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Abstract

A large area including the central-northern part of Argentina, southern Bolivia, central
Chile, and most of Paraguay and Uruguay, experienced record-breaking temperatures dur-
ing two consecutive heatwaves in late November and early December 2022. During the
second heatwave, nine locations in northern Argentina registered their highest maximum
temperature of December since at least 1961. Our analysis based on observational and rea-
nalysis datasets indicate that South America, like the rest of the world, has experienced
heatwaves increasingly frequently in recent years. The December 2022 heatwave has an
estimated return time of 1 in 20 years in the current climate, meaning it has about a 5%
chance of happening each year. To estimate how human-caused climate change has influ-
enced the likelihood and intensity of the observed heatwave, we combined climate models
with the observation-based data. We found that human-caused climate change made the
event about 60 times more likely. A heatwave with a return period of 20 years would be
about 1.4 °C less hot in a world without anthropogenic global warming. Heatwaves this
early in the summer season pose a substantial risk to human health and are potentially
lethal. This risk is aggravated by climate change, but also by other factors such as an aging
population, urbanisation and the built environment, and individual behavior and suscepti-
bility to the heat. This highlights the importance of attribution studies in a region already
threatened and vulnerable to climate change.
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1 Introduction

The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change
(IPCC) assesses that it is virtually certain that the duration, frequency and intensity of hot
extreme events at global scale, such as heatwaves, are increasing due to human activity
(IPCC 2021; Seneviratne et al. 2021). Over most of South America, an increase in the
intensity and frequency of heatwave events since 1960 has been detected (Ceccherini et al.
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2016; Rusticucci et al. 2016; Geirinhas et al. 2018), with high confidence in the attribution
to human activity in South-Eastern South America and medium confidence in South-West-
ern South America (Seneviratne et al. 2021). In Argentina, even when the mean warming
is below the global average, a marked increase in the occurrence and duration of heatwaves
has been observed (Barros et al. 2015; Rusticucci et al. 2016). The heatwave that affected
northern and central Argentina in December 2013 was exacerbated by anthropogenic forc-
ings, with best-guess estimates of the event probability increasing by a factor of five (Han-
nart et al. 2015; Otto et al. 2017). Often, heatwaves tend to occur simultaneously with
droughts, creating a compound climate event that can have enormous impacts at regional
level. Under ongoing anthropogenic climate change, there is a complex interaction between
increased precipitation and increased temperatures for Southeastern South America (van
Garderen and Mindlin 2022).

IPCC (2021) assessed that it is very likely that the intensity and frequency of hot
extremes such as the days with maximum temperature above 35 °C or the annual hot-
test daily maximum temperature (TXx) will continue increasing in South America, com-
pared with the 1995-2014 baseline, even under 1.5 °C global warming (see for example
Table 11.13 of Seneviratne et al. 2021; and Table 12.6 of Ranasinghe et al. 2021). This is
also evident over South-Eastern South America, where the observed trend in frequency
and intensity of heatwaves is expected to increase even for moderate warming scenarios
as the RCP4.5 (Feron et al. 2019). Significant changes in several climate indicators related
to temperature extremes are also projected over the region, with increases in the frequency
of warm nights and days and decreases in the indices related to cold extremes (Cabré and
Nuiiez 2020; Feron et al. 2019; Reboita et al. 2022).

Since late austral spring, several regions of Southern South America experienced the
occurrence of heatwaves, in a warm season that was record breaking in terms of frequency
over Argentina according to its National Weather Service (SMN) (SMN 2023). An area
comprising the central-north part of Argentina, southern Bolivia, central Chile, and most
of Paraguay and Uruguay, experienced record-breaking temperatures as a consequence of
two consecutive heatwaves since mid-November. From 23 to 29 of November, a heatwave
(defined as the period with at least three consecutive days with maximum and minimum
temperatures above the 90th percentile, Rusticucci et al. 2016) was declared by the SMN
for 19 stations located in the latitudinal band from 28° to 37°S (SMN 2022a). During this
period, temperature anomalies exceeded 5 °C over this region and some stations recorded
maximum temperatures of more than 40 °C. Over Uruguay, the National Institute of Mete-
orology (INUMET) reported that most stations recorded temperatures above the upper ter-
cile during the last part of November (INUMET 2022a). A larger area, extending far south
towards Patagonia, showed record-breaking temperatures for November, with 14 locations
setting new maximum temperature records. It is noteworthy that these record temperatures
occurred before the beginning of the austral summer season, making them particularly
exceptional. Moreover, these events happened just a few days after record-breaking cold
conditions took place over central Argentina and Uruguay (SMN 2022b).

A second period of prolonged hot weather was recorded during the first quarter of
December 2022, just a few days after the November heatwave. The highest severity was
observed in the same latitudinal band of the previous event, although the spatial extension
covered roughly half of Argentina, with heatwave durations ranging between 3 and 9 days.
According to the SMN (2022c), 45 stations recorded heatwave conditions between 4 to 12
of December. Among these stations, maximum temperatures above 40 °C were observed in
24 locations, with four of them exceeding 45 °C. For instance, Rivadavia station, located
near the border with Bolivia and Paraguay, recorded 46 °C of maximum temperature
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during December 7, making the region one of the hottest in the World during that day.
Averaged over the first 10 days of December, temperature anomalies were above+4 °C
north of 40°S, with some specific locations exceeding+ 10 °C above normal conditions,
particularly between 7 to 9 of December. During this period, 9 locations from northern
Argentina registered their highest maximum temperature of December since at least 1961.
A special bulletin for persistent high temperatures was issued by the Directorate of Mete-
orology and Hydrology of Paraguay (DMH) on December 7, with the probability of expe-
riencing a heatwave over much of Paraguay (DMH 2022). For instance, western Paraguay
registered maximum temperatures above 40 °C between 6 to 9 of December, equaling the
all-time record at Mariscal Estigarribia during December 8. At the same time, the Uru-
guayan Institute of Meteorology released a heatwave warning, particularly for the western
portion of Uruguay (INUMET 2022b).

