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Abstract—Community evolution prediction enables business-
driven social networks to detect customer groups modeled as
communities based on similar interests by splitting them into
temporal segments and utilizing ML classification to predict their
structural changes. Unfortunately, existing methods overlook
business contexts and focus on analyzing customer activities,
raising privacy concerns. This paper proposes a novel method
for community evolution prediction that applies a context-aware
approach to identify future changes in community structures
through three complementary features. Firstly, it models business
events as transactions, splits them into explicit contexts, and
detects contextualized communities for multiple time windows.
Secondly, it uses novel structural metrics representing temporal
features of contextualized communities. Thirdly, it uses extracted
features to train ML classifiers and predict the community
evolution in the same context and other dependent contexts.
Experimental results on two real-world data sets reveal that
traditional ML classifiers using the context-aware approach can
predict community evolution with up to three times higher
accuracy, precision, recall, and F1-score than other baseline
classification methods (i.e., majority class, persistence).

Index Terms—Social networks, context-awareness, community
evolution prediction, machine learning.

I. INTRODUCTION

Recently, community detection [1], [2] and evolution predic-

tion [3] gained traction to accurately detect changes in demand

and predict customer behavioral patterns in business-centric

social media platforms. Existing works in this area typically

split communities represented as a set of densely-connected

users with similar interests into independent time windows,

linked together to form community evolution chains [4]. The

communities in consecutive time windows with many similar

users are part of the same community chain [5]. On top, current

methods employ machine learning (ML) classification tech-

niques [4], [6], [7], trained based on the evolution chain from

previous time windows to predict the community evolution in

a future time window. Unfortunately, these methods [5], [7]

overlook business contexts and focus on analyzing customer

activities raising critical privacy issues. Online social platforms

adopting privacy-by-design [8], [9] mitigate such privacy chal-

lenges but present traceability problems in detecting users with

similar interests.

In this paper, we propose a novel context-aware community
evolution prediction for business-driven online social plat-

forms that focuses instead on critical business events stored

in a persistent database and does not require information

about individual users and their interactions. For example,

specific business events in a taxi social network represent

the time of joining a trip, the chosen car type, the start

and end locations, and the price. We consider these event

properties as the contexts for building contextual communities,

providing different viewpoints about the user preferences. We

apply temporal segmentation to these communities and create

community chains with changing context sizes over time. We

employ ML-based methods based on historical data to predict

and classify the community evolution:

a) Single-context community prediction: determines the

future state of a community based on its previous states.

b) Cross-context community prediction: determines the

future state of a community based on states from other

communities in another context.

We define in this paper new structural metrics for individual

contextual communities to represent the network history used

to train ML models for classification and prediction. We

implemented the single-context and cross-context community

predictions with six ML classifiers using novel context and

community metrics to represent detected communities’ struc-

tures. We performed a series of experiments to study the

benefits of single and cross-context methods using two real-

world YouTube and Portuguese Taxi data sets. Experimental

results demonstrate up to three times improvement in classi-

fication accuracy, precision, recall, and F1-score compared to

two baseline methods [10], [11].

The paper has six sections. Section II summarizes the

related works in community evolution prediction. Section III

describes the proposed context-aware community prediction

six-phase methodology in detail. Section IV presents the

underlying algorithms for temporal community segmentation

and single-context and cross-context community prediction.

Section V evaluates the single- and cross-context prediction

methods on two real-world data sets. Finally, Section VI

concludes the paper and outlines the future work.

II. RELATED WORK

Bródka et al. [5] proposed the group evolution discovery

(GED) framework for predicting the community evolution

based on the number of members and their social position.

Saganowski et al. [7] extended the GED method and produced

community evolution chains containing features and patterns

belonging to the last three disjoint time windows.
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Takaffoli et al. [4] and İlhan et al. [12] identified multiple

network and node metrics to predict community evolution.

The former applied a multi-stage ML model that predicts the

community’s survival or death based on influential members,

communities, and temporal changes. The latter focused on

reducing the model training computational cost by selecting

the three representative metrics depending on the dataset and

relevant features based on nodes and their interactions.

On the contrary, Dakiche et al. [6] applied the GED method

that uses the change rates of community structures and influ-

ential members to predict community chains using three time

windows. However, the conclusion was that using absolute

values for the first community features and only changing rates

for the next two time windows provides the best results.

