
A Conceptual Architecture for a Quantum-HPC
Middleware

Nishant Saurabh∗ , Shantenu Jha†‡ , Andre Luckow§¶
∗Utrecht University, NL

†Rutgers University, NJ, US
‡Brookhaven National Lab, NY, US

§Ludwig Maximilian University Munich, Germany
¶BMW Group, Munich, Germany

∗n.saurabh@uu.nl, †shantenu.jha@rutgers.edu, ‡shantenu@bnl.gov, §andre.luckow@ifi.lmu.de, ¶andre.luckow@bmwgroup.com

Abstract—Quantum computing promises potential for sci-
ence and industry by solving certain computationally complex
problems faster than classical computers. Quantum computing
systems evolved from monolithic systems towards modular archi-
tectures comprising multiple quantum processing units (QPUs)
coupled to classical computing nodes (HPC). With the increasing
scale, middleware systems that facilitate the efficient coupling of
quantum-classical computing are becoming critical. Through an
in-depth analysis of quantum applications, integration patterns
and systems, we identified a gap in understanding Quantum-
HPC middleware systems. We present a conceptual middleware
to facilitate reasoning about quantum-classical integration and
serve as the basis for a future middleware system. An essential
contribution of this paper lies in leveraging well-established high-
performance computing abstractions for managing workloads,
tasks, and resources to integrate quantum computing into HPC
systems seamlessly.

Index Terms—Quantum Computing, HPC, Middleware

I. INTRODUCTION

Quantum computing promises to accelerate certain complex
computations for science and industry applications. Quantum
algorithms utilize quantum information sciences and promise
speedups by requiring fewer steps than their classical coun-
terparts. Many applications amenable to quantum computing
traditionally utilize high-performance systems, simulations,
machine learning, and optimization techniques [1].

Algorithms for both Noisy Intermediate Scale Quantum
Computers (NISQ) and Fault-tolerant Quantum Computers
(FTQC) require the coupling of quantum and classical systems.
For example, variational algorithms [2] depend on classical
optimization and quantum error correction codes require sig-
nificant classical computation of the syndrome measurements.

The increasing maturity and modularity of quantum hard-
ware is giving rise to the question of integrating quantum
systems into HPC systems [3]–[6]. In the future, quantum
computers will tightly integrate quantum processing units
(QPUs) with classical HPC resources. Some NISQ devices are
available in HPC centers [7] and the cloud [8]. While the focus
is often on hardware- and network-level integration, software
integration has received less attention.

In this paper, we explore the requirements of quantum
applications and the need and types of integrations with
classical HPC computing. We discuss and analyze 17 quantum
application scenarios across optimization, machine learning,

and simulation domains. The qualitative findings underscore
the importance of categorizing these scenarios into three
distinct integration patterns: HPC-for-Quantum, Quantum-in-
HPC, and Quantum-about-HPC. For each scenario, we in-
vestigate different characteristics, such as the coupling of
quantum and classical tasks and the resulting requirements
for Quantum-HPC middleware. Our examination of the current
state-of-the-art reveals significant limitations in the currently
fragmented quantum software and middleware landscape, par-
ticularly concerning the ability to manage the application
complexity and heterogeneous resources at scale.

To address these challenges, we design a conceptual mid-
dleware system that facilitates seamless interaction between
classical (HPC) and quantum resources. Our conceptual mid-
dleware enables quantum-classical integration by providing
unified resource access and management, enabling applications
to allocate resources and manage quantum and classical tasks
flexibly. The middleware utilizes proven high-performance
computing abstractions to manage workloads, tasks, and re-
sources to enable the seamless integration of quantum com-
puting into HPC systems.

Using a chemistry application workflow as an example, we
demonstrate the middleware system’s ability to support the
three integration patterns. This framework lays the founda-
tion for developing a robust middleware system capable of
managing and optimizing quantum applications in a unified
Quantum-HPC computing environment.

This paper is structured as follows: Section II presents an
overview of quantum applications and algorithms. We identify
three integration patterns between classical (HPC) and quan-
tum tasks in section III. We investigate how current quantum
software and Quantum-HPC middleware systems address the
challenges and needs of the identified integration patterns in
section IV. We propose a conceptual middleware for Quantum-
HPC workflows in section V. Section VI concludes with a
discussion of the results and future work.

II. APPLICATIONS AND ALGORITHMS

In this section, we discuss the application scenarios and
algorithms.

ar
X

iv
:2

30
8.

06
60

8v
1 

 [
qu

an
t-

ph
] 

 1
2 

A
ug

 2
02

3

https://orcid.org/0000-0002-1926-4693
https://orcid.org/0000-0002-5040-026X
https://orcid.org/0000-0002-1225-4062


A. Optimization

Quantum algorithms, such as quantum annealing [9] and
quantum approximate optimization [10], are gaining traction
in solving complex optimization problems.

1) Use Cases: Optimization use cases include solving com-
binatorial optimization problems [10] in scheduling [11], logis-
tics [12], and transportation application domains [1]. Quantum
optimization also finds usage in quantum chemistry and drug
discovery processes [13], [14]. Further, quantum computing
can help optimize renewable energy system operations [15],
robotics (e. g., route optimization [16]), and machine learning
(e. g., optimizing trainable parameters for image classification
and NLP [17]).

2) Algorithms: such as quantum annealing (QA) [9] map
the optimization problem [18], [19] onto an Ising model to
explore the solution space. In contrast, Quantum Adiabatic
Evolution (QAA) [20] encodes the optimization problem [21]
into the ground state of a known Hamiltonian. Further, it
adiabatically evolves the system through a path of Hamilto-
nians to explore the solution space. Algorithms, such as the
quantum approximate optimization algorithm (QAOA) [10],
including enhancements like warm-starting [22] and recursive
QAOA (RQAOA) [23], use a combination of quantum and
classical resources to find approximate solutions to combinato-
rial optimization problems. FTQC algorithms, such as Grover
algorithm [24], can also be used for optimization [25].

B. Machine Learning

Quantum computing can improve different parts of machine
learning applications, e. g., linear algebra routines and gener-
ative machine learning methods.

1) Use Cases: Quantum machine learning (QML) use cases
are often categorized based on the type of input data, i. e.,
classical, quantum, and the type of algorithm, i. e., supervised,
unsupervised, and generative. A typical QML use case with
quantum data involves using quantum data for learning phases
in many-body physics simulations [26].

QML applications using classical data [27] include unsu-
pervised clustering (e. g., the Sloan digital sky survey data,
X-ray and weather data [28]). Generative use cases of QML
involve creating scientific simulation datasets (e. g., Monte
Carlo events for particle physics process simulations [29],
[30]) and chemical synthesis for molecular simulations [31].
QML also finds usage in accelerating many-body Hamilto-
nian simulations [32]), enhancing quantum many-body sim-
ulations [33]–[35], control in quantum routines [36], and
optimizing quantum compilation [37].

2) Algorithms: FTQC algorithms, such as HHL [38] and
QPE [39], can be used for linear algebra subroutines (e. g.,
eigenvalues estimation, matrix inversion), distance computa-
tion between two quantum states [40] and finding closest
neighbors [27]. Unsupervised FTQC approaches, such as Q-
means [41], can identify data clusters and support the nearest
centroid classification [42].

There also exist variational algorithms for QML, e. g.,
variational quantum linear solvers (VQLS) [43], differential

quantum circuits (DQC) [32], and quantum neural networks
(QNN) [44]. While VQLS and DQC are utilized for linear
algebra problems, QNNs are used similarly to classical neural
networks for classification problems, e. g., recognizing quan-
tum states [45]. Quantum kernel methods [46] learn a kernel
function that maps data into a higher-dimensional Hilbert
space using a variational circuit.

Generative QML techniques, such as Quantum Circuit
Born Machines (QCBM) [47], [48] and Quantum GANs
(QGAN) [49], demonstrated comparable training performance
to classical models, requiring fewer parameters [50]. They
can generate data samples (e. g., input data for Monte Carlo
simulations or generating new molecular states in quantum
chemistry). QML is also applicable for surrogate modeling
(e. g., FermiNet [51]).

C. Simulation
Quantum computers promise an exponential advantage in

simulating quantum mechanical systems [52]. For classic nu-
merical simulations and modeling complex systems in science
and engineering, promising algorithms, e. g., HHL [38], exist.

1) Use Cases: Application domains for simulation include
material science, viz., the design of new materials, optimiza-
tion of materials properties, and predicting material behavior.
Quantum simulation methods can be used to identify and
design new compounds with desired medicinal properties,
predicting the potential side effects of drugs [14].

Quantum computers can also be used for classical numerical
simulations [53], e. g., to study climate models [54], to perform
complex aerospace simulations [55], such as 3D computational
fluid dynamics (CFD) [56], [57], and to provide airflow
predictions and estimate aircraft wing turbulence.

