
Model Checking a C++ Software Framework: A Case Study
John Lång

University of Helsinki
Finland

john.lang@mykolab.com

I.S.W.B. Prasetya
Utrecht University
the Netherlands

s.w.b.prasetya@uu.nl

ABSTRACT

This paper presents a case study on applying two model checkers,
Spin and Divine, to verify key properties of a C++ software frame-
work, known as ADAPRO, originally developed at CERN. Spin was
used for verifying properties on the design level. Divine was used
for verifying simple test applications that interacted with the im-
plementation. Both model checkers were found to have their own
respective sets of pros and cons, but the overall experience was pos-
itive. Because both model checkers were used in a complementary
manner, they provided valuable new insights into the framework,
which would arguably have been hard to gain by traditional testing
and analysis tools only. Translating the C++ source code into the
modeling language of the Spin model checker helped to find flaws
in the original design. With Divine, defects were found in parts of
the code base that had already been subject to hundreds of hours
of unit tests, integration tests, and acceptance tests. Most impor-
tantly, model checking was found to be easy to integrate into the
workflow of the software project and bring added value, not only
as verification, but also validation methodology. Therefore, using
model checking for developing library-level code seems realistic
and worth the effort.

CCS CONCEPTS

• Software and its engineering → Formal software verifica-

tion.

KEYWORDS

model checking concurrent C++, verification concurrent C++,model
checking C++ case study

ACM Reference Format:

John Lång and I.S.W.B. Prasetya. 2019. Model Checking a C++ Software
Framework: A Case Study. In Proceedings of the 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3338906.3340453

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3340453

1 INTRODUCTION

ADAPRO stands for ALICE Data Point Processing Framework. It is an
open source C++ 14 software framework1, consisting of about 6000
lines of source code2. It is meant for building configurable, remote-
controllable, multi-threaded daemon applications. ADAPRO was
originally conceived as a collection of common routines used for
implementing theALICE Data Point Service (ADAPOS)[22] software
architecture (as part of the ALICE RUN3 upgrade[9]). ALICE stands
for A Large Ion Collider Experiment. ALICE is one of the four major
experiments at the Large Hadron Collider (LHC) of the European
Organisation for Nuclear Research (CERN).

The highly concurrent nature of ADAPRO makes its verification
challenging by conventional means. Although the framework and
its applications[22] have been subject to hundreds of hours of unit
tests, integration tests, and acceptance tests, ADAPRO is too com-
plex for its all behaviours to be anticipated by tests. Therefore, it
is also hard to say how adequate these tests actually were in cov-
ering the software’s concurrent behavior. Even though ADAPRO
has its roots in a specific use case, it has evolved into a reusable
tool. Some ADAPRO applications may be expected to be able to
run autonomously for months without human intervention.

All of these facts reinforce the importance of a formal verification
project, because even rarely occurring defects may cause costly
damage, as noted by Gerard J. Holzmann, the author of the Spin
model checker [15]. A study by John Fitzgerald et al. confirms the
impact of formal verification on software quality [10].

To address this challenge we set up a project to explore the
feasibility of applyingmodel checking[2, 19, 25] to thoroughly verify
ADAPRO’s critical properties. We chose model checking, because
it naturally fits with the Finite State Machine (FSM) paradigm used
by the framework, which will be discussed later. Furthermore, we
decided to use model checking on two levels of abstraction. This
decision proved to be a good idea, since using two different model
checkers in a complementary manner helped to find different kinds
of issues faster.

On the higher level of abstraction, we wanted to verify that the
very design of ADAPRO itself is correct, so we constructed a new
model for it. After experimenting with the NuSMV [7], TLA+[21],
and Spin[14] model checkers, we decided to choose Spin for this
purpose. For verifying ADAPRO’s actual implementation, we per-
formed software model checking. The model checker Divine[3]
was chosen for this purpose.

Contribution. Formal verification turned out to reveal important
issues not previously found by testing, even though it wasn’t possi-
ble to obtain exhaustive results. Our findings necessitated changes

1available online at https://gitlab.com/jllang/adapro
2as measured in 25 March 2019, using David A. Wheeler’s Sloccount utility, available
online at https://dwheeler.com/sloccount/

1026

https://doi.org/10.1145/3338906.3340453
https://doi.org/10.1145/3338906.3340453
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3338906.3340453&domain=pdf&date_stamp=2019-08-12

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia John Lång and I.S.W.B. Prasetya

in the design and implementation of ADAPRO. The changes will
be part of the foundation of the next major version of ADAPRO
(v5.0.03). In this paper we will share our experience, discoveries,
and lessons gained from our verification project.

Paper structure. We first give a brief overview on related work in
Section 2. Section 3 offers an overview of the ADAPRO framework.
Section 4 gives the necessary definitions, assumptions and prop-
erties for design-level verification. In Section 5, we discuss our
findings on this part of the project. Section 6 describes the effort
for verifying the C++ implementation and its results. In Section
7, we discuss our experiences and lessons learned from using the
two model checkers. We end the article with conclusion, future
prospects, and acknowledgements.

2 RELATEDWORK

There are many case studies on using model checking to verify the
correctness of production software; too many to list here compre-
hensively. Some examples include [1, 5, 6, 8, 12, 17, 18, 26]. Fitzgerald
et al. have written a survey on many industrial use cases [10].

ADAPRO is similar to the SMI++[11] system in its reliance on an
FSM model. However, ADAPRO is more restricted, since it doesn’t
have a Domain Specific Language (DSL) and its FSM model is rigid
in the sense that the user can’t define new states or commands.
Instead of synthesizing distributed control systems, ADAPRO is fo-
cused on assembling threads into a remote controllable concurrent
application. ADAPRO applications can interact with SMI++ based
systems using the Distributed Information Management (DIM)[13]
protocol as its communications layer, which has been demonstrated
by the ADAPOS Manager application.

All LHC experiments use the SMI++ system for their control
systems. Formal verification has been performed on the Compact
Muon Solenoid (CMS) control system [18], which demonstrates the
feasibility of building and analysing control systems with tens of
thousands of nodes, based on hierarchies of FSMs. ADAPRO also
follows a similar approach, though it features a simple tree with
just root and a number of leafs.

Compared to most of the papers mentioned in this section, our
approach was more lightweight in that we didn’t use automated
model extraction or translation tools. Similarly to [26] and [6],
we wanted to explore the correct level of abstraction for finding
the most relevant aspects of the algorithms used in ADAPRO, by
building the design-level model by hand. Due to the complexity of
ADAPRO, full formal software model checking was not computa-
tionally feasible. Instead, we used Divine as a high coverage bug
hunting tool. Our lightweight approach seemed to suit the needs of
this project well, and we believe it to be realistically reproducible
in other similar projects.

3 ADAPRO

The basic actor in ADAPRO is the abstract Thread class, which
follows an FSM approach. The domain logic of an application is
meant to be implemented as virtual methods and/or callbacks, called
user-defined code, provided to the framework through specialized

3we discuss the version available at https://doi.org/10.5281/zenodo.3258225

 START

STOP

ABORT

STOP

ABORT

 PAUSE

PAUSE

 STOP

READY

PAUSED

STOPPED

STARTING

STOPPINGABORTING

RUNNING

ABORTED

ABORT

CONTINUE

CONTINUE

 STOP ABORT

 Not executing

 Executing

 Transient

 Error

Figure 1: Thread state transition diagram

Thread instances. The role of the framework is to manage Threads.
Figure 1 shows the state transition diagram of the Thread FSM.