Wang et al. [13] approached the community evolution

prediction problem across two granular stages. The first stage

computes the features for individual communities by con-

sidering user roles, then predicts intra- and inter-community

relationships in the second stage.

These works analyzed the network stages based on individ-

ual users and their interactions to predict community evolution.

Hence, they require unique user identifiers over time windows

and use user interactions for modeling edges and extracting

derived features, including temporal information. In contrast,

we propose a novel community evolution prediction that does

not analyze individual users or their behavior but focuses on

business-relevant interactions stored as transactional events.

Our method is suitable for online social networks where user

privacy or pseudonymity is a design requirement [14].

III. CONTEXT-AWARE PREDICTION METHODOLOGY

This section explains the context-aware community evolu-

tion prediction methodology consisting of six phases.

A. Phase 1: Dataset Preparation

1) Transactional data: labeled with distinct timestamps are

the basis for applying context-aware community prediction.

We formally represent a transaction as an (l + 2)-tuple:

T = (id, ts, L1, . . . Ll) ,

where id represents its identifier, ts the timestamp and Li a

specific context (1 ≤ i ≤ l).
2) Data pre-processing: cleans the dataset and prepares

the values for ML. In the first step, we convert enumerated

types and strings to numbers. Next, we apply value imputation

by estimating the missing fields in the original transaction

dataset. Deleting transactions with missing values is infeasible,

as it changes the number of transactions for a particular time

window that can affect the community evolution type.

B. Phase 2: Contextualization

This phase splits all transactions in l contexts. Each identi-

fied context presents a different view on the original dataset’s

transactions, and contains an equal number of contextual trans-
actions TL = (id, ts, L) with three fields: global identifier id,

timestamp ts, and a specific context L.

C. Phase 3: Contextual Community Detection

This phase clusters each context L by assigning similar

transactions to the same contextual community cLi . This results

in a set of contextual communities CL for each context L:

CL =
{
cL1 , c

L
2 , . . . , c

L
n

}
.

D. Phase 4: Temporal Contextual Community Detection

In this phase, we identify the temporal evolution chains for

each community in each context by assigning the contextu-

alized transactions to specific time windows based on their

timestamps ts. Formally, we split each contextual community

cLi in k temporal contextual communities:

cLi =
{
cLi,1, c

L
i,2, . . . , c

L
i,k

}
,

where 1 ≤ i ≤ n and k is the last known time window.

The identified community evolution chains allow comparing

the changes of temporal contextual communities across con-

secutive time windows. The resulting community evolution

based on size can be of the type continuing, shrinking,

growing, dissolving, or forming [5].

E. Phase 5: Feature Engineering

Related works employ metrics based on individual nodes,

communities, and entire networks to predict the community

evolution [7]. However, we cannot use these metrics as their

definition depends on the user’s interaction. Hence, we define

and use context and community metrics without considering

individual transactions during ML training.

1) Context metrics: reflect the structure of a context L
for a single time window t, computed as aggregates of all

communities in CL and their metrics.

a) Context size: s(L, t) represents the number of con-

textual transactions aggregated over all non-empty temporal

contextual communities ACL
t at a time window t, indicating

the interest in the network:

ACL
t =

{
cLi,t ∈ CL

∣∣∣∣ ∣∣cLi,t∣∣ > 0

}
;

s(L, t) =
∑

cLi,t∈ACL
t

∣∣cLi,t∣∣.
b) Context variety: represents the number of non-empty

temporal contextual communities ACL
t in each context:

v(L, t) =
∣∣ACL

t

∣∣ .
A high context variety indicates many scattered transactions,

while a low variety many similar transactions during t.
c) Context entropy: H(L, t) is an important indicator to

understand the context stability [15]. A high entropy represents

a uniform distribution of transactions within communities and

increases the uncertainty over their relevance. A low entropy

indicates a distribution of transactions into fewer communities

of larger size. We employ Shannon’s entropy [15] to calculate

the community relevance and uncertainty in a time window t
by using their relative sizes representing the probability that a

randomly selected transaction belongs to each community:
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H(L, t) = −
∑

cLi,t∈ACL
t

( ∣∣cLi,t∣∣
s(L, t)

· log2
∣∣cLi,t∣∣
s(L, t)

)
.