The two consecutive heatwaves occurred during the multi-year drought that started in
2019. This large-scale drought started due to precipitation deficits and has worsened over
time (Naumann et al. 2023), likely partly due to the continuing La Nifia conditions that
tend to have a drying effect on the region (Cai et al. 2020). Typically, heatwaves are linked
to a persistent atmospheric blocking that favors the presence of warm air masses for several
consecutive days over South-Eastern and South-Western South America. This can contrib-
ute to high temperature anomalies which might be reinforced if the regions are affected by
drought conditions due to extremely low soil moisture (Alvarez et al. 2019; Marengo et al.
2022). The persistence of an anticyclonic circulation at various levels of the troposphere
favors subsidence conditions and intense solar heating, intensifying the warming process,
which might also be reinforced by horizontal temperature advection and an intensification
of the South Atlantic Convergence Zone (SACZ) (Campetella and Rusticucci 1998; Cerne
et al. 2007; Alvarez et al. 2019).

This study aims to identify to which extent human-induced climate change altered the
frequency of occurrence of the heatwave observed in Southern South America during
December 2022. To do this we use different observational and reanalysis datasets as well
as simulations from different global and regional models. Section 2 describes the data and
methodology used. Section 3 discusses the main findings from observational and reanalysis
data. Section 4 performs an evaluation of the different models used in our study, presents
the results from the heatwave event attribution using different methodologies and models
and summarizes the main hazards associated with the heatwave. Section 5 discusses the
main aspects of vulnerability, exposure and impacts during the heatwave. Finally, Sect. 6
presents a summary and discussion.

2 Data and methods
2.1 Observational data

To investigate the extent to which human-caused climate change altered the frequency
of occurrence of the extremely high temperatures, we choose to analyse the 2-m temper-
ature over land in the region covering northern Argentina (north of 40°S) and Paraguay,
excluding high altitudes (highlighted by black outline in Fig. 1). This region includes the
areas under red alert from the Argentinian Weather Service and includes the cities with
the highest impacts. To account for the event itself, which lasted for about a week with
durations at different locations ranging from 3-9 days, we decided to analyse the annual
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Fig.1 7-day average daily Average of daily maximum temperatures
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(July-June) maximum of the 7-day average of daily maximum temperatures (TX7x) over
this region. Figure 1 shows the 2022 event that occurred during 4-10 December. Addi-
tionally, we analyse the change in frequency and intensity of the maximum observed
7-daily temperature of 2022 at 7 locations, indicated as crosses in Fig. 1. These include
the cities of Buenos Aires, Cérdoba and Rosario. Even when some parts of southern
Bolivia or western Uruguay show high temperatures during the analysed period (Fig. 1),
its inclusion is not expected to result in a significant change in the results given that the
areas would be limited in comparison with the whole central and northern Argentina
and Paraguay.

We use the European Centre for Medium-Range Weather Forecasts (ECWMF) ERAS
reanalysis data (Hersbach et al. 2020). The reanalysis that runs up to the end of Novem-
ber 2022 is supplemented with analysis data up to 11 December. The second dataset
is the gridded dataset of daily temperature known as the Climate Prediction Center
(CPC) Global Unified Daily Gridded Temperature data, that is provided by the NOAA
PSL through their website (https://psl.noaa.gov/). This data is available at 0.5°%0.5°
resolution, for the period 1979-present. Maximum temperatures from both datasets are
used for analysing the heatwave event in question in the context of climate change. As
a measure of anthropogenic climate change, we use the (low-pass filtered) global mean
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surface temperature (GMST). GMST is taken from the National Aeronautics and Space
Administration (NASA) Goddard Institute for Space Science (GISS) surface tempera-
ture analysis (GISTEMP; Hansen et al. 2010; Lenssen et al. 2019).

Time series of daily maximum and minimum temperatures from January 1961 to
December 12th 2022 at the locations shown in Fig. 1 were used to evaluate the ERAS
reanalysis and to evaluate local trends in return times. These station data were provided by
the SMN. The selected stations cover the three largest cities in Argentina (Buenos Aires,
Cordoba and Rosario), with three sites in the hottest part of the December heatwave, and
one (Santa Rosa) in the cooler southern region.

2.2 Model and experiment descriptions

We used several model ensembles with different characteristics such as resolution, cou-
pling and processes as follows:

2.2.1 CMIP6

We used simulations from general circulation models included in the sixth phase of the
Coupled Model Intercomparison Project (CMIP6) (Eyring et al. 2016). We used all simu-
lations of the daily maximum temperature available at the Institut Pierre-Simon Laplace
(IPSL) Earth System Grid Federation (ESGF) node from their first realization (denoted
rliXpYfZ), where X, Y and Z can vary (but we select only one of each), without consid-
ering ensembles, as they have a very heterogeneous number of members. This led to the
selection of 28 simulations from different coupled models. The resolution varies depending
on the model but stays above 50 km. All temperatures are projected onto a 0.25°x0.25°
grid before being spatially averaged over the study region (see Fig. 1).