2) Algorithms: Hamiltonian simulations [58] is the
most well-known FTQC algorithm for simulating quantum-
mechanical systems [59], [60]. Hamiltonian simulations uti-
lize further quantum subroutines, e. g., quantum phase es-
timation [39] for computing eigenvalues. There also exist
NISQ approaches, e. g., the variational quantum eigensolver
(VQE) [61], and Quantum Monte Carlo (QMC) [62], [63].
While VQE utilizes a parameterized state with a classical
optimizer to estimate the ground state of a Hamiltonian, QMC
estimates the property of a quantum system using classical
Monte Carlo methods and assesses the overlap between two
quantum states on QPUs.

In the case of PDE-based numerical simulations, HHL [38]
can be used to solve linear systems of equations, and QPE [39]
for estimating the eigenvalues of a matrix; NISQ algorithms,
such as DQC [32] and VQLS [43] also exist.

D. Discussion
Quantum algorithms can benefit nearly all HPC applica-

tions. Many applications will likely emerge as incrementally
quantum-enabled hardware and algorithms mature. While the
initial focus is on optimizing essential quantum algorithms,
increasingly, the integration of these quantum-enhanced com-
ponents in end-to-end application workflows needs to be
considered.



TABLE I
Quantum Applications and Algorithms: COMMON NISQ AND FTQC

ALGORITHMIC APPROACHES PROPOSED FOR DIFFERENT APPLICATIONS.

aaaaaaa
Algo.

App class Optimization Machine Quantum Classical

learning simulation simulation
Fault-tolerant Grover [24] HHL [38], Dist- Hamiltonian QPE [39]

algorithm ance estimation simulation HHL [38]
NISQ QAOA [10] QNN,QGAN VQE [61] VQLS [43]

algorithm QCBM DQC [32]

Table I summarizes the discussed quantum algorithms in
optimization, machine learning, and simulation. FTQC algo-
rithms require many logical qubits, while the current capabil-
ities of existing QPUs limit NISQ algorithms. These typically
possess only a few noisy qubits with limited coherence times.

All quantum algorithms will be hybrid [64], i. e., a sig-
nificant computation part is done on classical resources. In
particular, for NISQ, only critical kernels that provide deci-
sive quantum advantages will be run on a QPU. We expect
these quantum kernels to be highly algorithm- and hardware-
dependent (e. g., qubit modality, simulator, interconnect).

Increasingly, algorithms from all three domains are used
together, e. g. simulation output data is used for machine
learning or as input for prescriptive optimization. Further, ML-
generated data frequently serves as input to simulations.

III. INTEGRATION PATTERNS

While quantum computers can encode any function that
a classical computer can, running complete workflows on
quantum computers will soon not be feasible due to the high
depth and qubit count required. Thus, quantum applications
will need to contend with hybrid resources. Only a minimal
kernel, providing a quantum advantage, will often be executed
on a standalone QPU. These kernels will be augmented with
significant classical components (both for NISQ and FTQC).
Hence, a better understanding of the interaction between
classical and quantum components requires investigating their
integration patterns and analyzing the types of coupling and
the application structure.

We identify three types of integration between classical
and quantum tasks: HPC-for-Quantum, Quantum-in-HPC, and
Quantum-about-HPC. We investigate two main characteristics:
the coupling [65] and the application structure.

Coupling: Coupling describes the time sensitivity of the
interaction between components. The coupling of tasks can
occur tightly within the coherence time of the QPU, i. e.,
the time that a QPU can maintain its state, in near time, for
example, to post-process measurements (i. e., medium), and in
end-to-end application workflows, (i. e., loose) [65].

We refer to tight-coupling if tasks need to interact within
strict time-sensitive bounds, e. g., within the QPU coherence
window. Examples of tight coupling are quantum error miti-
gation, error correction, and algorithms that utilize mid-circuit
measurements.

Medium-coupled scenarios comprise tasks that require fre-
quent, time-sensitive interaction, but coupling between QPU
at coherence time is not needed. The coupling of quantum
and classical tasks happens outside the coherence time of the
quantum computer. Examples are variational algorithms, such
as VQE and QAOA, which process the measurements after
each execution of the circuit.

In loosely-coupled scenarios, less frequent interaction is
needed, e. g., the results are processed together after the par-
allel job. Loose coupling refers to a coupling on the workflow
layer that integrates seamlessly across quantum, classical, and
hybrid components of tasks and their dependencies.

The application structure describes how the application
exploits various types of parallelism, e. g., ensemble, task par-
allelism, data parallelism, and accelerators. Quantum programs
can expose different types of parallelism, both in the classical
and quantum parts. For example, quantum algorithms typically
involve repeated sampling from circuits, i. e., the circuit must
be repeatedly executed and, thus, are amenable to parallelism.
Circuit knitting allows the partitioning and parallel execution
of circuit parts on multiple QPUs.

A. HPC-for-Quantum

The HPC-for-Quantum integration pattern describes the
usage of classic compute and HPC techniques on the low-
level system layer to accommodate I/O, dynamic circuits, error
mitigation, and other techniques that enable the most effective
utilization of the QPU. The layer primarily concerns low-
level circuit developers that ensure the execution of quantum
circuits on the QPU (Ref. [5]). HPC and quantum tasks are
tightly connected and interact in real-time. Approaches are
mostly application-agnostic, e. g., error correction, compila-
tion, and parallelism. HPC techniques, e. g., parallelization and
acceleration using GPUs and FPGAs and high-performance
networking, can provide significant advantages to the quantum
kernel and application.

Table II summarizes scenarios for the HPC-for-Quantum
integration type. HPC support is crucial to support quantum
control, error mitigation, and error corrections, as well as
dynamic circuits that require tight coupling of classic and
quantum tasks.

HPC technologies are increasingly essential for quantum
control systems and enable the optimal manipulation of the
qubits through physical operations [69]. For example, de-
termining the optimal timing and method of sending pulses
to control the qubits is computationally expensive. Scalable
approaches have been proposed, e. g., Quandary [70] uses MPI
to distribute necessary computations.

Further, many quantum error mitigation and correction
aspects are computationally intensive and require tight integra-
tion [69]. For example, the error mitigation of quantum circuits
can be performed by running multiple noisy experiments so
that errors cancel out [5].

Dynamic circuits involve both the evolution of the quantum
state and mid-circuit measurements. The measurements must
simultaneously be processed classically (i. e., within coherence



TABLE II
HPC-for-Quantum Application Scenarios categorized by coupling and application structure, focusing on the different classical and quantum tasks.

Significant classical computation is required to support a quantum computer.

Scenario Description Coupling Category Application Classical Task Quantum Task
structure

Quantum Controlling adiabatic/ tight NISQ Accelerators Bayesian Optimization/ All QCs
control diabatic schedule Reinforcement Learning

Error-mitigation Embedded into algorithm tight NISQ/ Accelerators Surface codes All QCs
& correction [66] with repeated measurements FTQC with significant

& application corrections classical processing
Dynamic circuits Circuits that are conditioned tight NISQ Accelerators classical processing All QCs

on the input of of auxiliary qubit with
real-time classical components feedback into circuit

Circuit Decomposing large quantum tight NISQ Task Circuit decomposition All QCs
knitting [67] circuits into smaller circuits for Parallelism & result collection

distribution across QPUs
Classic Using HPC resources, - Classical Ensemble, Task Statevector, tensor n/a

simulation [68] methods to simulate Parallelism, networks, density
quantum computers Accelerators matrix simulation

TABLE III
Quantum-in-HPC Application Scenarios: FTQC and NISQ algorithms require coupling with classical tasks for pre-, post- and optimization tasks.

Scenario Description Coupling Category Application Classical Task Quantum Task
structure

Hamiltonian Time evolution of - FTQC - - Hamiltonian
Simulation [58] Schrödinger’s equation. simulation
Quantum Phase Subroutine to extract medium FTQC Task Different variants of QPE QPE

Estimation (QPE) [39] eigenvalue and eigenstates /FTQC Parallelism with different levels of classical circuit
from a Hamiltonian. processing interweaved [71]

Imaginary Time Variational algorithm medium NISQ Task linear equations Trial
Evolution [73] utilizing trial quantum state Accelerator solving state

classic linear solver
Variational Quantum kernels medium NISQ Task Optimization loop, warm- Parameterized circuit

Algorithms [2] with classical optimizers Parallelism starting, pre-/post-processing, (ground state estimation,
(VQE, QAOA, QNN) RQAOA elimination [23] QAOA circuit)

Generative QCMB, QGANs (quantum medium NISQ Task Optimizer, Copula circuit,
AI [48] generator with classic Parallelism, Discriminator strongly entangled

or quantum discriminator) Accelerators module circuit

time) and are used to steer further quantum processing, e. g.,
by branching or setting variables. Corcoles et al. [71] demon-
strated algorithm improvements, e. g., in QPE.

Classic simulations of quantum systems are also an es-
sential building block and critical for evaluating quantum
algorithms and hardware. HPC and AI techniques provide
the necessary scale to simulators, e. g., by using parallel and
GPU-accelerated simulators (e. g., cuQuantum [68] for multi
GPU and node state vector simulation) and task-parallel tensor
network simulations [72].