d) Community size aggregates: consist of the minimum,

maximum, average, and sum over all active communities in a

context L. The four aggregate metrics are useful to represent

a variable number of communities or contexts in a network

for training an ML model [7].

e) Community popularity aggregates: consist of the min-

imum, maximum, average, and sum of all active community

popularity metrics defined in Section III-E2. In contrast to

community size aggregates, the popularity metrics represent

relative sizes allowing better comparison of communities over

multiple time windows. For instance, popularity metrics re-

main stable, while the absolute community sizes decrease upon

periods with fewer overall network transactions.

f) Community temporal center distance aggregates: are

the minimum, maximum, average, and sum of all active

community temporal center distance metrics defined in Sec-

tion III-E2, indicating deviations of community averages over

time and potentially rendering the entire context an outlier.

2) Community metrics: reflect the structure of temporal

contextualized communities cLi,t in each context L for a single

time window t. Community metrics aggregate transactions’

context values and compute ratios compared to other commu-

nities within the same context based on the context metrics.

a) Community size:
∣∣cLi,t∣∣ represents the number of trans-

actions in the community. Intuitively, this metric provides the

community raw size to indicate its evolution type directly.

b) Community standard deviation: σ
(
cLi,t

)
indicates the

density around a community center, calculated as the average

of all individual contexts. A higher density represents more

substantial communities with fewer outliers, more consistent

and stable than scattered communities.

c) Community magnitude:
∥∥cLi,t∥∥ represents the space be-

tween the extreme context values of a community, representing

a range in a one-dimension, an area in two-dimensions, or a

volume in three-dimensions. A smaller magnitude indicates a

more substantial community with similar context values, while

a higher magnitude represents an outlier.

d) Community scarcity: scarce
(
cLi,t

)
is the average dis-

tance between the context values of a community, where a

lower scarcity means a more substantial and similar commu-

nity. Contrary to standard deviation, the scarcity considers the

shape of the context distribution focused on the outliers:

scarce
(
cLi,t

)
=

⎧⎪⎨
⎪⎩
(‖cLi,t‖

|cLi,t|
) 1

dim(cLi,t) ,
∣∣cLi,t∣∣ > 0

0,
∣∣cLi,t∣∣ = 0,

,

where dim
(
cLi,t

)
represents the number of context dimensions.

A higher-dimensional community increases the magnitude as

its context values occupy more space (e.g., three points triangle

in a two-dimensions versus three similarly close points in

a one-dimension). The exponent 1

dim(cLi,t)
standardizes the

division allowing direct comparison of resulting scarcity values

independently of the context dimension.

e) Community temporal center distance: is the Euclidean

distance between the center of the temporal contextual com-

munity cLi,t and the contextual community cLi .

f) Community popularity: represents its size relative to

the aggregated sizes of all communities in a context:

p
(
cLi,t

)
=

{ |cLi,t|
s(L,t) ,

∣∣cLi,t∣∣ > 0;

0,
∣∣cLi,t∣∣ = 0.

This metric avoids the bias towards stability if the absolute

community size is larger than the average because of a

disproportionate number of transactions in a time window.

g) Temporal contextual diversity: is the inverse number

of non-empty contextual communities in a time window t:

diverse
(
cLi,t

)
=

{
1

v(L,t) ,
∣∣cLi,t∣∣ > 0;

0,
∣∣cLi,t∣∣ = 0.

A higher temporal contextual diversity indicates the existence

of a more prominent contextual community.

F. Phase 6.1: Single-Context Community Prediction

The single-context prediction model estimates the evolution

of a community cLi,t+1 based on its metrics from N previous

states cLi,t, c
L
i,t−1, . . . , c

L
i,t−N+1. This method captures user

transactions that do not change randomly but with a latent

pattern identifiable by ML methods.

1) Training data: We derive single-context community

prediction training data in five steps.

a) Community metrics: We calculate all community met-

rics for each temporal contextual community cLi,t ∈ CL in each

time window 1 ≤ t ≤ k, where k is the last known window.

b) Time conversion: We convert the time window values

into a two-dimensional complete residue system (i.e., modulo

52 for weeks, 24 for hours, 12 for months) using sine and

cosine transformations.

c) Community metrics nonuple: We store the metrics for

a single temporal contextual community cLi,t as the following

nonuple input to the ML classification:

X
(
cLi,t

)
=

(∣∣cLi,t∣∣ , σ (
cLi,t

)
,
∥∥cLi,t∥∥ , scarce (cLi,t) ,

dist
(
cLi,t

)
, p

(
cLi,t

)
, diverse

(
cLi,t

)
, sin(t), cos(t)

)
.

d) Community evolution: We identify the community

evolution type by comparing the community size metrics

between two adjacent time windows t and t+ 1:

y(cLi,t+1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

continuing,
∣∣cLi,t∣∣ = ∣∣cLi,t+1

∣∣ ;
shrinking,

∣∣cLi,t∣∣ > ∣∣cLi,t+1

∣∣ > 0;

growing, 0 <
∣∣cLi,t∣∣ < ∣∣cLi,t+1

∣∣ ;
dissolving,

∣∣cLi,t∣∣ > ∣∣cLi,t+1

∣∣ = 0;

forming, 0 =
∣∣cLi,t∣∣ < ∣∣cLi,t+1

∣∣ .
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e) Temporal community metrics concatenation: We con-

catenate the community metric nonuples for N consecutive

time windows t that serve as input variables X
(
cLi,t

)
for the

ML training. The classifier learns the patterns in the structural

evolution of the community cLi in previous time windows to

predict the evolution in the next time window. Hence, the

training data consists of evolution chains of size N as ML

input variable X and the correct evolution label y as output:

X =
[
X

(
cLi,t−N+1

)
, . . . , X

(
cLi,t−1

)
, X

(
cLi,t

)]
;

y = y
(
cLi,t+1

)
.

G. Phase 6.2: Cross-Context Community Prediction

The cross-context community prediction model estimates

the evolution of a temporal contextual community cLi,t ∈ CL

based on contextual metrics of the N latest states of a different

reference context LR �= L. This approach captures situations

when changes in some communities cause correlated changes

in other contexts. We only consider the correlation between

communities and the entire reference contexts, as the corre-

lation between all communities for all context combinations

has a high complexity of O (n ·m · (l − 1)), where n is the

number of communities in L, m is the number of communities

in LR �= L, l − 1 is the number of reference contexts LR

and n ≈ m � l. Considering only reference context metrics

reduces this complexity to O (n · (l − 1)) per context L.

1) Training data: We derive in five steps the cross-context

community prediction training data for a context pair L �= LR.

a) Contextual metrics: We calculate the contextual met-

rics for LR based on its communities for each time window

1 ≤ t ≤ k, where k is the last known time window.

b) Time conversion: We convert the time window values

into two-dimensional features by applying sine and cosine

transformations, as in the single-context case.

c) Contextual metric septendecuple: We merge all con-

text metrics for a reference context LR and time window

t. Similarly to the single-context metrics, the resulting tuple

X (LR, t) contains 17 values with all context metrics (i.e.

context size, context variety, context entropy, four community

size aggregates, four community popularity aggregates, and

four community temporal center distance aggregates) and the

time window information (i.e. sin(t) and cos(t)).
d) Community evolution: We identify the evolution type

of a community cLi,t+1 ∈ CL by using the y
(
cLi,t+1

)
definition

from the single-context method (see Section III-F1d).

e) Temporal contextual metrics concatenation: We con-

catenate the reference contextual metrics of LR for N consec-

utive time windows representing the latest structural evolution.

Additionally, we added the unique community identifier i to

differentiate between the evolution types of predicted commu-

nities cLi in a context L. We describe the input X and output

y variables for learning the evolution of cLi,t ∈ CL based on

the metrics from the reference context LR �= L:

X = [X (LR, t−N + 2) , . . . , X (LR, t) , X (LR, t+ 1) , i] ;

y = y
(
cLi,t+1

)
.

Algorithm 1: Temporal community segmentation.

Input : TS =
{
T
∣∣T = (id, ts, LS)

}
: Transaction dataset

L: Context
Output:

(
L,CL

)
: Context and temporal contextual community pairs

1 Function segmentation(TS, L):
2 TS ← preprocess(TS) // Phase 1
3 TSL ← ∅
4 forall T ∈ TS do
5 TSL ← TSL ∪ contextualize(T, L) // Phase 2
6 end
7 CS ← OPTICS(TSL) // Phase 3
8 CL ← ∅;
9 forall c ∈ CS do

10 cLi ← detectTempCommunities(c) // Phase 4

11 CL ← CL ∪
{

cLi

}

12 end
13 return

(
L,CL

)

IV. COMMUNITY PREDICTION ALGORITHMS

This section presents the algorithms for context-aware com-

munity evolution prediction.