2.2.2 CORDEX

We used all the COordinated Regional climate Downscalling EXperiment (CORDEX)
simulations available at the IPSL. ESGF node, separating them into two ensembles: COR-
DEX SAM-44 (14 different models with 0.44° resolution, i.e. about 50 km; Falco et al.
2019) and CORDEX SAM-22 (6 different models with resolution of 0.22°, about 25 km).
CORDEX simulations result from a dynamical downscaling, using a regional climate
model, of a general circulation model. As for CMIP6 simulations, temperatures are pro-
jected onto a 0.25°x0.25° grid (Gutowski et al. 2016) before being spatially averaged over
the study region.

2.2.3 HighResMIP

This is a sea surface temperature (SST)-forced model ensemble (Haarsma et al. 2016),
with simulations for the 1950-2050 period. The SST and sea ice forcings for the period
1950-2014 are obtained from the 0.25°%0.25° Hadley Centre Global Sea Ice and Sea
Surface Temperature dataset that have undergone area-weighted regridding to match the
climate model resolution (see Table 1). For the ‘future’ time period (2015-2050), SST/sea-
ice data are derived from RCP8.5 (CMIP5) data, and combined with greenhouse gas forc-
ings from SSP5-8.5 (CMIP6) simulations (see Sect. 3.3 of Haarsma et al. 2016 for further
details).
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Table 1 7-day maximum temperature in the year 2022, and the best estimates for return period, probability
ratio and intensity change at seven individual stations in the study region

Station Event Return Probability Intensity
magnitude [°C] period [years] ratio (PR) change (I)

No Name [°C]

1 Las Lomitas 43.014 40.4380 >1x10° 1.804

2 Santiago del Estero 42.257 15.1540 3.8982 1.385

3 Villa Maria del Rio Seco 39.986 15.6070 1.6568 0.686

4 Cérdoba 39.100 17.2010 2.3102 0.984

5 Rosario 36.814 8.7029 7.4739 1.566

6 Buenos Aires 34.986 3.9540 9.5516 1.695

7 Santa Rosa 35.629 1.6589 2.3926 1.742

2.2.4 FLOR and AM2.5C360 models

The FLOR (Vecchi et al. 2014) and AM2.5C360 (Yang et al. 2021; Chan et al. 2021)
climate models are developed at Geophysical Fluid Dynamics Laboratory (GFDL). The
FLOR model is an atmosphere—ocean coupled GCM with a resolution of 50 km for land
and atmosphere and 1 degree for ocean and ice. Ten ensemble simulations from FLOR
are analysed, which cover the period from 1860 to 2100 and include both the histori-
cal and RCP4.5 experiments driven by transient radiative forcings from CMIP5 (Tay-
lor et al. 2012). The AM2.5C360 is an atmospheric GCM based on that in the FLOR
model (Delworth et al. 2012; Vecchi et al. 2014) with a horizontal resolution of 25 km.
Three ensemble simulations of the Atmospheric Model Intercomparison Project (AMIP)
experiment (1871-2050) are analysed. These simulations are initialised from three dif-
ferent pre-industrial conditions but forced by the same SSTs from HadISST1 (Rayner
et al. 2003) after groupwise adjustments (Chan et al. 2021) over 1871-2020. SSTs
between 2021 and 2050 are using the FLOR RCP4.5 experiment 10-ensemble mean val-
ues after bias correction. Radiative forcings are using historical values over 1871-2014
and RCP4.5 values after that.

2.2.5 UKCP18 land-GCM

This is a fifteen-member perturbed physics ensemble developed by the UK Met Office
(Lowe et al. 2018). The ensemble members are derived from HadGEM3-GC3.05, a
high-resolution coupled ocean—atmosphere model with horizontal grid spacing of
approximately 60 km at mid-latitudes, which includes an explicit representation of
atmospheric aerosols.

2.3 Statistical methods

In this study, we analyse time series from the region in the north of Argentina and Para-
guay for July-June annual maxima of daily maximum temperature values (TX7x), where
long records of observed data are available. Methods for observational and model analysis
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and for model evaluation and synthesis are used according to the World Weather Attribu-
tion Protocol (Philip et al. 2020; Ciavarella et al. 2021; van Oldenborgh et al. 2021).

The analysis steps include: (i) trend calculation from observations; (ii) model evalua-
tion; (iii) multi-method multi-model attribution and (iv) synthesis of the attribution state-
ment. We calculate the return periods, Probability Ratio (PR; the factor-change in the
event’s probability) and change in intensity of the event under study in order to compare
the climate of now and a counterfactual climate or climate of the past, defined respectively
by the GMST values of now and of the preindustrial past (1850-1900, based on the Global
Warming Index; https://www.globalwarmingindex.org). To statistically model the event
under study, we use a Generalised Extreme Value (GEV) and GMST as a covariate. Next,
results from observations and models that pass the evaluation tests are synthesized into a
single attribution statement.

3 Observational analysis: return period and trend
3.1 Analysis of point station data

Figure 2 shows the time series of the annual maxima of 7-day average daily maxima for
the seven selected stations: Las Lomitas, Santiago del Estero, Villa Maria del Rio Seco,
Cérdoba, Rosario, Buenos Aires and Santa Rosa. We use this data for evaluating the per-
formance of the gridded reanalysis products that are considered for this study. To do this,
the station-based time series are overlaid with the values for the corresponding closest cell
in the ERAS reanalysis dataset, and the ERAS regional mean. The station observations
and the reanalysis-based values are found to be in good agreement for all stations (correla-
tion > (.7; statistically significant), providing confidence to the choice of ERAS for captur-
ing the event.