B. Quantum-in-HPC

Quantum-in-HPC is an integration pattern where a quan-
tum component is medium-coupled with a classical HPC
component. In contrast to HPC-for-Quantum scenarios, e. g.,
dynamic circuits, the interweaving of classical and quantum
computation does not occur in real-time during the coherence
of the QPU, but after each measurement cycle.

Table III summarizes different scenarios. Typically, these
scenarios involve an ensemble of quantum tasks for repeated
measurements. The orchestration of the application typically
resides on the classical HPC system, with the QPU only

providing acceleration for the different types of parameterized
quantum circuits (PQC).

Examples where this is already the case are variational
quantum algorithms (VQAs) [2], e. g., VQE for estimating the
ground state energy of a molecular system, QAOA for solving
combinatorial optimization problems, VQLS [43] for solving
linear equations, or quantum GANs for generative AI [48].
The amount of classical computing can vary significantly from
a classical optimizer loop to comprehensively pre-computing
states, e. g., using warm starting procedures (see Quantum-
about-HPC integration type).

The middleware must manage different types of paral-
lelisms. For example, ensembles, i. e., multiple independent
tasks executed on a QPU, and more general task parallelism,
where complex task dependencies must be handled. For ex-
ample, VQAs exhibit more complex task parallelism, where
each generation of quantum tasks depends on the results of
the previous generation.

C. Quantum-about-HPC

The Quantum-about-HPC integration pattern describes sce-
narios where a quantum-enhanced kernel is integrated into
an end-to-end quantum-classical workflow. In other words,



TABLE IV
Quantum-about-HPC Application Scenarios enable the integration of quantum application components into end-to-end workflows.

Scenario Description Coupling Category Application Classical Task Quantum Task
structure

Classic Encode classical data loose NISQ Workflow Data embedding for ML Quantum-in-HPC
preprocessing into a quantum state, [27], molecular Hamiltonian application

e. g., in QML and and initial parameters using component
Quantum Chemistry Hartree-Fock method [59] (Table III)

Classic Partial extraction of quantum computation loose NISQ Workflow Parallel processing of Same as
post-processing results via QPU measurements. Classic /FTQC expectation values from above

post-processing for reconstructing observable computed
state for further processing. on a QPU

Hyperparameter Select optimal parameters loose NISQ Ensemble Parameter selection Same
optimization [74] for quantum kernel (e. g., cost function, & post-processing as above

learning rate, initialization)
AI QML to learn complex states as input for loose NISQ Workflow Classic simulation loop, Same as

workflows simulation and property prediction pre/post-processing above
(chemistry [75] and optimization [76]) optimization

Warm Warm-starting of quantum loose NISQ Workflow Heuristics (MILP, Same as
starting algorithm with classical CPLEX) to pre-compute above

solution [22] initial parameters
Hybrid Quantum Complex part (e. g., sign problem) medium NISQ Task Sample generation, Overlap esti-
Monte Carlo [63] on QPU (overlap between sample and Parallelism time mation between

trial wave function), executing evolution trial and sample
other parts classically (time evolution) wave function

Quantum-Quantum Coupling Hamiltonian simulation tight FTQC Workflow Optimizer, Hamiltonian
coupling and analysis of Discriminator simulation

static properties results module

the quantum component is added without modifying the HPC
application – unlike in the Quantum-in-HPC integration pat-
tern. In this case, the quantum component is used as a black
box but requires further input or output to be effective. The
main application control loop generally resides in the classical
system. On this level, the quantum and classical components
are often looser coupled than with other integration types.

Table IV summarizes different application scenarios for
the Quantum-about-HPC integration type. For example, pre-
and post-processing tasks commonly need to be performed,
e. g., for data encoding, loading and converting data, and
pre-conditioning quantum algorithms. An example of pre-
conditioning is warm-starting QAOA, for which a classic
solution determines the initial parameters. In other cases, the
quantum results are inputs for further classic or quantum
processing. For instance, the output of quantum generative
methods (e. g., QGAN, QCBMs) serves as input for further
optimization and numerical simulations (e. g., in quantum
chemistry and high-energy physics [30]).

However, such workflows can exhibit more complex integra-
tion patterns, e. g., the in-situ processing of quantum data with
quantum machine learning (ML), the training of ML surrogate
models to mitigate the data readout bottleneck, and the cou-
pling of generative Quantum ML with other techniques, e. g.,
simulation and optimization (both quantum and classical).

D. Discussion

Figure 1 summarizes application patterns for the differ-
ent Quantum-HPC integration types. The HPC-for-Quantum
scenarios describe the tight integration of HPC and quantum
resources, often in real-time, i. e., within the coherence time
of the quantum system. It is characterized by frequent data ex-

Quantum-about-HPC Quantum-in-HPC 

Quantum 
TaskQuantum 

TaskQuantum 
Task

Classical Task

Quantum 
Task

Classical 
Task

Quantum 
Task

HPC-for-Quantum 
 
 
 
 
 
 
 
 
 

Classical Task

Classical Task
Quantum Task

Classic Task

Quantum Error Correction Variational Algorithms Workflows
Examples:

Fig. 1. Quantum-HPC Integration Patterns: HPC-for-Quantum requires
interactions within the coherence time of the QPU, Quantum-in-HPC utilizes
a classical task to orchestrate short-running quantum tasks, Quantum-about-
HPC connects composable tasks to workflows.

change between the classical and quantum systems to process
mid-circuit measurements, e. g., for error correction.

Quantum-in-HPC describes interactions where the QPU is
integrated as an accelerator for specific task types, e. g., for
the evaluation of a quantum state. The classical task is long-
lived, maintaining the overall state and utilizing the QPU for
specific quantum tasks. These are short-lived compared to the
classical task. As described in Table III, variational algorithms
have been proposed for nearly all problem domains, e. g., for
machine learning, optimization, and linear algebra. Finally,
Quantum-about-HPC workflows integrate heterogeneous tasks,
i. e., quantum, classical or composable tasks, into end-to-
end application scenarios. Workflows comprise distinct stages,
e. g., data collection, pre-/post-processing, and simulation.

Managing quantum and classical resources can be difficult
due to the varying and unpredictable resource demands, re-
quiring a sophisticated approach to resource management. For
example, the QPU resource demands for variational circuits



can vary significantly as using different optimizers, e. g., can
result in a different number of circuit executions. Gradient-
based optimizers require more executions of a quantum circuit
to estimate the gradient using the parameter shift rule than
non-gradient-based optimizers. Thus, a middleware system
that can adaptively manage the resources is required. With
scale, data and computational requirements will become even
more demanding, exacerbating the need for careful resource
management.

IV. STATE OF THE ART AND RELATED WORK

This section describes the current ecosystem of quantum
software frameworks, Quantum-HPC integration, and mid-
dleware systems. Mainly, we investigate how these systems
address the challenges related to integration patterns, as de-
scribed in Section III.

A. Quantum Software Libraries

Various quantum software frameworks emerged, e. g., Pen-
nylane [77], Qiskit [78], Cirq [79], Intel Quantum SDK [80],
[81], Quil [82] and Quantum Brilliance SDK [83]. Here we
summarize the key aspects and limitations of these quantum
software frameworks. For a detailed survey, refer to Serrano
et al. [84].

The existing frameworks support creating and executing
quantum circuits on multiple quantum backends (e. g., sim-
ulators and real quantum devices) and enable interfacing with
various hardware platforms (e. g., superconducting and ion
trap platforms). Further, several high-level libraries that pro-
vide ready-to-use quantum-based algorithms for optimization,
machine learning, and simulation have been developed. For
QML applications, utilizing a gradient-based optimizer with
quantum circuits is critical. For example, Pennylane supports
differentiable quantum circuits by integrating with machine
learning frameworks like PyTorch, Jax, and Tensorflow.

Most frameworks also provide parallelization and accelera-
tor support, e. g., for just-in-time compilation and accelerated
GPU simulators. However, they are often limited to specific
cloud platforms and must better interface with HPC resource
managers. As workload and task management are deeply
integrated into these frameworks, the degree of integration
with HPC systems and, thus, the scale is limited.

B. Quantum-HPC Integration

Current trends show a transition from remote cloud access
for QPUs to a more tightly integrated HPC model, wherein
the QPU is co-located alongside classical HPC computing
resources [3]–[6].

Minimizing the latency and bandwidth is critical for HPC-
for-Quantum and HPC-in-Quantum use cases. Ella et al. [69]
investigate low-level HPC-for-Quantum integration on pulse-
level required for quantum control, error correction, and miti-
gation. They emphasize the need for HPC classical resources,
including accelerators, to be co-located with the QPU.

Another vital concern, particularly for HPC-in-Quantum
use cases, is resource management. While existing resource

management systems, e. g., SLURM, can support QPUs (e. g.,
using SLURM’s Generic Resource abstraction), but there are
significant limitations, e. g., regarding support for different
QPU types and the prioritization of QPU jobs. Further,
application-level workloads and task management systems,
such as Pilot-Jobs [85] and Hyperqueue [86], must be in-
tegrated with quantum software frameworks. Ruefenach et
al. [6] summarizes many of these challenges, e. g., ensuring the
optimal utilization of the QPUs, while minimizing the time-
to-solution and energy-to-solution, and propose a quantum
resource manager.