A Thread moves from one state to another upon commands as
depicted in Figure 1. Should the Thread ever encounter an undefined
state/command combination, it is specified to take no action (other
than printing a warning message) in such situation. To prevent
this from happening, the FSM is not directly exposed to the user.
Instead, an object-oriented approach with safe accessor methods
is used. The methods for changing the command of a Thread are
called trigger methods, and they have synchronous (i.e. blocking)
and asynchronous (non-blocking) variants. More information on the
Application Programmable Interface (API) is available on GitLab4.

During a state transition, the Thread5 invokes a transition call-
back, a user-defined function that takes the target state as its argu-
ment. The transition callback is not allowed to throw exceptions or
interfere with the framework in any other way. If the Thread enters
the state STARTING or STOPPING, it invokes a corresponding virtual
method, implemented by the user. The Thread keeps invoking an-
other virtual method in a loop for as long as it stays in the state
RUNNING. The three virtual methods associated with these states
(prepare, finish, and execute respectively) are allowed to fail
by throwing exceptions. If the Thread base class catches an excep-
tion thrown by the inheriting class, it moves to the state ABORTING,
prints an error message, moves to the state ABORTED, and halts.

The states whose names end with “ING” in Figure 1 are the ones,
during which the backend thread is performing computation. A
Thread that is in one of the states READY, STOPPED, or ABORTED
must neither posess any dynamically allocated objects or resources,
nor hold any locks, so that it can be safely deleted. A Thread in

4see https://gitlab.com/jllang/adapro/-/jobs/artifacts/5.0.0/download?job=manual for
the manual and https://jllang.gitlab.io/adapro/ for the API documentation
5throughout this article, we use capital initial letter ‘T’ to distinguish the ADAPRO
class Thread from the general concept of a thread

1027

Model Checking a C++ Software Framework: A Case Study ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

start_async()

prepare()

execute()

STARTING

RUNNING

loop

[command = CONTINUE]

:Thread

trans_cb:

trans_cb, prepare,

and execute are

defined by user.

Figure 2: Asynchronous Thread startup

state PAUSED is considered to be temporarily suspended and ca-
pable of moving back to the state RUNNING or proceeding to the
STOPPING state on short notice.

Thread uses the C++ standard library thread class as its backend.
Some advanced functionality also involves the PThreads and Linux
APIs through native handles. POSIX or Linux specific parts of the
framework are not critical and they’re guarded with macros to
ensure portability. These parts were left outside of the scope of this
verification project.

The interpretation of the states and transitions is up to the imple-
menting class, since Thread doesn’t define (i.e. it only declares) the
virtual methods or the transition callback. The intended use case of
the Thread class is running a repetitive task in background, in the
way how services or daemons work in process level. For a batch
job, a standard library thread is probably more appropriate choice.
Figure 2 is a UML sequence diagram showing the asynchronous
startup sequence of a Thread as an example on the interactions
between the owner of a Thread, the backend of the Thread, and the
transition callback.

3.1 Session and Supervisor

An ADAPRO application consists of a special Thread known as the
Supervisor and one or more other Threads, known as workers. The
user mustn’t manage Supervisor directly, but instead utilize the
static methods of a class called Session, which follows the singleton
design pattern and runs on the main thread. Session is responsible
for framework startup and shutdown sequences. For technical rea-
sons, the lifetime of a Session consists of separate initialization and
runtime phases.

During the initialization phase, Session registers signal handlers
first. Then it constructs the configuration using default values, file,
and/or command-line arguments, initializes a logger. After that,
Session possibly performs certain interactions with the operating
system. At the end of the initialization phase, Session constructs a

Supervisor(logger, cfg, factories)

:Supervisor

INITIALIZE(ctx)

:Session Registering signal

handlers, fetching

configuration, and

building a logger

A list of factories

for constructing

and handing over the

ownership of workers

factories:

f(logger,cfg)
loop

[f in factories]
worker

 startup()

Figure 3: Session initialization

Supervisor, handing over references to the logger, configuration,
and user-defined worker factories. Supervisor then takes care of
constructing the workers by applying the factories to the logger
and configuration. Figure 3 gives a simplified overview on Session
initialization.

The state of Supervisor represents the overall state of the ap-
plication in the sense that Supervisor is the first Thread to start
and the last Thread to stop. When a signal or command arrives
from an external process, Supervisor propagates the appropriate
FSM command to the workers. Figure 4 presents propagation of
the START command as an example. The sequences for propagating
PAUSE, RESUME, and STOP commands are similar.

The runtime phase of Session starts with Session sending the
START command to Supervisor. After that, Session remains passive
until the Supervisor halts or a signal handler or the global exception
handler is activated. When the runtime phase ends, Session returns
a one-byte status code, which is a bitmask of eight different flags
representing certain common error categories.

Supervisor starts workers asynchronously, after which it blocks
until all workers have ended their startup sequences. When the
startup sequence ends, Supervisor and all workers have moved
into one of the six states below STARTING shown in Figure 1. In
addition to propagating an external STOP command, Supervisor
also propagates it if one or more workers have aborted or if all of
the workers have stopped.

4 DESIGN-LEVEL VERIFICATION

We first wanted to verify that the design of ADAPRO is correct. To
this end, a set of key correctness properties called the Theory of
ADAPRO was identified and formalized in Linear Temporal Logic
(LTL)[23], presented in Section 4.2 below. Section 4.4 discusses the
construction a model capturing ADAPRO’s logic. The model was
written in Promela[14]. Using the model checker Spin [4, 14], we
verified that this model satisfies the Theory of ADAPRO. Section 5
discusses the findings.

1028

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia John Lång and I.S.W.B. Prasetya

loop

[w in workers]

RUN

workers:

start_sync()

ref

Startup

start_async()

loop

[w in workers]

wait()

:Supervisor:Session

Figure 4: Command propagation

4.1 Preconditions

The ADAPRO framework relies on a programming contract be-
tween the framework developers and the application developers.
There are necessary preconditions/assumptions on the environment
and user-defined code, that ADAPRO has to take as granted. The
full list of preconditions is given below for completeness:

(1) There will be no sabotage or force majeur incidents of any
kind whatsoever.

(2) The C++ compiler, standard library and runtime system,
the operating system and the hardware platform function
correctly with respect to their specifications.

(3) The operating system scheduler satisfies weak fairness, i.e.
the property that every native thread that is eventually al-
ways executable, will be run on a processor unboundedly
many times.

(4) Allocating memory for new objects always succeeds, i.e. the
machine will not run out of (virtual) memory.

(5) User-defined code always terminates.
(6) Unless explicitly permitted to do so, by ADAPRO manual or

the API documentation, user-defined code will not modify
or delete any object owned by the framework.

(7) User-defined code never
• calls std::abort;
• raises a signal that can’t be handled;
• causes deadlocks or livelocks;
• uses Thread trigger methods inappropriately; or
• triggers a known issue in the framework.

(8) User-defined code conforms to the well-known Resource
Aqcuisition is Initialization (RAII) principle, so that all mem-
ory and resources acquired by user-defined code will be auto-
matically released when ownership expires (e.g. a destructor
of a user-defined object, holding a resource, is invoked).

