
Documentation in
Continuous Software Development

Theo Theunissen

i

SIKS Dissertation Series No. XXXX-XX
The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research
School for Information and Knowledge Systems.

Cover illustration: Judith van Beukering
ISBN
NUGI 980
All rights reserved.
Copyright © 2023 Theo Theunissen

ii IMPRINT

Documentation in
Continuous Software Development

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

te verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof.dr. H.R.B.M. Kummeling,

ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op

DAYNAME DD MONTHNAME des middags te TIME uur

door

Theo Theunissen
geboren op 2 november 1964,

te Overasselt

iii

promotor:
prof.dr. S. Brinkkemper

co-promotoren:
dr. S.J.B.A. Hoppenbrouwers
dr. S.J. Overbeek

This thesis would not have been possible without the support and guidance provided by HAN University of Applied
Sciences, Arnhem.

iv IMPRINT

Contents

Acronyms vii

1 Introduction 9

2 The Disappearance of Technical Specifications in Web and Mobile Applications 15

32tnempoleveDerawtfoSsuounitnoCninoitacfiicepS3

4 Software Specification and Documentation in Continuous Software Development - A Focus Group
Report 39

15tnempoleveDerawtfoSsuounitnoCninoitatnemucoDnoydutSgnippaMA5

38noitacinummoCrofegasseMehteraslooT6

79gninnalPtluseRdnassenippaHfohciwdnaSehthtiwgninraeLsuounitnoC7

701tnempoleveDerawtfoSsuounitnoCninoitatnemucoDrofsehcaorppA8

9 Evaluation of Approaches for Documentation in Continuous Software Development 127

10 Conclusion 139

Bibliography 145

Summaries 167

Curriculum Vitae 169

SIKS Dissertations 171

v

vi CONTENTS

Acronyms

ADR Architecture Decision Record.

ANN Artificial Neural Network.

API Application Programming Interface (API).

ATDD Acceptance Test Driven Development.

BDD Behavior Driven Development.

BoW Bag of Words.

CI Continuous Integration.

CI/CD Continuous Integration/Continuous Deployment.

CNN Convolutional Neural Network.

CORBA Common Object Request Broker Architecture.

CSD Continuous Software Development.

DCAR Decision Centric Architecture Review.

DDL Data Definition Language.

DML Data Manipulation Language.

DoD Definition of Done.

DS Design Science.

ED Executable Documentation.

ERD Entity Relationship Diagram.

FTE Full-time Equivalent.

IDE Integrated Development Environment.

IDF Inverse Document Frequency.

IDL Interface Definition Language.

JSON JavaScript Object Notification.

KPI Key Performance Indicator.

LAMP Linux, Apache, MySQL, PHP. A popular development stack.

vii

viii Acronyms

LLM Large Language Model.

MEAN Mongo, Express, Angular, Nodejs. A popular development stack.

MLR Multivocal Literature Review.

MOOC Masssive Open Online Course.

MVP Minimum Viable Product.

NLP Natural Language Processing.

ORM Object Relational Mapping.

PoC Proof of Concept.

QGS Quasi-Gold Standard.

REST Representational State Transfer.

RNN Recurrent Neural Network.

RP Result Planning.

RUP RUP.

SAD Software Architecture Description.

SAFe Scaled Agile Framework.

SCM Source Control Management.

SCQA Situation, Complication, Question, Answer (SCQA).

SDD Software Design Description.

SLR Systematic Literature Review.

SMART Specific, Measurable, Acceptable, Relevant, Time-bound.

SMS Systematic Mapping Study.

SOAP Simple Object Access Protocol.

SoH Sandwich of Happiness (SoH).

SRS Software Requirements Specification.

SSOT Single Source of Truth (SSOT).

SWE Software Engineering.

TDD Test Driven Development.

TF Term Frequency.

TFIDF Term Frequency Inverse Document Frequency.

TL;DR Too Long; Didn’t Read.

TRL Technology Readiness Level.

TTM Time-to-Market.

UI User Interface.

UML Unified Modelling Language.

XP eXtreme Programming.

YAML Yet Another Markup Language.

Chapter 1

Introduction

With the introduction of the Agile Manifesto, Lean software development, and DevOps, software product
documentation has been reduced in quantity, resulting in fewer documents, and less quality originating from
loose and informal communication. Causes for this, and the knowledge evaporation it entails, are that the Agile
Manifesto values working software over comprehensive documentation [1], that Lean software development
advocates efficiency, implying everything that does not contribute to customer value should be considered
as waste [2], and that DevOps uses infrastructure-as-code for complying to fast Time-to-Market including
continuously changing legislation [3].

The term ‘documentation’ stems from the Latin word docere meaning ‘teaching’ or ‘instructing’ [4]. We
use the term for diverse types of information, including written, visual and verbal artifacts, that transfer
knowledge between stakeholders in software development. In this thesis, we distinguish ‘information’ from
‘documentation’. With ‘information’, we refer to anything that makes a semantic difference [5] as in binary
zeros and ones and causes an effect [6].

This section has the following outline: it starts with a historical overview. Next, a conceptual overview is
presented, followed by a description of the actual problem. The following section concerns the study design,
stating the main research objectives and questions. The study design also includes a method section with
a discussion of relevant research frameworks and research methods. Finally, a reading guide pertains to the
previously published studies on which this thesis is based.

1.1 Historical Overview
We start the historical overview in the 1960s with the industrialization of software development [7], [8]. The
history is categorized into documentation artifacts that we present in three phases: upfront, while building, and
after delivery. This overview covers viewpoints from the 1960s up to the year 2000. Subsequently, a literature
review was conducted to investigate in detail publications from 2000 onward.

At the start of an iteration or product development cycle, developers may often consider documentation
a burden, as stated by Naur in his seminal paper on software engineering [7]. However, Naur also recog-
nized the importance of interface documentation between subsystems to ensure that different software system
components work together seamlessly. He also argued that source code could serve as self-explanatory docu-
mentation, which can help developers better understand the functionality of the code they are working on [7,
p. 32]. Despite these benefits, the information developers’ need is often scattered across different sources, such
as documentation, code comments, and online forums [9], making it challenging to find relevant information.
Furthermore, the distribution of documentation in different devices can pose a challenge for developers who
need to access it [7]. As such, development teams should establish transparent documentation practices and
ensure that information is readily accessible to all team members. While building software in iterations has
become a popular development approach, it has its drawbacks. One issue is that the focus on building small,
incremental changes can sometimes distract from the bigger picture of the project’s development [9]. This can
lead to a lack of cohesion between software components and overall progress. It is also crucial to keep docu-
mentation up-to-date throughout the development process to ensure all team members are on the same page
and avoid potential misunderstandings [9]. Unfortunately, documentation can fall by the wayside in some cases
as teams prioritize development over documenting their progress [7]. Both of these challenges require careful

9

10 CHAPTER 1. INTRODUCTION

consideration and planning to avoid negative consequences [7], [9]. Afterward, on delivery, documentation be-
comes an essential part of any software project. It serves multiple purposes, such as preserving knowledge for
end-users with a manual and aiding maintainers and future developers with a description of design decisions.
As highlighted by Overton [9], focusing solely on documentation can sometimes distract from the actual devel-
opment process. However, it is crucial to balance documentation and development to ensure that a software
product remains maintainable and understandable [9]. End-user documentation should be included in software
products, while technical documentation should be created for future developers and maintainers. Documen-
tation of a software system should also include design decisions, requirements, specifications, and connections
of system components, as these are assumptions about how these components communicate together [8].

Furthermore, independent of the mentioned phases, documentation-related aspects that affected documen-
tation drew attention in the 80s and 90s, such as scientific approaches to software engineering [10], [11], software
architecture design [12], [13], the management of software development [14], [15], documentation errors [16],
and legal requirements for documentation [17], [18].

We found in our studies that, in addition to the issues mentioned, loose, informal ways of communicating,
such as verbal communication and whiteboard sketches, are usually not written down or saved systematically.
In addition to Overton [9], the software is essential for most businesses, either supportive, at the core, as an
enabler or as an accelerator. This introduces dynamics, including cultural shifts, organizational challenges,
values, and knowledge-intensive standards. A part of these changes is the extensive use of tools in a widely
spread software development ecosystem. Information about software products is scattered throughout these
tools in such an ecosystem [19].

1.2 Conceptual Overview

Artifacts that contribute to understanding and improving the documentation are mentioned below. The arti-
facts are found in the literature review [20], field research [21], and constructing approaches [19]. Further on
in this study, artifacts are added for completeness’ sake and for the purpose of illustration.

Before starting an iteration or project, it is essential to invest time and effort into preparing several artifacts
upfront [19], [20]. These include written documents with diagrams for stakeholder concerns, constraints,
risks, context, requirements, and specifications. A typical artifact that covers these types of information is
a presentation-like document that includes drawings and text. A codified interface description must also be
created to facilitate communication between subsystems. A plan of approach is also crucial, outlining objectives,
deliverables, and a timeline for the project’s completion [19]. Specifications for Test Driven Development (TDD)
and Behavior Driven Development (BDD) are included to ensure quality control throughout the project’s
life cycle. Finally, Git commits and pull requests should be used to document design decisions for Natural
Language Processing (NLP) projects, ensuring transparency and data integrity. By prioritizing these artifacts
upfront, project managers and development teams ensure that everyone is aligned with project objectives and
can work together efficiently to deliver a high-quality product [19]. Efficiency refers to the combination of
1) working software that adds value to the customer and 2) knowledge capturing and knowledge transfer to
build up, use, operate, and maintain afterward. To build software in iterations effectively, it is essential to
update documentation, including diagrams, for analysis, design, implementation, testing, and maintenance [19].
Similarly, updating codified interface descriptions for communication between subsystems is essential. These
updates ensure consistency and effectiveness in communication throughout the development process, leading
to a successful software system that meets stakeholder requirements. Afterward, on delivery, several key
elements must be considered to ensure a software project’s success and sustainability. These include treating
the source-code as the ultimate truth, using annotations as an integral part of the source-code to aid in
understanding and maintenance, employing infrastructure-as-code to enable fast Time-to-Market (TTM) in
Continuous Integration/Continuous Deployment (CI/CD) workflows, and using Git commits and pull requests
to document and communicate design decisions. By prioritizing and incorporating these factors into the
development process, teams can create more reliable and maintainable software to better adapt to changing
business needs and market conditions.

The ideal situation for preventing knowledge evaporation requires documentation about different types of
information, such as whiteboard sketches, strict interface description and captured verbal communication, for
a range of users who rely on information about the software product, such as system engineers, maintainers,
and end-users.

11

1.3 An Actual Problem in Documentation
As presented in the previous overviews, software documentation has a long history that is still perceivable
in modern software development. Added to the reasons mentioned beforehand, a few other reasons make
documentation a difficult problem. These other reasons are:

1. Epistemological issues questioning the nature of knowledge and the relation between mind and reality [22].
2. Cultural shift with respect to deminished attention span [23].
3. Brain developments for digital natives who grew up primarily with screens for processing information

instead of paper [24].
We do not set out to solve epistemological issues here, initiate a cultural shift, or do neural brain research.

However, some links can be identified that relate to the approaches and artifacts we consider. For epistemologi-
cal issues in software development, the relationship between mind and reality concerns the relationship between
the stakeholder and the software product. In a platonic view1, the software product refers to the concept, and
documentation artifacts refer to the earthly shadows that represent the software product. The documentation
artifacts that represent the software product do not identify it but, at best, describe it.

The cultural shift we refer to is the lack of attention span [26] demonstrated by users who want instant
satisfaction, as exploited by some websites2. Too Long; Didn’t Read (TL;DR) is a popular expression on social
media and the web that replaces lengthy texts. A quick search3 on google rendered approximately 13.5 million
hits on reddit.com, 150.000 on medium.com, 19.000 on hackernews, and 5.000 on google scholar. Explanations
in literature [26], [27] for this short attention span concern a cultural shift and behavioral developments related
to the brain processing visual and textual information.

Another recipe for developing a short attention span is the habit of readers of, for example, web pages to
scan quickly for highlighted keywords [28]. Furthermore, learners from ‘generation Z’ are not so much readers
of traditional text documents but consumers of information from diagrams, podcasts, short knowledge clips
such as videos, and hands-on experiences such as clicking hyperlinks [26], [27].

1.4 Study Design

1.4.1 Objectives and Research Questions
The objective of this study is defined in the main research question:

What are the necessary and sufficient conditions for effective communication with just enough doc-
umentation in Continuous Software Development (CSD), obtaining insight and control to start
building, delivering, maintaining, and continuously using a software product?

‘Necessary conditions’ refers to the minimal requirements for an event to occur. ‘Sufficient conditions’ make
the event occur. A necessary condition alone is not sufficient. A simple example can make this clear. The
necessary conditions for fire are ‘air’, ‘fuel’ and ‘heat’. However, these necessary conditions become sufficient
for fire only when air, fuel, and heat are in a specific configuration. A simple example of a sufficient condition
without necessity is ‘you traveled to Amsterdam by plane’; the plane is sufficient but unnecessary. Insight
refers to knowledge and facts that someone knows. Control refers to the ability to change the course of events
in specific directions. Insight is a necessary condition for control. Effective communication refers to results
that could not have been achieved without sufficient information. Documentation in CSD refers to the domain
(scope) for this research. Making the necessary and sufficient explicit helps in understanding which elements are
required for concepts like ‘insight’, ‘control’, ‘effective communication’, and ‘documentation in CSD’, including
the relations between these concepts. Additionally, the conditions explicitly clarify how, why, and when the
concepts occur.

Underlying the main research question, there are three more manageable research questions.

RQ1 Why is knowledge acquisition, building, preserving, and revealing software development a complex and
challenging problem, leading to lesser documentation with lower quality?

1According to Whitehead, “The safest general characterization of the European philosophical tradition is that it consists of a
series of footnotes to Plato.” [25, p. 39]. This makes it safe to refer to ancient history from Plato, 2500 years ago.

2See for instance the TikTok recommendation engine and its relation with dopamine [27].
3Google this query ‘ “tl;dr” reddit.com’ and replace reddit.com with other domain names.

https://www.google.com/search?q=%22tl%3Bdr%22+site%3Areddit.com
https://www.google.com/search?q=%22tl%3Bdr%22+site%3Areddit.com
https://www.google.com/search?q=%22tl%3Bdr%22+site%3Amedium.com
https://www.google.com/search?q=%22tl%3Bdr%22+site%3Anews.ycombinator.com
https://www.google.com/search?q=%22tl%3Bdr%22+site%3Ascholar.google.com
https://www.google.com/search?q=%22tl%3Bdr%22+site%3Areddit.com

12 CHAPTER 1. INTRODUCTION

RQ2 What are defining and contextual characteristics for Continuous Software Development?

RQ3 Which documentation artifacts are required: a) upfront for an individual to start a project or an iteration,
b) while building the software product with team members, and c) afterward by others for deployment,
maintenance, and usage (in short: continuation) of a software product?

1.4.2 Research Methods
The utmost thoroughness of methodological evidence requires meta-studies such as secondary or tertiary liter-
ature reviews because multiple researchers have reviewed the primary literature with assessment criteria. This
type of inter-subjective assessment has the highest degree of objectivity. In the current project, we started with
the second in line: a literature review such as a mapping study. Experimental studies have the next lowest
level of rigor, including randomized controlled trials, quasi-experimental studies, or cohort studies. Observa-
tional studies such as case studies and interviews have the lowest level of rigor, because personal, individual
observations are, by definition, subjective and cannot be verified. See Table 1.1a for research methods in each
study presented in this Ph.D. thesis.

Rigor Research Method ↓ / Chapter → 2 3 4 5 6 7 8 9
1 Systematic Mapping Study ✓ ✓ ✓ ✓

1 Multi-vocal Literature Study ✓ ✓ ✓

2 Document Analysis ✓ ✓ ✓ ✓ ✓ ✓

2 Survey, Questionnaire ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 Design Science (framework) ✓ ✓

3 Expert focus group ✓ ✓ ✓

4 Case Study ✓ ✓ ✓

4 Semi-structured Interviews ✓ ✓ ✓ ✓ ✓

4 Theory generating interviews ✓ ✓ ✓

4 Validation (Design Science) ✓

4 Evaluation (Design Science) ✓

(a) Research Methods used in the Chapters.

1.4.3 The Scientific Aspiration
The objective of science is to come to new knowledge and new models with the discovery of a problem and
the invention of a solution. Most academic studies are applied studies: medicine or law, for example, are
only meaningful when applied to people or (legal) entities. Software development studies are also empirical in
nature.

Exercise in Methodology

The aspiration for scientific research is paved with research methods. Wohlin, Runeson, Höst, et al. propose
guidance on three methods of conducting software engineering [10]. These methods are theoretical, experimen-
tal, and empirical. According to the authors, theoretical methods are used to develop new models, theories,
and frameworks, including approaches. These methods are used to create a conceptual understanding of a phe-
nomenon or problem. Theoretical methods involve a systematic review of literature, conceptual modeling, and
synthesis of existing knowledge. They are used to establish a theoretical foundation for empirical research. We
introduced three approaches (Chapter 8) for knowledge acquisition and knowledge distribution that fits within
the definition provided by Wohlin, Runeson, Höst, et al. Experimental methods, on the other hand, are used to
investigate cause-and-effect relationships in software engineering. These methods are used to test hypotheses
by manipulating independent variables and observing the effect on dependent variables. Experimental methods
involve controlled experiments, quasi-experiments, and case studies. These methods are used to establish causal
relationships between variables. Experimental methods apply to Chapters 8 and 9. Empirical methods are
used to study software engineering phenomena in natural settings. These methods involve collecting data from
real-world situations using observation, surveys, interviews, and other methods. Empirical methods, including
case studies, surveys, and field experiments, were employed in Chapters 2 through 7 to collect data. These
methods are used to understand the context in which software engineering practices are applied and to identify
factors that influence software development outcomes. The methods used in this research project have already

13

been mentioned in Table 1.1a and will be demonstrated in the referred studies. Typically, these methods
support a paradigm to do empirical research for collecting and analyzing data, followed by interpreting results.

Models, Logic and Causal Relations
Abstraction can be defined as leaving out everything that is not required to understand a problem. A model
adds relations to the abstractions for a certain domain. As such, it describes an abstraction of entities, relations,
and attributes of the entities and relations. These relations are either logical or causal. Logical relations are
deductive, inductive, or abductive. A particular variant of induction and abduction concerns descriptive and
inferential statistical relations. With deductive relations (major to minor premise), no new knowledge is added.
With induction (from individual cases to general rules), new knowledge might be introduced but cannot be
proven. The closest to causal reasoning is abduction, which starts with conjectures that might be rejected but
can never be proven [29].

We use a model to:
1. Individually organize facts and values by filtering, grouping, and order to understand the problem.
2. Individually reason about a problem and candidate solutions.
3. Communicate the problem and candidate solutions with stakeholders and team members.
4. Discuss the problem and candidate solutions.
5. Start building with team members.

A sufficient condition can be identified as a cause.

1.5 How to Read This Dissertation?
Figure 1.1 shows the phases in this research project.

Desk research: what have
others researched, published?

Field research: Are outcomes
from lit. review applicable

in the industry?

Creating new theories.
Add something new.

Does it work as intended,
are the assumptions and

conjectures valid?

Exploring domain and issues in
academia and industry

Literature
Review (Ch. 5)

Case
Studies (Ch. 6-7)

(Ch. 8) Constructing
Novel Approaches

(Ch. 9) Evaluating
Novel Approaches

RQ: 3RQ: 3RQ: 2RQ: 1, 2

RQ: 1, 2

Preliminiary
Studies (Ch. 2-4)

Figure 1.1: Studies in this research project with phases, chapters, and research questions (RQ).

1.5.1 Phase 1, Chapters 2-4, Preliminary Studies
The preliminary studies [30], [S31], [S32] was limited to investigating the domain and collecting issues, problems,
and candidate solutions. We did not perform exploratory studies to find appropriate methods. From the
start, the phases of exploration, desk research, field research, adding something new, and evaluating novel
approaches, were clear. Three studies were conducted to investigate research question 1, which focuses on
knowledge acquisition and distribution, and research question 2, which examines CSD.

1.5.2 Phase 2, Chapter 5, Literature Review
In the second phase, a Systematic Mapping Study (SMS) [20] was conducted to obtain an overview of pub-
lications on documentation in Continuous Software Development between 2001 and 2019. The result was an
overview of 63 studies, of which 40 were related to documentation practices and challenges, and 23 were related

14 CHAPTER 1. INTRODUCTION

to tools in CSD. We decided to conduct a SMS and not a Systematic Literature Review (SLR). A SMS is typi-
cally used when there are few or no secondary studies; the main objective of an SMS is to classify and conduct
a thematic analysis of the literature. In Section 2 of the SMS, other reasons are mentioned that validate the
performance of this type of literature review. Through this study, a more thorough exploration and definition
of both research question 1 and research question 2 were undertaken.

1.5.3 Phase 3, Chapter 6-7, Case Studies
The third phase concerned an overview of practices and challenges for practitioners in the industry [21], [33]. We
used multiple units of analysis -15 individual participants- in five multiple case studies, including departments
within organizations, for validating and extending the SMS. With this study, we validated the SMS and gained
new insights from the industry. In this study, the software development ecosystem was defined, including types
of information and the amount of structure of information. By conducting these studies, research question 2
was addressed, and a definitive definition of CSD was established.

1.5.4 Phase 4, Chapter 8, Novel Approaches
In the fourth phase, we presented three approaches, including a total of 33 artifacts [19]. The three approaches
are ‘Just enough Upfront’, ‘Executable Documentation’, and ‘Automatic Text Analysis’. For the approaches,
conditions were defined, including characteristics for applicability. Characteristics for the approaches cover the
maturity of stakeholder concerns, requirements, technology, processes, and demand for fast TTM distinguish
approaches. By introducing this chapter, we lay the groundwork for tackling research question 3, which concerns
the types of knowledge necessary before deployment versus during deployment, use, and maintenance.

1.5.5 Phase 5, Chapter 9, Evaluating Approaches
In the last phase of this research project, an evaluation was conducted in industry and education to assess the ap-
plicability, hurdles, and requirements for implementing the approaches theunissen2023evaluationapproachesdocumentation.
Our research investigates the idea that there is a notable difference in documentation practices between open
source and closed source. Furthermore, we explore the assumption that there is also another category: closed
classified source, that adds security demands because of a criminal investigation or national defense. Knowledge
preservation is best documented in open-source projects and best kept in hearts and minds in closed classified
sources. Examining these approaches, we tackle and complete research question 3 concerning the upfront and
subsequent knowledge requirements.

Chapter 2

The Disappearance of
Technical Specifications in
Web and Mobile Applications1

Abstract In recent years, we have been observing a paradigm shift in design and documentation
practices for web and mobile applications.There is a trend towards fewer up-front design specifica-
tion and more code and configuration-centric documentation. In this paper we present the results
of a survey, conducted with professional software engineers who build web and mobile applications.
Our focus was on understanding the role of software architecture in these applications, i.e. what
is designed up-front and how; which parts of the architecture are reused from previous projects
and what is the average lifetime of such applications.Among other things, the results indicate that
free-text design specification is favored over the use of modeling languages like Unified Modelling
Language (UML); architectural knowledge is primarily preserved through verbal communication
between team members, and the average lifetime of web and mobile applications is between one
and five years.

Keywords Concept Documentation, Documentation Practices, Free Text Documentation, Mobile
Application Design, Verbal Communication

2.1 Introduction
In recent years, we have been observing a paradigm shift in the software engineering community. Professional
software development projects traditionally relied on upfront planning and design, distinct software phases
and often a clear separation of roles and responsibilities within project teams. Ever growing time-to-market
constraints, however, leads to high innovation pressure, which brought forth methods and techniques like agile
project management, continuous delivery, and DevOps, which break with the traditional way of approaching
software projects. Apart from this, primarily for web and mobile application development, developers now need
to deal with an increasingly heterogeneous tool and language stack. In that domain in particular, software is
often designed ad hoc, or at best by drawing informal sketches on a white board while discussing with peers.
The reasons for this are multifold: where applications must be developed and rolled out quickly, designers do
not seem to see the value of spending much time on modeling and documenting solutions. A second reason is
that software engineering has no guidelines for efficient modeling of heterogeneous multi-paradigm applications.
This is partly due to the fact that software engineering curricula at universities are still heavily focused on

1This work was originally published as:
T. Theunissen and U. van Heesch, “The Disappearance of Technical Specifications in Web and Mobile Applications,” in Soft-
ware Architecture, vol. 9839, B. Tekinerdogan and U. Zdun, Eds. Springer International Publishing, 2016, pp. 265–273. doi:
10.1007/978-3-319-48992-6_20.

15

16 CHAPTER 2. DISAPPEARANCE OF SPECIFICATIONS

traditional object-oriented analysis and design using UML, which is not a good fit for applications that are
not purely object-oriented. In this paper, we describe a questionnaire-based survey, conducted to understand
current design and documentation practices that companies use for developing web and mobile applications.
Our investigation leads to the conclusion that in the design phase, "experimentation" with proof of concepts
has the highest score, and "free-text documentation" is more used than technical documentation (UML, Entity
Relationship Diagram (ERD)). The continuity of knowledge is primarily achieved using free-text documentation
and verbal communication.

The study is part of a larger research project, in which we develop an architecture framework that is stream-
lined for modern web and mobile applications. In the framework, we plan to provide just-enough architecture
and design specification for supporting agile web and mobile application development, while preserving core
decisions and design for re-use in subsequent projects.

The rest of this paper is organized as follows. Section 2 describes the research questions and presents and
motivates the study design. Section 2 presents the results of the questionnaire and our interpretations with
respect to the research questions. The next section presents potential threats to validity. Finally, we conclude
and present directions for future work.

2.2 Study Design
In this section, we present our research questions and the study design.

2.2.1 Research Questions
As described in the introduction, the goal of our research project is to develop an architecture framework that
optimally supports software engineers in building and maintaining web and mobile applications. The study
presented was conducted to settle the baseline process and to get a better understanding of current design
and documentation processes, as well as developers’ concerns in the industry. In particular, we address the
following research questions:
RQ1 How are web and mobile applications designed and how is design knowledge preserved in the industry?
RQ2 Which parts of the software architecture are re-used across web and mobile applications within a devel-

opment team?
RQ3 What is the average life expectancy of web and mobile applications?
The first question aims at finding out how web and mobile applications are designed, i.e. which modeling
languages, or more generically: which approaches, are used to support the design process. By design, we
refer to activities conducted prior to technical implementation. The second objective of RQ12 is to find out
how architectural knowledge about these applications is maintained. This includes decisions made during the
architecting process, as well as information about the problem and solution space.

RQ2 originates from the conjecture that development teams partially reuse architectural design from pre-
vious projects. Architectural reuse improves development efficiency, which contributes to fast time-to-market
of features. Furthermore, reuse is a means for risk mitigation [34]. Here, we want to find out which parts of
an architecture are typically re-used.

The third question concerns the time span, developers expect their applications to reside on the market
before they are discarded or subject to a major re-engineering. This is relevant because the cost-effectiveness
of documentation effort is proportional to the expected lifetime of an application.

2.2.2 Methodology
A survey was conducted to collect data for our research questions. We chose to use a web-based questionnaire
over individual interviews, because we wanted to reach a sufficiently large subject population. Questionnaire-
based surveys additionally exhibit a higher degree of external validity than interviews [35]. When used with
closed-ended questions and fixed response options, data gathered with questionnaires can easily be processed
automatically. This is in contrast to interviews, which have high costs in terms of time per interview, traveling
and processing the results. On the other hand, interviews provide greater flexibility and allow for more in-depth
exploration of the respondents’ answers. As described in Section 2, we plan to conduct interviews with a small

2Because of space limitations, in this paper, we bundled two of our original research questions into one.

17

number of the subjects at a later stage to get more in-depth insight in the phenomena we observe through the
questionnaire.

We conducted a pilot study with three members from the target population to improve the wording, order
and answering options of the questions.

2.2.3 Participants and Sampling

The target population of this study is professional software engineers who develop web and/or mobile appli-
cations. We used snowball sampling, i.e. the questionnaire was sent out to members from our professional
network using e-mail. We asked the receivers to forward the questionnaire to colleagues and peers from their
own network, which is a means to achieve a more randomized sample [36]. The questionnaire was distributed
by an online form.

2.3 Data Analysis and Interpretation

This section presents the data analysis and interpretation. We primarily use descriptive statistics to analyze the
collected data. The section is divided according to the three research questions. Table 2.1 maps the research
questions to the questions from the questionnaire.

A total of 73 subjects responded to the questionnaire. From these respondents, 39.7% completed the ques-
tionnaire and answered all questions. For reasons of space limitations, we only report on the most interesting
findings of our study.

The questionnaire has four sections. The first section (A) includes questions about the organization, role
of the respondent and previous experience. The second section (B) concerns the applications developed. The
third section (C) addresses the design, development and maintenance. The last section (D) concerns priorities
regarding software development and software maintenance.

2.3.1 Participants and Sampling

The target population of this study is professional software engineers who develop web and/or mobile appli-
cations. We used snowball sampling, i.e. the questionnaire was sent out to members from our professional
network using e-mail. We asked the receivers to forward the questionnaire to colleagues and peers from their
own network, which is a means to achieve a more randomized sample [36]. The questionnaire was spread in
form of an online form.

2.4 Data Analysis and Interpretation

This section presents the data analysis and interpretation. We primarily use descriptive statistics to analyze the
collected data. The section is divided according to the three research questions. Table 2.1 maps the research
questions to the questions from the questionnaire.

A total of 73 subjects responded to the questionnaire. From these respondents, 39.7% completed the ques-
tionnaire and answered all questions. For reasons of space limitations, we only report on the most interesting
findings of our study. Our study database, which contains the questionnaire and all responses, can be found
on http://2question.com/q1q3/.

The questionnaire has four sections. The first section (A) includes questions about the organization, role
of the respondent and previous experience. The second section (B) concerns the applications developed. The
third section (C) addresses the design, development and maintenance. The last section (D) concerns priorities
regarding software development and software maintenance.

In the remainder of this section, we present the results and most relevant answers for every research
question. Additionally we discuss results of supporting questions and control questions. This section ends with
an interpretation of the results, discussion and expected and remarkable outcomes.

http://2question.com/q1q3/

18 CHAPTER 2. DISAPPEARANCE OF SPECIFICATIONS

No Question RQ1 RQ2 RQ3
A1 What is the number of employees working in your orga-

nization?
✓

A2 How many employees are working on Software Develop-
ment in your organization?

✓

A3 How many employees are working on your currently run-
ning project?

✓

A4 Which of the following activities do you perform within
your organization?

✓

B1 What is the average number of users per day as antici-
pated at design time?

✓

B2 What is the peak number of concurrent users during op-
erations?

✓

B3 Which of the following components are used in your web
application?

✓

B4 Which of these aforementioned components are obtained
from a Cloud Service?

✓ ✓ ✓

B5 Suppose you start a new project or a major re-engineering
of an existing application, which of these aforementioned
components will you use again for Web applications that
have been rebuild or evolved?

✓

B6 What is the average lifetime of your application in num-
ber of years?

✓

B7 Within your organization how many applications share
the same overall architectural design?

✓

B8 How often do you release new features? ✓

C1 Which of the following activities are typical for software
projects you have worked on?

✓ ✓

C2 Which of the following process methods are used in your
projects?

✓

C3 What types of tools do you use during your design pro-
cess?

✓ ✓

C5 How do you ensure that knowledge about features, im-
plementations, design decisions etc. is maintained?

✓

D1 What are your three top priorities in software develop-
ment?

✓ ✓ ✓

D2 What are your three top priorities in software develop-
ment when you need to successfully maintain software in
the long term?

✓ ✓ ✓

Table 2.1: Mapping of Questions and Research Questions

2.4.1 Analysis RQ1: How Are Web and Mobile Applications Designed
and How is Design Knowledge About These Applications Preserved in
the Industry?
The questions most relevant to RQ1 are "What types of tools do you use during your design process?" (C3)
and "How do you ensure that knowledge about features, implementations, design decisions etc. is maintained?"
(C5).

In question C3, we asked participants to specify the tools3 used for design, the time they spend on each of
these tools (as a percentage of the total time spent on design activities), and the quantity of results (number
of occurrences or number of produced deliverables). The design approaches, where participants spend most
time on are "Experimenting, building proofs of concept" (26%), "Documented concepts in written language
like Word documents" (22%) and "Sketches like annotated block / line diagrams" (19%). With 11% of total
design time, technical documentation (e.g. UML, SysML, ERD, Database models) received the lowest score.
In terms of quantity, the top three answers were "Verbal communication" (14), "Sketches like annotated block
/ line diagrams" (6) and "Experimenting, building proofs of concept" (3).

For knowledge preservation (question C5), the top three methods used in terms of spent time (percentage
of overall time spent on knowledge preservation) are "Documented concepts in written language like Word
documents" (26%), "Documented code (with tools like JavaDoc, JSDoc or no tools)" (26%) and "Verbal
communication" (17%).

3The term tool is used in a wide sense here, covering among others UML, free-text, but also conversations and informal
whiteboard sketches

19

Additionally, we asked participants about their top three priorities during software development (question
D1) and software maintenance (D2). During development time, the top three priorities are "Quality" (7,2%),
"(Functional) requirements" and "time-to-market" (both 6,6%), and "Maintainability" (4,8%). During main-
tenance, the top three priorities are "Documentation" (18%), "Code quality" (17%) and both "Architecture"
and "Maintainability" (6,8%).

2.4.2 Questions Related to RQ2: Which Parts of the Software Archi-
tecture Are Re-Used Across Modern Web Applications?
The most relevant question that relates to this research question is B5: "Suppose you start a new project or a
major re-engineering of an existing application, which of these aforementioned components will you use again
for Web applications that have been rebuilt or evolved?"

The top three results from C5 are "Webservice Application Programming Interface (API) (eg. RESTful,
SOAP)" (86%), "SQL Database(s)" (83%) and "Server side web frameworks" (79%)

A supporting question is B7: "Within your organization how many applications share the same overall archi-
tectural design?" 76% of the applications share between 21% and 80% of the overall architectural design. This
is equally distributed over the three categories. 21% are from applications that share almost all components.
The rest (1%) does not share any component. Another supporting question is B3 where participants where
asked about the types of software components they typically use in applications. The components mentioned
most prominently (53%) are: Build Tools, Test tools, Server Side Frameworks, and Web Services.

2.4.3 Questions Related to RQ3: What is the Average Life Expectancy
of Modern Web Applications?
The most relevant question related to this research question is B6: "What is the average lifetime of your
application in number of years?".

62% of the applications have a lifetime between 1 and 5 years. 14% of the applications have a lifetime
of more than 10 years. The lifetime of an application determines the selection of components. For start-up
companies, the initial application architecture will be sufficient for the first period. When growing in number
of customers, transactions, and processes, we expect that the initial application has to be replaced with a
scaleable architecture and infrastructure.

2.4.4 Interpretation RQ1-RQ3
In this section, we discuss the results regarding all three research questions.

In many software engineering curricula, students are taught to use (semi-)formal modeling languages like
UML for designing software before coding. In contrast to this, we found that technical documents are not
intensively used for design purposes in the software engineering industry. Instead, at least for mobile and web
applications, the design process is primarily driven by verbal communication and informal sketches. This is in
line with Sonnenburg [37], who describes software design as a collaborative creative activity [37], which benefits
from approaches that are not constrained by fixed notations and formalisms.

On the other hand, we found that projects create more output in the shape of technical documentation
than in other forms. This may be surprising at first, as less time is spent on technical documentation. On the
other hand, there may be a causal relationship between those two aspects, i.e. software engineers spend less
time on technical documentation, because they are reluctant to spend time on non-engineering activities, i.e.
activities that are no integral part of the built process.

In question C5, we assume a typical division between development and maintenance, in which developers
in a project are not responsible for deployment and maintenance of applications. In this scenario, documen-
tation is crucial for deployment and maintenance, as well as for managing responsibilities [38]. However, most
participants chose "Verbal communication" as the primary method for handing over the code to other team
members. In discussions with software engineers in the pilot group and remarks from participants, we found
that engineers rather rely on proven practices in their teams, rather than formal methods, to design, develop
and maintain applications. One of these proven practices is the use of verbal communication in weekly team
meetings to discuss code and design. These discussions aim at improving the quality of the code by reviewing
the contributions for that week and sharing the concepts and implementations.

In line with [39]–[41], we did not expect that webservice APIs (Simple Object Access Protocol (SOAP),
RESTful) would be the most re-used architectural assets (question B5). We had rather expected that data

20 CHAPTER 2. DISAPPEARANCE OF SPECIFICATIONS

would have a higher value both for business and for software engineers and thus would be more often re-used
that services.

With B6, we expected that the average life time of an application will be within 3 to 5 years (as in
[42]). This is related to IT expenditures that are typically budgeted from capital expenditures. Capital
expenditures have a typical amortization of 5 years. Nowadays, companies do not have to invest in costly server
infrastructure anymore (capital expenditure). Instead, web and mobile applications are typically deployed in
cloud environments, in which infrastructure is payed for as-a-service and is thus operational expenditure [43].
Furthermore, software engineers typically change their employer or job-role between 2 years [44] and 4.6 years
[45]. Finally, software engineers typically favor building from scratch over brown-field applications that have
been patched over the years. In the latter cases, the technical debt exceeds the cost of re-building from scratch.

2.5 Threats to Validity
In this section, we discuss possible threats to the internal and external validity of our findings. A common threat
to internal validity in questionnaire-based surveys stems from poorly understood questions and a low coverage
of constructs under study. The former threat was mitigated to a large extent by piloting the questionnaire
with three participants form the target population. We asked these participants to fill in the questionnaire.
Afterwards, they were asked to describe their interpretations of the questions and their answers. We used this
input in multiple iterations to revise the questions and answering options. We addressed construct validity by
explicitly mapping the questions of our questionnaire to the research questions (see Table 2.1) and by making
sure that each research question is covered by multiple questions in the questionnaire.

External validity is concerned with the degree, to which the study results can be generalized for a larger
subject population [46]. We used statistical methods to analyze whether our results are significant. Mason et
al. postulate that, as a rule of thumb, questionnaires require between 30 and 150 responses in order to yield
valid responses [47].

We had a total of 73 respondents; 39.7% of whom answered all questions. Thus, we suppose that the
number of respondents is sufficient.

Two remarkable outcomes from the questionnaire (questions C3 and C5) are 1) that technical documentation
is less popular than plain text documentation and 2) that continuity of knowledge is achieved primarily through
verbal communication. We calculated the variance and standard deviation of our responses. For C3 the variance
is 0.2 and thus very low; for C5 the calculated mean is 423, the standard deviation is 193 and the weighted
value for verbal communication is 425. The actual weighted value deviates by 2 points only. Thus, the results
with respect to our most surprising outcomes are statistically significant.

2.6 Conclusions and Future Work
In this paper, we investigated how web and mobile applications are designed and documented. We found that
verbal communication and informal sketches are clearly preferred over modeling languages. To preserve and
transfer application-specific knowledge, companies deem code documentation equally important as technical
documentation. Furthermore, for many companies, verbal communication is the primary approach for trans-
ferring knowledge within teams. This may be surprising at first as it bears the risk that knowledge gets lost,
because of key employees leaving the company or a lack of communication in teams. However, web and mo-
bile applications are primarily developed in small teams using agile development processes. Such development
approaches rely heavily on verbal communication, and practices like daily stand ups in Scrum achieve that
knowledge is widely spread within the development team.

Another remarkable outcome is the very high degree of architectural re-use across projects. In particular,
we found that web-service APIs, SQL databases and server-side frameworks are re-used across projects in more
than 80% of the cases. This is certainly impacted by the focus of our research on web and mobile applications.
Teams build up knowledge and expertise in certain technologies and exploit this knowledge to a large degree
for reasons of efficiency.

Regarding the average expected life-time of web and mobile applications, we found that most applications
(∼60%) are built for being rather short-lived (1-5 years). Further investigation is required to understand the
reasons for this phenomenon.

As explained in the introduction, we will use these results for creating an architecture framework streamlined
for web and mobile applications. The framework will anticipate the reluctance to produce (semi-)formal
documentation and the high degree of technological re-use. We will conduct further research to understand

21

the impact of the short life-times of such applications on the effort found reasonable for producing written
documentation.

We started this research with a questionnaire to obtain quantitative data. The next phase in our research
plan is to conduct interviews to collect qualitative and more in-depth data.

22 CHAPTER 2. DISAPPEARANCE OF SPECIFICATIONS

Chapter 3

Specification in Continuous
Software Development1

Abstract The procession of Lean, Agile and DevOps development processes introduces new chal-
lenges and offers new chances regarding software specification and documentation. Challenges for
instance because specifications, just like code and applications, are subject to continuous change;
chances, because continuous software processes make use of a high degree of automation which
also introduces efficient means for specification and documentation.
In this paper, we describe the continuous software design specification pattern, which contains
guidelines and principles for specification in continuous development processes. In these processes,
a software system is an evolution of life cycles where each iteration has a start, continuation and
end of defining specifications. Therefore, the pattern explicitly distinguishes specifications to
be created at the start of an iteration, specifications during an iteration, and a specification-
refactoring at the end of each iteration. Apart from the pattern description, this paper describes
the principles of continuous software development derived from lean software development, Agile,
and DevOps.

Keywords Agile, Continuous Development, DevOps, Lean, Software engineering

3.1 Introduction
In our previous research, we have been investigating practices in design and documentation in web and mobile
applications [30]. Our focus was on understanding the role of software architecture in these applications.
Among other things, we tried to find out what is designed up-front (i.e. prior to implementation) and how.
Among others, our results indicate that verbal communication plays a significant role in the preservation of
knowledge. We also found that many companies struggle with the distinction between specification up-front
and documentation afterwards. While specification and documentation are often seen as one, many approaches
are either a good fit for specification or for documentation, but not for both.

The software projects, in which we observed these phenomena were predominantly governed using lean, agile
or DevOps process models. The leading principle of lean software development [2] is to avoid efforts that do
not increase value for the customer. Agile software development [1] tries to exploit the full potential of human
collaboration in closely-interacting teams, thereby relying on short improvement cycles to achieve frequent
delivery of working software. In DevOps [48], development teams are formed in way that members in each
team cover the full set of competences, skills and responsibilities required to develop, operate, and maintain a
software product. Because the development team is responsible for the entire product life cycle, it becomes more

1This work was originally published as:

T. Theunissen and U. Van Heesch, “Specification in Continuous Software Development,” in Proceedings of the 22ND European
Conference on Pattern Languages of Programs, New York, NY, USA, 2017, pp. 1–19. doi: 10.1145/3147704.3147709.

23

24 CHAPTER 3. SPECIFICATION IN CSD

sensitive to operation concerns like security, scalability, performance, and portability. Additionally, DevOps
aims at avoiding unnecessary transfers of artifacts between different teams, as such transfers usually require a
significant communication and documentation overhead.

Lean, Agile, and DevOps all have certain principles in common that imply a paradigm shift regarding
software specification and documentation: efficiency and effectiveness, learning, flexibility of the team, short
iteration cycles, people skills, improvement and involvement of customer, and commitment of the organization.
As opposed to many traditional software projects, which have a defined start and endpoint (which can be a point
in time or a specific result), lean, agile and DevOps were designed to support continuous software development,
in which continuity (i.e. the absence of a predefined end-point) is one of the major characteristics. This is
primarily supported by rather short iterative development cycles.

In this paper, we elaborate specifically on the difference between specification and documentation in software
projects that embrace the previously mentioned principles. The pattern continuous software design
specification differentiates specifications required at the beginning of an iteration, specifications required
during an iteration and documentation of important results. Applying this distinction is a way of separating
the concerns that developers have in specification. Not one size fits all, but instead, certain elements like
information whiteboard sketches are only required temporarily, while other specifications need to last longer.

The rest of this paper is organized as follows: In Section 2, we describe the three process models lean, agile,
and DevOps and identify principles they have in common. Section 3 describes the continuous software
design specification pattern. Finally, Section 4 identifies areas of future work.

3.2 Background
In this section, we present background work on agile software development, lean, and DevOps. These processes
form the basis of what we later refer to as Continuous Software Development. Many of the described principles
are enablers for a more lightweight way of software specification and documentation, which we describe in the
pattern continuous software design specification below.

3.2.1 Lean
Lean was originally developed as a manufacturing practice for cars. In the meantime, lean practices have been
adopted by many other engineering discipline, among others by the software engineering discipline. Follow-
ing Poppendieck and Poppendieck [2], Lean software development entails the following principles:

1. Eliminating waste Eliminating waste is the most fundamental lean principle. Waste refers to any-
thing that does not produce value for a customer. Examples of waste in physical products are motion,
transportation, and inventory. In software engineering, waste includes task switching of team members,
defects (bugs), processes that do not have an immediate benefit, and paperwork.

2. Amplify learning This principle stems from the idea that development is rather a creative process than
a systematic process. Developing software is a learning process with progressive insights, trial and error
and reconsidering decisions based on tacit knowledge and implicit skills.

3. Decide as late as possible This principles, which primarily targets concurrent development of complex
systems, advocates the exploration of decision options and delaying the final decision until it can be based
on facts rather than speculation. In some situations, this may require building variation points into the
system so that development can continue while decisions are postponed.

4. Deliver as fast as possible Deliver as fast as possible is required for fast time to market. Customers
like fast delivery. For software development, this often translates to more flexibility. In the first place,
this may seem contradictory to Decide as late as possible. In the reality, it rather complements this
principle. While the former principle causes decisions to be delayed, the latter principle makes sure that
decisions are nevertheless made frequently. In combination, this means that decisions are delayed to the
last possible moment (with a release being the last possible moment).

5. Empower the team Empower the team by trusting the capabilities of an experienced team. Decisions
should be made inside the team and not be imposed on the team. As a consequence, teams need a certain
level of maturity. It is not easy to assemble a team that is both experienced and has junior developers,
has a lot of knowledge and is also willing to and capable of learning.

6. Build integrity in Users, customers, and developers all just see one aspect of a software product. The
aspect of integrity aims at one integral system where perceived and conceptual integrity is built-in. The
perceived integrity is about user experience and tries to anticipate future use cases. A software system
has integrity, if it has a coherent architecture, high usability, is maintainable, adaptable, and extensible.

25

7. See the whole People who are experts in a specific area of software engineering tend to maximize the
performance of the part of the software they are most knowledgeable about, while loosing sight of the
system as a whole.

Many of the above principles can be related to specification and documentation efforts. The most prominent
one being Eliminating waste, as specification and documentation that does not provide an immediate benefit
and that on contrary even causes rework effort for keeping it in-sync with the system is considered waste.

3.2.2 Agile
In 2001, the agile manifesto [1] gave rise to a new way of thinking and collaborating in software projects. Since
then, several process models (the most prominent being Scrum [49] and XP [50]) evolved that embrace the
principles postulated in this manifesto:

1. Customer Satisfaction Satisfy the customer by delivering software early and continuously.
2. Welcome changes Anticipate frequently changing requirements.
3. Frequent releases Deliver working software in short iteration cycles.
4. Collaborate with business people Collaborate with business people daily.
5. Trusted Individuals Form teams of motivated people and trust them to get the job done.
6. Face-to-face conversation Face-to-face communication is most efficient and effective.
7. Working software is progress Measure progress by the amount of working software developed.
8. Sustainable pace Processes should be sustainable in a way that the team can keep up pace.
9. Technical excellence Good design and technical excellence enable agility.

10. Simplify Favor simplicity over complexity. Avoid unnecessary work.
11. Self-organizing teams Empower teams to manage themselves.
12. Regular adjustments The team reflects on process regularly to become more effective.

Likewise lean software development, many agile principles relate to specification and documentation. The
principles Face-to-face conversation and Trusted Individuals for instance express that verbal communication
between skilled individuals is better than communication via specifications and documentation. Additionally,
the agile manifesto even explicitly promotes ”Working software over comprehensive documentation”, which is
a direct hint towards the amount of documentation required in agile projects.

