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A brief overview of antimicrobial resistance
Antibiotics are regarded as one of the most important medical advances of the 20th century. Since 
the discovery of penicillin in 1928, antibiotics became the main tool to combat and prevent bacte-
rial infections, saving the lives of many people and enabling significant progress in the field of me-
dicine and surgery [1–3]. Furthermore, the use of antibiotics in multiple husbandry activities has 
contributed to the increase in production of high-quality food over the past 80 years [4]. Never-
theless, in 1940, soon after the discovery of penicillin, the first penicillin-resistant Staphylococcus 
strain was described [5]. Moreover, by the 1950s, penicillin resistance was already an important 
issue in clinical settings [6]. Since then, a myriad of new antimicrobials have been discovered, de-
veloped and deployed, and are of vital importance in the treatment of infections in ICU patients, 
among others. Unfortunately, bacteria eventually developed resistance mechanisms to counter 
every developed antimicrobial [2]. 

Resistance to antimicrobials can either be intrinsic or acquired. Intrinsic resistance occurs due to inhe-
rent properties of the bacterium [7], it does not depend on exposure to the antibiotic and it is generally 
encoded by chromosomally located features. For example, the presence of an outer membrane (OM), 
impermeable to many molecules, makes gram-negative bacteria (GNB) resistant to multiple antimicro-
bials [8]. In contrast, acquired resistance mechanisms may turn sensitive bacteria resistant to specific 
antimicrobials. There are several mechanisms by which bacteria may acquire resistance. The expression 
of efflux pumps can reduce the antimicrobial concentration to sub-inhibitory levels inside the cells. 
These pumps can either be non-specific, catalyzing the efflux of multiple drugs [9], or antibiotic-speci-
fic, such as tetracycline efflux pumps [10]. Additionally, changes in membrane permeability can reduce 
antimicrobial intake. Mutations in porins reduce the absorption rate of carbapenems in Acinetobacter 
baumannii and Enterobacter cloacae [11,12]. Antimicrobial resistance (AMR) can also arise due to the 
enzymatic degradation or modification of the antimicrobial. Resistance to multiple β-lactams is asso-
ciated with the expression of bacterial enzymes, termed β-lactamases, that can hydrolyze this class of 
antibiotics rendering them ineffective [13]. Finally, bacteria can protect or modify the molecular target 
of the antibiotic. Vancomycin resistance in Enterococcus species arises due to alteration of the molecular 
target of vancomycin, i.e. the replacement of the d-Ala-d-Ala terminus of the peptidoglycan cell wall 
precursor lipid II, by d-Ala-d-Lac (VanA/VanB type of vancomycin resistance), thereby reducing the 
affinity between vancomycin and its target [14]. 

Although we may be tempted to think that antibiotic resistance is a novel phenomenon, it is in fact 
quite the opposite. Genes encoding resistance to β-lactam, tetracycline and glycopeptide antibio-
tics were found in ancient DNA from 30,000-year-old permafrost [15]. Moreover, bacterial strains 
detected in a region of the Lechuguilla Cave, New Mexico, that had been isolated for over 4 million 
years, were found to be resistant to 14 different commercially available antibiotics [16,17]. These 
findings conclusively show that antibiotic resistance is a natural phenomenon that predates the selec-
tive pressure of modern clinical antibiotic use.

The rise of resistance
Today, AMR is considered one of the main threats to public health [18], with the number of infec-
tions caused by resistant bacteria consistently increasing each year [19]. In 2019, a total of 1.27 mi-
llion deaths were attributed to bacterial AMR globally, with six pathogens being responsible for the 
majority: Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, 
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Acinetobacter baumannii and Pseudomonas aeruginosa. Moreover, the emergence and global spread 
of multidrug resistant (MDR) bacteria, both in clinical and community settings, leaves physicians 
with few or no therapeutic options to treat infections caused by MDR bacteria. On top of this, only a 
limited number of new antimicrobials have been approved for human use in recent years [20].

The emergence and spread of AMR are complex phenomena, but are mainly driven by two factors. 
First, the use, overuse and misuse of antimicrobials in both humans and animals, which exerts an evo-
lutionary pressure on bacteria and confers a selective survival advantage to those that have acquired 
resistance via mutations or more complex genomic rearrangements [21]. When bacteria replicate, 
these resistance traits are inherited (vertically) to the descendants. Within the human domain, the 
prevalence of antimicrobial resistant pathogens is highest in intensive care units (ICUs), where the 
most severely ill patients are admitted. They are often exposed to multiple antimicrobial drugs over 
extended periods of time. Second, bacteria can acquire exogenous DNA, including AMR genes, by 
horizontal gene transfer (HGT) [22]. The horizontal transfer of genes facilitates the spread of AMR 
determinants across bacterial populations in different niches. 

The best described mechanisms of HGT in bacteria include transformation, transduction and con-
jugation. During transformation, bacteria take up free DNA from the environment, and incorporate 
it into their chromosome or reassemble it as part of the self-replicating episome [23]. Bacteria are ca-
pable of mediating the acquisition of large pieces of DNA (7 - 50 kb) through this mechanism [24]. 
Importantly, transformation has been shown to result in the transfer of clinically relevant AMR in 
a variety of human pathogens [25–28]. Transduction is mediated by phages and although different 
mechanisms for transduction exist, they all involve the mispackaging of bacterial DNA into the pha-
ge capsid. The phage then infects another host and transfers the genetic material to a different bacte-
rial cell, where it will be integrated by homologous recombination [29,30]. Bacteriophages isolated 
from methicillin-resistant Staphylococcus aureus were found to transduce AMR genes to sensitive 
strains in the laboratory [31]. In gram-negative bacteria, transduction has been observed to transfer 
extended spectrum beta-lactamases (ESBL) genes from Pseudomonas hospital isolates to other Pseu-
domonas strains in-vitro [32] or a carbapenemase encoding gene was also transduced between Acine-
tobacter strains [33]. Conjugation requires cell-to-cell contact and the formation of a pore through 
which DNA can pass. The basic mechanism of conjugation is conserved among both gram-negative 
and gram-positive bacteria [34,35], and it was shown to occur in bacterial communities from diverse 
environments, such as soil, plant surfaces, sewage and even within the microbiome of animals [36–
40]. Conjugative transfer systems are associated with plasmids and with integrative and conjugative 
elements (ICEs), also known as conjugative transposons. Plasmids are self-replicating extrachromo-
somal DNA elements that frequently carry AMR genes. From the three HGT mechanisms, conjuga-
tion is thought to be the most important quantitatively[41].

ESBL-producing Escherichia coli 
Escherichia coli is a versatile micro-organism that can thrive in different ecological niches. It is a 
gram-negative facultative anaerobe bacterium that commonly resides as a commensal bacterium in 
the gut of humans and other warm-blooded animals [42,43]. However, several members of this spe-
cies can also cause severe infections, either intra- or extra-intestinally [44]. The ‘success’ of E. coli 
as a pathogen is probably driven by its high degree of genomic plasticity. Gene loss events, DNA 
rearrangements, point mutations and the acquisition of genomic features via HGT have led to the 
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emergence of E. coli  isolates that carry a wide repertoire of virulence factors, as well as multiple AMR 
genes [45–48]. Moreover, a recent assessment of the global burden of AMR estimated that resistant 
E. coli infections accounted for more than 250,000 deaths in 2019 [19].

In recent years, infections caused by extended spectrum beta-lactamase (ESBL)-producing E. coli 
have rapidly increased and have become an important public health concern. ESBLs are enzymes 
that can hydrolyze broad-spectrum β-lactams, including third generation cephalosporins, such as 
cefotaxime, ceftriaxone, and ceftazidime [49,50].  Different types of ESBL enzymes exist, including 
blaTEM, blaSHV and blaCTX-M. During the 1990s, blaTEM and blaSHV genes were dominant and mainly 
associated with specific clones of K. pneumoniae, generally isolated from clinical environments [51]. 
Nowadays, E. coli is the main ESBL-producing pathogen, being also the most prevalent resistant 
pathogen in Europe [48,52–54], and the second most prevalent worldwide [19], when considering 
both community and hospital-acquired infections. This increase in prevalence of ESBL-E. coli was 
triggered by the emergence and dissemination of the blaCTX-M genes, which is now the dominant 
ESBL gene family worldwide [51]. These genes are commonly associated with a wide variety of mo-
bile genetic elements (MGE), like plasmids, ICEs and insertion sequences (IS), which facilitated 
their dissemination across the population structure of E. coli and partially explains the rapid increase 
in prevalence of ESBL-E. coli [51,55]. Additionally, the successful mutualistic association between 
IncF plasmids carrying the blaCTX-M-15 or blaCTX-M-27 variants with the globally disseminated clone 
ST131 further explains the success of this resistant pathogen [51,56,57]. E. coli ST131 appears to 
have an increased capability for gut colonisation and the existence of compensatory mutations in 
its chromosome seem to alleviate the fitness cost of carrying the aforementioned ESBL-plasmids 
[58,59]. 

It was observed that ESBL-E. coli frequently co-acquired resistance to fluoroquinolones and seve-
ral other clinically important antimicrobials [60–62]. Therefore, carbapenems have become the 
first-choice antibiotic to treat invasive infections caused by ESBL-E. coli. However, the frequent 
use of carbapenems has led to an increased incidence of carbapenem resistant infections caused by 
Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa, particularly in clinical 
environments [52,63].

ICU-acquired infections, colonisation and decontamination strategies 
in Dutch ICUs
Healthcare -associated infections (HAIs) are those acquired by patients during their stay in a hospi-
tal or another healthcare setting. HAIs are associated with increased morbidity and mortality, and 
with an excess cost in patient care [64,65].  The European Center for Diseases prevention and Con-
trol estimated that 5.7% of patients admitted to a hospital in Europe in 2011 acquired a HAI [52]. 
Similar reports indicated that 4% of hospitalised patients in the U.S. acquired one of these infections 
in 2014 [66]. The most common pathogens found in healthcare associated infections are E. coli, S. 
aureus, Enterococcus spp., Klebsiella spp. and P. aeruginosa [52].

The prevalence of HAIs is the highest among patients admitted to ICUs, where approximately 1 in 
5 patients (20%) will get a HAI during their stay [52]. Patients admitted to ICUs are generally at in-
creased risk for acquiring infections, mainly due to severe disease and multiple comorbidities, inter-
ventions that reduce local defence mechanisms (e.g. mechanical ventilation, indwelling devices), as 
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well as, sometimes, the administration of immunosuppressive drugs, among other factors. These pa-
tients are susceptible to colonisation with potentially pathogenic microorganisms (PPMO), which is 
strongly associated with  the development of infections in ICUs [67–70]. The gastrointestinal tract 
seems to be the primary reservoir for most bacterial pathogens associated with HAIs [71–75]. Once 
a patient has been colonised, cross-transmission of these pathogens across different patients is facili-
tated by their frequent contact with healthcare workers, abiotic surfaces or medical devices [76–83]. 

In the ICU, the prevalence of AMR is higher than in non-ICU wards. In the Netherlands, between 
2015 and 2019, there was a slow increase in the prevalence of resistance to third-generation cepha-
losporins amongst E. coli diagnostic isolates in non-ICU wards from 5.5% to 6.5% , whereas in ICU 
wards, the prevalence increased from 8% to 10% [84].

Patients admitted to a Dutch ICU, if expected to undergo mechanical ventilation for at least 48 
hours, receive selective digestive decontamination (SDD) as a prophylactic treatment to prevent co-
lonisation with PPMOs. SDD consists of a mix of topical antibiotics (Tobramycin, Colistin and 
Amphotericin B) that aims to reduce the load of aerobic GNB, P. aeruginosa, S. aureus and yeast, but 
without compromising the anaerobic flora. SDD is administered as an oropharyngeal paste and as a 
solution through the nasogastric tube. Additionally, a 4-day course of an intravenous cephalosporin 
(cefotaxime or ceftriaxone) is also administered, to treat any incubating infection at the time of ICU 
admission [85]. A variation of SDD, named Selective Oropharyngeal Decontamination (SOD), 
consisting only of the oropharyngeal paste, is administered in some ICUs as an alternative to SDD 
[86]. In the Netherlands, where the prevalence of antibiotic resistance is low [87], SDD was associa-
ted with improved patient outcome in comparison to standard care, with reduced mortality, shorter 
lengths of ICU stay and a lower incidence of ICU-acquired bacteremia [88–93].

Multiple studies suggest that the use of SDD does not lead to an increase in the prevalence of colo-
nisation or infection with antimicrobial resistant pathogens, however, those studies were based on 
phenotypic resistance data [94–96]. Nonetheless, studies that relied on metagenomics approaches 
reported important changes in the microbiome of patients treated with SDD, including an increase 
in the abundance of aminoglycoside-resistance genes [97,98]. It is important to note that those genes 
could not be linked to PPMO’s and the studies were performed in small numbers of patients without 
a proper comparison group. The effect of SDD on the genome of gram-negative pathogens has not 
been studied before.

Plasmids, key players in the spread of AMR
Plasmids are autonomously replicating DNA molecules that can coexist with the bacterial chromo-
some [99]. These genomic elements are ubiquitous in bacteria, and a single bacterial cell can harbour 
zero, one or multiple plasmids. Plasmids frequently mediate the transfer of beneficial accessory ge-
nes, such as AMR genes, within and between species of bacteria. These beneficial traits can confer 
resistance to antibiotics, expand the metabolic capabilities of bacteria and/or contribute to their 
adaptation to different environments [100–102]. Plasmids can be broadly categorised by their mo-
bilization capabilities into conjugative, mobilizable and non-mobilizable [103]. Alternatively, they 
can also be categorized into incompatibility groups (Inc). Two plasmids belong to the same Inc type 
when they cannot stably coexist in the same bacterial cell. 
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Conjugative plasmids encode all necessary components to catalyze their own transmission to a di-
fferent host via conjugation, and these plasmids have been associated with the spread of AMR sin-
ce the late 1950s [104]. The genomic architecture and functionality of conjugative plasmids makes 
them ideal platforms for the dissemination of beneficial traits across bacterial populations. These are 
generally composed of a relatively stable plasmid backbone, which includes the genes encoding for 
conjugative capabilities but also for the systems that ensure the stability and vertical inheritance of 
the plasmid, such as replicative proteins, postsegregational killing systems and CRISPR-Cas arrays 
[105,106]. Aside from the backbone, conjugative plasmids usually contain a high density of repeated 
sequences, such as those associated with transposable elements, which creates hotspots for recom-
bination. This proclivity towards recombination allows plasmids to easily capture blocks of genetic 
elements from distinct sources, but also to frequently rearrange or delete these blocks [107,108]. 
Consequently, plasmids often exhibit an extraordinary variety of accessory genes, arranged in mo-
saic-like structures [109–111]. This genetic plasticity also allows plasmids to accumulate multiple 
AMR genes in the same backbone, sometimes creating resistance islands, as observed in plasmids 
carrying IS26 in different gram-negative bacteria [112–114].

Studies describing plasmids as drivers behind the spread of AMR in different environments are ac-
cumulating. In the clinical environment, where the antibiotic pressure is high, AMR plasmids are 
increasingly being recognized as important contributors to the occurrence of prolonged single- and 
multi-species outbreaks [115–118]. Additionally, the dissemination of AMR plasmids, often carr-
ying important resistance determinants as blaOXA-48, blaKPC-2 and blaCTX-M-15, has been detected inside 
the gut of hospitalised patients [40,119–121]. Plasmids bearing multiple resistance genes with in-
creased conjugative capabilities were also found in inhalable particulate matter of hospitals [122], 
which has serious implications for the potential sources of transmission of AMR in the clinics. In 
animal husbandry environments, where selective pressure is high, plasmids carrying resistance even 
to last-resource antibiotics were found are widespread in animals, soil and surrounding water sources 
[37,123–127]. More recently, the isolation of bacteria carrying plasmid-encoded carbapenemases or 
colistin resistance (mcr) genes in wild animals highlighted the high degree of AMR dissemination 
driven by plasmids [128,129].

Genomic surveillance of plasmids: Challenges and new methods
Given that plasmids play an important role in the dissemination of AMR, it is becoming increasingly 
clear that if we want to better understand the mechanisms that drive this dissemination, we need 
tools that allow us to identify and classify plasmids in a fast, precise and high-throughput manner. 
The development of next-generation sequencing (NGS) platforms has allowed the characterization 
of bacterial genomes on a massive scale. Every platform works by initially fragmenting the genome 
and sequencing each fragment separately, producing reads. The subsequent de novo assembly of these 
reads leads to larger fragments of contiguous DNA sequence called contigs. NGS platforms can be 
classified according to the lengths of DNA reads they produce. Long reads, obtained via PacBio and 
Oxford Nanopore platforms, have an average length of around 20.000 bp [130,131], and after their 
de novo assembly it is possible to obtain complete genomes [132,133], meaning that each replicon in 
the bacteria (chromosome and plasmids) is represented by a single contig. The main disadvantages 
of long-read platforms are their higher costs and error rates. Short reads, obtained via Illumina se-
quencing platforms, can be up to 300 bp in length. Illumina sequencing platforms produce highly ac-
curate reads and large amounts of samples can be processed simultaneously, making these platforms 
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cost-effective. Nevertheless, due to the frequent occurrence of repeated elements, the de novo assem-
bly of short reads produces hundreds of contigs of unclear origin (plasmid or chromosome) mingled 
together in a draft genome. Consequently, determining the exact sequence of plasmids using short 
reads alone is challenging. 

Although long reads allow obtaining complete genomes, Illumina short reads remain the most wi-
dely adopted sequencing technology in microbial genomics. As of July 2022, the sequence read ar-
chive (SRA) contained more than 1.8 million DNA sequences corresponding to bacterial genomes, 
and 98% of these were obtained using short reads (See Chapter 4 - Figure 1). Moreover, new short-
read technologies are being brought to the market [134]. Consequently, there is interest in the deve-
lopment of tools that allow plasmid reconstruction from short-read data.

Multiple bioinformatic tools are currently available to predict bacterial plasmids from short-reads. 
They can be broadly categorised into two main classes: 

• Binary classification tools use assembled contigs as input and classify them as plasmid- or chro-
mosome-derived, therefore predicting the complete plasmid content of a bacterial strain, com-
monly known as the ‘plasmidome’, but without defining individual plasmids. These tools use a 
wide variety of computational approaches to classify contigs, including searches against databa-
ses of complete genomes [135,136], annotation of proteins [135,137] and machine learning or 
neural network classification algorithms [138]. 
• Plasmid reconstruction tools aim to predict individual plasmid sequences. To this end, tools 
can either use databases [139], information contained in the assembly graph in combination 
with coverage information [140], or both [141]. The output of these tools ideally permits stud-
ying the epidemiology of specific plasmids of interest [142].

A complete review of the different plasmid prediction tools can be found in chapter 2 of this thesis.

Although multiple tools exist to predict plasmids using short reads, a thorough and independent 
evaluation of tools performance across different species is missing. Consequently, choosing the best 
tool to perform prediction of plasmids (or plasmidome) is challenging.

Aim and outline of this thesis
The aim of this thesis was to explore the differences in population structure, plasmidome and resisto-
me compositions of a set of ESBL-E. coli isolates obtained from ICU-admitted patients that either 
received or did not receive SDD as a prophylactic treatment to prevent colonization with PPMOs, 
on top of standard care precautions. Given the difficulties for exploring the plasmidome using who-
le-genome sequencing (WGS) data, we first evaluated existing tools to predict plasmid sequences 
and subsequently developed new approaches to reconstruct plasmids using Illumina short reads.

In chapter 2 we performed a comprehensive review of several tools designed to predict plasmids 
from short-read sequencing data. We also performed an exhaustive benchmark of six tools for the 
reconstruction of individual plasmids of 240 E. coli genomes. This study suggested that MOB-suite 
[139] and plasmidSPAdes [140] were the best performing tools. Nonetheless, we also discovered 
that all tools had major difficulties when reconstructing plasmids that contain AMR genes. 
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Consequently, in chapter 3, we developed a two-step method to improve the reconstruction of 
AMR plasmids of E. coli using short reads. In the first step, nodes in the assembly graph are classified 
as plasmid- or chromosome-derived by using plasmidEC, an ensemble classifier that we developed by 
combining three existing binary classification tools [135,137,143]. In the second step, we used gplas 
[144] to bin plasmid nodes into individual plasmid predictions based on similarities in sequence co-
verage and assembly graph connectivity. Gplas was also modified to better reconstruct plasmids that 
present large sequencing coverage variations. This method proved very successful for reconstructing 
AMR plasmids of E. coli, considerably outperforming MOB-suite in all evaluated metrics.

Therefore, in chapter 4 we expanded our method to reconstruct plasmids of multiple species. To this 
end, we developed four species-specific models (for E. faecium, K. pneumoniae, S. enterica, S. au-
reus) and one species-independent plasmidEC model. By combining these models with gplas, our 
approach can be used to reconstruct plasmids of any species. To evaluate our tool, we reconstruc-
ted plasmids of more than 70 different species, and compared the performance against MOB-suite 
and plasmidSPAdes. We found that gplas performed consistently well when reconstructing large 
ARG-plasmids in multiple species, in contrast to a varying performance of the other tools.

In chapter 5 we compared the pangenome, plasmidome and resistome composition of a set of ESBL-E. coli 
isolates from ICU patients that did or did not receive SDD. The data were derived from patients included 
in the R-GNOSIS ICU study [94], and encompassed isolates from five different ICUs located in 
Spain, Belgium and the UK. In this study we found that SDD had a limited impact on the popula-
tion structure and pangenome composition of ESBL-E. coli. Nonetheless, isolates obtained from 
patients that received standard care had a higher amount of aminoglycoside resistance genes, while 
SDD isolates were more frequently found to possess a transposon carrying a tobramycin resistance 
gene. This transposon contained a total of 3 ARG genes surrounded by IS26 elements, and frequent-
ly co-occurred with blaCTX-M-15 in multiple clones and distinct plasmid backbones. 

Finally, in chapter 6, I discuss the new methods developed in this thesis, their main limitations and 
their potential applications. Moreover, I describe and reflect on the main findings on the population 
genomics of E. coli recovered from ICU patients in the R-GNOSIS ICU study, and formulate re-
commendations for future research.
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Abstract 

The incidence of infections caused by multidrug-resistant E. coli strains has risen in the past years. 
Antibiotic resistance in E. coli is often mediated by acquisition and maintenance of plasmids. The 
study of E. coli plasmid epidemiology and genomics often requires long-read sequencing informa-
tion, but recently a number of tools that allow plasmid prediction from short-read data have been 
developed. Here, we reviewed 25 available plasmid prediction tools and categorized them into bi-
nary plasmid/chromosome classification tools and plasmid reconstruction tools. We benchmarked 
six tools (MOB-suite, plasmidSPAdes, gplas, FishingForPlasmids, HyAsP and SCAPP) that aim to 
reliably reconstruct distinct plasmids, with a special focus on plasmids carrying antibiotic resistance 
genes (ARGs) such as extended-spectrum beta-lactamase genes. We found that two thirds (n = 425, 
66.3%) of all plasmids were correctly reconstructed by at least one of the six tools, with a range of 92 
(14.58%) to 317 (50.23%) correctly predicted plasmids. However, the majority of plasmids that ca-
rried antibiotic resistance genes (n = 85, 57.8%) could not be completely recovered as distinct plas-
mids by any of the tools. MOB-suite was the only tool that was able to correctly reconstruct the ma-
jority of plasmids (n = 317, 50.23%), and performed best at reconstructing large plasmids (n = 166, 
46.37%) and ARG-plasmids (n = 41, 27.9%), but predictions frequently contained chromosome 
contamination (40%). In contrast, plasmidSPAdes reconstructed the highest fraction of plasmids 
smaller than 18 kbp (n = 168, 61.54%). Large ARG-plasmids, however, were frequently merged with 
sequences derived from distinct replicons. Available bioinformatic tools can provide valuable insight 
into E. coli plasmids, but also have important limitations. This work will serve as a guideline for selec-
ting the most appropriate plasmid reconstruction tool for studies focusing on E. coli plasmids in the 
absence of long-read sequencing data.
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Introduction

Escherichia coli is a versatile micro-organism able to survive and thrive in different ecological habitats. 
It is a Gram-negative facultative anaerobe that commonly resides in the human gut as a commensal 
bacteria [1]. However, several members of this species also harbor the potential to cause severe 
infections, both intestinally [2] and extra-intestinally [3], in the healthcare settings [4] as well as 
in the community [5]. The ‘success’ of E. coli as a pathogen can be mostly attributed to the wide 
repertoire of virulence factors that strains may carry [6] and the increasing fraction of infections 
caused by multidrug-resistant strains [7]. Many of the antibiotic resistance genes and virulence 
factors present in E. coli are commonly encoded on plasmids, mobile genetic elements (MGE) 
that can be horizontally disseminated [8,9,10]. Therefore, precise identification and characteriza-
tion of E. coli plasmids are highly relevant from an epidemiological and clinical standpoint.

Over the past decade, Illumina short-read sequencing platforms have become a popular techno-
logy to elucidate the genomic content and molecular epidemiology of bacteria. However, the 
frequent occurrence of repeat elements prohibits the assembly of complete replicons (plasmids 
and chromosomes) and often results in hundreds of contigs per genome with an unclear origin. 
Plasmid and chromosome contigs are mingled in draft genome assemblies, which challenges the 
accurate reconstruction of plasmids. More recently, long-read sequencing platforms (Oxford Na-
nopore and PacBio) have successfully resolved this issue, but short-read sequencing remains the de 
facto standard in many microbiology laboratories [11,12,13,14].

Several fully automated bioinformatics tools are currently available to predict bacterial plasmids from 
short-read sequencing data. Since 2018, at least 15 different tools have been created for this purpose 
(Table S1). They can be broadly categorized into two main classes. The first class comprises software 
that produces a binary classification of contigs as either plasmid- or chromosome-derived, generating 
an output that predicts the complete plasmid content of a bacterial strain, often referred to as the ‘plas-
midome’. An accurate plasmidome prediction has proven helpful to discover the genomic location of 
clinically relevant genes [15,16,17,18] and their role in shaping niche specificity [19], among others. 
The second class consists of tools that aim to recover distinct closed plasmid sequences. The output of 
these tools provides, in theory, a more comprehensive picture of the plasmid content of bacteria and 
allow to study the dissemination and epidemiology of specific plasmids [20].

Here, we reviewed the different tools and strategies to achieve binary prediction, for example fast 
k-mer based searches against reference plasmid databases (PlaScope and PlasmidSeeker), exploita-
tion of the natural distribution bias of protein-coding genes between plasmids and chromosomes 
(Platon), and machine learning algorithms with different underlying features (cBAR, PlasFlow, ml-
plasmids, PlasClass, RFPlasmid and PPR-Meta) and others. Furthermore, we benchmarked six tools 
aimed at reconstructing fully closed distinct plasmids for use with E. coli, by using complete E. coli 
genomes that were recently deposited to public databases. The strategies applied by the reconstruc-
tion tools consist of graph-based approaches (plasmidSPAdes, gplas), reference-based approaches 
(MOB-Suite, FishingForPlasmids) and hybrid approaches which use reference- and graph informa-
tion (HyAsP and SCAPP). We assessed their performance based on their ability to correctly recover 
different plasmids as distinct and complete predictions, including plasmids that carry clinically re-
levant antibiotic resistance determinants, such as extended-spectrum beta-lactamase (ESBL) genes.
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Materials and Methods

Review of plasmid prediction tools
We performed a systematic search of peer-reviewed publications deposited in PubMed by August 25th 
2020, using the following search terms:

((plasmid*[Title])) AND ((software[Title/Abstract] ) OR (tool*[Title/Abstract]) OR program[Tit-
le/Abstract])) AND ((predict*[Title/Abstract]) OR (sequencing[Title/Abstract]) OR (identifica-
tion[Title/Abstract]) OR (prediction[Title/Abstract]) OR (contigs[Title/Abstract] ) OR (assembly 
[Title/Abstract]) OR (NGS[Title/Abstract])). 

This search resulted in 238 peer-reviewed publications that we manually curated to obtain a list of 17 
different tools with the goal to study the plasmid content of bacteria in silico (Table S1).

In order to find tools deposited on GitHub and GitLab, we used the search term ‘*plasmid*’. This resulted 
in 229 repositories from which 7 relevant tools were added to the selection (Table S1). The Github loca-
tion of FishingForPlasmids was obtained through personal communication with the developer.

Retrieving E. coli complete genomes and metadata from NCBI database 
Ncbi-genome-download v0.2.10 (https://github.com/kblin/ncbi-genome-download/) was used 
to download all E.coli sequence labeled as ‘complete genomes’ up to August, 25th 2020 (n=1755). 
Metadata of the isolates was retrieved and parsed using Entrez-utilities v13.9 [21]. All scripts used to 
carry out the analyses in this study are available in a Git repository (https://gitlab.com/jpaganini/
recovering_ecoli_plasmids).
 
Phylogenetic analysis
Phylogroups were determined in silico by using ClermonTyping v1.4.0 [22]. Core- and accessory-ge-
nome distances were calculated by using PopPUNK v1.2 [23] with standard parameters. PopPUNK 
was also used to build a core-genome neighbor-joining tree with 1381 complete E. coli genomes 
downloaded from the NCBI database on August, 25th 2020. Tree visualization and metadata infor-
mation were integrated in Microreact [24] (Table S2).

Benchmark data set selection
Isolates that were not sequenced by both long- and short-read technologies (n=559) were excluded, 
as well as sequences that were predicted as Escherichia cryptic clades [25] by in silico ClermonTyping 
(n=12) and genomes that exhibited a predicted accessory-genome distance larger than 0.5 by Po-
pPUNK (n=2). We used a script written in R (version= 3.6.1) to remove genomes that had been used 
for developing the tested tools (n=601). Moreover, we excluded genomes that did not carry any plas-
mids (n=170), except for 19 randomly selected E. coli isolates without plasmids that were included as 
negative controls. In order to get a balanced data set, we removed a random sample of genomes isola-
ted from farm animals (n=161). Finally, we removed 30 genomes containing short-read-only assem-
bled contigs that did not align to any replicon in their respective closed reference genome. The data set 
resulted in 240 E. coli complete genomes, which carried a total of 631 plasmids (Figure S1, Table S3). 
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Precision (bp) = Alignment length against reference plasmid (bp)
Total length of predicted bin (bp)

Recall (bp) = Alignment length against reference plasmid (bp)
Total length of predicted plasmid (bp)

F 1- Score (bp) = 2 x Precision (bp) x Recall (bp)
Precision (bp) + Recall (bp)

Chromosome contamination = Alignment length against chromosome (bp)
Total length of predicted bin (bp)

Evaluating plasmid diversity in benchmarking data
We used Mash v2.2.2 (k=21, s=1000) to estimate the pairwise k-mer distances of all plasmids 
(n=3,264) from all complete E. coli genomes (n=1,381). The obtained distances were clustered 
using the t-distributed stochastic neighbour embedding (t-SNE) algorithm with a perplexity value 
of 30, and data points (which represents individual plasmid sequences) were coloured in orange if 
they were part of the benchmarking data set.

Plasmid Predictions
Illumina raw reads were downloaded using SRA Tools (v2.10.9). Reads were trimmed using trim-ga-
lore (v0.6.6) (https://github.com/FelixKrueger/TrimGalore) to remove adapter contamination 
and bases with a phred quality score below 20. SPAdes (v3.14.0) [26] was applied to perform de novo 
assembly in careful mode and using kmer lengths of 37, 57 and 77. For isolates GCA_014117345.1_
ASM1411734v1, GCA_006352265.1_ASM635226v1 and GCA_003812945.1_ASM381294v1, 
SPAdes was run using the --isolate option. The resulting contigs, assembly graphs and trimmed-reads 
were used as input for the different plasmid reconstruction tools, following the input requirements 
of the respective tools (Table S1). All tools were run with default parameters. Tool’s versions were: 
FishingForPlasmids (no version information), MOB-suite (v3.0.0), SCAPP (v0.1.3), plasmidSPA-
des (v3.14.0), gplas (v0.6.1), HyAsP (v1.0.0).

Analysis of the plasmid bins composition
We used QUAST (v5.0.2) to align the contigs of each bin to the respective closed reference genome. 
An extended description of the parameters used is available at Supplementary Material. Based on the 
alignment results, we calculated precision, recall and F1-score as specified below.

If a bin was composed of contigs derived from different plasmids, precision, recall and F1-score were 
reported for each plasmid-bin combination.

In order to quantify the chromosomal sequence content (if any) on a bin, we defined a chromosome 
contamination metric as follows.
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Recall (ARG) = Nr. of correctly predicted ARGs on bin
Total nr. of ARGs on reference plasmid

Evaluating maximum theoretical recall for each reference plasmid
Depending on the input requirement of the respective tools (graph or contigs), we converted as-
sembly graph nodes to FASTA format using the tool Any2Fasta (https://github.com/tseemann/
any2fasta) or used the contigs produced by SPAdes and aligned them to their respective closed re-
ference genomes using QUAST. Based on these alignments we calculated the maximum recall that 
could be obtained for reconstruction of every reference plasmid using short-read sequencing data 
(Supplementary Material).