A. Temporal Community Segmentation

Algorithm 1 receives as input a transactional dataset TS
fulfilling the necessary prerequisites specified in Section III-A

and a context L. The segmentation function in lines 1

– 13 splits contextual communities based on timestamp and

returns a pair containing a context L and temporal contextual

communities CL. To detect temporal communities, line 2 first

pre-processes the input data by replacing enumerable data

with integers (e.g. A replaced by 1) and performing missing

value imputation on the original dataset TS (see Section

III-A). Thereafter, lines 3 – 6 contextualize each transaction

T ∈ TS (see Section III-B) and create a set TSL. Next, line 7

detects contextual communities based on the OPTICS density-

based clustering algorithm [16] applied on the transaction set

TSL. The lines 9 – 12 iterate over each detected contextual

community and divide it into a set of temporal contextual

communities cLi based on multiple time windows (line 10), and

add it to the CL set (line 11). Finally, line 13 returns the pair

of context L and obtained temporal contextual communities

CL representing the algorithm output.

B. Single-Context Community Prediction

Algorithm 2 for single-context community prediction re-

ceives as input a set of transactions TS, a context L, an ML
classifier and a number of time windows N . Line 1 initializes

an empty training dataset. The segmentation function

defined in Algorithm 1 computes the temporal communities

from a set of transaction TS and the context L in line 2.

Lines 3 – 10 perform feature engineering (see Section III-E)

by iterating each contextual community cLi ∈ CL. Lines 5

– 8 calculates all community metrics (see Section III-E2)

for each temporal community cLi,t ∈ cLi and stores it as

nonuple X
(
cLi,t

)
(line 6) appended to a community metrics

list (line 7). Afterwards, line 9 prepares the ML training data

for cLi using the computed community metrics concatenated

for N consecutive time windows. Finally, line 11 uses the final

training dataset to train the input ML classifier as a result.
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Algorithm 2: Single-context community prediction.

Input : TS =
{
T
∣∣T = (id, ts, L1, . . . Ll)

}
: Dataset with transactions

L: Context
N ≥ 2: Number of time windows
ML: Prediction classifier

Output: Single-context community prediction classifier
1 mlDat ← ∅
2

(
L,CL

)
← segmentation(TS, L)

3 forall cLi ∈ CL do
4 metricsC ← ∅
5 forall cLi,t ∈ cLi do
6 X(cLi,t) ← communityMetrics(cLi,t, c

L
i ) // Phase 5

7 metricsC ← metricsC ∪
{

X(cLi,t)
}

8 end
9 mlDat ← mlDat ∪ prepare(metricsC , N) // Phase 6.1

10 end
11 return train(ML,mlDat)

Algorithm 3: Cross-context community prediction.

Input : TS =
{
T
∣∣T = (id, ts, L1, . . . Ll)

}
: Transaction dataset

L: Context
LR: Reference context
N ≥ 2: Number of time windows
ML: Prediction classifier

Output: Cross-context community prediction classifier
1 mlDat ← ∅
2

(
L,CL

)
← segmentation(TS, L)

3
(
LR, CLR

)
←segmentation(TS, LR)

4 metricsC ← ∅
5 forall cLi ∈ CL do
6 forall cLi,t ∈ cLi do
7 X(cLi,t) ← communityMetrics(cLi,t, c

L
i ) // Phase 5

8 metricsC ← metricsC ∪
{

X(cLi,t)
}

9 end
10 end
11 metricsL ← contextMetrics(CLR) // Phase 5
12 mlDat ← prepare(metricsC ,metricsL, N) // Phase 6.2
13 return train(ML,mlDat)

C. Cross-Context Community Prediction

Algorithm 3 for cross-context community prediction re-

ceives the same input as the single-context method, plus

a reference context LR. Lines 2 – 3 initially obtain the

temporal contextual community pairs for the context L and

their reference context LR by calling the segmentation
function from Algorithm 1. Lines 5 – 10 iterate each contextual

community cLi ∈ CL and perform the feature engineering

(similar to Algorithm 2), including the community metrics for

all temporal contextual communities in CL. Line 11 calculates

the context metrics (see Section III-E1) using the temporal

contextual communities in CLR for the reference context LR.