3.2.3 DevOps
The term DevOps, coined in 2009, is a concatenation of Development and Operations. The following principles
were derived from a literature study on DevOps, conducted in 2014 [48]. Culture The primary characteristic
of a DevOps culture is increased collaboration between the roles of development and operations [51]. Another
important element is shared responsibility. Likewise agile and lean, the DevOps culture advocates an organi-
zational shift to autonomous teams, who strive for a continuous improvement of their process. Additionally,
Walls [52] emphasizes open communication, alignment of incentives and responsibilities, respect, and finally,
trust. Automation A cornerstone of DevOps is a high degree of automation. Automation facilitates the other
characteristics of DevOps. Typical automated steps in a CI/CD pipeline are agile development, integration,
delivery, deployment and operations. Measurement DevOps promotes the introduction of reliable measures to
get hold on the development process. [HP 2016] mentions four dimensions of metrics that should be covered in
any DevOps process: velocity, quality, productivity, and security. This principle is covered in the solution where
at the finish of an iteration, the evaluation is described. Evaluation implies a set of measurements. Sharing In
DevOps, sharing refers to knowledge, tools and successes [53]. Sharing knowledge in a DevOps team is the basis
for efficient collaboration. Sharing coding styles, development tools and implementation techniques to develop
features and maintain environments and infrastructures are key to be and stay successful. Teams should also
share success, e.g. by celebrating important releases together. Services The principle of services represents the
trend that software companies are moving from a product model to a services model. Key characteristics for
services are intangibility, inventory, inseparability, inconsistency and involvement [54]. Quality assurance Team
needs to build quality into the development process. Because iterations are short, the new code is brought
easier and faster into production. This includes cross-functional concerns such as scalability, performance and
security. To increase quality, it is required that both developers, operations and customers have a close rela-
tion to have a better understanding of issues, enablers or risks. Furthermore, monitoring processes, including
development metrics and end-user actions, enables early detection of problems [55]. Structures and standards
DevOps is not just a team issue, but requires standards that the whole organization embraces. Shifting to
DevOps is a major organizational effort that requires commitment from all participating parties. Culture is the
DevOps principle that has the greatest impact on specification. This principle embraces the standards, values,

26 CHAPTER 3. SPECIFICATION IN CSD

and ways of working that are manifested in collaboration, shared responsibility, and autonomous teams. These
DevOps values lead to less or at least loose specifications.

3.2.4 Principles of Continuous Software Development
In this section, we revisit the principles of lean, agile and DevOps to extract a common set of principles that
among others have an impact on the way teams deal with specification and documentation practices. In the
remainder of this paper, we will refer to development processes that exhibit these shared principles as CSD.
The principles are:

1. Efficiency, effectiveness In continuous software development, one strives for an optimal balance be-
tween efficiency and effectiveness. Effectiveness refers to the desired outcome, i.e. the percentage (quality)
that the result matches the objectives. Efficiency means the amount of resources (money, time, people)
used to realize the results. Furthermore, there are two limitations related to effectiveness and efficiency.
First, resources like time, money and people, are limited. Second, even adding virtually unlimited re-
sources to a project could not force desired results. Brooks states that adding people to a project takes
time to become productive, adding people increases communication overhead, and there is a limited
divisibility of tasks [56]2. Because of these limitations and dependencies, there is a trade-off between
maximizing effectiveness and maximizing efficiency. The ambition is to achieve as much as possible for
both efficiency and effectiveness without losing the balance. Regarding efficiency, the primary means in
lean is eliminating waste. Effectiveness refers to delivering working software, achieving customer satisfac-
tion, and simplicity. Additionally, measurements are required for checking if development and operations
are on the right track. Both, efficiency and effectiveness should strive for a sustainable pace.

2. Learning, improvement Learning and improvement are about progressive insights; and planned and
unplanned improvements. The objective is to continuously improve the development process as well as the
learning outcome. Therefore, perform regular feedback sessions like e.g. a sprint retrospective in scrum,
encourage learning by doing and learn from mistakes. The process models achieve this by promoting
short feedback loops, sharing ideas, uncertainties and mistakes, and a culture of trust.

3. Flexibility Flexibility is about possibility and willingness to adapt to new situations. The objective is to
benefit from actual insights and agreements. Therefore, teams need to welcome changes and establish a
culture that embraces uncertainties and last minute changes and is able to think out of the box. There is
no necessary requirement for learning with flexibility. It might well be possible that one trivial situation
must be changed for another trivial situation. The core message of flexibility is the ability to adapt to
new (unforeseen) situations.

4. Time-to-market Time-to-market refers to short delivery cycles or frequent releases. The objective is
to deliver features as fast as possible. Improvements will start earlier and there is a better fit between
end-user, customer, organization, and development team. To accomplish this fast TTM, a high degree of
automation from development to deployment is required.

5. Trust, attitude Trust and attitude refer to: 1) the trust given to the team and 2) the team’s attitude to
show that they are worth the given trust. This trust is reciprocal; all parties should trust and live up to
the given trust. The objective is to let everyone excel in their competences, but also to think outside the
box by involvement from other parties. This requires a specific organizational structure and standards.
Typically, these types of organizations have little management with a high degree of autonomy for the
teams.

6. Competences Competences refer to highly skilled people who are experienced in a wide range of tech-
nology. The objective is to build teams capable of bringing together the concerns from the team, the
customer, and the organization. Within the team, there should be a shared and coherent view on the soft-
ware product. Additionally, quality management processes are required to make sure that competences
and capabilities match or exceed the requirements.

7. Competitive advantage This refers to the risk that people tend to excel in a specific skill while at the
same time losing sight of the big picture. Face-to-face conversation between parties and team members
reduces the risk of losing sight. As part of this view, teams should focus on delivering added value, while
leave commodity solutions to service providers. The objective is achieve a competitive advantage by
focusing on core competences and outsource commodity services.

8. Involvement This includes involvement from end-user, customer, developers and operations. The ob-
jective is to share common goals. This requires shared principles and priorities, and understanding of

2“If one woman delivers a baby in nine months, then nine women can’t deliver a baby in one month”

27

one’s concerns and standards.
In appendix A we show a table that maps the principles of continuous software development to Lean, Agile

and DevOps.

3.3 Pattern: Continuous Software Design Specification
This pattern describes a lightweight manner to deal with specifications in a continuous software development
process.

3.3.1 Context
You have deliberately chosen to apply the principles of continuous software development. Your team has worked
together on multiple software products. The people in your team know each other well and have an established
communication culture. The team members are also knowledgeable about the technological domain, in which
the software product to be developed resides.

You have already settled a proven build pipeline, which includes for instance a set of build tools (e.g.
Maven3 or Gradle4), a distributed version control system (like Git5), a document management system and wiki
(for instance Confluence6), and a task and project tracking tool (see for instance Jira7).

3.3.2 Problem
The developers in your team strive for omitting the creation and maintenance of artifacts that are not immedi-
ately required for building a high-quality software product. You consider maintaining a specification document
beyond the realization that provides just another view on a software product that is already specified by the
source-code itself as wasted effort. Totally omitting specification, however, comes with certain downsides:

• Specifications are needed as a basis to reason and communicate about architectural challenges.
• Specifications are needed as input for task-planning activities, e.g. for setting up a work breakdown

structure.
• Specifications are required to settle agreements regarding interfaces between modules developed by dif-

ferent team members, or other teams working on other parts of a larger software system.
Thus, the problem is: How to provide just-enough adequate specifications for reasoning about architectural
problems, supporting planning activities, and defining interfaces between team members?

3.3.3 Forces
The following forces need to be considered:

1. Shaping thoughts The process of specifying contributes to a better understanding of the problem and
envisioned solution of an application.

2. Progressive insight During a software development process, developers continuously gain new insights
that they want to or need to consider in the implementation. As a specification is a kind of implementation
plan, new insights either need to be woven into the specification before they are implemented (which can
be seen as wasted effort in lean terminology), or the implementation derives from the specification.

3. Specification gaps require assumptions to be made Things that are not explicitly specified (i.e.
written down) require assumptions to be made by developers during the implementation. Silent assump-
tions bare the risk that individual team members make decisions that interfere with or even contradict
each other.

4. Hidden disagreement Related to the previous force, relying primarily on oral communication bears
the risk of hidden disagreement. That is, developers discuss a problem or an envisioned solution and
actually talk across purposes without realizing.

3https://maven.apache.org
4https://gradle.org
5https://git-scm.com
6https://www.atlassian.com/software/confluence
7https://www.atlassian.com/software/jira

28 CHAPTER 3. SPECIFICATION IN CSD

5. Overestimated competences and underestimated complexity People tend to overestimate their
own competences and skills [57]. This leads to an underestimation of the problem complexity. When
extensive specification is omitted prior to implementation, the real complexity of the software problem
may be uncovered only piecemeal during the implementation, which may lead to significant rework.

6. Time to market Ever increasing demands for faster time-to-market require faster deployment and
therefore shorter development cycles. Often, there is no time for extended technical specification upfront
and complete documentation afterwards.

7. On-boarding of new team members When new team members enter the development team, or the
entire software product is transferred to or picked up by a new team, the software design needs to be
transferred to the new people in charge.

8. Explored design space The required coverage degree and formalism of specifications relates to the
degree to which the design space of the application is already explored by patterns, frameworks, libraries
and other assets. Applications which can be built upon existing frameworks or high-level programming
languages, for instance, require less specifications than applications in domains that are not (yet) covered
by such assets. In those cases, the abstractions introduced by the frameworks, templates and libraries,
form a vocabulary for developers that allows them to communicate more efficiently and they induce
structure to software systems that can be understood by studying the framework rather than having to
study the application built upon the framework. Other examples are (parts of) applications that need to
interact closely with custom hardware and or custom communication protocols. These applications may
also require a higher degree of specification.

3.3.4 Solution
Instead of aiming for providing a single self-contained and comprehensive specification document, align your
specification process with the continuous development process. Therefore, split the specifications created into
three different types of specifications that serve different purposes and address different concerns:

Specifications at the start of an iteration
→

Specifications during an iteration
→

Refactored specifications at the end of an iteration

In the evolution of a system, each iteration has a life cycle where specifications are created at the beginning
of an iteration, altered during development, and some specifications become obsolete at the end of an iteration.
Specifications are not deleted, but are kept in a repository without further intervention, unless deletion is part
of a specification refactoring. Only those specifications that are relevant to the next iteration or maintenance
survive an iteration.

We refer to specification as an artifact created prior to or during the realization of a piece of software.
Specifications do not necessarily cover a whole system, but they can also concern a small part of the system
(e.g. a part required for the implementation of a user story). Here, specification is a prescription meant to
support and constrain the implementation. Documentation, on the other hand, is a description of the actual
implementation for preserving and sharing rationale and knowledge about the implementation. Documentation
is just another deliverable, if it is valuable, doing it is not free and probably displaces something else, e.g.
development time. In the following sub-sections, we describe each of those types in detail.

Specifications at the start of an iteration.
Specifications required to effectively start an iteration (e.g. a sprint in a scrum-project) should include the
following items:

1. A list of requirements to be addressed in the iteration.
2. An architectural vision.
3. A description of the technological ecosystem in which the software will be developed.
4. Information about the most important architectural concerns (i.e. quality attribute requirements and

business drivers), which determine the priorities of decisions to be made.
It is not advisable to aim for providing a comprehensive specification covering the aforementioned aspects in

all detail; instead the specification should be deliberately limited to information required to start a development
iteration thereby taking into account the skills, knowledge and experience of the development team. Some of

29

the mentioned artifacts may already exist when they were created in a prior iteration. In such cases, the
artifacts are only revisited and adapted if required.

Requirements to be addressed in an iteration (1) are typically captured in a task planning tool. It is not
advisable to duplicate requirements, i.e. to also specify them elsewhere.

Figure 3.1: A product backlog in Jira [58].

Figure 3.1 shows a product backlog created on a scrum-board in Jira. Requirements to be addressed in the
next iteration are shown underneath the heading Sample Sprint 2. Underneath this so called Sprint Backlog, the
Product Backlog contains a list of all other requirements to be addressed in the future. The product backlog is
continuously maintained and must be seen as a living artifact that always shows the current state of potential
requirements. Note that the requirements captured here are usually primarily functional requirements, or
even concrete development-related tasks derived from functional requirements. We will get to non-functional
requirements below.

The second and third items required to start an iteration are an architectural vision and a description of
the technological ecosystem. Often, the space available on a regular whiteboard is sufficient for this kind of
specification. Figure 3.2 shows an example.

The whiteboard shows a specification created by a scrum-team at the beginning of Sprint-0. The team
created this specification together to settle agreements required to start with the first development iteration.
The example contains both of the aforementioned items:
High-level architectural vision The whiteboard shows an informal sketch of a three-tier layered architec-

ture with a mobile application client and a web-application, a restful service facade, and a relational
database. Sub-systems are not specified formally, but in a way that is sufficient for the team members
to understand each other.

Technological Ecosystem The whiteboard sketch also gives hints regarding the technological ecosystem,
in which the system will be developed. In this case, the back-end uses Java technology combined with
open-source database management systems, a cross-platform framework for the mobile application, and a
client-side JavaScript framework for the development of the web application. Note that some technologies
are marked with a question mark, which indicates that a final decision has not yet been made. However,
the diagram provides enough information to get an idea of the target ecosystem. Subsequent decisions
can be made during the development iteration itself.

30 CHAPTER 3. SPECIFICATION IN CSD

Figure 3.2: Whiteboard drawing of architecture vision.

The fourth and final item required to start an iteration is information about the most important architectural
concerns to be considered during the iteration. Usually, agile or lean teams focus on functionality while
assuming typical requirements regarding quality attributes. Only in situations, in which special requirements
exist that derive from the typical needs of the type of application developed (in which the team is experienced),
the quality attributes and other architectural concerns are captured. In this case, Figure 2 only mentions a few
important concerns in a very informal way. The different envisioned sub-systems will be provided as containers,
which need to be deployed to a cloud service. The whiteboard mentions a target availability of 99,999%, which
needs to be guaranteed by the cloud provider. Furthermore, the diagrams shows the envisioned life-time (TTL
in the diagram) for the different parts of the system. As no more concerns are mentioned, the team assumes
typical concerns for mobile and web application regarding performance, scalability, security and the like.

Specifications during an iteration.

Specifications to continue development during an iteration cycle should codify agreements made between
individual team members or between multiple teams working on the same larger application.

Examples of such specifications include, but are not limited to (RESTful) API specifications, data models,
user interface specifications, and (architectural) design decisions which need to be considered by stakeholders
other than the decision maker her or himself. Examples of such decisions are the technological choices mentioned
on the whiteboard shown in Figure 2. Of course, as this pattern concerns continuous development, these
specifications are continuously adjusted if required to serve the aforementioned purpose.

As mentioned above, the specifications are not part of a single self-contained document. You should rather
create each specification artifact where it is either naturally used as part of the software development process,
or it is automatically generated and updated from something that is part of the development process. We
show two examples that demonstrate this principle of a single source of truth. The first example is an API
specification in Yet Another Markup Language (YAML). The second example concerns tests written with

31

Cucumber8. Both specifications are stored in a git repository.

Figure 3.3: REST API definition with swagger.io.

Swagger.io9 is a tool for defining a REST API, including (required) input parameters, output parameters,
types of parameters and descriptions. The description language of the API is provided in YAML directly within
the source code of the application. From this API specification in YAML, the tool generates code for testing
or further development. Developers can always rely on this API specification as it is the single source of truth.
Figure 3.3 shows an example of swagger in use. So the code itself serves as specification.

Another example for a tool using the same principle is Cucumber. Cucumber is a BDD [59] test tool. BDD
was preceded by TDD [S60]. In these types of development, tests are the specifications for the development
team.10 Cucumber is used for behavior-driven development in automated acceptance tests. Typically, a team
with customers, developers and testers explore the area, each from it’s own perspective and competences. After
clearing up misunderstandings and explicating assumptions, this results in a set of specific examples that are
typical for the problem domain. An example of a feature description in Cucumber is shown in Figure 3.3.

The principles also apply for many other types of artifacts generated using specific tools (e.g. UMLtools,
database management systems, or UI-frameworks). Always strive for creating the specs in the tool, which is
also used for the development and do not duplicate artifacts. If however, no tool is available that automati-
cally generates more readable versions of such specifications, then the source code itself should be used as a
specification.

A special role is taken by decisions made by developers during the iteration. Many of these decisions
are primarily relevant for the developer himself and do not necessarily need to be shared with other team
members. Examples are decisions about design patterns (assuming they do not have architectural implications)
used, libraries that do not induce implications for modules developed by other developers, or design principles
applied by the developer to structure the code. Certain decisions, especially those having architectural impact,

8https://cucumber.io/
9http://swagger.io/

10We focus on the test as specification and do not present merits and (dis)advantages of test-first development methods

32 CHAPTER 3. SPECIFICATION IN CSD

Figure 3.4: Feature description in Cucumber for a Dutch train travel website.

should be specified and shared with relevant stakeholders. Candidates for such decisions are architectural styles,
patterns and tactics and other decisions that have a significant impact on quality attributes and externally
visible interfaces of the system. Not all of these decisions must be documented though. Only document decisions
that are non-obvious to the team and that cannot be recovered from artifacts already created as part of the
development process. Examples of decisions that do not have to be documented per se are used frameworks
and third part libraries, if such information can be easily retrieved from a build file (e.g. a pom.xml file from
Maven), for instance. As a rule of thumb you should spend documentation effort primarily on decisions that
were hard to make, caused a lot of discussion, seem counter-intuitive, were significantly impacted by people
external to the team, and also on decisions which turned out to be not good after the implementation. One
way of documenting decisions in a lightweight manner is using specific architecture decisions views [S61], [62].

Figure 3.5 shows an example of a decision-relationship-view [S61], which shows relationships between deci-
sions made and their status. A relationship view in combination with a decision-forces view [S61]. Figure 3.6
captures sufficient information of decisions to support the team during the iteration, in which the decisions are
made.

Finally, as specification items are spread over multiple different locations, it is advisable to provide an
overview page which contains links to the diverse locations of the specification items. A natural place for such
an overview page is the team’s wiki. Note again that information should not be duplicated on the wiki. Instead
the wiki should contain links to locations that do not change frequently. Otherwise the risk remains that the
information on the overview page gets outdated quickly. Figure 3.7 shows an example of such an overview page
created in Confluence.

33

Figure 3.5: Example of a decision relationship view.

Refactored Specifications at the End of an Iteration.

At the end of an iteration, you should revisit specifications created and updated during the iteration and decide
explicitly on items relevant

Fig. 5: Example of a decision relationship view
Fig. 6: Example of a decision forces view
for the next iterations. The process we propose here is roughly comparable to a refactoring process for source

code. It can be seen as a kind of specification refactoring. During this process, all artifacts that exclusively
serve documentation purposes are revisited and either kept unchanged, simplified, or thrown away. Specification
items that could be kept unchanged are documented decisions that are still valid or an architectural vision
that is still valid. Some specification artifacts can be simplified or made more concise with the knowledge a
developer gained during the iteration. Examples of artifacts that can be thrown away are UML-or box-and-line
diagrams of software parts that were fully implemented in the meantime. In such cases, the code itself is often
a better and more accurate specification of the system than the diagrams could be. This is the same as the
architecturally-evident coding style, used by [63].

Fig. 7: Overview page with links to specifications relevant during a specific iteration
Especially the documented decisions should be revisited as the status of decisions frequently changes

throughout an iteration. We suggest to cleanup the decision views and only keep those decisions that are
still in a decided state. Furthermore, important decisions or decisions that required long discussions should
be described in more detail, for instance using a decision detail view from van Heesch, Avgeriou, and Hilliard
[S61]. This view is independent of a specific iteration. It should be up-to-date at the end of each iteration.
Additionally, as iterations in agile or lean teams are often accompanied by one or more releases, specifications

34 CHAPTER 3. SPECIFICATION IN CSD

Figure 3.6: Example of a decision forces view.

should cover a description of (automated) steps to test, deployment and operations. Again, make use of the
principles mentioned above. It is better to point to a provisioning script on a wiki, rather than describing a
deployment process verbally. Along with every release, the current state of all documentation artifacts should
be kept, e.g. to cope with situations, in which multiple versions of a software are used by customers.

3.3.5 Consequences
In the following, we will discuss the consequences of applying the continuous software design specifica-
tion pattern.

1. Shaping thoughts The process of specifying contributes to a better understanding of the problem
and envisioned solution of an application. When applying the pattern, developers discuss the envisioned
architecture of the system and the technological ecosystem typically using a whiteboard. The whiteboard
sketch only serves as a means to support the discussion. It is not meant as a documentation. As a
consequence, the whiteboard sketch becomes less and less useful the more time passes. This effect is
deliberately accepted here. The iteration start specifications are meant only to enable a quick-start to
the iteration and to support planning activities.

2. Progressive insight At any time during the iteration, specifications are only created or updated as part
of the development process. New insights can always be considered. The pattern embraces changes over
following a plan.

3. Specification gaps require assumptions to be made The solution described by this pattern advo-
cates a radical reduction of specifications to a minimum. Naturally, this causes specification gaps which
force the team members to either silently assume problem or solution-related aspects, or to explicitly
discuss them with their team members. As mentioned in the context section, this can only work well
if the team is experienced and has an established communication culture. There is thus a correlation
between the amount and detail of specifications needed and the experience and skills of the development
team. Likewise, this applies for hidden disagreement. Typically, agile and lean process models address
these problems by weaving regular retrospective sessions into development iterations, in which the team
-among other issues also discusses their communication and conflict-management strategies.

35

Figure 3.7: Overview page with links to specifications relevant during a specific iteration.

4. Overestimated competences and underestimated complexity As a consequence of no big upfront
specification, the complexity of software problems and solutions is regularly underestimated. The same
holds true for the developers’ competences. Therefore, this pattern should only be applied in teams
using agile or lean principles, which rely on short iterations, review and retrospective sessions. Hidden
complexity is therefore typically discovered and discussed regularly and the team can learn from previous
mistakes and new insights.

5. Time to market Using the pattern, the team does not spend effort on documentation that does not
provide an immediate benefit for the current iteration. It is thus beneficial for achieving shorter release
cycles and within this quicker time to market.

6. On boarding of new team members When applying this pattern, an offline preparation of new
team members is drastically hampered. This is not so problematic for new team members entering
an established team, as new team members can be brought slowly up to speed by taking part in the
regular team ceremonies and picking up simpler tasks in the beginning. For transferring an application
to an entirely new team, the specifications advocated by this pattern are not sufficient. However, the
information documented can serve as a basis for providing a more comprehensive team transformation
document which provides more detail on the architecture, important decisions made and the overall
design of major components.

3.4 Outlook
This paper presents a first effort to describing specification processes for continuous software development
projects. The continuous software design specification pattern can be applied in a context where
a team already built up specific knowledge and skills, e.g. about the development process or the domain
of an application. In the future, we plan to document another pattern that describes how these necessary
preconditions can be achieved by a development team. This pattern will cover knowledge about technology,
knowledge about processes and agreements that need to be made by a team. This includes a way of dealing
with tacit knowledge [64] the developers have. Among others, the pattern to be documented will make use of

36 CHAPTER 3. SPECIFICATION IN CSD

templates, frameworks and libraries to enable continuous development. The processes, context and environment
for this second pattern are described in continuous development principles.

3.5 Acknowledgments
We would like to thank our shepherd Uwe Zdun for his critical feedback and useful hints during the shepherding
process of EuroPLoP 2017. We would also like to thank Allan Kelly for doing an extensive review of this paper
after the conference.

3.A. Appendices

Principle of ConSD Lean Agile DevOps
1. Efficiency, effectiveness
One strives for an optimal balance
between efficiency and effective-
ness

1. Eliminating waste
Waste is anything that does not
produce value for a customer.
The primary focus for eliminat-
ing waste is minimizing resources
while achieving the same results.

1. Customer satisfaction
7. Working software is progress
Both customer satisfaction and
working software relate to results
for the customer. This includes
short iterations for faster TTM
and reducing risks.

8. Sustainable pace
Strive for maximum effectiveness
and efficiency in short itera-
tions. This avoids the common
phenomenon that goes along
with long iterations where teams
start slowly (thus inefficient) and
get hasty when deadlines are
approaching. The latter comes
with the downside that quality
requirements are neglected and
technical debt is accepted to
deliver within the deadline.

10. Simplify
Simplification relates to efficiency
by focusing on a) a minimum
viable product; b) limiting work
in progress, strive for minimizing
backlog items; c) eliminate
waste by avoiding extra features,
partially done work; d) mini-
mize organizational structure by
reducing the number of roles,
ceremonies, etc. “Maximizing the
amount work-not-done” can be
achieved by coding (standards,
templates, libraries), architecture
(be specific in architecture,
do not strive for generic and
‘beautiful’ architecture), testing
(small unit-tests), automation
(CI/CD pipeline), and standards
(common, shared, proved, easy
to understand)

3. Measurement
In DevOps, the development pro-
cess is monitored using process-
and team-performance-related
measurements. On the one
hand, the measurements pro-
vide a profound basis for direct
process improvements. On the
other hand, these improvements
can be evaluated by analyzing
their impact on the respective
measurements in retrospect.

3. Flexibility
Ability to adapt to new, unfore-
seen, and possible trivial situa-
tions.

3. Decide as Late as Possible
The exploration of decision op-
tions and delaying the final deci-
sion until it can be based on facts
rather than speculation. This im-
plies uncertainties for the team
as long as a final decision is not
taken. The team needs to be flex-
ible to handle these uncertainties

2. Welcome Changes
The team welcomes changes to
give the customer a competitive
advantage.

Structures and Standards
These are the defacto and de
jure values, standards and behav-
iors that contribute to last minute
changes. De jure: what is agreed
upon, either by law, code or con-
duct or agreements.
Defacto: what actually happens.
These two concepts do not nec-
essarily exclude or include each
other.
In some companies, the policy is
to deploy whenever a change is
committed (Amazon deploys 50
times a day) where other com-
panies have a policy for regular
releases (Microsoft’s “patch Tues-
day”).

Continued on next page

3.A. APPENDICES 37

Table 3.1 – continued from previous page
Principle of ConSD Lean Agile DevOps

4. TTM
The lead time it takes from con-
cept to minimal marketable prod-
uct.

4. Deliver as Fast as Possible
Customers like fast delivery.
Therefore, Lean strives for
frequent and fast delivery.

3. Frequent Releases
This includes minimum viable
product (MVP) as well as
minimum marketable product
(MMP). Agile processes strive
for delivering software increments
after each iteration.

2. Automation
Automation in the CI/CD pipeline
includes testing, integration, de-
livery, deployment and opera-
tions. The automated steps from
development to deployment make
delivery fast, repeatable, and pre-
dictable. Furthermore, automa-
tion leads to managing and finally
reducing risk by optimization of
critical steps.

5. Trust, Attitude
All parties trust each other and
live up to the given trust.

5. Empower the Team
Decisions are made inside the
team and not imposed on the
team.

5. Trusted Individuals
Support the team with trust.

1. Culture
The culture of trust can be found
in the while of defacto and de
jure values, standards and behav-
iors within your organization.

6. Competences
Highly skilled people who are ex-
periences in a wide range of tech-
nologies.

This principle is compatible with
the Lean mindset, but not explicit
in the Lean philosophy.

9. Technical Excellence
The development team employs
skills, as well as process-related
skills.

11. Self-organizing Teams
The competent team has clear
objectives of what to achieve but
limited rules on how to achieve
these objectives.

6. Quality Assurance
Defining characteristics that refer
to the desired outcomes, i.e. the
percentage(quality) that the re-
sult matches the objectives. The
team is well aware of the qual-
ity of the result and process that
is required and act according the
standards.

7. Big Picture
The risk that people tend to ex-
cel in a specific skill while at the
same time losing sight of the big
picture.

7. See the Whole
The risk of not having an
overview, is that it may create
an environment where suboptimal
behavior occurs with suboptimal
results. Seeing the whole, or big
picture, reduces suboptimal solu-
tions as the big picture embraces
the individual suboptimal, or or
internal competitions.

6. Face to face Conversation
Face-to-face conversation be-
tween stakeholders and develop-
ment team reduces the risk of
losing sight. The risk of a best
solution for a single developer
that is not supported by other
developers and stakeholders
is mitigated by a continuous
dialogue between developers and
stakeholders.

5. Services
Teams focus on delivering added
value, while leaving commodity
solutions and non-core compe-
tences to others, e.g. service
providers.

8. Involvement
Shared principles and priorities,
understanding of one’s concerns
and standards.

This principle is compatible with
the Lean mindset, but not explicit
in the Lean philosophy.

4. Collaborate with Business
People
Understand each other’s needs,
possibilities and weaknesses.

7. Structures and Standards
There are the defacto and de jure
values, standards and behaviors
within an organization, like e.g.
a code of conduct. The struc-
tures and standards within an
organization encourage involve-
ment, e.g. by training knowledge-
meetings, or tine to experiment
(like Google’s11 and Atlassian’s
20% rule12).

Table 3.1: Principles of CSD mapped to Lean, Agile and DevOps.

11https://abc.xyz/investor/founders-1etters/2004/ipo-letter.htmI
12https://www.atlassian.com/blog/archives/20_time_experiment

38 CHAPTER 3. SPECIFICATION IN CSD

Chapter 4

Software Specification and
Documentation in Continuous Software
Development –
A Focus Group Report1

Abstract We have been observing an ongoing trend in the software engineering domain towards
development practices that rely heavily on verbal communication and small, closely-interacting
teams. Among others, approaches like Scrum, Lean Software Development, and DevOps fall un-
der this category. We refer to such development practices as Continuous Software Development
(ConSD). Some core principles of ConSD are working in short iterations with frequent delivery,
striving for an optimal balance between effectiveness and efficiency, and amplify learning in the
development team. In such a context, many traditional patterns of software specification, docu-
mentation and knowledge preservation are not applicable anymore.
To explore relevant topics, opinions, challenges and chances around specification, documentation
and knowledge preservation in ConSD, we conducted a workshop at the 22nd European Conference
on Pattern Languages of Programs (EuroPLoP), held in Germany in July 2017. The workshop
participants came from the industry and academia.
In this report, we present the results of the workshop. Among others, we elaborate on the dif-
ference between specification and documentation, the special role of architecture in ConSD in
general, and architecture decision documentation in particular, and the importance of tooling
that combines aspects of development, project management, and quality assurance. Furthermore,
we describe typical issues with documentation and identify means to efficiently and effectively
organize specification and documentation tasks in ConSD.

Keywords Agile, Continuous Development, DevOps, Lean, Software engineering

4.1 Introduction
In the last decade, we have been observing a shift in the software industry towards software development
practices that rely on verbal communication, closely interacting small teams, shorter planning and controlling
horizons (often called sprints or iterations), and frequent delivery. Popular approaches include Scrum [49],

1This work was originally published as:

U. Van Heesch, T. Theunissen, O. Zimmermann, and U. Zdun, “Software Specification and Documentation in Continuous Software
Development: A Focus Group Report,” in Proceedings of the 22Nd European Conference on Pattern Languages of Programs, New
York, NY, USA, 2017, p. 35:1—-35:13. doi: 10.1145/3147704.3147742.

39

40 CHAPTER 4. FOCUS GROUP REPORT

Lean Software Development [2], and more recently DevOps [51]. We refer to collections of these practices as
continuous software design specification [S31] to take into account their predominant characteristics
of continuous, short and time-boxed iterations and incremental refinement. In continuous software develop-
ment, some traditional patterns of software specification, documentation and knowledge preservation are not
applicable anymore. One of the main challenges is dealing with software specifications and documentation in
a continuous development flow. Specifications take many forms, e.g. requirements specification, architecture
specification, design specification, test specification, and deployment descriptors. Team members primarily
value specifications that have an immediate benefit for their own tasks during an iteration (e.g. specifications
of interfaces between sub- systems). However, depending on the type of software and the type of specification,
these specifications may need to serve additional needs. For instance, they may need to support reasoning
about technical risks, help stakeholders understand complex systems, support (offline) communication between
stakeholders, or capture design decisions with long-term impact. In our ongoing work on continuous software
development (see for instance [S31]), we conjecture that the diverse types of specifications and documentation
with different lifespans, different levels of formalism, different levels of detail, and different forms of codification

handled individually and differently so that they can satisfy the diverse needs of stake- holders in contin-
uous software design specification. To further explore relevant topics, opinions, challenges and chances
around specifications and documentation in continuous software design specification (with a focus on
architectural specifications), we organized a workshop at the 22nd European Conference on Pattern Languages
of Programs (EuroPLoP), held in Irsee, Germany in July 2017. In this paper, we report on the results of the
focus group and describe directions for future work on this topic. The rest of this paper is organized as follows:
Section 2 explains the setup of the focus group and the characteristics of the participants. In Section 3, we
present the results of the discussion. Finally, Section 4 presents directions for future work on this topic.

4.2 Workshop Setup and Participants
The workshop took place in shape of a so called focus group, for which the EuroPLoP conference has re-
served time slots of 90 minutes. We announced the focus group prior to and during the conference to attract
participants interested in specification in continuous software design specification. Participation was
voluntary and advance registration not required. To attract peoples’ attention and to scope our own areas of
interest, we posed the following set of initial questions as part of the focus group announcement:

1. What is the difference between specification and documentation? What purposes do they serve and for
whom?

2. What is the role of architecture specification in continuous software development?
3. Should software specifications be organized around self-contained documents?
4. What is the role of models in this context?
5. What alternate forms of organizing specification items could be a better fit for continuous software

development?
6. What is the life cycle and scope of the different types of specifications and how does this life cycle relate

to the agile life cycle, for instance?
7. Refactoring has become a common technique for improving the structure and quality of source- code.

How can similar techniques be used for specifications?
8. What is the role of (architectural) design decisions in this context? How to share, document, or update

them?
9. How to efficiently preserve (architectural) knowledge and skills a development team gained through- out

multiple iterations/projects? What difference exists between generic and application-specific knowledge
and skills?

10. How can agile practices (e.g. sprint retrospectives) be leveraged in this context?
11. How can information needs by external reviewers and auditors be satisfied?
12. What is the impact of business and technical domain specifics in this context?

Additionally, we presented a poster summarizing our previous work on specification in continuous software
design specification (see Appendix A).

4.2.1 Participants
In total, we had 16 participants partly from industry and partly from academia. To find out more about the
background of our participants, we asked them to fill in a questionnaire in the beginning of the focus group. The

41

16 responses

31,3%

37,5%

31,3%

Practitioner (it is my primaryjob to be
involved in software development)

Researcher (it is my primary job to do
research and/or to teach)

Both (I really cannot make a selection
between these two)

Do you consider yourself primarily a practitioner or
researcher/teacher?

Figure 4.1: Affiliation of participants

questionnaire and the results are available online2. As Figure 4.1 shows, roughly one third of the participants
consider themselves as practitioners, the other participants are either academics or related to both industry
and academia. We also asked the participants about the number of years in software engineering experience
(see Figure 4.2). With an average of 13 years of experience, we mainly had senior software engineers in the
workshop. Figure 4.3 shows the tasks, our participants are usually involved in when doing software projects.
Most participants cover a wide range of typical software engineering tasks.

4.2.2 Setup
After a short introduction on continuous software development, we split the participants into four break-out
groups. Each break-out group was moderated by one of the authors. The initial set of questions shown above
served as a rough question guide. However, the discussion was not constrained by these topics. Each break-out
group discussed for one hour and noted insights on a flip-chart. Afterwards, the entire group met again to
discuss the findings. In the following, we summarize the findings of the groups.

4.3 Results
We discussed the difference between specification and documentation; terms which are often used interchange-
ably in the software engineering domain. Documentation, as understood by our participants, is a piece of
writing conveying information about a software artifact, to be consumed after the software artifact was built.
The primary purpose of documentation is to help stakeholders better understand certain aspects of the system,
be it because they need to support or further develop the system, approve certain aspects, review or audit it –
or because they pay for it. Specifications are seen as presentations of information meant to support the develop-
ment process of a software artifact. Specifications are created and consumed before or during the development
of a software artifact. In many cases, specification artifacts are also used as documentation. These cases can
be particularly problematic in continuous software design specification, because specification artifacts
are only maintained while they are necessary (or at least immediately beneficial) for the realization process
of a software artifact. As a consequence, the actual realization regularly derives from the last maintained
state of the specification. When being used as-is as documentation, these artifacts contain inconsistencies and
specification gaps and are thus less usable for the purpose of documentation. In the following sections, we
present additional insights about documentation and specification gained during the focus group.

2https://goo.gl/47NtNf

https://goo.gl/47NtNf

42 CHAPTER 4. FOCUS GROUP REPORT

4
25%

4
6,3%

4
6,3%

4
6,3%

4
6,3%

4
6,3%

4
6,3%

4
6,3%

3
18,8%

2
12,5%

4
0

1

2

3

4

5 7 9 10 15 16 18 20 25

16 responses

How many years of experience do you have as
a software engineering practitioner?

Figure 4.2: Years of Software Engineering (SWE) experience

Architectural Design (the actual design, not
necessarily its specification/documentation)

Project Management (time and resource
planning, financial controlling)

Detailed Software Design (the actual design, not
necessarily its specification/documentation)

Requirements Engineering (requirements
elicitation and specification)

Architecture and Design Reviews/Evaluations

Programming

Software Design Specification/Documenta-
tion (architectural and detailed design)

Testing (e.g. installing software on
production systems)

Deployment (i.e. installing software
production systems)

Operating software development tool infrastruc-
ture (e.g. build servers, SCM servers, wikis, ...)

Database administration

0 2 4 6 8 10 12

2

5

5

7

8

9

9

9

10

11

12

Which of the following tasks do you regularly perform in
software projects you are involved in?

Figure 4.3: Involvement in SWE tasks

4.3.1 Specification
Specifications are created upfront and give instructions, rules and guidelines on how software artifacts should
be built or what properties they should have. They are usually prescriptive. Specifications are described as
“living artifacts”, as they are continuously adjusted with progressive insights, as long as they have a benefit for

43

the development process. Different types of specifications exist, for instance requirements specifications, test
cases, user interface specifications, architectural specifications, or design specifications (e.g. UML diagrams).

4.3.1.1 Levels of formalism and detail
We found that the degrees of formalism and completeness vary greatly between projects and artifacts. In
continuous software design specification, team members work together intensively, know each other
well, and rely on oral communications. Therefore, informal rich pictures (e.g., white board sketches) are
preferred over formal specifications. Formalisms are only used when being required by tools used (e.g. test
specifications in Cucumber2), or because very detailed interface specifications are required (e.g., between a
hardware team and a software team or between the provider and the consumers of a public API) [65]). Related
to this, teams develop a common body of knowledge, which consists of knowledge about specific technologies,
patterns, and solutions applied in the past. Teams explicitly or tacitly refer to this common body of knowledge
when creating specifications by leaving out details that external consumers of the specifications would require
to form a complete picture, or by using a vocabulary that can be understood by the team members only.
An example of the latter is the use of the term “request controller” in a specification, which if seen out- of-
context, is so generic that it is meaningless for external people, while members of the team know exactly which
component in an existing system is meant by the term. Thus, teams who do not know each other well and do
not share a common body of application-specific and application-generic knowledge, require more formal and
more detailed specifications than teams who share such a body of knowledge. Experienced teams can apply a
kind of specification-by-exception approach, in which only derivations from their standard way are specified.
One participant stated it like this: “We know what we are doing, so no need to write everything down.”. This
phenomenon, in our perception, is independent of the type of specification.

4.3.1.2 Architecture specification
One break-out group explicitly discussed the role of architecture specification in continuous software
design specification. At first, the idea of creating comprehensive up-front specifications may seem to conflict
with the principles of continuous software design specification, such as avoiding waste and being agile.
Nevertheless, the members of the focus group emphasized the important role of architecture reasoning and
architecture specification at the beginning of larger projects or re-engineering efforts. Apart from the often-
cited advantages of architecture like identifying risks and reasoning about quality attributes, architecture
(primarily smart system partitioning) is seen as an enabler for agile working. This is predominantly the case
for larger systems which are too complex to be handled in the working memory of a human being at the same
time. Smaller systems, and/or systems built the same way as other systems in the past, do not require much
architecture specification. One participant said: “Let’s not create large systems!” to express that systems that
do not require architecture specifications to be manageable, are a much better fit for continuous software
design specification. Architecture issues arise mainly in large systems. If large systems are required by the
nature of the problem, then architectural styles that split the system into small parts that can be developed
and comprehended in isolation can be a solution. Microservices are one example of such an approach [65]. In
continuous software design specification, architecture specification is often done using a whiteboard
and primarily describes the system partitioning into sub-systems and major components. For each component,
the responsibilities and interfaces are described. Architectural design is discussed during iteration planning
meetings (e.g. a sprint planning meeting in Scrum) and if required in a special “architectural stand-up” meeting
during iterations.

4.3.1.3 Tooling
Especially in continuous software design specification, teams rely heavily on integrated tool suites
that combine aspects of project management with features of development tools. An example of such a stack
is the combination of an IDE (e.g. IntelliJ3 for Java), Git4, JIRA5 , Confluence6, Jenkins7, and SonarQube8.
With such a tool stack, specification activities, coding, testing, quality management, and project controlling

3https://www.jetbrains.com/idea/
4https://git-scm.com/
5https://www.atlassian.com/software/jira
6https://www.atlassian.com/software/confluence
7https://jenkins.io
8https://www.sonarqube.org/

https://www.jetbrains.com/idea/
https://git-scm.com/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence
https://jenkins.io
https://www.sonarqube.org/

44 CHAPTER 4. FOCUS GROUP REPORT

are closely intertwined and enable lightweight traceability between the different activities. To give an example,
imagine the following typical flow (using tools mentioned by the participants):

1. A functional requirement is specified in form of a user story with acceptance criteria and an effort estimate
in a backlog in JIRA.

2. When a team member picks up the requirement, (s)he discusses design implications with other team
members using a whiteboard.

3. The team member takes a picture of the whiteboard and shows it on a page in confluence, which further-
more contains agreements (e.g. on interfaces) made with the team members.

4. Directly in JIRA, (s)he then creates a feature branch in the git repository and starts coding in the IDE.
The IDE has integrated git support. (S)he uses the analysis features of the IDE to achieve high test
coverage and to make sure the code conforms to the previously agreed on coding standards, which are
also checked by the Continuous Integration (CI) server, Jenkins in this case.

5. The time spent on the issues is (semi-)automatically logged by JIRA, so that (s)he only needs to approve
the efforts when logging work on an issue.

6. When the feature is readily implemented and tested, (s)he pushes the code to the git repository. The
push triggers the CI-server, which runs tests, checks test coverage and coding standards; furthermore, the
CI server triggers the code quality service (here SonarQube) and reports the results to the developers.

7. Afterwards, the developer creates a pull-request in git, which triggers her team mates to do a code review,
supported by the analytics provided by the SonarQube dashboard.

8. After the pull request was merged with the master branch, the developer marks the JIRA task as done.
A burn-down chart is automatically updated to reduce the remaining required efforts in the current
iteration.

The process sketched above shows how development activities are closely accompanied and sup- ported
by the tool chain. As a side effect, the tool chain provides traceability between requirements, tasks, design
artifacts, code, required time, and code quality. Apart from supporting the realization of software artifacts
(here a functional requirement), the information in the tools also serve documentation needs, as one can easily
click through the history of executed tasks. The process above entails the following forms of specification:

• A requirements specification in form of a user story.
• Acceptance criteria, which likewise serve as acceptance tests.
• An effort estimation for the user story.
• A design specification in form of a white board sketch and additional agreements between developers

specified in Confluence.
• Test specifications in the source code.
• Coding standards to be used in the IDE and in the CI-server.
• Further code quality standards to be used by SonarQube; some of these standards are architectural (e.g.

regarding reliability, security, maintainability, and complexity).
Apart from the design specification on the white board and the Confluence page, all specifications are

required and used by the tools, which apply the specifications automatically to support the developer.
While they are key artifacts for systems built in a model-driven way [66], architecture specifications still

seem to play a tangential role at least in some continuous software design specification communities.
That said, code quality tools support some forms of architectural analysis, as mentioned above. However,
some popular examples exist of tools that use architectural specifications in the same way as the specifications
described above. Ansible9, for instance, is a tool for automating deployment tasks using so-called play- books:
text-based specifications of how production, staging, test, and development machines are set-up. Apart from
automating deployment tasks, Ansible can be used for checking standard compliance, e.g., regarding security
measures.

4.3.2 Documentation
As described above, we define documentation as artifacts meant to be consumed after a software artifact was
realized. Especially in continuous software design specification, the need and the effort spent on
documentation is a sensitive topic, because developers strive for avoiding efforts that do not provide immediate
value. Additionally, it can be stated that the vast majority of software developers does not like creating
documentation [67]. The focus group discussions related to documentation dealt with the following questions:

9https://www.ansible.com

https://www.ansible.com

45

1. For which purpose do we create documentation and what types of documentation do we observe in
continuous software design specification?

2. When should we create documentation and how much is enough?
3. What is the role of architecture decision documentation in continuous software design specifica-

tion?
4. What problems can be observed regarding documentation?
5. How to effectively and efficiently provide documentation in continuous software design specifica-

tion?
In the following sections, we summarize the results for each of those questions.

4.3.2.1 Purpose and types of documentation in continuous software design specification
Generally, documentation is meant to explain aspects of software artifacts to stakeholders. Consequently,
different types of documentation exist to address the diverging information needs of the stakeholders. Basically
every type of specification mentioned above has a corresponding type of documentation. As one example, design
specification is used to support the initial creation of a software artifact, while design documentation is used
to explain the design of a realized artifact to developers who need to maintain or further develop the software
artifact. One participant stated that “places with rapid staff turnover more urgently feel the need for elaborate
documentation”. Additionally, for some types of applications, documentation is required for getting market
admission (e.g. for medical or safety-critical systems), or documentation is a contractual deliverable.

As in the context of specification, the participants said that missing documentation is most problematic
in large systems (without further discussing what large means exactly). Smaller systems could usually be
comprehended by analyzing configuration files and source code. Regarding architecture documentation, a
participant stated that “architectural design documentation is not needed very often during the development.
When it is required, you pull the architecture.”. Pulling here refers to generating architectural overviews from
other existing artifacts, e.g. UML component diagrams from source code.

To support the automatic generation of design documentation, the participants in different break- out groups
mentioned the tool Doxygen10. Doxygen is an example for a tool that creates documentation from source code
and special annotations used in source code. Apart from providing textual explanations on modules, methods,
parameters and the like, Doxygen can generate several graphs and diagrams to explain the structure of the
software in terms of modules and packages. This approach is compatible with the mindset of the software
craftsmanship school of thought, who proclaim that the truth is only in the code [68].

4.3.2.2 When is documentation created and how much is enough
As described above, documentation is meant to be consumed after the realization of a software artifact. After,
in this context, can mean during a subsequent task, in the next iteration, as part of an approval process by
stakeholders, or during maintenance, for instance. Most participants explained that they use items created
as specification also as documentation. In such cases, they plan for extra time close to releases for updating
specifications so they are self-contained and consistent with the current state of the software. Documentation is
treated as a piece of technical writing that needs to use the language of the prospective consumers. Especially
in cases where documentation is a contractual deliverable, documentation tasks are taken over in the task
planning and controlling system, efforts are estimated, and the results are reviewed to increase the quality of
the writing. However, the participants agreed that the time spent on documentation must be limited to the
minimum responsible amount. For reasons of efficiency, one participant advised: “Do slightly less than you
think is required”, so that if stakeholders complain that information is missing, this can easily be added, but
no time is unnecessarily spent on documentation.

4.3.2.3 Architecture decision documentation
Architecture decision documentation is a special type of documentation. The literature advocates thorough
documentation of architecture decisions, e.g. using decision templates (e.g. [69], [70]) or dedicated decision
views (e.g. [S61], [71]). During the focus group, the participants agreed that some form of architecture decision
documentation is needed. However, the detail level and required comprehensiveness of architecture decision
documentation was discussed controversially. Some participants stated that only the outcome of decisions is
documented, but not the rationale behind the decisions and not the considered alternatives. One participant

10https://www.doxygen.nl

https://www.doxygen.nl

46 CHAPTER 4. FOCUS GROUP REPORT

explained that he would “not document rationale because it is transient.”. What he meant was that decisions
are made in a specific context that can quickly change over time. Part of the context is the knowledge and
experience of the people who made the decisions, the available technologies at that time, current software hypes,
and approaching dead- lines, to name a few. He concluded that the rationale would most likely not be (fully)
valid anymore and that therefore the effort you would need to spent on thoroughly documenting rationale is
not reason- able. Another participant added that “having rationale too explicit can also cause people not to
think carefully themselves”. These statements of course could be seen as self-serving assumptions, because the
participants might be developers themselves who do not enjoy creating documentation.

Interestingly, the participants mentioned that most decisions are documented in the beginning of iterations,
while other types of documentation are delayed to the last responsible moment where the documentation needs
to be delivered. Especially for architecture decisions, it would be more beneficial to document them after
the software artifacts were realized and evaluated, because this gives new insights regarding the fitness of the
decisions, which could be processed in the documentation. This is particularly the case for decisions that would
not have been made with the progressive insight available.

4.3.2.4 Recurring problems of documentation

We also discussed typical problems with documentation and identified the following recurring issues (or ”doc-
umentation smells” to pick up a term from refactoring). Participants reported incidents such as:

• Version maze. Often, documentation is not explicit about the version of the software it describes. It is
then unclear to the reader whether the information provided is still up-to-date. Even worse, documen-
tation is sometimes compiled of items that describe different versions. In such cases, the documentation
drastically looses merit.

• Cyclic references. Documentation items often consist of multiple items or documents referencing each
other intensively. Sometimes, important aspects are not thoroughly described, because documentation
items reference each other in a cyclic way without actually providing the information at some place.