(9) In DIM server mode or daemon mode, the user-defined code
does not directly interact with DIM or Systemd libraries
respectively.

The appropriateness of the use of trigger methods is best ex-
plained by enumerating the acceptable scenarios. We do this in
Sections 4.3 and 6 for the design-level and the implementation-level
models respectively.

4.2 The Theory of ADAPRO

Let us first define the following notation:
(i) Denote Supervisor as s;
(ii) The set of all Threads, including Supervisor, as T ;
(iii) The set of Workers, i.e. T \ {s} as V ;
(iv) null(x) as the predicate “Thread x doesn’t exist”;
(v) For each state q the predicate q(x) expressing that “Thread x is

in state q” (e.g. ready(x) denotes “Thread x is in state READY”);
(vi) halting(x) as stopping(x) ∨ aborting(x);
(vii) halted(x) as stopped(x) ∨ aborted(x);
(viii) executable(x) as “Thread x is in the state RUNNING with its

command set to CONTINUE”; and
(ix) executing(x) as “Thread x is carrying out its action associated

with the state RUNNING”.
The following are the key correctness properties of ADAPRO,

that represent the postconditions promised as a part of the program-
ming contract:

(1) ∀t ∈T [null(t)U(ready(t)W starting(t))];
(2) ∀t ∈T□[starting(t) →

(starting(t)U(running(t) ∨ paused(t) ∨ halting(t)))];
(3) ∀t ∈T□[running(t) →

(running(t)W(paused(t) ∨ halting(t)))];
(4) ∀t ∈T□[paused(t) →

(paused(t)W(running(t) ∨ stopping(t)))];
(5) ∀t ∈T□[stopping(t) →

(stopping(t)U(stopped(t) ∨ aborting(t)))];
(6) ∀t ∈T□[stopped(t) → □ stopped(t))];
(7) ∀t ∈T□[aborting(t) → (aborting(t)U aborted(t))];
(8) □(∀t ∈T [aborted(t) → □ aborted(t))]);
(9) □(ready(s) → ∀v ∈V [null(v)]);
(10) □(halted(s) → ∀v ∈V [null(v)]);
(11) □(∃v ∈V [ready(v)] → starting(s));
(12) □(∀v ∈V [stopped(v)] → (paused(s) ∨ stopped(s)));
(13) □(∃v ∈V [aborted(v)] → (paused(s) ∨ stopped(s)));
(14) □(halting(s) → ♢∀v ∈V [halted(v)]);
(15) ¬♢ aborted(s);
(16) ∀t ∈T [♢□ executable(t) → □♢ executing(t)]; and
(17) ∀t ∈T [□♢(executable(t) → executing(t))]W halting(s).

Formulae 1 – 8 capture the next-state relation induced by the FSM
(see Figure 1). Notice that some of them (1, 2, 5, 7), use strong until
(U), to express that the corresponding transitions are inevitable.
Others useweak until to express that the transitions are not required
to be taken.

Formulae 9 – 15 express additional safety properties that every
ADAPRO session is expected to satisfy, e.g. 9 and 10 state that no
worker should exist while the Supervisor is still in the READY state,
or after it halts, whereas 15 says that the Supervisor should never

1029

Model Checking a C++ Software Framework: A Case Study ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

abort. Formula 16 expresses weak fairness. Finally, formula 17 is a
liveness property that asserts that under the right conditions, all
Threads get to execute their main task.

4.3 Modeling Strategy

Since a model checker cannot verify a generic system with un-
bounded number of Thread instances, we model a system represent-
ing an ADAPRO application with one Supervisor and two workers.
The rationale for using two workers is that it allows the distinction
between universally and existentially quantified statements about
workers. Having two workers also allows the model checker to
expose potentially inconsistent worker state combinations. We sus-
pect that having three or more workers would only make the model
larger without introducing essentially new species of errors. As
noted in the beginning of Section 5, state space size was a practical
reason forcing us to limit our scope to two workers.

The workers are treated as black boxes that only have their
FSM interface and do not communicate with each other or share
resources. A worker may initiate the following state transitions,
simulating unhandled exceptions and the use of the worker’s own
trigger methods6:

• During prepare, the worker chooses non-deterministically
between pausing, stopping, aborting, and doing nothing.

• During execute, the worker chooses non-deterministically
between stopping, aborting, and doing nothing.

• During finish, the worker chooses non-deterministically
between aborting and doing nothing.

Supervisor was modeled quite faithfully with respect to its C++
implementation. In the model, Supervisor doesn’t spontaneously
send commands to workers. It delegates commands received from
the init process, which represents the environment, and reacts if
both workers stop or at least one of them aborts.

4.4 Building the PromelaModel

Since ADAPRO initially did not have a formal design, we recon-
structed manually its design/logic from its C++ implementation in
the modeling language Promela[14]. We focused on the logic that
implements the FSM in Figure 1.

To model the behavior of a C++ program inevitably involves
figuring out how to map C++ programming patterns to Promela.
For example, the state of an ADAPRO Thread is stored in a private
field7 of type std::atomic<State>, where the template argument
is an enumerated type consisting of the eight different states indi-
cated in Figure 1. This field is only accessed through the accessors
get_state and set_state.

In a concurrent C++ application, naïve reading and writing of
shared memory does not work as one might expect. Threads execut-
ing on CPU cores may use the cores’ local cache memory. It’s not
possible to control caching directly using C++ language constructs.
Modifications made by one thread might get stuck in the local cache
of a CPU core and never become visible to other threads.

6in C++, a Thread must always call its own trigger methods asynchronously; otherwise
it will end up in a deadlock waiting for itself to finnish executing its own command.
This issue was known and documented well before beginning the verification project.
7or data member in C++ terminology

Instruction reordering might also wreak havoc by causing mod-
ifications to show in wrong order. Instead of providing its own
solutions, ADAPRO relies on C++ standard library synchronization
primitives. In particular, reading and writing a shared state involves
a memory barrier to ensure that the changes will be visible to all
parties as intended:
enum State { READY , STARTING , RUNNING , PAUSED ,

STOPPING , STOPPED , ABORTING , ABORTED };
enum Command { START , STOP , PAUSE , CONTINUE , ABORT };
c l a s s Thread {

std::atomic <State > state;
std::atomic <Command > command;
std::mutex m;
void set_state(const State s) noexcept {

state.store(s, std:: memory_order_release); }
public :

State get_state () const noexcept {
return state.load(std:: memory_order_consume); } };

In contrast, Promela offers high level atomicity: a single as-
signment is always atomic, and it is possible to declare a block
of statements to be atomic. Promela also guarantees sequential
consistency, defined by Leslie Lamport[20] as follows:

“[T]he result of any execution is the same as if the op-
erations of all the processors were executed in some
sequential order, and the operations of each individ-
ual processor appear in this sequence in the order
specified by its program.”