Antibiotic resistance gene (ARG) prediction
Resistance genes were predicted by running Abricate (v1.0.1) against the resfinder database (databa-
se indexed on April 19th 2020) with reference plasmids as query, using 80% as identity and coverage 
cut-off. The same software and parameters were used to predict the presence of ARGs in the plasmid 
bins generated by each of the plasmid reconstruction tools.

Evaluating reconstruction of ARG plasmids
For bins that carried ARGs, we calculated RecallARG, as indicated below.

Bins that included the complete ARG content of the reference plasmid (RecallARG=1) and were 
linked to the correct plasmid backbone (F1-score>=0.95) were considered as correct reconstruc-
tions of the ARG-plasmid.

Results

Computational methods to predict the plasmidome or distinct plasmids
We used a systematic search of peer-reviewed publications and two popular software-repository hos-
ting web services and retrieved a total of 25 plasmid- or plasmidome- prediction tools (Table S1). Most 
of the tools (n = 24) were fully automated and harbored the potential to be included in computational 
pipelines. Of these 24 tools, 13 tools were designed to analyze the plasmidome of multiple species using 
whole-genome sequencing data as input, while 8 tools can be applied to metagenomic sequences. A to-
tal of two tools, Recycler and RFPlasmid, worked with both types of input. Notably, we found one tool 
(FishingForPlasmids) that was developed to exclusively study the plasmid content of E. coli.

Based on the output, most of the tools (n = 23) can be broadly categorized into one of the following 
three classes. The first class comprises software that predicts the plasmidome, thus producing a bi-
nary classification of contigs as either plasmid- or chromosome-derived (n = 10). The second class 
consists of tools that aim to recover distinct plasmid sequences (n = 11) (Figure 1, Table S1). The 
third class of tools seeks to facilitate the detection of known plasmids (n = 2). Below, we briefly 
review the computational strategies applied by 17 tools that belong to the first two categories. Four 
tools were excluded from this review for distinct reasons: plasmIDent uses long-reads as input, plas-
midID and plasmidAssembler use a similar approach to MOB-suite for plasmid reconstruction and 
PLACNET requires manual intervention from the user.
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Binary Classification Tools
Binary classification tools take previously assembled contigs as input and classify them as being plas-
mid- or chromosome-derived.

PlaScope [27] and PlasmidPicker perform k-mer searches against reference plasmid databases. This 
strategy is very fast but limited to detecting k-mers that are present in the underlying database. Con-
sequently, this produced high specificity and precision values but lower recall in a study that inclu-
ded a benchmark of PlaScope [27,28].

CBar, PlasFlow and PlasClass all share a common underlying principle: using short k-mer frequen-
cies and machine learning (ML) algorithms to classify metagenomic assemblies. More specifically, 
cBAR relies on observed differences in pentamer frequencies and uses a sequential minimal optimi-
zation (SMO) model. PlasFlow calculates the frequencies of multiple k-mers sizes (between 5 and 
7 nt) and utilizes a neural-network voting classifier to integrate predictions. PlasFlow has a better 
performance than cBAR [29,30], but shows less reliable results for short contigs [31]. PlasClass ad-
dresses this issue by using a set of four logistic regression classifiers, each trained on sequences of 
different length [31]. Similar to cBAR, mlplasmids also relies on pentamer frequencies but uses a 
Support Vector Machine (SVM) model to determine the origin of contigs for a single species, and 
contains models for Escherichia coli, Klebsiella pneumoniae and Enterococcus faecium. Mlplasmids 
outperformed both cBAR and PlasFlow when classifying data derived from whole-genome sequen-
cing experiments, and it can also accurately predict the plasmid localization of several antimicrobial 
resistance genes [29]. RFPlasmid [32], a recently released tool, uses a random forest classifier trained 

Figure 1. Euler diagram of bioinformatics tools to predict the plasmidome of bacteria.
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with a hybrid approach by identifying chromosomal and plasmids marker genes using two databases 
and also pentamer frequencies. This tool also works with metagenomic assemblies, albeit only for 
contigs from the 17 different species for which classifiers were trained. Platon exploits the natural 
distribution bias of protein-coding genes between plasmids and chromosomes and also analyzes 
higher-level characteristics of the contigs: circularization, presence of replication and mobilization 
proteins, presence of oriT and incompatibility sequences [28].

Finally, PPR-Meta [33] allows simultaneous identification of both phages and plasmids fragments 
from metagenomes by using a Convolutional Neural Network. Notably, instead of k-mer frequen-
cies, this tool uses one-hot matrices to represent nucleotides and amino-acids sequences [33].

Despite the differences in approaches and performances, none of the aforementioned tools attemp-
ted to further sort the predicted plasmidome into individual plasmids. As a consequence, these tools 
are not suitable for studying the epidemiology of specific plasmids.

Plasmid reconstruction tools
Based on their computational strategies, we can roughly subdivide plasmid reconstruction tools into 
three different categories: (i) de novo reconstruction of plasmids using assembly graph information, 
(ii) reference-based approaches and (iii) hybrid approaches.

PlasmidSPAdes, Recycler, metaplasmidSPAdes and gplas [34,35,36] perform a de novo reconstruc-
tion of plasmids using assembly graph information. PlasmidSPAdes and Recycler were released in 
2016 and were the first tools that exploited the information on the assembly graph for identifying 
individual plasmids. PlasmidSPAdes is based on the assumption that plasmids have a different copy 
number than the chromosome, and therefore plasmid contigs will exhibit a different read coverage 
than chromosomal contigs. A number of studies have shown that this tool is able to reconstruct bac-
terial plasmids with high recall [11,37,38], but they have also revealed two major disadvantages of 
this approach: (1) plasmidSPAdes fails to identify large plasmids that have the same copy number as 
the chromosome and (2) it has a tendency to merge different plasmids together. Recycler also tries to 
identify plasmid-paths in the assembly graph by using coverage information but incorporates addi-
tional data regarding the topology of the selected paths. The main rationale behind this algorithm is 
that selected plasmid-paths should be cyclic, coverage should be homogeneous amongst all contigs 
and mated pair-end reads should map to the same path. Recycler appears to successfully identify short 
plasmids but yields very low precision values for long plasmids [11,37]. This issue is partially addres-
sed by metaplasmidSPAdes, released in 2019 as an improvement on the original prediction algori-
thm of plasmidSPAdes. This tool allows prediction of dominant plasmids in metagenomes, defined as 
plasmids with coverage exceeding that of chromosomes and other plasmids. The algorithm iteratively 
extracts cyclic subgraphs with increasing coverage from the metagenome assembly graph. These po-
tential plasmid sequences are later analyzed by a naive Bayesian classifier, called plasmidVerify, that 
further assesses the gene content of potential plasmids. None of the aforementioned tools takes ad-
vantage of the information embedded in the nucleotide sequences of the assembled contigs to a priori 
simplify the task of identifying plasmid subgraphs. In contrast, gplas initially classifies assembled con-
tigs as plasmid-derived or chromosome-derived by using mlplasmids (or plasflow), a tool that exploits 
short k-mer frequencies for achieving such classification. Subsequently, plasmid-derived unitigs act 
as seeds for finding plasmid-walks with homogeneous coverage in the assembly graph, using a greedy 
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approach. Gplas generates a plasmidome network in which nodes corresponding to plasmid unitigs 
and edges are created and weighted based on the co-existence of the nodes in the solution space of the 
computed walks. Finally, this plasmidome network is queried by a selection of network partitioning 
algorithms for generating bins of contigs that belong to the same plasmid [36].

MOB-suite and FishingForPlasmids use a reference-based approach for reconstructing individual 
plasmids. MOB-suite works as a modular set of tools for clustering, reconstruction and typing of plas-
mids from assemblies. This software initially uses Mash [39] and a single-linkage clustering algorithm 
to create clusters of similar plasmids present in a reference database. Input contigs are then aligned 
against this database using Blast and assigned to a plasmid cluster according to the best hits obtained. 
Contigs assigned to the same reference cluster constitute potential individual plasmid units. Also, 
the topology of the contigs is evaluated and every circular contig is considered an individual plasmid. 
Finally, each identified plasmid is queried against a different database for finding known replication 
and mobilization proteins and oriT sequences. According to the authors, MOB-suite performs better 
than plasmidSPades at correctly reconstructing plasmids from a benchmarking data set that included 
more than 370 plasmids from 14 different bacterial species [38]. However, the authors identified that 
MOB-suite splits single plasmids into different predictions more often than plasmidSPAdes. Fishin-
gForPlasmids attempts to reconstruct individual plasmids from Escherichia coli assemblies. This tool 
identifies plasmid-contigs by using BlastN to align each contig against a curated E. coli database. Each 
plasmid-derived sequence is further classified into discrete components by using a combination of 
plasmidFinder and pMLST [14].

Finally, HyAsP and SCAPP use a hybrid approach, mixing principles from reference-based and de 
novo methods. In HyAsP, a set of potential plasmid contigs is first selected based on: (1) a high density 
of known plasmid genes, identified by using a database, (2) high read coverage and (3) a length that 
does not exceed a maximum threshold. These plasmid-contigs will be used as seeds for finding plas-
mid-walks within the original assembly graph using a greedy algorithm. Plasmid-walks must satisfy 
the following conditions: (1) have a uniform GC content and sufficient read coverage, (2) do not have 
large gene-free segments and (3) total length of the plasmid-walk does not exceed a threshold. SCA-
PP, on the other hand, is designed for finding plasmids in metagenome assemblies. This algorithm 
starts by finding potential plasmid-contigs based on two strategies: (1) searching for plasmid-specific 
genes by using a curated database and (2) assigning weight to each contig based on the output from 
PlasClass, a ML-based binary classifier. The assembly graph is then queried to find cyclic walks of uni-
form coverage, similar to Recycler, but prioritizing the inclusion of contigs with strong evidence of 
plasmid-origin [40].

The benchmark data set represents the diversity of sequenced plasmids
To benchmark the aforementioned plasmid reconstruction tools, we used a data set of 240 E. coli stra-
ins with complete genome sequences and short read data available from public databases that harbo-
red 631 plasmids. These E. coli genomes were absent from all training data sets used to develop the 
selected plasmid prediction tools. The majority of the genomes derived from Europe (n = 170), Asia 
(n = 39) and North America (n = 24) (Figure 2A). They were isolated from multiple sources such as 
animals (n = 103), humans-clinical samples (n = 27), humans-community samples (n = 4), environ-
mental sources (n = 86) and unknown sources (n = 13) (Figure 2B).
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To assess if the selected genomes were a representative sample of the phylogenetic diversity of E. coli, 
we built a neighbor-joining tree combining our data set with 1141 complete E. coli genomes and 
determined the phylogroup of each of these genomes in silico. This analysis revealed that the selected 
genomes were distributed across the core-genome tree and that all phylogroups were represented 
with at least five strains. (Figure 2C).

Most of the genomes carried one (n = 73), two (n = 49) or three (n = 28) plasmids, but notably 
some genomes contained as much as nine (n = 3), ten (n = 1) or eleven (n = 1), with a median 
of two (mean = 2.62 plasmids). We found a clear bimodal plasmid size distribution, with peaks 
around 4500 bp and 100,000 bp (Figure 2D). Consequently, plasmids with a length smaller than 
18,000 bp were classified as ‘small’ (n = 273), while plasmids that exceeded this cut-off value were 
classified as ‘large’ (n = 358).

Next, we wanted to assess the diversity of plasmids included in the benchmark data set. We used 
Mash to estimate the pairwise k-mer distances of all plasmids (n = 3264) from all complete E. coli 
genomes (n = 1381) and clustered them with the t-SNE algorithm. Plasmids included in this study 
were distributed among all major clusters, suggesting that this data set is able to properly capture the 
diversity of the E. coli pan-plasmidome currently available at NCBI (Figure 2E).

A third of all plasmids could not be correctly reconstructed by any of the tools
We selected six tools to reconstruct distinct plasmid sequences. These tools applied different compu-
tational strategies: graph-based (plasmidSPAdes, gplas), reference-based (MOB-Suite, FishingFor-
Plasmids) and hybrid (HyAsP and SCAPP).

The rest of the plasmid reconstruction tools were not included in the analysis because of a variety of 
reasons: Plasmid Assembler couldn’t be installed, plasmidID predictions were not completed due to 
errors during execution, PLACNET required manual intervention of the user, Recycler provided su-
boptimal results in comparison with plasmidSPAdes and HyAsP in previous studies [11,37] and me-
taplasmidSPAdes uses a similar approach to plasmidSPAdes but optimized for metagenomic samples.

We evaluated the predictions obtained with the six selected plasmid reconstruction tools in terms of 
(i) speed and memory requirements, (ii) the number of plasmid predictions, (iii) correct reconstruc-
tion of reference plasmids, (iv) chromosomal contamination included in predicted plasmids, and (v) 
correct reconstruction of ARG-plasmids.

We used a High-Performance Cluster (HPC) to run the tools with minimal resources (number of 
cores = 2, 4GB of RAM per genome), and documented the total CPU-time and memory required by 
each of them (Table 1, Figure S2). Most tools required less than 100 CPU hours to complete all pre-
dictions, except for plasmidSPAdes which used 321.07 CPU hours. In contrast, FishingForPlasmids 
was the fastest tool and completed the task in 10.60 CPU hours. PlasmidSPAdes and SCAPP had 
the highest memory requirements, utilizing a total of 442.03 Gb and 435.23 Gb of RAM, respecti-
vely. The remaining tools required less than 300 Gb to complete all predictions. Notably, FishingFor-
Plasmids only required a total of 36.57 Gb.
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Figure 2. (A) Genomes distribution according to geographical location and (B) isolation source. (C) Core-genome clustering 
constructed using PopPUNK. We included 1381 complete E. coli genomes available at NCBI database. Orange tips (n = 
240) indicate genomes that were included in the benchmarking data set, and outer colors indicate phylogroups. (D) Plasmid 
length histogram and density plot. Dashed line indicates the cut-off length (18,000 bp) for considering a plasmid as small or 
large (E) tSNE plot based on plasmids k-mer distances obtained with MASH (k = 21, s = 1000). Plasmids included in this 
benchmark (n = 631) are colored in orange.
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Next, we evaluated the number of plasmid predictions produced by each tool and calculated the 
difference between this number and the true number of plasmids present in the benchmark data set 
(Table 1, Figure S3). The total number of plasmid predictions ranged from 377 (FishingForPlas-
mids) to 2590 (HyAsP). PlasmidSPAdes, MOB-suite, SCAPP and HyAsP overestimated the true 
number of plasmids (n = 631), while gplas and FishingForPlasmids underestimated this number. 
PlasmidSPAdes displayed the least deviation by producing 642 bins, and therefore exceeding the 
total number of plasmids by 11. Nevertheless, these absolute numbers do not reflect whether predic-
tions were correct or incorrect.

In order to evaluate how the different tools performed at recovering E. coli plasmids as distinct and 
complete predictions, we studied the distributions of recall, precision and F1-score (Table 1, Figure 
S4A–C) for all plasmid predictions made by the tools. Based on these results, we determined an F1-sco-
re cut-off value of 0.95 to define a plasmid as correctly reconstructed (or recovered) (Figure S4D).

MOB-suite correctly recovered 317 (50.24%) plasmids (F1-score ≥ 0.95), including 70 (11.10%) that 
couldn’t be reconstructed by any other software (Figure 3A,B, Table 1). Similarly, plasmidSPAdes recons-
tructed a total of 263 (41.68%) plasmids, including 55 (8.72%) that were not recovered by other tools. 
Interestingly, 14 of these ‘unique reconstructions’ were also missing from the short-read assembly graphs 
(Supplementary Materials, Tables S4 and S5). The rest of the tools achieved smaller quantities of correct 
plasmid reconstructions, with values ranging from 92 (14.58%) to 152 (24.09%) (Figure 3A,B, Table 1).

We found that a total of 418 (66.25%) plasmids were correctly reconstructed by at least one of the 
tools (Figure 3C). Out of these, only 7 (1.11%) were reconstructed by all tools concurrently, 273 
(43.26%) by multiple tools and 138 (21.9%) by a single tool. Interestingly, combining MOB-suite 
and plasmidSPAdes predictions together achieved the correct reconstruction of 400 (63.39%) plas-
mids, and incorporating the predictions from the remaining tools only resulted in the reconstruc-
tion of 18 (2.85%) additional plasmids. Notably, a total of 213 (33.75%) plasmids were incorrectly 
reconstructed (F1 score < 0.95) by all tools, including 21 (3.32%) that were not even detected. The 
majority of ARG-plasmids (n = 85, 57.8%) could not be correctly reconstructed by any of the tools 
(Table S6).

We also compared the performance of the software when attempting to reconstruct small- and lar-
ge plasmids separately. For small plasmids, we discovered that all tools displayed similar F1-score 
distributions, with medians ranging from 0.95 to 0.99. However, the tools did not detect 21.25–
89.74% of small plasmids (Figure S6A,B). PlasmidSPAdes and MOB-suite were the only tools that 
achieved the correct reconstruction of most of these replicons, with a total of 168 (61.54%) and 
155 (55.31%), respectively (Table 1). When considering the reconstruction of large plasmids, per-
centages of not-detected plasmids were much lower and ranged from 2.23% to 20.11% across tools. 
MOB-suite exhibited the highest F1-score values (median = 0.74, IQR = 0.17–0.97) and correctly 
reconstructed 166 (46.3%) of these replicons, significantly surpassing the reconstruction capacity of 
the rest of the tools, which ranged from 45 (12.57%) to 95 (26.54%) (Table 1, Figure S6A,B). Not 
surprisingly, most tools correctly reconstructed a higher fraction of small plasmids, and also displa-
yed higher F1-score values (Table 1, Figure S6A,B) when comparing with the reconstruction of large 
plasmids. FishingForPlasmids was the only exception as it recovered a total of 14 (5.13%) small and 
78 (21.79%) large plasmids.
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All tools incorrectly incorporated chromosome-derived sequences into their predictions (Figure S7, 
Table 1). FishingForPlasmids performed best at avoiding this error, and only 7 (1.8%) predictions 
contained chromosomal contamination. In contrast, HyAsP introduced chromosomal contigs in 
1340 (51.7%) predictions with a chromosome contamination median of 0.88 (IQR = 0.5–0.99), 
including 1251 pure chromosome bins (chromosome contamination = 1). Notably, plasmidSPAdes 
and MOB-suite had a similar proportion of contaminated bins, 295 (46%) and 297 (40.2%), yet 
with different chromosome contamination medians of 0.75 (IQR = 0.14–0.92) and 0.10 (IQR = 
0.03–0.99), respectively. Out of these, MOB-suite produced 65 predicted bins which exclusively 
consisted of chromosome sequences, while plasmidSPAdes generated 20 of them. SCAPP intro-
duced chromosomal sequences in 249 (25.2%) predictions, but notably only 1 of them was only 
composed of chromosome sequences. Finally, gplas incorporated chromosomal sequences in 197 
(35.8%) predictions, of which 70 were exclusively composed of these types of sequences.

Figure 3. (A) Reconstruction performance of each tool for all reference plasmids. Reference plasmids have been ordered 
according to the number of tools by which they were correctly reconstructed, from low (left; reconstructed by 0/6 tools) to 
high (right; reconstructed by 6/6 tools). Plasmids that were reconstructed with an F1-score ≥ 0.95, were considered as correct 
reconstructions. Plasmids for which no contig was included in the predictions were considered as ‘not-detected’. (B) Absolute 
count of all reconstruction status achieved by each tool. (C) Absolute count of reconstruction categories when combining 
predictions from all tools.
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Computational Performance

Memory Usage (GB)
CPU-Time (hr)

299.2
46.57

202.82
46.62

150.36
83.64

442.03
321.07

435.23
70.96

36.57
10.6

Nr. of plasmid predictions

Plasmids reconstruction
All Plasmid (n = 631)

Nr. total predicted plasmids 
(bins)

Nr. correct predictions of
plasmid absence (%)

2590

2 (10.53)

738

13 (68.42)

550

17 (89.47)

642

9 (47.37)

986

17 (89.47)

377

18 (94.74)

Nr. small plasmids (%)
Nr. large plasmids (%)

Nr. small plasmids (%)
Nr. large plasmids (%)

Nr. correctly reconstructed
plasmids (%)

HyAsP MOB-suite

Nr. incorrectly reconstructed 
plasmids (%)

Chromosome contamination
(Median - IQR)

Nr. undetected plasmids (%)

F1-score (median - IQR)*

Nr. small plasmids (%)
Nr. large plasmids (%)

Small plasmids*

Large plasmids*

Recall (median - IQR)*

Small plasmids*

Large plasmids*

Precision (median - IQR)*

Small plasmids*

Large plasmids*

82 (30.04)
45 (12.57)

53 (19.41)
305 (85.20)

127 (20.13)

358 (56.74)

146 (23.14)

0.12
(0.04 - 0.41)

0.89
(0.3 - 0.98)

0.59
(0.3 - 0.94)

0.95
(0.49 - 0.99)

0.18
(0.07 -0.81)

0.64
(0.29 - 0.93)

0.98
(0.76 - 0.99)

0.98
(0.94 - 0.99)

0.99
(0.98 - 0.99)

0.98
(0.96 - 0.99)

0.96
(0.88 - 0.99)

0.95
(0.7 - 0.98)

0.11
(0.04 - 0.32)

0.74
(0.17 - 0.97)

0.49
(0.21 - 0.76)

0.6
(0.31 - 0.97)

0.12
(0.06 - 0.41)

0.61
(0.28 - 0.91)

0.07
(0.02 - 0.32)

0.89
(0.21 - 0.99)

0.5
(0.22 - 0.93)

0.99
(0.88 - 1)

0.13
(0.04 - 0.78)

0.51
(0.18 - 0.93)

1
(0.92 - 1)

1
(0.96 - 1)

1
(0.98 -1)

1
(1 - 1)

0.99
(0.92 - 1)

1
(0.96 -1)

0.06
(0.02 - 0.2)

0.63
(0.12 - 0.96)

0.4
(0.16 - 0.72)

0.94
(0.36 - 0.99)

0.07
(0.03 - 0.31)

0.46
(0.16 - 0.84)

0.87
(0.5 - 0.98)

0.98
(0.68 - 1)

0.97
(0.55 - 1)

0.93
(0.41 - 0.98)

0.8
(0.39 - 0.94)

1
(1 -1 )

0.96
(0.86 - 0.98)

0.98
(0.95 - 0.99)

0.98
(0.97 - 0.99)

0.96
(0.92 - 0.98)

0.95
(0.83 - 0.98)

0.96
(0.65 - 0.97)

0.84
(0.48 - 0.98)

0.97
(0.53 - 1)

0.93
(0.47 - 1)

0.58
(0.33 - 0.99)

0.75
(0.34 - 0.92)

1
(1 - 1)

0.88
(0.59 - 0.99)

0.1
(0.03 - 0.99)

0.45
(0.11 - 1)

0.75
(0.14 - 0.92)

0.3
(0.09 - 0.66)

1
(0.6 - 1)

138 (50.55)
8 (2.23)

151 (55.31)
166 (46.37)

50 (18.32)
181 (50.56)

317 (50.24)

231 (36.61)

83 (13.15)
72 (26.37)
11 (3.07)

87 (31.87)
43 (12.01)

17 (6.23)
272 (75.98)

130 (20.6)

289 (45.8)

212 (33.6)
169 (61.9)
43 (12.01)

168 (61.54)
95 (26.54)

47 (17.22)
205 (57.26)

263 (41.68)

252 (39.94)

116 (18.38)
58 (21.25)
58 (16.2)

98 (35.9)
54 (15.08)

59 (21.61)
232 (64.80)

152 (24.09)

291 (46.12)

188 (29.79)
116 (42.49)
72 (20.11)

14 (5.13)
78 (21.79)

14 (5.13)
229 (63.97)

92 (14.58)

243 (38.51)

296 (46.91)
245 (89.74)
51 (14.25)

gplas plasmidSPAdes SCAPP FishingFor 
Plasmids

Nr. bins with chromosome
contamination (%)

1,340
(51.73) 297 (40.2) 197 (35.81) 295 (45.95) 249 (25.25) 7 (1.86)

Table 1. Summary of tools performances.
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HyAsP MOB-suite gplas plasmidSPAdes SCAPP FishingFor 
Plasmids

Plasmids reconstruction
ARG-plasmids (n=147)

Nr. chromosome-
derived ARGs

Nr. plasmid-derived ARGs (%)

Nr. plasmid-derived (%)
Nr. chromosome-derived (%)

Recall (Median - IQR)*

Precision (Median - IQR)*

F1-score (Median - IQR)*

Nr . detected plasmids (%)

Nr. ESBL genes in correct
plasmid backbone (%)

Nr. ESBL genes in incorrect
plasmid backbone (%)

Nr. plasmids correctly
reconstructed (%)

Nr. plasmids predicted with
incorrect backbones (%)

Nr. plasmids predicted with
incomplete ARG content (%)

Nr. plasmids with no
ARGs predicted (%)

Large ARG-plasmids
reconstruction metrics (n=143)

ARGs in bins

Reconstruction status

ESBL genes in bins

Reconstruction status

F1-score (Median - IQR)*

Recall (Median - IQR)*

Precision (Median - IQR)*

Nr. pure chromosome bins

Plasmids reconstruction
ESBL-plasmids (n = 60)

1251 65 70 20 1 4

525 (84.95) 548 (88.67) 331 (53.56) 390 (63.11) 223 (36.08) 133 (21.52)

130 92 71 29 34 1

5 (3.4) 41 (27.89) 10 (6.8) 23 (15.65) 10 (6.8) 13 (8.84)

62 (42.18) 49 (33.33) 38 (25.85) 59 (40.14) 23 (15.65) 9 (6.12)

66 (44.9) 47 (31.97) 59 (40.14) 28 (19.05) 39 (26.53) 28 (19.05)

14 (9.52) 10 (6.8) 40 (27.21) 37 (25.17) 75 (51.02) 97 (65.99)

52 (86.67) 57 (95) 27 (45) 40 (66.67) 23 (38.33) 11 (18.33)

10 8 7 2 2 0

0 (0) 20 (33.33) 4 (6.67) 10 (16.67) 5 (8.33) 6 (10)

52 (86.67) 37 (61.67) 23 (38.33) 30 (50) 18 (30) 5 (8.33)

0.06
(0.02 - 0.16)

0.38
(0.09 - 0.88)

0.29
(0.14 - 0.62)

0.87
(0.2 - 0.96)

0.06
(0.03 - 0.17)

0.35
(0.15 - 0.55)

0.84
(0.46 - 0.99)

0.92
(0.42 - 1)

0.86
(0.44 - 1)

0.47
(0.31 - 0.92)

0.71
(0.32 - 0.88)

1
(1 - 1)

0.1
(0.04 - 0.26)

0.44
(0.13 - 0.9)

0.41
(0.19 - 0.65)

0.53
(0.24 - 0.73)

0.1
(0.05 - 0.26)

0.51
(0.25 - 0.69)

141
(98.60)

141
(98.60)

135
(94.41)

129
(90.21)

113
(79.02)

138
(96.50)

0.29
(0.07 - 0.46)

0.93
(0.72 - 0.97)

0.69
(0.45 - 0.88)

0.65
(0.51 - 0.95)

0.27
(0.09 - 0.84)

0.98
(0.71 - 0.99)

0.18
(0.04 - 0.31)

0.89
(0.77 - 0.96)

0.65
(0.36 - 0.84)

0.96
(0.89 - 0.97)

0.23
(0.05 - 0.84)

0.95
(0.56 - 0.99)

0.91
(0.54 - 0.98)

0.98
(0.93 - 1)

0.97
(0.89 - 1)

0.52
(0.38 - 0.95)

0.85
(0.72 - 0.92)

0.99
(1 - 1)

Table 1. Cont.

* In all cases, undetected plasmids were not included in the calculation of Precision, Recall and F1-score.
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Plasmids carrying antibiotic resistance genes were difficult to reconstruct for all tools
Our data set included 147 (23.3%) plasmids containing antibiotic resistance genes (ARG-plasmids), 
carrying a total of 618 resistance genes. Most of these replicons carried one (n = 43), two (n = 17), 
three (n = 12) or four (n = 17) ARGs (Table S6). Interestingly, plasmids carrying ARGs had a me-
dian length of 109,773 bp (IQR = 83,300–132,865 bp), and were markedly larger than plasmids with 
no resistance determinants (median length 6930 bp; IQR = 4072–91,111 bp). Furthermore, 143 
(97.2%) ARG-plasmids were classified as large, while only 4 (2.8%) were small plasmids (Figure S8A).

To investigate how the tools performed at reconstructing ARG-plasmids, we analyzed Recall, Pre-
cision and F1-score values for these replicons (Figure S8B–D). Furthermore, we extracted the bins 
that contained antibiotic resistance genes, and explored the fraction of detected ARGs in each pre-
diction -Recall(ARG)-. An ARG-plasmid was considered as correctly reconstructed if the predic-
tion simultaneously included all ARGs -Recall(ARG) = 1- and correctly represented the reference 
plasmid backbone (F1-score ≥ 0.95).

We discovered that the reconstruction of large ARG-plasmids was particularly challenging for the 
evaluated tools, since all of them exhibited lower F1-score values in comparison with the recons-
truction of large non-ARG-plasmids (Figure S8B,E, Table 1). We excluded small plasmids from this 
comparison due to the low amount of small ARG-plasmids present in our data set.

MOB-suite correctly identified 548 (88.67%) plasmid-derived ARGs, and achieved 41 (27.89%) 
correct ARG-plasmid reconstructions (Figure 4A,B, Table 1). In 49 (33.3%) additional predictions, 
all ARGs were assigned into a single bin -Recall(ARG) = 1-, but the bin incorrectly represented the 
reference plasmid backbone (F1-score < 0.95) (Figure 4C) by being incomplete, hybridized with se-
quences derived from other replicons, or both (Figure S9). Moreover, we discovered that MOB-suite 
incorrectly incorporated 92 chromosome-derived ARGs, distributing them among 39 bins. Finally, 
we found that when predicting large ARG-plasmids, this tool presented remarkably lower recall va-
lues (median = 0.38, IQR = 0.09–0.88) in comparison with reconstruction of large non-ARG-plas-
mids (median = 0.87, IQR = 0.19–0.98) (Figure S8C).

PlasmidSPAdes detected 390 (63.11%) plasmidderived ARGs, and correctly reconstructed 23 
(15.65%) ARG-plasmids. Additionally, in 59 (40.14%) predictions all ARGs were assigned to a single 
bin, but the plasmid backbone was most frequently contaminated with sequences from other repli-
cons (Figure S9). Notably, this tool couldn’t predict any of the ARGs present in 37 (25.17%) reference 
ARG-plasmids (Figure 4A,B, Table 1). Finally, for the reconstruction of large ARG-plasmids, plas-
midSPAdes presented remarkably lower precision values (median = 0.47, IQR = 0.31–0.92) in com-
parison with reconstruction of large non-ARG-plasmids (median = 0.9, IQR = 0.35–1) (Figure S8D).

The rest of the tools successfully reconstructed smaller fractions of ARG-plasmids, ranging from 5 
(3.4%) to 13 (8.84%). Interestingly, HyAsP detected a high fraction of plasmid-derived ARGs (n = 
525, n = 84.95%), but it only achieved the correct reconstruction of 5 (3.4%) ARG-plasmids. For 
most HyAsP predictions, all ARGs couldn’t be assigned to a single bin (n = 66, 44.9%) or presented 
an incorrect plasmid backbone (n = 62, 42.18%). FishingForPlasmids detected the least amount of 
resistance genes (n = 133, 21.52%) and couldn’t predict any of the ARGs present in 97 (66%) refe-
rence ARG-plasmids.
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Next, we evaluated the performance of the tools when reconstructing plasmids that carry ESBL genes 
(ESBL plasmids). Our data set included 60 ESBL plasmids, each carrying a single ESBL gene. Most 
abundant ESBL variants were CTX-M15 (n = 16, 25%), CTX-M55 (n = 12, 20%) and CTX-M1 
(n = 6, 10%) (Figure S10A). Furthermore, we observed that ESBL genes were harbored by plasmids 
with diverse sequences (Figure S10B).

MOB-suite correctly identified a total of 57 (95%) ESBL genes of plasmid origin, of which 20 were 
also assigned to the correct plasmid backbone (F1-score ≥ 0.95), resulting in a 33% correct recons-
truction of the ESBL plasmids (Table 1, Figure S11A). Despite this, MOB-suite predictions achie-
ved high F1-scores for reconstruction of ESBL plasmids (median = 0.93, IQR = 0.72–0.97) (Table 
1, Figure S11B).