• Incompleteness. The participants experienced that documentation often contains “TODOs” and gaps,
i.e. parts of the system, or aspects, that are not described. This could be related to the phenomenon
that many people write documentation incrementally rather than iteratively. The writer starts with a
high level of rigor and comprehensiveness, but eventually misses time or motivation to continue in the
same fashion. As a result, the documentation becomes more and more inaccurate, or contains large gaps.
When wikis are used, empty pages or page stubs with ”under construction” as only content are a symptom
of this issue.

• Copy/paste of code or raw specification. Sometimes, documentation writers take over large large
snippets of code or design artifacts that are too detailed to effectively serve as documentation. One
participant gave an example “A large class diagram with hundreds of classes, methods and parameters
thrown at the reader has no value”. Sometimes, production data ends up in external documentation by
accident; usage of text that violates Netiquette or is not politically correct has also been reported and
qualifies as a specification/documentation smell as well.

• Presentation planet. Very often, documentation is prepared in form of a slide-based presentation.
This can easily be explained by the fact that managers and other non-technical stakeholders appreciate
short summaries with a language they understand. Using slide-based presentations as the only means
to document comes with several downsides. Presentations are often way too abstract for many purposes
(especially for developers and operators), the slides alone are ambiguous and require the “voice-over” to
be understood, and they typically do not contain references to the realized items they document. Info
decks, as described by M. Fowler11can be a reasonable compromise.

• Zombie specifications. Also known as dead documents. Specifications and documentation items might
not have any readership and might not have been updated in a long time. You can tell from missing
references to them in meetings and other specification/documentation items, as well as from access logs.
Such items qualify as waste from a lean management point of view; they should either be updated and
improved to meet an information need in a particular target audience, marked as ”stalled” and archived,
or discarded.

11see https://martinfowler.com/bliki/Infodeck.html

https://martinfowler.com/bliki/Infodeck.html

47

4.3.2.5 How to effectively and efficiently provide documentation in continuous software
design specification?

To remedy some of the aforementioned problems, the focus group participants discussed how the effort for cre-
ating documentation artifacts in continuous software design specification can be minimized, while still
providing the necessary information to the stakeholders. In other words, how can documentation be created
effectively and efficient? At first, the idea is intriguing to simply reuse specification artifacts as documentation.
However, as mentioned above, this comes with the downside that the documentation may contain gaps and
inconsistencies. One idea to tackle this problem was to apply practices known from source code refactoring also
to the documentation process. In software development, refactoring refers to the process of restructuring exist-
ing source code to make it more effective, or to make it more maintainable without changing the behavior of the
software. Likewise, refactoring specification into documentation would apply to improving the expressiveness
and suitability of existing specifications so that they can be used as documentation. Refactoring specifications
leads to documentation without changing the design of the software. We discussed the following (initial and
incomplete) specification refactoring:

• Split to stick to single responsibility. The single responsibility principle is taken over from agile
software development [72]. Interpreted in the context of documentation, the principle states that every
specification or documentation item should cover one specific aspect or part of the software that should
entirely be encapsulated by this documentation item. Groups of stakeholder concerns addressed by
viewpoints can be used to source these responsibilities.

• Apply open/closed principle. When refactoring specifications, make sure they are open for ex-
tension, but closed for modifications. This principle is adapted from the corresponding principle used by
the agile software development community [72]. Applied to specifications, you need to make sure that
adding additional information does not require (major) rework of the existing documentation. Semantic
versioning12 should be applied to specifications and documentation items just like for code.

• Remove repetition. Do not repeat yourself is a lean and agile tenet, so one should not provide the
same piece of information in different documentation artifacts. Repetition results in increased efforts and
higher risk of inconsistency when information is changed. The ”definition of done” for specifications and
documentation should include a check whether the same things have already been said elsewhere.

• Replace specification by realization. Related to the previous item, once a specified software artifact
was realized, refer to the realization instead of providing the same information in a different way. To give
examples, instead of describing object interaction using a UML-sequence diagram, let the code speak
for itself. Contemporary Integrated Development Environment (IDE)s have become so powerful that
exposing source code in the IDE is preferred by many developers over reading sequence diagrams.

• Document general structure instead of concrete realization. Instead of repeating information
that is also provided by the source code itself, describe the general structure of a software artifact or pick
one example and explain how the example can be adapted to other cases, as well.

• Throw specifications away. Some specifications have fully served their purpose when a software
artifact was realized. These specifications can be thrown away in the sense that they can be deleted and
only kept in the history of the knowledge management tool (e.g. Confluence as mentioned above).

• Provide yellow pages. Instead of striving for one large self-contained and complete document, split up
documentation items into smaller coherent chunks and provide overview pages with links to these smaller
chunks. A documentation chunk can be text, source code, a diagram, a model, a whiteboard sketch or
anything else that has value as documentation.

We also discussed when and how this process could take place in continuous software design specifica-
tion. Most participants said that the end of an iteration would be the most suitable point in time. Ideally,
documentation refactoring is done in pairs to decide when a documentation artifact is clear enough for the
indented audience. Reading the text out loud during the pair documentation refactoring session can be an
intense and highly productive experience. When preparing documentation, one should make good use of the
features provided by the typical tool suites used in continuous software design specification, e.g., for
cross-referencing between wiki pages, tasks, requirements, code, and quality metrics.

12see http://semver.org/

http://semver.org/

48 CHAPTER 4. FOCUS GROUP REPORT

4.4 Future Work
We plan to perform further research on how architecture specification and documentation can be better aligned
with continuous software design specification practices and tools. As part of this research, we will in-
vestigate further into the purposes, efforts, and differences between specifications and documentation, including
the preservation of rationale that went into architectural decisions made. In particular, research on DevOps
and continuous delivery in relation to architecture is interesting here, as well as ensuring that architecture
models are closer aligned to other software engineering artifacts like source code and configuration files, for
instance. The research results will be used to develop a lightweight architecture framework that embraces the
principles of continuous software development.

4.5 Acknowledgments
We would like to thank all participants of the focus group on software specification in continuous software
development, which took part at EuroPLoP 2017.

4.A. Appendices

4.A. A. POSTER

4.A. APPENDICES 49

The problem is how to provide just-enough adequate specifications.

The solution describes a rule how conflicts within the forces can be
resolved.

Forces are the factors of influence that should be taken into account
when deciding on a solution for the problem at hand. Forces are
often conflicting.

The context describes a situation where the problem occurs and the
solution is applied, i.e. specification in continuous software
development.

Uwe van Heesch ● Theo Theunissen ● July 2017

Principle Lean Agile DevOps

1. Efficiency,
effectiveness

1. Eliminating waste 1. Customer satisfaction
7. Working software is progress
8. Sustainable pace
10. Simplify

3. Measurement

2. Learning 2. Amplify Learning 12. Regular adjustments 4. Sharing

3. Flexibility 3. Decide as late as
possible

2. Welcome changes 1. Culture

4. Time to market 4. Deliver as fast as
possible

3. Frequent releases 2. Automation

5. Trust, attitude 5. Empower the team 5. Trusted individuals 7. Structures and standards

6. Improvement,
competences

6. Build integrity in 9. Technical excellence
11. Self-organizing teams

6. Quality assurance

7. Big picture 7. See the whole 6. Face-to-face conversation 5. Services

8. Involvement - 4. Collaborate with business people 7. Structures and standards

Specification in Continuous Software Development

● Developers strive for omitting artifacts that are not
immediately required for building a high-quality software
product.

● Just another view on a software product that is already
specified by the source-code is considered as wasted effort.

● Issues when specifications are not sufficiently defined:
○ Reasoning about architectural problems;
○ Supporting planning activities;
○ Defining interfaces between team members.

1. Specifications at the start of an iteration
a. A list of requirements to be addressed in the iteration.
b. An architectural vision.
c. A description of the technological ecosystem in which the software will be developed.
d. Information about the most important architectural concerns (i.e. quality attribute requirements

and business drivers), which determine the priorities of decisions to be made.

2. Specifications during an iteration
a. Specifications to continue development during an iteration cycle should codify agreements made

between individual team members or between multiple teams working on the same larger
application.

3. Refactored specifications at the end of an iteration
a. Revisit specifications created and updated (refactored) during the iteration and decide explicitly on

items relevant for the next iterations;
b. A description of (automated) steps to test, deployment and operations.

SO
LU

TIO
N

1. What is the difference between specification and documentation? What purposes do they serve
and for whom?

2. What is the role of architecture specification in continuous software development?
3. Should software specifications be organized around self-contained documents?
4. What is the role of models in this context?
5. What alternate forms of organizing specification items could be a better fit for continuous software

development?
6. What is the life cycle and scope of the different types of specifications and how does this life cycle

relate to the agile lifecycle, for instance?
7. Refactoring has become a common technique for improving the structure and quality of

source-code. How can similar techniques be used for specifications?
8. What is the role of (architectural) design decisions in this context? How to

share/document/update.. them?
9. How to efficiently preserve (architectural) knowledge and skills a development team gained

throughout multiple iterations/projects? What difference exists between generic and
application-specific knowledge and skills?

10. How can agile practices (e.g. sprint retrospectives) be leveraged in this context?
11. How can information needs by external reviewers and auditors be satisfied?
12. What’s the impact of business and technical domain specifics in this context?

DISCUSSION ITEMS

PRINCIPLES OF CONTINUOUS SOFTWARE DEVELOPMENT

FO
RCES

CO
N

TEXT
PRO

BLEM

1. Shaping thoughts
a. The process of specifying contributes to a better understanding of the

problem and envisioned solution of an application.

2. Progressive insight
a. During a software development process, developers gain new insights that

they need to consider in the implementation

3. Specification gaps require assumptions to be made
a. Silent assumptions bare the risk that individual team members make

decisions that interfere with or even contradict each other.

4. Hidden disagreements
a. Developers discuss a problem or an envisioned solution and actually talk

across purposes without realizing the agreements.

5. Overestimated competences and underestimated complexity
a. People tend to overestimate their own competences and skills

6. Time to market
7. On-boarding of new team members

a. Application-specific design knowledge needs to be transferred to the new
people in charge

8. Explored design space
a. Preserved knowledge from the past like templates, frameworks and libraries.

1. You have deliberately chosen to apply the principles of
continuous software development;

2. Your team has worked together on multiple software
products;

3. The people in your team know each other well and have an
established communication culture;

4. The team members are also knowledgeable about the
technological domain, in which the software product to be
developed resides.

WHITEBOARD SKETCH

SPECIFICATIONS

DECISIONS

● Developers strive for omitting artifacts that are not
immediately required for building a high-quality software
product.

● Just another view on a software product that is already
specified by the source-code is considered as wasted effort.

● Issues when specifications are not sufficiently defined:
○ Reasoning about architectural problems;
○ Supporting planning activities;
○ Defining interfaces between team members.

● Developers strive for omitting artifacts that are not
immediately required for building a high-quality software
product.

● Just another view on a software product that is already
specified by the source-code is considered as wasted effort.

● Issues when specifications are not sufficiently defined:
○ Reasoning about architectural problems;
○ Supporting planning activities;
○ Defining interfaces between team members.

● Developers strive for omitting artifacts that are not
immediately required for building a high-quality software
product.

● Just another view on a software product that is already
specified by the source-code is considered as wasted effort.

● Issues when specifications are not sufficiently defined:
○ Reasoning about architectural problems;
○ Supporting planning activities;
○ Defining interfaces between team members.

50 CHAPTER 4. FOCUS GROUP REPORT

Chapter 5

A Mapping Study on
Documentation in Continuous
Software Development1

Abstract Context: With an increase in Agile, Lean, and DevOps software methodologies over the
last years (collectively referred to as Continuous Software Development (CSD)), we have observed
that documentation is often poor.
Objective: This work aims at collecting studies on documentation challenges, documentation
practices, and tools that can support documentation in CSD.
Method: A systematic mapping study was conducted to identify and analyze research on docu-
mentation in CSD, covering publications between 2001 and 2019.
Results: A total of 63 studies were selected. We found 40 studies related to documentation
practices and challenges, and 23 studies related to tools used in CSD. The challenges include:
informal documentation is hard to understand, documentation is considered as waste, productivity
is measured by working software only, documentation is out-of-sync with the software and there is
a short-term focus. The practices include: non-written and informal communication, the usage of
development artifacts for documentation, and the use of architecture frameworks. We also made
an inventory of numerous tools that can be used for documentation purposes in CSD. Overall,
we recommend the usage of executable documentation, modern tools and technologies to retrieve
information and transform it into documentation, and the practice of minimal documentation
upfront combined with detailed design for knowledge transfer afterwards.
Conclusion: It is of paramount importance to increase the quantity and quality of documentation
in CSD. While this remains challenging, practitioners will benefit from applying the identified
practices and tools in order to mitigate the stated challenges.

Keywords Agile, DevOps, Documentation, Continuous Software Development, Lean, Systematic
mapping studies, Systematic reviews

5.1 Introduction
In recent years, we have seen an increase in the adoption of Lean and Agile software development, as well as
DevOps. In our previous work [30], [S31], [S32], we have introduced the term Continuous Software Development
(CSD) as an umbrella term to collectively refer to such development processes and other processes that share

1This work was originally published as:

T. Theunissen, U. van Heesch, and P. Avgeriou, “A Mapping Study on Documentation in Continuous Software Development,”
Information and Software Technology, vol. 142, p. 106733, 2022, doi: 10.1016/j.infsof.2021.106733.

51

52 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

the following characteristics:
1. it covers the values, principles and practices from Agile ([1]), Lean ([2]) and DevOps.
2. it embraces activities from the whole life cycle of a software product, from concept to end-of-life. In

addition to Agile and Lean software development, it includes maintenance activities. In addition to
DevOps, it includes continuous architecting activities ([3]).

3. it considers the continuously changing state of the software product and progress, such as progressive
insights (e.g. regarding process, design, implementation), changes in contextual factors, new features,
bug fixes, or other unforeseen factors.

4. it distributes information about software development across multiple tools, because of demands for fast
time-to-market, as well as the need for a software development ecosystem for automated tests, deployment,
and monitoring. Thus, no central repository for all information is available.

One of the main challenges in CSD is that documentation is poor [1], [2], [73]. This challenge hinders
knowledge transfer [S74], has a bad impact on maintenance [S75] and introduces a steep learning curve [S76]
for new team members. We elaborate further on these consequences. First, knowledge transfer is hindered
when knowledge about the software product, such as decisions, bugs, context, and practices, remains implicit
in the minds of developers and is only informally written in whiteboard sketches. As a result, knowledge walks
literally out the door at the end of a daily stand-up or even leaves the company (many companies have high staff
turn-over) [77]–[79]. Second, it is hard to act when bugs show up, new features or non-functional requirements
arise. Developers are forced to make assumptions about decisions, interfaces, or priorities; such assumptions
are often wrong [80]–[82]. Third, the system is hard to understand for the different stakeholders, including
developers. Especially, when the team scales up, or team members switch to other projects, newcomers go
through numerous trial-and-error attempts before they can contribute well [83]–[85], [S86].

There is plenty of information in the different tools that are used, but that is mostly related to implementa-
tion, deployment and operations. The following, exclusively distinctive types of information are often lacking,
incomplete, out-of-date, or of low quality [21]:

1. Stakeholders and their concerns. This is key in prioritizing requirements and mitigating risks. A stake-
holder is anyone who has an effect on the system or is affected by the system [87], [88].

2. Risks. Risks can endanger the project [63], and manifest as incomplete information, lack of information,
or factors that are out of control of the development team.

3. Assumptions and constraints. Both delimit the solution space, but are very often tacit or implicit [S89].
4. Context and environment. This includes anything that has an effect on the system but is not included in

the primary goals, such as legal2 and environmental issues3 [90].
5. Design decisions and their rationale. The rationale typically concerns trade-offs between qualities, busi-

ness factors, in-house expertise etc. [S61], [69].
6. Design and/or architecture specifications. Even if design specifications are created, they are typically not

updated according to changes in requirements and context, and thus become out-of-sync with the actual
code [91].

As a first step in addressing the problem of poor documentation in CSD, we decided to look into the current
state of practice as reported in scientific literature. Specifically, we conducted a systematic mapping study on
identifying the challenges of documentation in CSD as well as the practices and tools that can potentially
support documentation. We selected to study these aspects in order to shed light into both the problem
(documentation challenges) and the solution (practices and tools); we note that practices and tools are the
primary means for architecture documentation [92]. Our aim is to shed light on what is currently on offer for
documentation purposes in a CSD context, as well as what is still lacking.

Our results indicate that documentation is considered waste in Lean development when it does not con-
tribute to the end product. Consequently, developers tend to minimize documentation or leave it out. Further-
more, documentation is often out-of-sync with the software, irrespective of whether documentation is within
the source code or documented in wiki-like systems. Moreover, the focus is only short-term: knowledge about
design decisions, practices, and lessons learned are within a team, primarily when the team is gathered in a
single geographical location. The practices we discovered are that written documentation is left out, and com-
munication is informal, while development artifacts are used as a specification. Finally, the use of architecture
frameworks can also support sound documentation.

We decided to conduct a SMS instead of a systematic literature review (SLR). SMS are typically used
for newer research topics where there are few or no secondary studies and the main objective is to classify

2For instance privacy as defined in the General Data Protection Regulation (GDPR).
3E.g. low CPU consumption.

53

and conduct a thematic analysis of literature [93], [94]. Further motivation for the use of SMS versus SLR is
provided in the beginning of Section 5.

5.1.1 Research Questions
We formulate the goal of the study using the format of the Goal-Question-Metric (GQM) approach [95]: Ana-
lyze literature for the purpose of exploration, characterization and analysis with respect to documentation
challenges, practices, and tools from the point of view of researchers and industry practitioners in the
context of Continuous Software Development. Based on the aforementioned goal, we have set the following
research questions:

RQ1 What are the documentation challenges and specific practices in CSD?
We already know of several challenges in CSD. We have established that poor documentation hinders
knowledge transfer [S74], which, in turn, has a bad impact on maintenance [S75] and introduces a steep
learning [S76] curve for new team members. Furthermore, documentation seems to have a lower value in
CSD, than in traditional software development processes such as Rational Unified Process (RUP) [96].
For example, the Agile Manifesto explicitly values working code over written documentation; face-to-
face communication is considered the most effective way of conveying information [1]. In Lean software
development, documentation is often considered waste, as it does not directly contribute to customer
satisfaction [2]. In DevOps, infrastructure is key to fast deployment and information is represented as
code [73], rather than written documentation. With this research question, we aim at understanding in
more depth such challenges that work against documentation in CSD. We also strive to uncover potential
practices that result in successful documentation in the context of CSD.

RQ2 Which tools from the Continuous Software Development ecosystem can be used for documentation
purposes?
CSD relies heavily on tooling in order to achieve faster deployment, continuous testing, and monitoring
quality [S97]. These tools contain much information about source code and configuration (e.g. git),
test cases (e.g. Cucumber), deployment (e.g. Docker or Jenkins) and quality (e.g. SonarQube). This
information would typically also be documented in software design description documents. With this
research question, we want to understand which tools are used in CSD and how they could additionally
be exploited for documentation purposes.

5.1.2 Related Secondary Studies
There are several secondary studies on the topics of Lean, Agile and DevOps. In the following, we describe
those studies that discuss documentation in Lean, Agile and DevOps. We also present the reason why they
are related and which gap our study attempts to address. These five studies address issues, describe industry
practices, and propose and explore processes, tools and methods.

Rodríguez, Haghighatkhah, Lwakatare, et al. [98] analyze the body of knowledge in Continuous Deploy-
ment [98]. They give an overview of concepts and typical characteristics of continuous deployment, such as
fast and frequent releases, and continuous automated testing. The authors emphasize the importance of tools
for supporting continuous integration and continuous delivery, but they do not address the relation between
tooling and documentation.

Diebold and Dahlem [99] looked into agile practices in the industry under different circumstances, such as
different project types, domains, or processes [99]. They found that agile practices appear in most projects
across several industry domains. Such agile practices are used in methods like Scrum, Kanban, and eXtreme
Programming (XP). The study focuses specifically on the development activities that lead to the first major
release, whereas maintenance concerns are not particularly taken into consideration. The study does not cover
documentation in agile projects.

In two different secondary studies on requirements engineering in agile software development, Heikkilä,
Damian, Lassenius, et al. [100] and Curcio, Navarro, Malucelli, et al. [101] independently found that there is
no clear line on how requirements engineering activities should be performed in agile processes; the overall
understanding of requirements engineering in agile software development is still rather immature. Both studies
report that an agile development team usually comprises highly skilled and experienced developers who act on
their knowledge and skills; this knowledge and the thought process of developers is usually not written down in
documents, i.e. agile teams rely mainly on tacit knowledge. Furthermore, these highly skilled professionals are
often required for other jobs and frequently switch teams. New team members, who might be less qualified and
experienced, do not know the decisions and actions taken. Heikkilä, Damian, Lassenius, et al. [100] suggest

54 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

that knowledge should be written down for new team members [100]. Neither the study of Heikkilä, Damian,
Lassenius, et al. [100], nor the one of Curcio, Navarro, Malucelli, et al. [101] discussed documentation practices,
and tools.

Shafiq and Waheed [102] found that agile development teams often make use of predefined document
templates as a means for efficient standardization [102]. For instance, Feature-Driven Development (FDD) uses
templates for use cases and functional requirements, Scrum uses user stories (as <role>, I want <objective>
because of <rationale>). Generally, agile teams avoid recording long, complex, strictly-defined or rigid pieces
of information in textual documents.

In summary, documentation concerns in CSD are gaining attention within the research community. How-
ever, there is currently no consensus on concrete documentation practices. There is no practice or documented
tooling that can be used for documentation purposes; instead, information is distributed across software devel-
opment tools.

5.1.3 Paper Structure and Reference Styles
The remainder of this document is structured as follows: in Section 5, we present the study design. Section 5
provides demographic information about the selected primary studies. In Section 5.11, we discuss the results
and provide our own interpretation, as well as implications for researchers and practitioners. Finally, we discuss
potential threats to the validity of this work in Section 5.11.

We use two styles of references in this study. One style refers to the primary studies that are analyzed to
answer the research questions. These references are denoted with an S (for study) and a number within square
brackets, e.g. [S123] refers to study 123 that is shown in 10. The other style of reference is without the ‘S’; it
refers to papers that do not belong to our set of primary studies but are used for other purposes (for instance
in the Related Secondary Studies section) and can be found in the References.

5.2 Study Design
As a method to conduct this literature study, we considered a SLR, as well as a SMS. Table 5.1 is adapted
from Kitchenham, Budgen, and Brereton [93] and compares typical characteristics of the two methods.

Characteristic SLR SMS
Goals Identification of best practices Classification and thematic analysis of

literature
Research Questions Specific - related to outcomes of empir-

ical studies
Generic - related to research trends

Search process Based on research questions Defined by topic area
Scope Focused - outcomes of empirical studies Broad - includes non-empirical studies
Search strategy requirements Exhaustive - all relevant studies should

be found
Less stringent

Quality evaluation Important. Results must be based on
best-quality evidence

Not essential. Non-empirical studies
may make quality evaluation hard

Results Using outcomes of primary studies to
answer specific research questions

Categorization of papers into dimen-
sions

Table 5.1: Comparison of typical characteristics in literature research methods

Using these seven characteristics, we justify why we used the systematic mapping study as follows:
1. Goals. We want to present a broad overview of literature and to categorize this literature in dimensions.
2. Research Questions. We address broader research questions regarding the trends in documentation

challenges, practices, and tools in CSD.
3. Search Process. We are looking into a specific topic area: documentation in CSD.
4. Scope. We focus on both empirical and non-empirical studies. The topics of Agile, Lean and DevOps

are very practitioner-oriented, thus we expect that, at least part of literature is not empirical.
5. Search strategy requirements. We are looking at trends, so we can afford to be less stringent.
6. Quality Evaluation. The combination of non-empirical and empirical studies makes it complicated to

evaluate the quality of primary studies.
7. Results. We aim at classifying papers into dimensions.
Based on these reasons, we chose a systematic mapping study over a systematic literature review. We follow

the guidelines of Petersen, Feldt, Mujtaba, et al. [103] for systematic mapping studies [103]. Figure 5.1 depicts
the steps of the study as well as the steps of the study protocol. Arrows pointing in both directions indicate

55

ABC

ABC

ABC ABC

ABC

ABC

BC

ABC

ABC

BCD

BC

ABC

BC

ABCD for contributions from Researcher A, B, C, DLegenda

BC

BC

BC

CD

BC

Figure 5.1: The study process and the protocol

that steps were performed iteratively. In the following sections, we briefly describe each of the steps of the
study protocol (right part); the steps of “Phase 2: Execute study”(left part) are elaborated in Section 5.

Figure 5.1 shows the contributions for all team members for each process step. The team comprises four
researchers (labeled A, B, C, and D), varying in seniority. Two researchers selected studies, read the title,
keywords, abstract and full paper. This resulted in a raw result set with candidate studies. Two other
researchers read only the title, keywords and abstracts of the studies in the raw result. Studies that did
not contribute to answering the research questions were rejected from the final result set. Finally, all team
members read papers from the final result set. In Figure 5.4, we made a distinction between raw results with
candidate studies and final result sets with studies that contribute to answering research questions. Thus, it
shows results per step and studies that were read concerning titles, keywords, abstracts, and full papers. By
making a distinction between raw results and final results, we established a process for reaching consensus.

5.2.1. Search Strategy
The search process combines a manual process with automated search. A manual search process typically has
a higher accuracy than automated search, because it focuses on targeted venues, but it also has a risk of bias,
because of the researcher’s personal preferences. Additionally, it is more time-consuming. Other criteria such
as transparency and reproducibility are hard to achieve with a manual search, even if all quality and evaluation
criteria are explicitly defined [104], [105]. Furthermore, automated search is typically more comprehensive
than manual searches [104], [105]. We therefore decided to apply a combination of both methods. The manual
search process, as well as the automated search will be further elaborated in Section 5.

5.2.2 Scope of Search and Sources Searched
The scope for this study is limited by the following criteria:

1. The study is published between January 2001 (i.e. the publication of the Agile Manifesto ([1]) and
February 2019 when the writing of this report started;

2. The study can be found in scientific databases in the field of software engineering, that include journals,
conference papers, and workshop papers; the following sources were used: ACM, IEEE, ScienceDirect,

56 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

SpringerLink and WebOfScience. These databases are quite commonly used in secondary studies in
Software Engineering [106].

5.2.3 Inclusion and Exclusion Criteria
Inclusion and exclusion criteria help to make a transparent and reproducible selection of papers in the mapping
study. Papers are included if they meet all of the inclusion criteria and excluded if they meet any of the exclusion
criteria. The criteria are exhibited in Tables 5.2 and 5.3.

ID Inclusion criteria
I1 PDF or full text must be available
I2 Domain or discipline must be software engineering
I3 Study must be written in English
I4 Study must be peer reviewed
I5 The search terms must appear in title, keywords or abstract

Table 5.2: Inclusion criteria

ID Exclusion criteria
E1 Study is a duplicate of another study in scope

Table 5.3: Exclusion criteria

5.2.4 Search Process
The search process follows the steps in the execution phase (see Figure 5.1, left part). The study was conducted
by four researchers. The data collection was done by the corresponding author with the assistance of a
master student; the analysis and interpretation was performed by all authors. We began the process with the
snowballing technique by following Wohlin [107] guidelines (see Figure 5.2) [107]. Specifically, we formed an
initial set of papers on subjects, topics, and authors we found relevant for this SMS. Additionally, we asked
subject-matter experts from academia and industry to come up with papers they deem primarily relevant for
this study (see appendix 5.11). With the resulting set of papers, we conducted the snowballing technique until
no more relevant publications could be found.

The resulting set of papers was used to define a Quasi-Gold Standard (QGS), which is a “well-known” set of
papers that are relevant to evaluate the results and to establish a search string for an automated search ([108]).
The search string was based on the QGS. The performance of the search string was performed by comparing
the results of the automated search with the QGS: all papers from the QGS were returned from the automated
search.

Subsequently, we defined the search string, based on the words from the title, keywords and abstract from
the papers in the QGS. We used the n-gram procedure to assist us in establishing the search string [109].
Specifically, we first removed 1,000 common English stop words4. Next, from the remaining words we took
sequences of words to cover the domain (CSD) and the research questions. A manual step was required to
adjust the search string to make it more efficient by removing unnecessary terms. Especially for RQ2, we added
a wildcard to leave the single “document” out, as searching for “document” resulted in too many irrelevant hits.
The resulting search string we used for the automated search is:

-- domain
(lean
OR agile
OR DevOps
OR "continuous software"
OR scrum
OR "extreme programming"

4https://gist.github.com/deekayen/4148741

https://gist.github.com/deekayen/4148741

57

Iden y a tenta e set
of papers and evaluate
papers for inclusions

and exclusions.
Included papers enter

the snowballing
procedure

Start
literature search

Backward
Iterate:
1) Look a
reference list;
2) Look at place of
reference;
End iterate:
3) Look at the abstract
of the paper
referenced;
4) Look at the full
references paper.

Forward

1) Look a

;
2) Look at the abstract

3) Look at the place of
the cita
paper;
4) Look at the full

In each step in both forward and backward
snowballing, it is possible to decide to exclude or

tenta ely include a paper for further
considera

Snowballing

Final inclusion of a paper should be done based on the
full paper, i.e. before the paper can be included in a

new set of papers that goes into the snowballing
procedure

Finish
the snowballing

process if no new
papers are found

Iterate un w
papers are found

Get input from external
experts from academia

and industry

Figure 5.2: The snowballing search process (adopted from Wohlin [107])

)
-- RQ1
AND (
documenti*
OR documenta*
)
-- RQ2
AND (tool*)
)

With the search string defined, the execution of the database search was performed. For this, we scraped
the meta-data from the online libraries to store it locally in our database. The reason for local storage is to
compare studies equally. In the first place, the online search engines all do have a different query language
which look similar when it comes to syntax, but the one online library is more precise in targeting than the
other online library, especially the discipline (e.g. SpringerLink) or domain (e.g. ACM). Second, the online
libraries do not use the same data model for the bibliographical data, for instance, the meta-data has a different
format (BibTeX, RIS). Another difference is the type of the fields, such as the fields for “authors”, “titles” and
“keywords” might either be a string or a list. The third reason is to be able to add tags, labels and comments
for answering research questions.

5.2.5 Data Extraction
For each study, the information shown in table 5.4a was collected. The attributes for the title (F1), keywords
(F2) and abstract (F3) where used for snowballing and calibration of the search string. We used Mendeley5

5https://www.mendeley.com

https://www.mendeley.com

58 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

ID Attribute Usage
F1 Title snowballing, search string calibration, synthesis
F2 Keywords snowballing, search string calibration
F3 Abstract snowballing, search string calibration
F4 Full text exploration
F5 Publishers database inclusion / exclusion
F6 Year inclusion / exclusion
F7 Documentation, documenting, architecture framework RQ1
F8 Tools, tooling RQ2

(a) Data Extraction Form

for storing and tagging the papers during the initial phases. With the tags it was easy to select the papers.
We commented the papers with keywords and comments for relevance, as well as terms that can be used for
the search string. The suggestions for studies from external experts were also stored in Mendeley and tagged
accordingly. During snowballing and establishing the Quasi-Gold Standard, Mendeley was used to store,
comment the papers and add keywords. With the automated search, the results were too many to store in
Mendeley, thus we used a database to store them. The database was structured according to the basic BibTex
bibliographic references6, supplemented with extra fields for additional keywords, categories, and concepts.

The attribute full text (F4) was used in exploring the research area in the pilot search. The attribute values
for publishers database (F5) and year (F6) were required by the inclusion and exclusion criteria. Attributes F7
and F8 were used for answering the two research questions.

5.2.6 Data Analysis
For the analysis of quantitative data, we used descriptive statistics. For the analysis of qualitative data, we
adapted the approach of Schwandt [110], as depicted in Figure 5.3. As supporting tooling, we used Atlas.ti7.
We started with the studies from the final result set. Next, we read the studies and marked text when it
answered or contributed to a research question. This resulted in marked text. In the second step, we coded
the marked text with keywords that characterize the fragment. The keywords could be individual words from
the marked text but also other words that are typical for the marked text. We also used an online thesaurus
and used Google to come up with additional or alternative keywords. The result of the coding step is a list of
keywords. The third activity was grouping keywords into categories. Categories are a higher-order abstraction
of the keywords. The result of the grouping of keywords is a list of categories. The fourth activity concerns
identifying relations between categories. The relations denote connections among categories. The types of
relations are derived from UML: activity edges, associations, dependencies, generalizations, realizations, and
transitions. We kept the number of relations to a minimum to have clear distinctions between the resulting
concepts. The activities for keywords, categories, relations, and concepts were iterated until no more refinement
was possible. The last activity was the mapping of the concepts on the systematic map (see Figure 5.7).

5.3 Results
This section describes the results of the mapping study, according to the guidelines of Petersen, Feldt, Mujtaba,
et al. [103]. First, we show the demographic data of the identified studies (Section 5). Then we classify the
studies according to our research questions using a facet map (the systematic map) in Section 5. Finally, we
discuss the results in the context of each individual research question: RQ1 in Section 5 and RQ2 in Section 5.

5.3.1 Demographic Data
As described in 5, we used a two-fold search strategy comprising 1) a purely manual search based on input
from subject-matter experts and snowballing and 2) an automated search. The results from both search types
were merged, resulting in 58 unique papers that were used for answering our research questions. Figure 5.4
illustrates this process again together with the numbers of papers resulting from each individual step. The
initial set of four papers was relevant content-wise, but did not pass our inclusion criteria, because they are not

6https://en.wikibooks.org/wiki/LaTeX/Bibliography_Management
7https://atlasti.com/

https://en.wikibooks.org/wiki/LaTeX/Bibliography_Management
https://atlasti.com/

59

g

Descrip
Rela tween the

categories were
iden esult is
a list of concepts with

a es.

4.
Iden ying rela

Result:
Categories

Result:
Concepts

Descrip
The keywords were

grouped into
categories. Categories

are a higher order
(abstr

keywords. The result is
a list of categories

3.
 Grouping keywords

Result:
Keywords

Descrip
Keywords were added

to the marked text that
characterizes the

fragment. The result is
a list of keywords.

2.
Coding marked text

Result:
Bubble Chart

Descrip
The concepts were

mapped to the
dimensions on the

bubble chart
(Petersen, 2008).

5.
Mapping concepts

Result:
Marked text

Descrip
Atlas. as used to
read the full texts in

the final set. Text was
marked when it

answered or
contributed to an RQ.
The result is a list of

marked text.

1.
Exploring full text

Fi
na

l r
es

ul
t s

et

w
ith

 s
tu

di
es

 fo
r

al
l r

es
ea

rc
h

qu
es

Figure 5.3: Qualitative classification process on the final set (Schwandt [110])

+ + + + + ⊂

Inital set of papers

Read Title, Abstract and Keywords

 Read Raw Results

Read Used Results

Process
steps

Raw
results

Used
results

Researcher A

Re
se

ar
ch

er
 A

Re
se

ar
ch

er
 B

Re
se

ar
ch

er
 C

Re
se

ar
ch

er
 D

Re
se

ar
ch

er
 A

Re
se

ar
ch

er
 B

Re
se

ar
ch

er
 C

Re
se

ar
ch

er
 D

Re
se

ar
ch

er
 A

Re
se

ar
ch

er
 B

Re
se

ar
ch

er
 C

Re
se

ar
ch

er
 D

Re
se

ar
ch

er
 A

Re
se

ar
ch

er
 B

Re
se

ar
ch

er
 C

Re
se

ar
ch

er
 D

Re
se

ar
ch

er
 A

Re
se

ar
ch

er
 B

Re
se

ar
ch

er
 C

Re
se

ar
ch

er
 D

Re
se

ar
ch

er
 A

Re
se

ar
ch

er
 B

Re
se

ar
ch

er
 C

Re
se

ar
ch

er
 D

Re
se

ar
ch

er
 A

Re
se

ar
ch

er
 B

Re
se

ar
ch

er
 C

Re
se

ar
ch

er
 D

Get input from
external experts Snowballing

191394 2,708 ⊂ 35,260 N/AN/A9

56
Table 7

3
Appendix 3

0 63
Table 8

58 (unique papers)
Table 9, Appendix A

09
Table 5

Establish
Quasi-gold
standard

Develop
search string

definition

Execute
database search

Apply analysis

✔

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✘ ✘ ✘ ✘

✔ ✔ ✔

✔

✔

✔ ✔ ✔✔

✔ ✔

✔

✔

✔

✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔ ✔

✔

✔ ✔✔

✔

✔

✔✔

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

✔

✔ ✔ ✔ ✔

✔ ✔ ✔✔

Legenda
Fully read

✔ Skimmed
✘ Not Applicable

Figure 5.4: Overview of search results per step.

scientific studies. Nevertheless, they served as a basis for the snowballing procedure, together with the input
from the external experts, who suggested 39 articles in total (see Appendix 5.11), out of which three papers
matched our criteria. The snowballing procedure delivered 92 studies. We studied these articles to select a set
of nine studies (shown in Table 5.5) that we consider a Quasi-Gold Standard.

The QGS was used to validate the search string for the automated search, i.e. we tweaked the search string
iteratively until all studies in the QGS ended up in the results of the search. Table 5.6 shows the search string,
its relation to the research questions, and the number of hits in abstracts, keywords, or title, respectively. The
column Intersection shows the number of papers in which the search term was found in all three parts of the
studies. In total, we ended up with 58 unique papers that relate to our research questions (i.e. 40 for RQ1
plus 23 for RQ2 makes a total of 63 non-unique papers).

Table 5.7 shows the papers identified during the manual search, Table 5.8 shows the automated search
results. The union resulted in 58 unique studies (see Table 5.9) that were analyzed in the next step.

The distribution of studies according to publication types is displayed in Figure 5.5. About 80% studies
are from conferences.

Figure 5.6 plots the publication years of all identified studies. Clearly, the topic is increasingly gaining
attention in the research community. decided to look into the current state of practice

60 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

Workshops

15

Conferences

34

Journals

12

Figure 5.5: Distribution per year

Figure 5.6: Distribution per year

61

ID Publication
[S111] A Study of Documentation in Agile Software Projects - Voigt, Stefan;

von Garrel, Jorg; Muller, Julia; Wirth, Dominic
[S112] A study of the documentation essential to software maintenance - de

Souza, Sergio Cozzetti B; Anquetil, Nicolas; de Oliveira, Káthia M
[113] Agile Documentation: A Pattern Guide to Producing Lightweight Doc-

uments for Software Projects; A. Rüping
[S32] Software Specification and Documentation in Continuous Software De-

velopment: A Focus Group Report - Van Heesch, U.; Theunissen, T.;
Zimmermann, O.; Zdun, U.

[S31] Specification in Continuous Software Development - Theunissen, T.,
Van Heesch, U.

[S114] SprintDoc: Concept for an agile documentation tool - Voigt, Stefan;
Huttemann, Detlef; Gohr, Andreas

[S115] Supporting agile software development through active documentation
- Rubin, Eran; Rubin, Hillel

[S116] Towards the essentials of architecture documentation for avoiding ar-
chitecture erosion - Gerdes, Sebastian; Jasser, Stefanie; Riebisch,
Matthias; Schröder, Sandra; Soliman, Mohamed; Stehle, Tilmann

[S117] Using design rationales for agile documentation - Sauer, T

Table 5.5: The Quasi-Gold Standard

RQ Query Abstract Keywords Title Union Intersection
(BASE
QUERY)

(lean OR agile OR DevOps OR
'continuous software' OR scrum
OR 'extreme programming')

8,286 4,552 4,361 9,817 2,708

RQ1 QUERY AND ('documenti*' OR
'documenta*')

138 32 29 143 18

RQ2 QUERY AND (tool*) 465 68 89 485 29

Table 5.6: Automated search results per RQ and abstract, keywords or title

RQ Found Studies
RQ1 38 [S118], [S119], [S120], [S121], [S74], [S122], [S123], [S124], [S112], [S125],

[S126], [S116], [S127], [S128], [S129], [S130], [S131], [132], [S133], [S75],

[S134], [S135], [S115], [S136], [S117], [S137], [S138], [S139], [S76], [S111],

[S140], [S141], [S142], [S143], [S144], [102], [S31], [S145]

RQ2 18 [S146], [147], [S148], [S118], [S121], [S149], [S150], [S86], [S151], [S152],

[S153], [S134], [S136], [S114], [S140], [S154], [S155], [S97]

Table 5.7: Studies contributing to answering the research questions from the manual search

RQ Found Studies
RQ1 40 [S118], [S119], [S120], [S121], [S74], [S122], [S123], [S124], [S112], [S125],

[S126], [S116], [S127], [S128], [S129], [S130], [S131], [132], [S133], [S75],

[S134], [S135], [S115], [S136], [S117], [S137], [S138], [S139], [S76], [S31],

[S111], [S140], [S141], [S156], [S142], [S143], [S144], [102], [S31], [S145]

RQ2 23 [S146], [147], [S148], [S118], [S157], [S121], [S149], [S150], [S86], [S151],

[S158], [S152], [S153], [S134], [S159], [S136], [S160], [S114], [S140], [S154],

[S155], [S161], [S97]

Table 5.8: Studies contributing to answering the research questions from the database search

5.3.2 Classification Scheme Using a Systematic Map
As a next step in the analysis, we classified the studies using a systematic map, as described by Petersen,
Vakkalanka, and Kuzniarz [94] and Petersen, Feldt, Mujtaba, et al. [103]. Each study was categorized using
three facets: 1) a contribution facet covering the type of contribution to the software engineering domain, 2)
a research type facet describing the type of study and 3) a context facet that maps the content of the studies
to our research questions. Figure 5.7 shows the resulting map using two bubble charts. The size of the bubble
represents the number of studies falling into the corresponding categories. The absolute number of studies is
shown in the centers of the bubbles followed by a letter that refers to the list of studies that can be found

62 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

RQ Found Studies
RQ1 40 [S118], [S119], [S120], [S121], [S74], [S122], [S123], [S124], [S112], [S125],

[S126], [S116], [S127], [S128], [S129], [S130], [S131], [132], [S133], [S75],

[S134], [S135], [S115], [S136], [S117], [S137], [S138], [S139], [S76], [S31],

[S111], [S140], [S141], [S156], [S142], [S143], [S144], [102], [S31], [S145]

RQ2 23 [S146], [147], [S148], [S118], [S157], [S121], [S149], [S150], [S86], [S151],

[S158], [S152], [S153], [S134], [S159], [S136], [S160], [S114], [S140], [S154],

[S155], [S161], [S97]

Table 5.9: Final set of studies that contribute to answering the research questions

Year RQ1 RQ2 Total
2001 1 0 1
2002 1 0 1
2003 3 0 3
2004 0 1 1
2005 3 0 3
2006 0 0 0
2007 0 2 2
2008 4 5 9
2009 0 4 4
2010 5 1 6
2011 4 2 6
2012 4 2 6
2013 5 2 7
2014 9 3 12
2015 1 2 3
2016 6 8 14
2017 12 5 17
2018 2 7 9
Total 60 44 104

Table 5.10: Publications per year for RQ1, RQ2 and totals per
year and RQ

in Appendix 10. For example, in the coordinate plane between the Context Facet “Documentation subjects:
architecture” and Research Facet “Solution Proposal”, the bubble represented by the letter “k” shows that 17
studies have been found. Studies can appear in multiple facets. The total number of 58 unique studies has
been mapped 200 times.

For the contribution and research facets, we used existing classification schemes by Petersen, Feldt, Mu-
jtaba, et al. [103], and Wieringa, Maiden, Mead, et al. [162], respectively. The classification scheme for the
Contribution facets from Peterson [103] describes the potential categories of a paper’s contribution: Metric,
Tool, Model, Method, and Process. For our Systematic Mapping Study, we moved the Tool category to the
Context facet, because RQ2 concerns tools. The classification scheme for the Research facets from Wieringa,
Maiden, Mead, et al. [162] includes six types, four of which were found in our primary studies:

1. Validation Research. The investigation of a problem or implementation of a technique in practice.
2. Evaluation Research. The validation of a solution proposal that has not yet been investigated.
3. Solution Proposal. This type of papers contains solution proposals without validation.
4. Experience Papers. This type of papers describe what has been experienced by the author as matters

of fact, and do not describe the reasons why.
The categories of the context facet evolved while doing the data extraction. We merged categories where

appropriate to keep the number of categories small so we could plot them against the other two facets. In the
following, those categories are briefly described. Additionally, we assign each category to one of the research
questions:

1. Documentation life cycle: aspects of creation, maintenance and management of documentation artifacts
(RQ1).

2. Documentation subjects: architecture: architecture related documentation such as design, solutions and
architecture description (RQ1).

3. Documentation subjects: source-code: the documentation of source-code and source-code related aspects

63

Figure 5.7: Mapping of classification facets with papers

such as version control (RQ1).
4. Documentation subjects: auto generated documentation: the storing and retrieval of documentation that

is scattered throughout a software ecosystem and is stored in tools such as git commits, Jira tasks or
wiki-like documents (RQ1). Please note that we omitted the term “documentation” in the bubble chart
to ease readability.

5. Documentation subjects: decisions: software architecture decisions and their rationale (RQ1).
6. Tool : how tools are used in supporting documentation in continuous software development (RQ2).
Figure 5.7 shows that architecture documentation is a popular topic within the studies (42 papers in total),

predominantly as solution proposals (21 papers) and evaluation research (18 papers). The documentation
life cycle is also found in many studies (28 papers), as well as source-code documentation (25 papers), again
primarily in the shape of solution proposals or evaluation research.

The most frequent contribution types of the identified studies are method (44 papers), metrics (35 papers),
and models (27 papers); all three are mostly found on architecture documentation. It is notable that the
least number of studies map to the tool category, which we consider counter-intuitive as continuous software
development is a discipline that makes vast use of tool-ecosystems and automation.

5.3.3 Results for RQ1: Documentation Challenges and Practices
This section describes the results of our analysis on studies assigned to RQ1 (What are documentation practices
and resulting challenges in CSD?). Table 5.9 lists all studies considered in this analysis. Continuous software
development, as mentioned in the Introduction section, is not a development process model on its own; it
is rather an umbrella term for existing methods that share certain characteristics. The papers found in this
mapping study cover the following specific process models and methods:

• Lean Software Development [2],
• Scrum [1],
• Extreme Programming (XP)[S163],
• Feature-Driven Development (FDD) [S164],
• Crystal Clear [S165],
• Adaptive Software Development (ASD) [S166],
• Dynamic systems development method (DSDM) [102], [S167],
• Microsoft Solution Framework (MSF) [102], [S168],
• Agile Unified Process (AUP) [102], [169],
• and Test Driven Development [S60].
In the context of these process models and methods, we identified the documentation challenges listed

below. By documentation challenges, we refer to obstacles that developers face towards documenting knowledge

64 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

about the system or keeping it up to date.
1. Informal documentation is hard to understand. As stated above, the sparse written documentation

in CSD is often informal and volatile (e.g. white board sketches and drawings [S138], [S126]). Prashant
Gandhi, Haugen, Hill, et al. [S126] refer to the different backgrounds from architects, reviewers and other
stakeholders and note that it is rather cumbersome for one stakeholder to understand and improve the
informal documentation of another [S126]. Such types of informal documentation artifacts require a kind
of “voice-over” or additional explanation to be effective for knowledge transfer[S139].

2. Documentation is considered waste. Generally, documentation is considered waste when it does not
contribute to the end product [2], [S135]. Documentation is only created if it is required to create the
end product, or to raise the quality of the end product. Prause and Durdik [S135] differentiate between
documentation for developers and for end-users. Documentation for developers does not contribute to the
end product and is therefore neglected. The source code itself is considered the "ultimate documentation".
An example of documentation that does contribute to the end product is a user-manual, for instance
[S135]. As a result, design knowledge, reasoning knowledge, as well as knowledge about the problem
space are typically not preserved in CSD in any written form.

3. Productivity is measured by the amount of working software only. In CSD, productivity is
measured by the amount of delivered working software over development time. Beck and other founders
of the agile manifesto state that working software is valued over comprehensive documentation [1],
[S145], [170], [S171]. Thus, they emphasize that working code is the ultimate measure of productivity;
documentation has value, but its comprehensiveness is less important. Stettina and Heijstek [S138] note
that documentation is rather seen as a burden, than a (co-)created artifact [S138]. This attitude causes
developers to generally consider documentation as counter-productive, which in turns causes knowledge
loss.

4. Documentation is out-of-sync with the software. In CSD, developers don’t keep documentation
in sync with the actual software [S172]. This applies to both documentation outside the code such as
in Microsoft Word documents and wiki-like tools, but also to source code documentation, e.g. regarding
the objectives of methods or their parameters. Especially source code documentation is often outdated
because CSD emphasizes the continuous update of code, but not its documentation. This is an issue, as
stakeholders lose confidence and trust in the documentation [S126], which makes the sparse documen-
tation even less useful. A lack of up-to-date documentation is particularly problematic in the context
of architecture design decisions, as it leads to a loss of rationale behind design choices and considered
alternatives; it thus become increasingly difficult to understand and judge solutions during software
evolution [S173].