This implies that all (atomic) changes to variables are guaran-
teed to be visible to all processes. With these properties, inter-
thread communications in ADAPRO become easy to model in
Promela, hence allowing us to focus on modeling its algorithms.
The ADAPRO functionality mentioned can be modeled succinctly
as as shown below. We assume there are N threads; their states are
stored in a global array called states:
mtype = {READY ,STARTING ,RUNNING ,PAUSED ,STOPPING ,STOPPED ,

ABORTING ,ABORTED };
mtype states[N]; /*the states of the N threads */
#define get_state(i) states[i]
#define set_state(i,s) states[i] = s

In C++, std::mutex and std::condition_variable are often
used to implement inter-thread communication. In Promela we
can abstract this away. For example, if a process P wants to wait
until a certain predicateC becomes true, we can simply writeC as a
guarding expression, hence resulting in a cleaner model. The code
example below presents a simplified Thread model that utilizes
the comparisons of the command and state values as guards (e.g.
get_command(k) == START):
proctype Thread(byte k) { /* a Thread with id k */

/* Startup: */
get_command(k) == START;
set_state(k,STARTING);
set_command(k,CONTINUE);
prepare(k); /* the action of the state STARTING */
/* Execution of user code: */
do

:: get_command(k) == CONTINUE ->
i f

:: get_state(k)== STARTING -> set_state(k,RUNNING)
:: get_state(k)== PAUSED -> set_state(k,RUNNING)
:: e l se -> skip

f i

execute(k)
:: get_command(k) == PAUSE ->

1030

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia John Lång and I.S.W.B. Prasetya

i f

:: get_state(k)== PAUSED -> get_command(k)!= PAUSED
:: e l se ->

i f

:: get_state(k)== STARTING || get_state(k)== RUNNING
-> set_state(k,PAUSED)

:: e l se -> skip

f i

f i

:: get_command(k)== STOP|| get_command(k)== ABORT -> break

od

/* Shutdown: */
i f

:: get_command(k)== STOP -> /* ... */
:: get_command(k)==ABORT -> /* ... */
f i }

Notice that in the case where the command is either STOP or
ABORT, get_command(i) appears twice. Because it’s a macro ex-
panding to commands[i], it doesn’t require a new variable. Both
comparisons are part of the same atomic Promela transaction. Us-
ing a temporary variable in a situation like this might increase the
state space size of the model and even break temporal properties as
the level of atomicity would change. During its execution, a Thread
will keep looping indefinitely and performing the appropriate ac-
tion as long as its command is not STOP or ABORT. If the command
changes to one of these, the Thread exits the loop and begins its
shutdown sequence.

The full model is nearly 800 lines long (including comments)
and can be found at8. The model maintains a quite fine grained
atomicity in order to maximise interleaving possibilities that will
be checked. As the tradeoff, model checking a fine grained model
can be expected to consume more resources.

5 VERIFICATION RESULTS WITH SPIN

Verifying the theory of ADAPRO successfully with a Supervisor
and two workers Spin takes less than three gigabytes of memory
(without need for compressing states), and a couple of minutes with
a high-end laptop. For three workers, the verification takes Spin ran
out of the 17 GB of memory available to it, after nearly two hours.
The verifier did manage to verify properties (1) – (15) for three
workers though, thanks to state compression option -DCOLLAPSE
used for compilation.

Writing the model itself exposed a number of design flaws and
bugs in the C++ code. Additional defects were found during model
checking because the Promela model was accurate enough to
replicate them. This section discusses two of the issues that had
managed to remain undetected during testing.

5.1 Revoked ABORT Defect

As mentioned in Section 3, a Thread has to move to the state
ABORTING if it encounters an unhandled exception. It is important
that the ABORT command cannot be revoked. This requirement is
captured by specification (7) in the ADAPRO Theory (Section 4.2).
It turned out that this property was violated.

After startup, a Thread runs one loop as shown in the previous
listing. In C++, the algorithm looks like the following:
void Thread ::run() noexcept {

try {
/* Startup */

8https://gitlab.com/jllang/adapro/tree/5.0.0-RC3/models/promela

bool shutdown{ f a l s e };
while (! shutdown) {

switch (get_command ()) {
case CONTINUE: /* ... */ break;
case PAUSE: /* ... */ break;
defaul t : shutdown = true ;

}
}
/* Shutdown */

}
catch (const std:: ios_base :: failure& e) {HANDLE(e);}
catch (const std:: system_error& e) {HANDLE(e);}
/* ... */
catch (const std:: exception& e) {HANDLE(e);} }

The macro HANDLE takes care of printing an error message and
initiating the transition to state ABORTED via ABORT. Multiple catch
blocks with the same code are needed to avoid object slicing, which
would cause the method std::exception::what to return just
"std::exception" (on Linux systems at least), which is not a very
helpful error message.

It is possible that user-defined code throws an exception, which is
caught by one of the catch blocks. The method handle_exception
then sets the command to ABORT. At this point, it may happen
that a PAUSE command arrives from an external source, and that
Supervisor propagates the command PAUSE to all workers. Now
the worker that was about to abort is told to go to the state PAUSED
instead. This violates the FSM constraints (see Fig. 1), as STOP and
ABORT should never get overridden by commands of lower priority.

To make sure that set_state can never violate the FSM mecha-
nism, and that the ABORT command is irrevokable, it was necessary
to redefine set_command (whichwas previously defined in a fashion
similar to set_state) in Promela as follows:

#define set_command(i, c) \
atomic { \

i f \
:: c == START && commands[i] == CONTINUE -> \

commands[i] = START \
/* ... */ \
:: c == STOP && (commands[i] == CONTINUE || \

commands[i] == PAUSE) -> \
commands[i] = STOP \

:: c == ABORT -> commands[i] = ABORT \
f i }

The corresponding update in the C++ code required changing
the locking scheme. It took a few attempts to arrive at a correct
solution. The Divine model checker was found useful during this
development process, as it discovered a flaw in one of the attempted
solutions. The final correct version is given below:

void Thread :: set_command(const Command c) noexcept {
bool success{ f a l s e };
std::lock_guard <std::mutex > lock{m};
switch (c) {

case START:
success = get_state () == READY

&& get_command () == CONTINUE;
break;

case PAUSE:
success = state_in(STARTING | RUNNING)

&& get_command () == CONTINUE;
break;

/* ... */
case ABORT:

success=state_in(STARTING|RUNNING|STOPPING);
}
i f (success) {

command.store(c, std:: memory_order_release);

1031

Model Checking a C++ Software Framework: A Case Study ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

} }

The method run had to be changed as well, to hold a lock on the
mutex when performing state transitions. The lock has to be re-
leased before, and reacquired after, executing user-defined virtual
methods, though. The reason is that the user-defined virtual meth-
ods are allowed to use certain trigger methods of the executing
Thread (see Section 4.3).

5.2 A Synchronisation Defect

Spin was also to able to re-discover a known issue. There was
an overlooked design flaw in the C++ code for a synchronisation
method named wait_for_state, part of the API. It had escaped
CPPUnit tests of ADAPRO that existed at the time, which had
around 90% overall line coverage.

The method wait_for_state is supposed to block until the
Thread has moved to a state greater than or equal to a given target
state. In terms of executions, some states come after others, so they
are greater than their predecessors. As ADAPRO leaves scheduling
to the operating system, it cannot guarantee that get_state will
be executed exactly at the right moment, and not after the Thread
has already moved to a later state, hence the need for also accepting
states greater than the target state.