Figure 4. (A) Bar plot displaying the number of plasmid-derived ARGs that were detected/not detected by each of the tools. 
This plot also shows the number of chromosome derived ARGs included in the plasmid predictions. (B) Bar plot displaying 
the number of reference ARG-plasmids belonging to each different reconstruction category. Reconstruction categories were 
defined as follows. Correct reconstruction: all ARGs were predicted in the same bin (Recall(ARG) = 1) and the backbone of 
the plasmid was correct (F1-score ≥ 0.95). Incorrect backbone: all ARGs were predicted in the same bin (Recall(ARG) = 1) 
but the backbone of the plasmid was incorrect (F1-score < 0.95). Incomplete ARGs: Not all ARGs were included in the same 
bin (Recall(ARG) < 1). No ARGs detected: None of the ARGs derived from the reference plasmids were included in any bins 
created by the tool. (C) Scatter-plot showing relation between Recall(ARG) and F1-score (bp) values for predictions that 
carry at least one ARG of plasmid origin. Dots are colored according to the same criteria as in B.
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The rest of the tools reconstructed ESBL plasmids with less success, ranging from 0 (0%) to 10 
(16.67%) total correct reconstructions (Table 1, Figure S11A). HyAsP detected a high fraction of 
plasmid-derived ESBL genes (n = 52, 86.67%), but did not achieve the correct reconstruction of any 
plasmids. PlasmidSPAdes detected the majority of plasmid-derived ESBL genes (n = 40, 66.66%), 
and these were included in bins that presented high recall (median = 0.97, IQR = 0.77–0.96) but 
low precision values (median = 0.52, IQR = 0.38–0.95) (Table 1, Figure S11C).

Discussion

A tool that is able to correctly predict E. coli plasmids will assist in identifying clinically relevant plas-
mids [41,42,43,44] and improve our understanding of the complex dynamics of ARG dissemina-
tion across different ecological niches [45,46,47]. From the vast offer of software to predict plasmids 
from short-read data we selected six tools and benchmarked their performances when attempting to 
reconstruct individual E. coli plasmids, with a special focus on plasmids that carry ARGs.

A total of 418 (66.24%) plasmids were correctly reconstructed by at least one of the tools compared 
in this benchmark. Interestingly, 400 (63.39%) of these plasmids were recovered by combining the 
predictions from MOB-suite and plasmidSPAdes alone. Therefore, adding the predictions from the 
rest of the tools resulted only in 18 (2.85%) additional correct reconstructions.

We observed that plasmidSPAdes correctly reconstructed the highest fraction of small plasmids 
(n = 168, 61.5%). This result is consistent with the observations that small plasmids usually have 
high copy numbers [48] and therefore exhibit a higher coverage; which in theory would facilitate 
their prediction using this tool. A similar success at predicting small plasmids was also reported by 
[11,38]. Nevertheless, it is worth noticing that most small plasmids (n = 215, 79%) are represented 
as a single node in the assembly graph. Therefore, using a binary classification tool would be sufficient 
for correctly predicting these replicons.

MOB-suite correctly reconstructed a total of 166 (46.37%) large plasmids, and considerably outper-
formed the rest of the tools, which ranged from 45 (12.57%) to 95 (26.54%) correct reconstructions. 
Nevertheless, MOB-suite’s performance strongly depends on its underlying database, which is enriched 
for Enterobacteriaceae plasmid sequences [38]. Consequently, the reconstruction capacity of this tool 
could be different when attempting to predict plasmids from bacterial species less frequently represen-
ted in its database.

A third (n = 213, 33.76%) of all plasmids could not be correctly reconstructed by any of the eva-
luated tools. In particular, the reconstruction of ARG-plasmids proved to be problematic. We 
hypothesize that ARG-plasmids constitute a particularly hard puzzle to solve for all compared 
computational approaches, for several reasons.

Firstly, ARG-plasmids usually carry a high number of repeated sequences [49,50,51,52], and the-
refore exhibit highly entangled assembly graphs. Secondly, ARGs are frequently located on large 
plasmids with low copy number, and therefore have coverage values that are similar to chromoso-
mes [48,52]. Consequently, finding plasmid-walks with differential coverage in the assembly graphs 
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could be challenging for all tools relying on this strategy. This hypothesis is supported by the obser-
vation that plasmidSPAdes predicted large ARG-plasmids with the lowest precision values (median 
= 0.47, IQR = 0.31–0.92) of all tools, indicating that these plasmids are more frequently merged 
with sequences derived from other replicons. Additionally, this tool failed to predict 37% of all plas-
mid-located ARGs, which would be explainable in case that these contigs should have coverage va-
lues similar to the chromosomes.

Thirdly, ARG-plasmids are frequently built as mosaic-like structures, containing mobile compo-
nents that can be found in different plasmid backbones [48,52,53,54,55]. This type of genomic 
organization also complicates their reconstruction using reference-based methods, since databa-
ses might contain very similar fragments that are shared by a variety of plasmids. Consequent-
ly, unequivocally assigning these “shared fragments” to a unique reference plasmid (or plasmid 
group) could be problematic. This is supported by the results obtained using MOB-suite. This 
software identified the highest proportion of plasmid-derived ARGs (n = 548, 88.67%), but most 
ARG-plasmids reconstructions had either an incomplete ARG content (n = 47, 31.97%) or an 
incorrect backbone (n = 49, 33.33%). These results, in combination with the low recall values 
observed (median = 0.38, IQR = 0.09–0.88) seems to suggest that large ARG-plasmids were fre-
quently split into multiple bins.

Despite the aforementioned limitations, MOB-suite was the most effective tool at predicting 
ARG-plasmids in E. coli, achieving the correct reconstruction of 41 (27.89%) of these, while the 
rest of the tools ranged from 5 (3.4%) to 23 (15.65%) correct ARG-plasmid reconstructions. Addi-
tionally, MOB-suite was the best performing tool for prediction of ESBL-plasmids. It identified 57 
(95%) plasmid-borne ESBL-genes and had a median F1-score of 0.93 (IQR = 0.72–0.97). Howe-
ver, it must be noted that a fraction (n = 13, 22.80%) of ESBL-plasmid predictions presented low 
F1-score values, implying that in these cases the contigs carrying the ESBL gene were associated with 
the incorrect plasmid backbone.

All tools exhibited chromosomal contamination in their predictions. Notably, FishingForPlasmids 
outperformed the rest of the tools and only included chromosomal sequences in 7 (1.8%) bins. The 
rest of the tools included chromosomal sequences in a range from 25.25% to 51.73% of the bins. 
Surprisingly, MOB-suite included chromosomal sequences in 297 (40.2%) bins, including 65 chro-
mosome-only predictions (chromosome contamination = 1).

A fraction of the plasmids (n = 28, 4.4%) were completely absent (recall = 0) from contig sequen-
ces and nodes in the assembly graph. Interestingly, 14 of these replicons were correctly reconstruc-
ted by plasmidSPAdes when using pair-end reads as input. This suggests that the quality of the 
assembly has impacted the ability of the tools to reconstruct certain plasmids. Consequently, it is 
possible that plasmid predictions for E. coli could be optimized by running SPAdes with different 
parameters, by performing assembly with different assemblers or through construction of Illumi-
na libraries with a different read length.

The results from our study indicate that accurate reconstruction of E. coli plasmids from short-reads is 
still challenging using currently available bioinformatic methods. Long reads generated by Oxford Na-
nopore or PacBio technologies can span repeat elements in the bacterial genomes and are therefore use-
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ful to obtain complete plasmid sequences. However, long-reads still exhibit a lower sequencing accuracy 
than Illumina reads [56], and small plasmids (size < 10 kb) are frequently underrepresented or absent in 
Nanopore libraries [57,58]. Consequently, combining long- and short-read sequences is currently the 
best option for correctly reconstructing E. coli plasmids. Nevertheless, the accuracy of long-reads has 
been increasing in recent years, mainly due to the release of improved hardware and also owing to the de-
velopment of bioinformatic tools designed for read error correction [56]. It is possible that in the near fu-
ture long-read only assemblies will provide the best alternative for obtaining complete bacterial genomes.

Nonetheless, in the absence of long-reads, bioinformatic tools can be applied to gain valuable insight 
on different aspects of the plasmidome of E. coli. MOB-suite presented the best overall performan-
ce of all tools, but predictions were frequently contaminated with chromosomal sequences. Conse-
quently, using MOB-suite coupled to a binary classification tool could improve plasmid predictions 
in E. coli. Furthermore, these predictions could be used as an initial screening step for selecting inte-
resting isolates for long-read sequencing.
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Supplementary Materials

Contig Alignments
For determining the composition of the bins, we used QUAST (v.5.0.2) to map the contigs of each 
bin to the corresponding closed reference genome. Quast uses nucmer for contig alignment. We only 
took contigs with a length larger than 1kb into account. Alignment of a contig was considered as 
correct when the sequence identity was greater than 95% and the query coverage was more than 
90%, even if it was classified as “relocation” or “inversion” by QUAST (Table S4). Contigs that am-
biguously aligned to several replicons were considered as correct, given that they met the previous 
conditions.

The alignment length of cases that were classified as ‘translocation’ by QUAST, specifying a sequence 
where the left and right flanking regions map to different replicons, were computed separately for all 
replicons.

Maximum theoretical recall for plasmid reconstruction
To determine the maximum recall for plasmid reconstruction from the input data (assembled short 
read contigs or assembly graph), we aligned either contigs or nodes extracted from the assembly gra-
ph to their respective closed reference genomes. This was important for identifying plasmid frag-
ments that could have been missed  when sequencing  and which could consequently be absent in the 
final assembly (dead-end in the assembly graph). Therefore, these fragments could never have been 
reconstructed by the tools that use assembled genomes as input. It also revealed potential missmat-
ches when mapping to the reference sequence.

Plasmids sequences were recovered with a median recall of 0.97 (IQR=0.08) when using contigs 
as input, and a median recall of 0.95 (IQR=0.13) was obtained when using nodes in the assembly 
graphs for the alignment (Figure S5 A). Notably, a total of 185 plasmids (29,3%) were perfectly 
recovered from contigs (recall=1), the majority of which (n=143, 77%) were small sized plasmids 
presenting lengths below 18 kbp. Similarly, 139 (22%) plasmids were fully recovered from assem-
bly graphs, these were mostly small plasmids (n=122, 88%). Furthermore, 53 plasmids were fully 
recovered from contigs sequences only, while 7 were solely extracted from nodes in the assembly 
graph (Figure S5 B and C, Table S5).

Interestingly, we found that 31 (4.9%) plasmid sequences were completely missing from contigs se-
quences (recall=0), while 32 (5%) were missing from the assembly graph. A total of 28 plasmids 
(4.4%) were absent from both types of input (Figure S5 D). The sizes of these missing plasmids ran-
ged from 763 to 4087 bp and did not contain any antibiotic resistant determinants. Interestingly, 
two small plasmids (Accessions: CP049974.1 and CP057228.1) were completely assembled from 
contigs (recall=1) but missing from the assembly graph produced by SPAdes (Table S5).

Finally, we discovered that the majority of small plasmids were contained in single nodes in the as-
sembly graph  (n=215, 79.05%) or single contigs (n=220,80.88%). Additionally, we found that 14 
(5.15%) small plasmids were contained in hybrid contigs, formed by sequences derived from more 
than one replicon (Table S5).

Recovering E. coli plasmids in the absence of long-read sequencing data

C
ha

pt
er

 2



50

Figure S1. This flowchart summarizes the steps applied for selecting the 240 E. coli sequences included in this benchmark.

Supplementary Data

Supplementary data can be downloaded from:
https://www.mdpi.com/article/10.3390/microorganisms9081613/s1.

Supplementary Figures
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Figure S2. Total CPU-Time (top) and Memory (bottom) required by each tool to generate plasmid predictions in 270 E. coli 
genomes. Only 240 of these genomes were included in the final benchmark (see Methods).
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Figure S3. Difference between predicted and observed plasmid content per tool. Strains were ordered by increasing amount 
of plasmids (orange line, right y-axis). A negative value on the left y-axis indicates an underestimation of the amount of plas-
mids predicted for that particular strain whereas a positive value indicates an overestimation.
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Figure S4.  Recall (A), Precision (B) and F1-score (C) values distribution for all plasmid predictions made by each tool. (D) 
F1-score distribution of all plasmid predictions made by all tools combined. We established an F1-score cut-off of 0.95 (das-
hed line) to define a plasmid prediction as correct.
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Figure S5. (A) Recall values obtained when aligning all assembled contigs or nodes in the assembly graph to reference plas-
mids. (B) Same recall values as A, as a function of plasmid size. (C) Venn diagram that shows the number of fully recovered 
plasmids (recall=1). (D) Venn diagram that shows completely missed plasmids (recall=0).
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Figure S6. (A) F1-score value distribution for plasmid predictions according to plasmid sizes. (B) Absolute count of small 
and large reference plasmids that were correctly reconstructed (F1-score >=0.95)  by a single or multiple tools, incorrectly 
reconstructed (F1-score <0.95) and not detected. (C) Recall value distribution for plasmid predictions according to plasmid 
sizes. (D) Precision value distribution for plasmid predictions according to plasmid sizes.
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Figure S7. (A) Distribution of chromosome contamination values per tool. Each dot corresponds to an individual prediction 
that presented chromosomal sequences. (B) Count of predictions that contained chromosomal contamination.
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Figure S8. (A) Distribution of lengths for ARG and non-ARG plasmids. (B) F1-score values distribution per tool for predic-
tions of large ARG plasmids vs. large non-ARG plasmids. (C) Recall values distribution per tool for predictions of large ARG 
plasmids vs. large non-ARG plasmids. (D) Precision values distribution per tool for predictions of large ARG plasmids vs. 
large non-ARG plasmids. (E) Bar plots showing absolute counts of detected and not detected reference plasmids.
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Figure S9. Scatter plot that shows precision (bp) and recall (bp) values for predictions that presented a Recall(ARG) equal to 1.
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Figure S10. (A) Absolute count of ESBL variants in the benchmark data set. (B) tSNE created based on plasmids k-mer distances 
obtained with Mash (k=21, s1000).  ESBL-plasmids included in the benchmark are colored according to distinct ESBL genes.
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Figure S11. (A) Absolute count of ESBL genes according to prediction status. The different prediction status were determined 
according to the following criteria. Correct backbone: ESBL gene was included in a bin that presented an F1-Score >=0.95, 
incorrect backbone: ESBL gene was included in a bin that presented an F1-Score<0.95, not detected: ESBL gene was not inclu-
ded in the bins produced by the tool, chromosome: chromosome-derived ESBL gene was included in the bins generated by the 
tool. (B) F1-score value distribution for all bins containing plasmid-derived ESBL genes. (C) Precision vs Recall plot for all bins 
containing a plasmid-derived ESBL gene.
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Abstract

Escherichia coli has become the most prevalent resistant pathogen worldwide, being responsible for 
more than 250,000 deaths each year. Antibiotic resistance genes (ARGs) in E. coli are frequently 
encoded by plasmids, mobile genetic elements that play a pivotal role in the spread of resistance. 
Accurate reconstruction of E. coli ARG plasmids from Illumina sequencing data has proven to be a 
challenge with current bioinformatic tools. In this work, we present an improved method to recons-
truct E. coli plasmids using short reads. We developed an ensemble classifier, named plasmidEC, that 
identifies plasmid-derived contigs by combining the output of three binary classification tools. We 
demonstrated that plasmidEC is especially suited to classify contigs derived from ARG plasmids 
(recall of 0.941) Subsequently, we optimised gplas, a graph-based tool that bins plasmid-predicted 
contigs into distinct plasmid predictions. The new version of gplas is more effective at recovering 
plasmids with large sequencing coverage variations and can be combined with the output of any bi-
nary classification tool. The combination of plasmidEC with gplas showed a high completeness (me-
dian=0.818) and F1-score (median=0.812) when reconstructing ARG plasmids, which exceeded 
the binning capacity of the reference-based method MOB-suite. In the absence of long-read data, 
our method offers the best alternative to reconstruct ARG plasmids in E. coli. 

Data Summary

No new sequencing data has been generated in this study. All genomes used in this research are publi-
cly available at the GenBank and Sequence Read Archive of the National Center for Biotechnology 
Information. Accession numbers are specified in Supplementary Table S1.

Scripts to reproduce the results reported in this manuscript can be accessed at https://gitlab.com/jpa-
ganini/ecoli-binary-classifier. The ensemble classifier, plasmidEC, is publicly available at https://gitlab.
com/mmb-umcu/plasmidEC, and gplas can be found at https://gitlab.com/mmb-umcu/gplas.
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Introduction

Escherichia coli is a commensal gram-negative bacterium inhabiting the gastro-intestinal tract, but is 
also the leading cause of bloodstream and urinary tract infections in humans [1,2]. In recent years, 
the emergence and spread of multidrug resistant (MDR) E. coli lineages has narrowed down the 
treatment options for infections with these bacteria [3,4]. Moreover, a recent assessment of the glo-
bal burden of antimicrobial resistance (AMR) estimated that AMR E. coli infections accounted 
for more than 250,000 deaths in 2019, placing E. coli amongst the most prevalent AMR pathogens 
worldwide [5].

Horizontal gene transfer (HGT) is one of the main drivers behind the rapid spread of AMR [6–8]. 
AMR genes are commonly associated with mobile genetic elements (MGEs), such as transposons, 
integrative and conjugative elements, and plasmids, which facilitate their mobility across bacteria 
[9,10]. Of these MGEs, plasmids play a pivotal role by disseminating AMR genes in clinical settings 
as well as in other environments [11–13]. Plasmids are frequently transmitted among bacteria of 
the same species, but they can also be shared by bacteria of different species or even different genera 
[14–17]. Given their relevance in the spread of AMR genes, it is critical to develop high-throughput 
methods to identify plasmids in a precise, fast and accessible manner.

Bacterial genomes have been massively studied using short-read sequencing platforms. However, 
plasmids tend to contain repetitive elements that cannot be spanned by short-reads and thus their 
sequence is usually fragmented into several contigs and tangled with other genomic elements 
(chromosomal sequences). This makes it hard to reconstruct complete plasmids from short-read 
sequencing data [18]. 

Several bioinformatic tools are currently available to predict plasmids from short-read sequencing 
data. They can be broadly categorised into two groups: (i) tools that produce a binary classification 
of contigs as either plasmid- or chromosome-derived, generating an output that predicts the total 
plasmid content of a bacterial strain, often referred to as the ‘plasmidome’ (without reconstructing 
individual plasmids), and (ii) tools that aim to recover complete sequences for individual plasmids 
[19]. The latter group, termed plasmid reconstruction tools, provide a more suitable output for plas-
mid epidemiology studies.

We recently evaluated the performance of several plasmid reconstruction tools for use with E. coli 
[19]. We found that the best performing tool, MOB-suite [20], only achieved the correct recons-
truction of 50.2% of the plasmids. Moreover, all tools performed sub-optimally when attempting to 
reconstruct plasmids containing antibiotic resistance genes (ARG-plasmids), ranging from 3.4% to 
27.9% correct ARG-plasmid reconstructions. These results emphasised the need to improve current 
methods to predict ARG-plasmids in E. coli. 

Here, we present a new high-throughput method to reconstruct E. coli plasmids from short-read 
sequencing data. Firstly, we optimised gplas, a plasmid binning tool, to recover walks in the assem-
bly graph corresponding to plasmids with a pronounced coverage variation. Secondly, we developed 
an ensemble classifier, plasmidEC, combining multiple existing binary classification tools (Plascope 
[21], RFplasmid [22], Platon [23] and mlplasmids [24]) to predict plasmid-derived contigs. Thirdly, 
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we coupled plasmidEC with gplas to accurately bin plasmid-derived contigs into separate compo-
nents corresponding to individual plasmid sequences. Comparisions with existing methods revealed 
that our method outperformed all currently available plasmid reconstruction tools for E. coli, espe-
cially for predicting ARG-plasmids.

Methods

All scripts used to reproduce the analyses can be found at gitlab.com/jpaganini/ecoli-binary-classi-
fier. R version 3.6.1. was used for all R scripts.

Benchmark datasets
A dataset of 240 E. coli complete genomes from 8 different phylogroups and 117 sequence types 
(STs), encoding 631 plasmids, was selected as previously described in Paganini et al. [19]. The E. 
coli genomes originated from animals, humans and the environment, resulting in a diverse dataset 
with respect to phylogeny and plasmid content. All genome sequences were completed by the com-
bination of short- and long-read sequencing data. Short-read sequences and complete genomes were 
downloaded from NCBI using SRA tools (v2.10.9) and ncbi-genome-download (v0.2.10) (https://
github.com/kblin/ncbi-genome-download), respectively. Genomes present in the training datasets 
or reference databases of existing plasmid classification tools (mlplasmids, PlaScope, Platon and/or 
RFPlasmid) were removed (n=26). The remaining 214 complete genomes, encoding 542 plasmids, 
were used to benchmark the binary classifiers (Supplementary Data 1). From these, 15 genomes (Su-
pplementary Data 2) were randomly selected to optimise the gplas algorithm and excluded from 
later comparisons. The remaining genomes (n=199, 483 plasmids) were used to benchmark the plas-
mid reconstruction methods. 

Benchmarking binary classification tools and construction of plasmidEC
Selection of contigs for benchmarking
Short-read sequences of each sample were assembled with bactofidia (v1.1) (https://gitlab.com/
aschuerch/bactofidia), a pipeline that relies on SPAdes (v3.11.1) for genome assembly [25]. The re-
sulting contigs (n=18,963) were labelled as chromosome- or plasmid-derived by alignment to their 
respective complete genomes using QUAST (v5.0.2)[26]. Only contigs larger than 1,000 bp with 
an alignment of at least 90% the contig length were considered (n=15,020). Of those, contigs alig-
ning to multiple positions in the genome (ambiguously aligned contigs) were included if they were 
exclusively aligned to either the chromosome or to plasmids (n=1,236). The same criterion was used 
for inclusion of misassembled contigs (n=1,862). In total, the benchmark dataset included 14,746 
contigs (Supplementary Figure S1).

Assessment of the individual binary classifiers 
Contigs were classified by mlplasmids (v2.1.0), PlaScope (v.1.3.1), Platon (v.1.6) and RFPlasmid 
(v0.0.17). All tools were run using default parameters. We assessed the performance of the four bi-
nary classifiers by comparing, for each contig, their prediction to the actual class of the contig, as 
described in the section above. For PlaScope, an ‘unclassified’ prediction was handled as a negative 
prediction. Predictions were categorised into: True Positives (TP, prediction = plasmid, class = plas-
mid), True Negatives (TN, prediction = chromosome, class = chromosome), False Positives (FP, 
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Recall (contig) = TP
TP + FN

Precision (contig) = TP
TP + FP

F 1 - Score (contig) =   2 · Recall (contig) x Precision (contig)
Recall (contig) + Precision (contig)

prediction = plasmid, class = chromosome) and False Negatives (FN, prediction = chromosome, 
class = plasmid). Global performance of the tools was evaluated with the following metrics:

 
Assessment of the ensemble classifiers 
To improve the predictions obtained by independent tools, we combined their output into distinct 
ensemble classifiers that implemented a majority voting system. We tested four different combina-
tions of individual classifiers: mlplasmids/PlaScope/Platon, mlplasmids/PlaScope/RFPlasmid, ml-
plasmids/Platon/RFPlasmid and PlaScope/Platon/RFPlasmid. A final classification of each contig 
(chromosome or plasmids) was obtained by combining the output of the tools using an R script 
(provided in the accompanying code repository). The ensemble classifiers were evaluated using the 
same metrics as described above. 

Construction of plasmidEC
Any combination of independent classifiers can be run using plasmidEC. The tool consists of a bash 
wrapper script that automatically installs and runs all required individual classifiers and combines 
their results implementing a majority voting system. Based on the performance for E. coli, the com-
bination of Platon/PlaScope/RFPlasmid was selected as default. PlasmidEC is publicly available at 
https://gitlab.com/mmb-umcu/plasmidEC. 

Benchmarking of plasmid reconstruction tools
Running plasmid predictions tools
Prior to assembly, Illumina raw reads were trimmed using trim-galore (v0.6.6) (https://github.com/
FelixKrueger/TrimGalore) to remove adapter contamination and bases with a phred quality score 
below 20. Unicycler (v0.4.8) [27] was then applied to perform de novo assembly with default para-
meters. Contigs larger than 1,000 bp were used as input for MOB-suite (v3.0.0) [20], while assembly 
graphs in GFA format served as input for gplas (v1.0.0). To run gplas, nodes from the graph were 
first classified as plasmid- or chromosome-derived using either plasmidEC or PlaScope; only nodes 
larger than 1,000 bp were classified. Output from the tools were modified to assign probabilities for 
the classification of each node, which is required by the gplas algorithm. For PlaScope, discrete pro-
babilities were assigned based on the node classification status, if a node was classified as plasmid, a 
probability of 1 was assigned, while a 0 was appointed for chromosome-predicted nodes. In the case 
of unclassified nodes, a probability of 0.5 was designated. For plasmidEC, probabilities were based 
on the fraction of tools that agreed on the classification. For example, if 2 out of 3 tools agreed in 
classifying a node as plasmid, a probability of 0.66 was assigned.
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Combined completeness (bp) = Σ Completeness (bp)
n

1

n = Total number of bins that contain contigs aligning the reference plasmid

Recall (ARG) = Nr of correctly predicted ARGs on bin
Total nr of ARGs on reference plasmid

Precision (ARG) = Nr of correctly predicted ARGs on bin
Total nr of ARGs on bin

Accuracy (bp) = Alignment length against reference plasmid (bp)
Total length of predicted bin (bp)

Completeness (bp) = Alignment length against reference plasmid (bp)
Total length of predicted plasmid (bp)

F 1 - Score (bp) = 2 x Accuracy (bp) x Completeness (bp)
Accuracy (bp) + Completeness (bp)

Analysis of the plasmid bin composition
To evaluate the bins (i.e. predicted individual plasmids) created by MOB-suite and gplas, we used 
QUAST (v5.0.2) [26] to align the contigs of each bin to the respective complete reference genome. 
We calculated accuracy, completeness and F1-score on the base-pair level, as specified below.

If a bin was composed of contigs derived from different plasmids, then accuracy, completeness and 
F1-score were reported for each plasmid-bin combination.

We also evaluated the number of reference plasmids that were detected by each tool. We considered 
that a reference plasmids was detected when at least a single contig of the plasmid was included into 
the predictions.

To determine combined recall for each reference plasmid, all bins generated in an isolate were com-
bined as followed:

Antibiotic Resistance Gene (ARG) Prediction
Resistance genes were predicted by running Abricate (v1.0.1) against the Resfinder [28] database 
(database indexed on 19 April 2020) with reference plasmids as query, using 80% as identity and 
coverage cut-off. The same software and parameters were used to predict the presence of ARGs in the 
plasmid bins generated by each of the plasmid reconstruction tools.

Evaluation of ARGs binning
For bins that carried ARGs, we calculated Recall(ARG) and Precision(ARG) as indicated below.
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Evaluating unbinned nodes in gplas predictions
Unitigs classified as unbinned by gplas (n=78) were aligned to the corresponding complete reference 
genome using QUAST (v5.0.2). The results of these alignments were used to determine the origin of 
the unitig (plasmid or chromosome). For isolates that contained unbinned unitigs (n=19), coverage 
information of all unitigs (bin and unbinned) was extracted from the header of the FASTA files ge-
nerated after unicycler assembly. From these data, coverage variance for all replicons was calculated 
and plotted using R (v.3.6.1).

Evaluating the recovered fraction for each reference plasmid 
We calculated the maximum recall that can be obtained to reconstruct every reference plasmid 
using short-read sequencing data. All nodes from the assembly graph, before applying any classi-
fication tool, were converted to FASTA format using the ‘extract’ option of gplas. Nodes smaller 
than 1,000 bp or smaller than 500 bp were filtered out using seqtk (v1.3) (https://github.com/
lh3/seqtk), and remaining nodes were aligned to their respective closed reference genomes using 
QUAST to obtain the recall values. This maximum recall value was called the recovered fraction 
(See supplementary results).

Read coverage of missing reference plasmids
A small number of plasmids were either completely missed or recovered with low recall after short-
read assembly. In order to determine if these sequences were also missing from short-reads, trimmed 
Illumina reads were aligned to reference genomes using BWA MEM (v.0.7.17) [29] with default pa-
rameters. Resulting SAM files were converted to BAM and sorted using SAMtools (v1.9) [30]. Read 
coverages per base were determined using BEDTOOLS (v2.30.0) [31] (See supplementary results).

Results

Optimisation of gplas to improve the reconstruction of E. coli plasmids
The original gplas algorithm performs de novo reconstruction of plasmids through multiple steps 
(Figure 1 - Steps 1 to 3) [32]. In short, nodes from the assembly graph are initially classified as plas-
mid-derived or chromosome-derived by an external binary classification software, which also assigns 
a probability for this classification. Then, plasmid-predicted unitigs act as seeds to compute plas-
mid walks with homogeneous coverage in the assembly graph using a greedy approach. Finally, these 
unitigs are binned together into individual components based on their co-existence in the compu-
ted plasmid walks. A detailed description of the algorithm can be found in the original publication 
[32]. Given that gplas performed sub-optimally when reconstructing E. coli plasmids in our previous 
study [19], we improved the algorithm by introducing two major modifications:

A) Expansion of the input options for binary classification 
Coupling gplas with an accurate binary classifier improves the reconstruction of plasmids, as we 
previously demonstrated for Enterococcus faecalis and Klebsiella pneumoniae [32,33]. Conse-
quently, the gplas algorithm was adapted to accept predictions from any binary classifier. 
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B) Re-iterating plasmid walks over initially unbinned contigs.
Gplas constructs plasmid walks over the assembly graph to connect unitigs that potentially ori-
ginate from the same plasmid (Figure 1 - Step 2). Consequently, plasmid-predicted unitigs that 
can’t be connected to other unitigs through these paths are classified as unbinned, and are not 
included in the plasmid predictions (Figure 1- Step 3). Unbinned unitigs seem to originate from 
reference plasmids that were sequenced with a pronounced coverage variation (Supplementary 
Figure S2). This sequencing artefact poses a challenge to the gplas algorithm, which builds plas-
mid walks from unitigs with homogeneous coverage. Consequently, we modified gplas to consi-
der these coverage variations (Figure 1 - Steps 4 & 5). Whenever unbinned unitigs are produced 
by the original gplas algorithm, gplas v1.0 will produce a second round of binning in bold mode 
by running two additional steps:

1. Computation of plasmid walks in bold mode starting from unbinned unitigs. 
If unbinned unitigs are predicted, new bold plasmid walks will be constructed. When crea-
ting the bold walks, a higher coverage variance threshold between plasmid-predicted unitigs is 
allowed. This threshold can be defined by the user and is a multiple of the coverage variance ob-
served for chromosome-predicted unitigs. Only bold plasmid walks that start from unbinned 
unitigs will be retained to use in the next step, while the rest will be discarded (Figure 3 - Step 4).
2. Plasmidome network reconstruction and repartitioning. 
Plasmid walks produced during bold mode are merged with plasmid walks from normal mode. 
Based on this combined data, plasmidome networks are reconstructed and repartitioned (Fi-
gure 3 - Step 5) to create new bins, using the same algorithms as in step 3. 

We optimised the predictions obtained with gplas v1.0 using a subset of 15 E. coli genomes that 
contained unbinned unitigs and that were excluded from subsequent benchmarking efforts (Supple-
mentary Table S2). For bold walks, we allowed a coverage variance of 5, 10, 15 or 20 times the cove-
rage variance observed for the chromosome-predicted unitigs. Plasmid predictions made with gplas 
v1.0 exhibited consistently higher completeness(bp) values when compared to the original predictions 
(Supplementary Figure S3 A). Surprisingly, altering the coverage variance threshold above 5 did not 
impact completeness(bp) values. In contrast, accuracy(bp) values decreased when allowing a higher 
coverage variance. The highest F1-Score(bp) values (median=0.78, IQR=0.47 - 0.96) were obtained 
when using a coverage variance threshold of 5. Consequently, 5 was defined as the default value to 
construct bold plasmid walks. Nevertheless, this value can be adjusted by the user. As a single exam-
ple, we display the plasmid predictions obtained with and without the incorporation of the bold 
mode for genome GCA_013823335.1_ASM1382333v1 (Supplementary Figure S3 B and S3 C). In 
this case, the  bold walks allowed to recover 7 additional contigs belonging to plasmids CP057179.1 
and CP057180.1.

Gplas v1.0, including the features discussed above and a detailed user guide, can be found at
https://gitlab.com/mmb-umcu/gplas. 
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Figure 1. Schematics on gplas algorithm. The steps 4 and 5 were added to recover unbinned unitigs.
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Comparing binary classification methods for E. coli
In order to combine gplas with the best available binary classifier for E. coli, we compared the per-
formance of four different tools (PlaScope, RFPlasmid, mlplasmids and Platon). The benchmark 
dataset consisted of 14,746 contigs. Of these contigs, 87.3% (n=12,872) were chromosome-derived 
and 12.7% (n=1,874) were plasmid-derived.