For each of these stations that are situated inside the study region, we also estimate the
return period, the PRs and the intensity changes, as shown in Table 1. The 7-day maxi-
mum temperatures as high as those observed this year have return times ranging from 4 to
40 years, but the heat is rarer towards the northwest of the region. The 2022 event in Las

(a) 87078 Las Lomitas (0.77) (b) 87129 Santiago del Estero (0.83) (C) 87244 Villa Maria del Rio Seco (0.89) (d) 87345 Cordoba Obs. (0.88)
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Fig.2 7-day annual (July-June) maximum temperature at (a) Las Lomitas, (b) Santiago del Estero, (¢) Villa
Maria del Rio Seco, (d) Cérdoba, (e) Rosario, (f) Buenos Aires and (g) Santa Rosa, for the period 1961—
2022. The red and the green lines show the corresponding estimates from the closest cell and the average
over the study region, from the ERAS5 reanalysis dataset, available for the years 1950-2022
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Lomitas (Station 1 in Fig. 1) that incidentally records the highest temperature among these
stations, would have been unlikely in a world without climate change (PR > 100).

3.2 Analysis of gridded data

Figure 3a shows the time-series of annual 7-day maximum of daily maximum tempera-
ture for the study region based on the two observed datasets- ERAS (Fig. 3a) and CPC
(Fig. 3b). There is an increasing trend in particular for the period 1979-2022 that is com-
mon to both datasets.

The left panels in Fig. 4 show the response of the study area-averaged annual 7-day
maximum temperature based on ERA5 (Fig. 4(a left panel)) and CPC (Fig. 4(b left
panel)) to observed GMST anomalies. The right panels (Fig. 4a and b) show the return
period curves for the current, 2022 climate and a past climate that would have been
1.2 °C cooler as compared to now, based on the respective datasets. Using ERAS data,
the 2022 event is estimated to have a return period of 1-in-20 years in the current cli-
mate. However, the CPC dataset indicates that the same event has a return period of
1-in-10 years. The PRs suggest the tendency of such events becoming hotter and more
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Fig.3 Time series of annual 7-day maximum temperature, area-averaged over the study domain along with
the 10 year running mean (shown by green line) based on (a) ERAS and (b) CPC datasets
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(a) Based on ERA5
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Fig.4 a Left panel: Response of annual maxima of 7-day maximum temperature, averaged over the study
region to change in global mean temperature, based on the ERAS dataset. The thick red line denotes the
time-varying mean, and the thin red lines show 1 standard deviation (s.d) and 2 s.d above. The vertical
red lines show the 95% confidence interval for the location parameter, for the current, 2022 climate and
the hypothetical, 1.2 °C cooler climate. The 2022 observation is highlighted with the magenta box. Right
panel: GEV-based return periods for the 2022 climate (red lines) and the 1.2 °C cooler climate (blue lines
with 95% Confidence Interval), based on the ERAS dataset. b Same as a, based on the CPC dataset

frequent due to climate change. The PR is 26 [6-inf] based on ERAS and 280 [13-
inf] from CPC data, with intensity changes of 2.15 °C [1.3-3] and 3.75 °C [2.2-5.3],
respectively.

Although there is a general agreement between the two datasets in their annual variability
(Fig. 2) and their fits (Table S1 of the Supplementary Information), the CPC dataset is shorter
(beginning in the year 1979), as opposed to ERAS beginning in 1950. A careful examination
of the trends in Fig. 4 also reveal a higher trend since 1980 in the ERA5 data that may have
partially influenced this difference in the return periods, PR and intensity changes. Therefore,
we select the longer ERAS as the primary dataset for the event definition and for model evalu-
ation. The return period used for model analysis for the annual 7-day maximum temperature
is 20 years.
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4 Model evaluation and multi-method multi-model attribution
4.1 Model evaluation

In this subsection we show the results of the model evaluation for the study region
(Table S1). Per framing or model setup, we use models that only just pass the evalua-
tion tests, if we only have five models or less for that framing that performs well. The cli-
mate models are evaluated against the observations in their ability to capture the seasonal
cycle, the spatial pattern of the climatology, and the parameters of the fitted GEV model.
The models are labeled as ‘good’,’reasonable’, or’bad’, following the criteria defined in

Table 2 Probability ratio and change in intensity for models that passed the evaluation tests for (a) past vs.
present (blue highlight) and (b) present vs. future (red highlight)

a. Past vs. present b. Present vs. future
Change in Change in

Probability intensity AL Probability intensity Al
Observations/Model ratio PR [-] [°C] ratio PR [-] [°C]
ERAS 27 (5.7 ... ©) 2.2(1.3..3.0)
CPC 2.8e+2 (13 ...0) (3.7 (2.2 ... 5.3)

() ()
CORDEX44-CNRMrl1-RCA |13 (2.2 ... 0.87 (0.19 ... 5.6 (0.00010 ... [0.80 (0.30 ...
0 1.0et4) 1.6) 31) 1.4)

13 (2.1... 1.3 (041 ...
CORDEX44-MK3r1-RCA () |1.0et4) 1.3(0.36...2.4) |5.5(0.78 ... 41) [2.1)

4.0e+6 (19 ... 1.3 (0.81 ...
CORDEX44-1PSLr1-RCA () |1.0et4) 1.8(1.1..2.6) |7.0(2.6..98) [1.7)
CORDEX44-CORDEX44- 4.0 (0.95 ... 0.62 (-0.050 ... 6.4 (0.00010 ... (1.3 (0.45 ...
MIROCTr1-RCA () 1.0et4) 1.3) 36) 2.1)
CORDEX44-HADGEMTr1- 5522 .. 0.79 (-0.010 ... 1.3 (0.88 ...
RCA () 1.0et4) 1.4) 8.0(3.1..24) [1.7)

23 (29 ... 0.72 (0.060 ...
CORDEX44-MPIr1-REMO () |1.0e+4) 1.6 (0.89...2.2) |2.8 (1.1...8.4) [1.3)