Two synchronization primitives have to be added to the Thread
class in order to implement blocking behaviour. The C++ code snip-
pet below shows the erroneous wait_for_state implementation.
It relies on the integer representation underlying the enumerated
type State for the comparison get_state() < s:

c l a s s Thread {
std::atomic <State > state;
std::mutex m;
std:: condition_variable cv;
void set_state(const State s) noexcept {

state.store(s, std:: memory_order_release);
cv.notify_all (); // This new line was needed

}
public :

State get_state () const noexcept; // Same as before
void wait_for_state(const State s) noexcept {

i f (get_state () < s) {
std:: unique_lock <std::mutex > lock{m};
cv.wait(lock ,

[this ,s] () { return get_state () < s;}
);

} }
};

In the code fragment above, the lambda expression given to the
standard library method wait uses the method get_state to com-
pare the state of the Thread instance to s. It’s a guard against spuri-
ous wake-ups. wait will always block until the condition variable
is notified and the lambda expression returns true. The behavior
can be succinctly modeled in Promela, as shown below9:

#define LT(x, y) x > y /* Sic */
in l ine wait_for_state(i, s) { !(LT(get_state(i), s)) }

Informally, the state ordering meant in wait_for_state is the
preorder of states implied by Figure 1 when reading the arrows as
“less than”. Formally, the ordering is imposed by the enum definition

9 The peculiar definition for LT, the less-than relation, can be explained with the fact
that Spin treats the symbolic names in mtype declarations in big-endian order, i.e.
increasing from right to left. Note that there are no spurious wake-ups in Promela.

for State. In most situations these definitions are similar enough to
not cause appreciable difference in behaviour. There is a special case,
however: when a Thread in state PAUSED is expected to proceed to
the state RUNNING. Since PAUSED is formally greater than RUNNING,
an invocation wait_for_state(RUNNING) on a paused Thread will
immediately unblock, which is incorrect! This error was quickly
found during the model checking with Spin.

C++ allows the programmer to specify integral constants for
enumerators. This enables the use of bitmasks for conveniently
expressing the exact set of target states where the waiting method
needs to unblock. This detail was not modeled in Promela. Doing so
would have required changing mtype for byte and losing symbolic
names for states and commands in debug messages. Below is the
reviewed C++ definition that enables the use of bit masks:
enum State {

READY = 1,
STARTING = 2,
/* ... */
ABORTED = 128 };

#define state_in(mask) (get_state () & mask) > 0

The waiting function wait_for_state_mask utilizes bitmasks.
It is the correct way to wait for a Thread to enter one of the states
in the given bitmask. Below is the implementation:
void Thread :: wait_for_state _mask(const uint8_t mask)
noexcept {

i f (! state_in(mask)) {
std:: unique_lock <std::mutex > lock{m};
cv.wait(lock ,

[this ,s] () { return state_in(mask);}
); }

}

This method can wait for a Thread in state PAUSED to continue:
wait_for_state _mask(RUNNING | STOPPING | STOPPED |

ABORTING | ABORTED);

As mentioned, the Promela definition for states was not changed,
so instead of taking a bitmask, a hard-coded inline waiting block
was added for each of the the five bitmasks that were needed. For
instance, the C++ method invocation above was hard-coded into
Promela as follows:
in l ine wait_for_RESUME_mask(i) {

get_state(i) == RUNNING || get_state(i) == STOPPING ||
get_state(i) == STOPPED || get_state(i) == ABORTING ||
get_state(i) == ABORTED; }

6 DIVINE MODELS AND RESULTS

The interplay of state and command setters, state transitions, and
waiting methods is non-trivial. Not all of the subtleties involved
were exposed by the Promela model, partly because of the seman-
tical difference between the Promela and C++ languages, but also
because some of the details were left out from the model. This
provided motivation for implementation-level model checking.

We created the class DummyWorker for modeling workers in
Divine. It inherits the appropriate ADAPRO class and behaves
like the Promela worker model. The method prepare lets Divine
choose an integer from [0..3] non-deterministically, expressed as
__vm_choose(4) for selecting between the asynchronous trigger
methods pause_async and stop_async, throwing an exception,
and doing nothing. Similarly, the methods execute and finish

1032

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia John Lång and I.S.W.B. Prasetya

use the non-deterministic choice feature for implementing the be-
haviour described in Section 4.3. The following C++ code example
illustrates the implementation:
c l a s s Dummy Worker f ina l : public Worker {
protected :

v i r tua l void prepare () {
switch (__vm_choose (4)) {

case 0: pause_async (); break;
case 1: stop_async (); break;
case 2: throw std:: runtime_error{"Error"};
defaul t : break;

}
}
v i r tua l void execute () { /* Stop , throw , or skip */ }
v i r tua l void finish () { /* Throw or skip */ }

}

We created three models for Divine using this class; the small
model with one DummyWorker, the mediummodel with Supervisor
and one DummyWorker, and the largemodel that runs a full ADAPRO
Session, with its built-in Supervisor and two DummyWorker instances,
using a hard-coded configuration. All models also have a main
thread, that creates the appropriate ADAPRO objects, waits until
they have carried out their tasks, and exits the program.

6.1 Premature Destructor Call Defect

As mentioned above, the smallest Divine model featured just the
main thread and one worker Thread. In the model, the main thread
starts the worker and calls wait_for_state_mask(STOPPED |
ABORTED). Divine found an execution where the main thread was
woken up when the worker was performing an earlier state tran-
sition. Before the main thread could proceed to check whether or
not the worker had reached the desired state, a context switch was
performed, letting the worker to proceed. Next, the worker would
set its state to STOPPED, but before it was fully stopped, the main
thread was scheduled again for execution. At that point, the main
thread observed that the worker had entered into the STOPPED state
and proceeded to exit the program.

At this point, a known issue about destroying a Thread with its
backend implementation still running was triggered. The worker’s
destructor was called as a part of the automatic cleanup following
the RAII principle. When the backend thread of the worker was
scheduled again for execution, it tried to refer to the ADAPRO
Thread object that didn’t exist anymore which then caused the
program to exit abnormally (and seemed to crash DiOS as well,
through its Pthreads implementation). The premature destructor
call issue has been the cause of the most catastrophical and hard to
debug problems in the entire ADAPRO framework.

With the current design of ADAPRO Threads, this issue is not
easy to fix. However, there exists a workaround which was found
to be correct in all situations by Divine. This workaround is to
simply make the virtual destructor of the final inheriting class to
call Thread::join (which then calls std::thread::join to join
the background thread) before releasing any resources.

6.2 Non-Terminated String Defect

A classic low-level programming mistake was found with Divine
when verifying the unit tests for Thread. The abort method of
a Thread was designed to permit the user to trigger the state
transition through ABORTING to ABORTED with an error message

given as an std::string instance. The method dynamically al-
located a C-style string, i.e. an array of ASCII characters, and
called std::strcpy using the pointer and length provided by the
std::string instance. The length reported was one less than
needed for the character array, because a C-style string must end
with an additional non-printable null character. The resulting C-
style stringwould contain all the same characters as the std::string
object, but wouldn’t be null-terminated.

Depending on the contents of the heap memory, reading a non-
terminated string might succeed without problems, produce some
extra garbage data past the intended ending of the string, or even
cause a segmentation violation. There was also a lesser problem,
namely that in some situations the C-style string was never deleted,
causing a memory leak. Even Valgrind was not able to detect this
leak, because it never actualised during debugging.