We evaluated the number of contigs correctly and incorrectly classified by each of the tools and 
calculated recall(contig), precision(contig) and F1-score(contig) (Supplementary Table S1). Plascope was 
able to correctly identify the highest number of plasmid-derived contigs (True Positives, n=1,629), 
while the rest of the tools detected between 1,297 and 1,523 plasmid-derived contigs. Notably, 
PlaScope also included the least chromosomal contamination in its predictions (False Positives, 
n=117), closely followed by Platon (n=122). In contrast, mlplasmids and RFPlasmid included 
a higher amount of chromosome-derived contigs in their plasmidome predictions (n=418 and 
n=420, respectively). PlaScope was the tool with the highest F1-score(contig) (0.900) followed by 
Platon (0.861), RFPlasmids (0.798) and mlplasmids (0.722). For most tools, precision(contig) values 
were higher than recall(contig) values, indicating that the predicted plasmidome mostly consists of 
true plasmid-derived contigs, but also that plasmid contigs were frequently missed by the tools.

We also explored the congruence in contig classifications across tools (Figure 2). All tools agreed on the 
correct classification of 51.8% of plasmid-derived contigs (True Positives: n=971, Figure 2A), and ano-
ther 26.5% plasmid-derived contigs were correctly classified by at least three tools (n=497). Also, a high 
fraction (94.1%) of chromosome-derived contigs were correctly classified by all tools (True Negatives: 
n = 12,116 contigs, Figure 2B). Moreover, only a minority of plasmid-derived and chromosome-deri-
ved contigs were missed by most of the tools and correctly classified by just a single tool (True Positives: 
85/1,874, 4.7%, True Negatives: 58/12,872, 0.5% respectively). From these observations, we conclu-
ded that contigs misclassifications are primarily derived from individual tools (Figure 2C and 2D). 

PlasmidEC: A voting classifier for improved detection of ARG-plasmid
contigs in E. coli
We theorised that discarding software-specific misclassifications, while keeping correct classifica-
tions shared by multiple tools could improve the overall binary classification of E. coli contigs as 
plasmid- or chromosome-derived. To explore this, we combined the predictions of three individual 
classifiers and extracted their majority vote as the final classification. 

After testing all possible combinations of individual classifiers, we found that Platon/PlaScope/
RFPlasmid displayed the highest overall performance of voting classifiers with the highest 
F1-score(contig) (0.904). This ensemble classifier achieved an F1-score(contig) similar to PlaScope 
(0.900) but had a slightly higher recall(contig) (0.884 and 0.869, respectively) (Figure 3 A and B, 
Supplementary Table S1). 
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D

Figure 2. Upset diagrams showing congruence in contig classification by different binary prediction tools (absolute counts). Bar 
colours indicate the number of tools that are in congruence. Note that y-axes have different heights. True Positives (TP; predic-
tion=plasmid, class=plasmid), True Negatives (TN; prediction = chromosome, class=chromosome), False Positives (FP; pre-
diction=plasmid, class=chromosome), False Negatives (FN, prediction=chromosome, class=plasmid). 
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Next, we evaluated recall(contig) values for a subset of plasmids (n=114) encoding antibiotic resistance 
genes (ARG-plasmids) (Figure 3C and 3D, Supplementary Table S2). This dataset consisted of 860 
plasmid-derived contigs, derived from 91 E. coli genomes. The recall(contig) of individual tools ranged 
from 0.723 (mlplasmids) to 0.884 (PlaScope),  whereas the different combinations of tools in a voting 
classifier reached recall(contig) values ranging from 0.883 (mlplasmids/Platon/RFPlasmid) to 0.941 (Pla-
ton/PlaScope/RFPlasmid). Based on these results, the combination of Platon/PlaScople/RFPlasmid 
was selected as the ensemble classifier to be implemented in a novel tool termed plasmidEC, which is 
publicly available at https://gitlab.com/mmb-umcu/plasmidEC.

We measured the computational resources used by the ensemble and individual classifiers (Su-
pplementary Figure S4). Binary classifiers showed considerable differences in both CPU time and 
memory used. The average CPU time required per sample was lowest for PlaScope (0.2 mins) 
and highest for Platon (14.9 mins). Platon also used the largest amount of memory per sample 
(20.6 Mb). The least amount of memory was required by mlplasmids (2.7 Mb). Because plasmidEC 
includes the execution of three binary classifiers, time and memory requirements were high, especia-
lly when Platon was run. The combination of mlplasmids/PlaScope/RFPlasmid required the least 
number of resources (CPU time = 4.5 mins, memory = 9.0 Mb) and PlaScope/Platon/RFPlasmid 
the most (CPU time = 21.5 mins, memory = 21.4 Mb).

Figure 3. Performance of individual binary classifiers and plasmidEC combinations, measured by recall(contig), precision(contig) and 
F1-score(contig). A) Individual classifiers evaluated using full dataset (n=214 genomes). B) PlasmidEC combinations evaluated 
using full dataset. C) Individual classifiers evaluated for the identification of plasmid-derived contigs (recall(contig)) using dataset of 
ARG-plasmids (n=114 ARG-plasmids). D) PlasmidEC combinations evaluated for the identification of plasmid-derived con-
tigs (recall(contig)) using dataset of ARG-plasmids.
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Exploiting the information from the assembly graph improves correct  binning
of ARG plasmids
To reconstruct individual E. coli plasmids, gplas was combined with either plasmidEC or PlaSco-
pe, and performances were compared with MOB-suite, which was the best-performing plasmid re-
construction tool for E. coli in a recent benchmark study [19,34]. To retain comparability with the 
aforementioned study, we started with the same dataset and removed 26 genomes that were present 
in the PlaScope database and 15 genomes that were used to improve the gplas algorithm [35]. Con-
sequently, our benchmark dataset consisted of 199 complete E. coli genomes encoding 483 plasmids. 
A total of 213 (44.1%) plasmids were classified as small plasmids (smaller than 18,000 bp), while the 
remaining 270 (55.9%) were large plasmids. Given our interest in predicting ARG-plasmids, and the 
fact that most ARGs are encoded on large plasmids (n=382/387, 98.7%), we analysed performance 
separately for large ARG-plasmids (n=96) and large non-ARG-plasmids (n=174). 

When evaluating the reconstruction of ARG-plasmids, we found that the F1-Score(bp) values of gplas 
combined with either plasmidEC (gplas_plasmidEC) or PlaScope (gplas_PlaScope) were similar 
(Figure 4A, Table 1), with median F1-Score(bp) of 0.81, (IQR=0.53 - 0.93) and  0.76 (IQR=0.52 - 
0.94), respectively. Notably, both gplas methods outperformed MOB-suite, which presented a lower 
F1-Score(bp) (median= 0.44, IQR= 0.18 - 0.87). As accuracy(bp) values were nearly identical across 
tools, the disparity in F1-Scores(bp) can be explained due to the differences in completeness(bp). In 
contrast, combined completeness(bp) distributions were virtually identical among tools. These results 
suggested that all methods had a similar capacity to detect contigs derived from large ARG-plas-
mids, but gplas performed better at binning these contigs together into individual predictions. This 
hypothesis was confirmed by analysing the number of bins into which each reference plasmids was 
fragmented (Figure 4B). For large ARG plasmids, we found that MOB-suite fragmented 49% of 
plasmids into multiple predictions, while both gplas methods did so in only 14% of the cases.

All tools identified a similar number of plasmid-borne ARGs (Figure 4C). MOB-suite and 
gplas_plasmidEC detected 331 (86.6%) ARGs encoded in large plasmids and gplas_PlaScope 
327 (85.6%). Moreover, all tools successfully detected all ARGs present in small plasmids (n=5, 
100%). In concordance with previous results, recall(ARG) values (Figure 4D) for gplas predictions 
were higher than those obtained with MOB-suite (Table 1). This indicates that gplas performs be-
tter at correctly binning ARGs together into the same plasmid prediction. However, plasmid pre-
dictions made with gplas included a higher number of chromosomal ARGs (Figure 4C, Table 1).
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Figure 4. Benchmarking of plasmid reconstruction methods for ARG-plasmids. A) Completeness(bp), accuracy(bp), F1-score(bp) 
and combined completeness(bp) values for predictions corresponding to large ARG-plasmids (n=96) and large non-ARG-plas-
mids (n=174). B) Percentage of reference plasmids that were recovered with different fragmentation degrees (i.e. if the contigs 
that compose a single reference plasmid are assigned to three different predictions, then the fragmentation degree equals three). 
C) Absolute count of ARGs included (detected) in plasmid predictions, missing ARGs (not detected) and chromosome-derived 
ARGs incorrectly included (Chromosome). D) Recall(ARG) and Precision(ARG) values.
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Large Plasmids (n = 270)

ARG-Plasmids (n = 96)
Nr. of detected plasmids*

F1-Score(bp) (median, IQR)

MOB-suite

0.421 (0.172 - 0.860) 0.812 (0.529 - 0.934)

263 (97.4%) 253 (93.7%)

glas_plasmidEC

0.758 (0.520 - 0.936)

254 (94.1%)

glas_PlaScope

Non-ARG-Plasmids (n = 174)

Completeness(bp) (median, IQR)
Accuracy(bp) (median, IQR)
Nr. plasmid-borne ARGs detected
Nr. chromosome-derived ARGs
Recall (ARG) (median, IQR)
Precision (ARG) (median, IQR)

F1-Score(bp) (median, IQR)
Completeness(bp) (median, IQR)
Accuracy(bp) (median, IQR)

Small Plasmids (n=213)
Nr. of detected plasmids*
F1-Score(bp) (median, IQR)
Completeness(bp) (median, IQR)
Accuracy(bp) (median, IQR)
Nr. plasmid-borne ARGs detected 5 (100%)

0.317 (0.114 - 0.803)
0.883 (0.591 - 0.982)

331 (86.6%)
64

1 (0.42 - 1)
1 (0.82 - 1)

0.910 (0.378 - 0.977)
0.879 (0.245 - 0.967)

0.978 (0.904 - 1)

174 (81.8%)
1 (0.985 - 1)
1 (0.976 - 1)

1 (1- 1)
5 (100%)

0.818 (0.520 - 0.924)
0.979 (0.564 - 1)

331 (86.6%)
75

1 (0.86 - 1)
1 (0.75 - 1)

0.921 (0.596 - 0.983)
0.915 (0.618 - 0.972)

1 (0.958 - 1)

184 (86.4%)
1 (0.991 - 1)
1 (0.996 - 1)

1 (1- 1)
5 (100%)

0.818 (0.531 - 0.924)
0.979 (0.520 - 1)

327 (85.6%)
75

1 (0.86 - 1)
1 (0.77 - 1)

0.912 (0.571 - 0.983)
0.918 (0.614 - 0.972)

1 (0.796 - 1)

196 (92.0%)
1 (0.990 - 1)
1 (0.990 - 1)

1 (1- 1)

Table 1. Performance summary of three plasmid prediction tools, for the prediction of different plasmid types. 

*A plasmid is considered detected if at least 1 contig is included in the plasmid predictions.

Interestingly, tools performed comparably when evaluating the reconstruction of plasmids encoding 
extended spectrum beta-lactamases (ESBL) (n=42). MOB-suite reconstructions were characterised 
by having higher accuracy(bp) and gplas methods reconstructed ESBL-plasmids with higher complete-
ness(bp) (Supplementary Figure S5A). Despite these differences, all tools exhibited similar F1-Score(bp) 

values. Additionally, the number of plasmid-borne ESBL genes detected were almost identical across 
tools (Supplementary Figure S5B). Nevertheless, gplas methods still performed better at binning 
ARGs into the same prediction (Supplementary Figure S5C).

For small plasmids (n=213), all tools displayed similar performance across the three metrics, obtaining 
near-perfect reconstructions in all cases, with F1-score(bp) medians of 1 (Table 1, Supplementary Figure 
S6A).  This is likely due to most small plasmids being assembled into a single contig (n=196, 92.0%) 
(Supplementary Figure S6B), and consequently the identification of these contigs as plasmid-derived 
generally leads to obtaining high values for all metrics. We therefore evaluated the number of small (and 
large) plasmids detected by each of the tools (Supplementary Figure S6C). Interestingly, gplas_PlaS-
cope detected 196 (92.0%) small plasmids, and gplas_plasmidEC performed similarly, detecting 184 
(86.4%). Both gplas methods outperformed MOB-suite, which detected 174 (81.8%) small plasmids.

Finally, we tested the effect of using different contig sizes for plasmid reconstruction. We found no 
significant differences in performance of the tools when using 500 bp or 1,000 bp as a minimum con-
tig size. A more detailed description of the results from this analysis can be found in Supplementary 
Materials and in Supplementary Figures S7 - S10.
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Discussion

In this work, we developed a new high-throughput method to reconstruct E. coli plasmids de novo from 
short-read sequencing data. Accurately reconstructing E. coli plasmids from Illumina reads has proven 
to be a challenge, especially in the context of ARG plasmids. Our method relies on an accurate identifi-
cation of plasmid-derived nodes in the assembly graph, followed by the binning of these nodes using se-
quencing coverage and node connectivity information. We proved that our method outperforms other 
plasmid prediction tools available for E. coli, especially when reconstructing ARG plasmids.

To improve the identification of plasmid-derived contigs, we built plasmidEC, an ensemble classifier 
that combines predictions from three individual binary classifiers and implements a majority voting 
system. Voting classifiers have been successfully applied in other fields of biology [35–38], but so far not 
for the problem of plasmidome identification. PlasmidEC correctly identified a large fraction of contigs 
derived from ARG-plasmids (Recall(contig)=0.941), and considerably outperformed all individual classi-
fiers. Thus, we believe that plasmidEC will be especially useful for plasmidome research that focuses on 
antibiotic resistance. Notably, all binary classifiers presented higher recall for classifying contigs from 
ARG plasmids than from non-ARG plasmids (precision not analyzed), suggesting that these sequences 
might be overrepresented in reference databases which are directly or indirectly used by all tools. 

When comparing the performance of the tools using the entire benchmark dataset, we found that 
plasmidEC and PlaScope performed similarly in terms of F1-Score(contig). However, plasmidEC 
showed a higher Recall(contig) but used more computational resources and took a longer time to com-
plete. Reference-based methods, like PlaScope, are expected to perform well for species like E. coli 
which are abundant in public databases [39]. Supporting this hypothesis, a recent study by Shaw 
et al. [40] discovered few novel plasmid sequences in a dataset that included more than 2,000 plas-
mids from Enterobacteriaceae isolates. PlaScope was built around Centrifuge [41], a metagenomic 
classifier to predict the origin of contigs based on custom databases. Recently, it was also shown that 
the usage of Kraken [42], another metagenomic classifier using customised databases, outperformed 
other binary classifiers in Klebsiella pneumoniae [41,43]. It would be interesting to explore how tools 
perform at classifying contigs from species with a limited number of complete genomes in databa-
ses. We speculate that in those cases, plasmidEC, which combines tools with diverse computational 
approaches, could improve predictions to a larger extent.

PlasmidEC could be further optimised by (i) multithreading the predictions of the individual tools, 
which would reduce the computational time to generate the results, (ii) including the possibility to 
predict the origin of contigs from other species, as long as those are supported by the binary classi-
fiers, and (iii) improving its accuracy by using weighted votes, where a high confidence prediction 
will contribute relatively more to the result than a low confidence prediction. 

We integrated plasmidEC (and PlaScope) with gplas to reconstruct individual E. coli plasmids. 
We then compared the performance of gplas combined with those classifiers against MOB-
suite. Interestingly, the most pronounced differences in performance were observed when 
reconstructing ARG-plasmids. Although combined completeness(bp) values indicated that the 
three tools identified similar fractions of ARG-plasmids, MOB-suite more frequently fragmented 
ARG-plasmids into multiple bins, yielding low completeness(bp) and F1-Score(bp). In contrast, 
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gplas (either with plasmidEC or PlaScope) was more successful at binning together contigs into 
individual plasmid predictions, thus achieving higher values for the used metrics. Accuracy(bp) 
values for all tools were similar, indicating a similar degree of chimeric predictions. Interestingly, 
both gplas methods performed similarly to MOB-suite when reconstructing plasmids that carry 
ESBL genes, which suggests that these plasmids might be overrepresented in the database used by 
MOB-suite to make predictions.

We recently described that ARG plasmids from E. coli are particularly difficult to reconstruct from 
short-read data [18], and we suggested that the modular nature of these plasmids could complicate 
their reconstruction using strict reference-based methods, such as MOB-suite. The results we ob-
tained here seem to confirm this hypothesis. Additionally, we improved correct reconstruction of 
ARG-plasmids using coverage and node connectivity information. Yet, our study also proves that 
enriching the assembly graph with accurate information on the origin of nodes (plasmid/chromo-
some) is equally important. A previous version of gplas, which used mlplasmids as a binary classifier, 
performed significantly worse at predicting ARG-plasmids in E. coli [19]. Moreover, using a simpler 
graph-based approach that mainly relies on coverage differences to identify plasmids is also insuffi-
cient. This approach, applied by plasmidSPAdes, frequently leads to the inclusion of chromosomal 
contamination [18,19], due to the low copy number that ARG-plasmids often exhibit. 

We envision that gplas v1.0 could be combined with different binary classification tools to obtain 
accurate de novo plasmid reconstructions for multiple bacterial species. This means that gplas could, 
in theory, also be applied to the reconstruction of plasmids in metagenomic samples. However, sin-
ce a greater number of plasmid-predicted unitigs is expected in metagenomes, the construction of 
plasmid walks will probably require parallelization in order to keep the computation time within 
practical limits.

Although our method constitutes a considerable improvement of the reconstruction of ARG-plas-
mids, some limitations should be noted. First, gplas does not include repeated elements such as in-
sertion sequences in the plasmid predictions. This facilitates the process of finding plasmid walks 
with homogeneous coverages and simplifies the resulting plasmidome network. However, insertion 
sequences play an important role in the structure and genomic plasticity of plasmids [44], and they 
are frequently involved in the mobility of ARGs [9,45,46]. Additionally, the localization of these 
MGEs can influence the expression levels of ARGs [47,48], thereby impacting the resulting resistan-
ce phenotypes. Consequently, including IS elements would certainly improve the completeness and 
relevance of plasmid predictions. Some graph-based plasmid reconstruction methods like HyAsP 
[49], include repeated elements into predictions. This tool also constructs plasmid walks, and uses 
coverage information to predict IS copy numbers, thus allowing the same IS to be present in multi-
ple replicons. In the gplas algorithm, considering repeated elements during the construction of the 
plasmid walks would lead to more entangled plasmidome networks and would complicate the subse-
quent partitioning step. As an alternative, we could envision adding labels to unitigs after the binning 
step, and then implementing a label propagation algorithm on the original assembly graph to deter-
mine to which bin the different IS elements belong. A similar approach is implemented by the tool 
GraphBin2 [50], which refines binning results of metagenomics samples. A second disadvantage of 
our method is the formation of chimeras, which are bins composed of nodes from distinct replicons. 
As previously mentioned, accurate identification of plasmid derived nodes reduces the number of 
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chromosome-plasmid chimeras. However, preventing the formation of plasmid-plasmid chimeras is 
more challenging, especially for isolates carrying multiple large plasmids with similar copy numbers. 
Separating these chimeras could be possible with the use of a plasmid-backbone reference database. 

To conclude, in this work we presented a new plasmidome prediction tool, named plasmidEC, and 
optimised gplas to accurately bin predicted plasmid sequences. Compared to existing binary classi-
fiers, plasmidEC achieves increased recall, especially for contigs that derive from ARG plasmids. The 
integration of plasmidEC  with gplas substantially improved the reconstruction of ARG plasmids in 
E. coli. Our method exceeded the binning capacity of the reference-based method MOB-suite, while 
retaining similar accuracy values. The presented approach constitutes the best alternative to accura-
tely predict and reconstruct ARG plasmids de novo in the absence of long-read data.
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Supplementary Materials

Supplementary Data
Supplementary data be downloaded from: https://doi.org/10.5281/zenodo.7926472

Supplementary Results
Fractions of large plasmids can be found on nodes smaller than 1kb
We used nodes larger than 1kb as an input for gplas and MOB-suite. When aligning all these nodes 
to their corresponding complete genomes, we discovered that a considerable fraction of certain plas-
mids was missing (Supplementary Figure S7). The recovered fraction for small plasmids (median=1, 
IQR=0.98 - 1) was generally higher than for large plasmids (median=0.96, IQR= 0.91 - 0.99). 

After including nodes with sizes ranging from 500 bp to 1 kb, we observed an increase in the recove-
red fraction to a total of 201 plasmids. This increase mainly occurs in large plasmids (n=194, 71.9%) 
and rarely in small plasmids (n=7, 3.3%) (Supplementary Figure S7). However, the relative increase 
in recovered fraction within large plasmids was minimal (median=0.98, IQR=0.94 - 1).

Despite the inclusion of smaller contigs, the recovered fraction remained below 0.9 for 26 (9.6%) lar-
ge plasmids. Additionally, a total of 2 small plasmids and 1 large plasmid were entirely missing after 
assembly (recovered fraction = 0). 

In order to determine if the missing plasmids or plasmid regions were successfully sequenced, we alig-
ned Illumina reads back to their complete genomes and analyzed the sequencing coverage distribu-
tion. For simplification, we show results for plasmids that had a recovered fraction below 0.8 (n=11). 
Most of these isolates contained multiple plasmids, presenting an overall median of 6 plasmids. We 
found Illumina reads aligning to all bases that were missed from assembly (Supplementary Figure 
S8). Interestingly, in 5 of these plasmids (CP051632.1, CP055630.1, AP022225.1, AP022249.1, 
CP054283.1) the median sequencing coverage was lower than the median coverage of the chromo-
some. In the remaining 6 cases, however, there was no apparent correlation between the coverage in 
unassembled regions and the chromosome median coverage (Supplementary Figure S9).  

Given that recovered fractions for large plasmids increased when including smaller contigs, we re-
run all plasmid prediction tools including these contigs as input. In contrast to expectation, the ove-
rall performance of the plasmid reconstruction tools did not improve and remained almost identical 
for every metric (Supplementary Figure S10).
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Supplementary Tables

Supplementary Table S1. Performance metrics of binary classifiers and plasmidEC combinations evaluated for complete 
benchmarking dataset. Predictions were categorised into: True Positives (TP, prediction = plasmid, class = plasmid), True 
Negatives (TN, prediction = chromosome, class = chromosome), False Positives (FP, prediction = plasmid, class = chromoso-
me) and False Negatives (FN, prediction = chromosome, class = plasmid). 

Supplementary Table S2. Performance metrics of binary classifiers and plasmidEC combinations evaluated for ARG-plas-
mids. Predictions were categorised into: True Positives (TP, prediction = plasmid, class = plasmid) and False Negatives (FN, 
prediction = chromosome, class = plasmid). 
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Supplementary Figures

Supplementary Figure S1. Alignment types of all contigs in the dataset by contig length. Included contigs are shown in co-
lour, excluded contigs in greyscale.

Supplementary Figure S2. Contig coverage variance for all replicons carried by isolates that contained unbinned nodes after 
gplas_plasmidEC prediction.
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Supplementary Figure S3. A) Completeness(bp), Accuracy(bp) and F1-score(bp) values for plasmid predictions derived 
from isolates in which unbinned unitigs were predicted by gplas_plasmidEC (n=15). gplas_plasmidEC was run allowing 
different coverage variances in the bold mode. B) Plasmidome network obtained after running gplas without the bold para-
meter on isolate GCA_013823335.1_ASM1382333v1. Circles represent unitigs predicted as plasmid by plasmidEC and 
binned by gplas. Different colours correspond to different individual predicted plasmids. C) Plasmidome network obtained 
after running gplas with bold parameter of 5, on the same isolate.
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Supplementary Figure S4. Average computational resources used per sample: CPU time in minutes (A) and memory in Mb 
(B). Softwares were run on the full benchmarking dataset (n = 214).
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Supplementary Figure S5. A) Completeness(bp), Accuracy(bp), F1-score(bp) values for predictions carrying plasmid-deri-
ved ESBL genes (n=42). B) Absolute count of plasmid-derived ESBL genes included (detected)  and missed (Not detected) 
in plasmid predictions. Absolute count of chromosome-derived ESBLs contaminating plasmid predictions are also depicted. 
C) Recall(ARG) and Precision(ARG) values for ESBL-carrying plasmids.
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Supplementary Figure S6. A) Completeness(bp), Accuracy(bp), F1-score(bp) values for plasmid predictions according to 
size category (definition: small plasmids <18 kp, large plasmids >=18kb). B) Histogram showing the number of contigs that 
compose each reference plasmids when these are assembled from short reads only. C) Absolute count of plasmids detected 
and undetected by each of the tools according to plasmid size. A reference plasmid was labelled as detected when at least one 
of its contigs was included into the predictions.
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Supplementary Figure S7. Recovered fraction of plasmids after aligning all contigs larger than 500 bp (orange) or larger than 
1 kb (grey) to the complete genomes. 
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Supplementary Figure S8. Read coverage per replicon position for plasmids that had a recovered fraction equal or smaller 
than 0.8. Regions that were not assembled in contigs larger than 500 bp are shown in red. Blue dotted line represents the 
median coverage for the chromosome.
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Supplementary Figure S9. Read coverage distribution for all replicons carried by isolates that had at least one plasmid with a 
recovered fraction <0.8 (n=11).
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Supplementary Figure S10. Distribution of Accuracy(bp), Completeness(bp) and F1-Score(bp) values for plasmid predic-
tions obtained using as input contigs of sizes larger than 500 bp or larger than 1 kb. Only large plasmids (n=270) were inclu-
ded in this analysis.
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Abstract

Plasmids play a pivotal role in the spread of antibiotic resistance genes. Accurately reconstructing 
plasmids often requires long-read sequencing, which is more expensive and currently still more 
error-prone than short-read sequencing. We recently presented an optimised approach for recons-
tructing Escherichia coli antimicrobial resistance plasmids using Illumina short reads. This method 
consists of combining a robust binary classification tool named plasmidEC, with gplas, which is 
a tool that makes use of features of the assembly graph to bin predicted plasmid contigs into in-
dividual plasmids. Here, we  developed different plasmidEC models: four species-specific models 
(Enterococcus faecium, Klebsiella pneumoniae, Staphylococcus aureus and Salmonella enterica) and 
one species-independent model for less frequent species. We combined these models with gplas to 
reconstruct plasmids from more than 70 different bacterial species.
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Introduction

Antimicrobial resistance (AMR) is a major threat to human health. Recent estimates indicate that 
1.27 million deaths were attributable to bacterial AMR in 2019 alone. Moreover, the number of 
infections caused by resistant bacteria is increasing each year [1]. For these reasons, bacterial AMR is 
now called the ‘silent pandemic’. Only a small number of new antibiotics have been approved by the 
FDA in recent years [2], and their use is recommended only for a limited number of clinical scenarios 
[3]. Although alternative approaches to treat bacterial infections are being explored, their effective-
ness has not been extensively tested to date [4–7], and it will take several years until these methods 
become commonplace to treat bacterial infections. Given this scenario, limiting the dissemination of 
resistance is the key to preventing an AMR crisis.

The spread of AMR is a complex phenomenon that depends on various factors. However, it is known 
that plasmids play a central role in this process. Plasmids are mobile genetic elements (MGE) that 
frequently carry resistance genes and that can be transferred between bacteria by diverse mechanisms 
[8–12]. Several studies have described that plasmids also play an important role in the development 
of outbreaks in clinical settings that involve multiple bacterial species [13–17]. Therefore, accurate, 
high-throughput plasmid identification and tracking are becoming increasingly necessary. 

Next-generation sequencing (NGS) platforms offer powerful tools for large-scale bacterial genomes 
research. Despite the recent advent of long-reads technologies, which allow obtaining complete bac-
terial genomes [18,19], Illumina short reads remains the most widespread sequencing method. As of 
July 2022, the Sequence Read Archive (SRA) contained more than 1.8 million DNA sequences be-
longing to bacterial isolates (Supplementary Data 1) and 98.2% of these were obtained using short-
read technology (Figure 1A). Nevertheless, plasmids commonly contain repeat elements, which 
complicates their assembly with the use of short-read data alone [20]. Therefore, new and improved 
methods for reconstructing plasmids using short reads alone are needed.

Recently, we have developed a new method for reconstructing individual E. coli plasmids with 
short reads (Chapter 3). Briefly, nodes in the assembly graph are initially classified as plasmid- 
or chromosome-derived using plasmidEC, an ensemble classifier that combines the output from 
three existing binary classification tools [21–23]. Second, we used gplas [24] to bin plasmid nodes 
into individual plasmid predictions based on similarities in sequence coverage and graph connectivity. 
Our method performed better than MOB-suite [25], especially when reconstructing antibiotic-resis-
tance gene (ARG) carrying plasmids.
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Figure 1. A) Number of genomes sequenced by different NGS technologies, publicly available in the Sequence Read Archive 
(SRA) by 26 July 2022. 98.2% of genomes were sequenced with Illumina short-read technology, while 1% of sequences were 
obtained with Oxford Nanopore Technology (ONT) and 0.8% with Pacific Biosystems (PacBio). B) Same as A, but for in-
dividual species.
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In this work, we aimed at improving the reconstruction of plasmids in multiple bacterial species 
using short reads. In order to achieve this, we followed the steps detailed below:

1) We developed four species-specific plasmidEC models to obtain binary classifications 
(plasmid/chromosome) of contigs in common human pathogens [1,26,27] that are highly re-
presented in databases (Enteroccocus faecium, Klebsiella pneumoniae, Salmonella enterica and 
Staphylococcus aureus) (Figure 1B). Additionally, we designed one species-independent model 
to classify contigs of all remaining bacterial species. We benchmarked these models against 
other binary classification tools.
2) We combined the best binary classification tool for each of these five models with gplas in 
order to reconstruct individual plasmids (n=953) from more than 70 species, focusing mainly on 
ARG-plasmid reconstructions. Predictions generated with gplas were compared against those of 
MOB-suite and plasmidSPAdes [25,31].

Finally, we also evaluated the impact of different plasmidome characteristics on plasmid reconstruc-
tion capabilities.

Methods

All scripts used to reproduce the analyses can be found at gitlab.com/jpaganini/reconstructing_
amr_plasmids. R version 3.6.1. was used for all R scripts.

Development of plasmidEC models
PlasmidEC is an ensemble of three binary classification tools that implements a majority vote system 
to predict the origin of contigs (plasmid/chromosome). 

For E. faecium, the plasmidEC model combines the outputs from RFPlasmid (v0.0.18) [23] , Pla-
ton (v1.6) [21] and mlplasmids (v2.1.0) [21]. For K. pneumoniae, S. aureus, S. enterica and for 
the species-independent model, plasmidEC combines RFPlasmid, Platon and newly developed 
Centrifuge-based classifiers[30].

Building Centrifuge-based classifiers
Centrifuge [30] is a tool that serves as a taxonomy classifier for metagenomics reads. We adapted this 
tool to function as a binary classifier of WGS bacterial contigs by building custom databases with 
complete bacterial sequences labelled as plasmid or chromosome, similarly to what has been des-
cribed for PlaScope [22]. In contrast to PlaScope, our Centrifuge-based classifier calculates the pro-
portion of hits from each contig in relation to different fractions of the database in order to generate 
the classification. For example, if a contig matches more than 70% of the times to the plasmidome 
fraction of the database, it is classified as a ‘plasmid’ contig. In contrast, if it matches less than 30%, 
it is classified as a ‘chromosome’ contig. Matches ranging from 30 to 70% are labelled ‘unclassified’. 

We built three species-specific databases for classifying contigs of K. pneumoniae, S. aureus and S. 
enterica . These databases were built using complete genomes uploaded to RefSeq prior to May 2020 
(N=2,532 genomes). The number of genomes included from each species can be found in Supple-
mentary Figure S1A, and the corresponding metadata is reported in Supplementary Data 2. A spe-
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cies-independent (General) database was also built, using all available genomes from any bacterial 
species uploaded to RefSeq prior to 2022 and genomes uploaded in 2022 that did not have their 
corresponding short reads in the SRA database. A total of 25,735 genomes were included in this 
model. A summary of the included species can be found Supplementary Figure S1B. All databases 
are publicly available at zenodo.org and can be downloaded from the following links:

• https://zenodo.org/record/7194565/files/K_pneumoniae_plasmid_db.tar.gz
• https://zenodo.org/record/7133407/files/S_enterica_plasmid_db.tar.gz
• https://zenodo.org/record/7133406/files/S_aureus_plasmid_db.tar.gz
• https://zenodo.org/record/7431957/files/general_plasmid_db.tar.gz

Benchmarking the performances of plasmidEC and gplas
Compiling benchmarking datasets
PlasmidEC was benchmarked against RFPlasmid, Platon, Centrifuge and mlplasmids, while gplas 
performance was compared to that of MOB-suite and plasmidSPAdes.

To validate the performance of the tools, we compiled a benchmark dataset that consisted of 809 
complete bacterial genomes with 1,923 plasmids. Of these, 492 genomes and 1,314 plasmids belon-
ged to four common human pathogens that are highly abundant in sequence databases (E. faecium, 
K. pneumoniae, S. enterica and S. aureus) (Supplementary Figure S2A). The remaining 317 complete 
genomes and 609 plasmids belonged to less common species (Supplementary Figure S2B). The ben-
chmark dataset was randomly divided into two groups containig an equal number of genomes per 
species (Supplementary Figure S3). Benchmark dataset “A” was used to compare the performance of 
plasmidEC to other binary classifiers. Benchmark dataset “B” was used to compare the performance 
of gplas to MOB-suite and plasmidSPAdes. A detailed list of genomes included in each benchmark 
dataset can be found in Supplementary Data 3.

