss patch. The major difference in vegetation distribution be-
tween 1960 and 2000 was the narrowing of the Magnocaricion patch by 
replacement with sedge-moss vegetation in the southern part of the 
floodplain and at the eastern margin of the northern part of the 
floodplain. 

The predicted vegetation maps for the future period varied in the 
vegetation types distribution in the analyzed RCP (Fig. 11). In the RCP 
2.6 scenario, the differences between predictors scenarios were similar 
to those observed for the historical period, i.e., less smaller spatially 
scattered patches within homogeneous vegetation patches and a wider 

Phragmition continuous belt around the river in the Mixing and Full 
scenarios than in the SW, GW-SW, and GW-SW interactions scenarios. 
The width of the Phragmition belt was consistent between the analyzed 
RCPs within the same predictor scenario. In the SW, GW-SW, and GW- 
SW interactions scenarios in RCP 4.5 the boundary between Sedge- 
moss and Magnocaricion vegetation was located closer to the river (up 
to 300 m) than in RCP 2.6. In RCP 8.5 the Sedge-moss and Phragmition 
boundary was located nearly as in RCP 2.6 in these scenarios. In the Full 
scenario, the Sedge-moss and Magnocaricion boundary shift was nearly 
not observable between RCP 2.6 and RCP 4.5, but in the RCP 8.5, the 
boundary was located further from the river (up to 300 m) when 
compared to RCP 2.6. In the Mixing scenario, large patches of 

Fig. 10. Predicted vegetation in the IHM nodes for 1910, 1960, and 2000. Nodes, which had forest, or unknown vegetation in 1960, 1980, or 2000 vegetation maps 
were removed. 
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Magnocaricion vegetation were predicted within the sedge-moss vege-
tation in the RCP 4.5 and 8.5. More Magnocaricion patches were pre-
dicted in RCP 8.5 than in RCP 4.5. The patches were located primarily 
along the major ditches (up to 600 m belt) in the central part of the 
floodplain, but not in the ditches themselves. 

4. Discussion 

4.1. Modelling scenarios validation 

We used two approaches for the validation of the vegetation models. 
The fractional approach, which is most often used due to limited data 
availability, gives more optimistic accuracy estimates than the OAT 

approach. This is because a fraction of each map is used for training, 
hence each map is at least partially known to the classifier. In the OAT 
approach, the accuracy estimates are more realistic because a map not 
used for training is used for validation. Our results show in nearly all 
cases that the accuracy of the vegetation model was higher in the frac-
tional than in the OAT approach. On the other hand, the accuracy dif-
ferences were not significant, and the pattern of accuracy was very alike 
for the fractional and OAT approaches. We observed similarities be-
tween fractional and OAT approaches results also in the F1 score and 
areas of vegetation types. Therefore, in our opinion, the fractional 
approach provides a reasonable insight into the model performance 
even though the model accuracy is overestimated. 

The biggest disagreement between the results from the fractional and 

Fig. 11. Predicted vegetation in the IHM nodes for 2099 in RCP 2.6, 4.5, and 8.5 ensembles. Vegetation in each model node was selected based on majority voting in 
each RCP ensemble. Nodes, which had forest, or unknown vegetation in 1960, 1980, or 2000 vegetation maps were removed. 
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OAT model was the difference between observed and predicted vege-
tation area. The difference comes from the fact the IHM grid is irregular 
and the area representative for individual nodes is not the same and 
effectively some nodes contribute more to the errors in the predicted 
vegetation area than others. Both OAT and fractional approaches are 
sensitive to this. However, the effect of an uneven node area was more 
pronounced in the fractional approach, because the total vegetation area 
used for validation is smaller than in the OAT approach. 

Model performance in terms of accuracy and F1 score improved with 
the model complexity. The lowest accuracy and F1 scores were achieved 
by SW and GW-SW scenarios, inclusion of the exchange flux and soil 
moisture predictors moderately improved the performance in the GW- 
SW interactions scenario, and the highest performance was obtained 
by the Full scenario, which additionally used the surface water sources 
extent. We estimated the accuracy and F1 score in the OAT validation 
approach, hence it is unlikely that increased model complexity led to 
overfitting and that F1 scores were overestimated. The pattern of 
improved performance with increased complexity was not confirmed by 
the Mixing scenario (only predictors from the “mixing” group), which 
was benchmarked very close to the Full scenario. The predictors from 
the “mixing” group were calculated using the HMC method based on the 
same water fluxes that drive predictors in the “surface”, “groundwater”, 
and “interactions” groups. Therefore a reason for the comparable per-
formance of the Mixing and Full scenario could be that the predictors 
from the “mixing” group integrate the effect of relevant water fluxes and 
allow the production of similar information with a lower number of 
predictors. 