5. Short-term focus. Producing comprehensive documentation is a resource-intensive task that interferes
with other short-term tasks like sketching diagrams or programming. Primarily, the short term goals of
design, programming or maintenance tasks can be achieved without documenting important decisions,
documenting rationale, consequences or alternatives [174], [S76]. However, this focus on achieving mostly
short-term goals has an adverse effect: all the knowledge that is required for those goals disappears
over the following iterations with changing context, new objectives and new team members. Nawrocki,
Jasinski, Walter, et al. [S75] state that in XP there are three sources of knowledge about the software
that are required but are hard to maintain in the long run [S75]: the code, test cases and the memory of
the developers.

Despite, the aforementioned challenges, we were also able to observe documentation practices. In this
study, a “practice” is defined as an activity that is usually or regularly conducted, e.g. as a habit, tradition,
rule, or organizational culture.

1. Non-written and informal communication. In CSD, verbal communication is often used to achieve
a mutual understanding between team members (e.g. in [S163]) rather than written documentation.
Verbal communication is also one of the twelve principles in the agile manifesto [1], which states that
face-to-face communication is both most effective and most efficient within a development team. For
agile development in general and XP in particular, Prause and Durdik [S135] state that knowledge is the
result of collaboration and is spread by different means ([S135]), other than written documentation. Often
only sketches and informal drawings are used to support the verbal communication. One exception to
this rule is requirements, which are typically documented in the format of user stories [175]. The sparse
documentation that is deliberately created for documentation purposes is usually created afterwards and
describes the state of the software “as is”, rather than the software “to be” [S143]; this has the advantage
of being up-to-date.

2. Usage of development artifacts for documentation purposes. Apart from artifacts created solely
for the purpose of documentation, some artifacts created as part of the development process can also

65

serve as a type of documentation. TDD and BDD [S31], for instance, lead to executable specifications of
the software to be built [S176]. Another form of executable documentation is “infrastructure as code”, as
mentioned by Callanan and Spillane [S177]. Infrastructure-as-code refers to any executable description
of the infrastructure that is not part of the application itself [73]. This can be achieved with tools like
Ansible, or Puppet, for instance.

3. Architecture frameworks Although architecture knowledge often evaporates in CSD projects, we
have seen one particular documentation format, namely architecture frameworks, being used in practice.
We briefly describe two examples of frameworks that qualify as architecture frameworks according to
the definition in ISO/IEC/IEEE 42010 [90], while specifically addressing concerns of continuous soft-
ware development. Di Nitto, Jamshidi, Guerriero, et al. [S125] proposed a framework called SQUID
(Specification Quality In DevOps), an extension of Kruchten’s 4+1 view model [S178] with additional
viewpoints for dealing with DevOps-related concerns [S125]: an Operations Viewpoint, a Monitoring
Viewpoint, a Deployment Viewpoint, and a Quality Verification Viewpoint. Similarly, the continuous
integration and delivery architecture framework (Cinders), described byStåhl and Bosch [S179], is an
architecture framework specifically designed to deal with architectural concerns in continuous integration
and delivery [S179].

5.3.1.1 Interpretations of the Results

We think that challenges lead to practices, and vice versa, as illustrated in Figure 5.8. The first relation

• Informal documentation is hard to under-
stand

• Productivity is measured by the amount of
working software only

• Documentation is out-of-sync with the
software

• Documentation is considered waste

• Non-written and informal communication

• Architecture frameworks

• Usage of development artifacts for docu-
mentation purposes

• Short-term focus

Challenges Practices

1

2

3

4

5

Figure 5.8: Possible relations between challenges and practices. The green box indicates a positive effect on
the contribution to better documentation.

is between the challenge of short-term focus (1) that leads to non-written and informal communication. In
turn, the non-written and informal communication leads to documentation that is hard to understand (2), and
documentation being considered waste when it does not contribute to the end product (3). Using development
artifacts for documentation purposes leads to the challenges that productivity is measured by the amount of
software only (4) or that documentation is out-of-sync with the software (5). Furthermore, only the practice of
architecture frameworks might be considered a practice to contribute to better documentation (see the green
box in Figure 5.8).

5.3.1.2 Implications for Practitioners

The demand for fast time-to-market leads to fewer artifacts with lower quality. In small teams that are
geographically located in one building or one room with long-term employees, informal knowledge is built
up in the team. For larger teams, geographically distributed or with changing team members, building up
knowledge about the software product and processes might be challenging. A typical practice for documentation
is that a whiteboard sketch, and formal API documentation are considered sufficient instead of big upfront
documentation with many UML diagrams. Apparently, these informal documentation practices are just enough
to start an iteration. At the same time, however, these practices are not sufficient for operations, maintenance,
or knowledge transfer. Another candidate approach to overcome these challenges is executable documentation;
for TDD, this is a common practice.

66 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

5.3.1.3 Areas for Future Research
Future research is required to investigate if just enough upfront documentation can be limited to shaping
thoughts by using informal whiteboard sketches, together with the codified API documentation. The upfront
documentation should be accompanied by design-when-done after an iteration is completed. Anything that
can be generated or reverse-engineered is not required to document because it is available anytime. Relevant
for operations, maintenance, and knowledge transfer are decisions, considerations about the software product
and process, and team organization.

A second area for future research is executable documentation. The practice of TDD, which is one example
of executable specification, is a non-intrusive way of documenting requirements as part of the development
process. This, however may not be the case for other types of executable specifications. In general, the question
how executable documentation can be best produced and consumed by developers is subject to further research.

5.3.4 Results for RQ2: Tools Used in CSD
In RQ2, we investigated, which tools are used in CSD with respect to documentation. The studies we considered
for answering this research question are listed in Table 5.9. The studies from the final result are presented in
Figure 5.7 and Appendix 10. As already discussed, the sparse documentation in CSD is scattered over the
entire tool ecosystem, mainly in the form of executable specifications. This concerns up-front documentation
(mainly requirements), as well as design, code, and deployment information. Table 5.11 lists tools typically
used in CSD practices for documentation purposes, along with the type of documentation (mark-down, binary,
drawings), and what is documented (decisions, annotations, commit messages).

An ideal tool for documentation, according to Cannizzo, Marcionetti, and Moser [S180], would support
four main practices: status visibility (build tools), extensive automation (i.e. automating as much as possi-
ble), effective communication (collaboration and communication tools, metrics tools), and tools for immediate
feedback (test tools) [S180]. Other researchers have proposed simple solutions that can be readily used. For
preserving reasoning information, Borrego, Morán, Palacio Cinco, et al. [S74] suggest a simple tagging mech-
anism [S74]. Buchmann [S181] propose a tool for automatically transforming handwritten sketches on paper
and whiteboards to high-fidelity UML drawings (tool: Valkyrie) [S181]. Aguiar [S146] prefers wikis for docu-
mentation, because wikis and agility share goals like simplicity, flexibility, and open collaboration, thus being
natural documentation tools to agile projects [S146]. Waits and Yankel [S140] observe that binary files, such
as Microsoft Word or PowerPoint files, are hard to maintain, hamper velocity and can’t make efficient use of
a version control system (VCS), because changes cannot efficiently be tracked [S140].

Tool Short description Type of information What is documented? Studies
Word, Excel, PowerPoint
etc.

Used for reports and in-
tended for long term us-
age

Binary files Decisions, drawing,
sketches, pictures of
whiteboard drawings

[S180],[S137], [S182],
[S120], [S121], [S74],
[S183], [S126], [S184],
[S134], [S135], [S159],
[S138], [S76], [S32],
[S114], [S185], [S140],
[S186], [S187], [S188],
[S180], [189], [S141],
[S190], [S191], [S142],
[S143], [S192], [S193],
[S144], [S167], [S194],
[S195], [S196], [S197],
[S198], [S199], [S31],
[S200]

Wiki Wiki-likes, Confluence Short descriptions in the
format of the tool, e.g.
xml, html

Tasks, how-to’s, SRS,
SAD, SDD, info on PoCs,
Prototypes, Releases

[S120], [S121], [S74],
[S183], [S126], [S184],
[S134], [S135], [S159],
[S76], [S32], [S114],
[S185], [S140], [S186],
[S187], [S180], [189],
[S141], [S190], [S191],
[S192], [S193], [S144],
[S194], [S196], [S197],
[S198], [S199], [S31],
[S200], [S137], [S138],
[S182], [S188], [S142],
[S143], [S167], [S195]

Source control Tools for Git, Mercurial,
SVN

Source-code, annotations,
commit messages

Source-code, commit
messages

[S138], [S140], [S142],
[S136], [S74],

Scripts Executable lines of code
to run tasks

Human readable text Infrastructure-as-code:
Tests, integration, and
deployment including in-
stallation, configuration,
data import, and security

[201], [S124], [S76],
[S141], [S142], [S32],
[S31], [S131], [S145]

Continued on next page

67

Table 5.11 – continued from previous page
Tool Short description Type of information What is documented? Studies

Markdown editors Light weight text editor,
often used without editor
but edited directly

Human readable text Anything that can be doc-
umented in Word, Excel,
PowerPoint, or Wikis in-
cluding configuration files

[S140], [S202]

Verbal communication The proverbial water-
cooler conversation.

Face-to-face No document, knowledge
remains tacit

[S143], [S138], [S142],
[S31], [S128], [102],
[S145]

Table 5.11: Documentation Tools in CSD retrieved from the studies for RQ2.

Apart from tools used for the purpose of documentation, many tools used in CSD for other purposes also
have documentary value. Kersten found that the number of different tools used in CSD is rapidly growing. He
explains this phenomenon with a "democratization" of the toolchain, i.e. practitioners choose their own tools
for different tasks rather than being obliged by a top-down control model for the tool ecosystem [S97]. This is
also the case for documentation. There is no one-size-fits-all documentation tool; on the contrary, practitioners
in CSD document what they like, wherever the like.

In the following, we discuss such CSD tools that can be used for documentation purposes. Specifically,
we present a list of tool categories together with the type of documentation information associated with each
category. The list is compiled from documentation usages found in four primary studies: Kersten presents a
landscape for tools and tool-categories [S97]; Partial tool-chains are presented by Poth, Werner, and Lei [203],
and Wettinger, Breitenbücher, Kopp, et al. [S155], who both focus on tools used in CI/CD pipelines; Mäkinen,
Leppänen, Kilamo, et al. [204], present elements of a modern development toolchain [204].

1. Development tools

(a) Requirements management tools (e.g. Blueprint, RequirementONE)
The documentation information includes stakeholder concerns, risks, constraints and context for-
mulated as specifications: these are typically codified instructions, sufficient for developers to start
an iteration. Such specifications range from very informal and abstract (e.g. user stories and high-
level use-case descriptions) to formal and concrete (e.g. detailed use-case descriptions with pre- and
post-conditions, or Cucumber in combination with Gerkin).

(b) IDEs (e.g. IntelliJ, Eclipse, Cloud9)
The documentation information include the source code of the software, often annotated with com-
ments, meant for developers to understand the code. The annotations in the code are also used for
the automated generation of documentation for APIs.

(c) Agile Management tools (e.g. Active.collab, Agile bench, JIRA)
Agile management tools are used to support developers in applying agile methods like Scrum, Lean,
or Kanban. The tools typically capture information about requirements (e.g. user stories or use-
cases), tasks, progress (e.f. burn-down charts), planned and achieved goals for iterations, develop-
ment speed (e.g. team velocity), and the provide traceability between requirements, tasks, and code
(e.g. a JIRA board on which tasks fall under use-cases and are linked to source-code using Git
branches and pull requests).

(d) Development Analytics tools (e.g. SonarQube, Metrixware)
The documentation information includes metrics, as well as actionable data that can be used by
all roles in the software development including managers, developers, and maintainers. Typical
examples of actionable data are quality measurements in SonarQube (a static source code analysis
tool) along with concrete suggestions for fixing the quality rule violations.

(e) Repositories / Development Communities (e.g. GitLab, StackShare, StackOverflow)
The documentation information that repositories hold are the source code ready for review, or
deployment and commit messages where every push to the repository (ideally) includes a meaning-
ful comment on the changes. In development communities (e.g. Stack Overflow of GitHub), the
information contains questions and answers for software development topics. As such, it can be
considered as a knowledge base.

2. Test tools
(a) Performance / Load / Stress test tools (e.g. JMeter and SmartStorm)

These types of test codify specific QoS requirements (typically quality attribute requirements in the
categories of performance efficiency, reliability, and security (see ISO/IEC/IEEE 25010 ([205]).

(b) Functional Automation, Virtualization tools (e.g. Cucumber and Appium)
The documentation information includes: the test object (method, component, API, UI); the test
strategy with guiding values, principles, and objectives for stakeholders; and test tactics, and types

68 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

with techniques (e.g. destructive/UI tests), processes (e.g. CI/CD) and approaches (e.g. man-
ual/automated testing) applied to specific test tasks.

(c) Continuous testing tools (e.g. test.ai, buildbot)
Continuous testing is a software testing type that involves a process of testing early, often, every-
where, and automatically (to the best possible extent). The objective of continuous testing is to
find defects and support immediate response to the defects during the whole development cycle,
including requirement specification, development, and maintenance. The documentation informa-
tion refers to any phase that delivers measurable software or software artifacts. Test-specifications
written for automation purposes (e.g. unit-tests, integration tests and automated end-to-end tests)
are functional specifications for source-code units. They can be seen as formal specifications of
functional requirements. Often, test-cases also cover QoS-parameters, e.g. the maximum accepted
response time of a rest-endpoint.

(d) Service Virtualization testing tools (e.g. Smartbear, Parasoft)
Service virtualization is used when the system makes use of an API that is not controlled by the
development team. The Service virtualization emulates behavior of the external system, external
APIs, cloud-based applications, service-oriented architectures or micro-services that are out of con-
trol of the development team. This documentation information includes data, (non-)functional tests
or behavior that emulates the external system.

3. Deployment tools
(a) App Automation tools (e.g. Ansible, Puppet, Chef)

The documentation information includes instructions for installation, updates and configuration of
software, the import of data, and hardening of systems. This information is typically defined in
CI/CD scripts. This type of scripts assists in the automation of (complex) IT tasks into repeatable
playbooks. Although the scripts contain information for a range of tasks, they are typically configured
for a single task such as installation or phase such as test.

(b) CI/CD (e.g. CircleCI, Jenkins)
The documentation information includes the relation between single tasks and the results of executing
these tasks. The automation considers the execution of single tasks from App Automation into a
set of scripts for multiple tasks (e.g. installation, configuration, import, hardening) and for multiple
stages (e.g. development, test, integration, deployment) whether on premise or in the cloud. The
test results show developers or release managers the sanity of the builds in a comprehensive visual
overview.

4. Service execution tools
(a) Cloud / Container Orchestration / Management (e.g. Docker, Mesos)

The documentation information includes metrics about non-functional requirements such as, but
not limited to availability and reliability. It includes also installation and configuration scripts for
the software as well as scripts for automated up- or down scaling. This can refer to a single container
as well as the orchestration of containers. Infrastructure monitoring tools provide visibility of the
complete infrastructure and allow for troubleshooting and resource optimization.

5. Monitoring tools
(a) Monitoring & Management (e.g. DataDog, RunDeck)

In CSD, a lot of processes, and (supporting) applications run at the same time which can lead
to a chaotic software development ecosystem as well as a hard to manage deployment pipeline
and production environment. The monitoring and management tools support the team to have
control of processes and software products. The documentation information captured in the tools
contains desired and actual quality-of-service parameters, as well as standard operating procedures
for incidents.

6. Security tools
(a) Container Security (e.g. AppArmor, Cloud Insights)

The documentation information for container security involves the build scripts for the container
and the additional security policies (such as non-root user, application isolation, and authentica-
tion/authorization).

(b) Application Security (e.g. Threat Stack, HyTrust)
Containerized applications typically make use of a micro-service architecture. The information
comprises infrastructural security, information on the security aspects (confidentiality, integrity,
non-repudiation, accountability and authenticity), information on the distribution of the multiple
applications in multiple containers including functionality, data, subsystems, and APIs.

(c) DevSecOps (e.g. Cigital, CheckMarx)

69

DevSecOps refers to the processes and practices to merge the security that is used in development
process into processes in operations and vice versa with the purpose of faster deployment with secu-
rity measures in place. The documentation information includes authentication, and authorization
with roles for users (where applications are also defined as a user that needs to be authenticated to
obtain authorization). It also includes information about technical (software and hardware) security,
as well as test procedures to force and validate security measures.

7. API management tools and directories
(a) API management tools (e.g. Smartbear, Mashape, RapidAPI, OpenAPI)

These tools document the definition of the resource description, endpoints with methods, parameters,
often a request and response example, and sometimes a playground for testing the API.

(b) API directories (e.g. ProgrammableWeb)
These provide a directory of external APIs that include a description, documentation for developers,
SDK, “How to” instructions, (optional) libraries, and information from the community and thus also
capture general documentation information about APIs and underlying technologies.

Apart from tools used for the purpose of documentation, many tools used in CSD for other purposes also
have documentary value. Kersten [S97] found that the number of different tools used in CSD is rapidly growing.
He explains this phenomenon with a "democratization" of the tool-chain, i.e. practitioners choose their own
tools for different tasks rather than being obliged by a top-down control model for the tool ecosystem [S97].
This is also the case for documentation. There is no one-size-fits-all documentation tool; on the contrary,
practitioners in CSD document what they like, wherever the like.

In the following, we discuss such CSD tools that can be used for documentation purposes. Specifically,
we present a list of tool categories together with the type of documentation information associated with each
category. The list is compiled from documentation usages found in four primary studies: Kersten [S97] presents
a landscape for tools and tool-categories [S97]; Partial tool-chains are presented by Poth, Werner, and Lei [203],
and [S155] , who both focus on tools used in CI/CD pipelines; Mäkinen, Leppänen, Kilamo, et al. [204], present
elements of a modern development tool-chain [204].

1. Development tools

(a) Requirements management tools (e.g. Blueprint, RequirementONE)
The documentation information includes stakeholder concerns, risks, constraints and context for-
mulated as specifications: these are typically codified instructions, sufficient for developers to start
an iteration. Such specifications range from very informal and abstract (e.g. user stories and high-
level use-case descriptions) to formal and concrete (e.g. detailed use-case descriptions with pre- and
post-conditions, or Cucumber in combination with Gerkin).

(b) IDEs (e.g. IntelliJ, Eclipse, Cloud9)
The documentation information include the source code of the software, often annotated with com-
ments, meant for developers to understand the code. The annotations in the code are also used for
the automated generation of documentation for APIs.

(c) Agile Management tools (e.g. Active.collab, Agile bench, JIRA)
Agile management tools are used to support developers in applying agile methods like Scrum, Lean,
or Kanban. The tools typically capture information about requirements (e.g. user stories or use-
cases), tasks, progress (e.f. burn-down charts), planned and achieved goals for iterations, develop-
ment speed (e.g. team velocity), and the provide traceability between requirements, tasks, and code
(e.g. a JIRA board on which tasks fall under use-cases and are linked to source-code using Git
branches and pull requests).

(d) Development Analytics tools (e.g. SonarQube, Metrixware)
The documentation information includes metrics, as well as actionable data that can be used by
all roles in the software development including managers, developers, and maintainers. Typical
examples of actionable data are quality measurements in SonarQube (a static source code analysis
tool) along with concrete suggestions for fixing the quality rule violations.

(e) Repositories / Development Communities (e.g. GitLab, StackShare, StackOverflow)
The documentation information that repositories hold are the source code ready for review, or
deployment and commit messages where every push to the repository (ideally) includes a meaning-
ful comment on the changes. In development communities (e.g. Stack Overflow of GitHub), the
information contains questions and answers for software development topics. As such, it can be
considered as a knowledge base.

2. Test tools
(a) Performance / Load / Stress test tools (e.g. JMeter and SmartStorm)

70 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

These types of test codify specific QoS requirements (typically quality attribute requirements in the
categories of performance efficiency, reliability, and security (see ISO/IEC/IEEE 25010 ([205]).

(b) Functional Automation, Virtualization tools (e.g. Cucumber and Appium)
The documentation information includes: the test object (method, component, API, UI); the test
strategy with guiding values, principles, and objectives for stakeholders; and test tactics, and types
with techniques (e.g. destructive/UI tests), processes (e.g. CI/CD) and approaches (e.g. man-
ual/automated testing) applied to specific test tasks.

(c) Continuous testing tools (e.g. test.ai, buildbot)
Continuous testing is a software testing type that involves a process of testing early, often, every-
where, and automatically (to the best possible extent). The objective of continuous testing is to
find defects and support immediate response to the defects during the whole development cycle,
including requirement specification, development, and maintenance. The documentation informa-
tion refers to any phase that delivers measurable software or software artifacts. Test-specifications
written for automation purposes (e.g. unit-tests, integration tests and automated end-to-end tests)
are functional specifications for source-code units. They can be seen as formal specifications of
functional requirements. Often, test-cases also cover QoS-parameters, e.g. the maximum accepted
response time of a rest-endpoint.

(d) Service Virtualization testing tools (e.g. Smartbear, Parasoft)
Service virtualization is used when the system makes use of an API that is not controlled by the
development team. The Service virtualization emulates behavior of the external system, external
APIs, cloud-based applications, service-oriented architectures or micro-services that are out of con-
trol of the development team. This documentation information includes data, (non-)functional tests
or behavior that emulates the external system.

3. Deployment tools
(a) App Automation tools (e.g. Ansible, Puppet, Chef)

The documentation information includes instructions for installation, updates and configuration of
software, the import of data, and hardening of systems. This information is typically defined in
CI/CD scripts. This type of scripts assists in the automation of (complex) IT tasks into repeatable
playbooks. Although the scripts contain information for a range of tasks, they are typically configured
for a single task such as installation or phase such as test.

(b) CI/CD (e.g. CircleCI, Jenkins)
The documentation information includes the relation between single tasks and the results of executing
these tasks. The automation considers the execution of single tasks from App Automation into a
set of scripts for multiple tasks (e.g. installation, configuration, import, hardening) and for multiple
stages (e.g. development, test, integration, deployment) whether on premise or in the cloud. The
test results show developers or release managers the sanity of the builds in a comprehensive visual
overview.

4. Service execution tools
(a) Cloud / Container Orchestration / Management (e.g. Docker, Mesos)

The documentation information includes metrics about non-functional requirements such as, but
not limited to availability and reliability. It includes also installation and configuration scripts for
the software as well as scripts for automated up- or down scaling. This can refer to a single container
as well as the orchestration of containers. Infrastructure monitoring tools provide visibility of the
complete infrastructure and allow for troubleshooting and resource optimization.

5. Monitoring tools
(a) Monitoring & Management (e.g. DataDog, RunDeck)

In CSD, a lot of processes, and (supporting) applications run at the same time which can lead
to a chaotic software development ecosystem as well as a hard to manage deployment pipeline
and production environment. The monitoring and management tools support the team to have
control of processes and software products. The documentation information captured in the tools
contains desired and actual quality-of-service parameters, as well as standard operating procedures
for incidents.

6. Security tools
(a) Container Security (e.g. AppArmor, Cloud Insights)

The documentation information for container security involves the build scripts for the container
and the additional security policies (such as non-root user, application isolation, and authentica-
tion/authorization).

(b) Application Security (e.g. Threat Stack, HyTrust)

71

Containerized applications typically make use of a micro-service architecture. The information
comprises infrastructural security, information on the security aspects (confidentiality, integrity,
non-repudiation, accountability and authenticity), information on the distribution of the multiple
applications in multiple containers including functionality, data, subsystems, and APIs.

(c) DevSecOps (e.g. Cigital, CheckMarx)
DevSecOps refers to the processes and practices to merge the security that is used in development
process into processes in operations and vice versa with the purpose of faster deployment with secu-
rity measures in place. The documentation information includes authentication, and authorization
with roles for users (where applications are also defined as a user that needs to be authenticated to
obtain authorization). It also includes information about technical (software and hardware) security,
as well as test procedures to force and validate security measures.

7. API management tools and directories
(a) API management tools (e.g. Smartbear, Mashape, RapidAPI, OpenAPI)

These tools document the definition of the resource description, endpoints with methods, parameters,
often a request and response example, and sometimes a playground for testing the API.

(b) API directories (e.g. ProgrammableWeb)
These provide a directory of external APIs that include a description, documentation for developers,
SDK, “How to” instructions, (optional) libraries, and information from the community and thus also
capture general documentation information about APIs and underlying technologies.

As shown in the list above, documentation information is scattered throughout an entire eco-system of
tools rather than being provided in a single self-contained document. As a consequence of the scattering,
stakeholders who need to understand the vision and long term goals, architecture decisions, risks, constraints,
interface definitions, deployment instructions etc., need to dig into the entire tool-stack [S112], [S126]. There
is no single source of truth, but there are many sources of truth, each holding information on a relevant part
of the software product ([98]).

5.3.4.1 Interpretations of the Results

There are many tools used in CSD, for every phase (e.g. design, implementation, and testing), as well as every
activity (e.g. drawing, collaborating, writing, and constructing). The amount of structure of the information
is strongly related to the tool. Some information is easy to capture and easy for human communication such
as whiteboard sketches or conversations in chats. At the same time, these types of information are hard for
automatic processing. Source code on the other hand, can be automatically processed.

5.3.4.2 Implications for Practitioners

For the construction of the software product, the tools support the developers. As such, the tooling has a
positive effect on the productivity. However, with the increase of the number of tools, information about the
software product, processes and organization is distributed across these tools.

5.3.4.3 Areas for Future Research

A candidate area for future research could be to organize the documentation into yellow pages (wiki, git, mark-
down) that contains references to relevant documentation for designated stakeholders. For instance PowerPoint
slides for conveying ideas about the software product, design documentation for developers and infrastructure-
as-code for operations.

5.4 Discussion
In this section, we interpret our results and provide implications for practitioners and researchers. To begin
with the interpretation of the results, the software engineering discipline has always been struggling with
documentation. Parnas, for instance, reported back in 1994, that documentation - if written at all- is usually
poorly organized, incomplete and imprecise [206]. The human factors that caused this problem back then, are -
to the same extent- responsible for the issues reported over documentation in Continuous Software Development
today. The difference is that missing or poor documentation was traditionally seen as the result of negligence
or even misconduct of developers; in continuous software development it is deliberately promoted to a desired
behavior. In other words, CSD puts many obstacles in the way of properly documenting the different aspects of

72 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

created knowledge (e.g. considering documentation as waste, having a short-term focus, measuring productivity
through working software only).

In CSD, with a few mentioned exceptions like documenting requirements, dedicated documentation (i.e.
documentation that does not serve as development artifact also) is informal (e.g. white board sketches) and
needs to be supported by face-to-face communication. This may not be ideal, but we argue that it can be an
effective and efficient approach to support the design reasoning process. However, it cannot effectively preserve
knowledge and thus not serve as documentation; this is not a surprise as informal artifacts are not created for
the purpose of documenting, but for the purpose of supporting a design discussion.

Knowledge-preserving documentation that stands on its own requires a certain level of formalism and needs
to be created for the purpose of describing something unambiguously. Such documentation is very rarely
created in CSD projects. Thus, in our opinion, the documentation practices in CSD -or lack thereof- do
not contribute to solving the traditional problems related to knowledge loss and missing information during
maintenance activities. Unfortunately, we have not seen evidence of new or emerging practices that can alleviate
this problem.

Although the results we found regarding dedicated documentation practices in CSD are sobering, there
is also good news. With the rise of Lean, Agile and DevOps projects, we observe a drastic boost in tool-
ecosystems, which mainly stems from the goal to automate software-related processes as much as possible.
This also enables new ways of thinking about documentation. The specifications required for automating
processes (we refer to them as executable specifications), at the same time serve as documentation of the
process. This essentially urges us to refine Robert Martin’s statement that the truth can only be found in the
code: now the truth can also be found in test scripts, provisioning scripts, build pipeline configurations, and
cloud platform configurations, to name just a few.

5.4.1 Characteristics of Executable Documentation
Executable specifications have a lot of potential for serving as documentation in CSD. Their characteristics are
in line with the principles of CSD, and at the same time address the previously mentioned traditional problems
that come with missing documentation. We highlight the following characteristics of executable documentation
that require further research.

Types of Executable Documentation

Types of executable documentation include: requirements, such as “Specification by Example” [207], test-cases
resulting from Domain-Driven-Design[208] or TDD [S115], [S142], [S176], [S209] , database scripts with Data
Definition Language (DDL) and Data Manipulation Language (DML), deployment scripts with Ansible [S31]
or infrastructure-as-code [210].

Executable Documentation is never Out-Of-Sync

Executable documentation is never out-of-sync, it’s evolution is naturally connected to the evolution of the
other parts of the software. Executable documentation does not just describe the software, but it is part of the
software.

Executable Documentation can be Tested

Executable documentation can be tested. If it does not lead to the desired results, then something must be
wrong. In that respect, executable documentation is just like source-code.

Executable Documentation is Non-Intrusive

The process of creating executable documentation is not intrusive, i.e. developers do not stop their work to
take care of documentation; coding and documenting are part of the same task.

In future research, these items will be investigated. Questions remain, for example, how can software de-
velopment teams use such executable specifications? This could include a considerable amount of unstructured
(and unrelated) data.

73

5.4.2 Implications for Practitioners
In the following, we present some implications for practitioners who want to benefit from the potential of CSD
to document the created knowledge.

Tools, Tool-stacks, and Software Development Ecosystems

Support your entire development process by a tool-chain that seamlessly supports all activities in the process.
Eliminate manual or interactive steps in the development process to the greatest possible extent. Manuals
for developers describing process steps to follow (or the need for such manuals) should be considered as bad
smells [211] that should be transferred to executable specifications interpreted by tools. Executable specifi-
cations are always up-to-date and at the same time document processes in an unambiguous way that can be
interpreted by both machines and humans.

Informal Sketches

Use informal sketches (that are minimally intrusive) to support your design reasoning process and discussions
with team members. The reasoning process and discussions ultimately lead to decisions that are implemented
(e.g. in source-code or executable specifications). Consider briefly documenting the rationale behind those
decisions that may not be obvious to other stakeholders (including future developers). Examples of obvious
decisions are choices of tools or combinations of tools that are very popular for certain purposes, e.g. the
combination of Elasticsearch, Logstash, and Kibana for distributed logging and analytics.

Use of Version Control

Keep everything under version control. Use project management tools or wikis as a central entry point for all
information related to the project; otherwise, stakeholders may easily get lost in the great amount of project
locations, tools and URLs. Also consider providing high-level overviews of the designed sub-systems, and link
the respective executable specifications to the sub-systems to facilitate access for stakeholders.

5.4.3 Future Research
In terms of research, the results of this mapping study have shown that documentation in CSD, has not yet
gained the required attention by the research community8. In the following, we describe three areas for future
research:

1. The individual tools in a CSD ecosystem are mostly created separately, thus having limited interoper-
ability. However, the combination of information from different tools can be “more than the sum of its
parts”, i.e. it can provide insights that capture a greater part of the system and life cycle. Thus research
is required to establish traceability links between the different types of tools and intelligently combine
information from different kinds of executable documentation in dashboards.

2. Traditional architecture documentation approaches seem to come in direct conflict with the identified
documentation challenges in CSD. Research is required to develop architecture documentation and spec-
ification approaches that integrate seamlessly in CSD-practices. For example, architecture frameworks
could be developed that tap the potential of executable specifications, while preserving design rationale,
explaining architecture to stakeholders, linking design decisions to concerns and architectural require-
ments and providing an informational basis for architectural evaluation.

3. The high degree of automation offers rich sources of information that can be mined using Mining Software
Repository techniques, or in general Data Science. Examples of questions that could be addressed using
such approaches in CSD are:

• What is the current technical debt in source code, testing, requirements or other types?
• What design decisions are likely to be outdated soon?
• What is the cost-benefit ratio of specific features?
• What is the optimal point in time for refactoring a specific sub-system?

8In August 2019, “ executable documentation" had the following results: ACM: 9; Google Scholar: 207; IEEE: 2; ScienceDirect:
15; SpringerLink: 35; Web of Science: 3

74 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

5.5 Threats to Validity

We use the framework of Ampatzoglou, Bibi, Avgeriou, et al. [212] that describes potentials threats to validity
for secondary studies. Specifically this framework classifies threats to validity in three categories, as illustrated
in Table 5.12.

Category Description
Study Selection Validity These threats can be identified in the initial search process where the

set of candidate papers for primary studies is selected and the study
filtering where the final set of primaries studies is determined. Typical
examples are the selection of digital libraries, search string construction
and study selection bias.

Data Validity These threats can be identified in the data extraction phase (a data set
is populated) and data analysis phase (the data set is qualitatively or
quantitatively analyzed). Typical examples include data collection bias
and publication bias.

Research Validity These threats can be identified over the whole mapping study and con-
cern the design of the research. Typical examples are generalizability,
and coverage of research questions.

Table 5.12: Classification of validity threats (Ampatzoglou, Bibi, Avgeriou, et al. [212])

5.5.1 Study Selection Validity
Regarding the selection of digital libraries, we have to a large extent addressed this by including the most used
digital libraries in this area (which are also commonly used in secondary studies in software engineering). The
construction of the search string may lead to yielding too many primary studies or missing relevant studies.
We mitigated this threat by calibrating the search string through the quasi-gold standard. Specifically the
QGS was used to assess the performance of the search string and refine it until all primary studies of the QGS
were returned from the search string. The QGS itself was built using the snowballing technique guidelines as
proposed by Wolhin [107].

Furthermore, we have mitigated the risk of an arbitrary starting year, because it was related to the year
of the publication of the Agile Manifesto. With this decision we excluded a historic overview of consecutive
concepts that lead to the Agile Manifesto; however, we did not aim at such a historic overview but a systematic
classification and thematic analysis of literature.

The threat for non-English papers was not mitigated; these papers were excluded. We did however address
the threat of studies not being accessible: we made sure we could access all studies. The threat of duplicate
articles was mitigated by filtering on the Document Object Identifier. If a study appeared in multiple digital
libraries, then the publishers’ digital library was used and the duplicate was ignored. We excluded gray
literature and included only studies from peer reviewed journals, conferences or workshops to have more rigor.
Finally, the potential bias of study inclusion/exclusion was mitigated by discussion among the authors and
accordingly revising the inclusion/exclusion criteria.

5.5.2 Data Validity
The risk of retrieving a small sample was mitigated by constructing a search string that could zoom in from
a domain with over approximately 35.000 studies to finally about 200 relevant papers to answer the research
questions. The threat of choosing the correct variables to be extracted was addressed through extensive
discussions between the authors. The threat of publication bias (the majority of identified primary studies
coming from specific venues) was mitigated by using snowballing. Furthermore, we addressed the threat of
inadequate validity of primary studies through the inclusion criteria by only looking at peer reviewed venues.
The threat of biasing the classification schema is mitigated by going through several iterations to refine the
RQs, and redefining the search string and the analysis process. The threat of researchers’ bias was partially
mitigated by doing the analysis with multiple researchers where research and review were different roles, and
by using a combination of manual and automated search.

75

5.5.3 Research Validity
The threat of repeatability is mitigated by meticulously documenting the study protocol. In addition, the
retrieved studies, search strings and data are all available on https://theotheunissen.nl/SMS. The threat of
the chosen research method bias is mitigated by extensive discussions among the authors and the rationale
of our decision is clearly described in the study design section. Furthermore, the authors have also discussed
in multiple iterations the choice and coverage of the research questions. Regarding the generizability of our
results, they are only applicable within the scope of documentation in continuous software development.

5.6 Conclusions
We conducted a systematic mapping study to investigate the documentation practices and challenges, as well as
the tooling used in continuous software development (CSD). The study has provided an overview of the relevant
primary studies and has listed a number of challenges, practices, and tools that pertain to documentation in
CSD.

Section 5 elaborates on our findings regarding documentation challenges and practices (RQ1). The chal-
lenges include: informal documentation is hard to understand, documentation is considered waste when it does
not contribute to the end product, productivity is limited to the measured amount of working software, doc-
umentation is easily out-of-sync with the actual code, and there is short term focus. The practices include: a
significant amount of communications happens verbally and informally; there is a positive usage of development
artifacts for documentation purposes, such as TDD; and the use of architecture frameworks might positively
influence documentation quality.

Section 5 discusses an increasing number of tool categories and tools that can be used to support develop-
ment, operations, and maintenance in CSD (RQ2).

CSD is a high-paced evolving and dynamic environment; without tools, development and deployment would
not be possible. An interesting side-effect of the tooling that has not been adequately researched yet, is that
with every tool that is being used, knowledge about the piece of software is stored, maintained and transferred
as well. For example, commits in a repository describe the changes of the source code and test scripts in a test
tool describe the required outcomes of software. Knowledge about the software is scattered throughout all the
tools in a software ecosystem. There is not a single source of truth, but there are a lot of sources of truth, each
holding a small piece of knowledge. The discovery of these pieces of knowledge has not been investigated and
it could be interesting to do further research on how to locate and combine these information sources.

Finally, we identified several implications for practitioners regarding the use of executable specifications in
combination with a high degree of automation. Additionally, we found that architecture frameworks streamlined
for use in CSD and dashboards combining information from the entire development tool chain are important
areas for future research.

https://theotheunissen.nl/SMS

76 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

Appendix A: Mappings in the Bubble Chart

Category A: Method, Documentation life cycle
Papers [S136], [S75], [S118], [S148], [S129], [S134], [S117], [S139]
Found 8

Category B: Method, Documentation subjects: decisions
Papers [S136], [S119], [S148], [S129], [S139]
Found 5

Category C: Method, Documentation subjects: architecture
Papers [S136], [102], [S118], [S119], [S153], [S123], [S120], [S31],

[S148], [S128], [S134], [S124], [S76], [S117], [S139]
Found 15

Category D: Method, Tool
Papers [S136], [S119], [S120], [S128]
Found 4

Category E: Method, Documentation subjects: source-code
Papers [102], [S119], [S148], [S128], [S76], [S139]
Found 6

Category F: Metric, Documentation subjects: source-code
Papers [S112], [S140], [S126], [S114], [S133], [S150], [S137]
Found 7

Category G: Metric, Documentation subjects: decisions
Papers [S112], [S126], [S114], [S133], [S150]
Found 5

Category H: Metric, Documentation subjects: architecture
Papers [S112], [S140], [S126], [S114], [S133], [S151], [S111], [S74],

[S150], [S134], [S137], [S97]
Found 12

Category I: Metric, Tool
Papers [S112]
Found 1

Category J: Metric, Documentation life cycle
Papers [S140], [S126], [S114], [S151], [S111], [S74], [S134], [S122],

[S137]
Found 9

Category K: Metric, Documentation subjects: autogenerated
Papers [S150]
Found 1

77

Category L: Model, Documentation subjects: architecture
Papers [S135], [S133]
Found 2

Category M: Model, Documentation subjects: source-code
Papers [S133]
Found 1

Category N: Model, Documentation subjects: decisions
Papers [S133]
Found 1

Category O: Other, Documentation subjects: source-code
Papers [S31]
Found 1

Category P: Other, Documentation life cycle
Papers [S31]
Found 1

Category Q: Other, Documentation subjects: decisions
Papers [S31]
Found 1

Category R: Other, Documentation subjects: architecture
Papers [S31], [S116]
Found 2

Category S: Process, Documentation subjects: source-code
Papers [S138], [S114]
Found 2

Category T: Process, Documentation life cycle
Papers [S138], [S114], [S145]
Found 3

Category U: Process, Documentation subjects: architecture
Papers [S138], [S114], [S121], [S145], [S124]
Found 5

Category V: Process, Documentation subjects: decisions
Papers [S114]
Found 1

Category W: Process, Documentation subjects: autogenerated
Papers [S121]
Found 1

Category X: Process, Tool
Papers [S121], [S145]
Found 2

Category Y: Evaluation Research, Documentation life cycle
Papers [S136], [S140], [S126], [S75], [S114], [S151], [S111], [S74],

[S129], [S134], [S122], [S137]
Found 12

dummy text for layout purposes
dummy text for layout purposes

78 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

Category Z: Evaluation Research, Documentation subjects: decisions
Papers [S136], [S112], [S126], [S114], [S133], [S150], [S129]
Found 7

Category a: Evaluation Research, Documentation subjects: architec-
ture

Papers [S136], [S112], [S140], [S126], [S114], [S153], [S133],
[S123], [S151], [S111], [S74], [S150], [S134], [S116], [S137],
[S97]

Found 16

Category b: Evaluation Research, Tool
Papers [S136], [S112]
Found 2

Category c: Evaluation Research, Documentation subjects: source-
code

Papers [S112], [S140], [S126], [S114], [S133], [S150], [S137]
Found 7

Category d: Evaluation Research, Documentation subjects: autogen-
erated

Papers [S150]
Found 1

Category e: Experience Report, Documentation subjects: source-
code

Papers [102], [S31], [S148]
Found 3

Category f: Experience Report, Documentation subjects: architecture
Papers [102], [S31], [S148]
Found 3

Category g: Experience Report, Documentation life cycle
Papers [S31], [S148]
Found 2

Category h: Experience Report, Documentation subjects: decisions
Papers [S31], [S148]
Found 2

Category i: Solution Proposal, Documentation life cycle
Papers [S136], [S138], [S118], [S145], [S131], [S117], [S139]
Found 7

Category j: Solution Proposal, Documentation subjects: decisions
Papers [S136], [S112], [S119], [S133], [S139]
Found 5

Category k: Solution Proposal, Documentation subjects: architecture
Papers [S136], [S112], [S138], [S118], [S135], [S119], [S121],

[S133], [S123], [S120], [S31], [S128], [S145], [S124], [S76],
[S117], [S139]

Found 17

Category l: Solution Proposal, Tool
Papers [S136], [S112], [S119], [S121], [S120], [S128], [S145]
Found 7

79

Category m: Solution Proposal, Documentation subjects: source-
code

Papers [S112], [S138], [S119], [S133], [S128], [S76], [S139]
Found 7

Category n: Solution Proposal, Documentation subjects: autogener-
ated

Papers [S121], [S131]
Found 2

Category o: Validation Research, Documentation life cycle
Papers [S126]
Found 1

Category p: Validation Research, Documentation subjects: source-
code

Papers [S126]
Found 1

Category q: Validation Research, Documentation subjects: decisions
Papers [S126]
Found 1

Category r: Validation Research, Documentation subjects: architec-
ture

Papers [S126]
Found 1

dummy text for layout purposes
dummy text for layout purposes
dummy text for layout purposes
dummy text for layout purposes
dummy text for layout purposes
dummy text for layout purposes

80 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

Appendix B: Input From Experts
The email we send to the experts had this content:

Dear reader,

I am conducting a systematic mapping study to research the
literature on documentation, tooling and existing
frameworks in continuous software development
(or: agile, lean, DevOps, CI/CD).

Your input as an academic researcher or industry
practitioner in this area is appreciated.

BACKGROUND
Documentation of software architecture, design, development and
operations have a long tradition of both storing knowledge and
communicating decisions. At the same time, documentation is
a tedious, time-consuming task that is usually reduced to a
minimum in continuous software development processes
such as lean, agile and DevOps. Continuous software development
has been discussed in. The focus of this mapping study is
on documentation practices in continuous software development
processes such as lean, agile and DevOps. These development
processes are the de facto standards in many small startups as
well as in large enterprises. A mapping study for documentation
in continuous software development processes does not exist.
Because documentation in these processes deviates from textbook
standards that are taught during education, and there is no
prescribed standard but just a practice of documentation,
this study is relevant for both researchers, practitioners,
and educators. This mapping study is an assessment of
existing literature on development processes, documentation
methods, and frameworks -including tools. It aims to find
and classify the primary studies in this specific topic area.

RESEARCH QUESTIONS
RQ1: What studies exist on documentation practices in
continuous software development (CSD)?
Rationale: Documentation plays a major role in preserving
knowledge and communicating decisions in software
architecture and technical implementation. At the same time,
documentation practices in CSD are lacking. With this
research question, an overview of documentation methods
will be presented.

RQ2: What studies exist on tools used in CSD?
Rationale: In the community of practice for continuous
software development, tools are used to speed up
development, monitor quality, and automatic deployment.
This documentation is not exported to a central repository
but kept with the tool, e.g. Jira, GitHub. The focus
is primarily on tools that are described in the literature
but will be extended to tools that are actually used
for architects and developers.

1. A Study of Enabling Factors for Rapid Fielding: Combined Practices to Balance Speed and Stability,

81

Stephany Bellomo and Robert L. Nord and Ipek Ozkaya, 2013
2. A Study of the Documentation Essential to Software Maintenance, Sergio Cozzetti B. de Souza and

Nicolas Anquetil and Káthia M. de Oliveira, 2005
3. Agile Architecture Interactions, J. Madison, 2010
4. Agile Architecture IS Possible You First Have to Believe!, M. Isham, 2008
5. Agile Documentation, Anyone?, B. Selic, 2009
6. Agile Documentation: A Pattern Guide to Producing Lightweight Documents for Software Projects,

Rüping, Andreas, 2005
7. Agile in Distress: Architecture to the Rescue, Robert L. NordIpek OzkayaPhilippe Kruchten, 2014
8. Agile software development: the business of innovation, J. Highsmith; A. Cockburn, 2001
9. Agility and Architecture: Can They Coexist?, P. Abrahamsson; M. A. Babar; P. Kruchten, 2010

10. Analysis and Management of Architectural Dependencies in Iterative Release Planning, Brown, Nanette
and Nord, Robert L. and Ozkaya, Ipek and Pais, Manuel, 2011

11. Architecting for Large-Scale Agile Development: A Risk-Driven Approach, Ipek Ozkaya, Michael J.
Gagliardi, Robert Nord, 2013

12. Architecting for sustainable software delivery, Koontz, Ronald J and Nord, Robert L, 2012
13. Architecting in a Complex World: Eliciting and Specifying Quality Attribute Requirements, Wojcik, Rob,

2013
14. Architects as Service Providers, R. Faber, 2010
15. Beyond Scrum + XP: Agile Architecture Practice, Ozkaya. Ipek, Robert L. Nord, Stephany Bellomo,

and Heidi Brayer , 2013
16. Climbing the "Stairway to Heaven" – A Mulitiple-Case Study Exploring Barriers in the Transition from

Agile Development Towards Continuous Deployment of Software, Olsson, Helena Holmstrom and Alah-
yari, Hiva and Bosch, Jan, 2012

17. Combining architecture-centric engineering with the team software process, Nord, Robert L and McHale,
James and Bachmann, Felix, 2010

18. DevOps: A Software Architect’s Perspective, Bass, Len and Weber, Ingo and Zhu, Liming, 2015
19. Elaboration on an integrated architecture and requirement practice: Prototyping with quality attribute

focus, S. Bellomo; R. L. Nord; I. Ozkaya, 2013
20. Enabling agility through architecture, Brown, Nanette and Nord, Robert and Ozkaya, Ipek, 2010
21. Enabling Incremental Iterative Development at Scale: Quality Attribute Refinement and Allocation in

Practice , , 2015
22. Evolutionary Improvements of Cross-Cutting Concerns: Performance in Practice, Bellomo, Stephany and

Ernst, Neil and Nord, Robert L and Ozkaya, Ipek, 2014
23. Integrate End to End Early and Often, Bachmann, Felix H and Carballo, Luis and McHale, James and

Nord, Robert L, 2013
24. Making Architecture Visible to Improve Flow Management in Lean Software Development, R. L. Nord; I.

Ozkaya; R. S. Sangwan, 2012
25. Microservices Architecture Enables DevOps Migration to a Cloud-Native Architecture, Balalaie, Armin

and Heydarnoori, Abbas and Jamshidi, Pooyan, 2016
26. Microservices tenets, Olaf Zimmermann, 2017
27. Migrating to Cloud-Native Architectures Using Microservices: An Experience Report, Armin Balalaie,

Abbas Heydarnoori, and Pooyan Jamshidi, 2015
28. Peaceful Coexistence: Agile Developer Perspectives on Software Architecture, D. Falessi; G. Cantone; S.

A. Sarcia’; G. Calavaro; P. Subiaco; C. D’Amore, 2010
29. Presenting a framework for agile enterprise architecture, B. D. Rouhani; H. Shirazi; A. F. Nezhad; S.

Kharazmi, 2008
30. Software Architecture for Developers Technical leadership by coding, coaching, collaboration, architecture

sketching and just enough up front design, Brown, Simon, 2014
31. Software Specification and Documentation in Continuous Software Development: A Focus Group Report,

U. Van Heesch and T. Theunissen and O. Zimmermann and U. Zdun, 2017
32. Sustainable Architectural Design Decisions, Zdun, Uwe and Capilla, Rafael and Tran, Huy and Zimmer-

mann, Olaf, 2013
33. The DevOps Handbook : How to Create World-Class Agility, Reliability, and Security in Technology

Organizations, Kim, Gene; Humble, Jez; Debois, Patrick; Willis, John, 2016
34. The impact of agile practices on communication in software development, M. PikkarainenJ. HaikaraO.