Finally, line 12 prepares the septendecuples for training the

ML classifier as the algorithm’s output in line 13.

V. EXPERIMENTAL EVALUATION

We implemented our method and ML models in Python 3.6

using scikit-learn 0.24.0, imbalanced-learn
0.8.0, numpy 1.19.3, and pandas 1.1.5 modules.

We executed all experiments on an Intel Xeon Gold 5218

server at 2.3GHz with 384GB memory and running Ubuntu

Linux 18.04 LTS operating system.

A. Experimental datasets

We chose two datasets for the experimental evaluation.

1) YouTube dataset: from Kaggle1 contains ten individual

top trending video lists per country and additional files con-

taining the video categories. Naturally, the dataset does not

contain information about individual users but only aggregates

attributes such as the number of likes. Hence, we merged the

individual files in a single dataset with seven contexts that

build communities and require prediction of their evolution:

a) Views, Likes, Dislikes, Comments: indicate

corresponding attention metric received by trending videos.

b) Country: represents the origin of trending videos.

c) Category: shows the most trending video types

(e.g. latest movie trailers, pet videos, documentaries).

d) Trend Duration: indicates the duration for the

videos from upload until receiving the top trending label.

2) Taxi dataset: from Kaggle2 contains one year of taxi

rides from the city of Porto (Portugal) with no explicit pas-

senger information. We do not analyze the whole path taken

by a taxi and its customer but only focus on four contexts:

a) Order Type: indicates the method of ordering a

taxi, such as calling taxi central, visiting a taxi stand, or

stopping the free taxi on an arbitrary street.

b) Day Type: indicates a normal workday, weekend,

holiday, or a day preceding a work-free day.

c) Start and End Location: indicate origin and

destination of a taxi trip.

B. ML data preparation

Applying the context-aware prediction method on both

YouTube and Taxi datasets generated imbalanced training data

for single and cross-context prediction due to the high number

of empty communities, creating more prominent evolution

types and classification biases. Hence, we combined under-

sampling and oversampling estimates to avoid such biases

towards frequent community evolution types during training.

We chose the median number of community evolutions over all

types as the sampling size, containing sufficient ML training

entries. We undersampled more frequent evolution types to

match the median class size and oversampled rare types by

applying the synthetic minority technique [17]. Contrary to

the training data, we did not undersample or oversample

the testing data to correctly represent the original dataset

distribution when evaluating the trained ML models.

C. ML classification models

We implemented six ML models to evaluate our method:

naı̈ve Bayes (NB), support vector machine (SVM), k-nearest

neighbors (KNN), decision tree (DT), random forest (RF),

and boosting. All models use training data generated by the

single-context and cross-context algorithms, differently sized

per context depending on the number of community and

context metrics. We standardized each metric value range in

1https://www.kaggle.com/datasnaek/youtube-new
2https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
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TABLE I: ML hyperparameter tuning for single-context and

cross-context community prediction.

Model Hyperparameter Value range Selection
Single-context Cross-context

NB
Prior distribution class probabilities, none none class probabilities

Smoothing [0, 1] 0 1e−9

SVM
Regularization R 1 1

Kernel {linear, rbf, poly, sigmoid} linear linear
Kernel coefficient {scale, auto, R } scale scale

KNN

Number of neighbors N 20 30
Neighbor weights {uniform, distance, callable} uniform uniform

Algorithm {auto, ball tree, kd tree, brute} auto auto
Tree leaf size N 30 50

DT

Split criterion {gini, entropy} gini gini
Splitter {best, random} random random

Maximum tree depth N, none 10 none
Minimum leaf size N 1 2

Minimum impurity decrease for split R 1e−5 1e−5
Cost-complexity pruning R

+ 1e−3 0

RF

Number of estimators N 100 100
Split criterion {gini, entropy} gini gini

Maximum tree depth N, none none none
Minimum leaf size N 2 2

Minimum impurity decrease for split R 1e−5 1e−5

Boosting

Base estimator ML classifier DT DT
Number of estimators N 50 50

Algorithm {SAMME, SAMME.R} SAMME.R SAMME.R
Learning rate R 0.3 0.3

the training and testing data to resemble a normal distribution

with a mean of zero and a standard deviation of one, reducing

bias towards features with larger numbers [18]. In addition,

we applied dimensionality reduction with principal component

analysis (PCA) on the standardized dataset. We used the first

ten principal components that explain at least 80% of the data

variance for training additional ML models on uncorrelated

features, NB*, SVM*, KNN*, DT*, RF*, and boosting*.