Another reason why the scenarios which used the predictors from the 
“mixing” group had the highest accuracy and F1 score is the ability of 
these predictors to spatially realistically distribute the effect of local 
hydrological processes. An example of such a distribution is the through- 
flow in the groundwater domain (Van Loon et al., 2009), which pro-
duces a mix of precipitation and groundwater away from the ground-
water discharge area. Our IHM simulations showed that the distribution 
of discharged groundwater, or precipitation water occurs also in inun-
dated conditions and that the continuous inundation is a product of river 
water with water originating from the floodplain (Berezowski et al., 
2019; Berezowski and Partington, 2023). Standard hydrological pre-
dictors, such as water depth, inundation period, and depth to ground-
water, or even dynamic predictors, such as exchange flux between 
groundwater and surface water only reflect the local situation, which is 
often affected by local relief (locally shallower or deeper surface water 
or groundwater), and are not able to show the spatial effect of water 
fluxes over a larger part of the floodplain. Correlation between the zones 
of water in inundated conditions was identified earlier using field 
sampling for the Biebrza floodplain (Chormański et al., 2011; Keizer 
et al., 2014) and our results confirm the relevance of this phenomenon 
for vegetation development in long-term periods. 

Our results showed that vegetation modelling based on surface water 
predictors only is possible (SW scenario) but is clearly suboptimal. Such 
an approach has been used in many studies (Todd et al., 2010; Mosner 
et al., 2015; Yao et al., 2020; Liang et al., 2020), however, recently 
another comparison of vegetation modelling scenarios showed that 
using both groundwater and surface water predictors from IHM out-
performs simpler vegetation models (Gattringer et al., 2019). This 
approach is comparable to the GW-SW scenario in our study, which did 
not have significantly higher accuracy than the SW scenario. Our study, 
on the other hand, showed that significantly higher accuracy of vege-
tation modelling can be achieved when the exchange flux and soil 
moisture are used as predictors as in the GW-SW interactions scenario. 
Although the GW-SW interactions scenario did not perform as well as 
the Full scenario, this highlights that if the water sources extents from a 
method like HMC are not available at least interactions between 
groundwater and surface water should be used as predictors for flood-
plain vegetation modelling. 

A number of studies conducted time-varying floodplain vegetation 

modelling with basic hydrological predictors only. A study conducted in 
Dongting Lake, China, showed that surface water hydrological pre-
dictors derived for different flooding phases are correlated with reeds or 
sedge vegetation cover (Peng et al., 2022). Another study carried out in 
the Mitchell River catchment, Australia, showed that the floodplain 
vegetation productivity can be explained by the hydrological and 
meteorological forcing variability (Ndehedehe et al., 2021). Similarly, a 
study carried out in Karnali River, Nepal, has shown that hydrological 
and climatic variables, along with abiotic factors can explain grassland 
vegetation change (Bijlmakers et al., 2023). There are two explanations 
why these studies were successfully conducted without water sources 
extent predictors. First, these studies analyzed vegetation or produc-
tivity figures lumped over these floodplains area, whereas our analysis 
was conducted spatially to show where the shift of vegetation types 
would occur. The lack of spatial aspect allowed to relate vegetation 
properties, to river discharge or water levels, which are related to the 
abundance of river water. Effectively, these hydrological variables could 
be a proxy for the river water source extent, which as shown in our re-
sults, is the most important predictor. The second explanation is that in 
spite of the Biebrza floodplain being a reference site for wetlands 
research, not all wetlands are shaped by the same hydrological pro-
cesses. Indeed, the aforementioned studies were conducted over 
different climatic zones, which could be another reason why the influ-
ence of rainfall, snowmelt, and groundwater extents in the inundation 
were less relevant. 