SaloP. AbrahamssonJ. Still, 2008
35. The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win, Behr, Kevin; Kim,

82 CHAPTER 5. A SYSTEMATIC MAPPING STUDY

Gene; Spafford, George, 2014
36. Toward Design Decisions to Enable Deployability: Empirical Study of Three Projects Reaching for the

Continuous Delivery Holy Grail, S. Bellomo; N. Ernst; R. Nord; R. Kazman, 2014
37. Understanding the Role of Constraints on Architecturally Significant Requirements, Neil Ernst, Ipek

Ozkaya, Robert Nord, Julien Delange, Stephany Bellomo, Ian Gorton, 2013
38. Variations on Using Propagation Cost to Measure Architecture Modifiability Properties, Nord, Robert L.

and Ozkaya, Ipek and Sangwan, Raghvinder S. and Delange, Julien and González, Marco and Kruchten,
Philippe, 2013

39. Working Together: The Team Software Process and Architecture-Centric Engineering, , 2013

Chapter 6

In Continuous Software
Development, Tools Are
the Message for
Documentation1

Abstract In Continuous Software Development, a wide range of tools are used for all steps in the
life cycle of a software product. Information about the software product is distributed across all
those tools and not stored in a central repository. To better understand the software products,
the following media elements must be taken into account: the types of information, the tools,
tool-stacks and ecosystems to manage the (types of) information, and the amount of structure. In
the tile, “tools” refers to the phrase “the medium is the message”, coined by McLuhan and Fiore
(1967) pointing that the medium should be subject of investigation as well as the content of the
message. In this paper the tools include tool stacks, ecosystems, the types of information and
amount of structure; they define the content of the message. Our approach to present relevant
information to different stakeholders is rooted in understanding and utilizing these aspects. In this
respect, the amount of structural variety of information defines the value for information creation
and retrieval, including the tools to process that information. Documentation is considered an
information type that is processed through tools in a software development ecosystem.

Keywords Agile, Continuous Software Development, DevOps, Documentation, Lean

6.1 Introduction
In traditional software development, the main tools for developers are limited to a small number of tools
such as an IDE and Source Control Management (SCM). In modern software development approaches such
as Lean, Agile, and DevOps, an increase can be observed in the overall number of tools developers are using.
There are many tools for project management, ranging from simple task management tools like Trello, to
enterprise project management with Jira, or a wide range of IDEs such as VSCode, Eclipse, or IntelliJ. Even
categories used for classifying tools are manifold, ranging from data management to development tools and
from deployment tools to monitoring tools [S97], [213]. Information about software is scattered throughout all
the tools used in a software development ecosystem. For most software products, there is no single repository

1This work was originally published as:

T. Theunissen, S. Hoppenbrouwers, and S. Overbeek, “In Continuous Software Development, Tools Are the Message for
Documentation,” in Proceedings of the 23th International Conference on Enterprise Information Systems, 2021. doi:
10.5220/0010367901530164.

83

84 CHAPTER 6. TOOLS ARE THE MESSAGE

that contains all information about the software. For instance, the core concept of a software product may
be presented in PowerPoint-like tools. Information about stakeholder concerns, risks, constraints, and context
may be documented in Word-like documents, modifications on source code are often maintained in git, and
deployment documentation may be defined as executable infrastructure-as-code. These examples show that the
type of information documented has a strong relationship with the tool it is stored in and used with. These tools
often define the format of the information. The format can range from structured text to video. Documentation
in modern software development concerns the creation of information about the software product, conveying
knowledge about the software product, and in some cases even executing the documentation. The scattered
information that is stored in the myriad of tools introduces issues of retrieval and comprehension of relevant
information about the software with respect to the stakeholders involved. The phrase “tools are the message”
concerns:

1. the types of information documented,
2. the amount of structural variety: whether the information is structured (source code, templates) or

unstructured (sketches, text),
3. the myriad of tools used, including tool categories organized into stacks and ecosystems, and
4. comprehensibility support of the software product.
To better understand why tools are the message, we introduce the umbrella term “CSD” that covers the

characteristics of Lean, Agile, and DevOps software development approaches. First, it covers the values,
principles, practices, processes, and tools for Lean, Agile, and DevOps. Second, CSD embraces the whole life
cycle of software as a product, from conception to end-of-life. This includes continuous design and architecting,
and also development until retirement. Third, CSD takes into account the drivers behind the continuously
changing state of the software product, such as progressive insights, contextual changes, new features, bug
fixes, or other unforeseen factors. Last, information about the software is distributed across the many tools
used in a software development ecosystem. “The tools are the message” will be explained by showing how the
types of information documented relate to the tools used for information creation, retrieval, and execution.

The scientific contribution of this paper is the insight that the requirements for documentation in lean,
agile and DevOps are present in values of these methods, as well as in the community of practice of industrial
software engineers. We present the generic requirements and conditions for documenting and communicating
contained in CSD knowledge. Our findings lead to approaches for knowledge preservation in CSD.

In the remainder of this paper, the following subjects will be addressed. In Section 6, the study design is
presented. In Section 6 the data collection, data analysis and data interpretation are shown. In Section 6, the
types of information are discussed. “Tools are the message” is discussed in Section 6. The paper ends with
conclusions in Section 6.

6.2 Study Design
In this study, we use multiple sources for data collection and data analysis to enhance its credibility. We will
use Multivocal Literature Review (MLR) following Garousi, Felderer, and Mäntylä [214] and we follow Yin
[215] for the case study design.

6.2.1 Multivocal Literature Review (MLR)
The motivation for conducting an MLR is that the investigation of documentation in CSD is relatively new.
Many state-of-the-art values, principles, knowledge, practices, tools and processes are shared in, for example,
blogs, (online) lectures, data sets, and (technical) reports. Therefore, it is important to take these sources into
account besides the available body of literature on the topic [214].

6.2.1.1 Quality Assessment Criteria for Data Sources

In Table 6.1, the columns with ‘grey’ and ‘black’ literature types are not ordered by rigour. Added to this
list are git software repositories, as they contain information on documentation about software. The selected
repositories, displayed in Table 6.2, are open source with a hundred to a thousand contributors. They deliver
high quality software that has often been running for years.

6.2.1.2 Inclusion and Exclusion Criteria

Search engines used for the MLR, based on popularity [221] and triangulation, are:

85

‘White’ literature ‘Grey’ literature ‘Black’ literature
•Published journal papers •Preprints • Ideas
•Conference proceedings •Technical reports •Concepts
•Peer-reviewed books • Lectures •Thoughts

•Data sets
•Podcasts, Video
•Blogs
•Git SCM

Table 6.1: Types of literature, based on Garousi, Felderer, and Mäntylä [214].

ID Source Type Description RQ1 RQ2 RQ3 RQ4
S1 bash [216] SCM Open source project for a Linux shell ✓ ✓

S2 Mozilla open source
project [217]

SCM Open source project for Firefox, a web
browser

✓ ✓

S3 LATEX open source
project [218]

SCM Open source project for a document
editing tool

✓ ✓

S4a stackshare.io [213] Data
set

Website that collects user generated
data on popular development and de-
ployment stacks

✓ ✓

S4b thoughtworks.com/radar [219] Data
set

An opinionated guide to technology
frontiers

✓ ✓

S4c gartner.com [220] Data
set

Interpreting technology hype ✓ ✓

S5 Case study Data
set

Interviews with practitioners from the
industry

✓ ✓ ✓ ✓

S6 Documents Data
set

Documents that support the inter-
views

✓ ✓ ✓ ✓

Table 6.2: Description of Data sources and Types used in this paper and contribution to answering the research
questions.

• Google. 70.0% popularity on Desktop, 94.0% on Mobile devices.
• Bing. 13.2% popularity on Desktop, 0.7% on Mobile devices.
• DuckDuckGo (DDG). 0.3% on Desktop, 0.2% on Mobile devices.
• Google Scholar (GS). Not mentioned by NetApplications [221]. It was used for triangulation to compare

with academic search engines.

Google Scholar was added to verify the results from the other search engines. Furthermore, if Google Scholar
returns few search results, then search engines like ACM, IEEE, ScienceDirect, Springer or WebOfScience often
also show few results. Other search engines mentioned by NetApplications [221] are powered by Google (AOL)
or Bing (Yahoo) and therefore considered redundant. Only western search engines were included; Asian search
engines were excluded.

Garousi, Felderer, and Mäntylä [214] refers to the extensive assessment of sources, compared to ‘white
literature’. In Table 6.4, the inclusion criteria are presented. For definition of the numbers, the threshold is
randomly selected, or top ranking is applied. The numbers for the thresholds are set to cover the research
questions.

ID Criteria
C1 Open source projects, including number of developers. The threshold is 10 developers.
C2 Open source projects, including number of years existing. The threshold is 10 years.
C3 Open source projects, including format of documentation. Range of formats over

projects are selected to cover the variety of information.
C4 Community generated data data sets including metrics for stacks. The top three are

taken into account.
C5 Community generated data data sets including metrics for companies.The top three

are taken into account.
C6 Community generated data data sets including metrics for developers. The top three

are taken into account.

Table 6.3: Inclusion Criteria, following Garousi, Felderer, and Mäntylä [214] and Kitchenham and Charters
[222].

In Table 6.4, C3 concerning the formats, refers to the following formats: HyperText Markup Language
(HTML), Compiled HTML Help (CHM), Rich Text Format (RTF), Portable Document Format (PDF), LATEX,
PostScript, man pages, DocBook, Extended Markup Language (XML), and ePub.

https://github.com/bminor/bash
https://firefox-source-docs.mozilla.org/index.html
https://firefox-source-docs.mozilla.org/index.html
https://github.com/latex3/latex2e/tree/master/base/doc
https://stackshare.io
https://www.thoughtworks.com/radar
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://google.com
https://bing.com
https://duckduckgo.com
https://scholar.google.com

86 CHAPTER 6. TOOLS ARE THE MESSAGE

6.2.1.3 Search Process

The search terms on all three search engines are: “stacks tools technology”. In the test run, it became clear
that the search results for Google Scholar were useless, unless the term ‘software’ was added. The final search
string was “stacks tools technology software”. Each time, an anonymous browser session was started
to minimize hints from the search engines based on previous searches. Different search engines use different
metrics to calculate the result set. The number designates an indication, not a rank.

Search Engine Number of
hits

Top three results

Google 47.900.000 Stackshare homepage • Popular Tech Stacks from stack-
share • Technology Stack: What it is and how to build
one on mixpanel.com

Bing 141.000.000 Popular Tech Stacks from stackshare • Stack-
share homepage • https://mopinion.com/
tools-for-your-2019-marketing-technology-stack/

Duck Duck Go Not calculated Popular Tech Stacks from stackshare • Stackshare
homepage • Top six stacks from fingent.com

Google Scholar 289.000 “What are developers talking about?” from Springer •
“Singularity: rethinking the software stack” from ACM •
“Managing the Life Cycle of Linked Data with the LOD2
Stack” from Springer

Table 6.4: Inclusion Criteria, based on Garousi, Felderer, and Mäntylä [214].

6.2.2 Case Study
We follow Yin [215] for the case study approach. A case study is appropriate for research that answers “why”
and “how” questions. This study does not require control of behavioral events, and focuses on contemporary
phenomena [215].

The following types of research are derived from Yin [215].
• Explanatory

Description of cause-effect relations used with inductive reasoning and often used with descriptive statics.
This type of research is applicable because, for understanding relations between real-life phenomena, the
interviewees can elaborate on the phenomenon and their relation. Typical questions start with ‘who’,
‘what’, ‘where’, ‘how many’ and ‘how much’.

• Descriptive
Takes the context into account by scientifically reporting observations about situations and events. In
real-life situations, situations and events can not be considered without their context. Typical questions
start with ‘why’ and ‘how’.

• Exploratory
Defines and tests hypotheses for building new theories. For this paper, exploring and building new
theories is not the primary objective, but the collected data can serve in follow-up research. Typical
questions starts with ‘why’ and ‘how’.

Figure 6.1 depicts the case design and units of analysis.

6.2.2.1 Units of Analysis

The units of analysis are individual practitioners from (non-)profit national and international organizations
in senior positions. Professionals in IT-industry are relevant because IT is the domain of research. The
reason for doing individual interviews is that they can provide in-depth information, and individual or even
opinionated perspectives on matters of concern. Also, for practical reasons, it is easier to arrange a meeting
with individuals than with groups. Concerning seniority, practitioners have an overview of the continuity of
software projects over the years, including software products’ evolution. This includes changing the technology
stack, organizational change, and the IT tooling landscape. There is no particular reason for including national
or international organizations. Practical reasons such as availability are decisive in selecting organizations.
The teams’ and organizations’ size is relevant because knowledge about the software product is more present
in larger teams, including historical knowledge about decisions, bugs, and bug fixes.

https://www.google.com/search?q=stacks+tools+technology+software
https://stackshare.io/
https://stackshare.io/stacks
https://stackshare.io/stacks
https://mixpanel.com/topics/what-is-a-technology-stack/
https://mixpanel.com/topics/what-is-a-technology-stack/
https://www.bing.com/search?q=stacks+tools+technology+software
https://stackshare.io/stacks
https://stackshare.io/
https://stackshare.io/
https://mopinion.com/tools-for-your-2019-marketing-technology-stack/
https://mopinion.com/tools-for-your-2019-marketing-technology-stack/
https://duckduckgo.com/?q=stacks+tools+technology+software&t=h_&ia=web
https://stackshare.io/stacks
https://stackshare.io/
https://stackshare.io/
https://www.fingent.com/blog/top-6-tech-stacks-that-reign-software-development-in-2020/
https://scholar.google.com/scholar?q=stacks+tools+technology+software
https://link.springer.com/content/pdf/10.1007/s10664-012-9231-y.pdf
https://dl.acm.org/doi/abs/10.1145/1243418.1243424
https://link.springer.com/chapter/10.1007/978-3-642-35173-0_1
https://link.springer.com/chapter/10.1007/978-3-642-35173-0_1

87

Single-case
DesignsHolistic

(single-unit
of analysis)

Embedded
(multiple
units of
analysis)

Mupltiple-case
Designs

Engineering (1)

COO (1)

Software (8)

Architect (3)

Consultant (4)

COO (1)

Government (2)

Architect (2)

CTO (1)

Finance (1)

COO (1)

Retail (2)

Architect (1)

CTO (1)

Characteristics:
Law, regulations
AND fast
time-to-market

Characteristics:
Law, regulations
AND fast
time-to-market

Characteristics:
Traditional process
management, IT
follows

Characteristics:
Fast time-to-market

Characteristics:
Continuous
Software
Development

CONTEXT
Case 14

CONTEXT

Embedded
Unit of
Analysis 1

CONTEXT

Embedded
Unit of
Analysis ...

CONTEXT

Embedded
Unit of
Analysis 15

CONTEXT
Case ...

CONTEXT
Case 1

CONTEXT (5)
Case

Figure 6.1: Units of analysis -individual practitioners- with cases from multiple types of organizations, including
multiple departments, concerning documentation in CSD.

6.2.3 Objectives and Research Questions
The objective of this study is defined in the main research question:

The objective is to investigate the necessary and sufficient conditions to organize information scat-
tered throughout a CSD ecosystem into comprehensible documentation for designated stakeholders.

The related research questions are:
- RQ1: Which tools are used in the software development ecosystem?
- RQ2: What is the variety of information that is stored in tools?
- RQ3: Which information is stored with what tool?
- RQ4: How can this scattered information be organized into comprehensible documentation?

6.3 Results

In this section, the data collection methods, data analysis methods and data interpretation methods are
presented, together with the data.

88 CHAPTER 6. TOOLS ARE THE MESSAGE

6.3.1 Data Collection
Table 6.2 presents the sources and types for the data used in this paper. From a wide range of popular open
source projects, S1-S3 were selected because of their contribution to answering RQ2 concerning variety of
information and RQ4 concerning organizing information into comprehensible documentation. Sources S4-S6
contribute to answering RQ1, namely which tools are used in which ecosystem. From the publicly available
data sets that present the popularity of tool stacks, stackshare.io was the only viable option. Alternatives,
such as stack.g2.com or www.producthunt.com show limited sets. Sites such as alternativeto.net show only
alternatives for a specific tool. The data from stackshare was compared with information collected from the
interviews. Sources S5-S6 contribute to answering all research questions and were selected to validate and
extend the data collected from S1-S4.

6.3.1.1 Data Collected from the Source Code

The source code from the open source project was selected because repositories with a long development period
also have numerous developers. New developers build on existing code and sometimes need to work through a
wide range of standards and guidelines, architecture, decisions, UI, or enforced coding standards by the use of
code linters (a linter is a static analysis tool that warns for or prohibits deployment when code is not following
styles or constructs, or includes programming errors). Examples are mediawiki and Linux.

The repositories presented in Table 6.2 are selected because they differ in the type of medium for docu-
mentation. This contributes to answering RQ2.

6.3.1.2 Data Collected from the Data Sets

Three sources are used: S4-S6 in Table 6.2. The tools from stackshare.io are used to get an overview of popular
tools and tool stacks. The data retrieved from the interviewees verifies the popularity of tools in tool stacks.
Furthermore, the number of tools in tool stacks mentioned by interviewees is higher and gives insight into the
selection of tools.

6.3.1.3 Interviews

We held 14 interviews (S5 in Table 6.2) with 15 subjects in 5 different cases. The cases were selected based
on the expected motivation for documentation, ranging from fast TTM to following regulations, as mentioned
by Bass, Weber, and Zhu [3]. Figure 6.1 depicts the units of analysis (interviewees) with multiple cases
(organizations with different motivations for documentation).

6.3.2 Data Analysis
In this section, filtering, grouping, ordering, and visualization of data is presented. The filtering applies to
a selection of data that falls within this study’s scope and contributes to answering the research questions.
Discussions and insights in the interviews that do not contribute are not taken into account. The grouping
of the data applies to combine results in aggregated classes with common properties. Part of the grouping
matches with the subsequent research questions. The ordering refers to the relevance of visual properties. With
the visualization, a quick and comprehensive overview is presented from relevant data.

In Figure 6.2, the types of organization are represented. Based on Bass, Weber, and Zhu [3], it was expected
that the motivation for documentation ranges from fast TTM, such as in retail, to required documentation
because of regulations, such as in government or finance. Software companies are defined having IT as their
core competence, and having more than 80% of their revenue generated by IT. Modern companies use their
digital infrastructure platform as their source of revenue, but none of the interviewed companies generates
revenue from a platform.

In Figure 6.3, the functions of the interviewees are represented. All 15 interviewees have senior positions,
either as some kind of manager or some kind of technician. Consultants are technical consultants, not business
consultants although the senior consultants have a wider span of control and skills than IT only. C-level
interviewees all had an education in IT and were seasoned IT practitioners.

Figure 6.4 presents on the x-axis the number of tools in a tool stack, based on numbers from stackshare.io.
The left y-axis represents the number of found tool stacks with the number of tools. Combinations most found
numbers three. There are 95567 combinations of three tools (blue line). The red line depicts the number of

https://stackshare.io
https://stack.g2.com/
https://www.producthunt.com/
https://alternativeto.net/
https://stackshare.io/
https://github.com/wikimedia/mediawiki
https://github.com/torvalds/linux
https://stackshare.io
https://stackshare.io

89

Engineering
6,7%

Finance
6,7%

Software
53,3%

Government
20,0%

Retail
13,3%

Figure 6.2: Types of organization from the interviewees.

Consultant
26,7%

COO
20,0%

CTO
13,3%

Architect
40,0%

Figure 6.3: Functions of interviewees.

most popular combinations. A further analysis of the data is in the Appendix2. The table represents popular
combinations and the number of combinations. The most popular combination is GitHub with nginx and
Redis. This combination is mentioned 47 times by the stackshare.io. If the combination of tools is 11 or more,
there are fewer combinations of tools in tool stacks. Another interesting observation is that productivity tools
are more popular than communication or documentation tools. The first appearance of a communication tool
is the chat application Slack, with a number of 5 tools or more. Trello, as task management tool, is mentioned
when a tool stack is built up of 8 tools or more. The first time a documentation-like tool (Markdown) is
mentioned is when a tool stack consists of 13 tools or more.

Based on the interviews, the number of tools was higher than the popularity index in Figure 6.4. Interviewees
mentioned a full range of tools that are either prescribed and supported or tools that are allowed for individual
developers. An example of this is that the tool stack from JetBrains is prescribed and supported but developers
have the option to use another IDE (VSCode). Another example is Postman for the testing of REST API
endpoints. This tool is allowed, can be highly productive for individual developers but is not supported by the
company. Communication and collaboration tools are not allowed to be individual choices but are prescribed
by the company.

Figures 6.5 and 6.6 were initially compiled from Theunissen, van Heesch, and Avgeriou [20]. The figures
were presented in the interviews for validation and extended with other types of information.

6.3.3 Data Interpretation
With data interpretation, the research questions are answered based on the analyzed data. Also, deviations
from expectations are discussed.

One deviation from the expectation is the motivation for documentation, which affects multiple cases in
the design. Bass, Weber, and Zhu [3] mention a range of motivations between fast TTM for retail to following

2Appendix on https://theotheunissen.nl/tools-are-the-message

https://stackshare.io
https://theotheunissen.nl/tools-are-the-message

90 CHAPTER 6. TOOLS ARE THE MESSAGE

Figure 6.4: Tools and tool combinations, based on stackshare.io and theotheunissen.nl/tools-are-the-message.

regulations for government. This range defines the multiple cases in the design. However, although government
and finance have to apply to strict regulations, the need for fast TTM is immanent. For governmental organi-
zations in the Netherlands, national elections held at least every four years result in new policies that have to
be implemented at short notice. For governmental organizations, no trade-off is possible. These organizations
have to comply to law and regulations, and follow policies. The workaround is to automate development as
much as possible and fill the gaps with manual operations. Financial companies also have to conform to regu-
lations and standards such as AMLD53, GDPR4 or the Gramm-Leach-Bliley Act 5. The notion of ‘fast TTM’
applies to keeping up with regulations. Fast TTM does not refer to adding up-selling and cross-selling features
in a web shop for the financial industry. The effect on the multiple cases in the case study design is that the
cases for governmental organizations and the financial industry are identical and not different cases. However,
this does not affect the answering of the research questions.

A second observation is that interviewees mention many more tools than are mentioned on stackshare. The
sources contributing to answering RQ1 are the online user generated tool stacks with tools from stackshare.io
(S4a). These results where verified, validated, and extended by the interviews (S5) and supporting documents
(S6). Figure 6.4 show that the most popular sets consist of three tools. There are 95567 stacks with three
tools. However, 69262 stacks are only mentioned once with three tools, making the number of popular stacks a
long tail. Interviewees mentioned over 20 tools. This deviation has a small effect on RQ1 -which tools are used-
because the range of tools is retrieved and confirmed with interviewees. For RQ3, which type of information
with what tool, it has a larger effect because interviewees could elaborate on the motivation. Stackshare.io
only shares numbers, not motivations. The interviewees all mentioned more tools than could be extracted from
stackshare and the tools from stackshare are also mentioned by interviewees. The effect from the interviewees is
only qualitative because they can motivate choices, describe relations between tools, or refer to organizational
policies.

6.4 Types of Information
In this section, the types of information in CSD are presented. There is a distinction between information and
documentation. The term information is used to refer to any (set of) symbols that

1. makes a difference [5], [223] and
2. causes one or more effects [6].

The term documentation is used for any written, verbal, visual artifact or activity that transfers knowledge
between stakeholders, related to the software product [S145]. Documentation stems from the etymological
meaning for [4]:

3https://eur-lex.europa.eu
4https://gdpr-info.eu
5https://ftc.gov

https://stackshare.io
https://theotheunissen.nl/tools-are-the-message
https://stackshare.io
https://stackshare.io
https://stackshare.io
https://stackshare.io
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L0843
https://gdpr-info.eu/
https://www.ftc.gov/news-events/press-releases/2019/03/ftc-seeks-comment-proposed-amendments-safeguards-privacy-rules

91

1. teaching (Latin: docere),
2. pointing out, or
3. instructing with evidence and authority.

The types of information are the distinctive properties for what is actually documented, at what point in the
process in CSD, how it is stored, and why it is relevant to keep the information. Figure 6.5 presents the types
of information, tool categories, and examples of tools.

Requirement Management; Business Tools / Collaboration / Productivity Suite
Markdown, Confluence, Wiki, MSOffice, G-Suite, Ashta (UML drawing tool)

API Development; Utilities /
Documentation as a Service & Tools
Swagger, Postman

Test; Utilities / Load and Performance
Testing; DevOps / Testing
Frameworks
JMeter, Cucumber, JUnit

Development; DevOps /
Integrated Development
Environment
VS Code, IntelliJ

Development; DevOps /
Integrated Development
Environment
VS Code, IntelliJ, DocGen

Development; DevOps /
Integrated Development
Environment
GitLab, GitHub, BitBucket

Application and Data / Data
Stores / Databases
MySQL, Postgress, MariaDB,
MongoDB

Tool Categories (Bold)
Tool examples (italic)

Development / Dev Communities; Collaboration / Group Chat & Notifications
Phone, Skype, Mail, Chat, Slack, Discord, Whiteboard sketches, Pictures

Deployment; DevOps / Continuous Integration
Jenkins, Docker, Kubernetes

Monitoring; DevOps / Monitoring /Monitoring Tools
Nagios, Zabbix, ELK-stack, DataDog,
Result Planning, Sandwich of Happiness

• Stakeholder
concerns

• Risks
• Constraints
• Context

• Models
• Sketches

Legenda

• Values and beliefs
• Principles
• Practices
• Processes,

procedures,
 and tools

• Knowledge
• Competence and

skills descriptions
• Descriptions of

Attitudes

Requirements
Describes “what”

Source code

Descributions of
what and how

including

contains

changes
described by

application
related data

Infrastructure-
as-code

Just enough
instructions to start

leads to

includes

leads
to

leads to

Metrics

Type of information

Collection

End user / Developer
documentation

Actionable data

Annotations

Commit messages

Data

Specifications
Describes “how”

Quality attributes

API descriptions

Tests
QA, Functional

Playbooks
(CI/CD)

Medium
Including tools, hearts and minds

Informal, unstructured (verbal)
communication

Tool Categories (Bold)
Tool examples (italic)

Figure 6.5: Types of Information, including mapping to tool categories and tools. The medium applies to the
communication of information. Metrics and actionable data apply to all information for insight and control of
processes.

6.5 Tools Are the Message
Marshall McLuhan coined the phrase “the medium is the message” [224]. He pointed out that the medium
should be subject of investigation as well as the content of the message. The subject for this study concerns
both the tools as well as the content of the message, so note that tools are part of the message and not the
only message. “The tools are the message” thus refers to a different message being communicated if tools make
use of different media types such as written, verbal, or visual. The primary concern for this study is the tools,
not the types of information. However, the types of information do have a strong relationship with the tool in
which the information is created, retrieved or updated. In this section, the aspects that establish that tools are
(part of) the message will be discussed. In Section 6 the tools, tool-stacks and software development ecosystems
are discussed. Tools define which tools, stacks or ecosystems are used when information is created, captured,
understood or processed. In Section 6 the variety of information is discussed. The variety refers to the amount
of structure information has. This amount of structure is defined by creation and retrieval of information with
tools. In Section 6, the relation between the types of information, tool (stacks), and the variety of information
will be presented as “tools are the message”.

6.5.1 Tools, Tool Stacks, and the Software Development Ecosystem
In this section, the tools in relation to other tools are described. The tools, tool stacks and their popularity can
be found in Sources S4 (websites), S5 (interviews), and S6 (supporting documents to the interviews), displayed

92 CHAPTER 6. TOOLS ARE THE MESSAGE

in Table 6.2.
In CSD, tools are organized into stacks, and tool stacks are organized into software development ecosystems.

In Figure 6.6, an overview is presented for the relation between Software Development Ecosystems with Tool

Legenda

Tool Stack PLUS

Product community
Jira, git

Component
Examples

Templates, Frameworks,
Libraries

Django, Angular.js, jQuery

Technologies
Thought Radar, Gartner’s

Hype Cycle

Concepts
Processes, Knowledge,

Artifacts, Society

Back-end
PostgreSQL, Typescript, nginx

Front-end
HTML, CSS, JavaScript

Full-stack
Back-end plus Front-end

Development Stacks

Software Systems
Confluence, IntelliJ

Knowledge community
Stackoverflow, Conferences

Learning community
Pluralsight, EDX

Software Development
Ecosystems

Tool-stacks

Tools

Society
People, Planet, Profit

Other
communities

Company Stacks
Facebook, Google

Solution Stacks
LAMP, MEAN

Tools

Tool-stacks

Software Development Ecosystems

Figure 6.6: Relations between Software Development Ecosystems with Tool stacks and Tools, including com-
ponents and examples.

stacks and Tools, including components and examples. In the next paragraphs, an explanation will be presented
of the figure.

1. Tools A tool is defined as a concept, technology, software system, template, framework, or library to
design, develop, and maintain a software product. The level of freedom can define the difference between
a template, framework, and library. A (technology) template is like a form where the only freedom exists
in filling in the value of variables, such as a Python Django template. A framework is a comprehensive
set of methods that prescribe the purpose and usage of functions and methods. The maximum freedom
is with libraries that provide a set of functions that can be used to speed up development, e.g., jQuery.
Examples for concepts are the nature of technology, such as the processes, knowledge, and artifacts,
including impact on society [225]. For technologies: Technology Radar or Gartners Hypecycle. Examples
for software systems are typical tools like Confluence and IntelliJ.

2. Tool stacks The organization of tools into tool stacks for 1) development stacks including back-end, front-
end or full-stack, 2) solutions stacks, or 3) company stacks. The front end is where the end-user interacts
with the system. For web applications, a limited set of technologies is available. For mobile application
development, there is no dedicated technology to create the user interface, other than supporting tools
to create wireframes or graphic tools to create low-fidelity or high-fidelity User Interface (UIMLR)s. The
stack for back end development concerns databases, applications, and servers. This also includes the
infrastructure the software is running on. This might be on-premise, in the cloud, or hybrid. A myriad
of tools for the back end is available. At stackshare, over 2,000 tools can be found related to back-end

https://jquery.com/
https://www.thoughtworks.com/radar
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://www.atlassian.com/software/confluence
https://www.jetbrains.com/idea/

93

development [213]6. The full stack can be viewed as the sum of tools for the back end and front end.
However, this simple sum of tools also includes processes, knowledge, and competences, and other types
of information and not just the tools but also to understand and manage the complexity of this sum of
tools. This fits with the processes in DevOps, where developers and maintainers are the same people. A
solution stack is a specific set of tools to solve a problem where each tool contributes to the solution, and
tools are mutually exclusive. Tools can be exchangeable, for instance MySQL with MariaDB, or Apache
with nginx. A company stack is a stack of tools used by a company for its specific situation, focusing on
fast TTM or following legislation. In this respect, the reason for documentation is relevant. It can lead
to very little documentation in case of fast TTM or to mandatory documentation because of regulatory
reasons, as in the aviation industry, medicine industry, or tax administration.
Examples for 1) are github and intelliJ. Examples for 2), the solution stack, are Linux, Apache, MySQL,
PHP (LAMP), Mongo, Express, Angular, Nodejs (MEAN). For 3), the company stacks, examples are for
Facebook: Hack, React, Cassandra, and GraphQL or Google with Dart, Go, Angular.js, and Material
Design. The stack as a concept is discussed by Jansen, Finkelstein, and Brinkkemper [226], referring to
Software Ecosystems (SECO). This is a set of business functioning as a unit interacting with a shared
market for software and services, including relationships. SECO already points to a context, but the
community takes the context explicitly into consideration as is discussed in the next paragraph.

3. Software Development Ecosystems This is an extension of the tool stacks with communities, op-
tionally outside the team or company. A product community refers to information about specific tools,
including concepts, technologies, software systems, and templates, frameworks, and libraries. The com-
munity for knowledge can be based either on websites where developers gather to exchange questions,
answers, and contemplation, or on conferences where developers from industry and scientists meet. There
are also meet-ups specific for industry developers, that are also attended by scientists. This makes clear
that knowledge sharing involves, besides cognitive activity, also social activity. The learning community
includes sites for Masssive Open Online Course (MOOC)s, either academic or commercial, to learn about
concepts and practicing code, but also classic learning environments for students at universities.
Examples are product or tool sites. Knowledge sharing sites like Stackoverflow, Reddit, or Quora; online
courses from Pluralsight, EDX, or Udemy.

The classification of tools into tool stacks varies from an unorganized landscape such as Kersten [S97] to
layers for Application and Data, Business Tools, DevOps, and Utilities such as Stackshare.io [213]. Other
classifications take into account the processes, infrastructure, productivity (4+1 from Kruchten [S178], or C4
from Brown [210]).

The way the tools are organized into tool stacks, and tool stacks are organized into software development
systems, shows that this “scattering” has a high level of organization. The tools are not randomly picked to
serve a purpose, but are combined to support design, development, and maintenance for a software product
with specific requirements from the industry such as fast TTM or regulations for documentation.

“Tools are the message” concerning the tools, tool stacks and software development ecosystems relates to
the type of information that is stored with each tool. The tools in “tools are the message” define how the
information is created, stored, retrieved, and communicated. The tool stack is comprised of a set of tools in
use by a development team. The software development ecosystem includes the community around individual
tools.

6.5.2 Variety of Information and Contribution to Knowledge Transfer
In this section, the variety of information is discussed, including the relation with tools. This Section is closely
related to RQ2: the variety of information. The data sources are S1-S3 (open source projects), S5-S6 (case
studies) as represented in Table 6.2.

The information in the tools in CSD has a certain amount of structure. Figure 6.7 presents the amount of
structure measured by the creation or capturing on the upper x-axis and the retrieval for human communication
varying to automated processing on the right y-axis. The tools to create or retrieve the information are on the
lower x-axis. The Creation dimension on the upper x-axis varies from constructing to capturing information.
“Capturing” refers to the ingestion of information into a storage medium that is not created with a software
development tool, e.g. whiteboard sketches, drawings, or models. A photograph might be saved in Jira or
Confluence for later usage. The system does captures chat messages or email messages that have a low degree
of structure. Probably the only structure an email message has is the subject and other standard headers such

6For this paper, the data can be found on https://theotheunissen.nl/tools-are-the-message

https://mysql.com
https://mariadb.org/
https://httpd.apache.org/
https://www.nginx.com/
https://github.com
https://www.jetbrains.com/idea/
https://stackoverflow.com/
https://www.reddit.com/r/webdev
https://quora.com/
https://www.pluralsight.com//
https://edx.org/
https://Udemy.com/
https://theotheunissen.nl/tools-are-the-message

94 CHAPTER 6. TOOLS ARE THE MESSAGE

Constructing

Codified Agreements
API Descriptions

CI/CD
Infrastructure-as-code, deployment scripts

Data
Application data,
settings, configurations

Tests
TDD, BDD

Source code
Java, Python

Visual
Whiteboard sketches,

drawings, models

Natural language
Meetings, Mail, Chat

Templates, Standards
SRS, SAD, SDD

Structured Language
UML Diagrams & notations

Requirement Management; Business Tools / Collaboration /
Productivity Suite
PowerPoint, Google Slides, Photographs of whiteboard sketches

Requirement Management; Business Tools / Collaboration / Productivity Suite
Outlook, Gmail, Slack, Discord

Requirement Management; Business Tools / Collaboration / Productivity Suite
MS Word, Google Documentations, MarkDown, WIki

Application and Data / Data Stores /
Databases
MySQL, Postgress, MariaDB, MongoDB

Test; Utilities / Load and Performance
Testing; DevOps / Testing Frameworks
JMeter, Cucumber, JUnit

API Development; Utilities / Documentation as a Service & Tools
Swagger, Postman

Deployment;
DevOps / Continuous Integration
Jenkins, Docker, Kubernetes

Development;
DevOps / Integrated Development
Environment
VS Code, IntelliJ, VIM

Requirement Management;
Business Tools / Collaboration / Productivity Suite
Draw.io, Rational Rose, Astah

A
m

ou
nt

 o
f

St
ru

ct
ur

e

Tools

Automatic
processing

Creation Capturing

Ease of human
communication

Re
tr

ie
va

l

Low

High

Figure 6.7: Amount of Structure measured by Creation, Retrieval, and Tools used to create or retrieve the
types of information.

as the addressees. “Manufacturing” refers to the manual creation of information, such as source code. The
Retrieval dimension on the right y-axis refers to the usage of the information and varies from the ease of human
understanding to automatic processing. “Ease of human understanding” identifies the cognitive load required
to understand the information involved. “Automatic processing“ refers to the syntax, grammar, and semantics
to compile source code.

“Tools are the message” concerning the variety of information relates to the amount of structural charac-
teristics from the information that is captured, stored, or communicated. Tools enable the creation, storage,
and communication of information while enforcing more or less structure.

6.5.3 Types of Information, Variety of Information, and Tools in a
Software Development Ecosystem
This Section elaborates on RQ3: which information is stored in what tool. The data sources for this section
are S5-S6 (interviews).

In previous sections, an overview was presented of types of information, and of tools including tool stacks
and software development ecosystems. Also, the variety of information was discussed. All this makes clear
that tools are significant in understanding the information and documentation that is created or retrieved.
The main difference concerns the usage of the information stored in the tools, especially if the creators of the
information are not the users of the information. This is most manifest when creator and user are not the same

95

person. Examples are teams that are geographically distributed across the world or team members that were
not involved in the conceptualization of the information.

“Tools are the message” (Section 6, Figure ??) in relationship with the types of information (Section 6), the
variety of information (Section 6, Figure 6.7), and tools show that for creation and retrieval of information,
tools make a difference.

For example, the presentation of a concept is better done in PowerPoint-like tools than source code only.
The implementation of an algorithm can better be communicated with the actual source code accompanied
with a model/sketch than in text. The creation and retrieval of information is closely related to these activities.
Figure ?? presents the composition of “Tools are the message” by the types of information, variety of information
and tools including tool stacks.

Considering major open source software repositories, most of the repositories show simple text documenta-
tion, including Mark Down. However, there is a close connection between the software product and the format
of the information. For instance, for the Linux utility “bash”, traditional UNIX man pages are used [216]. For
LATEX, the information about the software is in tex format [218], and for the Firefox browser, the information
is in HTML-format [217]. These specific examples make clear that the software product and format of the
information are strongly related.

6.5.4 How to Organize Scattered Information into Comprehensible
Documentation
This section addresses RQ4. The data sources for this section are S1-S6 (all sources), as represented in Table 6.2.
S1-S3 (open source projects) are used to gain insight in what (values, architecture, interfaces) is documented
in what type of information (text, commit message, pictures) in what tool (Confluence, GitHub, RDBMS). S4
is used to understand the community of software practitioners. S5-S6 (case studies) are used for verification,
validation and extending findings.

In CSD, “tools are the message” refers to the types of information, the variety of information and tools
in software development ecosystems. The tools require or produce information with certain formats. When
combining these aspects, the effort needed to comprehend the information about the software product will
increase, and understanding will go down, in particular for geographically distributed teams, across buildings
or across the globe, or in case of decision making not involving all team members. However, not all information
about the software product is relevant for all stakeholders all the time. For customers, who pay for the
development of the software product, metrics and actionable data are relevant for productivity of the software
product team. For end users, a user manual should be present. If part of the end product, many websites do
not have manuals but are supposed to be user friendly. For managers, metrics for relevant Key Performance
Indicator (KPI)s should be present. For developers, user stories and codified API descriptions should be
present.

The best way to introduce new team members to the software product is definitely not to demonstrate all
tools with their variety of (un)structured information, types of information and tool (stacks). A better solution
is to provide stakeholders with an overview according to their specific interest. For stakeholders, this might be
a PowerPoint-like presentation with the mission and vision. For managers, this might be the metrics on a KPI
dashboard. For developers, this might be the requirements, specifications, or “how to’s”. For end-users, this
might be the user manual. Comprehensive ‘yellow pages’ with an overview of what is relevant for who should
be available. In an investigation of the 20 major public software products, we see that the various types of
information are well presented.

6.5 Conclusions
The phrase “tools are the message” is taken from McLuhan and Fiore [224] “the medium is the message”. He
proposed investigation of the medium instead of only the message. In this paper, the tools, including the type
of information, and variety, are the “medium”.

Tools are the message refers to three aspects. These aspects are:
1. the types of information
2. tools, including tool stacks and software development ecosystems
3. the amount of structure
Based on the research results, five conclusions are drawn. First, there is a strong relationship between the

type of information and the tool. The type of information refers to the properties of the information in terms

96 CHAPTER 6. TOOLS ARE THE MESSAGE

of what is stored (content), how it is stored (format), why it is stored (relevance), and when in the process
the information is stored. Tools are the concepts, technologies, software systems, and frameworks to design,
develop, deploy, and maintain the software product.

The second conclusion is that tools are organized into tool stacks, and tool stacks are organized into software
development ecosystems. A tool stack is an organized set of tools to produce a software product. The software
development ecosystem includes communities outside the team, such as product communities or knowledge
communities.

The third conclusion is that the variety of tools refers to the amount of structure for information. This
amount of structure is defined by the creation and retrieval of the information, together with the tools for
creation and retrieval.

The fourth conclusion is that the combination of these three aspects makes a difference in creating, retrieving,
communicating, and understanding the message. There is a difference in communication and comprehension
when understanding a software product’s core concept through presenting with PowerPoint or through source
code. The same applies when communicating codified agreements for the communication between subsystems
through detailed endpoints, including input and output types, or through a whiteboard sketch.

The fifth conclusion is that the combination of these three aspects, including the core message, creates
complexity concerning finding and understanding relevant information. However, not all stakeholders, including
developers, require all information at any time. As a group of stakeholders, developers require information
to start, continue, and deploy an iteration. This focus on information from specific tools will decrease the
complexity and make it easier to comprehend relevant information.

Chapter 7

Continuous Learning with the
Sandwich of Happiness and
Result Planning1

Abstract With an increase in fast time-to-market and keeping up with fast mandatory legal
changes, we observe a demand for continuous software development which is reflected by the emer-
gence of Lean, Agile, and DevOps approaches. At the same time, we observe the phenomenon of
lifelong learning that is both manifest and propagated by government, industry, and education.
We introduce two patterns that match these two phenomena: the Sandwich of Happiness and
Result Planning. Together, these patterns support learning for students in an educational setting
and continuous learning for professionals in industry, especially in the context of Continuous Soft-
ware Development.

Keywords Agile, Continuous Learning, Continuous Software Development, Documentation, Result
Planning, Sandwich of Happiness

7.1 Introduction

Modern software development comes with continuous changes, reflected in agile methods and through demands
for a fast time-to-market. At the same time, technology innovates in a fast pace and to keep up with these
changes, lifelong learning is fundamental. In this paper we introduce two patterns to adapt to continuous
change in software development by keeping up with lifelong learning. In a continuously changing environment,
with new technology, engineering solutions and processes, lifelong learning is required to match these changes.
The objectives of this paper are to present two patterns that can support this continuous change, and to provide
insights for better comprehension and application of these patterns.

Nowadays, students as well as professionals have to frequently adapt to new situations driven by an ever-
changing world: continuous improvements [227], fast TTM [228] and lifelong learning [229]. This applies
specifically to software engineering that is in a continuous evolution because of innovation [230]. Employees
are required to adapt to an ever-changing world [231].

We will now introduce continuous software development, lifelong learning and the relation between these
two.

1This work was originally published as:

T. Theunissen, S. Overbeek, and S. Hoppenbrouwers, “Continuous Learning with the Sandwich of Happiness and Result Planning,”
in 26th European Conference on Pattern Languages of Programs, New York, NY, USA, 2021. doi: 10.1145/3489449.3489974.

97

98 CHAPTER 7. CONTINUOUS LEARNING

7.1.1 Continuous Software Development
The primary context for the presented patterns concerns continuously changing software, including technologies,
processes, development and maintenance as can be found in industry. The relation between lifelong learning
and continuous software development is that continuous software development often includes several iterations
of the software product. For example, some parts, such as data, business logic, and the user interface may
persist and other parts, such as a database, the programming language, and a software framework such as
jQuery may be replaced [30]. We refer to this continuously changing state as CSD. The main characteristics
of CSD [S31] are that:

1. it covers values, principles, practices, tools, procedures and processes from Lean [2], Agile [1], and Dev-
Ops [3];

2. it embraces activities from the whole life cycle of a software product, i.e. from concept to end-of-life. In
addition to Agile and Lean software development, it includes maintenance activities. In addition to Dev-
Ops, it includes continuous architecting activities. Continuous Integration and Continuous Deployment
(CI/CD) are part of it;

3. it considers the continuously changing state of the software product and progress, such as progressive
insights (e.g., regarding process, design, implementation), changes in contextual factors, new features or
requirements, bug fixes, or other unforeseen factors;

4. it distributes information about software development across multiple tools. There is no central repository
for all relevant information. Because of high demands for fast time-to-market, process automation comes
with a wide range of tooling for designing, developing, testing, deployment and monitoring.

Second, lifelong learning applies to industry practitioners who are confronted with new concepts, frameworks,
technologies and communities. Furthermore, lifelong learning includes, besides professional development, also
personal, relational and organizational development.

7.1.2 Lifelong Learning
Learning refers to knowledge, skills, and attitude [232]. Of these three, knowledge is relatively easy to assess by
means of tests. Someone taking a test can get the maximum score by answering all answers correctly. Skills are
less easy to test unambiguously, and scores typically fall in broad categories like completed or failed, sufficient
or success. The hardest and and most ambiguously to assess is attitude, because it is based on culture, beliefs,
and values that cause mentors and professionals to judge differently. The Sandwich of Happiness refers
to all three aspects of learning. Students and professionals are primarily stimulated to reflect on knowledge,
skills, and attitude. Furthermore, any comfort or annoyance that influences the results or process can be
reflected upon. Individuals can become better professionals by taking into account personal habits. As we
live in an ever-changing world, and especially for engineers that live by creating innovative artifacts, both
students and professionals have to keep up with these evolving creations [233]. This is reflected in CSD which
implies continuous changes during the lifetime of software as a product. Unskilled people in particular tend
to overestimate their own competences and underestimate problems. This is the so-called Dunning-Kruger
effect [234].

A second aspect of lifelong learning is the continuous balance between skills and challenges, an increasing
number of skills and challenges are in a balanced flow [235]. This is depicted in Figure 7.1. This flow starts
from the first learning experience, includes learning years at school and at the university and continues for
practitioners in the industry. The balance refers to related emotions staying between boredom and anxiety.

7.1.3 Patterns
The objective of this paper is to provide practical guidance for students and practitioners for continuous learning
in CSD. It aims to be operationalized by a handout with practical usage and a theoretical background. To
support this objective, in this section a brief conceptualization is presented for better understanding of the
approach and patterns. In general, a pattern is defined by a proven solution for a problem in a
recurrent context.

7.1.3.1 Alexandrian patterns

The ‘pattern’ concept was coined by Christopher Alexander in the context of problems when designing towns,
buildings or windows. For Alexander, a pattern is defined by the following characteristics [236].

1. A picture which shows an archetypal example of the pattern.

99

2. An introduction that sets the context of the problem.
3. The problem in one or two sentences.
4. The body of the problem, including empirical background, evidence, and range of manifestations.
5. The solution is always stated in the form of an instruction.
6. A diagram of the solution that indicates the main components.
7. A relation of the pattern to other patterns in a pattern language.

Ch
al

le
ng

es

Skills

Anxiety flow
channel

time

Boredom

Figure 7.1: Flow is a channel between Boredom and Anxiety based on a balance between Skills and Chal-
lenges [235].

7.1.3.2 Coplien Patterns

Coplien [237] introduced this pattern [237] and was a co-founding member of the Hillside pattern community.
1. The name of the pattern.
2. The alias refers to alternate names or ‘also known as’.
3. The problem describes the goals and objectives to achieve.
4. The context describes the preconditions or applicability.
5. The forces section lists the constraints, and interactions and trade-offs between the constraints.
6. The solution section instructs how to construct the product.
7. The example section illustrates a specific, easy to use, application of the pattern.
8. The resulting context section describes the consequences, post-conditions and side-effects of the pat-

tern.
9. The rationale section justifies and explains the steps and rules how the trade-offs are applied.

10. The known uses section demonstrates the accuracy and firmness of the pattern for recurring problems.
11. The related patterns section relates to other patterns with common forces, initial or resulting context.

In this paper, we select the characteristics that are related to taking decisions: context, problem, forces, solution
and consequences.

7.2 Our Two Patterns

The patterns Sandwich of Happiness (Section 7) and Result Planning (Section 7) have been used for
several years at HAN UAS to support students working on school projects and in internships.