To exclude genomes that were used in the development of MOB-suite, we included in our bench-
mark dataset only those genomes from common species that were uploaded to RefSeq after May 
2020. For less frequent species, we included genomes uploaded in 2022. 

Plasmids from E. faecium, K. pneumoniae, S. enterica and S. aureus captured most of the available 
plasmidome diversity for each species (Supplementary Figure S4). 

Complete genomes and corresponding short reads were downloaded from RefSeq and SRA using 
ncbi-genome-download (v0.2.10) (https://github.com/kblin/ncbi-genome-download) and SRA 
tools (v2.10.9), respectively. 

Exploring the plasmid diversity of common species in the benchmarking datasets
We used Mash v2.2.2 (k = 21, s = 10,000) [34] to estimate the pairwise k-mer distances of all com-
plete plasmid sequences of K. pneumoniae, E. faecium, S. aureus and S. enterica deposited in RefSeq. 
The obtained distances were clustered using the t-distributed stochastic neighbour embedding algo-
rithm (t-SNE) with a perplexity value of 30. Data points, which represent individual sequences of 
plasmids, were coloured if they were part of the benchmarking dataset.
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Recall (contig) = TP
TP + FN

Precision (contig) = TP
TP + FP

F 1 - Score (contig) =   2 x Recall (contig) x Precision (contig)
Recall (contig) + Precision (contig)

Genome assembly and quality trimming
Illumina raw reads corresponding to the benchmark dataset were trimmed using trim-galore (v0.6.6) 
(https://github.com/FelixKrueger/TrimGalore) to remove adapter contamination and bases with a 
phred quality score below 20. Unicycler (v0.4.8) [35] was then applied to perform de novo assembly 
with default parameters.

Determining the origin of all assembled contigs
After assembly with Unicycler, the resulting contigs were labelled as chromosome- or plasmid-de-
rived by alignment to their corresponding complete genomes using QUAST (v5.0.2)[36]. Only 
contigs larger than 1,000 bp with an alignment of at least 90% the contig length were considered 
(n=59,380). Of those, contigs aligning to both the chromosome and plasmidome (ambiguously 
aligned contigs) were discarded (n=1,187) In total, excluded contigs represented 2.8% of the entire 
dataset.

Evaluating binary classification tools
We evaluated the performance of all binary classifiers by comparing, for each contig, their prediction 
with the actual class of the contig. For Centrifuge, all ‘unclassified’ predictions were considered chro-
mosomes. The predictions were categorised as follows: True Positives (TP, prediction = plasmid, class 
= plasmid), True Negatives (TN, prediction = chromosome, class = chromosome), False Positives 
(FP, prediction = plasmid, class = chromosome) and False Negatives (FN, prediction = chromosome, 
class = plasmid). Global performance of the tools was evaluated with the following metrics:

Evaluating plasmid reconstruction tools
To reconstruct individual plasmids, gplas was combined with different binary classification tools, 
based on their performance. To recover plasmids from K. pneumoniae and less-frequent species, 
Centrifuge was selected, while for the other three species, plasmidEC (v1.3) was chosen, using the 
majority vote. 

To evaluate bins created by MOB-suite, plasmidSPAdes and gplas, we used QUAST (v5.0.2)  to 
align the contigs of each bin to the corresponding complete reference genome. We calculated accura-
cy, completeness and F1-score on the base-pair level, as specified below.
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Accuracy (bp) = Alignment length against reference plasmid (bp)
Total length of predicted bin (bp)

Completeness (bp) = Alignment length against reference plasmid (bp)
Total length of predicted plasmid (bp)

F 1 - Score (bp) = 2 x Accuracy (bp) x Completeness (bp)
Accuracy (bp) + Completeness (bp)

Chromosome contamination = Alignment length against chromosome (bp)
Total length of predicted bin (bp)

If a bin was composed of contigs derived from different plasmids, then accuracy, completeness and 
F1-score were reported for each plasmid-bin combination.

We also evaluated the number of reference plasmids that were detected by each tool. We considered 
that a reference plasmid was detected when at least a single contig of the plasmid was included into 
the predictions.

To evaluate the incorrect inclusion of chromosome-derived contigs into bins, we reported the chro-
mosome contamination metric as specified below.

Antibiotic Resistance Gene (ARG) Predictions
Resistance genes were predicted by running Abricate (v1.0.1) with the Resfinder [37] database (da-
tabase indexed on 19 April 2020) using reference plasmids as query, with 80% identity and coverage 
cut-off. The same software and parameters were used to predict the presence of ARGs in plasmid 
predictions.

Evaluating the capacity of the tools to correctly assign ARGs to plasmid predictions
All ARGs assigned to plasmid predictions were classified as plasmid-borne (Detected) or chro-
mosomal (Contamination) by determining the origin of the contig carrying the ARGs, as detailed 
above. The number of not detected ARGs was obtained by subtracting the number of detected plas-
mid-borne ARGs in the plasmid predictions from the total number of true plasmid-borne ARGs in 
reference genomes. 

Exploring plasmidome features
Estimation of plasmid copy number
After short-read assembly with unicycler, each contig is assigned a relative coverage value. We used 
all unitigs that unambiguously aligned to a single replicon to calculate the mean relative coverage of 
each plasmid. Ambiguous contigs, aligning to more than one location of the genome, were left out of 
these calculations. 
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Identification of repeat elements in genomes
Contigs larger than 1kb that aligned to multiple locations in the genomes were labelled as repeats. 
These contigs are classified as ‘ambiguous’ by QUAST. Only genomes included in the benchmark 
dataset were used for this analysis.

Determining the total length of predicted plasmidome 
Total size of predicted plasmidome was obtained by summing up the lengths of all contigs in an isola-
te predicted as plasmid-derived by plasmidEC.

Sub-classifying plasmids according to their length
Plasmids were classified as large or small based on size distributions for each species (Supplementary 
Figure S5). For E. faecium, K. pneumoniae and S. enterica a cut-off value of 18,000 bp was selec-
ted, while for S. aureus the cut-off was 8,000 bp. For plasmids from less-frequent species, we choose 
18,000 bp as a cut-off.

Querying the SRA database
In order to retrieve the metadata associated with bacterial whole genome sequences uploaded to the 
SRA database [32], we used the esearch function of the package Entrez Direct (v13.3) [33]. The 
following search terms were included: 

esearch -db sra -q ‘(“Bacteria”[Organism] OR “Bacteria Latreille et al. 1825”[Organism]) AND 
“platform illumina”[Properties] AND (cluster_public[prop] AND “biomol dna”[Properties] AND 
“strategy wgs”[Properties])’ | efetch -format summary

esearch -db sra -q ‘(“Bacteria”[Organism] OR “Bacteria Latreille et al. 1825”[Organism]) AND 
“platform illumina”[Properties] AND (cluster_public[prop] AND “biomol dna”[Properties] AND 
“strategy wgs”[Properties])’ | efetch -format runinfo

The platform term was varied accordingly to include the three sequencing technologies ‘illumina’, 
‘Oxford Nanopore’ and ‘PacBio SMRT’.
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Results

Improving binary classification of contigs for 70 species 
We compared the performance of plasmidEC against multiple existing classification tools. For this, 
we utilized the benchmarking dataset “A” consisting of 405 complete bacterial genomes including 
970 plasmids. Of these, 246 genomes and 684 plasmids belonged to species that are highly abundant 
in public databases (E. faecium, K. pneumoniae, S. aureus, S. enterica). The remaining 159 genomes 
and 286 plasmids belonged to 66 species which are less frequently represented in databases (Supple-
mentary Figure S3, Supplementary data 3).

PlasmidEC achieved the highest F1-Score(contig) values when classifying contigs from S. enterica 
and E. faecium (Figure 2, Table 1). 

For S. enterica, plasmidEC’s F1-Score(contig) is 0.91, with a high recall(contig) (0.95). Notably, the 
Centrifuge model presented a comparable F1-Score(contig) (0.88) and the highest precision(con-
tig) (0.95). For this species, Platon achieved the most balanced values between recall(contig) (0.86) 
and precision(contig) (0.87). 

For E. faecium, the F1-Score(contig) values of plasmidEC (0.96), Platon (0.93) and mlplasmids 
(0.93) were comparable. However, plasmidEC presented the highest recall(contig) (0.96) of the 
three, Platon the highest precision(contig) (0.97) and mlplasmids the most balanced metrics, with a 
precision(contig) of 0.94 and a recall(contig) of 0.93.

RFPlasmid achieved the highest recall(contig) values in both S. enterica en E. faecium, but also the 
lowest precision(contig); this notable imbalance between the metrics resulted in low F1-Score(contig) 
values for the two species.

The Centrifuge-based classifier had the highest F1-Score(contig) values for K. pneumoniae, S. aureus 
and for less-frequent species (indicated as General) (Figure 2, Table 1). 

For K. pneumoniae, the F1-Score(contig) values obtained by Centrifuge (0.95) and plasmidEC 
(0.94) were similar, and both tools outperformed RFPlasmid (0.88) and Platon (0.88). Centrifuge 
presented the highest recall (0.94) and plasmidEC had the highest precision (0.98). 

For S. aureus, Centrifuge resulted in the highest F1-Score(contig) (0.89) in combination with the 
highest precision(contig) (0.97), but also in the lowest recall(contig) (0.82). F1-Score(contig) va-
lues of PlasmidEC (0.84) and Platon (0.85) were similar, and both tools presented a recall(contig) 
of 1. Notably, all tools with the exception of Centrifuge, showed precision(contig) values under 0.80 
for this species, with RFPlasmid showing the lowest values (0.23). 

Finally, for the less frequent species in the dataset, the F1-Score(contig) of Centrifuge (0.88) and 
plasmidEC (0.87) were comparable, surpassing RFPlasmid (0.73) and Platon (0.75) (Figure 2, Table 
1). Centrifuge and PlasmidEC also had the highest recall(contig) of 0.86 and 0.85 respectively, and 
highest precision(contig) of 0.91 and 0.90 respectively.
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Figure 2. Performance of different individual binary classification tools (three per species) and of PlasmidEC as an ensemble 
classifier for binary classification of contigs of multipe species. The ‘General’ category corresponds to species less frequently 
represented in databases (See Figure S2B for a summary of included species).
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mlplasmids
software F1-Score (contig)

RFplasmid

Platon
plasmidEC
Centrifuge
RFplasmid

Platon
plasmidEC
Centrifuge
RFplasmid

Platon
plasmidEC
Centrifuge
RFplasmid

Platon
plasmidEC
Centrifuge
RFplasmid

Platon
plasmidEC

0.93
0.87

0.93
0.96
0.88
0.76
0.86
0.91
0.95
0.88
0.88
0.94
0.89
0.37
0.85
0.84
0.88
0.73
0.75
0.87

0.93
0.98

0.90
0.98
0.82
0.96
0.86
0.95
0.94
0.82
0.80
0.90
0.82

1
1
1

0.86
0.84
0.69
0.85

Recall (contig)
0.94
0.79

0.97
0.95
0.95
0.63
0.87
0.88
0.97
0.96
0.98
0.98
0.97
0.23
0.74
0.72
0.91
0.65
0.83
0.90

Precision (contig)

E. faecium

species

S. enterica

K. pneumoniae

S. aureus

General

Table 1. Performance of different individual binary classification tools (three per species) and of PlasmidEC as an ensemble 
classifier (using input from the three individual tools). The ‘General’ category corresponds to species less frequently represen-
ted in databases (See Figure S2B for a summary of the species).

We further compared the performance of plasmidEC and Centrifuge classifiers by evaluating recall(contig) 
values over individual plasmids. For this, we sub-categorized plasmids into small plasmids (n=410), large 
non-ARG plasmids (n=311) and large ARG-plasmids (n=215). Notably, across these three groups, 
the number of contigs into which the plasmids were assembled differed substantially (Supplementary 
Figure S6). Both tools performed similarly well when identifying contigs of small plasmids, presenting 
a median recall(contig) of 1 in all species (Supplementary Figure S7). For large ARG-plasmids of  
S. enterica, plasmidEC presented higher recall(contig) values (median=1, IQR=0.92 - 1) than Centrifuge 
(median=0.83, IQR=0.63 - 1), while for K. pneumoniae, S. aureus and less-frequent species, the 
performance of the tools was similar, presenting in all cases a median recall(contig) of 1. Similarly, for large 
non-ARG plasmids, both tools performed comparably well across most species, with median recall(contig) 
of 1. However, in the case of K. pneumoniae, Centrifuge presented higher recall(contig) values (median=1, 
IQR=0.96-1) than plasmidEC (median=0.94, IQR=0.83-1). 

Evaluating the performance of gplas
To reconstruct individual plasmids, we selected the best binary classifier in terms of F1-Score(contig) and 
combined it with gplas. If the F1-Score(contig) was similar between multiple tools (difference < 0.05), 
then we chose the classifier with the highest recall(contig). This criteria led to combining gplas with Cen-
trifuge for K. pneumoniae and for less-frequent species, and with plasmidEC for S. enterica, S. aureus 
and E. faecium (Supplementary Figure S8). 
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gplas

Software F1-Score (bp)
median (IQR)

MOB-suite

plasmidSPAdes
gplas

MOB-suite
plasmidSPAdes

0.76 (0.42 - 0.94)
0.64 (0.19 – 0.90)

0.45 (0.17 – 0.90)
0.81 (0.39 – 0.99)
0.66 (0.29 – 0.98)
0.64 (0.22 – 0.99)

0.81 (0.54 – 0.94)
0.57 (0.16 – 0.89)

0.83 (0.46 – 0.94)
0.87 (0.54 – 0.98)
0.63 (0.22 – 0.97)

0.95 (0.60 – 1)

Completeness (bp)
median (IQR)

1 (0.53 – 1)
0.94 (0.65 – 1)

0.46 (0.15 – 0.93)
1 (0.52 – 1)

0.98 (0.72 – 1)
0.66 (0.17 – 0.99)

Accuracy (bp)
median (IQR)

Large
ARG plasmids

Type of plasmid

Large
Non-ARG
plasmids

Table 2. Performance of plasmid reconstruction tools for large ARG- and large non-ARG plasmids.

We compared the performance of gplas against MOB-suite and plasmidSPAdes by applying all 
tools to the benchmark dataset “B” (Supplementary Figure S3), which consisted of 404 genomes 
and 953 plasmids. Of these, 158 genomes and 323 plasmids belonged to 75 species less frequently 
represented in databases, and the remaining 246 genomes and 630 plasmids belonged to E. faecium, 
K. pneumoniae, S. aureus and S. enterica.

Plasmid predictions produced by each tool were aligned to the corresponding complete reference ge-
nomes and assessed using the metrics completeness(bp), accuracy(bp) and F1-Score(bp) (Methods). 
Plasmids were split by size into large and small categories based on cut-offs obtained from the distri-
bution of plasmid sizes (Methods and Supplementary Figure S5). Additionally, since most ARGs 
are carried by large plasmids (n=2,231, 96.8%) (Supplementary table S1), these were split into large 
ARG plasmids and large non-ARG plasmids.

When reconstructing large ARG plasmids (n=224), gplas had the highest global F1-Score(bp) value 
(median=0.76, IQR=0.42 - 0.94), outperforming plasmidSPAdes (median=0.45, IQR=0.17 - 0.90) 
and MOB-suite (median=0.64, IQR=0.19 - 0.90) (Figure 3A, Table 2). PlasmidSPAdes predictions 
presented high completeness(bp) values (median=0.83, IQR=0.46 - 0.94), but lacked accuracy(bp) 
(median=0.46, IQR=0.15 - 0.93) (Figure 3B). In contrast, MOB-suite predictions often showed 
high accuracy(bp) (median=0.94, IQR= 0.65 - 1), but  low completeness(bp) (median= 0.57 , IQR= 
0.16 - 0.89). Gplas achieved completeness(bp) values (median=0.81, IQR= 0.54 - 0.94) similar to 
plasmidSPAdes and outperformed MOB-suite in terms of accuracy(bp) (median= 1.00 , IQR= 0.53 
- 1.00). Similar results were observed when reconstructing large plasmids without resistance genes 
(n=338) (Supplementary Figure S9 A and B, Table 2).

Next, we analysed the reconstruction of large ARG plasmids for each species separately (Figure 3C, 
Supplementary Table S2). For S. enterica, MOB-suite presented the highest F1-Score(bp), whi-
lst for K. pneumoniae, E. faecium and less-frequent species (Other), gplas predictions resulted in 
the highest F1-Score(bp) values. Interestingly, for S. aureus, all tools performed comparably well, 
with remarkably high metrics when compared to other species. Notably, gplas presented the most 
uniform performance across the species, with F1-Score(bp) medians ranging from 0.65 (K. pneu-
moniae) to 1 (S. aureus). In contrast, the median F1-Scores(bp) obtained with MOB-suite ranged 
from 0.48 (K. pneumoniae) to 1 (S. aureus), while for plasmidSPAdes this metric ranged from 0.2 
(E. faecium) to 0.99 (S. aureus). 
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Since all metrics are calculated based on plasmids that are detected by each tool (Figure 3C - top), we 
evaluated the number of detected plasmids per species and per tool. A similar amount of ARG-plas-
mids were detected by all tools in E. faecium, K. pneumoniae, S. aureus and in less-frequent species 
(Supplementary table S3). In contrast, plasmidSPAdes only detected 53% (n=21) of S. enterica 
ARG-plasmids, while MOB-suite and gplas detected 97% (n=38) and 94% (n=37), respectively. A 
total of nine ARG-plasmids could not be detected by any of the tools.

For large plasmids without ARGs, gplas and MOB-suite performed comparably well for all spe-
cies (Supplementary Table S2, Supplementary Figure S9C - top), while plasmidSPAdes had lower 
F1-Score(bp) values for K. pneumoniae and E. faecium. Interestingly, for less-frequent species, 
MOB-suite detected 59.5% (n=85) of non-ARG plasmids, while gplas and plasmidSPAdes detected 
80.3% (n=114). A total of 17 non-ARG plasmids could not be detected by any of the tools.

Next, the ability of each tool to correctly assign plasmid-borne ARGs to predictions was evaluated 
(Supplementary Figure S10 and Supplementary Table S4). Gplas and MOB-suite performed com-
parably well in K. pneumoniae, S. enterica and for less-frequent species, correctly assigning more than 
70% of all plasmid-borne ARGs to plasmid predictions. In contrast, plasmidSPAdes correctly as-
signed lower fractions of plasmid-borne ARGs in these species, ranging from 36.4% (S. enterica) to 
59.7% (K. pneumoniae). In E. faecium, all tools correctly assigned at least 80% of all plasmid-borne 
ARGs, but MOB-suite (90.3%) surpassed gplas (85.0%) and plasmidSPAdes (83.2%). All tools per-
formed best for S. aureus, correctly identifying more than 95% of all plasmid-borne ARGs. 

We also examined whether plasmid predictions were contaminated with chromosomal sequen-
ces. PlasmidSPAdes showed the largest number of predicted plasmid bins contaminated with 
chromosomal sequences (n=326), and 69.3% (n=226) of these were predominantly composed of 
chromosomal sequences (chromosome contamination >50%) (Supplementary Figure S11A). Li-
kewise, a total of 167 predictions made by MOB-suite were contaminated and 59.3% (n=155) of 
these mainly contained chromosomal DNA. Gplas had the lowest number of contaminated bins 
(n=76) and the majority of these (n=41, 53.9%) showed contamination fractions below 50%. 
Some differences were observed when analysing each species separately (Supplementary Figure 
S11B). PlasmidSPAdes had the highest number of contaminated plasmid predictions in S. aureus 
(n=50), K. pneumoniae (n=74) and in less-frequent species (n=149). In contrast, MOB-suite had 
the highest contamination rate in E. faecium (n=70). For S. enterica, all tools had a similar number 
of plasmid bins contaminated with chromosomal sequences (range 10 - 20), but gplas included 
the largest number of plasmid predictions solely composed of chromosomal sequences (n=7).

Finally, we analyzed predictions of small plasmids (n=391). Overall, gplas detected 79.5% of sma-
ll plasmids, surpassing MOB-suite (70.8%) and PlasmidSpades (71.9%) (Supplementary Figure 
S12A). Gplas and MOB-suite achieved F1-Score(bp) medians of 1 in most species, except in E. 
faecium in which gplas reached a median of 0.98, while MOB-suite reached a median of 0.74 (Su-
pplementary Figure S12B). PlasmidSPAdes in general had lower F1-Score(bp) values, especially for 
K. pneumoniae and E. faecium, which were driven by low completeness(bp) values. 
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Figure 3. Reconstruction metrics from gplas, MOB-suite and plasmidSPAdes. A) Overall F1-Score(bp) and B) complete-
ness(bp) vs accuracy(bp) for large ARG plasmids from all species. C) Number of detected large ARG plasmids per species 
(top). Reconstruction metrics for detected large ARG plasmids per species (bottom). 
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Different species have different plasmidome characteristics which impacts
plasmid reconstruction 
Despite the global performance differences between plasmid reconstruction tools, we  observed si-
milar trends in species-level predictive power across plasmid reconstruction tools. All tools had high 
F1-Score(bp) values (median > 0.8) when reconstructing plasmids from S. enterica and S. aureus. 
Conversely, most tools struggled to predict plasmids from K. pneumoniae and E. faecium. We the-
refore investigated if differences in the pan-plasmidomes characteristics across species could impact 
correct plasmid reconstruction. We set to evaluate features as plasmid lengths and copy number, the 
total number of plasmid per isolate, total plasmidome length and the number of repeated elements.

Using all complete bacterial genomes (n=3,213) uploaded to RefSeq prior to July 26th 2021,  (Su-
pplementary data 2), we explored the number of plasmids and the total plasmidome size per genome 
across species (Supplementary Figure S13). Genomes of E. faecium and K. pneumoniae had the most 
plasmids per isolate, with a median of 5 (IQR= 3 - 7) and 3 (IQR=2 - 5) plasmids per genome, res-
pectively. These two species also had the largest plasmidome size, with an average length of 305.3 kb 
for K. pneumoniae and 274.6 kb for E. faecium. 

S. aureus genomes carried a median of 1 (IQR=0 -1) plasmid, similarly to S. enterica isolates, which also 
beared a median of 1 plasmid (IQR=0 – 2). Nevertheless, these two species exhibited marked differen-
ces in plasmidome lengths, with S. aureus plasmidome having an average size of 16.6 kb, while this was 
95.0 kb for S. enterica. 

Using the genomes of E. faecium, K. pneumoniae, S. aureus and S. enterica included in the entire ben-
chmark dataset (Supplementary Figure S3), we explored the relation between size and copy number 
of plasmids (Supplementary Figure S14). We observed an inverse relation between plasmid length 
and copy number for most species. Similar results were reported for some Enterobacteriaceae genera 
by Shaw et al. [38]. We also investigated the content of repeat elements in large plasmids (Supple-
mentary Figure S15). E. faecium plasmids contained the most repeats, with a median of 4 (IQR= 
2 - 10), followed by K. pneumoniae plasmids that carried a median of 3 (IQR= 0 - 5) repeats, with 
some plasmids having up to 22 repeats. S. enterica plasmids carried a median of 1 repeat (IQR=0 -3). 
Notably, plasmids of S. aureus did not contain any repeat elements. 

Finally, using genomes included in benchmark dataset “B” (Supplementary Figure S3), we explored the 
relation between reconstruction metrics and the plasmidome features previously described. We plotted 
F1-Score(bp), completeness(bp) and accuracy(bp) values for the predictions of large plasmids as a func-
tion of the number of plasmids in an isolate and fitted a LOESS regression (alpha=0.8) (Figure 4). All 
tools appeared to perform worse on all metrics, with increasing number of plasmids. When compared 
to other tools, MOB-suite predictions decayed more rapidly in completeness(bp) when the number of 
plasmids increased. In contrast, plasmidSPAdes and gplas predictions showed a stronger decay in accura-
cy(bp). A similar trend in the decay of F1-Score(bp) was observed when either the number of repeats in 
a replicon or the total plasmidome size were plotted against the reconstruction metrics (Supplementary 
Figure S16 and Supplementary Figure S17). Interestingly, plasmid copy number significantly impacted 
the quality of plasmidSPAdes predictions (Supplementary Figure S18). In particular, plasmids that had a 
copy number close to one were poorly reconstructed, displaying very low values of completeness(bp). In 
contrast, MOB-suite and gplas predictions were less affected by plasmid copy number.
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Figure 4. Reconstruction metrics for large plasmids (n=562) plotted as a function of the number of plasmids per isolate. 
The data is colored according to the total number of repeats present in the plasmidome of the isolate. Yellow line indicates a 
LOESS regression (alpha=0.8).
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Discussion

In this work, we developed two novel methods to predict plasmid contigs of any bacterial spe-
cies. We compared the performance of these methods (Centrifuge and plasmidEC) against other 
binary classification tools. Later, we used gplas (combined with plasmidEC or Centrifuge) to re-
construct plasmids of more than 70 bacterial species and benchmarked it against MOB-suite and 
plasmidSPAdes by applying the tools to a dataset consisting of 404 complete bacterial genomes 
and 953 plasmids. We found that gplas performed consistently well when reconstructing large 
ARG-plasmids in multiple species, in contrast to a varying performance of the other tools. For 
non-ARG-plasmids, the differences in performance were less pronounced. 

PlasmidEC and Centrifuge outperformed other existing binary classifiers for all evaluated species. 
Since Centrifuge relies on a database to classify contigs, the good performance of this tool appears to 
suggest that most of the bacterial pan-plasmidome diversity is appropriately captured by the plasmid 
sequences currently available in databases. However, this result could also be a consequence of solely 
selecting sequences from public databases, such as RefSeq and SRA, as a benchmark dataset. These 
databases are known to preferentially contain bacterial sequences from clinical environments such 
as species outlined on WHO priority pathogens list, and from a limited number of geographical 
origins [39]. The inclusion of novel sequences, from less-frequent sources or other geographical loca-
tions, in a future benchmark study, could shed light onto the generalizability of the performance of 
the methods developed here.

An important limitation of most classification tools is their binary output, namely contigs are forced 
to be classified as either plasmid- or chromosome-derived. This feature complicates the prediction of 
mobile genetic elements, which can be carried by both plasmids and chromosomes [21,40,41]. To 
partially overcome this limitation, the centrifuge-based classifiers described in this paper can assign 
contigs to an ‘unclassified’ category if they align to the plasmidome and chromosome fraction of the 
database in similar proportions. Despite this, classifying ambiguous contigs without exploration of 
their flanking sequences in each particular genome could frequently lead to misclassification. Re-
cently, the authors of plASgraph [42] and 3CAC [43] demonstrated that exploring the assembly 
graph through convolutional neural networks improves the identification of plasmid contigs in both 
WGS and metagenomics data. Consequently, integrating plASgraph into plasmidEC could impro-
ve the classification of these ambiguous contigs leading to higher recall and precision values.

When reconstructing individual ARG-plasmids of S. enterica and S. aureus, gplas, MOB-suite 
and plasmidSPAdes performed comparably well, displaying similar values of completeness(bp) 
and accuracy(bp). However, gplas considerably outperformed the other tools when reconstruc-
ting ARG-plasmids of E. faecium and K. pneumoniae. For these species, predictions generated by 
MOB-suite had lower completeness(bp) values while plasmidSPAdes predictions lacked accura-
cy(bp). Notably, E. faecium and K. pneumoniae pan-plasmidomes seemed more complex when 
compared to those of other species, presenting a larger number of plasmids per isolate and more 
repeats per plasmid. These genomic characteristics are expected to cause more fragmented and 
entangled assemblies, which would lead to difficulties when attempting to reconstruct plasmids 
with tools that uniquely rely on either reference- or graph-based approaches, as MOB-suite and 
plasmidSPAdes do. The observation that gplas predictions were less affected by these genomic fea-
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tures further demonstrates the benefits of combining assembly graph information with accurate 
contig classifications to predict individual plasmids. It must be noted that the MOB-suite databa-
se was last updated in May 2020, when the total number of publicly available complete genomes 
was lower. While it would be interesting to evaluate the performance of MOB-suite coupled to an 
updated database, we previously demonstrated for E. coli (Chapter 3) that the main limitation of 
MOB-suite was not its capacity to detect plasmid-derived contigs, but its ability to correctly bin 
multiple contigs together into individual predictions. Consequently, it is unlikely that a newer da-
tabase would lead to substantial improvements in the performance of MOB-suite. 

When reconstructing large ARG-plasmids from species with low abundance in databases, gplas 
had the highest F1-Score(bp) (median=0.85, IQR=0.45-0.95), outperforming MOB-suite and 
plasmidSPAdes. This means that gplas, combined with our species-independent Centrifuge model, 
could be used to explore the whole bacterial pan-plasmidome diversity currently available in the 
SRA database. Additionally, these results indicate that both tools could potentially be applied to 
metagenomic samples. However, the application of gplas to metagenomes would require implemen-
ting a number of computational solutions aimed at reducing memory and time requirements, such 
as parallelization of the plasmid walks and limiting the maximum number of nodes explored in each 
walk. Moreover, because metagenomes contain sequences from multiple genomes with different 
abundances, the variation in sequencing coverage of chromosome-derived nodes will not be a useful 
metric for constructing plasmid-walks.

Even with the successful reconstruction of plasmids from multiple species by gplas, some limitations 
remain. First, plasmids that are represented as disconnected nodes in the assembly graph (degree 0) 
are currently assigned to the ‘unbinned’ category. These isolated nodes could represent linear plas-
mids, which occur in multiple species [44–49], but also plasmids that were not assembled correctly 
or were not fully sequenced (Chapter 3). The ‘unbinned’ category also includes plasmid-predicted 
nodes that are surrounded by only chromosomal nodes or by nodes that exhibit large sequencing 
coverage variations. A simple solution will be to subclassify unbinned nodes into different categories, 
namely disconnected components and potential chromosomal contamination. This will allow the 
user to select which predicted plasmid bins are to be included or excluded from the analysis. If many 
unbinned nodes are observed, different assembly tools and parameters should be tested to improve 
plasmid reconstructions. Second, although the performance of our method was similar across spe-
cies, reconstructing individual plasmids in genomes with complex plasmidomes would still pose a 
challenge, especially when an isolate holds multiple plasmids with similar copy numbers that share 
repeated elements. In these cases, having an a priori estimation of the number of distinct large plas-
mids carried by an isolate could also help in fine-tuning the parameters used by gplas to partition the 
plasmidome network more accurately. Plasmid number could be estimated using a combination of 
the number of incompatibility groups, relaxases, origins of replication present in the isolate.