C. Quantum-HPC Middleware

Integrating quantum and classical tasks and quantum-HPC
middleware systems are subject to intense research. For exam-
ple, XACC [87] introduces a quantum-classical programming
model that allows tighter integration between both computing
paradigms. CUDA Quantum [88] is a platform for integrating
classical and quantum computing devices using a standard
programming model similar to XACC. It offers optimized
control and communication between different quantum pro-
cessors and classical tasks. It integrates with the cuQuantum
GPU library for accelerated simulations with scaling across
distributed multi-node and multi-GPU systems. Further, sup-
port for selected QPUs (e. g, Rigetti) will be available.

Increasingly, hybrid quantum-classical runtimes are inte-
grated into existing quantum software frameworks. For ex-
ample, Qiskit Runtime [89] and Braket Jobs [90] provide
mechanisms to manage classical computing with quantum
tasks more efficiently. These are limited to proprietary cloud
environments.

Quantum workflows have become critical in addressing
the need to integrate quantum components into end-to-end
applications (Quantum-about-HPC integration type). Weder
et al. [91], [92] investigate workflow technology for orches-
trating quantum applications. Tierkreis [93] focuses on task
parallelism exhibited by hybrid quantum-classical applications
and utilizes a dataflow-based programming model. Other com-
mercial tools emerged, e. g., Orquestra [94] and Covalent [95].

V. QUANTUM-HPC MIDDLEWARE: TOWARD A
CONCEPTUAL FRAMEWORK

In this section, we define the functional layers for a
Quantum-HPC middleware, identify challenges and design ob-
jectives for each layer, and describe a conceptual middleware.

A. Functional Layers

We adopt the four-layered model for managing scientific
workflows on HPC resources proposed by Turilli et al. [96].
Figure 2 illustrates the functional layers: the resource (L1),
task (L2), workload (L3), and workflow (L4) layers. Further,
it shows different quantum software libraries alongside appro-
priate layers.

The highest layer is the workflow layer (L4) which en-
capsulates the application semantics and logical dependencies
between the different workflow levels. It is the most abstract



Resource Access Layer

Workload Management

HPC
(Cores,

Accelerators)

Cloud
(Cores, 

Accelerators)

Quantum
(AWS Braket, 

IBM Q)

Task Management System

Applications and Workflows
(Quantum Circuits, 

Parameterized Quantum Circuits, Workflows)

L1

L2

L3

L4

Resource

Tasks

Workload

Workflow

Cirq, Braket, Qiskit, Pennylane
CUDA, cuQuantum, cuTensor

Qiskit Application Libraries 
(Optimize, Nature, ML)

Pennylane, Cirq, Tensorflow Quantum

Qiskit Runtime, Braket Jobs
CUDA Quantum

Fig. 2. Functional Levels for Quantum-HPC Middleware (adapted
from [96]): The middleware system can be partitioned into four layers. The
workflow layer encapsulates the application semantics and logical dependen-
cies between the different workflow stages. The workload layer translates the
workflow into a set of tasks that can be executed, potentially concurrently.
The task layer executes these tasks using the resource layer.

layer and is often exposed using a domain-specific language
(DSL) to describe the workflow. The workflow manager trans-
lates the workload description into a workload, i. e., a set of
tasks that can be executed, potentially concurrently.

The workload and task layers are the middle Layers (L2,
L3). The workload layer (L3) selects the appropriate resources
for the given workload. The task layer (L2) executes these
tasks on the selected resource. For this purpose, it includes
functionality to acquire respective HPC resources (e. g., a
Pilot-Job [85]). For quantum computing, the co-allocation of
quantum and classical resources is critical.

The resource layer (L1) is responsible for scheduling and
assigning computational tasks to the various resources within
the HPC system, such as nodes, processors, and QPUs. In par-
ticular, in the context of quantum computing, the heterogeneity
at this layer is challenging. Advances in the intermediate
representation, e. g., the Quantum Intermediate Representa-
tion (QIR) [97] and Open Quantum Assembly Language
(QASM) [98], and unified access APIs are critical to ensure
uniform access to heterogeneous hardware.

On the resource level (L1), the focus is on executing
quantum tasks (i. e., quantum circuits) and related classical
tasks on quantum/classical resources. The execution of quan-
tum circuits involves compilation, error mitigation/correction,
measurements, and other low-level optimization steps. Further,
repeated measurements to obtain a representative sample of the
quantum state and post-processing (e. g., to compute expecta-
tion values) are managed on this layer.

B. Challenges and Design Objective

This section identifies challenges and design objectives (O)
at each functional layer that can lead to high-level Quantum-
HPC middleware architecture.

L4 – Workflow Layer (O-1): Applications require in-
tegrating a diverse set of classical (e. g., classical AI and
HPC tasks) and quantum tasks (e. g., simulated quantum
tasks) in the end-to-end workflows. Achieving such objectives
requires modular and composable architectural designs to
enable re-use at different levels, e. g., the function, library,
and system levels. Additionally, integrating diverse quantum
software libraries and components is important [96]. Quantum

workflows possess additional complexity, e. g., they require
incorporating different types of QPUs (simulated, ion-traps,
superconducting). Often, applications involve, e. g., simulated
and different physical QPUs, and, thus, require particular adap-
tations while the application logic remains the same. The high-
level workflow description is then converted into a workload
comprising heterogeneous tasks that must be mapped to a
complex infrastructure of nodes, CPUs, GPUs, and QPUs.
In particular, the software ecosystem is highly fragmented
in the current (early) stage, and standards for describing and
executing quantum workflows are missing.

L3, L2 – Workload and Task Layer (O-2): Workloads
consist of highly heterogeneous containing components and
tasks implemented in different languages and frameworks as
described previously. For instance, quantum machine learning
requires the integration of quantum frameworks, like Penny-
lane, with machine learning frameworks, such as PyTorch and
Jax. Application resource requirements can vary significantly
with specific configurations (e. g., the QPU type or optimizer
in a VQA). Often the same workload must be executed at
different scales and on other resource types (e. g., classical
simulators and QPU)s, leading to significantly different ex-
ecution characteristics on the workload and task layer. For
example, the execution time and results of the same quantum
tasks can vary considerably with the QPU type (simulated vs.
physical QPU of different modalities) [99]. A challenge is to
identify emerging workload patterns that need to be supported
by the workload management system.

L1 – Resource Layer (O-3): The resource layer encap-
sulates the heterogeneous quantum and classical resources.
Challenges arise concerning integrating quantum resources
and supporting the tight coupling of quantum and classical
tasks, e. g., for quantum error correction and dynamic circuits.
Tight coupling requires the co-allocation of resources to ensure
frequent and low-latency interactions between quantum and
classical tasks. A tighter integration at the hardware and
network level is desirable, particularly for HPC-for-Quantum
scenarios. While in the traditional accelerator model, GPUs are
dedicated to a single application, the scarcity of physical QPUs
requires more careful consideration of resource allocation.

C. Conceptual Middleware

Figure 3 illustrates the conceptual Quantum-HPC middle-
ware with four layers, namely, workflow, workload, task, and
resource layers, based on the functional levels identified in
Figure 2.

1) Workflow Layer: The workflow layer offers a high-level
abstraction for quantum workflows, containing both quantum
and classical components. It receives high-level descriptions
of dependencies, input/output data, and computational tasks.
The workflow manager coordinates workflow descriptions and
prepares their execution.

We identify three task types: classical, quantum, and com-
posite tasks. Classical tasks are self-contained classical com-
putations, such as data loading, pre-processing, and post-
processing. Quantum tasks are self-contained quantum cir-



Workflow Manager

Quantum Applications and Workflows

L4

L3

L2

L1

Workload Manager

Quantum Workload Classical Workload

Task Manager

Scheduler

Task ManagerTask Manager

Quantum
Resource

Resource Manager 
Compute

QPU

Classical
HPC/Cloud
Resource

Resource Manager 
Compute

GPU

Accelerated Quantum
Resource

Compute
GPU
QPU

Workflow Description

Resource Manager

Scheduler Scheduler

Quantum TaskComposed Task Classical Task

Quantum Software Framework

Fig. 3. Conceptual Quantum-HPC Middleware: The Quantum-HPC mid-
dleware is composed of four layers: workflow, workload, task, and resource
layers. By decoupling application, workload, task, and resource management
concerns, the middleware enables the necessary scale for next-generation
Quantum-HPC systems.

cuits, executable on a QPU. Quantum workloads contain both
classical and quantum tasks.

A quantum task refers to self-contained quantum compu-
tation, also called a circuit, that is executable on a QPU. A
quantum task can be defined using a low-level language (e. g.,
OpenQASM) or a quantum software framework (e. g., Qiskit).
Quantum tasks are typically coupled to different classical
computational tasks, e. g., for post-processing, quantum error
correction, and hybrid algorithms.