7.2.1 Pattern: The Sandwich of Happiness (SoH)
Continuous learning by answering three questions: what was good, what was bad, what could be better?

100 CHAPTER 7. CONTINUOUS LEARNING

CriticismPraise + + Improvements
• Failures
• Irritations
• Frustrations
• Anger
• Misguided ambitions

• Successes
• Contributions
• Things to be proud of
• Lessons learned

• Adaptability to continuous change
• Balance between

• Defined by SMART KPIs

- Overestimated competences
 and underestimated difficulties
- Anxiety and boredom

Assessment

Introspection and Reflection

Figure 7.2: With the Sandwich of Happiness, assessors look backward for praise and constructive criticism.
Assessors look forward to improvements. The bitter pill is in the middle, sandwiched between a positive
evaluation and a positive outlook. The assessment can be performed by a coach or as a self-assessment.

7.2.1.1 Context

An SoH is prepared several times during a process (e.g., in an iteration, at mid-term, during a semester or
regular coaching sessions) because an evaluation only at the end of the project, without the possibility of
improving during a project, would be rather pointless. Typically, it is hard for students and professionals to
be critical of someone’s performance as it may easily turn into non-constructive social dynamics that are hard
to escape. The Sandwich of Happiness aims at eliciting constructive criticism by looking back for positive
and negative results as well as looking forward for improvement.

7.2.1.2 Problem

Learning, improving, and adapting to change is problematic because it involves cognitive aspects, performance,
and attitude [232]. It is a continuous process [229] that starts at university, goes on in professional life and
extends to retirement, in short: it takes a lifetime.

Developments in engineering are a continuous process of improvements, evolutions, and revolutions.
This relates primarily to technology but extends to processes and societies where developments are used. A
mind shift is required to keep up with or stay ahead of these developments.
Scrum, a widely used software development process, has no mechanism for emotional hygiene where
developers can solve personal issues or build on personal characteristics.
There are demands from the market to stay ahead of competition. In an ever faster moving world with
competition from every website, high demands for fast time to market require continuous adapting to change.
There are Legal requirements (e.g. GDPR). Demands for change might come from legislation to implement
the requirements that might be unforeseen when designing a solution.
The team needs to repair design flaws and bug fixes to keep the product functioning as intended.
Feature requests from end users or customers require developers to continuously learn to understand end
users and customers, to translate requirements into executable and manageable tasks.
There are Progressive insights. Once a whiteboard sketch is drawn in a team or a specification is written
down, almost immediately improvements to the sketch or specification emerge.
Refactoring takes place: fixing code that is not broken but improving performance, readability or maintenance
requires changes to the software product.
Peaceful and quiet delivery of requirements in a waterfall process is in strong contrast with high demands
for continuous change.

101

7.2.1.3 Forces

Following Kruger and Dunning [234], incompetence makes it hard to reflect on inadequate performances.
More in general, people overestimate their competences and underestimate the difficulties at hand.
Csikszentmihalyi, Abuhamdeh, and Nakamura [235] define a balance between anxiety and boredom that
flows in time. See Figure 7.1.
It is more easy, and perhaps more kind, to give positive feedback, such as in tips and tops, than it is to
express irritations and frustrations. Irritations, frustrations and misguided ambitions are not candidate
for improvements and should be avoided.
Keep up with realistic ambitions. With all the failures, missed deadlines, overestimated competences and
underestimated assignments, it is sometimes hard to be proud of the positive achievements such as
contributions and lessons learned.

7.2.1.4 Solution

The resolving principles that are taken into account are depicted in Figure 7.2. The Sandwich of Happiness
can be instructed as “three questions with three answers”. Two questions look backwards, the third looks
forward. For all three answers, use introspection and reflection to assess the results and the course for the
results. With introspection, the person contemplates on his or her own actions and motives whereas reflection
concerns other persons and context. The most specific objects for introspection and reflection are results, but
tasks, processes and emotions can also be included.

1. Looking backward, start with writing down positive results such as your achievements and successes.
Furthermore, reflect on other positive results such as contributions, and outcomes to be proud of. Even
lessons learned in case of failures are positive.

2. Also looking backward, write down your negative results such as failures, and reflect on the causes,
course and realization of how the objectives were not met. Irritations emerge in situations that do not
contribute to productivity or happiness. Frustration relate to situations that someone can not change
to improve. Ambitions that do not match with capabilities should therefore be avoided. Note that it
takes some practice to be critical of ones own performance and also that it takes some exercise to be
professionally ‘cool’ in dealing with negative results.

3. Looking forward : based on your results, the causes of the results, and your ambitions, define result goals
for the next iteration. Typically, looking forward includes commitment to positive results. Looking
forward includes contemplation and reflection on adapting to change, and keeping a balance between
overestimated competences and underestimated difficulties, thereby finding a flow between anxiety and
boredom.

7.2.1.5 Consequences

The objective for the Sandwich of Happinesss is a continuous improvement in an ever changing environment,
such as in CSD. The time it takes to write down a Sandwich of Happiness is about 15-30 minutes. The
text is concise, to the point, relevant, easy to read and makes it possible for a coach or mentor to do quick
assessments on the results and reflections.

Because the Sandwich of Happiness is liberal in trade-offs between the forces, students can reflect on
anything that influences the results. This includes who you are, what you want, your capabilities, barriers and
limitations.

Furthermore, improvement does not imply an ever continuous upward path. It also includes -like a bull
and bear market- downfalls, dips and drops. However, these downfalls as well as peaks lead to flowering
advancements and evolution.

7.2.1.6 Examples

In Appendix 7, an example is presented of the template for the Sandwich of Happiness. The description
that goes with the template is presented below.

The size of a typical Sandwich of Happiness is more than 1/2 A4 page but does not exceed the size of
a full A4.

The Sandwich of Happiness is partly –under the first two questions– a thoughtful reflection concerning
last week’s accountability of the planning and results. The third question is looking forward to where you
define improvements.

102 CHAPTER 7. CONTINUOUS LEARNING

1. Looking backward, what was successful, what are you proud of, what have you contributed for others
and to results, what was an example to others, what should be continued, what was positive?

2. Looking backward, what went wrong, what were irritations and frustrations, what was a misguided
ambition, what must not be tried (happen) again, what should be stopped; in short: what was negative?

3. Based on 1) en 2), what will you do next week, what will you start with? Make it specific, for example
SMART.

7.2.1.7 Related Patterns
There is a Feedback Pattern pattern described by Bergin, Eckstein, Volter, et al. [238], published in a
collection of education patterns in 2012. The pattern describes two types of positive feedback and improvements
in the middle for students to remain confident in their understanding. We consider this pattern to lack structure;
it could be better thought through. Furthermore, we consider that while he pattern described by Bergin,
Eckstein, Volter, et al. [238] focuses on students only, the pattern is also applicable to practitioners in industry
in context of lifelong learning. Finally, the Feedback Pattern is part of Feedback Patterns in general.
The feedback does not make a distinction between introspection (only take your own actions and motivations
into account) or reflection (also take the context and others into account).

7.2.2 Pattern: Result Planning
Continuous improvement by being strict on planning and reporting of verifiable results and relaxed on account-
ability.

7.2.2.1 Context
This pattern is applied when working in processes that have the characteristics of CSD. It does not depend on
the evaluation loop, feedback, phases, sprints, or planning/feedback loops. One of the values from agile is that
working software is more valued than comprehensive documentation. Beck [1] assumes that all time is spent on
developing software. This value ignores other tasks such as, for instance, –for both students and professionals–
planning, meetings, administration, presentations, and –for professionals– acquisition and traveling.

It is hard to estimate the time spent on tasks other than development, for example by students who
cannot lean from experience, or by professionals who have to deal with managers pushing fast time-to-market
features. Students and professionals have tasks that do not directly contribute to productivity, such as all kinds
of meetings or administration. Professionals might have additional tasks such as acquisition, training, and
traveling. On top of that, switching context between tasks takes time to accommodate. When accountability
for productivity and time is missing because of “unproductive” tasks, the time spent might become marked as
unprofitable.

7.2.2.2 Problem
The problem with measuring results is that:

1. It is hard to define verifiable objectives. For instance in scrum, user stories and tasks can be defined.
However, the formulation of definitions of done for user stories or acceptance criteria for tasks is often
sloppy, if they are defined at all.

2. Results are typically expressed as efforts. Examples of efforts are activities such as ‘reading’, ‘meeting’,
‘designing’, and ‘programming’.

3. No rules for timing. In scrum, there are no explicit rules how long tasks or iterations should take.
4. People may fear failing and taking blame when results are not accomplished. Usually, working software

is not questioned but failing software can have valuable learning results.

7.2.2.3 Forces

The following forces are taken into account:
Method bonanza. There are many approaches in CSD that define how to plan tasks or results, such as Lean,
Agile and DevOps. Students are taught textbook definitions but professionals often use best practices that
leave out parts or introduce processes that fit for their purpose.
Death by planning. Popular tools such as Jira support the planning of user stories and tasks. However,
extensive upfront contemplation of definitions of done and acceptance criteria keep students and professionals

103

away from committing to results.
Efforts instead of results. Results can range from a strict focus on SMART key performance indicators
(KPI) on the one hand to just mentioning efforts on the other. It is both hard to define SMART results as
well as to achieve results when defining efforts.
Programming is fun. Developers love the act of coding and tend to avoid diverting activities such as plan-
ning, documenting or process-oriented meetings.
Deviating from textbook definitions of methods. Students are taught textbook definitions of processes
such as scrum, including all ceremonies. Practitioners from the industry hardly follow the paradigm from these
textbook definitions but only use what is applicable in their professional context. It can be hard to grasp which
aspects of methods are strictly necessary and which are optional.
Time estimation can be really difficult. Jones [239] shows that there is no scientific literature on estimating
time for tasks. Furthermore, the combination of experience, (lack of) control of process and context, mitigation
of risks and other potential threats, and creative characteristics of inventing solutions make it hard to give a
reliable estimation for time.
When being held accountable, students and practitioners tend to find explanations that point to others or to
external causes for failing to achieve results. The aim, however, is not to deal blame but to improve, and a full
assessment can best accomplish this for the student or professional. For instance, one cannot blame another
for being late delivering a requirement, but one should address the other for being late.

7.2.2.4 Solution
The resolving principles to balance the forces are related to delivering verifiable and transparent results. The
forces for the Result Planning tend to involve individual accountability rather than team accountability.

The template for the Result Planning, as shown in Appendix 7 has columns for team member, results,
achievements and, optionally, notes. The result statement refers to being concise and informative in single line
sentences. Only the main result should be mentioned, so when there are more results for half a day, then the
most significant result should be mentioned. Again, efforts are not allowed since these are always ‘successful’,
i.e./ the effort taking place means success. For example, sometimes, students (as well as professionals) have
things to do other than work, such as medical or driving lessons. However, it is mandatory in such cases that
they find alternative time slot to do the work, even if this is in the evening or weekends. The achievement
column is small and, when a result is achieved, contains a commit hash or link to some live document. In
case of failure, there is only space for the core message of failure. Long descriptions are not allowed, to hide
incompetence.

The time horizon is one week, and often students cannot oversee more than three days with tasks stretching
in time. The template is used within a team and results are planned together.

The next week, each team member has taken two actions: 1) fill in the achievement column and 2) define new
results. The result statements and achievements are, together with the Sandwich of Happiness, discussed
with the teacher, coach or team lead.

7.2.2.5 Consequences

SMART(ish) results. Results are defined SMART(ish) so they can be measured. Activities like ‘reading’,
‘programming’, ‘learning’, ‘attending (meeting/class)’ and so on are by definition successful and stretch into
the available time. Results like ‘lists of concepts or frameworks’, ‘working software’, ‘asked questions, got the
answers’, ‘updated Result Planning’ and so on are examples of activities that can be measured.
Measure velocity. It is easier to check whether you make progress when main results are defined for half a
day.
Smaller iterations. It is easier to both define moonshot goals, as well as realistic objectives, than it is to
split the task up in smaller tasks that take risk, dependencies, and resources into account. Also, there is no
scientific literature that prescribes an optimal duration for an iteration.
More significant results. Over time, students learn to define a more significant, relevant and contributing
result in half a day. The period of 4 hours remains the same, but results are increasing. (In the beginning
result are often too ambitious and expectations can not be met.)
Achieving goals makes people happy. Happy customers, happy developers and a happy team are within
reach. Suppose a team consist of 5 people who define 2 results per day in an iteration for 1 week. That sums up
to 50 results per week! Even when not successful for all projected results, this is impressive and encouraging.
Reliable. When using this pattern, you will become more reliable for yourself, team, teacher and manager

104 CHAPTER 7. CONTINUOUS LEARNING

because you will be able to make better predictions concerning your knowledge, expertise and how you can use
your experience.
Continuous learning and improvements. In CSD, this helps in adapting to change due to continuously
changing demands from stakeholders or fast time-to-market, or changing constraints, risks or contexts. Addi-
tionally, learning experiences are higher in small iterations than in large iterations.

7.2.2.6 Examples
An example of a Result planning is shown in Appendix 7. The description that goes with the template is
shown below.

Usage Per team member, you define a result per half working day. For a team with five people, you have 50
results per week or 100 results if your iteration takes two weeks.

Objectives What result do you want to achieve at the end of the day? Mention results that can be demon-
strated, verified, or tested. Do not describe mere activities, such as ‘reading’, ‘meetings’, ‘designing’, ‘program-
ming’ etc. but verifiable results. Typical results are a list of concepts, decisions, design or working software.

Achieved results Make sure that you can demonstrate verifiable results and these results relate to the
planning:

1. Make links to GitHub for comments and code.
2. Make links to, e.g., Dropbox, Google Drive for design, documents and books.
3. Make links to websites.
4. Reflect on achieved results in your individual Sandwich of Happiness.

What went wrong? It is OK if an objective is not achieved. Do not spend more time than planned. Ask
your coach, instructor or an expert for support.
Mention the reason for failure. There are a lot of valid reasons why you could not achieve the objectives. Be
fair and try to be honest to yourself and your team. You will learn the most if you are critical towards your
results and process.

The objectives of this pattern are to:
1. Use your experiences to learn (not to deal blame).
2. Every week you will have better estimations and will better close the gap between planning and results.
3. Make increasingly reliable predictions involving your knowledge, expertise and experience.

7.3 Acknowledgments
We want to thank our shepherd Christopher Preschern for shearing our sheep.

APPENDIX 1: TEMPLATE FOR SANDWICH OF HAPPINESS 105

Appendix 1: Template for Sandwich of Happiness

Sandwich of Happiness (theotheunissen.nl/happiness , goo.gl/YyTYj5)

The Sandwich of Happiness is partly –in the two questions– a thoughtful r of last week’s accountability of the
planning and results. The third question is looking forward to where you improvements.

1) What was successful, were you proud of, have you contributed to others, was an example for
others, was positive?

2) What went wrong, where irritations and frustrations, was a misguided ambition, must not be tried
(happen) again; in short: what was negative?

3) Based on 1) en 2), what will you do next week? Make it SMART .

1.) < Your reflec on on posi ve outcomes; Replace YELLOW with your text >
2.) < Your reflec on on adverse outcomes, do not men on improvements >
3.) < Fill in below >

These r and improvements take more than half a page and not more than a full page .

Week of year Date (on Monday)

Specific

Measurable

Acceptable

Relevant

Time-bound

Author __

Student number __

Figure 7.3: Template for Results planning. See also http://theotheunissen.nl/happiness

http://theotheunissen.nl/happiness

106 CHAPTER 7. CONTINUOUS LEARNING

Appendix 2: Template for Result Planning

G
ro

up
Te

m
pl

at
e

ur
l o

n

St
ar

t d
at

e
htt

ps
:/

/g
oo

.g
l/

uj
D

5A
l

En
d

da
te

htt
p:

//
th

eo
th

eu
ni

ss
en

.n
l/

re
su

lts

Pl
an

ni
ng

 b
ef

or
e

A
cc

ou
nt

ab
ili

ty
 a

ft
er

W
ho

Pl
an

ne
d

re
su

lt
s

A
ch

ie
ve

d
re

su
lt

s

M
on

da
y

m
or

ni
ng

A
lic

e
Se

t u
p

in
fr

as
tr

uc
tu

re
lin

k
to

 d
oc

um
en

t

Bo
b

Li
st

 o
f c

on
ce

pt
s

an
d

lit
er

at
ur

e
lin

k
to

 d
oc

um
en

t

Ch
ar

lie
Lo

gi
n

fo
rm

lin
k

to
 g

it
co

m
m

it

D
av

e
CS

S
fr

am
ew

or
k

se
le

cti
on

N
ot

 s
uc

ce
ss

fu
l.

To
o

m
an

y
op

tio
ns

. S
m

al
le

r
st

ep
 to

 d
ec

id
e

fir
st

 a
bo

ut
 a

n
ea

sy
 fr

am
ew

or
k

or
 a

dv
an

ce
d

fr
am

ew
or

k.

M
on

da
y

aft
er

no
on

M
on

da
y

ev
en

in
g

Tu
es

da
y

m
or

ni
ng

Tu
es

da
y

aft
er

no
on

Tu
es

da
y

ev
en

in
g

W
ed

ne
sd

ay
 m

or
ni

ng

W
ed

ne
sd

ay
 a

ft
er

no
on

W
ed

ne
sd

ay
 e

ve
ni

ng

Th
ur

sd
ay

 m
or

ni
ng

Th
ur

sd
ay

 a
ft

er
no

on

Th
ur

sd
ay

 e
ve

ni
ng

Fr
id

ay
 m

or
ni

ng

Fr
id

ay
 a

ft
er

no
on

Fr
id

ay
 e

ve
ni

ng

Sa
tu

rd
ay

 e
ve

ni
ng

Sa
tu

rd
ay

 e
ve

ni
ng

Sa
tu

rd
ay

 e
ve

ni
ng

Su
nd

ay
 e

ve
ni

ng

Su
nd

ay
 e

ve
ni

ng

Su
nd

ay
 e

ve
ni

ng

Figure 7.4: Template for Results Planning. See also http://theotheunissen.nl/results

http://theotheunissen.nl/results

Chapter 8

Approaches for Documentation in Con-
tinuous
Software Development1

Abstract It is common practice for practitioners in industry as well as for ICT/CS students to keep
writing – and reading – about software products to a bare minimum. However, refraining from
documentation may result in severe issues concerning the vaporization of knowledge regarding
decisions made during the phases of design, build, and maintenance. In this article, we distin-
guish between knowledge required upfront to start a project or iteration, knowledge required to
complete a project or iteration, and knowledge required to operate and maintain software prod-
ucts. With ‘knowledge’, we refer to actionable information. We propose three approaches to keep
up with modern development methods to prevent the risk of knowledge vaporization in software
projects. These approaches are ‘Just Enough Upfront’ documentation, ‘Executable Knowledge’,
and ‘Automated Text Analytics’ to help record, substantiate, manage and retrieve design decisions
in the aforementioned phases. The main characteristic of ‘Just Enough Upfront’ documentation
is that knowledge required upfront includes shaping thoughts/ideas, a codified interface descrip-
tion between (sub)systems, and a plan. For building the software and making maximum use of
progressive insights, updating the specifications is sufficient. Knowledge required by others to
use, operate and maintain the product includes a detailed design and accountability of results.
‘Executable Knowledge’ refers to any executable artifact except the source code. Primary arti-
facts include Test Driven Development methods and infrastructure-as-code, including continuous
integration scripts. A third approach concerns ‘Automated Text Analysis’ using Text Mining and
Deep Learning to retrieve design decisions.

Keywords Agile, Documentation, Executable Knowledge, Just Enough Upfront, Machine Learn-
ing, Natural Language Processing

8.1 Introduction
With the rise of ubiquitous Agile software development methods and the continuously changing demands and
contexts involved, documentation for sharing knowledge in software projects becomes more critical. However,
the attention span for documentation reading, in general, has decreased dramatically [23]. In previous re-
search [20], [21], we observed that developers do not want to write, others do not want to read, but having no

1This work was originally published as:

T. Theunissen, S. Hoppenbrouwers, and S. Overbeek, “Approaches for Documentation in Continuous Software Development,”
Complex Systems Informatics and Modeling Quarterly (CSIMQ), vol. 32, pp. 1–27, 2022, doi: 10.7250/csimq.2022-32.01.

107

108 CHAPTER 8. NOVEL APPROACHES

documentation at all is not an option. Therefore, the question is when the specification of requirements can be
considered ‘just enough’ before starting or completing an iteration or a project. In this paper, we will address
three possible approaches that contribute to answering this question in the context of CSD. CSD is defined as
covering the values, principles, practices, processes, and tools from Agile, Lean, and DevOps. CSD covers the
whole life cycle of a software product, starting from concept to end-of-life of a software product. Furthermore,
it includes changing architecture, design decisions, operations, and maintenance to keep up with a continuously
changing context, and changing demands. Finally, in CSD, knowledge about software products is distributed
across multiple tools for software design, development, testing, operation, and maintenance. In Section 8, we

• Detailed design
including design
decisions

• Accountability

Delivery
Transferring Knowledge

• Shaping thoughts

• Codified interface
descriptions

• Plan

Upfront
Acquiring Knowledge

����������������������������
�����������������������

��������������������������
���
�����������������������

����������������������������	�
	������������������������

• Tracking progressive
insights

• Updating codified
interface descriptions

Development
Building Knowledge

Figure 8.1: Phases with Knowledge Acquisition, Knowledge building, and Knowledge transfer.

will describe the conceptual research framework for constructing2 the approaches. This framework applies to
empirical sciences. We will define empirical science as any research where data is involved in distinguishing
it from theoretical sciences. In theoretical sciences, where methods are the main focus, one strives to improve
methods to obtain new knowledge or reasoning schemes.

There is a distinction between knowledge required up front to start a project or an iteration, knowledge
required to deliver a project or an iteration, and knowledge required to continue a project. See Figure 8.1
for a diagram. When we refer to ‘knowledge’, we refer to all types of information as shown in Figure 8.2.
The relation between information and knowledge, in this context, is that knowledge is a meaningful type of
information for a stakeholder or system. In other words: information becomes knowledge if it contributes to
comprehension, if it can be communicated (and discussed in case of humans) to other stakeholders or systems.
Communication of information may vary from verbal conversations and whiteboard sketches to data and source
code. The type of information that is required is related to the type of stakeholder and tools. For instance,
developers require other information than operators or end-users. Not all types of information are required
upfront before starting a project or an iteration. Furthermore, different types of information are created and
retrieved by different tools, such as Git comments for natural language or whiteboards for sketches.

8.1.1 Previous Research
This study follows up on previous research, where we have found three candidate approaches. Figure 8.3 shows
the studies in this research project and results from previous studies. The approaches in this study are the

2Because ‘design’ has many meanings, we use the term ‘construction’ for introducing the approaches. ‘Design’ in this study
may refer to ‘software design’, ‘design decisions’, ‘design phase’, ‘design science’, or ‘research design’. To avoid confusion, we use
‘design’ in combination with a contextual term.

109

Requirement Management; Business Tools / Collaboration / Productivity Suite
Markdown, Confluence, Wiki, MSOffice, G-Suite, Ashta (UML drawing tool)

API Development; Utilities /
Documentation as a Service & Tools
Swagger, Postman

Test; Utilities / Load and Performance
Testing; DevOps / Testing
Frameworks
JMeter, Cucumber, JUnit

Development; DevOps /
Integrated Development
Environment
VS Code, IntelliJ

Development; DevOps /
Integrated Development
Environment
VS Code, IntelliJ, DocGen

Development; DevOps /
Integrated Development
Environment
GitLab, GitHub, BitBucket

Application and Data / Data
Stores / Databases
MySQL, Postgress, MariaDB,
MongoDB

Tool Categories (Bold)
Tool examples (italic)

Development / Dev Communities; Collaboration / Group Chat & Notifications
Phone, Skype, Mail, Chat, Slack, Discord, Whiteboard sketches, Pictures

Deployment; DevOps / Continuous Integration
Jenkins, Docker, Kubernetes

Monitoring; DevOps / Monitoring /Monitoring Tools
Nagios, Zabbix, ELK-stack, DataDog,
Result Planning, Sandwich of Happiness

• Stakeholder
concerns

• Risks
• Constraints
• Context

• Models
• Sketches

Legenda

• Values and beliefs
• Principles
• Practices
• Processes,

procedures,
 and tools

• Knowledge
• Competence and

skills descriptions
• Descriptions of

Attitudes

Requirements
Describes “what”

Source code

Descributions of
what and how

including

contains

changes
described by

application
related data

Infrastructure-
as-code

Just enough
instructions to start

leads to

includes

leads
to

leads to

Metrics

Type of information

Collection

End user / Developer
documentation

Actionable data

Annotations

Commit messages

Data

Specifications
Describes “how”

Quality attributes

API descriptions

Tests
QA, Functional

Playbooks
(CI/CD)

Medium
Including tools, hearts and minds

Informal, unstructured (verbal)
communication

Tool Categories (Bold)
Tool examples (italic)

Figure 8.2: Types of Information including mapping to tool categories and tools [21].

elaborated recommendations from a previous systematic mapping study [20]. The recommendations from the
previous mapping study are the practice of minimal documentation upfront combined with detailed design for
knowledge transfer afterwards. In this study, it is named ‘Just Enough Upfront’. The second recommendation
from the previous study concerns executable documentation. The name in this study is the same. The third
approach from the mapping study refers to modern tools and technologies to retrieve information and transform
it into documentation. In this study, we focused on ‘Automated Text Analytics’ to retrieve design decisions
from Git comments. A verification of the mapping study was conducted in a case study [21]. Furthermore,
approaches are structured, the conditions, and characteristics, and artifacts are elaborated, and explicated.

We thus propose three approaches to keep up with modern development methods to prevent the risk of
knowledge vaporization: ‘Just Enough Upfront’ documentation, ‘Executable Knowledge’, and using ‘Auto-
mated Text Analytics’ to retrieve design decisions. In this study, we will construct these approaches and
elaborate on the requirements, characteristics, and artifacts that define them.

8.2 Contributions
The contributions of this paper apply to researchers in academia, professionals in industry and students and
lecturers in learning communities. For all communities, the main contribution is the distinction that is made
between what a developer needs upfront to start and what is required afterward to deploy, use, and maintain
a software product. Along with this distinction come artifacts that are useful for the designated phases.
Researchers in academia have investigated the artifacts, e.g., [S145], but have not made a clear and sharp
distinction between artifacts that are of typical in use upfront, during, or afterward. Furthermore, using NLP
with Automated Text Analytics to reveal design decisions is a relatively new research area. Practitioners in
the industry have a way of working that deviates from textbook definitions, e.g. (large scale) Scrum, Lean,
RUP, because of efficiency and pragmatic reasons that work well for them. However, this way of working is not
validated or supported by management, and is not taught during education. Moreover, conceptualizing and
optimizing the practical approach might increase productivity without suffering from knowledge vaporization.
The third community this research contributes to is the learning community. Students in ICT and CS are
taught to use big upfront designs -which makes sense for learning and experimenting with these methods- but
are not taught the reasons why (or how) to deviate from textbook definitions.

In the remainder of this paper, the following subjects are addressed. In Section 8, the research questions and

110 CHAPTER 8. NOVEL APPROACHES

research design are described. The approaches are introduced in Section 8. Section 8 describes the ‘Just enough
Documentation‘ approach. Next, in Section 8, ‘Executable Documentation’ is explained, and in Section 8 the
approach with ‘Automated Text Analysis’ is described. In Section 8, the Threats to Validity are described.
Finally, conclusions and future research are described in Section 8.

8.2 Research Design

8.2.1 Research Questions
The research questions are defined as documentation-related questions, which incorporate knowledge questions.
The approaches follow a previous systematic mapping study [20] and a case study [21], and fit within the
research cycle of a literature review [21], field research [20], the construction of approaches (this paper), and
finally a validation of the approaches (future research). In Figure 8.3, the phases are depicted.

Exploring domain and issues in
academia and industry.

Preliminiary
Studies

Desk research: what have
others researched, published

using Systematic Mapping Study?

Literature
Review, SMS

Field research: Are outcomes
from lit. review applicable

in the industry?

Case
Studies

‘Just enough Upfront’
‘Executable Documentation’

`Automatic Text Analytics’

Constructing
Novel Approaches

Academic research,
Industry practices,

Educational lecturers
and students

Does it work as intended,
are the assumptions valid?

Validating
Approaches

Utilizing Results

Results

Results
 a. A wide range of tools are used for all steps in the life cycle of a software product.
 b. Information is distributed about the software product across all those tools and not stored in a central repository.
 c. To better understand the software products, the following media elements must be taken into account: the types of information, the

tools, tool-stacks and ecosystems to manage the (types of) information, and the amount of structure.
 d. Tools include tool stacks, ecosystems, the types of information and amount of structure; they define the content of the message.
 e. The amount of structural variety of information defines the value for information creation and retrieval, including the tools to process

that information. Documentation is considered an information type that is processed through tools in a software development
ecosystem.

In this study, approaches are structured, the conditions, characteristics, and artifacts are elaborated,
and explicated.

1.
2.
3.

The practice of minimal documentation upfront combined with detailed design for knowledge transfer afterwards
The usage of executable documentation
Modern tools and technologies to retrieve information and transform it into documentation

In this study: the approaches

Figure 8.3: Studies in this research project.

The objective of this study is defined in the main research question: What are the necessary and suffi-
cient conditions to acquire, build and transfer knowledge about software products in CSD while threatened by
increasing knowledge vaporization? ‘Necessary conditions’ refers to the minimal requirements for an event to
occur. ‘Sufficient conditions’ make the event to actually occur. A necessary condition alone is not sufficient.
A simple example can make this clear. The necessary condition for delivering working software is a combina-
tion of ‘knowledge’, ‘skills’, ‘attitude’, and ‘effort’. However, these necessary conditions for working software
become sufficient when knowledge, skills, attitude, and effort are in a specific balance. A simple example for
a sufficient condition without being necessary is “you used Angular instead of React for the front-end” where
a framework is required but not which framework is actually used. ‘Acquiring knowledge’ refers to the knowl-
edge that is required before starting a project or iteration. ‘Building’ refers to the progressive insights while
developing the software. ‘Transferring knowledge’ refers to the knowledge that is required by others such as
operators, maintainers, end-users, or new developers. With ‘software product’, we refer to all phases from
concept to retirement; activities including design, architecting, development; and artifacts -both executable
and non-executable. ‘CSD’ is an umbrella term for Agile, Lean, and DevOps values, principles, practices, and
tools and processes. The term ‘knowledge vaporization’ refers to the practice of loose, natural, and informal
communication about the software product.

The main research question leads to the following three research questions:
RQ1: For approach ‘Just Enough Upfront’ documentation to start a project or an iteration:

1.A. What are necessary and sufficient conditions to take into account for this approach?

111

1.B. What are the defining characteristics that distinguish it from other approaches?
1.C. What are the artifacts that are in use with this approach?

RQ2: For approach ‘Executable Documentation’ to transfer knowledge about a software product:
2.A. What are necessary and sufficient conditions to take into account for this approach?
2.B. What are the defining characteristics that distinguish it from other approaches?
2.C. What are the artifacts that are in use with this approach?

RQ3: For approach ‘Automated Text Analytics’ using NLP for retrieving design decisions:
3.A. What are necessary and sufficient conditions to take into account for this approach?
3.B. What are the defining characteristics that distinguish it from other approaches?
3.C. What are the artifacts that are in use with this approach?

8.2.2 A Conceptual Research Framework for Constructing Approaches
In order to account for our way of constructing the approaches, we first consider the distinction between theo-
retical sciences and empirical sciences. The main concern for theoretical sciences is striving for methodological
improvements that enable the growth of knowledge and reasoning. The main concern for empirical sciences is
delivering designs that start with discovering a problem and end with the invention of a solution. The frame-
work that we use to construct the approaches involves the empirical science viewpoint, in particular that of
software engineering. It is presented in Figure 8.4. The dynamic part depicts a flow that starts from discovering

Implementation
of Tools and
Techniques

Data Collection
Methods
(Future research)

Research
Inference
Mechanisms

Research
Paradigm

Research
Methods

Philosophy
Design Science

Just Enough Upfront Automated Text Analytics Research ToolsExecutable Documentation

Questionnaires, Surveys Focus groups Interviews

Grounded TheoryLiterature Review Case Study Design Science

Discovery
of the problem

Invention
of the solution

Abstracting from keywords to
groups to concepts with attributes,
presented in a (visual) model.

Which artifacts contribute to
documentation (knowledge acquisition,
building and distribution)?

Secondary literature review on
studies about documentation in
Continuous Software Development

8 Artifacts.
TRL 1 ≤ 9

Custom databases, datasets and
applications for collecting,
analyzing, and presenting results.

9 Artifacts.
TRL 4 ≤ 9

16 Artifacts.
TRL ≤ 3

Elaborating on focus groups to
obtain in-depth qualitative data
about experiences for a small group.

Collecting experiences from
students and practitioners in the
industry for using artifacts.

Qualitative data targeting easily
accessible large groups by online
questionnaires.

Positivism
A posteriori observations,

e.g. Wiener Kreis

Pragmatism
Practical outcomes are valued over

abstract principles,
e.g. C.S. Peirce

Constructivism
Knowledge about the world is a

mental construction by social
conventions, e.g. H. Simon

Observations in the industry, and
validating literature review.

Statistical

Descriptive statistics of
studies, subjects, cases, results
and other data collection
methods.

Abduction
Rule

Result

 ∴ Case

All artifacts contribute to
documentation
All these artifacts contribute
to documentation

These artifacts contribute to
documentation

−

−

−

Induction
Case

Result

 ∴ Rule

This artifact and this artifact, ...,
contribute to documentation
All these artifacts contribute
to documentation

All artifacts contribute to
documentation

−

−

−

Deduction
Rule

Case

 ∴ Result

All artifacts contribute to
documentation
This is an artifact

This artifact contributes to
documentation

−

−

−

1

2

4

3

Figure 8.4: The Conceptual Research Framework.

phenomena that define the problem and ends with the invention of a solution. The discovery of phenomena
refers to observations in a platonic (έιδος, eidos) universe, Kantian noumenal world but also observations of phe-
nomena in the tradition of the British empiricists such as Locke and Hume. With the invention, actual changes
are made in the context.3 Obviously, these phases can pass several iterations. The research paradigms refer
to a distinct set of structured beliefs and behaviors to address ontological and epistemological questions [240].
Researchers try to establish logical and causal relations between phenomena with inference mechanisms. With

3Compare this with the discovery of mathematical objects like numbers, cubes and spheres, and invention of complex numbers.

112 CHAPTER 8. NOVEL APPROACHES

deduction, an explanation can be given for phenomena. This does not lead to new knowledge in general but
only for the researchers involved. Induction might lead to new knowledge, but this inference mechanism is
not logically valid if not all cases can be tested. With abduction, hypotheses can be falsified [241]. This is
the weakest form of logical reasoning but is often used. Statistical inference mechanisms are mathematical
approaches to describe events and are often used in empirical sciences such as engineering, social or medical
sciences. Methodologies are distinct from methods in that the ‘-logy’ suffix refers to an understanding and
description of an applied method (that is, without the ‘-logy’). The research methodologies describe concepts
about the collection and interpretation of observations. A systematic mapping study based on Petersen, Feldt,
Mujtaba, et al. [103] and Kitchenham and Charters [222] has been conducted to investigate what others already
have researched. In the case studies, we investigated the data in a practitioner’s context (education and in-
dustrial) [215]. With grounded theory Stevens, Rohde, Korn, et al. [242] in the mapping study, we categorized
data into groups, groups into categories, categories into concepts including relations between concepts. For this
study, we use Design Science (DS) based on Wieringa [11], March and Smith [243], Simon [244], and Hevner,
March, Park, et al. [245], we applied design science as a solution in practice. The techniques, tools, processes,
and procedures in the approaches will be collected, analyzed, and presented to readers using diagrams.

The framework is used to discover the issues and invent the approaches. The conceptual research framework
is not a linear step-by-step process but an exploration with successes, failures and iterations.

8.3 Approaches for Documentation in CSD
Based on previous research, the approaches in this study are refined using the conceptual research framework,
as presented in Section 8. Design Science is used for discovering the problem and for invention of the solu-
tion [243]. A typical research, according to Wieringa [11], cycle includes a problem investigation, treatment
design, treatment validation and treatment implementation [11]. From the research paradigms, constructivism
is used [244]. A typical inference method for generating a hypothesis, i.e., approaches, is abduction [241]. A
systematic mapping study and validation in the industry with case studies leading to a grounded theory have
been conducted in previous studies [20], [21]. It resulted in the practice of minimal documentation upfront
combined with detailed design for knowledge transfer afterwards, the usage of executable documentation, and
modern tools and technologies to retrieve information and transform it into documentation. Data collection
methods, including questionnaires, surveys, focus groups, and case studies, are used in previous studies [21] by
structuring approaches, defining the conditions and characteristics, and elaborating on artifacts. For valida-
tion, inference to the best explanation, which gives the best hypothesis or theory for the given data, is used.
A set of tools is created with software for data storage, analysis, and the presentation of results.

The first approach is ‘Just Enough Upfront’ to start and complete software design after completion of an
iteration or project. From previous research [20], [21], [S31], it became clear that for upfront documentation,
two necessary conditions must be met: shaping thoughts, and communicating interface descriptions between
(sub)systems. For knowledge transfer, a representative software design is required. Most efficient is to create
a fully detailed software design after all design decisions have been made and the software product is deployed
and operational [3].

The second approach is ‘Executable Documentation’. Traditionally written documentation is hard to keep
up-to-date with the actual code (documentation generated from code or databases by reverse engineering is not
considered because it is already documentation). Documentation cannot be tested and writing it is a tedious
and intrusive task developers want to avoid. However, when writing requirements and specifications upfront
that help verify, validate, and test the software product, the specifications can be human-readable —especially
when using tools like Cucumber4. Furthermore, the human-readable specifications can be executed, so the
document itself can be verified, validated, and tested. Because writing executable specifications shows great
resemblance to the activity of coding software, it is not considered a tedious or intrusive task by developers.

The third approach concerns ‘Automated Text Analytics’ to retrieve distributed information about software
products [21]. With this, we have two objectives in mind. The first objective is to extract relevant information
from distributed tools for designated stakeholders. Such tools can range from PowerPoint to Git commit
messages. The second objective is to understand the motives for decisions. Advanced technologies used include
Text Mining and Deep Learning. The novelty refers to the distinction between knowledge –including values,
principles, processes, procedures, methods, techniques, skills, and attitude– required upfront to start, and
knowledge required afterwards to continue, as visualized in Figure 8.1.

4https://cucumber.io/

https://cucumber.io/

113

ID Phase Process Artifact
D1 Upfront Communication between

stakeholders
• Yellow Pages.

D2 Shaping thoughts • Presentation.
D3 • Whiteboard and drawings.
D4 • Lists.
D5 Communication between

systems
• Interface Description Language.

D6 Planning • Plan of Approach.
D7 Building Progressive Insights • Description of Concepts.
D8 Communication between

systems
• References.

D9 Coaching and Control • Results Planning.
D10 • Sandwich of Happiness.
D11 Afterwards Deliverables • Software.
D12 • Git Comments.
D13 • Full Detailed Design.
D14 • Decisions.
D15 Accountability • Compared Planning versus Actual Results.
D16 • Final Sandwich of Happiness.

Table 8.1: Phases, Processes, and Artifacts in Continuous Software Development.

The approaches are explored by applying the conceptual research framework (see Section 8 and Figure 8.4).
The conceptual research framework for empirical sciences shows the process of designing the approaches,
starting with the discovery of the problem and ending with the invention of the solution. The maturity levels
of the approaches are adopted from the Technology Readiness Levels (TRL) [246]. (1) Refers to the two research
paradigms: pragmatism because of abduction and constructivism because of design science. (2) Refers to the
research methods from our previous research: systematic mapping study, case study and grounded research.
With (3), abduction is used as inference mechanism. In (4) the approaches are presented.

8.3.1 ‘Just Enough Upfront’ Documentation to Start a Software Prod-
uct, a Project Or an Iteration
This approach results from a prior study [20]. The conditions, characteristics, and artifacts are elaborated,
explicated, and structured for this approach. When using this approach, the bare minimum to start -and
complete- an iteration is presented. Note that this is the opposite of traditional big upfront software design.
Some domains are excluded from this approach because of regulations or legal requirements for documentation
such as governments, food and drug administration, or the military.

This approach answers two questions. The first question concerns current team members and answers
which knowledge is required to start a project or iteration. The second question concerns which knowledge
is required for new team members and others who did not participate in the design of software products to
continue development or operations. This includes end-users, maintainers, operators or new team members. In
Table 8.1, the artifacts are presented that are in use with this approach, as derived from previous research [20].
They will be discussed below.

Conditions

— The approach for ‘Just Enough Upfront’ documentation to start a project or an iteration does not require
specific definitions upfront.

Characteristics

— Typical of this approach is that it applies to exploratory projects with a TRL lower than or equal to three
where an idea must be validated in a Proof of Concept (PoC) [246]. It fits within the Agile philosophy that
working software is valued over comprehensive documentation [1]. It follows the Lean principle that anything
that does not contribute to the end-product is considered waste [2].

Artifacts

— The enumerated artifacts in this section refer to the three phases of a software project where these artifacts
are in use: knowledge required upfront, required while building, and required afterwards for continuation. Key
for the artifacts are the acquisition, building and distribution of knowledge (especially design decisions) that

114 CHAPTER 8. NOVEL APPROACHES

increase productivity and fit within the development processes. The following artifacts are defined for this
approach.

D1. Yellow Pages. This presents an overview of documents, ordered by type, phase and process in CSD. See
Figure 8.2 for an overview of types of documents. This presents an overview of documents, ordered by
type, phase and process in CSD. See The audience for this overview comprises all stakeholders. There is
no specific template. Typical tools are web pages as a starting point from, for example, Confluence and
GitHub pages.

D2. Presentation. The presentation aims at a good mutual understanding between stakeholders about mission,
vision, strategy, and objectives. It is not possible to communicate meaning between sender and receiver,
only symbols, as Shannon and Weaver [5] already pointed out. Furthermore, it is also not possible
for a sender to enforce behavior by a receiver, at least not in an ethical way. Storytelling is a way of
communication that is not exact, engages the audience, and introduces the issues at stake, usually starting
with the solution supported by evidence and reasoning. A starting point to structure the presentation is
by the format of Situation, Complication, Question, Answer (SCQA).

D3. Whiteboard sketches and drawings. These include all whiteboard sketches, drawings and visuals that as-
sist in understanding and communicating objectives, approaches etc. The sketches and drawings are part
of the presentation. From previous studies, it became clear that a format such as UML is not actually
required [20], [21]. Basically, any box-and-line diagram that conveys an idea and achieves mutual under-
standing will do [247]. Ainsworth [248] made clear that a visual diagram leads to better understanding
of relations (causal, logical). Text representations are better for a deeper understanding.

D4. Lists. We have to investigate if lists are a valid approach to deal with complex decision making and
establishing priorities within the dynamics of Agile teams [249], [250]. The following aspect characteristics
are based on Agile decision making as discussed by Rouse [251].

1. Priorities. Refer to the primary objectives for this software product. This includes a description of
what criteria determine order and how they refer to achieving the goals.

2. Long list. Describe selection criteria. Describe the relationship between objectives and selection
criteria. Refer to sources for the long list, e.g., Google trends5, benchmark sites such as databases6,
jobs7, trending technologies on Gartner hype cycle8, and Thoughtworks9. Other aspects such as
economic, legal, social, environmental, etc., are valid as well [252]. The number of items on the long
list varies between 15 to 25, depending on context.

3. Shortlist. Make clear what defines the scope of relevant techniques. The number of items on the
long list varies between 3 and 5, depending on context. A shortlist with only one item and no
alternatives is not convincing.

4. Features of framework, library, tool, process, and the like. Describe the distinctive features for each
item, including the fit for purpose. These distinctive features as such are not positive or negative.
These features become an advantage or disadvantage when there is also an explicit judgment on the
contribution of features to the objective.

5. Comparison. The feature comparison is a table with features on one dimension and techniques on
the other, showing an evaluation of suitability. Also, adding a -kind of- scoring such as yes/no, a
scale of 0-5, or -/0/+ contributes to getting grip on the matter. Scoring is an indication and not a
calculation, so it is not a spreadsheet exercise but can be useful for quantitative analysis and support
qualitative analysis.

The audience include stakeholders and development team.
D5. Codified Interface Description. This is a codified, formal document that describes endpoints, types, paths,

filters, and variables between modules, components and (sub)systems. It includes the response time,
such as in real-time batch or queuing mechanisms. Architectural patterns include pub/sub messaging in
event driven architectures, protocols such as Representational State Transfer (REST), SOAP, JavaScript
Object Notification (JSON) or XML-RPC, and technologies such as Common Object Request Broker
Architecture (CORBA), Apache Kafka or Message Queuing. The audience is the development team, or a
team related to external systems. The best templates are tools to manage interfaces such as REST API
descriptions. These tools can be found, for instance, on https://swagger.io/, https://www.apollographql.
com or any other Interface Definition Language (IDL).

5https://trends.google.com
6http://db-engines.com/en/ranking
7https://www.indeed.com/
8https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
9https://www.thoughtworks.com/radar

https://swagger.io/
https://www.apollographql.com
https://www.apollographql.com
https://trends.google.com
http://db-engines.com/en/ranking
https://www.indeed.com/
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://www.thoughtworks.com/radar

115

D6. Plan of Approach. Elaborating on the systematic review by Abrahamsson, Warsta, Siponen, et al. [253]
and empirical research by Dybå and Dingsøyr [254], the main contents of a plan in CSD are:

1. Results. This includes delivery dates, quality criteria, and methods for securing results such as a
definition of done (user story), acceptance criteria (tasks), or other SMART definitions.

2. Resources. This includes prerequisites such as tools, licenses, and access to experts.
3. Constraints. These refer to decisions from the past that affect current decisions.
4. Risks. We identify two categories of risk: lack of insight and a lack of control. A lack of insights

refers to situations where you have to make decisions without sufficient information. A lack of
control refers to situations where you can not carry out interventions. Risk mitigation strategies
and contingency plans must accompany the description of risks.

A plan usually changes with progressive insights. For accountability, the original plan is required to
compare planned results with actual outcomes. Contributors and users of a plan are developers, product
owners, and managers. Tools such as Trello10 or Jira11 are preferred for documenting and tracking user
stories, tasks, or issues.

D7. Description of Concepts. This refers to mental presentations such as ‘beliefs,’ ‘doubts’, or any other
relevant notions used in understanding, reasoning, communication, and discussion in order to understand
the subject matter better or convince others to carry out the desired behavior. Typical in CSD are values
(as expressed by actions and behavior of a team or community), principles (the explication of values in
writings such as mission/vision/strategy statements or a code of conduct), best practices (experiences
from the past with the desired outcome), and tools, processes and procedures (means and guidelines to
perform actions). Any template that assists in reaching these objectives will do. Commonly in use for
developers in CSD are 4+1 from Kruchten [S178] and C4 from Brown [210]. The audience is the team
members.

D8. References. Typical for Agile projects are progressive insights. To keep track of these, a description
of new and redefined concepts is required. When it comes to new concepts, to get acquainted with the
subject area and to find a balanced view on it, a literature review Kitchenham and Charters [222] and
a systematic mapping study Petersen, Feldt, Mujtaba, et al. [103] are useful. Additionally, when much
is published in blogs, reports or websites other than peer reviewed journals or conferences, then the
guidelines for gray literature from Zhi, Garousi-Yusifoğlu, Sun, et al. [255] can be helpful.
Striving for completeness involves the following types of inferences:

1. Authentic references identify publications where a concept is introduced or coined and that are the
oldest publication to do this.

2. Authoritative references are the ones with the highest number of citations. Note that inherently,
older papers often have more citations than new publications.

3. Actual references are those that have been trending in the last few (two to four) years.
D9. Result Planning. The Result Planning (RP) is planning of verifiable objectives and a short description

of achievements [33]. The achievement description is either a link to a repository, a link to a live
document, or a short description of why the objective is not met. The primary goal for the RP is
continuous improvement by being explicit on objectives and accountability. The audience are coaches
and developers. A template is available at https://theotheunissen.nl/results.

D10. Sandwich of Happiness (SoH). This is an introspection, reflection, and outlook on the realization of
results and processes [33]. This can range from a commitment to results, personal thoughts, social aspects,
or any other factors that had an effect. The primary audience is coaches and developers. An extended
description and template can be found on https://theotheunissen.nl/happiness

D11. Software. This refers to executable files including source code, scripts, and executable specifications
such as CI/CD, DDL, or DML. Contributors are the development team, and users of the documentation
are operators and new team members.