19 (4.0 ... 1.3 (0.85 ...
CORDEX44-MPIr1-RCA () |1.0et4) 1.6(1.1..2.1) 16.8(3.2...24) |1.8)
CORDEX44-NORESMr1- 10 (1.3 ... 1.2 (0.49 ...
RCA () 1.0et4) 1.0 (0.17...2.2) |5.0(1.2...36) |1.9)
CORDEX44-GFDLrl1- 2.6 (0.060 ... 0.39 (-1.0 ... 1.7)|2.1 (0.58 ... 13) [0.47 (-0.18 ...
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Table 2 (continued)

REGCM () 1.0e+4) 1.1)

1.0e+4 (6.9 ... 4.5 (0.00010 ... ]0.99 (0.36 ...
CORDEX44-GFDLr1-RCA () |1.0et4) 1.2 (0.46 ... 2.0) |2.2¢+2) 1.6)
HighResMIP-HadGEM3-
GC31-HM (1) 28 (5.3 ... ) 1.8(1.0...2.6) |(...) (...)
HighResMIP-HadGEM3- 0.90 (0.13 ...
GC31-LM (1) 41(1.2... ) 1.9) (...) (..)
HighResMIP-HadGEM3-
GC31-MM (1) 99 (7.7 ... ) 2.1(1.3..3.0) [|(...) (...)
HighResMIP-MPI-ESM1-2-
HR (1) 7.1(1.8..95) [1.3(0.48...2.2) [(...) (...)
HighResMIP-MPI-ESM1-2- 0.43 (-0.55 ...
XR (1) 3.1(0.38..0) [1.2) (...) (...)
UKCP18 land-GCM PPE (1) |5.3e+4 (16 ... 0.84 (0.65 ...
rep85 ppe () 1.0e+6) 1.4 (0.57...2.1) 159 (3.6 ... 50) |1.0)
UKCP18 land-GCM PPE (4) |1.6e+2 (8.1 ... 1.1 (0.89 ...
rep85 ppe () 1.0e+6) 1.6(1.0...2.2) |3.8(2.9..5.8) [1.3)
UKCP18 land-GCM PPE (5) |47 (3.4 ... 0.83 (0.65 ...
rep85 ppe () 1.0e+6) 1.6 (0.89...2.4) |13.8(2.3...8.1) |1.0)
UKCP18 land-GCM PPE (6) |8.2e+2 (13 ... 1.0 (0.91 ...
rep85 ppe () 1.0e+6) 20(1.5..25) |9.0(4.7..36) |1.2)
UKCP18 land-GCM PPE (7) [7.9e+2 (24 ...
rep85 ppe () 1.0et6) 1.9(1.3..25) |56(3.7..32) |1.2(1.0...1.5)
UKCP18 land-GCM PPE (9) (9.2 (34 ... 1.0 (0.85 ...
rep85 ppe () 2.0e+2) 1.6(1.1..2.1) |3.6(2.5..6.6) |1.2)
UKCP18 land-GCM PPE (10) |7.7e+4 (9.1 ... 1.1 (0.89 ...
rep85 ppe () 1.0e+6) 1.4(0.83...2.1) |5.6 (4.1...8.7) [1.2)
UKCP18 land-GCM PPE (11) [3.4e+2 (7.3 ... 1.1 (0.98 ...
rep85 ppe () 1.0e+6) 21(14..29) |59@3.5..17) [1.3)
UKCP18 land-GCM PPE (12) |3.2e+2 (9.5 ... 0.97 (0.75 ...
rep85 ppe () 1.0e+6) 1.8(0.90...2.7) |53 (3.5...21) |1.2)
UKCP18 land-GCM PPE (13) |8.6 (2.3 ... 0.91 (0.22 ... 0.74 (0.57 ...
rep85 ppe () 1.0e+6) 1.5) 3.0(23..4.6) (0.91)
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Table 2 (continued)