Composite tasks consist of multiple sub-tasks, often inte-
grating external software frameworks, which is crucial for
quantum workflows. For example, a composite task can arise
by integrating an external software framework, an essential
requirement for quantum workflows. For example, Qiskit
provides several optimization, simulation, and machine learn-
ing application frameworks. Using composite tasks, a Qiskit
QAOA implementation can be integrated into a workflow with
further pre- and post-processing steps.

The workflow manager transforms the workflow into an ex-
ecutable state by resolving dependencies. A workload is a set
of interdependent tasks that can be executed across different
computing resources. The workflow manager can also apply
specific optimization, such as parallelism for certain workflow
parts. An example of multi-QPU parallelism is circuit knitting,
which decomposes complex quantum circuits into smaller
circuits [5]. Another example of task parallelism is ensemble
parallelism, comprising loosely coupled tasks with minimal
dependencies, e. g., found in parameter sweeps to evaluate a
circuit with different parameters and when conducting parallel
measurements.

2) Workload Layer: This workload layer orchestrates the
execution of the tasks emitted by the workflow layer. The
workload manager is the core entity of this layer and is
responsible for selecting resources, partitioning the workload,
and assigning tasks to resources [96]. We distinguish be-
tween classical and quantum workloads. A classical workload
only comprises classical tasks, while quantum workloads are
hybrid, containing both classical and quantum tasks. Quan-
tum workloads can be highly heterogeneous and hardware-
dependent. For example, simulated, ion-trap, and supercon-
ducting QPUs have different runtime and fidelity trade-offs.

Quantum-HPC systems face unique workload management
and scheduling challenges, including (i) the lack of a unified
standard for accessing QPUs and expressing hybrid workloads,
(ii) the complex dependencies of applications to specific Quan-
tum Processing Units (QPUs) that often necessitate manual,
application-level adaptations, and (iii) the limited availability
of physical QPUs that complicates the balancing between
application-level and system-level objectives. Our conceptual
middleware addresses these challenges by encapsulating the
workload management and scheduling concerns while allow-
ing for adequate information flows between application and
Quantum-HPC systems.

The workload manager acquires the respective resources
via the task layer. Considering the coupling between the
quantum and classical tasks, it assigns and co-locates tasks
to the resources. For example, classical tasks tightly coupled
to quantum tasks, e. g., for the HPC-for-Quantum scenarios,
must be co-allocated and assigned to resources nearby.

The scheduling of tasks requires both application- and
system-level information [100]. Thus, application-level sched-
ulers and Pilot-Jobs [85], [101] may be crucial in bringing
together application-level and system-level information. The
assigning of tasks to resources is also referred to as binding.
The binding of tasks can occur both early and late. Early
binding directly assigns tasks to resources based on currently
available information. Late binding allows for more dynamism
and addresses, e. g, uncertainties like resource fluctuations and
other variations in the infrastructure.

3) Task Layer: The task layer is an integral component
of the middleware system and comprises a collection of task
managers. The task manager orchestrates the execution of
tasks on a specific resource as assigned by the workload
manager. A task manager is typically responsible for a single
resource and manages the resource allocation, acquisition,
scheduling, assignment, and monitoring to ensure the tasks run
successfully. Typically, tasks are executed on HPC resources
as part of a job or within a container on cloud resources.
As described, a common mechanism to manage tasks across
heterogeneous resources are Pilot-Jobs.

The task manager also supports dynamic allocation during
runtime, allowing for the acquisition and release of resources
as needed. Additionally, the task manager is responsible for
handling errors and failures that may arise during the execution
of tasks. It ensures that the necessary resource requirements for
successful task execution are met. In the context of quantum



computing, resource co-location is crucial. For tightly coupled
tasks, the QPU must be co-located with sufficient classical
computing capacities, e. g., GPUs and CPU.

For example, quantum error correction requires the co-
location of QPU, GPU, and CPU due to the tight coupling
between classical and quantum computing tasks. Variational
algorithms also benefit from nearby classical computing re-
sources, but the coupling does not occur within the coherence
time of the QPU.

4) Resource Layer: This layer represents the diverse HPC
and cloud resources, such as classical computing (e. g., CPUs),
QPUs, and accelerators (e. g., GPUs). While QPUs have been
located remotely from the classical computation, increasingly
tighter integrations of classical resources are emerging [5],
[6]. For error correction, accelerated classical computing is
required to perform the classical processing of the syndrome
measurements. The increased complexity of the resource layer
demands abstractions so that the resource layer is consistently
presented.

Parallelization of quantum workloads across nodes, cores,
and accelerators (including QPUs) is critical to achieving
the necessary performance and scale. For this purpose, the
resource layer must integrate with the underlying HPC tech-
nologies, including QPU-specific compilers, GPU libraries
(such as cuQuantum and cuTensor), and networks.

D. Example: Quantum Chemistry Workflow

In the following, we consider a quantum chemistry applica-
tion where the task is to compute the ground state energy of
a molecule, which is frequently used to predict the chemical
properties of a molecule [59].

Workflow Layer: The Variational Quantum Eigensolver
(VQE) is a NISQ algorithm for computing the ground state
energy of a molecule. The ground state estimation is often part
of an end-to-end workflow, which includes several pre- and
post-computing steps (Quantum-about-HPC integration type).
Examples of preparation steps are, e. g., reading the molecule
data from a file and computing an approximate solution to the
ground state using the Hartree-Fock (HF) method.

The VQE algorithm itself is an example of the Quantum-in-
HPC integration pattern. The quantum part is a parameterized
quantum circuit, which executes on a QPU and estimates the
ground state energy. The classical component optimizes the
parameters using a classical optimization algorithm. Further,
enhancements emerged, e. g., embedding techniques that re-
strict the simulated quantum particles by utilizing classical
simulation techniques. While this reduces the required qubits,
it requires additional classical resources [102]. Generally, this
algorithm and the Quantum-in-HPC pattern require frequent
communication between classical and quantum components as
they iteratively update the parameters of the quantum circuit.

The application creates a high-level workflow description
that interweaves quantum tasks (specifically a quantum circuit
representing the molecular Hamiltonian) and classical tasks
(optimization). This representation is the basis for efficiently
managing dependencies (e. g., external libraries like Qiskit),

inputs, execution, and outputs. The workflow description on
this level is abstract, i. e., resource-independent. However, it is
configurable to allow users some control (e. g., over resource
types).

Current quantum software frameworks (e. g., Qiskit and
Pennylane) define workflows on a lower level involving precise
implementation steps (e. g., in Python) and concrete resource
mapping. While these frameworks provide some extension
mechanisms, these are typically highly platform-specific and
limited. For example, Qiskit’s Provider API and Pennylane’s
Device API allow for integrating custom backends. Our con-
ceptual middleware decouples the workflow description from
the implementation details, and thus, enables optimization on
the middleware level.

The middleware system is responsible for mapping the
workflow description to a set of tasks and resources. For this
purpose, the workflow manager resolves all dependencies and
allocates the necessary resources. The output is a workload,
i. e., the resources and tasks ready to run, which is forwarded
to the workload manager.

Workload and Task Layer: The workload and task man-
agers are essential to enable the scalable execution of quantum
workflows and their associated workloads (objective O-2). The
workload manager schedules and orchestrates the execution of
quantum and classical tasks emitted by the workflow manager.
For VQE, e. g., sufficient quantum and classical resources
need to be allocated to optimize interactions between both
components. The task manager is then responsible for the
execution of individual tasks, either on the QPU or classical
resources.

Depending on the characteristics of the workload, particu-
larly the coupling between quantum and classical tasks, the
tasks can be placed accordingly, ensuring performance and
scale. For example, the pre- and post-computing steps of the
workflow do not necessarily be co-located with the QPU. For
current QPU capabilities, remote QPU access is sufficient for
VQE. With the increasing scale, a co-allocation of resources
is required to enable scalable variational algorithms. Further, a
co-allocation is critical for HPC-for-Quantum scenarios, e. g.,
error mitigation routines.

Resource Layer: The emitted quantum and classical
tasks are executed on the resource layer. To allow low-level
resource-specific optimization (objective O-3), the execution
typically involves just-in-time compilation steps to optimize
the circuit for defined hardware. To evaluate the quantum state,
repeated measurements are critical.

VI. CONCLUSION

Managing and executing quantum workflows poses signifi-
cant challenges, necessitating middleware systems to support
applications in achieving scale. To aid the design of mid-
dleware systems, we identified three integration patterns for
quantum and HPC applications and characterized these, e. g.,
by application structure and coupling. Our analysis further
shows the need for quantum HPC techniques (e. g., scalable
and parallel execution, accelerators) arises in several parts,



e. g., in the classical simulation of quantum circuits, variational
algorithms, and quantum error correction.

We propose a conceptual middleware system that enables
seamless interaction between classical and quantum resources
by providing unified resource access and management. The
conceptual middleware decouples workload and task manage-
ment from the application software while allowing low-level
HPC optimization (e. g., resource-specific compilation steps,
resource, and task co-allocation). It utilizes established high-
performance computing abstractions and enables the seamless
integration of quantum computing into HPC systems.