Both the off-by-one error with the string length and the memory
leak were quickly detected by Divine, thanks to its sophisticated
mechanisms that keep track on the objects allocated from heap and
the pointers referring to them. Unit tests couldn’t reliably detect
this problem, as the next byte in heap usually happened to be zero.
Even though this problem would have been easy to fix, the authors
decided to abandon the abortmethod altogether as an unnecessary
complication to the overall design.

This defect had been present in the framework for a very long
time and wasn’t even detected during the hundreds of hours of
simulations performed with ADAPOS applications[22], built on top
of ADAPRO, under maximum load, because the applications never
encountered unhandled exceptions during the simulations.

6.3 Premature Command Defect

A model checker can only find errors reachable from the model
under verification. A known issue with starting a Thread asyn-
chronously, and then sending it a command before it has carried
out its startup sequence, resulting in the command being ignored,
was not detected by Divine. The reason is that the models used the
framework the way it was intended to be used, never exposing this
particular scenario.

7 EXPERIENCES

In this section, we discuss the experiences we had with the tools,
techniques, and languages used in this project.

7.1 Mapping C++ to Promela

The strength of Promela is its language level atomicity and syn-
chronization concepts. This allows synchronization patterns to be
expressed more concisely than in C++. The difference in the amount
of code can be observed in the code examples above.

There are also programming patterns that cannot be nicely trans-
lated from C++ to Promela. For example, in C++ Thread is a class.
The state of a Thread is represented as a (private) field (i.e. member
in C++ parlance) within the class, which can be safely and conve-
niently accessed in other contexts through accessors. This sort of
encapsulation is not possible in Promela, and Threads need to be
modeled using other means.

Wemodeled Threads with processes and global arrays. In general,
the field f is represented by an array af , with af [i] storing the

1033

Model Checking a C++ Software Framework: A Case Study ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

value of f of the ith Thread. Such encoding clutters the model and
moreover makes the model itself more error prone.

Not having methods, classes, or inheritance at disposal with
Promela added extra challenges, because these programming lan-
guage features had to be substituted with CPP macros and Promela
inline blocks. This complicated debugging the model in this project.
While the resulting model in this project is still of manageable
size, for a larger project this mismatch may eventually lead to a
maintainability problem with hand-written models.

The eight states and five commands of a Thread were modeled
with mtype declarations in Promela. As mtype declarations share
the same domain (of one byte in size), having two of them opened
the possibility of erroneously assigning a state value to a command
variable and vice versa. This risk had to be taken, since representing
the two enumerated types with two distinct byte values might have
grown the state space of the model. As mentioned, bytes cannot
be pretty-printed which makes debugging less convenient than
with mtypes. On the other hand, bytes can be bitmasked, which is
convenient as we have seen. Bitmasks of states and commands are
utilized in the C++ implementation of the framework.

7.2 Verifying C++ With Divine
This project initially used an older version of Divine 4, but had
to change to the statically linked binary version 4.1.20+2018.12.17
because of a bug in the DiOS operating system of an older Divine
version. The properties verified with Divine included the absence
of deadlocks, crashes, memory acces violations, and memory leaks.

Divine 4 is composed of a specialized version of the LLVMClang
compiler, a Phtreads implementation, a C++ standard library im-
plementation, a minimalistic operating system, DiOS, the DiVM
virtual machine and a model checker [3, 24]. The Divine model
checker only observes the state transitions of DiVM. This design
allows the Divine model checker to also find errors in the operat-
ing system and libraries, in addition to verifying the application
proper. A handful of defects in these software layers were found
and reported to the Divine developers during this project.

As it turns out, model checking a non-trivial application with
Divine might not be as simple as just compiling and verifying
the model, even if Divine accepts C++ as an input language. It
was found that C++ source code files must be compiled in a single
invocation of the divine cc command. Libraries, other than the
standard library or Pthreads can’t be used, unless included in the
same build with the user program.

The C++ codebase of ADAPRO had to be modified with macros,
undocumented internal Divine compiler attributes (for optimisa-
tion) and DiVM hypercalls for getting it to work with Divine. In
general, the extent of modifications required probably depends
heavily on the code under verification. We needed to put effort into
the conversion, largely because some parts of the Linux and POSIX
APIs were missing from the Divine library layer. Thus, these parts
of the code needed to be guarded by macros. The missing func-
tionality included access to system clock, setting the nice value of
the running process, and setting scheduling options such as thread
affinities. We also had to disable many non-critical parts of the code,
e.g. logging, a watchdog mechanism, and change most of constans
into functions, to keep the state space size feasible.

7.3 State Space Explosion

The hardest challenge in this project was the notorious state space
explosion problem. As discussed in the beginning of Section 5, we
could only fully verify the Promela model with two workers.

For making verification with Divine possible, the implementa-
tion of ADAPRO needed several iterations of refactoring and optimi-
sation to keep the state space size of even the small model manage-
able. One particular header file (headers/data/Parameters.hpp)
had many global constant variables. In C++ global variables have
internal linkage, which means that every translation unit gets their
own unique copies of these variables, stored in different memory
locations in the computer executing the compiled machine code.
Among other optimizations, replacing these global variables with
functions returning literals on demand, provided around 60% re-
duction in the size of DiVM states during verification runs.

The number of states was another aspect of the problem. For the
small model, running divine check took around 5,000 DiVM states.
When the medium-size model was finally checked successfully, the
verification took almost 500,000 states. By the time of writing this
paper, the large model and an example application involving disk
I/O through a virtual filesystem image still remain to be checked.

Disabling the logger facility of ADAPRO and all other standard
output and error stream operations also proved to make a huge
difference in the size of the state space. Before disabling output
operations and watchdog mechanisms, a verification run for the
medium-size model on a virtual machine, in a cloud provided by
SURFsara, had been running for more than 17 hours of wall clock
time, consuming over 37 gigabytes, with no end in sight. After
the optimisations, the medium-size model can now be checked in
twenty minutes on a laptop, with the peak memory usage being in
the order of seven gigabytes. Even after all optimisations, a virtual
machine provided by SURFsara couldn’t finish the verification run
for the large model, given 124 GB of RAM dedicated to Divine.

7.4 Scalability

When formulating the Theory of ADAPRO, we found out that Spin
was not able to digest the properties (1) – (8) in a single formula. We
first tried to do this and Spin encountered a buffer overflow when
parsing the property. On second thought, having one huge property
would probably have been prohibitively expensive to verify anyway.

We found out, that even though Divine supports multi-threaded
verification, the performance doesn’t scale for an arbitrary number
of threads. Especially on the virtual machines provided by SURF-
sara, the scaling proved to be unsatisfactory. As mentioned before,
verifying the Promela model takes only a couple of minutes, so
multi-threaded verification with Spin was not needed.

It seems that, for the ADAPRO models, two verification threads
yield the best overall throughput in terms of DiVM states and
instructions explored per second. The higher the number of threads,
the higher the ratio of system time to user time. Thus, beyond the
saturation point, increasing the number of threads seems to only
increase the CPU time consumption and heat production. In fact,
verification speed seems to slowly decline as a function of thread
count. Divine developers were not aware of such performance
issues, so our models might have been anomalous, or perhaps the
virtual machine or the guest system was configured suboptimally.