UKCP18 land-GCM PPE (15) [2.3¢+3 (4.3 ... 0.95 (0.80 ...
rcp85 ppe () 1.0e+6) 14(0.76 ..2.0) [553.7 .. 11)  [1.1)
CMIP6-ACCESS-
CM2_rlilplfl 2.6 (0.44 ... 0.54 (-0.40 ... |7.1(0.00010 ... |1.1(0.76 ...
0 1.0e+4) 1.4) 28) 1.6)
CMIP6-ACCESS-ESM1- 16 (3.0 ... 7.5(0.00010 ... [0.95 (0.61 ...
5 rlilplfl () 1.0e+4) 1.0 (0.37 ... 1.7) |1.2¢+2) 1.4)
22e+2 (13 ... 4.9 (0.00010 ... |1.1(0.82 ...
CMIP6-CanESMS5 rlilplfl () [1.0e+4) 1.7(1.1..22) |1.1e+2) 1.3)
CMIP6-CMCC- 3.7(0.82 ... 0.61(-0.12... [6.5(0.00010... [1.3(0.59 ...
ESM2_rlilplfl () 1.0e+4) 1.4) 55) 2.0)
CMIP6-CNRM-CM6-1- 3735 ... 1.0 (0.66 ...
HR rlilplf2 () 1.0e+4) 1.7 (0.86 ... 2.6) |49 (2.6 ...19) [1.3)
CMIP6-CNRM-CM6- 2.7(0.29 ... 0.41 (-045 ... 0.74 (0.26 ...
1 rlilplf2 () 1.0e+4) 1.3) 27(12..11) [1.2)
CMIP6-CNRM-ESM2- 59(11 ... 0.65(-0.020 ... |6.8(0.00010 ... [1.4(0.85 ...
1 rlilplf2 () 1.0e+4) 1.3) 41) 22)
CMIP6-EC-Earth3- 85(45 ... 0.74 (-0.59 ...
CC rlilplfl () 1.0e+4) 1.3(0.59 ...2.5) [2.5(0.39 ... 14) [1.9)
CMIP6-EC-Earth3- 10 2.6 ... 2.0 (0.00010 ... |0.42(-0.20 ...
Veg_rlilplfl () 1.0e+4) 1.1 (047 ... 1.8) [14) 0.99)
CMIP6-GISS-E2-1- 2.9(0.12 ... 0.59 (0.18 ...
G rlilplf2 () 1.0e+4) 043 (-1.1..2.3)|32(1.4...21) [1.0)
CMIP6-HadGEM3-GC31-  [1.0e+4 (15 ... 1.0 (0.59 ...
LL rlilplf3 () 1.0e+4) 1.7 (092 ..2.4) [452.1..23) [1.5)
CMIP6-HadGEM3-GC31-  [1.0e+4 (11 ... 1.1(0.52 ...
MM rlilplf3 () 1.0e+4) 19(1.0..2.8) [33(2.1..6.9) [1.4)
CMIP6-INM-CM4-8 rlilplfl [1.0e+4 (3.2 ... 1.6 (0.78 ...
0 1.0e+4) 1.7(031..2.8) [79(3.3...28) [2.1)
CMIP6-IPSL-CM6A- 1323 ... 0.90 (0.14 ... |11(0.00010 ... [1.5(0.42 ...
LR rlilplfl () 1.0e+4) 1.8) 2.5¢+2) 1.9)
CMIP6-MPI-ESM1-2- 1.7¢+2 (6.0 ... 0.96 (0.56 ...
HR_rlilplfl () 1.0e+4) 1.3(039...2.1) 3.3 (2.0...10) [1.4)
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Table 2 (continued)
CMIP6-MRI-ESM2- 0.81 (-0.040 ... |2.8(0.00010 ... [0.71 (0.13 ...
0_rlilplfl () 3.6(0.94..58) [1.6) 6.1) 1.4)
CMIP6-NorESM2- 1422 .. 0.62 (0.020 ...
LM rlilplfl () 1.0e+4) 1.2 (046 ... 2.0) |3.7 (0.65 ... 16) [1.2)
CMIP6-NorESM2- 2.4 (045 ... 0.66 (-0.34 ...  |4.1(0.00010 ... [0.60 (0.030 ...
MM rlilplfl () 5.0et+3) 1.6) 36) 1.1)
6.0 (L.5... 1.1(0.84 ...
CMIP6-TaiESMI rlilplfl () |1.0et4) 1.0 (0.18 ... 1.8) |6.4(3.2...29) [1.5)
CMIP6-UKESM1-0- 3.8(2.1.. 0.82 (0.52 ...
LL rlilplf2 () 1.0e+3) 1.3(0.77 ... 1.8) |2.8 (1.7 ... 11) [1.2)
3.1(0.35 ... 0.57 (-0.57 ... 0.82 (0.37 ...
CORDEX22-MPIr1-REMO () |1.0et4) 1.6) 30(1.5...19) [1.3)
CORDEX22-MPIr1-REGCM |11 (1.5 ... 9.1 (0.00010 ... (1.3 (0.97 ...
0 1.0et4) 0.90 (0.0 ... 1.8) |7.4e+2) 1.7)

Ciavarella et al. (2021), based on their performances in terms of the three criteria discussed
above. Finally, if the model is ‘good’ for all of these criteria, we give it an overall rating
of ‘good’ (green highlight in Table S1). We rate the model as ‘reasonable’ or ‘bad’, if it
is rated ‘reasonable’ or ‘bad’, respectively, for at least one of the three criteria. These are
respectively shown highlighted in yellow and red in Table S1. For the study area, 48 out of
72 considered models were used (Table 2), being those which were evaluated to be ‘good’
(the best estimate of the fit parameter for the models is within the confidence interval of the
observed parameter estimate) or ‘reasonable’ (the confidence intervals of the model and
observed parameters estimates overlap, but the best estimate of the models is outside the
95% confidence interval in the observations) (Ciavarella et al. 2021).

4.2 Multi-method multi-model attribution and hazard synthesis

For the event definition described above, we evaluated the influence of anthropogenic
climate change on the event by calculating the PR as well as the change in intensity
(AI) using observations and climate models. Taking into consideration the model evalu-
ation shown in Table S1, we analysed the PRs and Al for the different models. Table 2
shows the model-based results for those models that are labeled ‘reasonable’ or ‘good’
in Table S1. The aim is to synthesise results from models that pass the evaluation along
with the observations-based products, to give an overarching attribution statement. Fig-
ures 5 and 6 show the changes in probability and intensity for the observation-based
products (blue) and models (red). To combine them into a synthesised assessment, a
term to account for intermodel spread is added (in quadrature) to the natural variabil-
ity of the models. This is shown in the figures as white boxes around the light red bars
(in this study, only the intensity changes show intermodel spread beyond the models’
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Fig.5 Synthesis of (a) probability ratios and (b) intensity changes when comparing the return period and
magnitudes of the 7-day average maximum temperatures over the study region in the current climate and a