In future work, we aim to develop a reference imple-
mentation of the conceptual middleware. Further, we plan to
explore the emulation of workloads and resources for hybrid
quantum applications. The emulator development includes
tools and techniques to mimic the characteristics of applica-
tions and infrastructure, thereby enabling the optimization of
resource and task allocations before deploying them on actual
quantum systems. Finally, the development of workflow and
application-level benchmarks [103] will help to establish an
understanding of the impact of quantum computing in end-to-
end applications.

ACKNOWLEDGMENT

We thank Pradeep Mantha for proofreading, valuable com-
ments and discussions. The authors generated parts of this text
with OpenAI’s language-generation models. Upon generation,
the authors reviewed, edited, and revised the language.

REFERENCES

[1] A. Bayerstadler, G. Becquin et al., “Industry quantum computing
applications,” EPJ Quantum Technology, vol. 8, no. 1, p. 25, 2021.

[2] M. Cerezo, A. Arrasmith et al., “Variational quantum algorithms,”
Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, 2021. [Online].
Available: https://doi.org/10.1038/s42254-021-00348-9

[3] T. S. Humble, A. McCaskey et al., “Quantum computers for high-
performance computing,” IEEE Micro, vol. 41, no. 5, pp. 15–23, 2021.

[4] M. Schulz, M. Ruefenacht et al., “Accelerating hpc with quantum
computing: It is a software challenge too,” Computing in Science &
Engineering, vol. 24, no. 4, pp. 60–64, 2022.

[5] S. Bravyi, O. Dial et al., “The future of quantum computing
with superconducting qubits,” Journal of Applied Physics, vol.
132, no. 16, p. 160902, oct 2022. [Online]. Available: https:
//doi.org/10.1063%2F5.0082975

[6] M. Ruefenacht, B. G. Taketani et al., “Bringing quantum acceleration
to supercomputers,” IQM/LRZ Technical Report, https://www.quantu
m.lrz.de/fileadmin/QIC/Downloads/IQM HPC-QC-Integration-White
paper.pdf, 2022.

[7] O. R. L. C. Facility, “Quantum Computing User Program,” 2021.
[Online]. Available: https://www.olcf.ornl.gov/olcf-resources/compute
-systems/quantum-computing-user-program/

[8] Amazon, “Amazon Braket,” 2022. [Online]. Available: https:
//aws.amazon.com/braket/

[9] A. Das and B. K. Chakrabarti, Quantum annealing and related opti-
mization methods. Springer Science & Business Media, 2005, vol.
679.

[10] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[11] J. Choi, S. Oh, and J. Kim, “Quantum approximation for wireless
scheduling,” Applied Sciences, vol. 10, no. 20, p. 7116, 2020.

[12] A. Awasthi, F. Bär et al., “Quantum computing techniques for multi-
knapsack problems,” 2023.

[13] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum com-
puting for drug discovery,” IBM Journal of Research and Development,
vol. 62, no. 6, pp. 6–1, 2018.

[14] Y. Xiang, D. W. Zhang, and J. Z. Zhang, “Fully quantum mechanical
energy optimization for protein–ligand structure,” Journal of computa-
tional chemistry, vol. 25, no. 12, pp. 1431–1437, 2004.

[15] B. Li, P. Hu et al., “Performance analysis and optimization of a
cchp-gshp coupling system based on quantum genetic algorithm,”
Sustainable Cities and Society, vol. 46, p. 101408, 2019.

[16] L. Gao, R. Liu et al., “An advanced quantum optimization algorithm
for robot path planning,” Journal of Circuits, Systems and Computers,
vol. 29, no. 08, p. 2050122, 2020.

[17] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to
quantum machine learning,” Contemporary Physics, vol. 56, no. 2,
pp. 172–185, oct 2014. [Online]. Available: https://doi.org/10.1080%
2F00107514.2014.964942

[18] Z. Bian, F. Chudak et al., “Mapping constrained optimization problems
to quantum annealing with application to fault diagnosis,” Frontiers in
ICT, p. 14, 2016.

[19] D. Pastorello and E. Blanzieri, “Quantum annealing learning search
for solving qubo problems,” Quantum Information Processing, vol. 18,
no. 10, pp. 1–17, 2019.

[20] B. F. Schiffer, J. Tura, and J. I. Cirac, “Adiabatic spectroscopy and a
variational quantum adiabatic algorithm,” PRX Quantum, vol. 3, no. 2,
p. 020347, 2022.

[21] A. Perdomo, C. Truncik et al., “Construction of model hamiltonians
for adiabatic quantum computation and its application to finding low-
energy conformations of lattice protein models,” Physical Review A,
vol. 78, no. 1, p. 012320, 2008.

[22] D. J. Egger, J. Mareček, and S. Woerner, “Warm-starting quantum
optimization,” Quantum, vol. 5, p. 479, jun 2021. [Online]. Available:
https://doi.org/10.22331%2Fq-2021-06-17-479

[23] S. Bravyi, A. Kliesch et al., “Obstacles to variational quantum
optimization from symmetry protection,” Phys. Rev. Lett., vol. 125, p.
260505, Dec 2020. [Online]. Available: https://link.aps.org/doi/10.11
03/PhysRevLett.125.260505

[24] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’96. New York, NY, USA:
Association for Computing Machinery, 1996, p. 212–219. [Online].
Available: https://doi.org/10.1145/237814.237866

[25] A. Gilliam, M. Pistoia, and C. Gonciulea, “Optimizing quantum search
using a generalized version of grover’s algorithm,” arXiv preprint
arXiv:2005.06468, 2020.

[26] A. Dawid, J. Arnold et al., “Modern applications of machine
learning in quantum sciences,” 2022. [Online]. Available: https:
//arxiv.org/abs/2204.04198

[27] M. Schuld and F. Petruccione, Machine Learning with Quantum
Computers, ser. Quantum Science and Technology. Springer
International Publishing, 2021. [Online]. Available: https://books.goog
le.de/books?id=-N5IEAAAQBAJ

[28] M. Weinstein, F. Meirer et al., “Analyzing big data with dynamic
quantum clustering,” arXiv preprint arXiv:1310.2700, 2013.

[29] C. Bravo-Prieto, J. Baglio et al., “Style-based quantum generative
adversarial networks for Monte Carlo events,” Quantum, vol. 6, p.
777, Aug. 2022. [Online]. Available: https://doi.org/10.22331/q-202
2-08-17-777

[30] F. Rehm, S. Vallecorsa et al., “Quantum Machine Learning for
HEP Detector Simulations,” pp. 363–368, 2021. [Online]. Available:
https://cds.cern.ch/record/2824092

[31] P. Jain and S. Ganguly, “Hybrid quantum generative adversarial net-
works for molecular simulation and drug discovery,” arXiv preprint
arXiv:2212.07826, 2022.

[32] O. Kyriienko, A. E. Paine, and V. E. Elfving, “Solving nonlinear
differential equations with differentiable quantum circuits,” Phys.
Rev. A, vol. 103, p. 052416, May 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.103.052416

[33] X. Liang, M. Li et al., “21296 exponentially complex quantum many-
body simulation via scalable deep learning method,” arXiv preprint
arXiv:2204.07816, 2022.

[34] Z. Cai and J. Liu, “Approximating quantum many-body wave functions
using artificial neural networks,” Physical Review B, vol. 97, no. 3, p.
035116, 2018.

[35] X. Zhao, M. Li et al., “Ai for quantum mechanics: High performance
quantum many-body simulations via deep learning,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’22. IEEE Press, 2022.

https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1063%2F5.0082975
https://doi.org/10.1063%2F5.0082975
https://www.quantum.lrz.de/fileadmin/QIC/Downloads/IQM_HPC-QC-Integration-Whitepaper.pdf
https://www.quantum.lrz.de/fileadmin/QIC/Downloads/IQM_HPC-QC-Integration-Whitepaper.pdf
https://www.quantum.lrz.de/fileadmin/QIC/Downloads/IQM_HPC-QC-Integration-Whitepaper.pdf
https://www.olcf.ornl.gov/olcf-resources/compute-systems/quantum-computing-user-program/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/quantum-computing-user-program/
https://aws.amazon.com/braket/
https://aws.amazon.com/braket/
https://doi.org/10.1080%2F00107514.2014.964942
https://doi.org/10.1080%2F00107514.2014.964942
https://doi.org/10.22331%2Fq-2021-06-17-479
https://link.aps.org/doi/10.1103/PhysRevLett.125.260505
https://link.aps.org/doi/10.1103/PhysRevLett.125.260505
https://doi.org/10.1145/237814.237866
https://arxiv.org/abs/2204.04198
https://arxiv.org/abs/2204.04198
https://books.google.de/books?id=-N5IEAAAQBAJ
https://books.google.de/books?id=-N5IEAAAQBAJ
https://doi.org/10.22331/q-2022-08-17-777
https://doi.org/10.22331/q-2022-08-17-777
https://cds.cern.ch/record/2824092
https://link.aps.org/doi/10.1103/PhysRevA.103.052416


[36] D. Xu, A. B. Özgüler et al., “Neural network accelerator for quantum
control,” 2022. [Online]. Available: https://arxiv.org/abs/2208.02645

[37] L. Moro, M. Paris et al., “Quantum compiling by deep reinforcement
learning,” COMMUNICATIONS PHYSICS, vol. 4, no. 1, pp. 1–8, 2021.