1034

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia John Lång and I.S.W.B. Prasetya

7.5 Thoughts on the Learning Curves

All in all, the experiences with the Spin and Divinemodel checkers
have been positive and encouraging in this project. Even though
the Promela language was quite different from C++, it felt easy to
learn. Likewise, after some initial learning effort, using Divine to
check almost any standard C++ code proved to be easy. Even with
their own challenges, using both of the model checkers was easy
compared to tactic-based interactive theorem proving with HOL
on Poly/ML or the use of propositions-as-types interpretation of
intuitionistic type theory in Agda.

Of course, programmers need to get at least some degree of
familiarity with the basics of enumerative model checking, in order
to understand how Spin and Divine are best exploited. We estimate
that it’d take a few weeks of training to acquaint developers with a
few years of experience in programming and some mathematical
maturity, into the use of these model checkers. Perhaps the effort
could be compared with learning a new programming language.

We found the output of Spinmodel checker harder to understand
than the reports generated by static analysis, testing, and code
coverage tools, or the Divine model checker. Furthermore, the
semantical gap between Promela and C++, especially in terms of
their memory models and atomicity, is considerable. This might
introduce inaccuracies to hand-made translations between C++ and
Promela. Luckily, this was not a problem since we also performed
model checking on the very C++ source code with Divine.

7.6 Impact on Workflow

Installing the Spin andDivinemodel checkerswas easy and straight-
forward. The Debian GNU/Linux operating system has Spin in-
cluded in its standard package repository, so the installation is
just a matter of running apt-get install spin. Using the pre-
compiled binary version of Divine is just as easy. We considered
it sufficient for this project to run Divine by invoking a custom
BASH runner script.

Thanks to their simple command-line interfaces, integrating
Spin and Divine into the workflow of the software project was fast
and easy (after the initial work spent in learning the correct flags
and arguments). These tools don’t require maintaining complicated
configuration files, but their use can be fully parameterized and au-
tomated with regular shell or makefile scripts, for example. Setting
up the integration takes maybe even less time than with an average
software tool.

After integrating the model checkers into the project workflow,
they can be used without hassle on daily basis, just like any other
analysis or testing tools. Model checking unit tests with Divine
was found especially useful, because that way, existing test cases
can be explored exhaustively. As noted above, sheer code coverage
is not enough to ensure exhaustiveness of tests. Developing models
and implementation in parallel seems to be an efficient analogue of
test-driven development.

8 CONCLUSION

The LTL properties listed in Section 4.2, should, from now on, be
considered an integral part of the specification of ADAPRO. Model
checking was found to be a valuable addition to software devel-
oper’s toolbox, with a good return of investment value (which

already seems to be the consensus in the literature). It seems that
different model checkers can find different kinds of issues, on dif-
ferent levels of abstraction (e.g. design/implementation). Many of
the issues found during this project require rather specific circum-
stances to occur, making them nearly impossible to test, but when
they do occur, they may trigger chain reactions of dire consequence.

We believe that easy integration to the everyday workflow is
important for any software tool to become successful in the in-
dustry. In terms of automation possibilities, it seems that we’re
already getting there with model checkers. However, APIs, output
formatting, and documentation still may to need extra polishing,
not to mention IDE support. We believe that these points need to
be addressed, before formal methods can attract the attention of
mainstream programmers.

The benefits of model checking far outweigh the slightly rough
edges of the model checkers. The shortcomings could be mitigated,
with more resources invested in the development of formal ver-
ification tools. The sheer number of rather simple defects that
were found in supposedly stable code, only after deploying model
checkers, raises a question: Can software, that has not been formally
verified, be trusted? We doubt it.

8.1 Future Prospects

The effect on fairness imposed by user Threads getting exclusive
access to CPU cores through the use of the Pthreads API, has not
been explored. As mentioned before, configuration access and In-
teraction with external systems using signals, the DIM protocol,
and the Linux systemd API was not modeled. Investigating these
aspects might prove useful, albeit challenging.

Even though the Promela model was successfully verified with
two workers, there’s no hard mathematical argument showing that
two workers suffice. Decreasing the granularity of the Promela
model might allow more workers to be simulated. Using a swarm-
based approach[16] might turn out to be a useful bug-hunting
technique with larger models for both Spin and Divine.

The Divine models still deserve more attention. Firstly, mea-
suring the effects of different kinds of code optimizations on the
number and size ofDivine states would be an interesting topic for a
quantitative study. Secondly, using monitors to perform LTL model
checking on ADAPRO was not yet attempted, because our Divine
models were too large even without LTL properties. Thirdly, verify-
ing ADAPRO under a weak memory model was also not attempted,
since Divine does not yet support such a feature.

Acknowledgements

We thank Prof. Keijo Heljanko from the Dept. of Computer Science,
University of Helsinki, for consultation. For guidance on using
Divine, we thank dr. Petr Ročkai from the Faculty of Informatics,
Masaryk University, Brno. For the work done on ADAPRO, we
thank Peter Chochula, Peter Bond, and the rest of our colleagues in
ALICE DCS central team at CERN. We thank Harri Hirvonsalo from
CSC – IT Center for Science Ltd. and Jarkko Savela from University
of Helsinki for providing feedback. Some of the experiments were
carried out on the Dutch national e-infrastructure with the support
of SURF Cooperative, for which we are grateful. The main author
is grateful for receiving the ACM SIGSOFT CAPS grant.

1035

Model Checking a C++ Software Framework: A Case Study ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] Borja Fernández Adiego, Dániel Darvas, Jean-Charles Tournier, Enrique Blanco
Viñuela, and Víctor M. González Suárez. 2014. Bringing Automated Model Check-
ing to PLC Program Development — A CERN Case Study —. IFAC Proceedings Vol-
umes 47, 2 (2014), 394 – 399. https://doi.org/10.3182/20140514-3-FR-4046.00051
12th IFAC International Workshop on Discrete Event Systems (2014).

[2] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT
Press.

[3] Zuzana Baranová, Jiří Barnat, Katarína Kejstová, Tadeáš Kučera, Henrich Lauko,
Jan Mrázek, Petr Ročkai, and Vladimír Štill. 2017. Model Checking of C and C++
with DIVINE 4. In Automated Technology for Verification and Analysis (ATVA
2017) (LNCS), Vol. 10482. Springer, 201–207.

[4] Mordechai Ben-Ari. 2008. Principles of the Spin Model Checker. Springer. https:
//doi.org/10.1007/978-1-84628-770-1

[5] S. Chandra, P. Godefroid, and C. Palm. 2002. Software model checking in practice:
an industrial case study. In Proceedings of the 24th International Conference on
Software Engineering. ICSE 2002. 431–441.

[6] Zhe Chen, Yi Gu, Zhiqiu Huang, Jun Zheng, Chang Liu, and Ziyi Liu. 2015.
Model checking aircraft controller software: a case study. Software: Prac-
tice and Experience 45, 7 (2015), 989–1017. https://doi.org/10.1002/spe.2242
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2242

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.
Sebastiani, and A. Tacchella. 2002. NuSMV Version 2: An OpenSource Tool for
Symbolic Model Checking. In Proc. International Conference on Computer-Aided
Verification (CAV 2002) (LNCS), Vol. 2404. Springer, Copenhagen, Denmark.