1.2 °C cooler climate
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Fig.6 As Fig. 5, but for models only of a 0.8 °C warmer (2 °C since pre-industrial) climate

natural variability). The dark red bar shows the model average, consisting of a weighted
mean using the (uncorrelated) uncertainties due to natural variability plus the term rep-
resenting intermodel spread (i.e., the inverse square of the white bars). Observation-
based products and models are combined into a single result in two ways. Firstly, we
neglect common model uncertainties beyond the intermodel spread that is depicted by
the model average, and compute the weighted average of models (dark red bar) and
observations (blue bar): this is indicated by the magenta bar. As, due to common model
uncertainties, model uncertainty can be larger than the intermodel spread, secondly, we
also show the more conservative estimate of an unweighted, direct average of observa-
tions (dark red bar) and models (dark blue bar) contributing 50% each, indicated by the
white box around the magenta bar in Figs. 5 and 6.
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For the PR, the best estimate of the models combined is well within the uncertainty of
the observed change and the weighted synthesised PR is 60 [35-120]. Given however that
the discrepancy between individual models with respect to the best guess is very large,
spanning orders of magnitude and the quantification of changes in heat extremes is noto-
riously difficult, we report the best guess of a PR of 60 as our main result, but use the
unweighted uncertainty to estimate the lower and upper bound: 9-1300. For the change in
intensity we notice that the observed increase in intensity is larger than that of the mod-
els but again well within the uncertainty bounds. For the same reasons as above, we also
report the unweighted bounds as our overarching result. The change in intensity attribut-
able to human-induced climate change is 1.4 °C [0.8-3.4].

Looking at the simulations of potential further changes in a 0.8°C warmer world com-
pared with today we find that while some models have a lower bound below unity for the
PR, all best estimates are greater than 1 and show, as expected in a warming world, a fur-
ther increase of a factor of 4 in the likelihood of a heatwave like the observed to occur.
This is an order of magnitude smaller than the thus far observed change in likelihood of
a factor of approximately 60 which cannot be explained by the slightly smaller GMST
change alone. Thus, without further analysis as to why these changes are so different, we
do treat the quantitative estimate with caution. The change in intensity with a further 0.8°C
of warming is 1°C (0.8—1.2) which is very much in line with the estimated changes in inten-
sity that have occurred up to present and highlights again that, for heat waves, changes in
intensity are much less sensitive to individual models and methods and thus the more reli-
able quantitative results to communicate.

5 Vulnerability, exposure and impacts

Heatwaves can highly affect society and the environment, with large impacts on human
health, agriculture, the occurrence of wildfires, and infrastructure failures (Perkins-Kirk-
patrick and Lewis 2020). The full impact of a heatwave on human health is often not
known until weeks or months afterwards, once death certificates are collected, and data on
excess deaths is analysed (Sahani et al. 2022). Impacts are an effect of pre-existing social,
economic, political conditions which adds to vulnerability over the region. Data on excess
deaths was not available at the time of writing, however it is notable that this heatwave
occurred very early in the austral summer season. Early season heatwaves are known to
be more deadly because people may not be prepared or acclimatized to high temperatures
(Anderson and Bell 2011). A study comprising 326 Latin American cities, 26 of them
located over our study area, found that marginal increases in hot temperatures results in a
steep increase in mortality, with the strongest risks among older adults and for cardiovascu-
lar and respiratory deaths (Kephart et al. 2022). Typically, people with pre-existing health
conditions, those that are over 65 or under five, have low incomes, work indoors with poor
ventilation in homes or factories, and outdoor workers are more vulnerable to heat stress,
heat stroke, or death (Green et al. 2019). In particular, previous studies considering some
recent (2005-2015) heatwaves in Argentina, documented an increase in death risk for peo-
ple over 60, particularly those older than 80, and individuals under 15 years of age (Chesini
et al. 2019, 2022).

An early warning system for heatwaves have been developed in Argentina by the SMN
and became operative during the summer of 2018 (Herrera et al. 2021). This system oper-
ates during the warm season (October to March) issuing daily alerts for 57 locations of
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the country, with the aim of enabling both the population and civil protection agencies to
take appropriate prevention, mitigation and response measures at each alert level (Chesini
et al. 2022). If there is a heat risk alert (yellow, orange, or red) for the following 24 h, the
Ministry of Security and the Ministry of Health are notified and the Ministry of Health
will launch an epidemiological alert and make it public through social media, press agen-
cies, and national media, with recommended actions to the general population and at-risk
groups. For central and northern Argentina, the first heat warning was issued on December
2, two days prior to the start of the December heatwave. In the case of Paraguay, while
the country lacks a heatwave early warning system, a special bulletin for persistent high
temperatures was issued during December 7, while the same day Uruguayan authorities
released a heatwave warning for the western portion of the country. Governments, city
authorities and civil society organizations can prevent heat-related impacts by acting in
anticipation of a forecast heatwave, after the issuance of an early warning and before the
heatwave onset.

Cities are often hotspots of heat risk due to the urban heat island effect. With expanding
urban land this effect will intensify in the future (Huang et al. 2019). Worth noting is that
Argentina is amongst the most urbanized countries in the world, with 92 percent of people
living in urban areas (Bolay 2020). In our study area, almost 45 million inhabitants were
potentially affected by the heatwave conditions, most of them located in highly populated
cities such as Buenos Aires and Asuncién. In the Metropolitan Area of Asuncidn, over 400
informal settlements are home to 38.000 residents. Less than one percent of these inhabit-
ants have access to sanitary sewages and 12 percent lack piped water, increasing their risk
of contracting disease and reducing their coping capacity to extreme heat (Sandoval and
Samiento 2020). In Argentina, approximately 1 in 10 people live in informal settlements,
with the majority of informal settlements located in the city of Buenos Aires totaling
roughly 300,000 people (Maccié and Mitchell 2023; Palacios et al. 2022). Social cohesion
can reduce heat-related mortality, but in informal settlements in Argentina, a lack of public
spaces and recreational areas limits social cohesion and development (Yardley et al. 2011).