[38] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Phys. Rev. Lett., vol. 103, p. 150502,
Oct 2009. [Online]. Available: https://link.aps.org/doi/10.1103/PhysR
evLett.103.150502

[39] A. Kitaev, “Quantum measurements and the abelian stabilizer problem,”
1995. [Online]. Available: https://arxiv.org/abs/quant-ph/9511026

[40] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2010.

[41] I. Kerenidis, J. Landman et al., “q-means: A quantum algorithm
for unsupervised machine learning,” 2018. [Online]. Available:
https://arxiv.org/abs/1812.03584

[42] S. Johri, S. Debnath et al., “Nearest centroid classification on
a trapped ion quantum computer,” 2020. [Online]. Available:
https://arxiv.org/abs/2012.04145

[43] C. Bravo-Prieto, R. LaRose et al., “Variational quantum linear solver,”
2019. [Online]. Available: https://arxiv.org/abs/1909.05820

[44] A. Abbas, D. Sutter et al., “The power of quantum neural networks,”
Nature Computational Science, vol. 1, no. 6, pp. 403–409, 2021.

[45] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural
networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, 2019.
[Online]. Available: https://doi.org/10.1038/s41567-019-0648-8

[46] M. Schuld, “Supervised quantum machine learning models are kernel
methods,” 2021. [Online]. Available: https://arxiv.org/abs/2101.11020

[47] S. Cheng, J. Chen, and L. Wang, “Information perspective to
probabilistic modeling: Boltzmann machines versus born machines,”
Entropy, vol. 20, no. 8, 2018. [Online]. Available: https://www.mdpi.c
om/1099-4300/20/8/583

[48] M. Benedetti, D. Garcia-Pintos et al., “A generative modeling
approach for benchmarking and training shallow quantum circuits,”
npj Quantum Information, vol. 5, no. 1, p. 45, 2019. [Online].
Available: https://doi.org/10.1038/s41534-019-0157-8

[49] P.-L. Dallaire-Demers and N. Killoran, “Quantum generative adver-
sarial networks,” Phys. Rev. A, vol. 98, p. 012324, Jul 2018. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.98.012324

[50] C. A. Riofrı́o, O. Mitevski et al., “A performance characterization of
quantum generative models,” arXiv e-prints, pp. arXiv–2301, 2023.

[51] G. E. Karniadakis, I. G. Kevrekidis et al., “Physics-informed machine
learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.
[Online]. Available: https://doi.org/10.1038/s42254-021-00314-5

[52] R. P. Feynman, “Simulating physics with computers,” International
Journal of Theoretical Physics, vol. 21, no. 6, pp. 467–488, 1982.

[53] W. C. Skamarock, J. B. Klemp, and J. Dudhia, “Prototypes for the wrf
(weather research and forecasting) model,” in Preprints, Ninth Conf.
Mesoscale Processes, J11–J15, Amer. Meteorol. Soc., Fort Lauderdale,
FL, 2001.

[54] M. Singh, C. Dhara et al., “Quantum artificial intelligence for the
science of climate change,” in Artificial Intelligence, Machine Learning
and Blockchain in Quantum Satellite, Drone and Network. CRC Press,
2021, pp. 199–207.

[55] F. Oz, R. K. Vuppala et al., “Solving burgers’ equation with quantum
computing,” Quantum Information Processing, vol. 21, pp. 1–13, 2022.

[56] R. Steijl and G. N. Barakos, “Parallel evaluation of quantum algorithms
for computational fluid dynamics,” Computers & Fluids, vol. 173, pp.
22–28, 2018.

[57] S. Jóczik, Z. Zimborás et al., “A cost-efficient approach towards com-
putational fluid dynamics simulations on quantum devices,” Applied
Sciences, vol. 12, no. 6, p. 2873, 2022.

[58] S. Lloyd, “Universal quantum simulators,” Science, vol. 273, no.
5278, pp. 1073–1078, 1996. [Online]. Available: https://www.science.
org/doi/abs/10.1126/science.273.5278.1073

[59] Y. Cao, J. Romero et al., “Quantum chemistry in the age
of quantum computing,” Chemical Reviews, vol. 119, no. 19,
pp. 10 856–10 915, 2019, pMID: 31469277. [Online]. Available:
https://doi.org/10.1021/acs.chemrev.8b00803

[60] B. Bauer, S. Bravyi et al., “Quantum algorithms for quantum
chemistry and quantum materials science,” Chemical Reviews, vol.
120, no. 22, pp. 12 685–12 717, 2020, pMID: 33090772. [Online].
Available: https://doi.org/10.1021/acs.chemrev.9b00829

[61] A. Peruzzo, J. McClean et al., “A variational eigenvalue solver on a
photonic quantum processor,” Nature Communications, vol. 5, no. 1, p.
4213, 2014. [Online]. Available: https://doi.org/10.1038/ncomms5213

[62] A. Montanaro, “Quantum speedup of monte carlo methods,”
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 471, no. 2181, p. 20150301, sep 2015.
[Online]. Available: https://doi.org/10.1098%2Frspa.2015.0301

[63] W. J. Huggins, B. A. O’Gorman et al., “Unbiasing fermionic
quantum monte carlo with a quantum computer,” Nature, vol.
603, no. 7901, pp. 416–420, 2022. [Online]. Available: https:
//doi.org/10.1038/s41586-021-04351-z

[64] A. Callison and N. Chancellor, “Hybrid quantum-classical algorithms
in the noisy intermediate-scale quantum era and beyond,” Physical
Review A, vol. 106, no. 1, p. 010101, 2022.

[65] A. McCaskey, E. Dumitrescu et al., “A language and hardware
independent approach to quantum–classical computing,” SoftwareX,
vol. 7, pp. 245–254, 2018. [Online]. Available: https://www.sciencedir
ect.com/science/article/pii/S2352711018300700

[66] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg,
“Towards practical classical processing for the surface code,” Phys.
Rev. Lett., vol. 108, p. 180501, May 2012. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.108.180501

[67] T. Peng, A. W. Harrow et al., “Simulating large quantum circuits on
a small quantum computer,” Phys. Rev. Lett., vol. 125, p. 150504, Oct
2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLe
tt.125.150504

[68] L. Fang, ahehn nv et al., “Nvidia/cuquantum: cuquantum python
v22.11.0.1,” Jan. 2023. [Online]. Available: https://doi.org/10.5281/ze
nodo.7523366

[69] L. Ella, L. Leandro et al., “Quantum-classical processing and bench-
marking at the pulse-level,” 2023.

[70] S. Günther, N. A. Petersson, and J. L. Dubois, “Quandary: An
open-source c++ package for high-performance optimal control
of open quantum systems,” 2021. [Online]. Available: https:
//arxiv.org/abs/2110.10310

[71] A. D. Córcoles, M. Takita et al., “Exploiting dynamic quantum
circuits in a quantum algorithm with superconducting qubits,” Phys.
Rev. Lett., vol. 127, p. 100501, Aug 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.127.100501

[72] T. Vincent, L. J. O’Riordan et al., “Jet: Fast quantum circuit
simulations with parallel task-based tensor-network contraction,”
Quantum, vol. 6, p. 709, may 2022. [Online]. Available: https:
//doi.org/10.22331%2Fq-2022-05-09-709

[73] S. McArdle, T. Jones et al., “Variational ansatz-based quantum
simulation of imaginary time evolution,” npj Quantum Information,
vol. 5, no. 1, p. 75, 2019. [Online]. Available: https://doi.org/10.1038/
s41534-019-0187-2

[74] S. S. Cranganore, V. De Maio et al., “Molecular dynamics workflow
decomposition for hybrid classic/quantum systems,” in 2022 IEEE 18th
International Conference on e-Science (e-Science), 2022, pp. 346–356.

[75] N. W. A. Gebauer, M. Gastegger et al., “Inverse design of 3d
molecular structures with conditional generative neural networks,”
Nature Communications, vol. 13, no. 1, p. 973, 2022. [Online].
Available: https://doi.org/10.1038/s41467-022-28526-y

[76] J. Alcazar, M. G. Vakili et al., “Geo: Enhancing combinatorial
optimization with classical and quantum generative models,” 2021.
[Online]. Available: https://arxiv.org/abs/2101.06250

[77] V. Bergholm, J. Izaac et al., “Pennylane: Automatic differentiation of
hybrid quantum-classical computations,” arXiv:1811.04968, 2018.

[78] A. Cross, “The ibm q experience and qiskit open-source quantum
computing software,” in APS March meeting abstracts, vol. 2018, 2018,
pp. L58–003.