In conclusion, in this work we showed that gplas, combined with a robust binary classification tool, 
constitutes the best available method to reconstruct plasmids from a wide range of bacterial species 
in the absence of long-read data.
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large
Plasmid size classification Nr. of plasmids

small
large
small
large
small
large
small
large
small

156
145
407
328
346
263
49
22
144
63

241
1

1076
22

363
20
53
5

498
25

Nr. of ARGs

E. faecium

species

K. pneumoniae

Other

S. aureus

S. enterica

Supplementary Materials

Supplementary Data
Supplementary data can be downloaded from: https://doi.org/10.5281/zenodo.7926600

Supplementary Tables

Supplementary Table S1. Number of antibiotic resistance genes in plasmids from the entire benchmark dataset, categorized 
by plasmid size and species.
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Large
ARG-plasmid

Large
nonARG-
plasmid

gplas

MOB-suite

plasmidSPAdes

E. faecium
K. pneumoniae

Other
S. aureus
S. enterica
E. faecium

K. pneumoniae
Other

S. aureus
S. enterica

0.68 (0.55 - 0.77)
0.84 (0.5 - 0.9)

0.86 (0.75 - 0.96)
1 (0.98 - 1)

0.88 (0.45 - 0.95)
0.46 (0.2 - 0.73)

0.38 (0.12 - 0.83)
0.56 (0.11 - 0.89)

1 (0.98 - 1)
0.84 (0.47 - 0.96)

1 (0.75 - 1)
0.88 (0.34 - 1)

1 (0.57 - 1)
1 (1 - 1)

1 (0.92 - 1)
0.76 (0.24 - 0.91)

0.96 (0.55 - 1)
0.97 (0.73 - 1)

1 (0.95 - 1)
0.97 (0.85 - 1)

0.73 (0.38 - 0.83)
0.65 (0.33 - 0.92)
0.85 (0.45 - 0.95)

1 (0.99 - 1)
0.8 (0.5 - 0.96)

0.55 (0.17 - 0.78)
0.48 (0.13 - 0.85)
0.66 (0.18 - 0.9)

1 (0.97 - 1)
0.87 (0.45 - 0.97)

E. faecium
K. pneumoniae

Other
S. aureus
S. enterica

0.74 (0.16 - 0.79)
0.83 (0.22 - 0.93)
0.89 (0.74 - 0.95)

0.99 (0.99 - 1)
0.88 (0.38 - 0.95)

0.13 (0.07 - 0.25)
0.37 (0.16 - 0.88)
0.76 (0.26 - 0.96)
0.99 (0.96 - 0.99)
0.9 (0.63 - 0.98)

0.2 (0.08 - 0.37)
0.43 (0.21 - 0.82)
0.68 (0.2 - 0.92)
0.99 (0.97 - 0.99)
0.81 (0.34 - 0.93)

gplas

MOB-suite

plasmidSPAdes

E. faecium
K. pneumoniae

Other
S. aureus
S. enterica
E. faecium

K. pneumoniae
Other

S. aureus
S. enterica

0.64 (0.39 - 0.74)
0.86 (0.59 - 0.97)
0.94 (0.39 - 0.99)

0.99 (0.96 - 1)
0.99 (0.95 - 1)

0.43 (0.16 - 0.68)
0.44 (0.17 - 0.93)

0.92 (0.34 - 1)
0.95 (0.51 - 0.99)

0.99 (0.94 - 1)

0.73 (0.28 - 0.95)
0.97 (0.48 - 1)

1 (0.57 - 1)
1 (1 - 1)
1 (1 - 1)

0.68 (0.26 - 0.84)
0.97 (0.72 - 1)

1 (0.91 - 1)
1 (1 - 1)

1 (0.98 - 1)

0.53 (0.27 - 0.73)
0.76 (0.38 - 0.97)

0.96 (0.42 - 1)
1 (0.98 - 1)

0.99 (0.97 - 1)
0.44 (0.2 - 0.66)

0.56 (0.25 - 0.94)
0.9 (0.48 - 1)
0.98 (0.65 - 1)
0.98 (0.95 - 1)

E. faecium
K. pneumoniae

Other
S. aureus
S. enterica

0.45 (0.18 - 0.85)
0.89 (0.59 - 0.98)

0.98 (0.74 - 1)
0.97 (0.92 - 1)
0.99 (0.91 - 1)

0.16 (0.07 - 0.31)
0.43 (0.19 - 0.96)

0.98 (0.22 - 1)
0.99 (0.98 - 0.99)

0.99 (0.86 - 1)

0.22 (0.09 - 0.38)
0.52 (0.26 - 0.92)

0.93 (0.22 - 1)
0.98 (0.95 - 0.99)

0.97 (0.56 - 1)

Plasmid Type Software Species Completeness
median (IQR)

Accuracy 
median (IQR)

F1-Score 
median (IQR)

Supplementary Table S2. Performance metrics of plasmid reconstruction tools for large ARG- and non-ARG plasmids for 
different species. The ‘Other’ category includes 75 species less-frequently represented in databases.
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Large
ARG-plasmid

Large
nonARG-
plasmid

E. faecium
gplas

MOB-suite
plasmidSPAdes

43
43
43

0
0
0

Plasmid Type Species variable Detected Not detected

K. pneumoniae
gplas

MOB-suite
plasmidSPAdes

72
75
69

10
7
13

S. aureus
gplas

MOB-suite
plasmidSPAdes

17
16
18

1
2
0

S. enterica
gplas

MOB-suite
plasmidSPAdes

37
38
21

2
1

18

Other
gplas

MOB-suite
plasmidSPAdes

39
36
31

3
6

11

E. faecium
gplas

MOB-suite
plasmidSPAdes

34
35
38

5
4
1

K. pneumoniae
gplas

MOB-suite
plasmidSPAdes

104
115
103

15
4
16

S. aureus
gplas

MOB-suite
plasmidSPAdes

6
6
8

2
2
0

S. enterica
gplas

MOB-suite
plasmidSPAdes

23
22
19

7
8

11

Other
gplas

MOB-suite
plasmidSPAdes

114
85

114

28
57
28

Supplementary Table S3. Number of detected (and not-detected) large plasmids per tool and species. A plasmid was consi-
dered detected if a single (non-ambiguous) contig is included into the plasmid predictions. The ‘Other’ category includes 75 
species less-frequently represented in databases.
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Detected
Plasmid-borne

E. faecium

gplas
MOB-suite

plasmidSPAdes

96
102
94

84.96
90.27
83.19

Species Replicon origin Classification Software Nr. ARGs Percentage

Not detected
gplas

MOB-suite
plasmidSPAdes

17
11
19

15.04
9.73
16.81

ContaminationChromosomal
gplas

MOB-suite
plasmidSPAdes

16
24
8

Not applicable
Not applicable
Not applicable

Detected
Plasmid-borne

K. pneumoniae

gplas
MOB-suite

plasmidSPAdes

372
398
274

81.05
86.71
59.69

Not detected
gplas

MOB-suite
plasmidSPAdes

87
61
185

18.95
13.29
40.31

ContaminationChromosomal
gplas

MOB-suite
plasmidSPAdes

11
32
8

Not applicable
Not applicable
Not applicable

Detected
Plasmid-borne

S. enterica

gplas
MOB-suite

plasmidSPAdes

197
225
96

74.62
85.23
36.36

Not detected
gplas

MOB-suite
plasmidSPAdes

67
39
168

25.38
14.77
63.64

ContaminationChromosomal
gplas

MOB-suite
plasmidSPAdes

47
58
8

Not applicable
Not applicable
Not applicable

Detected
Plasmid-borne

S. aureus

gplas
MOB-suite

plasmidSPAdes

32
31
32

100
96.88
100

Not detected
gplas

MOB-suite
plasmidSPAdes

0
1
0

0
3.12

0

ContaminationChromosomal
gplas

MOB-suite
plasmidSPAdes

3
6
1

Not applicable
Not applicable
Not applicable

Supplementary Table S4. Number of detected (and not-detect) antibiotic resistance genes in plasmid predictions generated by 
gplas, MOB-suite and plasmidSPAdes, using benchmark dataset “B”. The number of ARGs of chromosomal origin, incorrectly 
included in predictions, are also detailed. The ‘Other’ category includes 75 species less-frequently represented in databases.
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Detected
Plasmid-borne

Other

gplas
MOB-suite

plasmidSPAdes

149
143
110

74.5
71.5
55

Species Replicon origin Classification Software Nr. ARGs Percentage

Not detected
gplas

MOB-suite
plasmidSPAdes

51
57
90

25.5
28.5
45

ContaminationChromosomal
gplas

MOB-suite
plasmidSPAdes

27
22
51

Not applicable
Not applicable
Not applicable

Supplementary Table S4. Cont.
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Supplementary Figures

Supplementary Figure S1. A) Number of genomes included in the construction of species-specific Centrifuge databases. 
B) Genomes included in the construction of the species-independent Centrifuge database. The  ‘Other’ category includes 
genomes from species of which less than 200 genomes were present in RefSeq.

Chapter 4



125

Supplementary Figure S2. A) Number of genomes and plasmids from common human pathogens, highly abundant in da-
tabases, included in the benchmark dataset. B) Number of genomes and plasmids of less-frequent species included in the 
benchmark dataset. The ‘Other’ category includes species with less than 10 genomes in the dataset. The complete dataset was 
fractioned in two equally-sized groups to independently test perfromances of plasmidEC and gplas. A more detailed descrip-
tion of which genome was included in each group can be found in Supplementary Data 2 and in Supplementary Figure S3.
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Supplementary Figure S3. Composition of benchmark datasets. Dataset “A” was used to benchmark the performance of 
binary classifiers, while dataset “B” was used to benchmark plasmid reconstruction tools performances.
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Supplementary Figure S4. t-SNE visualization of MASH distances (s=10.000, k=21) between all complete plasmid sequen-
ces in RefSeq (accession date:  July 26th, 2021) for (A) E. faecium, (B) K. pneumoniae, (C), S. enterica and (D) S. aureus. 
Plasmids that are colored are included in the benchmark datasets for the respective species-specific models.
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Supplementary Figure S5. Plasmid size distribution per species. Dotted lines represent cut-offs selected for classifying plas-
mids according to size into either ‘small’ or ‘large’. The y-axis shows Kernell probability density function values, based on the 
abundance of the different plasmid sizes.
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Supplementary Figure S6. Number of contigs in which small, large ARG plasmids and large non-ARG plasmids are assem-
bled per species. The ‘General’ group includes contigs from 66 species less-frequently represented in databases.
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Supplementary Figure S7. Recall(contig) values for indvidual reference plasmids included in benchmark dataset “A”. Plas-
mids were sub-categorized as small or large with and without resistance genes.
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Supplementary Figure S8. Schematic representation of the two-step workflow we developed to reconstruct individual plas-
mids. In step 1, plasmid contigs are identified by using either plasmidEC (E. faecium, S. enterica and S. aureus) or Centrifuge 
(K. pneumoniae and less-frequent species). In step 2, gplas is used to bin plasmid contigs into individual predictions, based on 
similar sequencing coverage and on node connectivity
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Supplementary Figure S9. Reconstruction metrics from gplas, MOB-suite and plasmidSPAdes for large plasmids that don’t 
carry ARGs across multiple species (n=338). A) F1-Score(bp) and B) completeness(bp) vs accuracy(bp) for all plasmids.  
C) Same metrics for each species individually.
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Supplementary Figure S10. Nr. of true plasmid-borne ARGs included (Detected) and missing (Not detected) from plasmid 
predictions. Chromosomal ARGs included in plasmid predictions are labelled as contamination.
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Supplementary Figure S11. Nr. of plasmid predictions that include chromosomal sequences (contamination), for all species 
together in (A) and individually in (B). In red, predictions that are composed solely of chromosomal sequence. In orange, 
predictions that contain more than 50% of chromosomal sequences in length. In grey, predictions that contain less than 50% 
of chromosomal sequences.
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Supplementary Figure S12. A) Fraction of small plasmids detected by each tool per species. Small plasmids are defined as 
those with lengths smaller than 18kb for E. faecium, K. pneumoniae, S. enterica and less-frequent species (Other) and smaller 
than 8kb for S. aureus. B) Reconstruction metrics of small plasmids.
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Supplementary Figure S13. Number of plasmids per genome (top) and total plasmidome length (bottom) for each species. 
Results obtained using all complete genomes available for each species in Refseq until July 26th 2021.
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Supplementary Figure S14. Relation between length and estimated copy number for all plasmids included in the benchmar-
king dataset (n=1,923).
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Supplementary Figure S15. Number of repeated elements per large plasmid (Top) and total number of repeats in plasmido-
me per genome (bottom). Results obtained using all genomes included in the benchmark dataset.
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Supplementary Figure S16. Reconstruction metrics for large plasmids (n=562) plotted as a function of the number of re-
peats present in each plasmid. The data is colored according to the total number of repeats present in the complete plasmido-
me of the isolate. Yellow line indicates a LOESS regression (alpha=0.8).
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Supplementary Figure S17. Reconstruction metrics for large plasmids (n=562) plotted as a function of total plasmidome 
length. The data is colored according to the total number of plasmids present in the isolate. Yellow line indicates a LOESS 
regression (alpha=0.8).
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Supplementary Figure S18. Reconstruction metrics for large plasmids (n=562) plotted as a function of plasmid estimated 
copy number. The data is colored according to the total number of repeats in the plasmid. Yellow line indicates a LOESS 
regression (alpha=0.8).
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Abstract

In Dutch ICUs patients receive selective digestive decontamination (SDD) as a prophylactic an-
timicrobial treatment to prevent colonisation with potentially pathogenic microorganisms and 
subsequent infections, with a beneficial effect on 28-day mortality. In the R-GNOSIS ICU study, 
conducted outside of The Netherlands, SDD consisted of a mix of an oropharyngeal paste and a 
gastric suspension containing colistin, tobramycin and nystatin. These topical antimicrobial agents 
aim to target aerobic Gram-negative bacteria, S. aureus and yeast. SDD improves patient outcome, 
but its effects on the resistome and pangenome of potentially pathongenic microorganisms have 
not been extensively studied. In this work, we compared 129 genomes of E. coli isolates from pa-
tients that received SDD and patients that did not receive SDD, but standard care only (baseline 
patients) in five ICUs located across three European countries (R-GNOSIS ICU study). We found 
that the overall pangenome compositions of E. coli recovered from both patient groups were highly 
similar. Variations in the accessory genome were strongly associated with the phylogeny of isolates 
but not with the use of SDD. Similarly, the plasmidome variations were not explained by treatment, 
but rather by the interaction between ICU location and phylogroup. Six antibiotic-resistant genes 
were significantly more prevalent in baseline patients, and two in SDD. One of these SDD-prevalent 
genes provides resistance against tobramycin, was flanked by IS26 elements and significantly co-oc-
curred with blaCTX-M-15 in multiple plasmid backbones. Notably, no mcr genes coding for colistin re-
sistance were detected.
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Introduction

In the Netherlands, patients admitted to the ICU and undergoing mechanical ventilation receive 
selective digestive decontamination (SDD) as a prophylactic treatment to prevent colonisation 
with potentially pathogenic microorganisms (PPMOs). SDD consist of a mix of topical antibio-
tics (tobramycin, colistin and amphotericin B) targeting aerobic gram-negative bacteria (GNB), 
Staphylococcus aureus and yeast, but leaving the anaerobic flora intact. SDD is administered as an 
oropharyngeal paste and as a solution through the nasogastric tube. Additionally, a 4-day course of 
an intravenous cephalosporin (cefotaxime or ceftriaxone) is also provided, to treat any incubating 
infection at the time of ICU admission [1–3]. A variation of SDD, named Selective Oropharyngeal 
Decontamination (SOD), consisting only of the oropharyngeal paste, is administered in some ICUs 
as an alternative to SDD. In the Netherlands, where the prevalence of antibiotic resistance is low [5], 
SDD was associated with improved patient outcome in comparison to standard care, with reduced 
mortality, shorter lengths of ICU stay and a lower incidence of ICU-acquired bacteremia [6–10].

The R-GNOSIS ICU study, conducted between 2013 and 2017, compared the effectiveness of SDD, 
SOD, chlorhexidine 1% mouthwash with standard care alone (baseline) in thirteen ICUs located in 
six European countries with medium to high prevalence of antibiotic resistance (defined as having an 
extended-spectrum β-lactamase -ESBL- prevalence of at least 5% of amongst ICU-acquired bacteremia 
with Enterobacteriaceae) [11]. In this cluster-randomised trial, each treatment was applied during six 
months in the entire ward (randomized order), to patients with expected length of mechanical ventila-
tion of at least 24h. An important modification of the SDD regime in this study was the absence of the 
4-day course of intravenous cephalosporin.

One concern regarding the application of SDD is the exertion of antibiotic pressure in ICUs, 
which already have the highest levels of antimicrobial use within hospitals [12,13]. In contrast to 
this, multiple studies suggest that the use of SDD is associated with a decrease in incidence of co-
lonization and infection with antimicrobial resistant microorganisms, both in settings with high 
and low prevalence of resistance [13 - 15]. On the other hand, a study based on metagenomic data 
seems to indicate that resistance genes to three classes of antibiotics, namely aminoglycosides, ma-
crolides and tetracyclines, are more abundant in the gastrointestinal tract of SDD treated patients 
when compared to healthy individuals [16]. Moreover, a separate study concluded that during 
the application of SDD in a single ICU patient, the burden of two aminoglycoside resistance ge-
nes seemed to increase in culturable anaerobic commensal bacteria [17]. Furthermore, these two 
genes appear to be located on mobile genetic elements (MGEs), increasing the risk of horizontal 
gene transfer (HGT) from anaerobic bacteria to PPMOs. In addition to the potential selective 
effects on resistance genes, studies also indicate that SDD treatment alters the gut microbiome 
composition of ICU patients [18,19]. These ecological changes of the microbiota may also affect 
the composition of PPMOs, such as Escherichia coli, populating the intestinal tract of patients re-
ceiving SDD. Therefore, we hypothesise that SDD treatment shapes the pangenome composition 
of E. coli, including the development of resistance.

To address this question, we have sequenced the genomes of 129 E. coli isolates from the R-GNOSIS 
ICU study. These isolates were obtained from patients that received SDD (n=63) or did not receive 
SDD (n=69, baseline) in five different ICUs located in Spain, Belgium and the UK. We explored the 
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JaccardDistance = 1 -
Acc genes of Insolate 1    Acc genes of Insolate 2
Acc genes of Insolate 1    Acc genes of Insolate 2

population structure of these isolates and compared their accessory genome content, plasmidomes and 
resistomes to determine if SDD leads to the selection of specific genomic features of E. coli.

Materials and Methods

R-GNOSIS ICU study and selection of isolates for whole genome sequencing
The R-GNOSIS ICU study was conducted between December 2013 and May 2017 in 13 ICUs 
from six European countries. A detailed description of the study’s aims and methods can be found in 
[11]. Briefly, to monitor the effect of SDD on colonization with Gram-negative bacteria, surveillan-
ce samples were taken twice weekly from the rectum and respiratory tract of all patients included in 
the study (n=8,496). Samples were inoculated on ESBL selective media (Biomerieux®) and in case 
of frowth, phenotypic susceptibility testing was performed according to local standard operating 
procedures (for colistin susceptibility testing, E-tests were provided) [11]. Clinical blood and respi-
ratory samples were obtained at discretion of the clinician and processed according to local labora-
tory protocols. From these cultures, unique highly-resistant microorganisms were stored for whole 
genome sequencing (WGS) according to the following rule: one isolate per patient, per body site, 
per species, with a unique phenotypic resistance pattern. 

We submitted for WGS all stored E. coli isolates from the SDD and baseline periods of the five hospi-
tals with most stored isolates (AN, PS, UZ, LB and CD). Isolates were only included if they occurred 
from day 2 of inclusion onwards (with the date of study enrollment being day 0), to ensure sufficient 
exposure to the antimicrobials used in SDD. Metadata associated with sequenced isolates can be 
found in Supplementary Data 1. 

Whole Genome Sequencing
Selected isolates were sequenced using Illumina MiSeq, with a Nextera XT pair-end kit (2 x 150bp). 
Short reads were quality trimmed with trim-galore (v0.6.6) (https://github.com/FelixKrueger/
TrimGalore). Assembly of genomes was performed with Unicycler (v0.4.9) [20]. 

Pangenome analysis
Genomes were first annotated with BAKTA(v1.6.1) [21]. Panaroo [22] was then used to define core 
and accessory genes. A core gene was defined as being present in 99% of all sequenced isolates. 

Using the presence/absence gene matrix generated by Panaroo, we calculated Jaccard distances between 
accessory genomes of all pairs of isolates as:

Pangenome accumulation curves were obtained using the R micropan package [23].
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Population structure determination
Multi-locus sequence types of isolates were predicted in silico with mlst (v2.1.6) (https://github.
com/tseemann/mlst). Phylogroups were predicted with ClermonTyper (v20.03) (https://github.
com/A-BN/ClermonTyping). PopPUNK (v2.4) [24] was used to assign draft genomes to existing 
clusters according to the E. coli database (v1) available at (https://www.bacpop.org/poppunk/). 

A Neighbour-joining tree was constructed using IQ-TREE (v2.2.0.3), based on a core-genome alig-
nment obtained with Panaroo.

Plasmidome analysis and plasmid reconstructions
The plasmidome of each genome was defined as all plasmid-predicted contigs identified by using 
plasmidEC (v1.3) (https://gitlab.com/mmb-umcu/plasmidEC). Similar to previously described, 
plasmidomes were annotated with BAKTA, and Jaccard distances between these were calculated 
based on the presence/absence gene matrix generated by Panaroo.

Individual plasmids were reconstructed using gplas (v1.1) [25]. Distances between all plasmid predic-
tions were obtained using MASH (v2.2.2)  [25,26] with k-mer length of 21, and a sketch size of 10,000. 
Clusters of highly similar plasmids were obtained by creating a network in  which connections between 
plasmids were drawn if their MASH distance was below 0.01. 

Clusters of plasmids backbones were created using mge-cluster(v1.1) [27] and clusters numbers were 
assigned based on the existing E. coli database, which can be accessed at: https://doi.org/10.6084/
m9.figshare.21674078.v1.

Comparison of plasmidome and accessory genomes
Distances between accessory genomes and plasmidomes of isolates  were visualised using t-distributed 
stochastic neighbour embedding algorithm (t-SNE), as implemented in the Rtsne R package (v0.15). 

To conduct permutational analysis of variance (PERMANOVA), we used the adonis function from 
the vegan R package (v2.5-6) using the matrix of pairwise Jaccard distances as input. To explain the 
variance of accessory genome and plasmidome distances, six different PERMANOVA models were 
built with different explanatory variables each, as detailed in Supplementary Tables S1 and S2. In 
models with two variables, interaction terms between them are indicated with ‘*’.

Estimation of plasmid copy number
After short-read assembly with unicycler, each contig is assigned a relative coverage value. We used 
all unitigs that unambiguously aligned to a single replicon to calculate the mean relative coverage of 
each plasmid. Duplicated contigs, aligning to more than one location of the genome, were left out of 
these calculations. 
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ARGs, co-occurrence networks, and genomic context
Antibiotic resistance genes were identified by using AMRFinderPus (v3.11.2). Co-occurrence of 
ARGs in the same plasmids were calculated by using a previously described approach [28]. The geno-
mic context of the tobramycin resistance transposon and of blaCTX-M-15 genes were obtained by ma-
nually exploring the assembly graph, and using BLAST against the ISFinder database of the nodes 
that surrounded the aforementioned elements.

Statistics and code availability
Comparison of medians and proportions was performed using the non-parametric test Wilcoxon 
rank sum test [29] and Fisher’s exact test [30], respectively. Statistical analysis was performed using R 
(v3.6.1) and code needed to reproduce this analysis can be found in: https://gitlab.com/jpaganini/
rgnosis_sdd_baseline.

Results

Patients colonised with ESBL-E. coli in five European ICUs
The five selected ICUs (AN, PS, UZ, LB and CD) were located in five different hospitals in Belgium 
(n=3), Spain (n=1) and the UK (n=1). In total, 129 isolates were obtained from 116 patients, and in 
most cases (n=103, 90.6%), a single isolate per patient was sequenced. Most sequenced isolates deri-
ved from the ICU termed LB (n=55), while the rest of isolates were similarly distributed across the 
remaining locations ranging from 16 (PS) to 21 (AN) isolates per ICU (Table 1). There was a similar 
number of isolates from SDD (n=63) and baseline (n=66) periods. The majority of isolates (n=124, 
96.1%) were obtained from rectal swabs, while a small number derived from respiratory samples 
(n=4, 3.1%) and bloodstream infections (n=1, 0.8%). Also, the majority of isolates (n=122, 94.6%) 
were phenotypically resistant to cefotaxime, ceftriaxone and/or ceftazidime. Although not all isola-
tes have phenotypic ESBL confirmation, in this manuscript, we refer to the isolates as ESBL-E.coli. 
Sequenced samples were obtained after a median of 4 days (IQR= 2 - 6.5) after the start of SDD vs. 
6 days (IQR=4 - 11) after inclusion in the baseline period. All metadata associated with patients and 
sequenced isolates can be found in Supplementary Data 1.

Population structure of colonising ESBL-E. coli
Sequenced isolates belonged to 54 different STs, 11 of these were present in both study periods, 24 
STs were only found in isolates from the baseline period and 19 were exclusively found from SDD 
patients (Supplementary data 1). ST131 was the predominant clone (n=30) in both groups (baseli-
ne n=16, 24%; SDD n=14, 22%) (Figure 1A), followed by ST410 (n=7), ST10 (n=6) and ST1193 
(n=5). We used PopPUNK to assign isolates to existing clusters considering both core and accessory 
genome variations (Supplementary data 1). We found a total of 53 clusters, of which the most abun-
dant was Cluster 2 (n=27, 21%), which was entirely composed of ST131 isolates. Cluster 7_510, the 
second most abundant (n=12, 9.3%), encompasses isolates from ST10 (n=4), ST167 (n=3), ST744 
(n=4) and ST1695  (n=1). A more detailed exploration of the core-genome of isolates (Figure 1B) 
showed no clear clusters associated with treatment, suggesting that SDD does not select for particu-
lar E. coli clones or lineages.
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Nr. of sequenced isolates

Median nr. of days between
inclusion and culture collection
of the sequenced isolate (IQR)

Baseline

28LB

Per hospital

Per body site

27

SDD

55

13CD 7 20

5PS 11 16

14AN 7 21

6UZ 11 17

1blood 0 1

62rectum 62 124

3respiratory 1

6 (4 - 11) 4 (2 - 6.5)

4

Total

Table 1. Sequenced isolates according to study period, hospital, body site and time of isolation

Simpson’s indices of diversity calculated using ST (baseline=0.919, SDD=0.921) and PopPUNK 
clusters (baseline=0.924, SDD=0.918) indicated that the population structure in both study pe-
riods was equally diverse.

Predictions of ARGs from our dataset showed that most isolates (n=123, 95.3%) carried at least 
one ESBL gene (Figure 1B). All isolates classified as phylogroup B2 (n=42) carried only one ESBL 
gene, with blaCTX-M-15 being the most abundant allele (n=16, 38.1%), followed by blaCTX-M-1 (n=6, 
14.3%) and blaCTX-M-27 (n=5, 11.9%) (Figure 1B and C). Similarly, samples belonging to phylogroup 
D (n=12) also carried one ESBL gene, but blaCTX-M-14 was the most prevalent variant (n=5, 41.6%). 
In contrast, the majority of isolates from phylogroups A (17/31), B1 (15/20) and C (10/13) carried 
two ESBL genes, and blaEC-15 was the most frequent gene in all phylogroups, with prevalences of 
35%, 48% and 57%, per phylogroup respectively.

Variations in accessory genome compositions are associated with phylogroup an
hospital, but not with the use of SDD
Considering all 129 isolates, the total pangenome consisted of 13,753 genes, of which 3,072 were 
identified as core- and the remaining 10,681 as accessory-genes. Accumulation curves fitted to 
Heap’s law for baseline and SDD isolates yielded similar alpha values (baseline=0.87, SDD=0.91) 
(Supplementary Figure S1A), confirming an open pangenome for both groups[31]. The number of 
accessory genes in isolates from the baseline (median=1,645; IQR=1,503 - 1,776) and SDD periods 
(median=1,642; IQR=1,476-1,775) did not differ (p-value=0.92, Wilcoxon rank sum test) (Su-
pplementary Figure S1B). 

To identify associations between gene frequency and function, we obtained the functional catego-
ries of Clusters of Orthologous Groups (COG) from BAKTA annotations. A COG function was 
assigned to 66.1% of all predicted coding sequences (CDS). We performed a Fisher’s exact test to 
compare the frequency of each COG category in baseline and SDD isolates. This analysis showed 
that the distribution of genes to COG categories was similar between isolates from both study pe-
riods (Supplementary Figure S1C, Supplementary Table S3).
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Figure 1. A) Distribution of most abundant ST across study periods. Groups with less than 5 isolates were collapsed into the 
‘Other’ category. B) Neighbor-joining phylogenetic tree constructed based on core-genome alignment. Labels on the leaves 
indicate ST of isolates. Phylogroups were predicted in silico using ClermonTyper. ESBL genes were predicted with AMR-
FinderPlus, if a second ESBL gene was present in an isolate, this is indicated in the column ESBL_Gene_2. ESBL phenotype 
indicates phenotyipic resistance our sensitivity to third-generation cephalosporins, evaluated as indicated in Methods. 
C) Distribution of the different ESBL genes across phylogroups
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Next, we explored the diversity in total accessory gene content of individual isolates and its as-
sociation with phylogroup, hospital and treatment by using PERMANOVA (Figure 2A and 2B, 
Supplementary Table S1). The accessory genome composition was strongly associated with the 
isolate’s phylogroup (R2=0.439, p-value=0.001), and its interaction with the geographical loca-
tion (R2=0.10, p-value=0.006). There was no significant effect of SDD in the accessory genome 
composition (R2=0.01, p-value=0.149). 

The plasmidome is important for niche adaptation in E. coli [32] and other gut bacteria [33]. Con-
sequently, we also compared predicted plasmidome compositions across study periods. The median 
of plasmidome sizes for baseline isolates was 196,520.5 bp (IQR= 144,476.5 - 277,834.5) and of 
216,196.0 bp (IQR= 141,770.0 - 293,638.8 ) for SDD isolates, which was not statiscally different 
(p-value=0.92, Wilcoxon rank sum test, Supplementary Figure S2A). Additionally, the median 
number of unique plasmids per isolate, as predicted by gplas reconstructions, was 4 in isolates from 
both study periods (p-value=0.92, Wilcoxon rank sum test, Supplementary Figure S2B). Sizes and 
copy number of individual plasmids also followed expected distributions in both study periods 
[32,34] (Supplementary Figure S2C). 

The use of SDD was also not associated with plasmidome variation (R2=0.011, p-value=0.075, 
PERMANOVA), but the interaction between phylogroup and the ICU explained the largest frac-
tion of plasmidome variation (R2=0.154, p-value=0.002, PERMANOVA) (Figure 2C and 2D, 
Supplementary Table S2). 

Since the ICU had a significant effect on the plasmidome composition, we wanted to evaluate if this 
was related to the fact that highly specific plasmid (or clones) were persistent over time in each ICU. 
For this, we predicted individual plasmids using gplas, and clustered these plasmid predictions based 
on MASH distances (Supplementary Figure S3A and S3B). A total of 558 plasmids were predicted 
in 128 isolates. Of these, 257 plasmids (46%) were grouped into 65 clusters composed of highly simi-
lar plasmids (MASH distance < 0.01). Interestingly, 37% of these clusters were exclusively composed 
of plasmids isolated from a single hospital, while 63% included plasmids from multiple hospitals. 
Moreover, 41.7% (n=10/24) of plasmid clusters recovered in single hospitals were found associated 
with multiple clones (PopPUNK clusters) (Supplementary Figure S3C, Supplementary data 2). 

A putative mobile genomic element encoding a tobramycin resistance gene is enriched 
in isolates from SDD treated patients
A total of 100 unique ARGs were found in the entire dataset (Supplementary data 3). Isolates ob-
tained during baseline treatment contained a similar number of ARGs (median=12, IQR = 8 - 14) 
as those of SDD (median=11, IQR= 7 - 13) (p-value=0.27, Wilcoxon ranked-sum test) (Supple-
mentary figure S4). Surprisingly, when subclassifying ARG by antibiotic class, we found a higher 
number of aminoglycoside resistance genes in baseline isolates (median= 3, IQR=1.25 - 4) than 
in SDD isolates (median=2, IQR= 1 - 3) (p-value=0.03, Wilcoxon ranked-sum test). For other 
ARG classes, no significant differences across study periods were found.
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Figure 2. t-SNE plots representing Jaccard distances between complete accessory genomes (A and B) and predicted plasmidomes 
(C and D) for 129 ESBL-E. coli genomes included in this study. Jaccard distances were calculated using gene presence/absence. 

We then compared the occurrence of individual ARGs (Supplementary Figure S5) in both study 
periods. A total of 12 ARGs had an absolute difference in prevalence larger than 10% across study 
periods (Figure 3A). Out of these, six genes were significantly more frequent in baseline isolates, 
including two that code for beta-lactamases (blaEC-15, blaTEM-1), two genes that provide resistance 
to streptomycin [aph(6)-ld, aph(3”)-lb], and two ARGs that prrovide resistance to sulfonamide 
(sul2) and tetracyclin (tet(A)) Additionally, two genes were significantly more frequent during 
SDD, namely aac(6’)-Ib-cr5 and qnrS1 (Fisher’s exact test) . 
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The aac(6’)-Ib-cr5 gene encodes an aminoglycoside 6’-N-acetyltransferase, which is predicted to pro-
vide resistance to tobramycin, one of the components of SDD [1]. It was found in 5/66 (7.5%) isolates 
during baseline and in 14/63 isolates (22.2%) during SDD. In the majority of SDD isolates (n=13/14, 
92.9%), aac(6’)-Ib-cr5 was encoded in conjunction with blaOXA-1 and with catB3 on a ~2.2Kb contig 
(Figure 3B), which was flanked by IS26 elements (Supplementary Figure S6). This suggests that this 
element is a potentially mobile composite transposon, termed from here on Tn(TobraR). 

To evaluate if Tn(TobraR) was found in different plasmid backbones, we used mge-cluster to assign 
the plasmid predictions generated by gplas to existing E. coli plasmid clusters (see methods). We found 
Tn(TobraR) in five distinct plasmid backbones (Figure 3C), namely cluster 13 (n=1), 28 (n=4), 29 
(n=2), 31 (n=4) and 32 (n=1), and also in 5 different plasmids that were not assigned to a previously 
existing plasmid type, supporting the hypothesis that Tn(TobraR) can actually move independently. 
Additionally, this element was found in isolates from multiple chromosomal backgrounds in our data-
set, including phylogroups B2 (n=12, most ST131), C (n=1), F (n=2) and A (n=2) (Supplementary 
Figure S7A). Moreover, when querying a database composed of more than 1,300 publicly available 
E. coli genomes, we found the Tn(TobraR) in 63 additional genomes from six different phylogroups 
(Supplementary Figure S7B). Notably, in SDD isolates, we observed that the ARGs that compose 
the Tn(TobraR) co-occurred with blaCTX-M-15 in the same plasmid significantly more frequently than 
expected by chance (Supplementary Figure S8A, Supplementary table S4). However, this was not the 
case in baseline isolates (Supplementary Figure S8B, Supplementary table S5). 