Recently, thermal resilience in building design was shown to provide indoor comfort to
face heatwaves (Flores-Larsen et al. 2023), a factor that was considered in the modifica-
tion of existing building codes for large cities such as Buenos Aires. This includes natural
ventilation, envelope thermal insulation, green walls and roof (Flores-Larsen and Filippin
2021; Robbiati et al. 2022). While there are examples of heat-informed urban planning
and adaptation outside of the capital (Fabian et al. 2021; Flores-Larsen and Filippin 2021),
there would be notable benefits to their mainstreaming in other urban centers in heatwave-
prone northern Argentina, some of which are up to twice as densely populated as Buenos
Aires and home to a significant number of low-income populations (such as Rosario, Cor-
doba, Tucuman, and Corrientes). In contrast, Paraguay does not currently have an energy
building code nor widespread use of other heat-related interventions, negatively affecting
the population’s coping capacity during heatwaves (Silvero et al. 2019). Energy shortcuts
occurred in Buenos Aires city in response to a record high electricity demand in Argentina,
affecting more than half million people due to the high energy demand (Infobae 2022).
This highlights the vulnerability to heatwaves of the electricity distribution system of the
metropolitan area of Buenos Aires, which has almost 7 times more probability of failure
compared to cold events (Santdgata et al. 2017).

Impacts related to heatwaves in Southern South America are not only restricted to soci-
ety. For instance, in the last 40 years the number of fires and areas burned by wildfires
have increased significantly, partly due to increases in temperature, threatening biodiver-
sity (Jolly et al. 2015). In addition, several wildfires were reported over central-northern
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Argentina by the time of occurrence of the analyzed heatwave, affecting up to 8 prov-
inces (Ministerio de Ambiente y Desarrollo Sostenible 2022). In general, a more frequent
occurrence of intense and long heatwaves has negative impacts in water and food systems,
human health, terrestrial and freshwater ecosystems, among other systems that exhibit high
or very high vulnerability in Southern South America (Castellanos et al. 2022).

6 Summary and discussion

During late November and early December 2022, a large area including the central-north-
ern part of Argentina, southern Bolivia, central Chile, and most of Paraguay and Uruguay
experienced record-breaking temperatures during two consecutive heatwaves. During early
December, temperatures exceeded 40 °C in 24 locations, four of them above 45 °C. Rivada-
via station, located near the border with Bolivia and Paraguay, recorded 46 °C of maxi-
mum temperature on December 7, making the region one of the hottest in the world during
that day. During the heatwave, nine locations in northern Argentina registered their highest
maximum temperature of December since at least 1961. Using published peer-reviewed
methods based on different observational and reanalysis datasets, as well as global and
regional model simulations, we analysed how human-induced climate change altered the
likelihood and intensity of the 7-day heatwave event that occurred on 4—-10 December 2022
in Southern South America.

Our analysis based on observational and reanalysis datasets indicate that South Amer-
ica, like the rest of the world, has experienced heatwaves increasingly frequently in recent
years. The December 2022 heatwave, averaged over 7 days over the region shown in Fig. 1,
has an estimated return time of 1 in 20 years in the current climate, meaning it has about
a 5% chance of happening each year. We further looked at 7 individual weather stations to
see whether the character of the heatwave differed within the study region. We found that at
most stations the 7-day maximum temperatures observed during this heatwave have return
times comparable to the region average -meaning it was equally unusual across much of the
region- but the heat was more extreme towards the northwest of the region.

To estimate how human-caused climate change has influenced the likelihood and inten-
sity of the observed heatwave, we combine climate models with the observations-based
data. We found that human-caused climate change made the event about 60 times more
likely. In this sense, a heatwave with a similar probability (return time of 1 in 20 years)
would be about 1.4 °C less hot in a world that had not been warmed by human activi-
ties. With future global warming, heatwaves like this will become even more common
and hotter. If global mean temperatures rise an additional 0.8 °C, to a total warming of
2 °C, a heatwave as hot as this one would have a return period of 5 instead of 20 years,
while a heatwave that happens approximately once in 20 years would be 0.7-1.2 °C hotter
than this one. It is important to highlight that there is a discrepancy between the modeled
and observed change in heatwave intensity in the region, with the observations showing a
larger increase. While there is no doubt that future heat extremes will become even hotter
than they are now, this discrepancy limits confidence in projections of the magnitude of
future extremes.

The 2022 heatwave led to large-scale power outages, wildfires and, in combination
with the ongoing drought over the region, poor harvests. It is estimated to have led to an
increase in heat-related deaths, with the impacts unequally distributed across demograph-
ics. In different cities and municipalities across South America, people living in some areas
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-often marginal neighbourhoods- experience higher temperatures than others, as they lack
green space, adequate thermal insulation from heat, electricity, shade, and water which can
be lifelines during heatwaves.

Heatwaves this early in the summer season pose a substantial risk to human health and
are potentially lethal. This risk is aggravated by climate change, but also by other factors
such as an aging population, urbanisation and the built environment, and individual behav-
ior and susceptibility to the heat. The full impact will only be known after several months
or even years when the mortality figures have been analysed. Effective heat emergency
plans, together with accurate weather forecasts such as those issued before this heatwave,
reduce impacts and are becoming even more important in light of the rising risks. Heat-
waves are a regular occurrence in Paraguay and Argentina and as the attribution analy-
sis indicates, these types of events are increasing in frequency and intensity, which adds
urgency to the need to adapt to this new normal. Investments in improving heat early warn-
ing systems, urban planning for heat, and behavioural change communication can help to
reduce heat impacts now and in the future.
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