Finally, we used a sample of the balanced standardized training

data for hyperparameter tuning of each model from the single

and cross-context algorithms, as illustrated in Table I.

D. Baseline methods

We compared all ML models to two related baseline models.

a) Majority class [11]: prediction assigns the most fre-

quent community type used for training to all communities

used for testing, leading to an accuracy equal to its proportion

in the entire dataset.

b) Persistence method [10]: assumes stable change of

communities preserving the evolution type across time win-

dows. Contrary to the majority class, this method assigns

one community evolution type considering the community’s

immediate history from the previous time window.

E. Evaluation and analysis method

We applied 10-fold cross validation [19] on the ML datasets

for both community prediction methods to evaluate all ML

models. We evaluated the community evolution prediction

using Accuracy, Precision, Recall, and F1-score
metrics [20]. We present the averages of the prediction metrics

for each ML classifier’s five possible evolution types. We

only visualize the better version of each classifier, trained

directly on community metrics or after applying PCA for

brevity reasons. We do not present results for all contexts in the

single and cross-context community prediction methods but

only show the contexts with the greatest variety per method.
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Fig. 1: Likes community prediction for the YouTube dataset.
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Fig. 2: Start Location prediction for Taxi dataset.

F. Single-context community prediction

We analyze the single-context community prediction re-

sults for the Likes and Start Location contexts in the

YouTube (see Figure 1) and Taxi (see Figure 2) datasets.

a) Majority class: reached an accuracy of 60% for the

YouTube Likes (see Figure 1a) and 70% for the Taxi Start
Location context (see Figure 2a). This surprisingly good

accuracy is due to imbalanced testing datasets with a dispro-

portional amount of empty continuing communities as the

majority class. The low precision, recall, and F1-score metrics

below 20% for both contexts confirm this paradox [20].

b) Persistence method: improved over the majority class

baseline and obtained 20% precision, recall, and F1-scores for

both imbalanced testing datasets and contexts. Essentially, this

method showed similar results as random theoretic guessing

for the five evolution types (i.e., 1
5 ) but assumes stable changes

for predicting communities in both contexts. However, the per-

sistence method obtained a lower accuracy of 46% for Likes
and 57% for Start Location contexts, as it predicts based

on the direct history across time windows instead of relying

on frequent community evolution types.
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c) NB: performed worse than the baseline classifiers due

to the violation of the naı̈ve independence assumption for

input features, as community metrics from consecutive time

windows do not change independently but depend on each

other. Using transformed features based on PCA yielded better

accuracy (30%), precision (41%), recall (40%), and F1-score

(26%) for the YouTube Likes context, respectively 44%,

44%, 46%, and 32% for the Taxi Start Location context.

d) DT: performed better than the baseline methods and

obtained a higher accuracy (62%), precision (48%), recall

(55%), and F1-score (47%) for the YouTube Likes context.

For this context, DT* with PCA performed worse than DT. On

the contrary, DT* achieved better accuracy (69%), precision

(47%), recall (62%), and F1-score (50%) than DT for the Taxi

Start Location context. We analyze the single-context

prediction results of boosting and RF ensemble techniques

utilizing multiple DTs to mitigate this inconsistency.

e) Boosting: reached the highest accuracy of 70% and

79% for both Likes and Start Location contexts com-

pared to all prediction methods. However, it exhibited the

accuracy paradox by ignoring the forming community evo-

lution type with increased false positives of other evolution

types. This weakness reflects in the low precision (43%) for the

YouTube Likes and the Taxi Start Location context.

Increasing the number of estimators or decreasing the learning

rate (see Table I) can solve this paradox of ignoring under-

represented evolution types but requires increased training.