4.2. Predictors importance 

Overall the most important predictor in the Full scenario was the 
friver, which identifies the extent of the river water in the inundation. The 
friver predictor was two to three times more important than the next most 
important predictors for overall model accuracy and Phragmition and 
Sedge-moss vegetation type. Scenarios, which used friver (and other 
predictors from the “mixing” group) had an overall accuracy of 5 percent 
points higher than the GW-SW interactions scenario. This shows the 
relevance of the river water zone and its interactions with atmospheric 
water from rainfall and snowmelt, and discharged groundwater in 
shaping the vegetation in the Biebrza floodplain. 

The high importance of friver for the Phragmition vegetation is in line 
with other studies indicating that high productive vegetation is present 
in the river water zone (Chormański et al., 2011; Keizer et al., 2014). 
Several earlier studies showed that the vegetation zonation in the 
Biebrza floodplain is related to flood frequency, or inundation length 
(Okruszko et al., 2010; Grygoruk et al., 2021). We do not question that 
because flooding was primarily driven by the river water, and the extent 
of the river water is correlated to these variables in the proximity of the 
river. Simple SW and GW-SW scenarios showed that inundation length 
or surface mean water depth were important predictors for Phragmition 
and Magnocaricion vegetation. However, the scenarios which used the 
“mixing” group predictors explained the vegetation pattern much better. 
This gives additional evidence to support earlier findings that the extent 
of water from different sources shapes the vegetation pattern in the 
Biebrza floodplain. 

However, the friver predictor was not the most important for Mag-
nocaricion vegetation, which is also a highly productive vegetation type 
(Wassen et al., 2002). The Magnocaricion zone is located as a transient 
zone between Phragmition and Sedge-moss vegetation and hence is 
influenced by hydrological conditions characteristics for both vegeta-
tion types. Both in Phragmition and Sedge-moss friver was important, but 
except that the groundwater-related predictors were important in Sedge- 
moss (ei, e, ed, fgroundwater) and the surface-water-related predictors were 
important for Phragmition (l1, l10). The transient character of Magno-
caricion was reflected in the predictors’ importance pattern in the Full 
scenario, which showed that predictors from all groups are important at 
a similar level. This makes the modeling of Magnocaricion vegetation 
more challenging than Phragmition and Sedge-moss, which was 
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reflected by lower F1 scores for this vegetation type. 
The IHM simulations with the HMC method have shown that high 

d values are associated with the decrease of water velocity due to contact 
of river water with floodplain water (Fig. 12). The decrease in water 
velocity leads to particulate sediment deposition, which was identified 
as a better predictor of highly productive vegetation in the Biebrza 
floodplain than the extent of the river water zone (Keizer et al., 2018). 
We expected that the d predictor would receive higher importance, 
while it was only moderately important for Phragmition and Magno-
caricion in the Full scenario. The reason for this can be twofold. First, the 
d predictor is calculated based on the remaining fractions predictors 
from the mixing “group” (see description in Table 1), hence it provided 
redundant information for the random forest classifier. Second, the 
d predictor shows a boundary between the river and floodplain water, 
which is very informative when context from neighboring nodes is 
provided for the model but may not be necessarily informative when 
model training is performed on individual nodes as in our case. 

4.3. Past and future vegetation predictions 

The unrealistic shift in the predicted vegetation area between 1950 
and 1960 shows the major drawback of the vegetation modeling 
methodology presented in this study. The empirical model is driven by 
data, not by processes, therefore will suffer from the quality of the data. 
Even though we used the IHM (physical hydrological model), which was 
validated using water levels since 1881 (with gaps) the produced pre-
dictors clearly showed different distributions before and after 1950. The 
validation of IHM was however much more extensive in the 1950–2019 
period than before 1950. Also, IHM simulations and 20CR forcing data 
showed similar statistics when compared against EURO-CORDEX and 
observations data in the 1970–2005 period (Berezowski and Partington, 
2023). We were not able to compare the 20CR forcing data against 
observation for the period before 1950 due to the lack of continuous 

meteorological data in our study area. The 20CR product had increased 
RMSE of atmospheric pressure in the northern hemisphere in the pre- 
1950 period in reference to the post-1950 period that was in line with 
the increase of the number of observations used in the product from 
approximately 200–1000 (1880–1950) to 1000–3000 (1950–2008) 
(Slivinski et al., 2019). Therefore, we believe that the shift in the pre-
dicted vegetation area was primarily due to the pre-1950 lower quality 
of 20CR forcing data used in the IHM that effectively produced a nar-
rower distribution of several predictors in that period in comparison to 
the post-1950 period (Figure S1). 