D12. Git Comments. These refer to a meaningful description in natural language of modifications in the
source files. It is not required to explicitly describe the differences between old and new code because
they can easily be found by comparing commits. The audience is the development team, including new
team members. Templates can be found on https://github.com/devspace/awesome-github-templates

D13. Full Detailed Design. The full detailed software design is created after a significant iteration: only
after completing the software product in an iteration, an accurate description can be made. Any time
sooner might result in inaccurate descriptions because of potential changes, such as progressive insights.

10https://trello.com/
11https://www.atlassian.com/software/jira

https://theotheunissen.nl/results
https://theotheunissen.nl/happiness
https://github.com/devspace/awesome-github-templates
https://trello.com/
https://www.atlassian.com/software/jira

116 CHAPTER 8. NOVEL APPROACHES

The purpose of the software design is to distribute knowledge about the delivered state of the software
product. This design includes decisions with alternatives. The audience is stakeholders, especially the
development team, including new team members. Any template can be used that follows the tradi-
tional Software Requirements Specification (SRS) [256], Software Architecture Description (SAD) [90]
and Software Design Description (SDD) [91]. Also, C4 [210] or 4+1 from Kruchten [S178] can serve as
template.

D14. Decisions. With decisions, an assessment is made of, based on argumentation. ‘Forces’ influence the
decisions and can be a trade-off. For example, user-friendliness and safety are sometimes contrary forces.
Stakeholders make decisions, and the audience is the stakeholders in a category for which the force is
relevant, e.g., customers, developers, end-users, managers. Architecture decisions are typically hard to
make at the beginning of the design of a software product, but costly when changed later in the process.
Templates can be found in the pattern community12, Architecture Decision Record (ADR)s13, or Decision
Centric Architecture Review (DCAR) [257].

D15. Comparing Planned versus Actual Results. Accountability of the outcome follows when comparing
the plan of approach with the achieved results, for budgetary, contractual, and performative reasons.
Typically, the bare minimum is delivering what has been agreed upon. However, typical for CSD projects
is the use of progressive insights that often lead to redefining objectives or approaches. Keep in mind that
a Minimum Viable Product (MVP) is to be learned from, not to shipped as with a Minimum Marketable
Product (MMP) [258]. Typical assessments are comparisons between assignments and delivered results.
Next are planned versus actual resources such as time and Full-time Equivalent (FTE), budget, knowledge,
skills—furthermore, the comparison of constraints that reveal implicit choices or tacit knowledge that
has been used. The last assessment is the actual management of risks. The difference between this
comparison and the RP (see D9) is that this comparison applies to the completed life cycle of a project
or software product.

D16. Final Sandwich of Happiness. See D10 for a description. It differs from its intermediate counterpart in
that its scope of time is larger than with the SoH. It now applies to a period covering multiple iterations.
The length of the final SoH lies between a half and full A4 page. The positive and negative items and
improvements apply to observations between iterations, or to the most significant actions. The audience
are peers in the team and coaches.

This approach, ‘Just enough Upfront’, answers the first research question. It counts 16 artifacts, of which
whiteboard drawings, a Codified Interface Description, a Plan of Approach, and Design decisions are a few of
these. There are no specific conditions for this approach. It can be applied to any maturity level of a software
product and from parts of a software product to a complete operational system. Typical characteristics of this
approach are exploratory projects where concepts, requirements, or specifications are not well defined. In terms
of TRL, this applies to a PoC, levels smaller than or equal to three. In other phases, such as prototype, pilot,
and production, it fits for Agile processes where working software is valued over comprehensive documentation.

Furthermore, it answers questions about “what is required upfront for an individual developer to start?”
and “what is required afterward to continue, deploy, maintain and use the software product?” Most significant
is that big upfront design is instead a throw-away document than transferable knowledge on the software
product.

8.3.2 ‘Executable Documentation’

With Executable Documentation (ED), we refer to any artifact related to a software product except the source
code, that defines, transforms, or distributes knowledge that can be executed. In Table 8.2, artifacts related
to ED are listed.

Furthermore, ED can be tested because it can be executed. Traditional documentation in Word or Wikis,
such as Confluence, can be validated for syntax and grammar, but this is not related in any way to the
executable source code. ED can be executed just as any other executable source code. Next, ED is non-
intrusive. Developers like writing source code, not writing documentation. With ED, the activity of coding
has the same characteristics as writing documentation.

As shown in Figure 8.1, knowledge acquiring, knowledge building, and distributing knowledge also applies
to executable documentation.

12https://wiki.c2.com/?PatternCommunity
13https://adr.github.io/

https://wiki.c2.com/?PatternCommunity
https://adr.github.io/

117

ID Phase Process Artifact
E1 Upfront Defining what has to be done. • Executable Requirements.
E2 Defining how it has to be done. • Executable Specifications.
E3 Using knowledge from previous ex-

periences.
•Templates, Frameworks, Libraries, APIs.

E4 Quality control. •Tests (TDD, BDD, Acceptance Test
Driven Development (ATDD)).

E5 Management. • Definition of Done, Acceptance Crite-
ria, Specific, Measurable, Acceptable, Rel-
evant, Time-bound (SMART) KPIs.

E6 Afterwards Speeding up the CI/CD cycle. • Infrastructure-as-code.
E7 Retrieving knowledge about soft-

ware products.
• Reverse Engineering.

E8 Saving executable knowledge for
future development.

• Enhanced Templates, Frameworks, Li-
braries, APIs.

E9 Accountability • Accountability and Actionable Data.

Table 8.2: Phases, Processes, and Artifacts in Continuous Software Development. All artifacts refer to exe-
cutable code.

Delivery
Distributing Knowledge

Upfront
Defining Knowledge

Development
Transforming Knowledge

Executable Requirements

Executable Specifications

Frameworks, Libraries, APIs
Tests (TDD, BDD, ATDD)

Plan with Metrics

Infrastructure-as-code

Reverse Engineering

Enhanced Frameworks,
Libraries and APIs
Accountability with
Actionable Data

����������������������������� ���������������������

Figure 8.5: Executable documentation in consecutive phases.

Requirements

— Using Executable Documentation for development implies a well-defined set of requirements and specifi-
cations. It is not efficient while exploring an idea to start with tests because it would take too much time to
re-iterate over the tests for what and how requirements and specifications would act.

Characteristics

— Defining characteristics of ED are that it is never out-of-sync, and it is just another representation of the
software. Inline documentation within executable code is not part of ED as it is the same type of description as
external documentation such as Word. Furthermore, documentation within source code is often not updated
when the code itself is updated and also out-of-sync. Areas where ED is not the best option are situations
where both problem and solution have to be explored, such as in TRL level 3 or lower for defining a PoC.
Because of the many iterations in an exploratory phase, the approach with ED might take too much time,
and the effort may therefore be too costly. Fast TTM is typical for projects that need to be ahead of the
competition and keep pace with legislation [259].

Artifacts

— The following artifacts are defined in this approach.
E1. Executable Requirements. Requirements in a design define what a software product aims to achieve,

such as business goals, legal obligations, or societal objectives. This applies to all phases of a life cycle
of a software product, including understanding, simulating, implementing, deployment, operations, and
retirement [260]. Requirements should be described in such a way that all stakeholders are able to

118 CHAPTER 8. NOVEL APPROACHES

understand what is meant by them. Typical testing approaches are BDD, and ATDD where the input
and output of a system is tested. Generally, requirements should be understood by all stakeholders.

E2. Executable Specifications. Specifications define how a software product is designed to achieve objectives
and are an elaboration on the requirements. Specifications are typically defined for developers to under-
stand and implement. A standard testing approach for specifications is TDD where the components of a
black box of a system are tested.

E3. Templates, Frameworks, Libraries, APIs. These are examples of knowledge, best practices, or procedures
that have a track record, saved as executable code, that gives development a head start. The template,
framework, library, or API can be improved with progressive insights at the end of an iteration. A library
is an arbitrary set of methods or procedures that developers can use and that typically does not prescribe a
specific way of using it. Examples of libraries as a set of functions are graphical or mathematical libraries.
A framework is a cohesive set of methods that operate together and are designed by a specific philosophy.
Examples are front-end frameworks (Angular14, React Native15) or Object Relational Mapping (ORM)
frameworks such as Hibernate16 or Sequelize17). The template has the most structure and least freedom
for developers. All knowledge about the system is reduced to a set of questions a developer has to answer
to install or operate a system. Typical examples for templates are questions asked during the installation
of a software package.

E4. Definition of Done, Acceptance Criteria, SMART KPIs. A Definition of Done is used with user stories
to verify that all requirements have been met [261]. A typical form of a user story is ‘As <role>, I want
<feature> because of <rational>’. A Definition of Done (DoD) is a rather formal definition of what
the objective is . However, it is not specific enough to verify that criteria have been met on delivery of
the fuzzy and not specific definition. In Scrum, a user story is usually split up in workable tasks. The
validation of the criteria for tasks are defined in acceptance criteria. These are much more specific than
in a DoD. Acceptance criteria can be defined in tests such as TDD or BDD.

E5. Tests (TDD, BDD, ATDD). An arbitrary categorization for tests is following the categories as mentioned
in ISO/IEC-25010 [205]. This includes functional and non-functional categories such as scalability and
security.

BDD

Blackbox

Input

��������

�����
Input

Output

TDD

TDD

TDD

������������
ATDD

Figure 8.6: TDD, BDD, and ATDD and where they do apply to a software product.

TDD refers to unit tests to assist developers validating specifications. It focuses on small parts of the
system that typically are part of the black box of a system [59], [262], [263].
BDD is is the testing of the behavior of the system, based on related input and expected output18 [264], [265].
ATDD refers to capturing and validating requirements by analyzing user stories [266], [267], [268].

14http://angular.io/
15https://reactnative.dev/
16https://hibernate.org/
17https://sequelize.org/
18https://www.behaviourdriven.org/

http://angular.io/
https://reactnative.dev/
https://hibernate.org/
https://sequelize.org/
https://www.behaviourdriven.org/

119

E6. Infrastructure-as-code. This concept is about the automated testing, integration, deployment, and delivery
of source code, commonly in use the CI/CD and DevOps community [73]. The code refers to scripts that
are easy to read for humans or developers without the need to have explicit knowledge about the systems.
A typical language is YAML19, a relatively easy-to-read mark-up language. Examples for provisioning a
system are Ansible20 or GitOps [269].

E7. Reverse Engineering. With reverse engineering, we refer to any design artifacts that can be retrieved or
constructed by analyzing, in retrospect, some source code, database DDL or DML, API, or infrastructure.
Basically, anything that can be reverse-engineered is not required to be specified because it can always be
produced, the source code being the ‘single source of truth’. What is missing, however, are descriptions
and decisions. Remember that documentation in source code is not reliable because this can easily be
out-of-sync. Whenever executable code is updated, the in-line documentation is not necessarily updated.

E8. Enhanced Templates, Frameworks, Libraries, APIs. The enhancements refer to the new iteration of the
template, framework, library, or API. Nah, Faja, and Cata [270] and Ghezzi [271] describe five categories
of maintenance that apply to the evolution of software which applies to CSD too. These are:

1. Corrective maintenance, indicating fixing bugs and correcting faults.
2. Adaptive maintenance, implying new features and new demands in a changing context.
3. Perfective maintenance, which refers to refactoring code, optimizing code, or improvements.
4. Preventive maintenance, which refers to refactoring code to keep up with possible changes in the

future.
5. User support points at assisting users in using the system.

E9. Accountability and Actionable Data. Accountability is closely related to metrics on DoD for user stories,
acceptance criteria for tasks or other kinds of (SMART) verifiable results. Furthermore, the deviation
must be explained when planned results do not match achieved results, either positive or negative.
Following Theunissen, Overbeek, and Hoppenbrouwers [33] concerning the Result Planning and Sandwich
of Happiness, it does not make sense to have a plan of approach without taking accountability. It does
not make sense to take accountability when only reporting events without planning.
Actionable data refers to a subset of big data that, by (automated) analysis, is transformed into insights
that require immediate action which can be acted upon [272]. Typically, it is both more effective and
efficient to influence causes than being responsive to effects. However, when (external) causes are not
under control, the effort is to mitigate unwanted results or elude a backup plan.

‘Executable Documentation‘ answers the second research question. It counts nine artifacts, of which frame-
works, templates, libraries, and APIs are a few of these, including TDD and BDD, and infrastructure-as-code.
Conditions for this approach are that concept, requirements, and requirements must be well-defined upfront. It
can be applied to any maturity level of a software product and from parts of a software product to a complete
operational system. Typical characteristics of this approach are that it is used in pipelines for CI/CD, is fit for
DevOps, and fast TTM. It does not apply to PoC where requirements and specifications are not well defined
because it would take too long to develop requirements, specifications, tests, and code. The maturity for the
phases are prototypes, pilots, and production.

This approach, ‘Executable Documentation’, makes clear that question about “what is required upfront for
an individual developer to start?” and “what is required afterward to continue, deploy, maintain and use the
software product?” assumes that requirements and specifications are well defined. Most significant is that big
upfront design is instead a throw-away document than transferable knowledge on the software product. In
terms of TRL, this applies to a prototype and pilot, levels larger than four.

8.3.3 Using ‘Automated Text Analytics’ for Retrieving Design Deci-
sions in Different Types of Information
This section explores automated text analytics as a candidate approach for automatically capturing unstruc-
tured information such as natural language. The natural language entities we focus on are Git commit messages.
The reason for focusing on Git commit messages is that this type of information is commonly available with
source code while, for example, white-board sketches are not publicly available. Furthermore, the source code
can be read for what it should do and how it should execute the code. The reasons for modifications, however,
cannot be read from the code. The reason for the change is outside the code in tools such as Jira for tasks or
Confluence for epics and explanations. Most close to the source code is Git as a source control management

19https://yaml.org/
20https://www.ansible.com

https://yaml.org/
https://www.ansible.com

120 CHAPTER 8. NOVEL APPROACHES

ID Phase Process Artifact
A1 Upfront Source Code • Git Comments.
A2 Building Text Mining • Search Categories and Search Terms.
A3 • Statistics: Bag of Words (BoW), Term Frequency (TF),

Inverse Document Frequency (IDF), Term Frequency-
Inverse Document Frequency (TFIDF).

A4 • Annotated data.
A5 Deep Learning • Model.
A6 • Pretrained Model or Transfer Learning.
A7 • Hyperparameter Settings.
A8 Afterwards • Finding Design Decisions in different Types of Informa-

tion.

Table 8.3: Candidate Artifacts in Automated Text Analytics.

system. The Pull Requests are most helpful in documenting why a change has been committed. It should be
investigated if a reason for the change should accompany every commit.

In Table 8.3, the artifacts are shown that are in use with this approach.
After the ‘AI Winters’, occurring because of failure to deliver on promises [273], [274], ending around 1993,

a range of neural networks came into existence such as Convolutional Neural Network (CNN)s, [275] for image
processing and Recurrent Neural Network (RNN)s [276] for language processing, visually beautifully explained
by Veen [277]. Figure 8.7 presents text mining and deep learning as a pipeline for language processing.

A special note for this section concerns the documentation of the artifacts itself. The artifacts do reveal
knowledge about the software product, but need to be documented itself as well.

Requirements

— Using NLP for retrieving design decisions from Git comments requires verbose and structured comments.
Typically, Git comments describe what the change is and not why the change is made [278]. What has been
changed is easily retrieved by comparing the diffs or applying the rule that source code is the single source of
truth (SSOT) [279].

Characteristics

— Using NLP for retrieving design decisions by automatic extraction of causal relations from natural language
as Git comments is a relatively new area of expertise. In a secondary study, Yang, Han, and Poon [280] points
to machine learning using advances in statistical text analytics that come available. We consider it applicable in
all development processes, including waterfall, and not limited to iterative, incremental development processes.
It also applies to all maturity levels of the TRL.

Artifacts

— The following artifacts are defined in this approach.
A1. Git Comments. Git comments have already been discussed in D12. For this approach, the Git comments

are the source for the data analysis. The NLP term in use is ‘corpus’ (D). Candidates for the individual
‘documents’ (d) are the comments or branches. N refers to the number of documents in D.

A2. Search Categories and Search Terms. Search categories are closely related to types of modifications.
Motta, Gomes e Souza, and Sant’Anna [281] summarizes four categories: Architectural Description Lan-
guages (keywords of the five most cited ADLs in Google Scholar), Not-Functional Requirements (the top
seven emergent topics in Google Scholar), Architectural Styles (from the two most cited books in Google
Scholar on software architecture), Architectural Constraints and Related terms. From these categories, a
list of 452 search terms can be derived. In Table 8.4, commit types based on Anonymous [278] are shown.

A3. Statistics: BoW, TF, IDF, TFIDF. Table 8.5 presents an overview of statistical text mining methods
in use. The search terms are processed by a stemmer and a lemmatizer, as well as all the text from the
Git commit messages. A stemmer is a rather rigorous -compared to a lemmatizer- chopper that cuts
common prefixes or suffixes from inflected words. For the English language, the Porter stemmer is in
common use [282]. A lemmatizer takes into account the morphological analysis of words. One of the
relevant distinctions between both methods for this approach of documentation is that stemming is less
important for meaning whereas lemmatization takes meaning into account.

A4. Annotated Data. This refers to classification and labeling data to identify features for a knowledge
domain. Based on this limited set of annotated data and other settings, the neural network can process
unprepared data.

121

ID Title Description
build Builds Changes that affect the build system or external dependencies (ex-

ample scopes: gulp, broccoli, npm)
ci Continuous In-

tegration
Changes to the Continuous Integration (CI) configuration files and
scripts (example scopes: Ansible, Travis, Circle, BrowserStack,
SauceLabs)

docs Documentation Documentation only changes
feat Features A new feature
fix Bug Fixes A bug fix
perf Performance

Improvements
A code change that improves performance

refactor Code Refac-
toring

A code change that neither fixes a bug nor adds a feature

style Styles Changes that do not affect the meaning of code (white-space, for-
matting, missing semi-colons, etc)

test Tests Adding missing tests or correcting existing tests

Table 8.4: Conventional commit types for Git. The most relevant are Features and Bug Fixes.

ID Calculation Description Notation
T1 Bag of Words Counting the total number of unique terms

per document.
ft,d

T2 Term Frequency • tf(t, d) denotes the number of unique
terms per document, divided by the total
number of terms
• t

′
refers to a unique term

• d refers to a document. A document
refers to all unique commits in a branch
in a repository.

tf(t, d) =
ft,d∑

t
′∈d

f
t
′
,d

T3 Inverse Document
Frequency

• idf(t,D) is the logarithmically scaled
inverse fraction of the documents that
contain the term (obtained by dividing
the total number of documents by the
number of documents containing
the term, and then taking the logarithm
of that quotient, where:
• N refers to the corpus, the total number
of documents. Also N = |D|.
• |{d ∈ D ÷ t ∈ d}| is the number
of documents with term t. Also Nt.
To prevent division by zero, the denominator
is written as (1 + Nt)

idf(t,D) = log
N

|{d ∈ D ÷ t ∈ d}|
idf(t,D) = log

N

1 + Nt

T4 Term Frequency-
Inverse Document
Frequency (TFIDF)

• tdidf(t, d,D) refers to the number
of documents d in corpus D
a term t appears in, or the relevance
of a word in a document related to all
documents with that word.
• t refers to the search term.
• d refers to the documents.
• D refers the number of documents in
the corpus.
• tf(t, d) is the TF. See T2 for
an explanation.
• idf(t,D) is the IDF. See T3 for
an explanation.

tdidf(t, d,D) = tf(t, d) × idf(t,D)

Table 8.5: Statistical methods for NLP and Text Mining.

A5. Model. A model in this context is defined as the layout of a set of layers, nodes and connections between
the cells, including weights of connectors, summation function, and activation function. Different models,
also referred to as ‘neural network architecture’, have different applications. E.g. a model for image
recognition has another layout and other nodes and connections than a model for text processing [283].
Text is sequential data and documents and sentences can have different lengths.

A6. Pretrained Model or Transfer Learning.] With a pretrained model, experiences from previous training
sessions with similar tasks can be used to speed up development. Bozinovski [284] already in 1976
introduced transfer learning. An example for NLP is BERT [285] that is in use at Google.

A7. Hyperparameter Settings. Hyperparameters are variables that are not part of the model but define how
the model will operate. There is a trade-off between accuracy and speed of training and using the model
based on the values of the hyperparameters. Typical settings are displayed in Table 8.6.

A8. Finding Design Decisions in different Types of Information. The objective of the types of information
(Figure 8.2) is to convey an understanding for why decisions are taken for the specific software design.

122 CHAPTER 8. NOVEL APPROACHES

Model Parameter Hyperparameter
Internal to the model. External to the model.
Value can be derived from data. Value cannot be derived from data.
Estimated with historical data during
training.

Manually set before training using heuristics from
the practitioner.

Examples:
• Weights;
• Biases.

Examples of defining model architecture:
• Number of hidden layers and hidden units;
• Kernel size, stride, padding, pooling size.
Examples of training optimization:
• Learning rate;
• Activation function;
• Number of epochs;
• Number and size of batches.

Table 8.6: Difference between model parameters and hyperparameters.

Different stakeholders –such as developer, end-user, customer, and manager– have different needs for
information.

The third research question, ‘Automated Text Analytics’, is answered by this approach. The approach counts
the eight most prominent artifacts: annotated data, model, hyperparameters, and transfer learning. The tool
for source management control, i.e. Git, is most relevant because it is most close to the source without the
need for other tools. Conditions for this approach are verbose Git comments. This approach is a new area of
expertise to retrieve design decisions based on causal relations out of the text. It can be applied in all maturity
levels where text is used. NLP is used for retrieving design decisions.

This approach, ‘Automated Text Analytics’, aims to reveal design decisions from existing documentation,
particularly Git commit messages. This approach is most useful in phases when there are Git Commit messages
in place but can be extended to all natural language media such as chats, mail, Confluence, and Jira.

8.4 Threats to Validity

For the previous studies ([20], [21]), the threats were addressed as follows. The initial search process identified
threats concerning study selection, where the set of candidate papers for primary studies is selected, and the
study filtering, where the final set of primary studies is determined. This threat was addressed by including
the most used digital libraries in this area, which are also commonly used in secondary studies in software
engineering. Typical examples are the selection of digital libraries, search string construction, and study selec-
tion bias. Threats concerning data validity were identified in the data extraction and analysis phases. Typical
examples include data collection bias and publication bias. The risk of retrieving a small sample was mitigated
by constructing a search string that could zoom in from a domain with over approximately 35.000 studies to
about 200 relevant papers to answer the research questions. The threat of choosing the correct variables to
be extracted was addressed through extensive discussions between the authors. The threat of publication bias
(most identified primary studies coming from specific venues) was mitigated by snowballing. Furthermore, we
addressed the threat of inadequate validity of primary studies through the inclusion criteria by only looking
at peer-reviewed venues. Threats about research validity were identified over the whole mapping study and
concerned the research design. Typical examples are generalizability and coverage of research questions. Ex-
tensive discussions among the authors mitigate the threat of the chosen research method bias, and the rationale
of our decision is clearly described in the study design section. Furthermore, the authors have also discussed
the choice and coverage of the research questions in multiple iterations. Regarding the generalizability of our
results, they only apply within the scope of documentation in continuous software development.

Wieringa [11] defines the following threats to validity, applicable to this study:
1. Descriptive validity is the degree of support for a descriptive inference that refers to the accuracy, ob-

jectivity, and credibility of the information gathered. This threat is mitigated by using triangulation in
methods and data. The methods are the a systematic mapping study, interviews, and case study. The
data consist of literature, non-executable artifacts such as Git, the Atlassian21 stack and other documents.

21https://www.atlassian.com/

https://www.atlassian.com/

123

RQ Approach Conditions Characteristics Artifacts
RQ1 Just Enough Upfront Not specified. Exploratory projects.

Most applicable TRL: ≤3
Fit for Agile practices.

#: 16, of which most relevant:
• Whiteboard Drawings, Sketches
• Codified interface descriptions,
• Plan of Approach,
• Design decisions,
• Accountability.

RQ2 Executable
Documentation

‘What’ and ‘why’
must be well defined
upfront.

Pipelines for CI/CD
Applicable TRL: 4≤9
Fit for DevOps.
Fast TTM.

#: 9, of which most relevant:
• Frameworks, Templates,
• TDD, BDD,
• Infrastructure-as-code

RQ3 Automated Text
Analytics

Verbose Git
comments.

Rather new area of expertise.
Applicable TRL: 1≤9
NLP for retrieving
design decisions.

#: 8, of which most relevant:
• Annotated data, Model,
• Hyperparameter settings,
• Transfer learning

Table 8.7: Answers to Research Questions.

2. Internal validity is the degree of support for explanations using causal relationships. This threat is
mitigated by structuring the results from previous studies, defining sufficient and necessary conditions,
and characteristics for the approaches.

3. External validity is the degree of support for the generalization of a theory so that is applicable in other
domains then were the cases originate. This threat is not applicable because we focus on domain of
software engineering and not other domains.

4. Construct validity is the degree to which inferences from phenomena to construct are justified.
5. Statistical conclusion validity is the degree of support for statistical inference. This threat is not applicable

when defining approaches such as in this study.

8.5 Conclusions, Discussion and Future Research
Common to the research questions are requirements and characteristics for the three approaches. Documenta-
tion in CSD is about knowledge collection, knowledge building, and knowledge transfer to start (‘what do I need
to start?’), continue or deliver (‘what do others need to continue?’) a software product. With ‘knowledge’, we
refer to all types of actionable information, including stakeholder concerns, requirements, specifications, source
code, Git comments, end-user documentation, and values. People, including developers, tend to minimize the
time and quality spent on documentation of a software product, so there is an urge to find novel ways to collect,
transform and distribute knowledge.

In Figure 8.8 are the research questions displayed in relation to each other included with context. RQ1
applies to all phases but is more used in exploratory projects. For RQ2, requirements and specifications
must be defined. RQ3 applies primarily to all phases where source-code is created or modified. The research
questions for each phase relate to knowledge that is required upfront for the developer, knowledge that is
build up while developing, and knowledge that is required afterwards by others to continue, use, operate and
maintain. Table 8.7 shows the answers in brief to the research questions. A common characteristic concerns
the acquisition, building, and transfer of knowledge.

To answer the first research question, the first approach to ‘Just Enough Upfront’ documentation to start
was introduced. There are no specific requirements for this approach. Characteristics are that it applies more
to exploratory projects where there are uncertainties about stakeholder concerns, technology, and process.
This is typical for projects in the concept phase and a TRL lower than or equal to three. This approach is
typical for projects where fast TTM is key to keeping up with competition or legislation. It is fit for Lean and
Agile practices. There were sixteen artifacts identified, of which the most relevant are upfront: whiteboard
sketches, codified interface description, and plan of approach. On delivery the documented design decisions
and accountability artifacts were most relevant.

The second approach concerns ‘Executable Documentation’. This approach requires well-defined projects,
objectives, and targets to define specifications. The ‘what’ (requirements) and ‘how’ (specifications) must be
well-described upfront. Typical for this approach are pipelines with CI/CD to achieve fast TTM. A typical
process for this approach is DevOps. Infrastructure-as-code is typically part of the pipeline. There were
nine artifacts identified, of which the most relevant are upfront: tests such as TDD and BDD. Furthermore,
frameworks and templates are used upfront, and increments are added during development.

The third approach is about ‘Automated Text Analytics’. A requirement is that Git comments are verbose
and well-structured in English to retrieve helpful information. It is a relatively new area of expertise to use
NLP for retrieving design decisions from git comments. The approach can be helpful for waterfall and iterative,
incremental, processes. Contrary to the other approaches, the process method is not relevant. Eight artifacts

124 CHAPTER 8. NOVEL APPROACHES

were identified, of which the most relevant are: annotated data, a model architecture, hyperparameter settings,
and transfer learning.

8.5.1 Discussion of the Constructing of the Approaches
It is not possible to observe relations. This includes logical or statistical inferences. However, using cognition
and mental models, relations can be validated in the case of inference methods such as deduction, induction,
or statistical reasoning. There is no cognitive or mental model for causal inferences to validate these relations.
One might infer a relation between identical events occurring after identical causes, but the relationship cannot
be proven. This is a well-known problem in validating relations between observations but even harder when
defining hypotheses or, in this study, approaches. The approaches are hypotheses that only in the weakest
logical form, i.e. using abduction, can be formulated.

For the research paradigms, we consider two paradigms as relevant. At first, ‘pragmatism’ because abductive
reasoning was introduced by Peirce, Houser, and Kloesel [223]. Second, ‘constructivism’ is the paradigm that
March and Smith [243] consider to be applicable for design science.

8.5.2 Discussion of the Results: Novel Approaches Including Require-
ments, Characteristics, and Artifacts
The merits and applicability of artifacts including requirements and characteristics must be evaluated based
on data from observations. The evaluation of approaches is typically tested in research methods such as case
studies and data collection methods such as questionnaires, interviews, and applied statistics. See Figure 8.4
for the research methods and data collection methods. Causal relations cannot be observed. So, for validation,
qualitative and quantitative data collection and analysis methods will be used that support or reject correlation.

8.5.3 Future Research
In future research, the proposed approaches will be evaluated. Candidate methods for evaluation are case
studies, focus group studies and interviews. Through exploratory research, we already found indications for
most of the artifacts. However, it requires further research to establish the necessary and sufficient requirements
for which specific situations the approaches and artifacts are appropriate. For instance, additional textual
communication such as chat conversations or mail probably contain design decisions as well.

An interesting avenue for future research involves the upfront condition for a codified interface description.
In this study, it concerns the communication between sub systems. However, communication between people
contributes to a better understanding for anything that is not documented or needs clarification. A communi-
cation protocol for team members becomes relevant in geographically distributed teams where team members
have no face to face contact. So, the communication between people is of future interest.

Additionally, the third approach that describes the gap for automated analytics for natural language can
be extended for reading whiteboard sketches by processing visual information. This third approach would then
be extended with Automated Visual Analytics.

125

Find Open Source repositories
#Contributors, #Commits

Loading data
X, Y = load_data()

Collect and prepare data
See process for Text mining

Instantiate the model
model = MakeModel()

Train the model
model.fit(X, Y)

Evaluate the model
model.score(X,Y)

Use the model
model.predict(X,Y)

Clean up and prepare data
Only words, Porter Stemmer, Lemmatizer

Database with commit messages
Authors, Dates, statistics

Find keywords in commit messages
Keywords based on literature

Classify commit messages
Categories based on literature

Vectorization and feature engineering
Binary Terms, BoW-TF, Normalized TF,

Normalized TF-IDF

Stop
Stop

Start

Process: Machine Learning pipeline Process: Text Mining pipeline

Start

Figure 8.7: Pipelines for Text Mining and Machine Learning.

126 CHAPTER 8. NOVEL APPROACHES

Complete

Part

Idea Production

���������→���→

RQ1, Just Enough Upfront

RQ3, Automated Text Anaylsis

RQ2, Executable
Documentation

At least a subset of the
basic idea can be developed

in any kind of technology.

Proof of Concept

Sketches of basic ideas,
principles and concepts
can be communicated
between stakeholders.

Idea

The requirements can be
implemented with the desired

technology stack.

Prototype

The software product is
implemented with a limited

set of quality attributes
and support processes.

Pilot

The software product is
fully implemented, can be
deployment, supported,

maintaned and used
including retirement.

ProductionPhase
Idea • Proof of Concept • Prototype • Pilot • Product

�����������������
���
�������	��
�

�����������������
������	�����	��
�

������������
�������
����������
���	�������

�����������
������	�������

�	������ �������� �������
�

Figure 8.8: Relation between research questions, maturity, and completeness of the software product for each
phase from Idea to Production.

Chapter 9

Evaluation of Approaches for
Documentation in CSD1

Abstract With the adoption of values, principles, practices, tools and processes from Agile, Lean,
and DevOps, knowledge preservation has become a serious issue because documentation is largely
left out. We identify two questions that are relevant for knowledge acquisition and distribution
concerning design decisions, rationales, or reasons for code change. The first concerns which
knowledge is required upfront to start a project. The second question concerns continuation
after initial development and addresses which knowledge is required by those who deploy, use or
maintain a software product. We evaluate two relevant approaches for alleviating the issues, which
are ‘Just enough Upfront’ and ‘Executable Documentation’, with a total of 25 related artifacts.
For the evaluation, we conducted a case study supported by a literature review, organizational
and project metrics, and a survey. We looked into closed source-code and closed classified source-
code. We found two conclusive remarks. First, git commit messages typically contain what
has been changed but not why source-code has been changed. Design decisions, rationale, or
reasons for code change should be saved as close as possible to the source-code with Git Pull
Requests. Second, knowledge about a software product is not only written down in artifacts but
is also a social construction between team members. Keywords Artifacts, Continuous Software
Development, Documentation, Executable Documentation, Just enough Upfront

9.1 Introduction
This study concerns the evaluation of novel approaches to documentation in CSD. CSD is an umbrella term that
covers values, principles, practices, tools and processes from Agile, Lean, and DevOps [20]. Characteristics
of CSD are that information about a software product is distributed across all tools which hold code and
other (non)executable artifacts that stakeholders require to start an iteration or keep continuing an iteration.
Another characteristic is that knowledge is loose, informal, and communicated in meetings such as daily
stand-ups, leading to a risk of knowledge evaporation. In a previous study [19], we looked into information
about software products, primarily to Git commit messages from open source repositories. In this study, we
evaluate two approaches: ‘Just enough Upfront’ and ‘Executable Documentation’ concerning the characteristics
of CSD. The first approach concerns ‘just enough knowledge about stakeholder concerns, requirements, and
specifications to start development’. The distribution of knowledge takes place through delivery of a design
afterward, including design decisions. This approach is typically used for fast TTM situations. The second
approach covers more mature projects where requirements and specifications are used at the start of TDD and

1This work was originally published as:

Theunissen, T., Hoppenbrouwers., S., & Overbeek., S. (2023). Evaluation of Approaches for Documentation in Continuous Software
Development. Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering -
ENASE, 404–411. doi:10.5220/0011846200003464

127

128 CHAPTER 9. EVALUATION OF APPROACHES

BDD.
To evaluate the approaches with artifacts, we studied practical usages in industry of artifacts with closed

source code. ‘Closed source code’ refers to software which is not publicly available, including information about
the software. Moreover, some code bases are also classified and are not even available to everyone within the
organization studied. Special clearances were required, or developers had to be disconnected from the internet.
Reasons were (national) security, privacy, or protecting (national) infrastructure against threats.

9.1.1 Research Project and Related Studies

Exploring domain and issues in
academia and industry.

Preliminiary
Studies

Desk research: what have
others researched, published

using Systematic Mapping Study?

Literature
Review, SMS

Field research: Are outcomes
from lit. review applicable

in the industry?

Case
Studies

‘Just enough Upfront’
‘Executable Documentation’

`Automatic Text Analytics’

Constructing
Novel Approaches

Academic research,
Industry practices,

Educational lecturers
and students

Does it work as intended,
are the assumptions valid?

Validating
Approaches

Utilizing Results

Results

Results
 a. A wide range of tools are used for all steps in the life cycle of a software product.
 b. Information is distributed about the software product across all those tools and not stored in a central repository.
 c. To better understand the software products, the following media elements must be taken into account: the types of information, the

tools, tool-stacks and ecosystems to manage the (types of) information, and the amount of structure.
 d. Tools include tool stacks, ecosystems, the types of information and amount of structure; they define the content of the message.
 e. The amount of structural variety of information defines the value for information creation and retrieval, including the tools to process

that information. Documentation is considered an information type that is processed through tools in a software development
ecosystem.

In this study, approaches are structured, the conditions, characteristics, and artifacts are elaborated,
and explicated.

1.
2.
3.

The practice of minimal documentation upfront combined with detailed design for knowledge transfer afterwards
The usage of executable documentation
Modern tools and technologies to retrieve information and transform it into documentation

In this study: the approaches

Figure 9.1: Phases in Research Project. This study concerns the evaluation, depicted in green.

This study concerns the evaluation of approaches to knowledge preservation in a research project that started
with preliminary studies to explore the IT-engineering domain and knowledge preservation problems [30], [S31],
[S32]. Following the preliminary study, a systematic mapping study was performed to find out what others
have found already [20]. Following the literature review, the case studies in industry set out to validate the
mapping studies and discover new issues, including the distribution of information about software products
across a software development ecosystem [21]. In the construction phase, novel approaches such as ‘Just enough
Upfront’ and ’Executable Documentation’, including artifacts concerned, were described to cover the issues [19].
See Figure 9.1 for an overview.

In previous research, three novel approaches were constructed in response to the findings [19], of which two
are evaluated and discussed in the current paper. These approaches are:
Just enough Upfront This approach leaves out big upfront design and encourages starting development as
soon as possible. Agility in adapting to change is motivated by the progressive insight that leads to modi-
fied requirements and specifications, as inherent to CSD. There are no obstacles for applying this approach.
Characteristics of the approach are that it is best used for exploratory projects. Exploration is typical for
TRL ≤3 with PoC, but its exploration is also applicable to more mature phases such as prototyping, doing
pilots, and taking software into production. The approach fits Agile and Lean practices. There are sixteen
relevant artifacts, of which whiteboard sketches and a IDL plan are most relevant upfront. After delivery,
design decisions and accountability are most applicable.
Executable Documentation This concerns any artifact related to a software product that is executable and
is relatively easy to read by non-technical persons. Conditions are requirements (what), and specifications
(how) that must be well-defined upfront. Characteristic for this approach is the use of pipelines in CI/CD [19].
The maturity level in TRL is 4≤9. It is suitable for DevOps and accommodates fast TTM. Of the nine relevant
artifacts, frameworks, templates, libraries, and APIs are the most relevant. Typical processes are TDD and
BDD. Developers and operators meet over infrastructure-as-code where concerns match, for instance for fast

129

TTM.
We found that Git commit messages typically contain what has been changed, and sometimes how the

modification works. Documenting what has been changed is easily retrieved by looking at the differences
between commits. Following the principle that Single Source of Truth (SSOT) conveys the ultimate truth [279],
experienced developers and novice developers both can find out how the source code works by reading it.
However, design decisions that document why the modification was made can hardly be found. Tools like
Confluence and Jira are the tools mentioned by developers that record design decisions.

9.2 Research Design

9.2.1 Research Questions
RQ1 What are the necessary and sufficient conditions for evaluating our novel approaches of documentation

in CSD?
This question concerns the research method to achieve rigor by demonstrating transparency and repeata-
bility.

RQ2 For both approaches, which of the artifacts were used, are missing, or need adjustments of conditions
and characteristics?
This question examines in detail the claims for merits.

RQ3 What are defining characteristics of obstacles that need to be resolved for implementing the novel ap-
proaches in industrial and educational context?
This question is a preparation for utilizing the approaches in actual usage.

9.2.2 Research Methods
In previous research, we used DS to construct and validate the novel approaches [11]. We will continue with
DS for evaluating the approaches using case studies as proposed by Wieringa [11]. Case studies are used for
data collection, following Yin [286]; see Figure 9.3. According to Wieringa [11, p. 31], validation concerns
the assessment of potential usage of (in our case) novel approaches and their construction. Evaluation is
the assessment of novel approaches, justified by assessing the actual outcomes compared with the intended
outcomes. Assessment methods for validation are formative and summative judgments [287], [288]. Below,
definitions for the judgments are given.

1. Theory evaluation includes formative validity and summative validity [288].
2. Formative validity refers to the process of building a new theory or approaches. A key characteristic is

transparency [287].
3. Summative validity refers to the sum of the results of the theories or approach. It is achieved through

artifact evaluation [287].
Figure 9.2 depicts the start, finish, process steps, and intermediate results. The intermediate results are

explained in terms of data collection, analysis, and interpretation in the following sections.

9.3 Data Collection
We conducted nine case studies in five organizations with 28 units of analysis. One organization is commercial,
one organization is educational, and three others are governmental. From five organizations, we consulted the
participants with semi-structured interviews, studied non-executable artifacts such as documentation in tools
(including Git commit messages), and reviewed source code. In Figure 9.3, the case studies are presented.
In selecting the organizations, we targeted two specific approaches, i.e., exclusively ‘Just enough Upfront’ or
’Executable Documentation’.

9.3.1 A Myriad of Tools That Contain Information
The motivation for collecting this data is that it contributes to answering RQ2 and RQ3. A second motivation
for collecting this data is that in previous research [21], we found that modern software development ecosystems
include many tools that hold information about software products. This ranges from tools for capturing
loose and informal communication, such as whiteboard sketches and natural language, to constructing source

130 CHAPTER 9. EVALUATION OF APPROACHES

Ordening

Artifacts from Novel Approaches

Evaluation of Artifacts from
Novel Approaches

• Semi structured interviews
• Artifacts, including source-code
• Organizational and project metrics
• Survey
• Literature review update

Giving Meaning

Structuring

Understanding

Observations

Diagrams

Legenda

Start, Finish

Data Processing

Intermediate Results

Confirmed
Results

Communicating
Participants and researchers

Discussing
Results with participants

Reasoning
About (intermediate) results

Da
ta

 A
na

ly
si

s
Da

ta
 In

te
rp

re
ta

tio
n

Da
ta

 C
ol

le
cti

on
RQ

s
Co

nc
lu

si
on

Figure 9.2: Study Design Process.

code and configuration data. For knowledge management, all organizations use Confluence, Jira, and Git.
Confluence is the designated tool for all kinds of documentation, including design decisions. Jira is typically
used for task and process management, and Git is used for source management control. See Figure 9.4 for the
collected data.

9.3.2 Tenure of Team and Age of Repositories
The motivation for collecting this data is that it supports answering RQ2 and RQ3. A second motivation is
that knowledge preservation becomes more relevant with applications aging because of the risk of knowledge
vaporization. A team with senior developers working for years on an application or in the same organization
shares embodied and tacit knowledge about values, principles, practices, and tools and processes, including
changes over the years. See Figure 9.5 for the collected data.

9.3.3 Just Enough Upfront
The reason for collecting this data is that it contributes to answering RQ2 and RQ3. Furthermore, this data
supports and suggests modifying conditions, characteristics, practices, and use cases for the previously [19]
defined artifacts. See Figure 9.6 for the usage of the artifacts. Interviewees mentioned knowledge elicitation
that compensates for missing artifacts, as an upfront activity in an educational context.

9.3.4 Executable Documentation
The reason for collecting this data is that it contributes to answering RQ2 and RQ3. Furthermore, this data
supports and suggests modifying conditions, characteristics, practices and use cases for the previously [19]

131

Single-case
DesignsHolistic

(single-unit
of analysis)

Embedded
(multiple
units of
analysis)

Mupltiple-case
Designs

Engineering (1)

COO (1)

Software (8)

Architect (3)

Consultant (4)

COO (1)

Government (2)

Architect (2)

CTO (1)

Finance (1)

COO (1)

Retail (2)

Architect (1)

CTO (1)

Characteristics:
Law, regulations
AND fast
time-to-market

Characteristics:
Law, regulations
AND fast
time-to-market

Characteristics:
Traditional process
management, IT
follows

Characteristics:
Fast time-to-market

Characteristics:
Continuous
Software
Development

CONTEXT
Case 14

CONTEXT

Embedded
Unit of
Analysis 1

CONTEXT

Embedded
Unit of
Analysis ...

CONTEXT

Embedded
Unit of
Analysis 15

CONTEXT
Case ...

CONTEXT
Case 1

CONTEXT (5)
Case

Figure 9.3: Units of Analysis in Case Studies.

Confluence Jira Git

Orga
niza

tion A

Orga
niza

tion B

Orga
niza

tion E

Orga
niza

tion N

Orga
niza

tion M

100%

0%

25%

75%

50%

Figure 9.4: Usage of knowledge tools including design decisions. Git includes GitHub, GitLab, and Bitbucket

defined artifacts. See Figure 9.7 for the data. This data is skewed because it is not used in the educational
organization.

132 CHAPTER 9. EVALUATION OF APPROACHES

< 1 year

> 15 year

1 - 3 year

4 - 8 year

9 - 15 year

1 2
None

Few

Moderate

Many

All

Year

Re
po

si
to

rie
s

Tenure of IT team Age of Reposotitories

3 4 5 6 7 8 9
10

11
12

13-15
16-20

21-25
>25

Figure 9.5: Tenure of team members for all organizations. Note that the diagram is skewed for < 1 year for
the educational organization because students are only involved for one term (8-16 weeks). The scale of the
right diagram is not proportional.

Refere
nce

s

Resu
lts

 Plan
ning

Desc
iption of C

once
pts

Plan
 of A

ppro
ac

h

Inte
rfa

ce
 D

esc
rip

tion La
ngu

ag
e

Pre
se

nta
tions

Yello
w Pag

es
W

hite
boar

d Sk
etch

es

Lis
ts

Sa
ndwich

 of H
ap

piness

Git C
ommits

Comap
re

d Plan
ning v

ersu
s .

..

So
ftwar

e
Fu

ll D
eta

ile
d D

esig
n

Desig
n D

ecis
ons

Fin
al

Sa
ndwich

 of H
ap

piness

All

None

Few

Many

Moderate

Upfront Building

Figure 9.6: Usage of Artifacts for ’Just enough Upfront’ across all organizations.

9.4 Data Analysis
Data analysis concerns the process of bringing order, structure, and meaning to the pile of collected data [289,
p. 399]. Furthermore, remarkable results and omissions are mentioned. For this study, we assessed if the
approaches and artifacts did have the intended outcomes. With this, we follow the summative assessment from
DS.

9.4.1 A Myriad of Tools That Contain Information
Using a software development ecosystem entails that information about the software product is distributed
across all tools in the ecosystem. Designated tools are used for specific types of information. For this research
project, we are interested in design decisions. Only three tools were used for this type of information in all

133

Exe
cu

tab
le re

quire
ments

Exe
cu

tab
le sp

ecifi
ca

tions

Te
mplat

es,
Fra

meworks
, L

ibra
rie

s,
APIs

DoD, S
M

ART cr
ite

ria
, K

PIs

Infra
str

uctu
re

-as
-co

de

Reve
rse

 engin
eerin

g

Enhan
ce

d Te
mplat

es,
 &

c.

Acc
ountab

ilit
y a

nd Acti
onab

le D
ata

Te
sts

 (T
DD, B

DD, A
TDD)

All

None

Few

Many

Moderate

Upfront Afterwards

Figure 9.7: Usage of Artifacts for ’Executable Documentation’ across all organizations.

organizations studied. These tools are Confluence, as a repository for knowledge about the software product,
Jira, for task management, and Git, primarily for source code. For the range of types of information, varying
from loosely communicated natural language and sketches on one side of the spectrum, to constructed source
code that can compile to running applications on the other, design decisions are not stored in other tools. It
may very well be possible that descriptions, interpretations and explanations as answers to questions might be
stored in chats, emails or spoken language. However, we excluded these types of communication since they are
not realistically retrievable. A typical workflow mentioned by the participants outlines the process as writing

Confluence Jira Git
• Epics
• User Stories
• Design Decisions

• Tasks
• Subtasks

• Source-code
• Commit Messages
• Pull Requests

Figure 9.8: Typical workflow across all studied organizations.

epics and user stories in Confluence. Tasks from the user stories are managed with Jira, source code is stored
in Git, and the comments can be limited to just the task number from Jira. Within this flow, code traceability
from task to user story to epic should be guaranteed for knowledge preservation such as design decisions. See
Figure 9.8. The flow matches with literature [20] and suggestions from Atlassian2.

Observations from the case studies.
1. No Confluence or Jira for running software products. One of the organizations shuts down

instances of Confluence and Jira at the end of a project. The end of a project does not entail the
retirement of the software product, only that information is lost about the software product. For that
organization, the Git commit messages only contain a task number, and the rationale for the code changes
could not be retrieved. This leads to knowledge evaporation.

2. Tooling without design decisions. Another organization did not store design decisions and had to
rely on a rather fuzzy vision without requirements or specifications for implementation. This organization

2https://www.atlassian.com/agile/project-management/user-stories

https://www.atlassian.com/agile/project-management/user-stories

134 CHAPTER 9. EVALUATION OF APPROACHES

became aware of the lack of recorded design decisions and started to store these decisions in hindsight.
3. Short lived projects. For the educational organization, knowledge preservation is not relevant. The

lifetime from start to retirement is only one term (8, 16 weeks). Students are required to learn to use
standards like a SRS [290], SAD [90] or SDD [91]. Knowledge vaporization is immanent in this context.

4. Migrations of tools over the years. One organization has used software for dozens of years. In-
formation about the software product must be available for over 40 to 50 years. Migration of tools did
happen from paper to photocopies organized in a hierarchical file structure on disks to optical character
recognition and eventually to Confluence.

5. No design decisions in Git. No organization mentioned keeping design decisions in Git. Discussing
this made sense for participants, but it is no actual practice.

9.4.2 Tenure of Team and Age of Repositories
Compared with data from the U.S. [291], team members in the studied organizations keep working for the
same organization much longer, except for the educational organization. This is a big difference compared to
the tenures for developers in big tech companies, which is less than three years [292].