Changing the base estimator from DT to SVM improved the

results for contexts with smaller training data (e.g., YouTube

Country and Taxi Order Type) because SVM needs fewer

data to learn the latent patterns. However, DT base estimators

showed better results across contexts with all training data.

f) KNN: performed better than both baseline predictors

and NB* achieving slightly better precision (48%), recall

(59%), and F1-score (49%) than boosting for YouTube Likes
context and similar for Start Location context (i.e. 46%

precision, 62% recall, 46% F1-score). Contrary to boosting,

KNN predicted all five evolution types in all contexts of both

datasets. KNN* performed similarly to KNN with differences

up to only 2%, indicating that PCA-transformed feature space

did not change relative distances between nearest neighbors.

g) SVM and RF: performed similarly and achieved the

best overall results across all contexts. Their average accuracy

is 57% and 59%, average precision is 52% and 55%, average

recall is 59% and 65%, and F1-score is 50% and 55%. Both

SVM and RF improved the baseline prediction methods by up

to 3 times in precision, recall, and F1-score. Finally, RF and

SVM considered all five evolution types for all contexts during

prediction, while RF* and SVM* only ignored the smallest

shrinking evolution type for one context.

G. Cross-context community prediction

We analyze the Cross-context community prediction results

for Trend Duration based on the number of Views
reference context in the YouTube dataset, and Order Type
based on the Day Type context in the Taxi dataset.
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Fig. 3: Trend Duration community prediction based on

the Views reference context.
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Fig. 4: Order Type community prediction based on the Day
Type reference context.

a) Majority class and Persistence method: achieved

high accuracy of 62% and 63%, respectively, for Trend
Duration (see Figure 3a) in YouTube dataset. Majority

class exhibited accuracy paradox for Trend Duration by

predicting a disproportionate amount of empty continuing
communities with precision (12%), recall (20%), and F1-score

(15%) metrics below theoretical balanced random guessing re-

sult (20%). Persistence method performed better with slightly

improved precision (32%), recall (31%) and F1-score (31%)

metrics. Similarly, for Order Type based on Day Type
reference context in Taxi dataset, accuracy (54%), precision

(27%), recall (50%), and F1-score (34%) for majority class

is below the balanced random guessing result of 50% for the

two evolution types shrinking and growing. This result

is due to different majority classes for the training and testing

data for 5 out of 10 cross-validation folds. On the contrary, the

persistence method resembled random guessing (50%) results

for Taxi Order Type based on Day Type context.
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b) KNN: obtained a lower accuracy (48%), precision

(42%), recall (51%), and F1-score (41%) than other ML meth-

ods for the YouTube Trend Duration context. However,

it obtained slightly higher accuracy (58%), precision (59%),

recall (58%) and F1-score (56%) for the Taxi Order Type
context, performing only better than SVM.

c) SVM: improved over both baseline classifiers for the

YouTube Trend Duration with 1.5 times higher precision

(45%), recall (52%), and F1-score (45%). However, it per-

formed similar to the persistence method and achieved random

guessing results (50%) for the Taxi Order Type context.

d) NB: performed worse than the baseline classifiers

for the YouTube Trend Duration based on the Views
context, while it performed slightly better for the Taxi Order
Type context. Conversely, its PCA version NB* improved

prediction results for the Trend Duration context by 10%,

but worsened results for the Taxi Order Type by 5%.

Manually selecting the better version for Trend Duration
and Order Type achieves high accuracy (62% and 63%),

precision (43% and 62%), recall (46% and 64%), and F1-

score (62% and 61%), respectively in each case. We also

observed that NB and NB* ignored shrinking, growing,

and forming evolution types for some contexts due to their

under-representation in the testing dataset.

e) DT, boosting, and RF: delivered the best cross-context

prediction compared to other methods. RF* achieved the high-

est accuracy (66% and 74%) followed by DT (64% and 70%)

and boosting (59% and 73%) for Trend Duration and

Order Type. DT predicted the Trend Duration context

with higher precision, recall, and F1-score compared to the

boosting technique that uses 50 DTs sequentially (see Table I).

RF ensemble technique with 100 parallel DTs performed better

for both Trend Duration and Order Type context due

to its ability to combine best results across all DTs.

VI. CONCLUSIONS

We introduced a context-aware community evolution pre-

diction method in business-driven social networks that initially

split the business events modeled as transactions into explicit

contexts, detect contextualized communities, and divide them

temporally. Next, it enables feature extraction by calculating

15 context and 7 community metrics and applies six ML mod-

els to perform single and cross-context community prediction.

Experimental results on two real-world datasets demonstrated

that our methods improve the community prediction metrics

by up to three times compared to baseline classifiers. In future,

we plan to combine the single and cross-context methods and

provide an automatic selection of the most relevant context

and community metrics for improved prediction.
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