We observed a decreasing trend in the 1960–2010 period only for the 
Magnocaricion vegetation area in the Mixing scenario, which was in line 
with the decreased area of this vegetation in subsequent maps from 1960 
to 2000. In the future period, 2020–2099, the predicted trend for the 
Magnocaricion area had an opposite direction namely increasing. This 
could be due to only six predicted maps used to calculate the trend in the 
1960–2010 period and the fact the beginning of this period was char-
acterized by higher error (as discussed in the previous paragraph). 
Another explanation is a flaw in the predictions in the Mixing scenario, 
which had high accuracy and F1 scores but also was characterized by the 
highest difference of predicted vegetation area for Magnocaricion. The 
mixing scenario also predicted big changes in Magnocaricion vegetation 
under RCP 4.5 and RCP 8.5 by the end of the century which was not in 
line with other scenarios. Notably, these deviations were not present in 
the Full scenario, which also used the predictors from the “mixing” 
group. This shows that although the Mixing scenario relatively well 
explained the vegetation pattern during relatively stable hydrological 
conditions (1960–2010) it was underconstrained (by lack of standard 
hydrological predictors such as surface water depth) for predictions in 
the far future under climate change. 

Each scenario predicted significant trends in vegetation area under 
RCP 8.5. This was not the case in less extreme scenarios RCP 2.6 and RCP 
4.5, where simple scenarios GW and GW-SW did not predict any trends. 

Fig. 12. Degree of mixing between river water and floodplain water (i.e. groundwater discharge, rainfall, and snowmelt) simulated with the IHM and HGS methods 
during a spring flood event on 27th of March 2005 in a southern section of the floodplain. High d values indicate similar proportions of river and floodplain water, i.e. 
presence of mixing, and low values indicate that one source dominates over another, i.e. no mixing (see Table 1). The color of the velocity vectors is proportional to 
the water velocity (the length of each vector is the same). 
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This suggests that the simple scenarios had lower accuracy and F1 scores 
than scenarios with more predictors because of fit-to-average hydro-
logical conditions, which reflect the observed vegetation pattern that 
overlaps in all three maps used for training. Because of that a very strong 
shift in hydrological conditions, such as in RCP 8.5, has to be present to 
force the prediction of trends in SW and GW-SW scenarios. 

The inclusion of predictors for the “interactions” group in the GW- 
SW interactions scenario improved the accuracy and F1 score in refer-
ence to the SW and GW-SW scenarios. The vegetation area predicted in 
the GW-SW interactions scenario was also more sensitive to future 
climate changes than in the SW and GW-SW scenarios. We observed the 
difference between the Full and GW-SW interactions primarily in the 
spatial scatter (spatially separated relatively small patches) in the pre-
dicted vegetation. We attribute the decrease of spatial scatter in the Full 
scenario to the predictors representing fractions of different water 
sources in the inundation. First, in comparison to the surface water 
depth, or depth to groundwater the water source extent predictors are 
less affected by local relief, hence less spatial scatter. Second, these 
predictors present continuous areas with the dominant (or mixed) water 
source which is the effect of water transport during inundated condi-
tions. This forms a spatial extent of a given water source and is associ-
ated with its chemical and physical (e.g. sediments) properties that help 
the model to predict continuous vegetation zones. 

Vegetation models similar to the one presented in this study can be 
used as a decision-support tool for floodplain management (Leyer, 2005; 
Świątek et al., 2008; Mosner et al., 2011; Mosner et al., 2015). Our re-
sults show that management decisions based on simple vegetation 
models (only groundwater and\or surface water predictors) would be 
less accurate and would often wrongly indicate areas with changed 
vegetation in comparison to models additionally using the exchange flux 
and soil moisture (GW-SW interactions scenario), and water sources 
extent (Full scenario). The wrongly indicated areas in simple scenarios 
would occur in distanced areas from a water source (e.g. from a river), 
that is characterized by similar surface water depth or depth to 
groundwater as near to the source due to local relief (small pits or ele-
vations, dikes) but do not have contact with the source. Therefore, for 
management support, especially in longer temporal horizons, we 
recommend using models that are based on predictors that reflect con-
ditions that limit vegetation development, e.g. the provision of nutri-
ents, what can be realized using the water sources extent. 