Following the statistical analysis on pre-selected genes which had a 10% difference in prevalence 
between baseline and SDD isolates, we also compared the prevalence of all tobramycin resistance 
genes. There were no significant differences in the occurrence of other tobramycin resistance genes 
other than aac(6’)-Ib-cr5 (Supplementary Figure S8C).

Finally, we evaluated the prevalence of genes coding for carbapenem resistance. A total of four iso-
lates were predicted to have a carbapenemase gene, all of which were obtained from SDD-treated 
patients. One of these isolates carried a blaOXA-48 gene in an ST295 background; two isolates from 
the same patient, belonging to ST410, coded a blaOXA-181 gene; and blaVIM-1 was found in an ST1193 
isolate.
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Figure 3. A) Prevalence of 12 antibiotic resistance genes (ARGs) in isolates from baseline (left) vs SDD (center) patients. The 
difference in prevalence between the two study periods is displayed on the most right panel. ARGs are displayed only if an 
absolute difference in prevalence greater than 10% was observed across study periods. Fisher’s exact test was used to determine 
which genes were significantly more prevalent across study periods (*). B) Putative transposon carrying the aac(6’)-Ib-cr5 
gene, termed Tn(TobraR). C) t-SNE plot in which each dot represents an E. coli plasmid. Grey dots represent complete plas-
mids obtained from NCBI database (n~4,500). Coloured dots represent plasmid predictions of isolates from patients that 
received SDD treatment and that carry Tn(TobraR), blaCTX-M-15 or both. Labels and ellipses depict different plasmid types, 
obtained with mge-cluster (v1.1). Labels equal to [-1] correspond to plasmid not assigned to any plasmid type.
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Discussion

In this work we sequenced the genomes of 129 ESBL-E. coli isolates of which 63 were obtained from 
ICU patients that received SDD as a prophylactic measure to prevent colonisation and infection 
with potentially pathogenic gram-negative bacteria, and compared those with 66 genomes of ESBL 
isolates from the same patient population that did not receive SDD. One of the main strengths of 
our study is its multi-center nature, with isolates from five different ICUs located in three European 
countries. Moreover, in contrast to many similar studies [35–39], 96% of the isolates represented 
intestinal carriage isolates, rather than being recovered from clinical samples.

The results from our study revealed no important differences in pangenome compositions between 
ESBL-E. coli recovered from patients treated with SDD and those not treated with SDD. This sug-
gests limited impact of SDD in shaping the overall pangenome composition of ESBL-E. coli. These 
results were unexpected when considering that SDD alters the microbial composition of the gut 
[18,19], potentially changing the interaction networks that occur in the microbiota leading to new 
metabolic challenges for E. coli [40]. 

The absence of important differences in the pangenome can have several potential explanations. 
First, it is possible that the adaptation of ESBL-E. coli to the new gut ecology induced by SDD is not 
mediated by the acquisition/loss of certain genes, but rather by changes in gene expression patterns. 
These changes cannot be detected by our analysis which solely relies on gene content comparisons. 
Supporting this hypothesis, a recent study has described that a global re-wiring of transcription fac-
tors is observed when switching E. coli from auxotrophic to prototrophic growing conditions [41]. 
Moreover, a recent study demonstrated that E. coli auxotrophies can be rescued by expressing short 
peptides that are coded in novel small open reading frames, which will also be missed by the annota-
tion tools that we have used in this study. Second, it is also possible that the duration of SDD (with a 
median time of isolatation of the first ESBL-E. coli in SDD being 4 days) was not sufficient to cause 
an impact in the community structure of E. coli.  Finally, the fact that we had only ESBL-positive 
isolates available for WGS, prohibited analysis of changes in the relative abundances of different E. 
coli subpopulations within each patient. Future research should ideally collect multiple isolates (or 
feacal samples) over longer periods of time from the same patients, including also non-ESBL E. coli.

The interplay between phylogeny and the ICU explained the largest fraction of variance observed 
in the accessory genome and plasmidome of isolates. The strong association between phylogeny and 
the accessory genome of E. coli has already been described in [32,43]. The effect of the ICU could 
be explained by postulating that each ward constitutes its own ecosystem, in which particular plas-
mids, and clones, persist over time, with the ability to spread to different patients. In line with this 
hypothesis, recent studies suggest that plasmids carrying carbapenem resistance genes present ‘geo-
graphical signatures’ that relate them to particular healthcare settings [44]. Moreover, the long-term 
persistence of clones and plasmids in clinical environments is more common than originally thought 
[45–49]. A patient admitted to an ICU can be colonised by bacteria contaminating this environ-
ment in less than 6 days [45]. On the broader scale, particular plasmids have also been associated 
with specific countries [50,51]. 
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We also observed minor differences between the resistomes of SDD and baseline isolates. While six 
different resistance genes were more prevalent in baseline isolates, SDD isolates were enriched in a 
potentially mobile genetic element composed of a tobramycin resistance gene and two additional 
ARGs, flanked by IS26 elements. An identical genetic element was reported in other studies [52,53], 
but it’s mobility as an independent unit was never tested. It is well known that IS26 plays a crucial 
role in the dissemination of resistance genes among Enterobacteriaceae in the clinical environment 
[54–56]. IS26 catalyses a highly efficient conservative transposition reaction that allows the incor-
poration of ARGs preferably into replicons that contain a pre-existing copy of this element [57,58]. 
This mechanism could lead to the formation of arrays of in-tandem resistance genes, also referred 
to as resistance islands [54]. In line with this, we observed that the tobramycin resistant transposon 
identified in this work frequently co-occurred with a blaCTX-M-15 gene in multiple plasmid backbones 
that reside in distinct E. coli clones. This means that if SDD in fact selects for this transposon, it 
could also facilitate the formation of resistance islands that accommodate multiple ARGs. However, 
it is important to note that we had insufficient isolates to perform multivariable analysis that can co-
rrect for population structure, such as a bacterial GWAS [58]. Moreover, it should be noted that we 
have not collected data on the types and amount of therapeutic antibiotics used in these patients, so 
differences in the resistome should be interpreted with care.

A previous study based on the R-GNOSIS ICU data found that phenotypic resistance to colistin 
was rare [14], despite this being one of the antibiotics administered in SDD. In concordance with 
this result, no mcr genes were predicted based on WGS data, and only four isolates with phenotypic 
resistance were reported. Nevertheless, phenotypic resistance was determined using the E-test me-
thod, which has limited predictive accuracy according to Galani et al. [60].

Overall, our study constitutes the first WGS-based analysis of the potential effects of SDD in the pan-
genome composition of a PPMO. Despite the limitations in sample collection, our results suggest that 
SDD treatment has limited effects in the accessory genome, plasmidome and resistome compositions 
of ESBL-E. coli.
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Supplementary Table S1. Results of PERMANOVA analysis to model the variance observed in accessory genome composi-
tion. The ‘*’ symbol indicates interaction term between variables. Treatment codes for SDD vs baseline.

Supplementary Table S2. Results of PERMANOVA analysis to model the variance observed in plasmidome composition. 
The ‘*’ symbol indicates interaction term between variables. Treatment codes for SDD vs basline.
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c(0.978245285628295,
1.02330688097101)

c(0.974179799777156,
1.02052782175703)

c(0.969951310487423,
1.02736934293829)

c(0.972289137890958,
1.02457843874712)

c(0.952154529987101,
1.04089787909678)

c(0.973350466549645,
1.02703215378781)

c(0.976456561365551,
1.026244226516)

c(0.976601630259693,
1.02963648049424)

c(0.96991901626744,
1.03340134536923)

c(0.949242121483854,
1.06140674472677)

c(0.963969778713874,
1.03672824250224)

c(0.960966481318246,
1.02237950636188)

c(0.996571842983943,
1.11875968712521)

Occurrence in
baseline period

14429

17713

6823

2957

23097

7516

21432

16895

15815

10053

12243

4101

11634

13653

11976

8197

2588

6178

8645

2353

Not occurrence
SDD

200445

197408

207681

211348

192093

206971

193735

198088

199164

204620

202542

210283

203102

201167

202745

206361

211696

208292

206013

211805

Not occurrence
baseline period

210716

207432

218322

222188

202048

217629

203713

208250

209330

215092

212902

221044

213511

211492

213169

216948

222557

218967

216500

222792

Supplementary Table S3. Fisher’s test results for abundance of different COG types across study periods.
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COG Occurrence
in SDDp.value ORCon�dence interval Occurrence in

baseline period
Not occurrence

SDD
Not occurrence
baseline period

N

W

A

4723

1485

52

126Z

0.1746329295

0.970997954

0.6192491546

1

0.9725566337

0.9981455043

1.115649109

1.003476705

c(0.934173122750306,
1.01245725611287)

c(0.928852378768879,
1.07256736623477)

c(0.740511742054748,
1.68314621513269)

c(0.779773374511084,
1.29089404928233)

5102

1564

49

132

209444

212682

214115

214041

220043

223581

225096

225013

Supplementary Table S3. Cont.

Impact of selective digestive decontamination on the pangenome composition of ESBL-E. coli

C
ha

pt
er

 5



164

ARG 1

blaTEM-1

mph(A)

aac(6')-Ib-cr5

blaCTX-M-15

blaOXA-1

catB3

blaCTX-M-15

blaOXA-1

catB3

mph(A)

aadA2

aadA5

blaCTX-M-15

dfrA17

mph(A)

blaCTX-M-15

blaOXA-1

blaTEM-1

catB3

dfrA17

mph(A)

sul1

aph(6)-Id

blaTEM-1

sul2

tet(A)

blaTEM-1

sul2

tet(A)

blaOXA-1

catB3

dfrA17

sul1

catB3

mph(A)

sul1

sul1

mph(A)

sul1

7

7

11

11

11

11

13

13

13

13

17

17

17

17

17

25

25

25

25

25

25

25

19

19

19

19

10

19

19

18

18

18

18

14

14

14

21

14

14

21

24

13

18

14

14

18

14

14

24

8

25

18

31

24

18

14

21

14

31

24

33

19

21

23

20

21

23

20

14

14

31

33

14

24

33

33

24

33

4

4

4

8

4

4

10

13

13

7

5

0

0

0

0

9

7

9

7

20

17

21

19

10

17

10

10

17

10

11

11

9

10

14

7

8

11

7

8

0.014

0.016

0.013

0.019

0.015

0.015

0.022

0.017

0.017

0.029

0.013

0.04

0.029

0.05

0.038

0.042

0.033

0.049

0.033

0.073

0.057

0.078

0.034

0.038

0.041

0.036

0.038

0.041

0.036

0.024

0.024

0.053

0.056

0.018

0.032

0.044

0.065

0.032

0.044

1.4

1.6

1.4

1.9

1.5

1.5

2.3

1.8

1.8

3

1.3

4.1

3

5.1

4

4.4

3.4

5.1

3.4

7.5

5.8

8

3.5

3.9

4.2

3.7

3.9

4.2

3.7

2.4

2.4

5.4

5.8

1.9

3.3

4.5

6.7

3.3

4.5

0.03039

0.04957

0.0312

2.00E-05

0.04108

0.04108

0

0

0

0.01073

0.00286

1

1

1

1

0.00842

0.02319

0.02964

0.02319

0

0

0

0

0.00048

0

0.00028

0.00048

0

0.00028

0

0

0.04365

0.02113

0

0.01802

0.03464

0.02609

0.01802

0.03464

aac(3)-IId

aac(3)-IId

aac(3)-IIe

aac(3)-IIe

aac(3)-IIe

aac(3)-IIe

aac(6')-Ib-cr5

aac(6')-Ib-cr5

aac(6')-Ib-cr5

aac(6')-Ib-cr5

aadA1

aadA1

aadA1

aadA1

aadA1

aadA5

aadA5

aadA5

aadA5

aadA5

aadA5

aadA5

aph(3'')-Ib

aph(3'')-Ib

aph(3'')-Ib

aph(3'')-Ib

aph(6)-Id

aph(6)-Id

aph(6)-Id

blaCTX-M-15

blaCTX-M-15

blaCTX-M-15

blaCTX-M-15

blaOXA-1

blaOXA-1

blaOXA-1

blaTEM-1

catB3

catB3

ARG 2
ARG 1

Occurrence
ARG 2

Occurrence Co-occurrence Prob. 
co-occurrence

Expected 
co-occurrence p.value

Supplementary Table S4. Co-occurrence of ARGs in the same plasmid in SDD isolates. Co-occurrences with a p-value smaller 
than 0.01 were considered significant.
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ARG 1

aadA2 14 10 4 0.011 1.2 0.02122aadA1

aadA5 14 22 0 0.025 2.8 1aadA1

dfrA17 14 29 0 0.032 3.6 1aadA1

dfrA17 10 29 0 0.023 2.6 1aadA2

dfrA17 22 29 11 0.051 5.7 0.00601aadA5

mph(A) 22 20 12 0.035 3.9 1.00E-05aadA5

sul1 22 31 14 0.054 6.1 8.00E-05aadA5

sul2 22 38 12 0.067 7.5 0.02302aadA5

aph(3')-Ia 39 12 9 0.037 4.2 0.00339aph(3'')-Ib

aph(6)-Id 39 39 39 0.121 13.6 0aph(3'')-Ib

blaTEM-1 39 41 20 0.127 14.3 0.01618aph(3'')-Ib

dfrA1 39 4 4 0.012 1.4 0.01324aph(3'')-Ib

dfrA17 39 29 3 0.09 10.1 0.99989aph(3'')-Ib

sul2 39 38 32 0.118 13.2 0aph(3'')-Ib

aph(6)-Id 12 39 9 0.037 4.2 0.00339aph(3')-Ia

blaTEM-1 12 41 9 0.039 4.4 0.00522aph(3')-Ia

blaTEM-1 39 41 20 0.127 14.3 0.01618aph(6)-Id

sul2 12 38 9 0.036 4.1 0.0027aph(3')-Ia

dfrA1 39 4 4 0.012 1.4 0.01324aph(6)-Id

dfrA17 39 29 3 0.09 10.1 0.99989aph(6)-Id

sul2 39 38 32 0.118 13.2 0aph(6)-Id

sul1 4 31 4 0.01 1.1 0.00507blaCTX-M-27

dfrA17 41 29 5 0.095 10.6 0.99784blaTEM-1

sul2 41 38 21 0.124 13.9 0.00333blaTEM-1

sul3 41 6 5 0.02 2.2 0.02412blaTEM-1

tet(M) 41 3 3 0.01 1.1 0.04677blaTEM-1

sul2 4 38 4 0.012 1.4 0.01188dfrA1

tet(A) 29 35 4 0.081 9.1 0.9968dfrA17

sul1 20 31 15 0.049 5.5 0mph(A)

tet(A) 20 35 10 0.056 6.2 0.04451mph(A)

tet(B) 35 13 1 0.036 4.1 0.99459tet(A)

ARG 2 ARG 1
Occurrence

ARG 2
Occurrence Co-occurrence Prob. 

co-occurrence
Expected 

co-occurrence p.value

ARG 1 ARG 2 ARG 1
Occurrence

ARG 2
Occurrence Co-occurrence Prob. 

co-occurrence
Expected 

co-occurrence p.value

mph(A)

sul1

sul1

tet(A)

31

31

24

23

24

33

33

20

12

16

18

9

0.07

0.096

0.075

0.043

7.2

9.9

7.7

4.5

0.01661

0.00573

0

0.01047

dfrA17

dfrA17

mph(A)

sul2

Supplementary Table S5. Co-occurrence of ARGs in the same plasmid in baseline isolates. Co-occurrences with a p-value 
smaller than 0.01 were considered significant.
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Supplementary Figures

Supplementary Figure S1. A) Pangenome accumulation curves for baseline and SDD isolates. B) Number of accessory genes 
per isolate across different study periods. C) Fraction of COG functional categories by study period.
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Supplementary Figure S2. A) Total size of predicted plasmidome sorted by study period. This is, the total length of all contigs 
within an isolate predicted to be plasmid by plasmidEC. B) Number of predicted individual plasmids per isolate. Plasmids 
were predicted using gplas. C) Plasmid size vs estimated copy number for individual plasmid predictions. In the top panel, the 
y-axis shows Kernell probability density function values, based on the abundance of the different plasmid sizes.
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Supplementary Figure S3. A) MASH distances (k=21, s=10,000) for all plasmid-predictions vs plasmidpredictions. Dashed 
line indicates the cut-off point (distance =0.01) to create network of plasmids B) Network displaying clusters of highly similar 
plasmids. C) Histograms of plasmid clusters of large plasmids and small plasmids that were present only in single hospitals, 
colour coded by study period (above) and by PopPUNK (PP) clusters (below).
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Supplementary Figure S4. Nr. of acquired ARGs per isolate, treatment and ARG type.
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Supplementary Figure S5. The first two panels show the prevalence of all acquired ARGs in SDD and baseline isolates. The 
third panel shows the absolute difference between these prevalences in SDD and baseline periods.
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Supplementary Figure S6. Read coverage of each SDD isolate (n=14) that contains the putative transposon carrying the 
tobramycin resistance gene. Coverage suggests that all SDD isolates, except ECO-JSC-RGN-103820, carry the complete 
sequence of Tn(TobraR). Red lines indicate regiones with read coverage equal to zero.
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Supplementary Figure S7. A) NJ tree based on core-genome alignment of E. coli isolates from the R-GNOSIS study. Leaf labels 
indicate the sequence type of isolates. B) NJ cg-tree based on k-mer presence/absence of 1381 publicly available E. coli complete 
genomes. In both trees, colored nodes indicate the genomes that carry Tn(TobraR) and their corresponding phylogroup.
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Supplementary Figure S8.  A) Co-occurrence network of ARGs in the same plasmid prediction in SDD isolates. B) Co-oc-
currence network of ARGs in the same plasmid prediction in baseline isolates. Only connections with a p-value=<0.01 are 
drawn. C) The first two panels show the prevalence of all acquired ARGs that are predicted to provide resistance to tobramy-
cin in baseline and SDD isolates. The third panel shows the absolute difference between prevalences in both study periods, 
stars indicate genes that are significantly associated with a study period (Fisher’s exact test).
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Summary and General Discussion

In this thesis, I aimed to assess the performance of existing plasmid prediction tools and to develop 
new methods to improve reconstruction of plasmids from short reads, with an emphasis on antimi-
crobial resistance (AMR) plasmids. These techniques were later applied to compare the pangenome 
composition and occurrence of AMR plasmids in ESBL-E. coli isolates, obtained from surveillance 
cultures of patients treated with selective digestive decontamination (SDD) and patients not treated 
with SDD in a multinational cluster-randomised study.

Below, I will present an overview of the results presented in chapters 2-5 and discuss the advantages 
and limitations of the tools developed in chapter 3 and 4. Moreover, I will provide directions for 
future applications of these methods in the clinic and for AMR surveillance.

The starting point
In  chapter 2 of this thesis we reviewed all available tools to predict plasmids from short-read data. 
We found a total of 25 tools and most of them (n=21) were categorised as binary classification tools 
(n=10), if the output was limited at classifying the origin of contigs as ‘plasmid’ or ‘chromosome’; or 
plasmid reconstruction tools (n=11) when the tools aimed at identifying individual plasmids in a 
genome. Additionally, the computational (and biological) foundations behind each tool were des-
cribed, along with their strongpoints and weaknesses. Since the publication of this work, in 2021, 
multiple other plasmid prediction tools have been developed and published [1–4], confirming the 
sustained interest of the scientific community in improving plasmid prediction methods using short-
reads.

The previous study describing an independent comparison between plasmid prediction tools was 
published in 2017 [5], and it did not include most of the newly developed tools. Consequently, we 
decided to benchmark the performance of six plasmid reconstruction tools, when applied to a 
dataset of 240 Escherichia coli genomes obtained from public databases. The decision of focusing 
this benchmark on E. coli was motivated by its clinical relevance as a resistant pathogen [6,7], by the 
essential role that plasmids have in the dissemination of AMR genes within this species [8,9] and by 
the clinical aim of this thesis, which is covered in chapter 5. Despite the narrow scope of this study, 
the benchmark dataset constitutes one of its main strengths, because the selected genomes captured 
most of the phylogenetic and plasmidome diversity of E. coli and included isolates from multiple 
ecological niches. Our results revealed that of the six plasmid reconstruction tools, MOB-suite co-
rrectly reconstructed the largest fraction of plasmids (50%) and also identified the majority of plas-
mid-borne AMR genes (89%). Based on these results, we classified MOB-suite as the best plasmid 
reconstruction tool, and plasmidSPAdes as second best. The publication of this study has guided 
other researchers into selecting MOB-suite to perform their own plasmidome analysis using short 
reads [10,11]. Importantly, this study also highlighted that all tools had major difficulties at re-
constructing AMR-plasmids of E. coli. 

Why are AMR plasmids so difficult to reconstruct using short-reads?
We hypothesised that the correct reconstruction of AMR-plasmids using short reads constituted a 
particularly hard challenge due to multiple reasons. First, AMR carrying contigs are usually short 
[12], highly conserved [13], and associated with multiple plasmid backbones [14,15]. Consequent-
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ly, assigning these contigs to the correct plasmid type is problematic when tools solely rely on refe-
rence databases without considering the immediate genomic context of each contig. As support for 
this claim, in chapter 3 we found that MOB-suite fragmented single AMR-plasmids into multiple 
plasmid types. Second, AMR-plasmids usually have a low copy number [16,17], which causes con-
tigs to have a sequencing coverage similar to the chromosome. Therefore, tools that are based on 
the assumption that plasmids should have a higher coverage [18,19], struggle to correctly identify 
AMR-plasmid contigs. The latter was confirmed in chapter 4 by the observation that plasmidSPA-
des predictions had low recall and precision when the estimated copy number of plasmids approa-
ched one.

Gplas & plasmidEC: Towards an improved reconstructions of AMR plasmids in E. coli
In chapter 3 we aimed at improving the reconstruction of AMR-plasmids in E. coli. We specula-
ted that these predictions could be improved by exploiting the contig connectivity information that 
is embedded in assembly graphs, as implemented in gplas [20]. This tool had proven very success-
ful when reconstructing plasmids of Enterococcus faecium, but  frequently generated incomplete 
AMR-plasmid predictions in E. coli, as indicated by the low recall (or completeness) values obtained 
in our benchmark study (median=0.29, IQR=0.14 - 0.62) of chapter 2. We tackled this issue by 
introducing two modifications to gplas. First, we developed a bold mode that improves the binning 
of plasmids with pronounced sequencing coverage variations. Second, we replaced mlplasmids [21] 
with plasmidEC for identification of plasmid nodes in the assembly graph. The integration of plas-
midEC into gplas was essential for improving plasmid reconstructions. PlasmidEC correctly iden-
tified 94% of all contigs derived from AMR-plasmids and considerably outperformed mlplasmids, 
which identified 73% of these. PlasmidEC is an ensemble of three binary classification tools (for E. 
coli these are: PlaScope, Platon, RFPlasmid) that implements a majority vote system to predict the 
origin of contigs. The development of this tool was motivated by two observations derived from a 
comparison of four binary classidication tools (Chapter 3): (1) 95% of plasmid contigs were correct-
ly classified by at least two different tools, and (2) most misclassifications of plasmid contigs (55%) 
were made by a single tool. 

Our new method, gplas_plasmidEC, generated predictions that included large fractions of 
AMR-plasmids, as indicated by the high completeness(bp) values (median=0.82, IQR= 0.52 - 0.92), 
that exceeded those of MOB-suite (median=0.32, IQR=0.11 - 0.80). We found that MOB-suite 
fragmented 49% of AMR-plasmids into multiple predictions, while gplas_plasmidEC did so in only 
14% of the cases. Additionally, our tool had higher values of accuracy(bp), suggesting that a smaller 
number of chimeric predictions were generated. Finally, both tools detected the same number of 
plasmid-borne AMR genes. These results indicated that gplas_plasmidEC is currently the best avai-
lable method to reconstruct AMR-plasmids of E. coli from short-reads.

What about other species?
Given the results obtained for E. coli, in chapter 4 we expanded the range of species of plasmidEC. 
We built four species-specific binary classifiers, aimed at classifying contigs of clinically relevant 
pathogens (Enterococcus faecium, Klebsiella pneumoniae, Salmonella enterica and Staphylococcus au-
reus) [22], and one general model to classify contigs of many other species (n=127) that are not 
frequently represented in databases. All models included predictions from Platon [23] and RFPlas-
mid[24] which were designed to predict plasmids of multiple species. Mlplasmids was selected as a 
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third-classifier for E. faecium, while novel Centrifuge-based classifiers were developed for the rest of 
the species. Centrifuge [25] serves as a taxonomy classifier for metagenomics reads, but we adapted 
this tool to function as a binary classifier of whole genome sequencing (WGS) contigs, similarly to 
what has been described for PlaScope [26]. In contrast to PlaScope, our Centrifuge classifiers cal-
culates the proportion of hits from each contig in relation to different fractions of the database in 
order to generate the classification. For example, if a contig matches more than 70% of the times to 
the plasmidome fraction of the database, it is classified as a ‘plasmid’ contig. In contrast, if it matches 
less than 30%, it is classified as a ‘chromosome’ contig. Matches ranging from 30 to 70% are labelled 
‘unclassified’.

PlasmidEC was the best performing tool for E. faecium and S. enterica, while for K. pneumoniae 
and S. aureus, Centrifuge and plasmidEC performed comparably well, with Centrifuge presenting a 
higher recall for K. pneumoniae and plasmidEC for S. aureus. Notably, when classifying genomes of 
66 species, less frequently represented in databases, the F1-Scores(contig) of Centrifuge (0.88) and 
plasmidEC (0.87) surpassed those of RFPlasmid (0.73) and Platon (0.75). Strikingly, despite being a 
reference based approach, Centrifuge’s general model outperformed other binary classification tools 
when applied to species not frequently represented in databases.It has been previously observed that 
plasmids show similarities within genera and even within phylogenetic classes [27]. Possibly,  the 
comprehensive database that we developed with Centrifuge could capture sufficient plasmidome 
diversity to correctly identify plasmid sequences from novel species, especially if these species are 
included within frequently represented genera or families. On the other hand, both the Centrifu-
ge database and its benchmark dataset contained genomes from the same public database, which is 
biassed towards clinical isolates from high-income countries [22]. This approach may have positively 
impacted our results, and the generalizability of the tool’s performance to non-clinical isolates or 
isolate from low-income countries still has to be determined. 

We combined gplas with the best available binary classifier (plasmidEC or centrifuge) and re-
constructed individual plasmids of more than 75 species, and compared its performance against 
MOB-suite and plasmidSPAdes. Gplas demonstrated a good performance when reconstructing 
AMR-plasmids of E. faecium, K. pneumoniae, S. enterica and S. aureus, while MOB-suite and plas-
midSPAdes struggled to predict K. pneumoniae and E. faecium plasmids. We found that isolates 
from these two species frequently carried a larger number of plasmids and contained more repeats 
per plasmid, which would lead to more fragmented and entangled assemblies. Furthermore, our re-
sults suggest that these plasmidome features (number of plasmids per genome and number of repeats 
per plasmid) negatively impact the predictions of MOB-suite and plasmidSPAdes. When recons-
tructing AMR-plasmids of infrequent species, gplas predictions had a considerably higher F1-Score 
(median=0.85) than MOB-suite (median=0.66) and plasmidSPAdes (median=0.68). Together, 
these observations suggest that gplas can be successfully applied to reconstruct AMR-plasmids of 
any species, and that its performance is affected to a lesser extent by variations in the plasmidome 
features. 

Future perspectives: Additional applications and further improvements of plasmid pre-
diction and reconstruction tools
We envision that gplas in combination with plasmidEC’s general model could potentially also be 
applied to metagenomes. However, since metagenomes are considerably more complex than WGS 
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assembly graphs, several biological constraints and computational challenges will need to be addres-
sed to make gplas feasible: (1) To reduce the run time, plasmid walks will need to be parallelized and 
the maximum number of nodes explored in each walk would need to decrease; (2) since metageno-
mes contain sequences from multiple genomes with different abundances, the variation in sequen-
cing coverage of chromosome-derived nodes will not be a useful metric for building plasmid-walks 
with homogeneous coverage, instead adding taxonomy information to the nodes, and evaluating the 
coverage differences between pairs of flanking unitigs of the same species could prove useful for esti-
mating this sequencing coverage variation.

The methods developed in this thesis, building upon previously existing plasmid prediction tools, 
improved the ability to reconstruct plasmids using short-read sequencing data. Nevertheless, we 
should mention a number of limitations that still need to be addressed. First, plasmidEC requires 
more computational resources and has longer run times when compared to individual binary classi-
fication tools. Although run times could be reduced by multi-threading the predictions of each tool, 
memory requirements cannot be modified. To address this aspect, we also integrated a quick mode 
into plasmidEC, in which contigs get classified only using Centrifuge (or PlaScope). PlaScope was 
the fastest binary classification tool and required less memory than most tools when applied to E. 
coli, as described in chapter 3. Moreover, the combination of gplas with PlaScope (gplas_PlaScope) 
led to individual plasmid predictions with a comparable quality to those obtained with gplas_plas-
midEC. Regarding computational efficiency, it must be noted that Centrifuge loads its databa-
se into memory before making predictions, which is not a concern for the species-specific models 
that we developed. However, the general model relies on a database of 30 gigabytes of size, which 
could limit the possibility of running this model in a standard desktop computer. Second, as most 
reference-based approaches, Centrifuge and PlaScope cannot classify novel sequences that are not 
present in their underlying databases. As previously mentioned, public databases mostly containcli-
nical isolates from high-income countries [22], therefore the application of a strictly reference-based 
approach could become problematic when attempting to identify plasmid contigs from uncommon 
niches or geographical locations. An ensemble classifier, such as plasmidEC, that incorporates tools 
with different computational approaches could potentially be more flexible to predict the origin of 
novel contigs. Third, mobile genetic elements (MGE) (i.e. transposons, integrative and conjugative 
elements, integrons) can be carried by both plasmids and chromosomes [17,23,28] and their binary 
classification without exploration of their flanking sequences, could frequently lead to errors. The 
propagation of the initial labels (plasmid/chromosome) through the assembly graph, as successfully 
implemented by plASgraph [30], could improve classification of these elements. A similar approach 
is implemented the tool GraphBin2 [30], which refines binning results of metagenomics samples. 

Applying plasmidEC and gplas to study the genomic composition of E. coli isolates in 
ICU patients
Despite the limitations discussed above, plasmidEC and gplas were fundamental to performing an 
in-depth evaluation of the effects of selective digestive decontamination (SDD) on the pangeno-
me composition of extended spectrum beta-lactamase (ESBL) producing E. coli. Since it has been 
suggested that SDD alters the gut microbiome composition of ICU patients [18,19], in chapter 5, 
we hypothesized that these changes in gut ecology might also impact the pangenome composition 
of potentially pathogenic microorganisms (PPMOs) that continue to populate the intestinal tract 
despite the use of SDD. To verify this hypothesis, we performed a comparative genomic analysis on 
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129 ESBL E. coli isolates from ICU patients that received either SDD (n=63) or only standard care 
(n=66). One of the main strengths of our study is its multi-center nature, with isolates obtained in 
the setting of a cluster-randomized trial from five different ICUs located in three European coun-
tries.

The results from our study suggested that SDD does not have a significant impact in shaping the 
overall pangenome composition of ESBL E. coli. Furthermore, the use of plasmidEC allowed us to 
show that plasmidome composition was not affected by the use of SDD either. Instead, the interplay 
between phylogeny and geographical location of the ICU explained the largest fraction of plasmi-
dome variance observed between the 129 isolates. Previous studies have described that particular 
clones and plasmids can persist over time in ICUs and spread to multiple patients [31–35]. We also 
observed minor differences between the resistomes of SDD and non-SDD isolates. Interestingly, a 
potential MGE composed of a tobramycin resistance gene and two additional ARGs flanked by IS26 
elements, which we termed Tn(TobraR), was more often detected in SDD isolates (n=14, 22%) than 
in non-SDD isolates (n=4, 6%). The combination of gplas with mge-cluster [36] was essential for 
determining that the Tn(TobraR) element was found in five different plasmid backbones and 4 di-
fferent phylogroups (B2, A, C and F), providing further evidence of this element’s mobility. Notably, 
this element frequently co-occurred in the same plasmid with blaCTX-M-15  (an ESBL gene). The exis-
tence of Tn(TobraR) and its co-occurrence with blaCTX-M-15  have been previously described in other 
studies that included E. coli isolates from UK, Canada and China [37–39]. It should be noted that 
we have not collected data on systemic antibiotics provided to these patients, so differences in the 
resistomes should be interpreted with care. 