[8] P. de la Cámara, M. M. Gallardo, P. Merino, and D. Sanán. 2005. Model Checking
Software with Well-defined APIs: The Socket Case. In Proceedings of the 10th
International Workshop on Formal Methods for Industrial Critical Systems (FMICS
’05). ACM, New York, NY, USA, 17–26. https://doi.org/10.1145/1081180.1081184

[9] B Abelev et al and. 2014. Upgrade of the ALICE Experiment: Letter Of Intent.
Journal of Physics G: Nuclear and Particle Physics 41, 8 (jul 2014), 087001. https:
//doi.org/10.1088/0954-3899/41/8/087001

[10] John Fitzgerald, Juan Bicarregui, Peter Gorm Larsen, and Jim Woodcock. 2013.
Industrial Deployment of Formal Methods: Trends and Challenges. Springer Berlin
Heidelberg, Berlin, Heidelberg, 123–143. https://doi.org/10.1007/978-3-642-
33170-1_10

[11] B. Franek and C. Gaspar. 2004. SMI++ object oriented framework for designing
and implementing distributed control systems. In IEEE Symposium Conference
Record Nuclear Science 2004., Vol. 3. 1831–1835 Vol. 3. https://doi.org/10.1109/
NSSMIC.2004.1462600

[12] Xiang Gan, Jori Dubrovin, and Keijo Heljanko. 2014. A symbolic model checking
approach to verifying satellite onboard software. Science of Computer Program-
ming 82 (2014), 44 – 55. https://doi.org/10.1016/j.scico.2013.03.005 Special Issue
on Automated Verification of Critical Systems (AVoCS’11).

[13] C. Gaspar, M. Dönszelmann, and Ph. Charpentier. 2001. DIM, a portable, light
weight package for information publishing, data transfer and inter-process

communication. Computer Physics Communications 140, 1 (2001), 102 – 109.
https://doi.org/10.1016/S0010-4655(01)00260-0 CHEP2000.

[14] Gerard J. Holzmann. 1997. Themodel checker SPIN. IEEE Transactions on Software
Engineering 23, 5 (May 1997), 279–295. https://doi.org/10.1109/32.588521

[15] Gerard J. Holzmann. 2001. Economics of Software Verification. In Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE ’01). ACM, New York, NY, USA, 80–89. https:
//doi.org/10.1145/379605.379681

[16] Gerard J. Holzmann, R. Joshi, and A. Groce. 2008. Swarm Verification. In 2008
23rd IEEE/ACM International Conference on Automated Software Engineering. 1–6.
https://doi.org/10.1109/ASE.2008.9

[17] Gerard J. Holzmann and M. H. Smith. 1999. A practical method for verifying
event-driven software. In Proceedings of the 1999 International Conference on
Software Engineering (IEEE Cat. No.99CB37002). 597–607. https://doi.org/10.1145/
302405.302710

[18] Yi Ling Hwong, Jeroen J.A. Keiren, Vincent J.J. Kusters, Sander Leemans, and
Tim A.C. Willemse. 2013. Formalising and analysing the control software of the
Compact Muon Solenoid Experiment at the Large Hadron Collider. Science of
Computer Programming 78, 12 (2013), 2435 – 2452. https://doi.org/10.1016/j.scico.
2012.11.009 Special Section on International Software Product Line Conference
2010 and Fundamentals of Software Engineering (selected papers of FSEN 2011).

[19] Ranjit Jhala and Rupak Majumdar. 2009. Software Model Checking. ACM Comput.
Surv. 41, 4, Article 21 (Oct 2009), 54 pages. https://doi.org/10.1145/1592434.
1592438

[20] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
ExecutesMultiprocess Programs. IEEE Trans. Comput.C-28, 9 (Sep. 1979), 690–691.
https://doi.org/10.1109/TC.1979.1675439

[21] Leslie Lamport. 2002. Specifying systems: the TLA+ language and tools for hardware
and software engineers. Addison-Wesley.

[22] J.L. Lång et al. 2018. ADAPOS: An Architecture for Publishing ALICE DCS
Conditions Data. In Proc. of International Conference on Accelerator and Large Ex-
perimental Physics Control Systems (ICALEPCS’17), Barcelona, Spain, 8-13 October
2017 (International Conference on Accelerator and Large Experimental Control Sys-
tems). JACoW, Geneva, Switzerland, 482–485. https://doi.org/10.18429/JACoW-
ICALEPCS2017-TUPHA042

[23] Amir Pnueli. 1977. The temporal logic of programs. , 46-57 pages. https:
//doi.org/10.1109/SFCS.1977.32

[24] Petr Rockai, Ivana Cerná, and Jiri Barnat. 2017. DiVM: Model Checking with
LLVM and Graph Memory. CoRR abs/1703.05341 (2017). arXiv:1703.05341 http:
//arxiv.org/abs/1703.05341

[25] Kristin Y. Rozier. 2011. Linear Temporal Logic Symbolic Model Checking. Com-
puter Science Review 5, 2 (2011), 163 – 203. https://doi.org/10.1016/j.cosrev.2010.
06.002

[26] Jeannette M. Wing and Mandana Vaziri-Farahani. 1997. A case study in model
checking software systems. Science of Computer Programming 28, 2 (1997), 273
– 299. https://doi.org/10.1016/S0167-6423(96)00020-2 Formal Specifications:
Foundations, Methods, Tools and Applications.

1036

https://doi.org/10.3182/20140514-3-FR-4046.00051
https://doi.org/10.1007/978-1-84628-770-1
https://doi.org/10.1007/978-1-84628-770-1
https://doi.org/10.1002/spe.2242
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2242
https://doi.org/10.1145/1081180.1081184
https://doi.org/10.1088/0954-3899/41/8/087001
https://doi.org/10.1088/0954-3899/41/8/087001
https://doi.org/10.1007/978-3-642-33170-1_10
https://doi.org/10.1007/978-3-642-33170-1_10
https://doi.org/10.1109/NSSMIC.2004.1462600
https://doi.org/10.1109/NSSMIC.2004.1462600
https://doi.org/10.1016/j.scico.2013.03.005
https://doi.org/10.1016/S0010-4655(01)00260-0
https://doi.org/10.1109/32.588521
https://doi.org/10.1145/379605.379681
https://doi.org/10.1145/379605.379681
https://doi.org/10.1109/ASE.2008.9
https://doi.org/10.1145/302405.302710
https://doi.org/10.1145/302405.302710
https://doi.org/10.1016/j.scico.2012.11.009
https://doi.org/10.1016/j.scico.2012.11.009
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA042
https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA042
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://arxiv.org/abs/1703.05341
http://arxiv.org/abs/1703.05341
http://arxiv.org/abs/1703.05341
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1016/S0167-6423(96)00020-2

	Abstract
	1 Introduction
	2 Related Work
	3 ADAPRO
	3.1 Session and Supervisor

	4 Design-Level Verification
	4.1 Preconditions
	4.2 The Theory of ADAPRO
	4.3 Modeling Strategy
	4.4 Building the Promela Model

	5 Verification Results with Spin
	5.1 Revoked ABORT Defect
	5.2 A Synchronisation Defect

	6 DIVINE Models and Results
	6.1 Premature Destructor Call Defect
	6.2 Non-Terminated String Defect
	6.3 Premature Command Defect

	7 Experiences
	7.1 Mapping C++ to Promela
	7.2 Verifying C++ With Divine
	7.3 State Space Explosion
	7.4 Scalability
	7.5 Thoughts on the Learning Curves
	7.6 Impact on Workflow

	8 Conclusion
	8.1 Future Prospects

	References