4.4. Limitations of this study 

Validation figures and vegetation predictions suffer from several 
limitations due to the methodology of this study. First, the earlier 
vegetation maps were conducted without access to geographical infor-
mation systems and satellite navigation technology which could 
decrease the accuracy of the vegetation patches. Effectively the differ-
ence in the vegetation patch areas between the maps could have been 
not only due to hydrological conditions bat also due to mapping error. 
Second, the IHM, although validated against a number of spatiotemporal 
data sets (Berezowski and Partington, 2023), had some errors. Effec-
tively this error was propagated to the predictors used for the vegetation 
modelling and affected the results. Third, the model analyzed only the 
effect of the hydrological conditions (which changed due to climatic 
forcing) while neglecting other factors affecting vegetation. Primarily 
this could be human management of the floodplain area (a.o. harvesting 
of vegetation, grazing), which although small (see Section 2.1), was 
present. Mowing, grazing, and construction of small dams to increase 
water retention were conducted (Berezowski et al., 2018) and could, to 
some extent, be responsible for vegetation changes. Finally, the machine 
learning model for vegetation was data-driven. Therefore, the pre-
dictions (especially for longer time horizons) made by the model are 
affected by the data quality. In this study, we identified some unrealistic 
vegetation area predictions that could be attributed to the IHM forcing 
data quality pre-1950, however, for the future climate period the IHM 

forcing data quality may also affect the vegetation modelling results. 

5. Summary and conclusions 

Our vegetation model scenarios showed that the inclusion of the 
“mixing” predictors, i.e., the extent of such water sources as river water, 
discharged groundwater, rainfall, and snowmelt during inundated 
conditions significantly improve the accuracy of floodplain vegetation 
models in reference to standard hydrological predictors, what supports 
the hypothesis of this research. We observed the water sources extent 
predictors effect in:  

1. Spatial distribution of local hydrological processes, e.g. groundwater 
influenced inundation based on local groundwater discharge. This 
allows the delineation of an area in which water with particular 
chemical, or physical properties (e.g. calcareous groundwater, 
nutrient-poor rainwater) is in contact with vegetation.  

2. Development of zones predominated by a single water source that is 
more continuous than standard hydrological variables such as mean 
water depth. This continuity of predictors allows the model to pre-
dict the vegetation patches more realistically with less spatial scatter 
associated to local relief.  

3. Identification of the river water (nutrient-rich) extent which is a 
better predictor of the highly productive vegetation in the floodplain 
than mean water depth, or inundation length. 

We showed that floodplain vegetation can also be modeled with 
standard hydrological variables. In such a case the modeling scenario 
which included interactions between groundwater and surface water 
outperformed in terms of accuracy simple models, which used depth to 
groundwater, surface water depth, and length of the inundation pre-
dictors only. Our predictions forced by future climate showed that the 
simplest models were likely fitting to the average hydrological condi-
tions of the past, therefore they were not able to predict trends in areas 
covered by a certain vegetation for the future simulations. The pre-
dictions forced by future climate also showed that the scenario, which 
used only the water sources extent predictors predicted a vegetation 
pattern that was not reproduced by any other scenario. This was likely 
due to the under-constrain of this model scenario by lack of standard 
hydrological variables since the Full scenario, which used both water 
sources extent and standard predictors not only had the highest accu-
racy, and was able to predict future trends, but also predicted a future 
vegetation pattern that was realistic. Furthermore, our experiments 
showed the drawback of the data-driven modeling approach by pre-
dictions of unrealistic vegetation areas before 1960, which was due to 
the lower quality of predictors in that period. In spite of that, the models 
performed well in periods of good forcing data quality. Therefore our 
general recommendation is to support management decisions with 
vegetation models which include predictors that precisely reflect con-
ditions that limit vegetation development (e.g. by nutrient supply), i.e. 
the spatial extent of certain water sources during the inundation, rather 
than models that use only inundation depth, length of the inundation, or 
depth to groundwater. The latter are affected by local relief and do not 
reflect the physical and chemical properties of the water. 

Our research compared two methods of model validation. The frac-
tional approach which is more popular due to limited multi-temporal 
data availability indicated higher accuracy than the OAT approach. 
While the OAT accuracy was more realistic, the accuracy differences 
between two approaches were not significant, and the pattern of accu-
racy was very alike for the fractional and OAT approaches. 
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