The limited effect that SDD had on the pangenome composition of ESBL-E. coli was unexpected. 
Although in our study stool samples to assess the effects of SDD on the microbiome composition 
were not available, other studies have shown that the effect of SDD on the composition of the gut 
microbiome is substantial [40,41]. These changes in  microbiota composition will probably lead to 
altered gut microbial networks, posing new metabolic challenges to colonising ESBL E. coli. It is 
possible that the adaptation of E. coli to the new gut ecology induced by SDD, might have been 
mediated by changes in gene expression patterns, rather than by loss or acquisition of new genes [42]. 
Moreover, a recent study demonstrated that E. coli auxotrophies can be rescued by expressing short 
peptides that are coded in novel small open reading frames [43]. Both of these adaptation strategies 
cannot be detected by the analysis we did in chapter 5, which is solely based on gene/presence ab-
sence comparisons. It is also possible that the duration of SDD treatment (median time from start 
of SDD to sample collection of the sequenced ESBL E.coli isolate 4, IQR = 2 - 6.5 days) might have 
not been sufficiently long to cause an appreciable change in the community structure of PPMOs. 
Long-term follow-up with sequencing of multiple and/or repeat isolates would have allowed to de-
monstrate changes in the ESBL E.coli population or specific isolates. Furthermore, the use of ES-
BL-selective media for surveillance cultures in the primary study precluded analysis of the entire E. 
coli population in these patients, for which adaptations in non-ESBL E. coli isolates may have been 
missed. This sele tion could have camouflaged changes in the genome composition of different E. coli 
subpopulations within each patient.
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Future clinical directions: towards affordable and accurate plasmid surveillance systems
Given their superior resolution power, whole genome sequencing (WGS) approaches are becoming 
the new gold-standard for assessing potential outbreaks of resistant pathogens in clinical settings 
[44–50]. Although pathogen clonality is often the main question, limiting surveillance only to 
bacterial clones provides an incomplete picture of the risks of AMR dissemination. Essentially this 
approach precludes from detecting outbreaks mediated by MGE. Recently, plasmid-mediated mul-
tispecies outbreaks have been detected in single hospitals [51–53] and also at a country-wide scale 
[54]. Consequently, routine genomic surveillance of plasmids and other MGEs, provides valuable 
extra information for an early detection of outbreaks of AMR bacteria. Although complete recons-
truction of plasmids generally requires long-read sequencing, at the moment it is still prohibitively 
expensive for routine application (especially surveillance), despite the fact that WGS surveillance 
can be intentionally limited to select populations of vulnerable patients (such as those admitted into 
ICUs). Consequently, the methods that we developed in chapter 3 and 4 of this thesis, which provi-
de accurate reconstruction of plasmids using affordable short reads, could permit the implementa-
tion of regular WGS-based plasmid surveillance in clinical settings, facilitating the early detection of 
plasmid-mediated outbreaks, and ultimately guiding infection prevention initiatives.

Additionally, routine surveillance systems at a national or international level are important to ex-
plore the trends of resistance in different regions and niches [55,56] and also to detect and interrupt 
(multi-) country-wide outbreaks that might lead to the dissemination of AMR [54, 57]. In 2016, 
the European Center for Disease Prevention and Control (ECDC) claimed that WGS-based ty-
ping should become the primary microbial typing method for the investigation of multi-country 
outbreaks and antimicrobial surveillance in the European Union, at least for bacterial pathogens 
[58]. Since then, WGS capacity in reference laboratories has increased across different countries, 
an EU-wide data sharing platform was built, and harmonised WGS-based bacterial typing methods 
have been defined [59]. The incorporation of affordable methods to reconstruct plasmid sequences 
into these large-scale international surveillance initiatives could aid in detecting the dissemination 
of particularly dangerous resistant plasmids or plasmid-clone combinations. In turn, this informa-
tion could guide the development and implementation of more-affordable  and faster surveillance 
methodologies in clinical settings, for example, via the design of multiplex PCR schemes targeting 
specific plasmid modules and resistance determinants simultaneously.

Final words
In this thesis we improved existing methods to reconstruct plasmids from short-read data. We des-
cribed how feature-enriched assembly graphs, as implemented in gplas, contribute to generating 
predictions that include higher fractions of AMR-plasmids across multiple species, given that an 
accurate binary classifier exists. Moreover, we demonstrated that it is possible to use these plasmid 
predictions to track smaller genomic elements, such as the Tn(TobraR), across multiple plasmid bac-
kbones. We hope that coupling these methods to novel tools to type plasmids, such as mge-cluster, 
will make epidemiological plasmid studies more accessible and widespread, and can ultimately be 
used for WGS-based surveillance of AMR using short-reads.

Summary and General Discussion

C
ha

pt
er

 6



182

References

1. Mane A, Faizrahnemoon M, Chauve C. A Mixed Integer Linear Programming Algorithm for Plasmid Bin-
ning. Comparative Genomics. 2022; 279–292.
2. Pu L, Shamir R. 4CAC: 4-class classification of metagenome assemblies using machine learning and assem-
bly graphs. bioRxiv. 2023. p. 2023.01.20.524935. doi:10.1101/2023.01.20.524935
3. Pu L, Shamir R. 3CAC: improving the classification of phages and plasmids in metagenomic assemblies 
using assembly graphs. Bioinformatics. 2022;38: ii56–ii61.
4. Gomi R, Wyres KL, Holt KE. Detection of plasmid contigs in draft genome assemblies using customized 
Kraken databases. Microbial genomics. 2021;7. doi:10.1099/mgen.0.000550
5. Arredondo-Alonso S, Willems RJ, van Schaik W, Schürch AC. On the (im)possibility of reconstructing 
plasmids from whole-genome short-read sequencing data. Microb Genom. 2017;3: e000128.
6. Ebmeyer S, Kristiansson E, Larsson DGJ. A framework for identifying the recent origins of mobile antibio-
tic resistance genes. Commun Biol. 2021;4: 8.
7. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a sys-
tematic analysis. Lancet. 2022;399: 629–655.
8. Kawamura K, Nagano N, Suzuki M, Wachino J-I, Kimura K, Arakawa Y. ESBL-producing and Its Rapid 
Rise among Healthy People. Food Saf (Tokyo). 2017;5: 122–150.
9. Matamoros S, van Hattem JM, Arcilla MS, Willemse N, Melles DC, Penders J, et al. Global phylogenetic 
analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restric-
tion. Sci Rep. 2017;7: 1–9.
10. Zamudio R, Boerlin P, Beyrouthy R, Madec J-Y, Schwarz S, Mulvey MR, et al. Dynamics of extended-spectrum 
cephalosporin resistance genes in Escherichia coli from Europe and North America. Nat Commun. 2022;13: 7490.
11. Pires J, Huber L, Hickman RA, Dellicour S, Lunha K, Leangapichart T, et al. Genome-associations of 
extended-spectrum ß-lactamase producing (ESBL) or AmpC producing E. coli in small and medium pig farms 
from Khon Kaen province, Thailand. BMC Microbiol. 2022;22: 253.
12. Huisman JS, Vaughan TG, Egli A, Tschudin-Sutter S, Stadler T, Bonhoeffer S. The effect of sequencing and 
assembly on the inference of horizontal gene transfer on chromosomal and plasmid phylogenies. Philos Trans 
R Soc Lond B Biol Sci. 2022;377: 20210245.
13. Nguyen M, Olson R, Shukla M, VanOeffelen M, Davis JJ. Predicting antimicrobial resistance using conser-
ved genes. PLoS Comput Biol. 2020;16: e1008319.
14. Arredondo-Alonso S, Top J, Corander J, Willems RJL, Schürch AC. Mode and dynamics of vanA-type van-
comycin resistance dissemination in Dutch hospitals. Genome Med. 2021;13. doi:10.1186/s13073-020-00825-3
15. Venturini C, Hassan KA, Chowdhury PR, Paulsen IT, Walker MJ, Djordjevic SP. Sequences of Two 
Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Sig-
nature Isolated from Different Escherichia coli Pathotypes from Different Hosts. PLoS One. 2013;8: e78862.
16. Shaw LP, Chau KK, Kavanagh J, AbuOun M, Stubberfield E, Gweon HS, et al. Niche and local geography 
shape the pangenome of wastewater- and livestock-associated Enterobacteriaceae. Science advances. 2021;7. 
doi:10.1126/sciadv.abe3868
17. Che Y, Yang Y, Xu X, Břinda K, Polz MF, Hanage WP, et al. Conjugative plasmids interact with inser-
tion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci U S A. 
2021;118. doi:10.1073/pnas.2008731118
18. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. plasmidSPAdes: assembling plasmids 
from whole genome sequencing data. Bioinformatics. 2016;32: 3380–3387.
19. Rozov R, Brown Kav A, Bogumil D, Shterzer N, Halperin E, Mizrahi I, et al. Recycler: an algorithm for 

Chapter 6



183

detecting plasmids from de novo assembly graphs. Bioinformatics. 2017;33: 475–482.
20. Arredondo-Alonso S, Bootsma M, Hein Y, Rogers MRC, Corander J, Willems RJL, et al. gplas: a compre-
hensive tool for plasmid analysis using short-read graphs. Bioinformatics. 2020;36: 3874–3876.
21. Arredondo-Alonso S, Rogers MRC, Braat JC, Verschuuren TD, Top J, Corander J, et al. mlplasmids: a 
user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb Genom. 
2018;4. doi:10.1099/mgen.0.000224
22. Blackwell GA, Hunt M, Malone KM, Lima L, Horesh G, Alako BTF, et al. Exploring bacterial diversity via 
a curated and searchable snapshot of archived DNA sequences. PLoS Biol. 2021;19: e3001421.
23. Schwengers O, Barth P, Falgenhauer L, Hain T, Chakraborty T, Goesmann A. Platon: identification and 
characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based 
replicon distribution scores. Microb Genom. 2020;6. doi:10.1099/mgen.0.000398
24. van der Graaf-van Bloois L, Wagenaar JA, Zomer AL. RFPlasmid: predicting plasmid sequences from 
short-read assembly data using machine learning. Microb Genom. 2021;7. doi:10.1099/mgen.0.000683
25. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic 
sequences. Genome Res. 2016;26: 1721–1729.
26. Royer G, Decousser JW, Branger C, Dubois M, Médigue C, Denamur E, et al. PlaScope: a targeted 
approach to assess the plasmidome from genome assemblies at the species level. Microb Genom. 2018;4. 
doi:10.1099/mgen.0.000211
27. Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M, Rocha EPC, et al. Pathways for 
horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat Commun. 2020;11: 1–13.
28. Wang Y, Batra A, Schulenburg H, Dagan T. Gene sharing among plasmids and chromosomes reveals ba-
rriers for antibiotic resistance gene transfer. Philos Trans R Soc Lond B Biol Sci. 2022;377: 20200467.
29. Sielemann J, Sielemann K, Brejová B, Vinař T, Chauve C. plASgraph - using graph neural networks to detect 
plasmid contigs from an assembly graph. bioRxiv. 2022. p. 2022.05.24.493339. doi:10.1101/2022.05.24.493339
30. Mallawaarachchi VG, Wickramarachchi AS, Lin Y. Improving metagenomic binning results with overla-
pped bins using assembly graphs. Algorithms Mol Biol. 2021;16: 3.
31. Klassert TE, Leistner R, Zubiria-Barrera C, Stock M, López M, Neubert R, et al. Bacterial colonization dy-
namics and antibiotic resistance gene dissemination in the hospital environment after first patient occupancy: 
a longitudinal metagenetic study. Microbiome. 2021;9: 1–17.
32. Evans DR, Griffith MP, Sundermann AJ, Shutt KA, Saul MI, Mustapha MM, et al. Systematic detection of 
horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. 2020 [cited 21 
Feb 2023]. doi:10.7554/eLife.53886
33. Brodrick HJ, Raven KE, Kallonen T, Jamrozy D, Blane B, Brown NM, et al. Longitudinal genomic sur-
veillance of multidrug-resistant Escherichia coli carriage in a long-term care facility in the United Kingdom. 
Genome Med. 2017;9: 1–11.
34. Hawkey J, Wyres KL, Judd LM, Harshegyi T, Blakeway L, Wick RR, et al. ESBL plasmids in Klebsiella pneumoniae: 
diversity, transmission and contribution to infection burden in the hospital setting. Genome Med. 2022;14: 1–13.
35. Hu Y, Zhang H, Wei L, Feng Y, Wen H, Li J, et al. Competitive Transmission of Carbapenem-Resistant Kleb-
siella pneumoniae in a Newly Opened Intensive Care Unit. mSystems. 2022;7. doi:10.1128/msystems.00799-22
36. Arredondo-Alonso S, Gladstone RA, Pöntinen AK, Gama JA, Schürch AC, Lanza VF, et al. 
Consistent typing of plasmids with the mge-cluster pipeline. bioRxiv. 2022. p. 2022.12.16.520696. 
doi:10.1101/2022.12.16.520696
37. Livermore DM, Day M, Cleary P, Hopkins KL, Toleman MA, Wareham DW, et al. OXA-1 β-lactamase 
and non-susceptibility to penicillin/β-lactamase inhibitor combinations among ESBL-producing Escherichia 
coli. J Antimicrob Chemother. 2019;74: 326–333.

Summary and General Discussion

C
ha

pt
er

 6



184

38. Peirano G, Pitout JDD. Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the 
worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents. 2010;35: 316–321.
39. Cao X, Zhang Z, Shen H, Ning M, Chen J, Wei H, et al. Genotypic characteristics of multidrug-resistant 
Escherichia coli isolates associated with urinary tract infections. APMIS. 2014;122: 1088–1095.
40. Benus RF, Harmsen HJ, Welling GW, Spanjersberg R, Zijlstra JG, Degener JE, et al. Impact of digestive and 
oropharyngeal decontamination on the intestinal microbiota in ICU patients. Intensive Care Med. 2010;36. 
doi:10.1007/s00134-010-1826-4
41. van Doorn-Schepens MLM, Abis GSA, Oosterling SJ, van Egmond M, Poort L, Hbac S, et al. The effect 
of selective decontamination on the intestinal microbiota as measured with IS-pro: a taxonomic classification 
tool applicable for direct evaluation of intestinal microbiota in clinical routine. Eur J Clin Microbiol Infect 
Dis. 2022;41. doi:10.1007/s10096-022-04483-8
42. Gagarinova A, Hosseinnia A, Rahmatbakhsh M, Istace Z, Phanse S, Moutaoufik MT, et al. Auxotrophic 
and prototrophic conditional genetic networks reveal the rewiring of transcription factors in Escherichia coli. 
Nat Commun. 2022;13: 1–16.
43. Babina AM, Surkov S, Ye W, Jerlström-Hultqvist J, Larsson M, Holmqvist E, et al. Rescue of Escherichia coli 
auxotrophy by de novo small proteins. 2023 [cited 21 Mar 2023]. doi:10.7554/eLife.78299
44. Li L, Wang R, Qiao D, Zhou M, Jin P. Tracking the Outbreak of Carbapenem-Resistant Klebsiella pneu-
moniae in an Emergency Intensive Care Unit by Whole Genome Sequencing. Infect Drug Resist. 2022;15. 
doi:10.2147/IDR.S386385
45. Egan SA, Corcoran S, McDermott H, Fitzpatrick M, Hoyne A, McCormack O, et al. Hospital outbreak 
of linezolid-resistant and vancomycin-resistant ST80 Enterococcus faecium harbouring an optrA-encoding 
conjugative plasmid investigated by whole-genome sequencing. J Hosp Infect. 2020;105. doi:10.1016/j.
jhin.2020.05.013
46. Rubin LG, Beachy J, Matz T, Balamohan A, Jendresky L, Zembera J, et al. Prolonged outbreak of clonal, 
mupirocin-resistant methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit: association with 
personnel and a possible environmental reservoir, analyzed using whole genome sequencing. Am J Infect Con-
trol. 2022;50. doi:10.1016/j.ajic.2021.09.010
47. Tang M, Li J, Liu Z, Xia F, Min C, Hu Y, et al. Clonal transmission of polymyxin B-resistant hypervirulent 
Klebsiella pneumoniae isolates coharboring blaNDM-1 and blaKPC-2 in a tertiary hospital in China. BMC Mi-
crobiol. 2023;23. doi:10.1186/s12866-023-02808-x
48. Brizuela J, Kajeekul R, Roodsant TJ, Riwload A, Boueroy P, Pattanapongpaibool A, et al. Streptococcus suis 
outbreak caused by an emerging zoonotic strain with acquired multi-drug resistance in Thailand. Microbial 
genomics. 2023;9. doi:10.1099/mgen.0.000952
49. Quainoo S, Coolen JPM, van Hijum SAFT, Huynen MA, Melchers WJG, van Schaik W, et al. Whole-Ge-
nome Sequencing of Bacterial Pathogens: the Future of Nosocomial Outbreak Analysis. Clin Microbiol Rev. 
2017;30: 1015–1063.
50. Clinical perspectives in integrating whole-genome sequencing into the investigation of healthcare and pu-
blic health outbreaks – hype or help? J Hosp Infect. 2021;109: 1–9.
51. Yamagishi T, Matsui M, Sekizuka T, Ito H, Fukusumi M, Uehira T, et al. A prolonged multispecies out-
break of IMP-6 carbapenemase-producing Enterobacterales due to horizontal transmission of the IncN plas-
mid. Sci Rep. 2020;10: 4139.
52. Marí-Almirall M, Ferrando N, Fernández MJ, Cosgaya C, Viñes J, Rubio E, et al. Clonal Spread and In-
tra- and Inter-Species Plasmid Dissemination Associated With Klebsiella pneumoniae Carbapenemase-Producing 
Enterobacterales During a Hospital Outbreak in Barcelona, Spain. Front Microbiol. 2021;12. doi:10.3389/
fmicb.2021.781127

Chapter 6



185

53. Hidalgo L, de Been M, Rogers MRC, Schürch AC, Scharringa J, van der Zee A, et al. Sequence-based 
epidemiology of an OXA-48 plasmid during a hospital outbreak. Antimicrob Agents Chemother. 2019;63. 
doi:10.1128/AAC.01204-19
54. European Centre for Disease Prevention and Control. Combined clonal and plasmid-mediated outbreak 
of carbapenemase-producing Enterobacterales in Lithuania, 2019-2020 – 3 February 2020. ECDC: Stoc-
kholm; 2020.
55. European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC). 
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from 
humans, animals and food in 2020/2021. EFSA J. 2023;21: e07867.
56. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-
Net) - Annual Epidemiological Report 2021. Stockholm: ECDC; 2022.
57. Rapid risk assessment: Carbapenemase-producing (OXA-48) Klebsiella pneumoniae ST392 in travellers 
previously hospitalised in Gran Canaria, Spain. In: European Centre for Disease Prevention and Control 
[Internet]. 11 Jul 2018 [cited 14 Mar 2023]. Available: https://www.ecdc.europa.eu/en/publications-data/
rapid-risk-assessment-carbapenemase-producing-oxa-48-klebsiella-pneumoniae-st392
58. Expert opinion on whole genome sequencing for public health surveillance. In: European Centre for Di-
sease Prevention and Control [Internet]. 15 Aug 2016 [cited 14 Mar 2023]. Available: https://www.ecdc.
europa.epeau/en/publications-data/expert-opinion-whole-genome-sequencing-public-health-surveillance
59. ECDC strategic framework for the integration of molecular and genomic typing into European surveillan-
ce and multi-country outbreak investigations. In: Euron Centre for Disease Prevention and Control [Internet]. 
4 Apr 2019 [cited 14 Mar 2023]. Available: https://www.ecdc.europa.eu/en/publications-data/ecdc-strate-
gic-framework-integration-molecular-and-genomic-typing-european

C
ha

pt
er

 6

Summary and General Discussion





Appendices



188

English Summary

Antimicrobial resistance (AMR) is a pressing global concern, posing a significant threat to human health 
worldwide. Each year, the incidence of infections caused by resistant bacteria continues to rise, imposing a 
significant challenge for healthcare professionals. The emergence of multidrug resistant (MDR) strains fur-
ther exacerbates the issue, severely limiting therapeutic options available for managing infections. Adding 
to the complexity of the problem, healthcare facilities experience a higher prevalence of MDR bacterial 
infections, primarily due to the extensive and frequent utilization of antibiotics in these settings.

This thesis is mainly focused on Escherichia coli, a bacterium that commonly resides as a commensal in 
the gastrointestinal tract of humans and other warm-blooded animals. Nevertheless, over the past deca-
des, E. coli has become one of the most prevalent MDR pathogens worldwide. In particular, infections 
caused by extended spectrum beta-lactamase (ESBL)-producing E. coli have rapidly increased and have 
become an important public health concern.

AMR determinants, such as ESBL genes, are frequently encoded by plasmids, mobile genetic elements 
(MGE) that can be horizontally disseminated across bacteria by diverse mechanisms. Multiple studies sug-
gest that plasmids are essential drivers of the spread of resistance within diverse ecological niches. Additio-
nally, plasmids also play a crucial role in the development of outbreaks in clinical settings that involve mul-
tiple bacterial species. Consequently, accurate plasmid identification and tracking are necessary to better 
understand the mechanisms that drive AMR dissemination. 

The development of next-generation sequencing (NGS) platforms has allowed high-throughput bacterial 
genome research. Illumina short reads remain the most widespread sequencing technology worldwide. 
These platforms produce highly accurate reads and large amounts of samples can be processed simulta-
neously. Nevertheless, due to the frequent occurrence of large repeated elements in bacterial genomes, the 
de novo assembly of short reads produces hundreds of contigs of unclear origin (plasmid or chromoso-
me) mingled together in a draft genome. Consequently, determining the exact sequence of plasmids using 
short reads alone is challenging. 

In chapter 2 of this thesis, we conducted a comprehensive review of various bioinformatic tools designed 
to predict plasmid sequences from short-read sequencing data. Furthermore, we extensively compared the 
performance of six plasmid reconstruction tools using a dataset comprising 240 publicly available E. coli 
genomes from databases. Through this benchmark study, we identified MOB-suite as the most accurate 
tool for reconstructing E. coli plasmids. Nonetheless, the evaluation also revealed that all tools encounte-
red challenges in reconstructing large AMR plasmids.

In chapter 3, recognizing the limitations of existing plasmid reconstruction tools, we devised a novel two-
step approach to reconstruct E. coli plasmids from Illumina sequencing data. In the initial step, we emplo-
yed plasmidEC, an ensemble classifier developed by integrating three distinct binary classification tools, 
to classify nodes from the assembly graph as plasmid- or chromosome-derived. Subsequently, we applied 
gplas to bin plasmid-derived nodes into individual plasmid predictions based on sequencing coverage si-
milarities and assembly graph connectivity. Additionally, gplas was adapted to yield improved reconstruc-
tions of plasmids exhibiting large sequencing coverage variations. Our method outperformed MOB-suite, 
particularly when reconstructing AMR plasmids.
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In chapter 4, we extended the application of our plasmid reconstruction method to multiple species. 
To achieve this, we developed four species-specific plasmidEC models for E. faecium, K. pneumoniae, S. 
enterica, and S. aureus, alongside one species-independent model for less-frequent species. PlasmidEC 
presented the best performance when identifying plasmid contigs from E. faecium, S. enterica, and S. 
aureus, while Centrifuge outperformed all other tools for K. pneumoniae and less-frequent species. 
Through the integration of the best-performing binary classifiers with gplas, we were able to recons-
truct plasmids of diverse species. We evaluated the tool's performance by reconstructing 953 plasmids 
from 70 different bacterial species and compared the results to MOB-suite and plasmidSPAdes recons-
tructions. Remarkably, gplas displayed a consistent performance when reconstructing large AMR plas-
mids across multiple species, while the other tools exhibited greater variations in performance.

In chapter 5, we compared the pangenomes, plasmidomes and resistome compositions of 129 ESBL-E. 
coli isolates, obtained from patients included in the R-GNOSIS ICU study. In this cluster-randomized 
crossover trial, patients admitted to intensive care units (ICU) did or did not receive selective digestive 
decontamination (SDD) as a prophylactic treatment to prevent colonization with potentially pathoge-
nic microorganisms. SDD consists of a mix of topical antibiotics (Tobramycin, Colistin and Ampho-
tericin B) that target aerobic gram-negative bacteria, P. aeruginosa, S. aureus and yeast, but do not com-
promise the anaerobic flora. The data analyzed in this chapter included ESBL-E. coli isolates from five 
different ICUs located in Spain, Belgium and the UK. Our findings suggested that SDD has a limited 
impact on the population structure and pangenome composition of ESBL-E. coli. However, isolates 
obtained from patients that received standard care had a higher amount of aminoglycoside resistance 
genes, while SDD isolates were more frequently found to possess a transposon carrying a tobramycin 
resistance gene. This transposon contained a total of three AMR genes surrounded by IS26 elements, 
and frequently co-occurred with blaCTX-M-15 in multiple clones and distinct plasmid backbones.

In this thesis I explored the challenges of existing bioinformatic tools when attempting to reconstruct 
AMR plasmids from short-read sequencing data. Furthermore, I also described a novel two-step 
approach to reconstruct these plasmids. This novel approach consists of combining an accurate binary 
classifier of contigs with gplas, a tool that bins plasmid-derived contigs into individual plasmid predic-
tions based on coverage uniformity and assembly graph connectivity. Our novel method proved to be 
accurate when reconstructing plasmids of more than 70 bacterial species. Finally, I studied the epide-
miology of ESBL-E. coli isolates and plasmids obtained from different ICUs across Europe.
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Nederlandse samenvatting

Antimicrobiële resistentie (AMR) is een urgent, wereldwijd probleem en vormt een aanzienlijke 
bedreiging voor de menselijke gezondheid. Elk jaar neemt het aantal infecties veroorzaakt door 
resistente bacteriën toe, wat een grote uitdaging vormt voor de gezondheidszorg. De opkomst van 
multidrug-resistente (MDR)-stammen verergert het probleem verder, waardoor de beschikbare 
therapeutische opties voor het beheersen van infecties verder worden beperkt. Wat het probleem nog 
ingewikkelder maakt, is dat zorginstellingen een hogere prevalentie van MDR-bacteriële infecties 
kennen, voornamelijk als gevolg van het  veelvuldige gebruik van antibiotica in deze omgevingen.

Dit proefschrift is voornamelijk gericht op Escherichia coli, een bacterie die gewoonlijk als commensaal 
aanwezig is in het maag-darmkanaal van mensen en andere warmbloedige dieren. Niettemin is E. coli de 
afgelopen decennia een van de meest voorkomende MDR-pathogenen ter wereld geworden. Met name 
infecties veroorzaakt door E. coli die een uitgebreid spectrum bèta-lactamase (ESBL) produceren, zijn 
snel toegenomen en zijn een belangrijk probleem voor de volksgezondheid geworden.

AMR-determinanten, zoals ESBL-genen, worden vaak gecodeerd door plasmiden, mobiele 
genetische elementen (MGE) die via verschillende mechanismen horizontaal tussen bacteriën 
kunnen worden verspreid. Meerdere studies suggereren dat plasmiden essentiële aanjagers zijn van 
de verspreiding van resistentie binnen diverse ecologische niches. Bovendien spelen plasmiden ook 
een cruciale rol bij de totstandkoming van uitbraken in klinische omgevingen waarbij meerdere 
bacteriesoorten betrokken zijn. Hierdoor is nauwkeurige identificatie en tracking van plasmiden 
nodig om de mechanismen die de verspreiding van AMR faciliteren beter te begrijpen.

De ontwikkeling van next-generation sequencing (NGS) platforms heeft high-throughput bacterieel 
genoomonderzoek mogelijk gemaakt. ‘Illumina short reads’ blijft wereldwijd de meest wijdverbreide 
sequencing-technologie. Deze platforms produceren zeer nauwkeurige reads en grote hoeveelheden 
monsters kunnen tegelijkertijd worden verwerkt. Echter, als gevolg van het veelvuldig voorkomen 
van grote repetitieve elementen in bacteriële genomen, produceert de de novo assembly van korte 
reads honderden contigs van onduidelijke oorsprong (plasmide of chromosoom) die met elkaar 
vermengd zijn in een conceptgenoom. Hierdoor is het een uitdaging om de exacte sequentie van 
plasmiden te bepalen met alleen korte reads.

In hoofdstuk 2 van dit proefschrift hebben we een uitgebreid overzicht gegeven van verschillende bio-
informatica-tools die zijn ontworpen om plasmide-sequenties te voorspellen op basis van short-read 
sequencing data. Verder hebben we de nauwkeurigheid van zes plasmide-reconstructie-tools uitgebreid 
vergeleken met behulp van een dataset bestaande uit 240 openbaar beschikbare E. coli-genomen uit 
databases. Door middel van deze benchmarkstudie hebben we MOB-suite aangewezen als de meest 
nauwkeurige tool voor het reconstrueren van E. coli-plasmiden. Desalniettemin onthulde de evaluatie 
ook dat alle tools problemen ondervonden bij het reconstrueren van grote AMR-plasmiden.

In hoofdstuk 3, waarin we de beperkingen van bestaande hulpmiddelen voor plasmide reconstructie 
onderkennen, hebben we een nieuwe tweetrapsbenadering ontwikkeld om E. coli-plasmiden te 
reconstrueren uit Illumina-sequencing data. In de eerste stap hebben we plasmidEC gebruikt, een 
ensemble-classificatietool die is ontwikkeld door drie verschillende binaire classificatietools te 
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integreren, om punten uit de assembly graph te classificeren als zijnde afkomstig van een plasmide 
of een chromosoom. Vervolgens hebben we gplas toegepast om punten afkomstig van plasmiden in 
individuele plasmide voorspellingen te plaatsen op basis van overeenkomsten in sequence coverage 
en connectiviteit van assembly graphs. Bovendien werd gplas aangepast om verbeterde reconstructies 
van plasmiden op te leveren die grote variaties in de sequence coverage vertoonden. Onze methode 
presteerde beter dan MOB-suite, vooral bij het reconstrueren van AMR-plasmiden.

In hoofdstuk 4 hebben we de toepassing van onze plasmide-reconstructiemethode uitgebreid naar 
meerdere soorten. Hiertoe hebben we vier soortspecifieke modellen ontwikkeld voor E. faecium, 
K. pneumoniae, S. enterica en S. aureus, en een soort-onafhankelijk plasmidEC-model. PlasmidEC 
presteerde het beste bij het identificeren van plasmide-contigs van E. faecium, S. enterica en S. aureus, 
terwijl Centrifuge beter presteerde dan alle andere tools voor K. pneumoniae en minder frequente 
soorten. Door de integratie van de best presterende binaire classifiers met gplas, waren we in staat 
om plasmiden van diverse soorten te reconstrueren. We hebben de prestaties van de tool geëvalueerd 
door 953 plasmiden van 70 verschillende bacteriesoorten te reconstrueren en de resultaten te 
vergelijken met reconstructies van MOB-suite en plasmidSPAdes. Opmerkelijk genoeg vertoonde 
gplas een consistente prestatie bij het reconstrueren van grote AMR-plasmiden over meerdere 
soorten, terwijl de andere tools grotere variaties in prestaties vertoonden.

In hoofdstuk 5 hebben we de pan-genomen, plasmiden en resistoom-samenstellingen vergeleken 
van 129 ESBL-E. coli-isolaten, verkregen van patiënten die deelnamen aan de R-GNOSIS ICU-
studie. In deze cluster-gerandomiseerde cross-over studie kregen patiënten die werden opgenomen 
op de intensive care (ICU) al dan niet selectieve digestieve decontaminatie (SDD) als profylactische 
behandeling om kolonisatie met potentieel pathogene micro-organismen te voorkomen. SDD bestaat 
uit een mix van lokale antibiotica (tobramycine, colistine en amfotericine B) die zich richten op aerobe 
gramnegatieve bacteriën, P. aeruginosa, S. aureus en gist, maar de anaerobe flora niet in gevaar brengen. 
De in dit hoofdstuk geanalyseerde data omvat ESBL-E. coli-isolaten van vijf verschillende ICU's in 
Spanje, België en het VK. Onze bevindingen suggereerden dat SDD een beperkte invloed heeft op de 
populatiestructuur en de samenstelling van het pan-genoom van ESBL-E. coli. Isolaten verkregen van 
patiënten die standaardzorg kregen, hadden echter een grotere hoeveelheid resistentiegenen die zorgen 
voor resistentie tegen aminoglycoside, terwijl SDD-isolaten vaker een transposon bleken te bezitten 
dat een tobramycine resistentiegen bevatte. Dit transposon bevatte in totaal drie AMR-genen omgeven 
door IS26-elementen en kwam vaak samen met blaCTX-M-15 voor in meerdere stammen en verschillende 
plasmide-backbones.

In dit proefschrift heb ik de uitdagingen onderzocht van bestaande bioinformatica-tools bij het 
reconstrueren van AMR-plasmiden uit short-read sequencing data. Verder beschrijf ik ook een 
nieuwe tweetrapsbenadering om deze plasmiden te reconstrueren. Deze nieuwe benadering bestaat 
uit het combineren van een nauwkeurig binaire classificatie-algoritme van contigs met gplas, een 
tool die van contigs afkomstig van plasmiden in bins onderverdeelt op basis van uniformiteit van 
sequence coverage en assembly graph connectiviteit. Onze nieuwe methode bleek zeer nauwkeurig 
te zijn bij het reconstrueren van plasmiden van meer dan 70 bacteriesoorten. Ten slotte heb ik me 
verdiept in de epidemiologie van ESBL-E. coli-isolaten en plasmiden verkregen van verschillende 
ICU's in heel Europa.
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