[79] A. Hancock, A. Garcia et al., “Cirq: A python framework for creating,
editing, and invoking quantum circuits.”

[80] P. Khalate, X.-C. Wu et al., “An llvm-based c++ compiler toolchain
for variational hybrid quantum-classical algorithms and quantum ac-
celerators,” 2022.

[81] G. G. Guerreschi, J. Hogaboam et al., “Intel quantum simulator:
a cloud-ready high-performance simulator of quantum circuits,”
Quantum Science and Technology, vol. 5, no. 3, p. 034007, may 2020.
[Online]. Available: https://doi.org/10.1088%2F2058-9565%2Fab8505

[82] R. S. Smith, “Quil: A portable quantum instruction language,” Feb.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3677541

https://arxiv.org/abs/2208.02645
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/1812.03584
https://arxiv.org/abs/2012.04145
https://arxiv.org/abs/1909.05820
https://doi.org/10.1038/s41567-019-0648-8
https://arxiv.org/abs/2101.11020
https://www.mdpi.com/1099-4300/20/8/583
https://www.mdpi.com/1099-4300/20/8/583
https://doi.org/10.1038/s41534-019-0157-8
https://link.aps.org/doi/10.1103/PhysRevA.98.012324
https://doi.org/10.1038/s42254-021-00314-5
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://www.science.org/doi/abs/10.1126/science.273.5278.1073
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1098%2Frspa.2015.0301
https://doi.org/10.1038/s41586-021-04351-z
https://doi.org/10.1038/s41586-021-04351-z
https://www.sciencedirect.com/science/article/pii/S2352711018300700
https://www.sciencedirect.com/science/article/pii/S2352711018300700
https://link.aps.org/doi/10.1103/PhysRevLett.108.180501
https://link.aps.org/doi/10.1103/PhysRevLett.125.150504
https://link.aps.org/doi/10.1103/PhysRevLett.125.150504
https://doi.org/10.5281/zenodo.7523366
https://doi.org/10.5281/zenodo.7523366
https://arxiv.org/abs/2110.10310
https://arxiv.org/abs/2110.10310
https://link.aps.org/doi/10.1103/PhysRevLett.127.100501
https://doi.org/10.22331%2Fq-2022-05-09-709
https://doi.org/10.22331%2Fq-2022-05-09-709
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41467-022-28526-y
https://arxiv.org/abs/2101.06250
https://doi.org/10.1088%2F2058-9565%2Fab8505
https://doi.org/10.5281/zenodo.3677541


[83] T. Nguyen, D. Arya et al., “Software for massively parallel quantum
computing,” arXiv preprint arXiv:2211.13355, 2022.

[84] M. A. Serrano, J. A. Cruz-Lemus et al., “Quantum software
components and platforms: Overview and quality assessment,” ACM
Comput. Surv., vol. 55, no. 8, dec 2022. [Online]. Available:
https://doi.org/10.1145/3548679

[85] A. Luckow, M. Santcroos et al., “P*: A model of pilot-abstractions,”
in 2012 IEEE 8th International Conference on E-Science, 2012, pp.
1–10.

[86] J. Beránek, A. Böhm et al., “It4innovations/hyperqueue: v0.15.0,” Apr.
2023. [Online]. Available: https://doi.org/10.5281/zenodo.7838764

[87] A. J. McCaskey, D. I. Lyakh et al., “XACC: a system-level software
infrastructure for heterogeneous quantum–classical computing,”
Quantum Science and Technology, vol. 5, no. 2, p. 024002, feb 2020.
[Online]. Available: https://doi.org/10.1088%2F2058-9565%2Fab6bf6

[88] NVIDIA, “NVIDIA CUDA Quantum: The platform for hybrid
quantum-classical computing,” https://developer.nvidia.com/cuda-q
uantum, 2023.

[89] B. Johnson, “Qiskit runtime, a quantum-classical execution platform
for cloud-accessible quantum computers,” Bulletin of the American
Physical Society, 2022.

[90] D. Poccia, “Introducing amazon braket hybrid jobs – set up, monitor,
and efficiently run hybrid quantum-classical workloads,” https://aws.
amazon.com/blogs/aws/introducing-amazon-braket-hybrid-jobs-set-u
p-monitor-and-efficiently-run-hybrid-quantum-classical-workloads/,
2021.

[91] B. Weder, U. Breitenbücher et al., “Integrating quantum computing
into workflow modeling and execution,” in 2020 IEEE/ACM 13th
International Conference on Utility and Cloud Computing (UCC),
2020, pp. 279–291.

[92] B. Weder, J. Barzen et al., Quantum Software Development Lifecycle.
Cham: Springer International Publishing, 2022, pp. 61–83. [Online].
Available: https://doi.org/10.1007/978-3-031-05324-5 4

[93] S. Sivarajah, L. Heidemann et al., “Tierkreis: A dataflow framework
for hybrid quantum-classical computing,” 2022. [Online]. Available:
https://arxiv.org/abs/2211.02350

[94] Zapata Computing, “Orquestra: A platform for hybrid quantum-
classical computing,” Zapata Computing, https://www.zapatacomp
uting.com/orquestra-platform/, 2023.

[95] Covalent, “Covalent: Open source workflow orchestration for heteroge-
nous computing,” Covalent, https://www.covalent.xyz/, 2023.

[96] M. Turilli, V. Balasubramanian et al., “Middleware building blocks
for workflow systems,” Computing in Science & Engineering,
vol. 21, no. 4, pp. 62–75, jul 2019. [Online]. Available: https:
//doi.org/10.1109%2Fmcse.2019.2920048

[97] Q. Alliance. (2023) Qir alliance: The core of quantum development.
Accessed: May 04, 2023. [Online]. Available: https://www.qir-allianc
e.org/

[98] (2023) Openqasm. Accessed: May 04, 2023. [Online]. Available:
https://openqasm.com/

[99] T. Lubinski, C. Coffrin et al., “Optimization applications as quantum
performance benchmarks,” 2023.

[100] F. Berman, R. Wolski et al., “Application-level scheduling on dis-
tributed heterogeneous networks,” in Supercomputing ’96:Proceedings
of the 1996 ACM/IEEE Conference on Supercomputing, 1996, pp. 39–
39.

[101] M. Turilli, M. Santcroos, and S. Jha, “A comprehensive perspective
on pilot-job systems,” ACM Comput. Surv., vol. 51, no. 2, apr 2018.
[Online]. Available: https://doi.org/10.1145/3177851

[102] M. Rossmannek, P. K. Barkoutsos et al., “Quantum HF/DFT-
embedding algorithms for electronic structure calculations: Scaling
up to complex molecular systems,” The Journal of Chemical
Physics, vol. 154, no. 11, 03 2021, 114105. [Online]. Available:
https://doi.org/10.1063/5.0029536

[103] J. R. Finžgar, P. Ross et al., “Quark: A framework for quantum
computing application benchmarking,” in 2022 IEEE International
Conference on Quantum Computing and Engineering (QCE), 2022,
pp. 226–237.

https://doi.org/10.1145/3548679
https://doi.org/10.5281/zenodo.7838764
https://doi.org/10.1088%2F2058-9565%2Fab6bf6
https://developer.nvidia.com/cuda-quantum
https://developer.nvidia.com/cuda-quantum
https://aws.amazon.com/blogs/aws/introducing-amazon-braket-hybrid-jobs-set-up-monitor-and-efficiently-run-hybrid-quantum-classical-workloads/
https://aws.amazon.com/blogs/aws/introducing-amazon-braket-hybrid-jobs-set-up-monitor-and-efficiently-run-hybrid-quantum-classical-workloads/
https://aws.amazon.com/blogs/aws/introducing-amazon-braket-hybrid-jobs-set-up-monitor-and-efficiently-run-hybrid-quantum-classical-workloads/
https://doi.org/10.1007/978-3-031-05324-5_4
https://arxiv.org/abs/2211.02350
https://www.zapatacomputing.com/orquestra-platform/
https://www.zapatacomputing.com/orquestra-platform/
https://www.covalent.xyz/
https://doi.org/10.1109%2Fmcse.2019.2920048
https://doi.org/10.1109%2Fmcse.2019.2920048
https://www.qir-alliance.org/
https://www.qir-alliance.org/
https://openqasm.com/
https://doi.org/10.1145/3177851
https://doi.org/10.1063/5.0029536

	Introduction
	Applications and Algorithms
	Optimization
	Use Cases
	Algorithms

	Machine Learning
	Use Cases
	Algorithms

	Simulation
	Use Cases
	Algorithms

	Discussion

	Integration Patterns
	HPC-for-Quantum
	Quantum-in-HPC
	Quantum-about-HPC
	Discussion

	State of the Art and Related Work
	Quantum Software Libraries
	Quantum-HPC Integration
	Quantum-HPC Middleware

	Quantum-HPC Middleware: Toward a Conceptual Framework
	Functional Layers
	Challenges and Design Objective
	Conceptual Middleware
	Workflow Layer
	Workload Layer
	Task Layer
	Resource Layer

	Example: Quantum Chemistry Workflow

	Conclusion
	References