Observations from the case studies.
1. Educational contexts require no history nor seniority. Students are involved in a project for a

short time, and maintenance or support is not part of the program. The teams investigated are larger
than in the industry. The team in the educational organization consists of 20 to 25 developers and is
divided into sub-teams working on sub-systems. The primary objective for students is to pass the course
and project, not to maintain or support a software product. Students remember tools, techniques, and
processes rather than design decisions.

2. Team with history in an organization - Sharing knowledge. One of the participants explained
that employees in non-profit organizations earn less money than in commercial companies but are more
loyal to the organization. Some organizations have a network of family members.
Employees stay much longer in the three governmental organizations than in commercial organizations.
Team members have a history of past decisions, which is relevant because not all decisions are docu-
mented. This positively affects knowledge preservation, even if it is not documented. The memory of
undocumented historic decisions is not identified as an artifact in the literature.

3. Life span of software. The moderate age of software repositories is six years, with a Gaussian distri-
bution ranging from 1 year to 12 years [293]. The distribution is skewed with mode and median left from
the mean because newer software is in use more than older software. The software can age for dozens of
years for one of the studied organizations. This software is part of cyber-physical systems such as frigates
and submarines.

9.4.3 Just Enough Upfront
Observations from the case studies:

1. Artifacts always used. Some artifacts were always used, for example presentations, source code, and
commit messages. Presentations are helpful in transferring knowledge that can serve as input for a project
or iteration because the mix of high-level diagrams supports understanding of causal and logical relations
between concepts. Depth can be obtained by supporting text accompanying the diagrams [248]. Source
code serves as a single source of truth and reveals what the software product does and how it works
through close reading by (experienced) developers. It does not explain why the software product works.
Tools like Confluence or Jira are often used to record the reasons for modifications. For Git, individual
commit messages were not valuable, as mentioned by several respondents. However, Pull Requests are
in use that “should contain design decisions” instead of ordinary commit messages.

2. Artifacts never used. Some artifacts, such as references and a final SoH, were never used. The artifacts
SoH and RP are not familiar in most organizations, but assessments and retrospection are common across
all organizations.

3. Knowledge distributed across software development ecosystem. In previous studies, we found
that nowadays, many tools are in use that store pieces of information about software products [21] which
remains true. However, design decisions, rationales, and reasons for change are typically stored in tools
like Confluence or Jira.

4. Design decisions keeping close to source code. Source code is the SSOT. Developers can read the
source code and understand what it does and how it works. However, the reason why the source code

135

is as it is cannot be retrieved from the source code itself. Typical tools in use are Confluence and Jira.
We incorrectly expected that design decisions were stored as close as possible to source code, and not in
other tools. To emphasize this point: one organization decided to turn off Confluence and Jira because
the project was operational. As a result, the knowledge related to the project was gone.

9.4.4 Executable Documentation
Observations from the case studies:

1. Artifacts always used.There are no artifacts concerning ED that are always used across all organiza-
tions.

2. Artifacts never used. ED is not used in many organizations, see Figure 9.7. Only a few organizations
practice it. An exception concerns TDD. The highest score is because participants prefer other tests,
especially unit tests. This type of testing often concerns the ‘happy flow’. TDD aims at writing tests that
fail. In the case studies, one organization used ED for all projects in their division. This organization did
not use any other documentation for knowledge acquisition or knowledge transfer. This implies a lack of
testing of the software product. Developers mentioned reasons such as test cases that made it possible
to reverse-engineer software that should be kept secret. Another organization with long-term software
products (> 30 years) relies solely on its developers. Developers are not connected to the internet to
‘google’ an answer or use publicly available libraries and frameworks for security reasons.

9.5 Data Interpretation
In this section, the most remarkable results will be presented, being either a confirmation or a rejection of
proposed artifacts. Artifacts such as presentations, whiteboard sketches, software, and git commits are used
by all participants. Furthermore, following RQ3, defining characteristics for obstacles to implementation will
be mentioned.

1. Relax on design upfront. Developers can start a project or iteration as soon as requirements and
specifications are sufficient. Longer contemplation does not prevent progressive insights, especially in an
educational context where progressive insights are implicit in the process and objectives.
No obstacle hinders the implementation of relaxing on upfront design. Relaxing does not imply becoming
sloppy. The effort starts with remembering values, principles, practices, and tools and processes to make
proper judgments on requirements and priorities.

2. Strict on codified interface description. Integration of (sub)systems is always hard, it also happens
at the end (when deadlines are approaching), and the blame falls on others. Starting with, and holding
on to, a codified interface prevents integration issues.
Barriers to integration are related to being accountable for results one has no control over: the other
(sub)systems, teams or external parties. This leads to short-sighted vision, losing the big picture and
shared responsibilities.

3. Knowledge is social. Not all knowledge is stored in artifacts. Participants across all organizations
mentioned that design decisions, rationales, or reasons for change are not documented. For some orga-
nizations, where security, reliability, or confidentially are critical, knowledge about the software product
is in the hearts and minds of senior developers. Knowledge is shared in meetings, conversations, or
presentations. People are loyal to their organization, and knowledge stays within the organization. This
supports knowledge preservation.
There is a remarkable distinction between open source code, closed source code, and closed classified
source code. Open source has the best quality of documentation. Closed source code has the poorest
quality, with sometimes only a Jira task number. Closed classified source relies on a loyal team of senior
team members to answer questions from new team members.
A risk for accepting that knowledge could be found in social interaction concerns teams with a high
change rate of team members, including changes caused by internal reorganizations. The organizations
we researched do not pay the highest salaries, but team members have been loyal to the organization
over the years.

4. Knowledge is primarily NOT distributed across a software development ecosystem. Infor-
mation about the software product is distributed across all tools in a software development ecosystem in
an organization. However, some types of information, such as design decisions, rationales, or reasons for
change, are kept in a single place.
There is no barrier to this result. A communicated modus operandi supports knowledge preservation.

136 CHAPTER 9. EVALUATION OF APPROACHES

5. Saving design decisions in Git. It is common practice across all organizations to use Git (GitHub,
GitLab, Bitbucket) for keeping source code. Typically, commit messages do not add much information
about the source code changes as they mention what has been changed or how it works. As design
decisions cannot be retrieved from source code, the best option for keeping this type of information are
git commit messages. Some participants mention that Pull Requests are the designated commit types.
We could not identify a hurdle for keeping design decisions as close to the source code as possible.
Participants could not give a clear reason why not to do so. Speculation from the participants includes
the way of working and tooling. The way of working is a behavioral change, and tooling is a management
decision.

9.6 Threats to Validity

Threats to validity in DS is not a mature discipline [294]. We follow Gonzalez and Sol [288] with formative
and summative assessments to evaluate the treatments. Formative assessment concerns the process of how a
result is achieved, and summative assessment refers to the result (’does it work?’) of the treatment. Wieringa
[11, pp. 128, 138] mentions the following threats for treatment design:

1. Inference support. What are reasonings or statistical schemes to draw valid conclusions based on assump-
tions and observations?

2. Repeatability. Can data sampling and reasoning be reproduced several times, leading to the same con-
clusions by other researchers?

3. Ethics. Does the research harm participants?
4. Interpretation. Does the reader accept the interpretation as a fact?

9.6.1 Inference Support

This risk is mitigated by the verification of assumptions and hypotheses with the participants. An assumption
is a statement that is considered to be valid and proven in an inference of taking to be invalid, which leads to
an invalid conclusion by applying the principle of excluded middle. A hypothesis is considered to be true when
it is not possible to falsify it. Some artifacts, see Figures 9.6 and 9.7 were valid (value ‘All’) and some were
not valid (value ‘None’), and some were inconclusive (other values than ‘None’ or ‘All’).

For this threat, both formative and summative assessments are relevant. The formative assessment considers
the validity of the reasoning process. The summative assessment concerns the validity of assumptions and
hypotheses.

9.6.2 Repeatability

This risk is partially mitigated. For the data sampling, it is mitigated in principle. However, because of the
classified source code of some organizations, clearance level is required3 or legal requirements4 are required.

For this threat, summative assessments are relevant. With this assessment, the repeatability is evaluated
as to whether results can be reproduced, partially when a situation is changed, or can not be reproduced.

9.6.3 Ethics

Internal processes mitigate this risk in organizations by excluding privacy-sensitive data from the research.
Some organizations have a legal task to use violence (military) or detect acts of crime. This could harm people
(enemies, criminals) involved but not society as such. We take a utilitarian ethical viewpoint that values the
happiness of society above the happiness of the individual.

We consider the formative assessment applicable where the process is evaluated.

3‘Verklaring omtrent Gedrag’ (VOG, Certificate of Conduct) or ‘Verklaring van geen bezwaar’ (VGB, Certificate of no Objec-
tion).

4‘Wet op de Openbaarheid van Bestuur’ (WOB, ‘Dutch Freedom of Information Act’).

137

9.6.4 Interpretation
This risk is mitigated by method and data triangulation. We used a literature review, case studies, and a survey
to have several methods. Furthermore, we used semi-structured interviews, executable and non-executable
artifacts, and data from a survey.

For this threat, both formative and summative assessments are applicable. The formative assessment
concerns the process of collecting and interpreting the data. For the summative assessment, results might
differ because of progressing insight, whereas a different result might emerge with identical assumptions and
hypotheses.

9.7 Conclusions and Future Work
We have three research questions to answer.

The first research question concerns the necessary and sufficient conditions to use approaches and artifacts.
Shared values, principles, practices, tools, and processes are critical for necessary and sufficient conditions.

The second research question assesses the actual usage of approaches and artifacts. ’Just enough Upfront’
is an approach that is used across all organizations, or is considered appealing. Some artifacts are constantly in
use: presentations, whiteboard diagrams, plans of approach, software, and commit messages. Some are never
used, such as references and final SoH. For the approach ‘Executable Documentation’, no conclusive artifacts
are included or excluded. The artifacts that were most in use are tests.

The third research question concerns the defining characteristics of barriers to implementing the approaches
and artifacts. An obstacle mentioned across all organizations concerns unconfirmed, loose deviations from
prescribed processes, or interfering objectives. Examples of loose deviations of prescribed processes are left-
outs of ceremonies of textbook definitions of Scrum or Scaled Agile Framework (SAFe).

Conclusive remarks concern one observation and one consideration. The observation is about the social
construction of knowledge, where knowledge is not a mere act of intellect or rational or intelligible epistemic
contemplation. The consideration concerns design decisions, rationales, or reasons for change that should be
saved as close as possible to the source code in Git. What and how of the source code can be read in the code.
A rationale cannot be retrieved from the source code. A separation of source code and design decisions does
not contribute to knowledge preservation.

9.7.1 Future Work
Future work concerns the implementation of the outcomes in an educational and a professional context. Specif-
ically, the ‘Just enough Upfront’ approach is a candidate for implementation, including the most used artifacts.
Secondly, an effort must made to save design decisions with Git Pull Requests.

138 CHAPTER 9. EVALUATION OF APPROACHES

Chapter 10

Conclusion

10.1 Research Questions
The main objective and research question of this research project is:

What are the necessary and sufficient conditions for effective communication with just enough doc-
umentation in CSD obtaining insight and control to start building, delivering, maintaining, and
continuously using a software product?

Conditions are an arrangement for a specific situation, as in a hypothesis or conjecture, that is applicable.
Next, there is a difference between necessary and sufficient conditions, which logically and causally relate to
each other. Necessary conditions refer to minimal requirements for an event to occur, although not sufficient.
An example of a necessary condition is a minimum of documentation that is required for deployment, usage,
or maintenance. In contrast, extensive documentation can still be insufficient because incomprehensible to
understand what, how, or why. Sufficient conditions concern satisfactory requirements for an event to occur,
although not necessary. For example, knowledge preservation can be obtained by multiple types of repre-
sentation, such as text, diagrams, or personal explanations. None of these is exclusively required. Effective
communication refers to the receiver of the information who acts as intended by the sender. The expression
‘just enough’ applies to the bare minimum of information for obtaining results.

Writers and readers need to have common ground for communication in order to understand and agree on
the essentials of objectives, requirements, and specifications for the software product involved. This requires
clear and concise communication focusing on those essentials.

The objective is investigated through three research questions.
RQ1 Why is knowledge acquisition, building, preserving, and revealing in CSD, leading to knowledge vapor-

ization, a hard problem?
We found the following issues that make knowledge hard to acquire, build, and distribute: Developers
often prioritize coding over tasks such as documentation, meetings, presentations, or other activities that
hinder their productivity in producing working code. However, this leads to a dispersion of knowledge
about the software product across multiple tools in the development ecosystem, lacking a central repos-
itory. Consequently, team members do not store or share design decisions, rationales, and reasons for
change. Also, incomplete or inaccurate interface descriptions further complicate the integration of sub-
systems. These challenges can be attributed to the Agile Manifesto’s emphasis on working software over
comprehensive documentation, categorizing non-value-adding activities as waste. Similarly, achieving fast
TTM through infrastructure as code takes precedence in DevOps. As a result, developers often use these
principles as excuses to forgo investing time in knowledge acquisition and distribution. However, effec-
tive team communication becomes increasingly difficult when dealing with factors such as rapid changes,
geographical dispersion, diverse time zones, and cultural or language barriers. Establishing a common
understanding of values, priorities, and knowledge becomes essential for clear and concise communication
among team members.
Next, epistemological questions about the nature of knowledge and the relation between the mind and
reality make it even more difficult. This classical problem has been researched for the last 2500 years
without conclusive answers. Additionally, there has been a cultural shift towards shorter attention spans

139

140 CHAPTER 10. CONCLUSION

ID Phase Process Artifact
D1 Upfront Communication between stakeholders • Yellow Pages.
D2 Shaping thoughts • Presentation.
D3 • Whiteboard and drawings.
D4 • Lists.
D5 Communication between systems • Interface Description Language.
D6 Planning • Plan of Approach.
D7 Building Progressive Insights • Description of Concepts.
D8 Communication between systems • References.
D9 Coaching and Control • Results Planning.
D10 • Sandwich of Happiness.
D11 Afterwards Deliverables • Software.
D12 • Git Comments.
D13 • Full Detailed Design.
D14 • Decisions.
D15 Accountability • Compared Planning versus Actual Results.
D16 • Final Sandwich of Happiness.

Table 10.1: Phases, Processes, and Artifacts for Approach ‘Just Enough Upfront’.

and a different way of processing information among those who have grown up with digital technology,
known as ‘digital natives’, compared to ‘traditional’ paper book readers.

RQ2 What are defining and contextual characteristics for CSD?
We use CSD as an umbrella term that is characterized by:

1. Values, principles, practices, tools, and processes from Agile, Lean, and DevOps;
2. Fast TTM because of market demands, competition, technological innovations, or legal requirements;
3. Using CI/CD for continuous testing, integration, and automated delivery;
4. Challenges such as a complex multitude of interconnected systems, external third party systems

that are out of control, or a high degree of uncertainty;
5. Activities in the complete life cycle of a software product, from concept to end-of-life;
6. The software development ecosystem with a variety of tools from conceptualizing to monitoring

production systems;
7. Distributed information about a software product across all tools in a software development ecosys-

tem. There is no central repository that stores all information;
8. The continuously changing state of a software product due to external factors, new features, bugs,

and progressive insights;
9. Involvement of web applications, mobile applications, and enterprise systems for communication

between back-end and front-end;
RQ3 Which documentation artifacts are required: a) upfront for you to start a project or an iteration, b)

while building with team members the software product, and c) afterward by others for deployment, main-
tenance, and usage -in short: continuation- of a software product?

First, we have found that the aspect of continuity, besides software development, also applies to continuous
learning. To accommodate continuous learning, we introduced two complementary methods: the first
is RP, and the second the SoH. The RP assesses achieved results, whether successful or not. Activities
are defined as smartish results, one significant, relevant result per team member per part of a day,
i.e., the morning or the afternoon. So, a team of five members has ten results per week. Over time,
results are getting more relevant and contribute significantly more to the end product. The SoH is a
reflection and introspection on the process of the production of the results. There are three questions to
answer: 1) Looking backward, what was successful, were contributions, lessons learned, or are you proud
of; in short: what was good? 2) Looking backward, what were failures, irritations, frustrations, and
misguided ambitions, should be avoided; in short: what was bad? 3) Looking forward, show adaptability
for continuous change, the balance between overestimated competencies and underestimated difficulties,
and balance between anxiety and boredom, defined by smartish KPIs.
Furthermore, for continuous learning, two methods were described. These are the RP and SoH. The
proposed RP is planning divided into significant, relevant results per half a day per team member, e.g.,
a team of five members defines ten significant, relevant results per week. It includes an assessment of
obtained results, whether successful or not including. Accountability is a link to a commit hash, updated
results when successful, or a brief explanation for failure. The RP is complemented with a SoH.

141

ID Phase Process Artifact
E1 Upfront Defining what has to be done. • Executable Requirements.
E2 Defining how it has to be done. • Executable Specifications.
E3 Using knowledge from previous experi-

ences.
•Templates, Frameworks, Libraries, APIs.

E4 Quality control. •Tests (TDD, BDD, ATDD).
E5 Management. • Definition of Done, Acceptance Criteria,

SMART KPIs.
E6 Afterwards Speeding up the CI/CD cycle. • Infrastructure-as-code.
E7 Retrieving knowledge about software

products.
• Reverse Engineering.

E8 Saving executable knowledge for future
development.

• Enhanced Templates, Frameworks, Li-
braries, APIs.

E9 Accountability • Accountability and Actionable Data.

Table 10.2: Phases, Processes, and Artifacts for Approach ‘Executable Documentation’.

ID Phase Process Artifact
A1 Upfront Source Code • Git Comments.
A2 Building Text Mining • Search Categories and Search Terms.
A3 • Statistics: BoW, TF, IDF, TFIDF.
A4 • Annotated data.
A5 Deep Learning • Model.
A6 • Pretrained Model or Transfer Learning.
A7 • Hyperparameter Settings.
A8 Afterwards • Finding Design Decisions in Different

Types of Information.

Table 10.3: Phases, Processes, and Artifacts for Approach ‘Automated Text Analysis’.

10.2 Contributions

This research contributes to three communities: academia, industry, and education.

10.2.1 Academic Researchers
The primary contribution concerns approaches with artifacts for documentation used in acquiring knowledge
upfront and the distribution of knowledge after the delivery of the software product. The approaches are ‘Just
Enough Upfront’ with sixteen artifacts, ‘Executable Documentation’ with nine artifacts, and ‘Automated Text
Analysis’ with eight artifacts. Table 10.4 shows the key characteristics

We identified conditions and characteristics for the approaches. Characteristics concern the maturity from
idea to production. Approaches change during the life cycle of a software project while requirements, the
technology of choice, and processes get better defined. Although discovering architecture decisions after the
software product has been released is not new, see, for example: [295], [296]. Our approach, ‘Automated
Text Analysis’, adds two aspects. The first is saving design decisions, rationale, or reasons for a change in git
commit messages and pull requests. The second aspect is identifying causal relations in text with NLP to reveal
architecture decisions made possible by recent developments in Artificial Neural Network (ANN). Furthermore,
we found that information about a software product is distributed across many tools in a software development
ecosystem instead of stored in one single repository. We showed that specific types of information are stored
in specific tools at specific places, such as design decisions in Git.

Approach Conditions Characteristics Artifacts
Just Enough Upfront Not specified. Exploratory projects.

Most applicable TRL: ≤3
Fit for Agile practices.

#: 16, of which most relevant:
• Whiteboard Drawings, Sketches
• Codified interface descriptions,
• Plan of Approach,
• Design decisions,
• Accountability.

Executable
Documentation

‘What’ and ‘why’
must be well defined
upfront.

Pipelines for CI/CD
Applicable TRL: 4≤9
Fit for DevOps.
Fast TTM.

#: 9, of which most relevant:
• Frameworks, Templates,
• TDD, BDD,
• Infrastructure-as-code

Automated Text
Analytics

Verbose Git
comments.

Rather new area of expertise.
Applicable TRL: 1≤9
NLP for retrieving
design decisions.

#: 8, of which most relevant:
• Annotated data, Model,
• Hyperparameter settings,
• Transfer learning

Table 10.4: Key Conditions, Characteristics, and Artifacts per Approach.

142 CHAPTER 10. CONCLUSION

With developments in Large Language Model (LLM)s since December 2022, such as ChatGPT1, outlooks
are promising for identifying logical and causal relations in text pointing to design decisions, rationale, or
reasons for a change in software. The availability of a small version of LLM with Llama2 from Meta[297] makes
it possible to run pre-trained models on laptops. However, as has been found in our research, results depend
on verbose git comments for revealing meaningful design decisions.

10.2.2 Practitioners in the Industry
We found confirmation of the TL;DR habit. At the same time, practitioners underlined the urge for knowledge
preservation. Dynamics in the industry demand fast TTM with multiple drivers, including technological
innovations, legal requirements, competition, bugs, and new features. We found that the approach ‘Just Enough
Upfront’ is sufficient to start developing if stakeholders have only a blurry view of objectives, requirements, and
specifications as long as it can be communicated in a presentation. There is not always a need for formalized
UML documents. A second aspect requires more attention than typically is paid. This concerns a codified
interface description of the communication between (sub)systems. For projects that are characterized by well-
defined requirements, proven technology, and CI/CD pipelines, the approach with ‘Executable Documentation’
assists in knowledge preservation and fast TTM.

10.2.3 Teachers and Students in Education
The most important contribution for students is using progressive insights in projects. From a didactic point
of view, spending a significant amount of time learning how to do knowledge elicitation, defining requirements,
and next specifying details using templates and UML is a good start. The same applies to defining a plan of
approach. For students, the dynamics of fast TTM do not apply, but progressive insights and making errors
are part of a learning process. The approach ‘Just Enough Upfront’ defines artifacts for this approach. Last
but not least, the approaches and artifacts save time for both students and teachers to be more efficient for
‘Just Enough Upfront’ and ‘Executable Documentation’.

Teachers and students benefit from the aforementioned approaches in an educational context. Students do
not like to read and write, and the same applies to teachers who have to read many documents on reflection
and knowledge preservation of students.

1. Start with writing down why changes are made in source-code for junior students. Use Git commit
messages for documenting design decisions. Students better understand stakeholder concerns, algorithms,
and end-user feedback if they describe the reasons for starting, building, or retiring changes in projects.

2. Relax on big upfront design. In an educational context, progressive insights are welcomed.
3. Relax on following a plan of approach. In an educational context, progressive insights are welcomed. This

implies a change of objectives, approaches, requirements, specifications, or implementations. Following a
plan in an educational context shows a lack of progressive insights.

4. The interface description of communication between (sub)systems must be stricter. Integration of
(sub)systems is difficult, and an issue in the industry often involves multiple providers. Learning to
think from a detailed view to an abstract overview and from a contextual view of lines of code ensures
an optimal match for issues and implementation.

5. Explore ANN for software engineers, especially RNN for text analysis to reveal design decisions from
text, as opposed to CNN typically used for image data.

10.3 Future Research and Utilizing Results
Utilization of the results of the study in the communities.

10.3.1 Future Research in Academia
Further research on ‘Automated Text Analysis’ to reveal architectural design decisions, rationale, and reasons
for change by identifying causal relations in text using NLP. The scope of Git commit messages and pull

1https://chat.openai.com
2https://github.com/ggerganov/llama.cpp

https://chat.openai.com
https://github.com/ggerganov/llama.cpp

143

requests can easily be extended to other textual documents stored in other tools such as Confluence or chat
messages. Another option includes exploring other information types with less structure, such as whiteboard
sketches or saved online video meetings. Furthermore, analyzing types of information with a lesser amount of
structure.

10.3.2 Implementation in Industry
For the industry, the two methods concerning RP and SoH are relevant for CSD. Next, the three approaches with
33 artifacts are all applicable in the industry, although maybe not at the same time and not in all situations. To
be specific, implementation of results in the industry starts with saving design decisions, rationale, and reasons
for change as close to the source as possible, that is, the source-code as in Git where the commit messages and
pull requests contain always why a change is saved. Practitioners should codify an interface strictly so that no
confusion or misunderstanding arises when programming (sub)systems.

10.3.3 Implementation in Education
An artifact that showed effective knowledge preservation is using Git to store design decisions, rationale, and
reasons for a change instead of commenting on what has been changed or how the change affects existing code.

The following items are more value related than the approaches and artifacts ‘Just Enough Upfront’,
‘Executable Documentation’, and ‘Automated Text Analysis’ mentioned in respectively Table 10.1, Table 10.2,
and Table 10.3.

1. Embrace progressive insights is one of the essential parts of learning. Learning methods such as UML.
SRS, SAD or SDD has an edifying goal. However, planning and thinking ahead can be considered
complete if enough information is at hand to start developing. This implies relaxing on big upfront
design and on strictly following a plan of approach.

2. Lessons learned, learning to fail, and learning from errors and failures contribute to a learning process.
This applies specifically to education, where lessons learned are the core of the activities.

3. Emphasize personal qualities and preferences. Some students excel in exploring new concepts, can deal
with uncertainties, and are aware of context, while others feel comfortable understanding instructions,
following procedures, and contributing to efficiency. There is no good or bad related to these qualities.
Both are required in the life cycle of a software product. The SoH emphasize continuous growth in indi-
vidual values by emphasizing introspection and reflection on individual contributions to accomplishments,
both successes, and failures.

4. Learning is both an individual and a social activity. Learning is not so much a product of a rational,
cognitive, individual activity but as much a social construct, including communication on values and facts.
Typical individual activities that are reasons for staying at home instead of coming to class are reading,
practicing, and understanding. Typical reasons to come to class are working together, presenting, and
discussing.

For students and teachers, one of the key concepts for learning is progressive insights, including learning from
mistakes to make better mistakes next time. A detailed UML document upfront contributes only a little to
understanding the issues and gravity of difficulties. It takes a relatively large amount of time that does not
lead to a better understanding or prevention of errors. Short iterations with assessments like the ‘Sandwich of
Happiness’ contribute to both assessing results and providing insights into how the results were achieved.

144 CHAPTER 10. CONCLUSION

Bibliography

[1] K. Beck, M. Beedle, A. Van Bennekum, et al. “Manifesto for Agile Software Development Twelve
Principles of Agile Software”, Manifesto for Agile Software Development. (2001),
[Online]. Available: https://agilemanifesto.org/.

[2] M. Poppendieck and T. Poppendieck, Lean Software Development: An Agile Toolkit.
Boston, MA: Addison-Wesley Educational, 2003, isbn: 0-321-15078-3.

[3] L. Bass, I. Weber, and L. Zhu, Devops: A Software Architect’s Perspective, 1st.
Addison-Wesley Professional, 2015, isbn: 0-13-404984-5.

[4] M. T. Cicero, E. W. Sutton, and H. Rackham,
Cicero: In Twenty-eight Volumes. 3: De Oratore: Books I-III (The Loeb Classical Library 348),
Reprinted. Cambridge, Mass.: Havard Univ. Press, 2001, isbn: 978-0-674-99383-9.

[5] C. E. Shannon and W. Weaver, “The Mathematical Theory of Communication”,
Urbana: University of Illinois Press, 1949.

[6] M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, and M. Zukowski, “Information
Causality as a Physical Principle”, Nature, vol. 461, no. 7267, pp. 1101–1104, Oct. 2009. doi:
10.1038/nature08400. [Online]. Available: http://arxiv.org/abs/0905.2292 (visited on 01/30/2021).

[7] P. Naur and B. Randell,
“Software Engineering: Report of a Conference Sponsored by the NATO Science Committee”,
NATO, Garmisch, Germany, NATO, 1969.

[8] D. L. Parnas, Information Distribution Aspects of Design Methodology.
Pittsburgh, Pa.: Carnegie Mellon University, Dept. of Computer Science, 1971, isbn: 0-7204-2063-6.

[9] R. Overton, “Developments in Computer Aided Software Maintenance”, AMS Inc Claremont CA,
Technical Report, 1974.

[10] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
isbn: 978-3-642-29043-5. doi: 10.1007/978-3-642-29044-2. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-29044-2 (visited on 01/30/2021).

[11] R. J. Wieringa, Design Science Methodology for Information Systems and Software Engineering.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, isbn: 978-3-662-43838-1.
[Online]. Available: https://doi.org/10.1007/978-3-662-43839-8 (visited on 01/30/2021).

145

https://agilemanifesto.org/
https://doi.org/10.1038/nature08400
http://arxiv.org/abs/0905.2292
https://doi.org/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-662-43839-8

146 BIBLIOGRAPHY

[12] P. Kruchten, H. Obbink, and J. Stafford, “The Past, Present, and Future for Software Architecture”,
IEEE software, vol. 23, no. 2, pp. 22–30, 2006.

[13] M. Shaw and P. Clements, “The Golden Age of Software Architecture”,
IEEE software, vol. 23, no. 2, pp. 31–39, 2006.

[14] K. D. Maxwell and P. Forselius, “Benchmarking Software Development Productivity”,
IEEE Software, vol. 17, no. 1, pp. 80–88, 2000.

[15] R. Hoda, N. Salleh, and J. Grundy, “The Rise and Evolution of Agile Software Development”,
IEEE software, vol. 35, no. 5, pp. 58–63, 2018.

[16] G. S. Walia and J. C. Carver, “A Systematic Literature Review to Identify and Classify Software
Requirement Errors”, Information and Software Technology, vol. 51, no. 7, pp. 1087–1109, Jul. 2009,
issn: 09505849. doi: 10.1016/j.infsof.2009.01.004. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0950584909000111 (visited on 03/31/2023).

[17] R. N. Longuemare and J. M. Lodal, “Pentagon Agrees to Release Source Codes on Case-by-Case
Basis”, Inside the Pentagon, vol. 13, no. 16, pp. 1–22, 1997, issn: 2164-814X.
[Online]. Available: https://www.jstor.org/stable/43993619 (visited on 03/12/2023).

[18] C. f. D. a. R. Health. “Policy for Device Software Functions and Mobile Medical Applications”,
U.S. Food and Drug Administration. (), [Online]. Available:
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/policy-device-software-
functions-and-mobile-medical-applications (visited on 03/12/2023).

[19] T. Theunissen, S. Hoppenbrouwers, and S. Overbeek, “Approaches for Documentation in Continuous
Software Development”,
Complex Systems Informatics and Modeling Quarterly (CSIMQ), vol. 32, pp. 1–27, 2022,
issn: 2255-9922. doi: 10.7250/csimq.2022-32.01.

[20] T. Theunissen, U. van Heesch, and P. Avgeriou, “A Mapping Study on Documentation in Continuous
Software Development”, Information and Software Technology, vol. 142, p. 106 733, 2022,
issn: 0950-5849. doi: 10.1016/j.infsof.2021.106733. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095058492100183X.

[21] T. Theunissen, S. Hoppenbrouwers, and S. Overbeek,
“In Continuous Software Development, Tools Are the Message for Documentation”,
in Proceedings of the 23th International Conference on Enterprise Information Systems,
J. Filipe, M. Smialek, A. Brodsky, and S. Hammoudi, Eds.,
SCITEPRESS - Science and Technology Publications, 2021, isbn: 978-989-758-509-8.
doi: 10.5220/0010367901530164.

[22] M. Steup and R. Neta, “Epistemology”, in The Stanford Encyclopedia of Philosophy, E. N. Zalta, Ed.,
Fall 2020, Metaphysics Research Lab, Stanford University, 2020. [Online]. Available:
https://plato.stanford.edu/archives/fall2020/entries/epistemology/ (visited on 03/05/2023).

[23] K. R. Subramanian, “Myth and Mystery of Shrinking Attention Span”,
International Journal of Trend in Research and Development, vol. 5, no. 3, 2018.
[Online]. Available: http://www.ijtrd.com/papers/IJTRD16531.pdf.

[24] F. Jabr, “The Reading Brain in the Digital Age: The Science of Paper Versus Screens”,
Scientific American, vol. 11, no. 5, 2013.
[Online]. Available: https://www.scientificamerican.com/article/reading-paper-screens/.

[25] A. N. Whitehead, “Process and Reality: An Essay in Cosmology [1929]”, in Science,
D. R. Griffin and D. W. Sherburne, Eds., Simon and Schuster, 1978, isbn: 978-0-02-934570-2.

[26] S. M. Koosel, “TL;DR: Temporality Shifts in Digital Culture”,
AoIR Selected Papers of Internet Research, 2015.
[Online]. Available: https://spir.aoir.org/ojs/index.php/spir/article/download/9073/7164.

[27] C. Su, H. Zhou, L. Gong, B. Teng, F. Geng, and Y. Hu, “Viewing Personalized Video Clips
Recommended by Tiktok Activates Default Mode Network and Ventral Tegmental Area”,
NeuroImage, vol. 237, p. 118 136, 2021. doi: 10.1016/j.neuroimage.2021.118136.

[28] D. Rothman, A Tsunami of Learners Called Generation Z, 2016.
[Online]. Available: https://mdle.net/Journal/A_Tsunami_of_Learners_Called_Generation_Z.pdf.

https://doi.org/10.1016/j.infsof.2009.01.004
https://linkinghub.elsevier.com/retrieve/pii/S0950584909000111
https://www.jstor.org/stable/43993619
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/policy-device-software-functions-and-mobile-medical-applications
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/policy-device-software-functions-and-mobile-medical-applications
https://doi.org/10.7250/csimq.2022-32.01
https://doi.org/10.1016/j.infsof.2021.106733
https://www.sciencedirect.com/science/article/pii/S095058492100183X
https://doi.org/10.5220/0010367901530164
https://plato.stanford.edu/archives/fall2020/entries/epistemology/
http://www.ijtrd.com/papers/IJTRD16531.pdf
https://www.scientificamerican.com/article/reading-paper-screens/
https://spir.aoir.org/ojs/index.php/spir/article/download/9073/7164
https://doi.org/10.1016/j.neuroimage.2021.118136
https://mdle.net/Journal/A_Tsunami_of_Learners_Called_Generation_Z.pdf

BIBLIOGRAPHY 147

[29] K. Popper, Conjectures and Refutations: The Growth of Scientific Knowledge.
Routledge; 2nd edition (August 9, 2002), 2014, isbn: 978-0-415-28594-0.

[30] T. Theunissen and U. van Heesch,
“The Disappearance of Technical Specifications in Web and Mobile Applications”,
in Software Architecture, ser. Software Architecture. ECSA 2016. Lecture Notes in Computer Science,
B. Tekinerdogan and U. Zdun, Eds., vol. 9839, Springer International Publishing, 2016, pp. 265–273.
doi: 10.1007/978-3-319-48992-6_20. [Online]. Available:
https://doi.org/10.1007/978-3-319-48992-6_20.

[33] T. Theunissen, S. Overbeek, and S. Hoppenbrouwers,
“Continuous Learning with the Sandwich of Happiness and Result Planning”,
in 26th European Conference on Pattern Languages of Programs, ser. EuroPLoP’21,
New York, NY, USA: Association for Computing Machinery, 2021, isbn: 978-1-4503-8997-6.
doi: 10.1145/3489449.3489974.

[34] U. van Heesch and P. Avgeriou,
“Mature Architecting - a Survey About the Reasoning Process of Professional Architects”,
in Proceedings of the 2011 Ninth Working IEEE/IFIP Conference on Software Architecture,
IEEE Computer Society, 2011, pp. 260–269. doi: 10.1109/WICSA.2011.42.

[35] M. Ciolkowski, O. Laitenberger, S. Vegas, and S. Biffl, “Practical Experiences in the Design and
Conduct of Surveys in Empirical Software Engineering”,
Empirical Methods and Studies in Software Engineering, pp. 104–128, 2003.
doi: 10.1007/978-3-540-45143-3_7.

[36] C. Teddlie and F. Yu, “Mixed Methods Sampling a Typology with Examples”,
Journal of mixed methods research, vol. 1, no. 1, pp. 77–100, 2007. doi: 10.1177/1558689806292430.

[37] S. Sonnenburg, “Creativity in Communication: A Theoretical Framework for Collaborative Product
Creation”, Creativity and Innovation Management, vol. 13, no. 4, pp. 254–262, 2004.
doi: 10.1111/j.0963-1690.2004.00314.x.

[38] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L. Wolf,
“A Characterization Framework for Software Deployment Technologies”,
Colorado State Univ Fort Collins Dept of Computer Science, Technical Report, 1998.
[Online]. Available: https://apps.dtic.mil/sti/citations/ADA452086.

[39] D. J. Teece, “Capturing Value from Knowledge Assets: The New Economy, Markets for Know-How,
and Intangible Assets”, California Management Review, vol. 40, no. 3, pp. 55–79, 1998.
doi: 10.2307/41165943.

[40] J. F. Rayport and J. J. Sviokla, “Exploiting the Virtual Value Chain”,
Harvard Business Review, vol. 73, no. 6, p. 75, 1995.
[Online]. Available: https://hbr.org/1995/11/exploiting-the-virtual-value-chain.

[41] R. A. Howard, “Information Value Theory”,
Systems Science and Cybernetics, IEEE Transactions on, vol. 2, no. 1, pp. 22–26, 1966.
doi: 10.1109/TSSC.1966.300074.

[42] T. Tamai and Y. Torimitsu, “Software Lifetime and Its Evolution Process Over Generations”,
in Software Maintenance, 1992. Proceerdings., Conference On, IEEE, 1992, pp. 63–69.
doi: 10.1109/ICSM.1992.242557. [Online]. Available: https://ieeexplore.ieee.org/document/242557.

[43] M. Armbrust, A. Fox, R. Griffith, et al., “A View of Cloud Computing”,
Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.
doi: 10.1145/1721654.1721672. [Online]. Available: https://dl.acm.org/doi/10.1145/1721654.1721672.

[44] T. Eriksson and J. Ortega, “The Adoption of Job Rotation: Testing the Theories”,
Industrial & Labor Relations Review, vol. 59, no. 4, pp. 653–666, 2006.
[Online]. Available: https://journals.sagepub.com/doi/pdf/10.1177/001979390605900407.

[45] Bureau of Labor Statistics, U.S. Department of Labor. “Employee Tenure in 2012: The Economics
Daily: U.S. Bureau of Labor Statistics”. (2022),
[Online]. Available: https://www.bls.gov/opub/ted/2012/ted_20120920.htm (visited on 09/11/2022).

https://doi.org/10.1007/978-3-319-48992-6_20
https://doi.org/10.1007/978-3-319-48992-6_20
https://doi.org/10.1145/3489449.3489974
https://doi.org/10.1109/WICSA.2011.42
https://doi.org/10.1007/978-3-540-45143-3_7
https://doi.org/10.1177/1558689806292430
https://doi.org/10.1111/j.0963-1690.2004.00314.x
https://apps.dtic.mil/sti/citations/ADA452086
https://doi.org/10.2307/41165943
https://hbr.org/1995/11/exploiting-the-virtual-value-chain
https://doi.org/10.1109/TSSC.1966.300074
https://doi.org/10.1109/ICSM.1992.242557
https://ieeexplore.ieee.org/document/242557
https://doi.org/10.1145/1721654.1721672
https://dl.acm.org/doi/10.1145/1721654.1721672
https://journals.sagepub.com/doi/pdf/10.1177/001979390605900407
https://www.bls.gov/opub/ted/2012/ted_20120920.htm

148 BIBLIOGRAPHY

[46] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, et al., “Preliminary Guidelines for Empirical
Research in Software Engineering”,
IIEEE Trans. Software Eng., vol. 28, no. 8, pp. 721–734, Aug. 2002, issn: 00985589.
doi: 10.1109/TSE.2002.1027796. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1027796.

[47] M. Mason, “Sample Size and Saturation in PhD Studies Using Qualitative Interviews”,
Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, vol. 11, no. 3, Aug. 2010.
doi: 10.17169/fqs-11.3.1428. [Online]. Available:
https://www.qualitative-research.net/index.php/fqs/article/view/1428.

[48] F. Erich, C. Amrit, and M. Daneva, “Report: DevOps Literature Review”,
University of Twente, Tech. Rep, Technical Report, 2014.
[Online]. Available: http://rgdoi.net/10.13140/2.1.5125.1201 (visited on 01/30/2021).

[49] S. Alliance. “What Is Scrum? An Agile Framework for Completing Complex Projects-Scrum
Alliance”, What Is Scrum? (2017), [Online]. Available: https://www.scrumalliance.org/.

[50] B. Kent and A. Andres, Extreme Programming Explained: Embrace Change, Second Edition.
Addison Wesley Professional, 2004, isbn: 0-321-27865-8.
[Online]. Available: http://proquestcombo.safaribooksonline.com/0321278658?tocview=true.

[51] R. Wilsenach. “DevOps Culture”, Saatavissa (viitattu 23.4. 216): (2016),
[Online]. Available: https://martinfowler.com/bliki/DevOpsCulture.html.

[52] M. Walls, Building a DevOps Culture. O’Reilly Media, Inc., 2013, isbn: 978-1-4493-6836-4.
[53] J. Humble and J. Molesky, “Why Enterprises Must Adopt DevOps to Enable Continuous Delivery”,

Cutter IT Journal, vol. 24, no. 8, p. 6, 2011.
[Online]. Available: https://www.scientificamerican.com/article/reading-paper-screens/.

[54] C. Lovelock and E. Gummesson, “Whither Services Marketing? In Search of a New Paradigm and
Fresh Perspectives”, Journal of service research, vol. 7, no. 1, pp. 20–41, 2004.
doi: 10.1177/10946705042661.

[55] D. Cukier, “Devops Patterns to Scale Web Applications Using Cloud Services”,
in Proceedings of the 2013 Companion Publication for Conference on Systems, Programming, &
Applications: Software for Humanity, ACM, 2013, pp. 143–152. doi: 10.1145/2508075.2508432.

[56] F. P. Brooks Jr, The Mythical Man-Month (Anniversary Ed.)
Addison-Wesley Longman Publishing Co., Inc., 1995, isbn: 0-201-83595-9.

[57] D. Dunning, “The Dunning-Kruger Effect. on Being Ignorant of One’s Own Ignorance”,
in Advances in Experimental Social Psychology,
M. P. Zannia, P. Devine, J. M. Olson, and A. Plant, Eds., 1st ed., vol. 44, Elsevier Inc., 2011,
pp. 247–296, isbn: 978-0-12-385522-0.
[Online]. Available: http://dx.doi.org/10.1016/B978-0-12-385522-0.00005-6.

[58] Atlassian. “Visualise Your Roadmap”, Products & News. (2017),
[Online]. Available: https://www.atlassian.com/blog/archives/visualize-your-roadmap.

[59] D. North et al. “Introducing BDD”, Better Software, March. (2006), [Online]. Available:
https://dannorth.net/2006/10/20/article-introducing-behaviour-driven-development/.

[62] U. van Heesch, P. Avgeriou, and R. Hilliard, “Forces on Architecture Decisions - a Viewpoint”,
in Proceedings of the 2012 Joint Working Conference on Software Architecture & 6th European
Conference on Software Architecture : 20-24 August 2012, Helsinki, Finland,
M. A. Babar, T. Männistö, C. E. Cuesta, and J. E. Savolainen, Eds., IEEE, 2012.
doi: 10.1109/WICSA-ECSA.212.18.

[63] G. Fairbanks, Just Enough Software Architecture: A Risk-Driven Approach. 2010,
isbn: 978-0-9846181-0-1.

[64] P. Kruchten, P. Lago, and H. van Vliet,
“Building up and Reasoning About Architectural Knowledge”, in Quality of Software Architectures,
ser. Lecture Notes in Computer Science, C. Hofmeister, I. Crnkovic, and R. Reussner, Eds., vol. 4214,
Springer Publishing Company, 2006, pp. 43–58, isbn: 978-3-540-48820-0.

[65] O. Zimmermann, “Microservices Tenets: Agile Approach to Service Development and Deployment”,
Comput Sci Res Dev, vol. 32, no. 3-4, pp. 301–310, Jul. 2017. doi: 10.1007/s00450-016-0337-0.
[Online]. Available: http://link.springer.com/10.1007/s00450-016-0337-0 (visited on 01/30/2021).

https://doi.org/10.1109/TSE.2002.1027796
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1027796
https://doi.org/10.17169/fqs-11.3.1428
https://www.qualitative-research.net/index.php/fqs/article/view/1428
http://rgdoi.net/10.13140/2.1.5125.1201
https://www.scrumalliance.org/
http://proquestcombo.safaribooksonline.com/0321278658?tocview=true
https://martinfowler.com/bliki/DevOpsCulture.html
https://www.scientificamerican.com/article/reading-paper-screens/
https://doi.org/10.1177/10946705042661
https://doi.org/10.1145/2508075.2508432
http://dx.doi.org/10.1016/B978-0-12-385522-0.00005-6
https://www.atlassian.com/blog/archives/visualize-your-roadmap
https://dannorth.net/2006/10/20/article-introducing-behaviour-driven-development/
https://doi.org/10.1109/WICSA-ECSA.212.18
https://doi.org/10.1007/s00450-016-0337-0
http://link.springer.com/10.1007/s00450-016-0337-0

BIBLIOGRAPHY 149

[66] R. Soley et al., “Model Driven Architecture”, OMG white paper, vol. 308, no. 308, p. 5, 2000.
doi: 10.1007/978-3-540-45242-3_2.

[67] J. D. Herbsleb and D. Moitra, “Global Software Development”,
IEEE software, vol. 18, no. 2, pp. 16–20, 2001. doi: 10.1109/52.914732.

[68] R. C. Martin,
Clean Code-Refactoring, Patterns, Testen Und Techniken Für Sauberen Code: Deutsche Ausgabe.
MITP-Verlags GmbH & Co. KG, 2013, isbn: 978-3-8266-5548-7.

[69] J. Tyree and A. Akerman, “Architecture Decisions: Demystifying Architecture”,
IEEE Softw., vol. 22, no. 2, pp. 19–27, Mar. 2005, issn: 0740-7459. doi: 10.1109/MS.2005.27.
[Online]. Available: http://ieeexplore.ieee.org/document/1407822/ (visited on 01/30/2021).

[70] U. Zdun, R. Capilla, H. Tran, and O. Zimmermann, “Sustainable Architectural Design Decisions”,
IEEE Softw., vol. 30, no. 6, pp. 46–53, Nov. 2013.
doi: 10.1109/MS.2013.97. [Online]. Available: http://dx.doi.org/10.1109/MS.2013.97.

[71] M. Nowak, C. Pautasso, and O. Zimmermann,
“Architectural Decision Modeling with Reuse: Challenges and Opportunities”,
in Proceedings of the 2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge, 2010,
pp. 13–20. doi: 10.1145/1833335.1833338.

[72] R. C. Martin, Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, 2003, isbn: 978-0-13-597444-5.

[73] M. Hüttermann, DevOps for Developers (The Expert’s Voice in Web Development),
M. Hüttermann, Ed. New York: Apress : Distributed to the book trade worldwide by Springer
Science+Business Media New York, 2012, isbn: 978-1-4302-4569-8.

[77] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural Design Decisions”,
in Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture,
IEEE Computer Society, 2005, pp. 109–120, isbn: 0-7695-2548-2. doi: 10.1109/WICSA.2005.61.

[78] A. H. Mohamed, “Capturing Software-Engineering Tacit Knowledge”,
in Proceedings of the 2nd Conference on European Computing Conference (ECC’08:), 2008.
doi: 10.5555/1895260.1895271.

[79] G. Borrego, A. L. Morán, R. R. Palacio, A. Vizcaíno, and F. O. García, “Towards a Reduction in
Architectural Knowledge Vaporization During Agile Global Software Development”,
Information and Software Technology, vol. 112, pp. 68–82, 2019. doi: 10.1016/j.infsof.2019.04.008.

[80] P. Lago and H. Van Vliet, “Explicit Assumptions Enrich Architectural Models”,
in Proceedings. 27th International Conference on Software Engineering, 2005. ICSE 2005., IEEE,
2005, pp. 206–214. doi: 10.1109/ICSE.2005.1553563.

[81] A. Bazaz, J. D. Arthur, and J. G. Tront,
“Modeling Security Vulnerabilities: A Constraints and Assumptions Perspective”,
in 2006 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing,
IEEE, 2006, pp. 95–102. doi: 10.1109/DASC.2006.35.

[82] I. Habli and T. Kelly,
“Capturing and Replaying Architectural Knowledge Through Derivational Analogy”,
in Second Workshop on Sharing and Reusing Architectural Knowledge-Architecture, Rationale, and
Design Intent (SHARK/ADI’07: ICSE Workshops 2007), IEEE, 2007, pp. 4–4.
doi: 10.1109/SHARK-ADI.2007.6.

[83] B. Dagenais, H. Ossher, R. K. Bellamy, M. P. Robillard, and J. P. De Vries,
“Moving into a New Software Project Landscape”,
in Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1,
2010, pp. 275–284. doi: 10.1145/1806799.1806842.

[84] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, and D. O’Brien,
“Scaling Agile Methods to Regulated Environments: An Industry Case Study”,
in 2013 35th International Conference on Software Engineering (ICSE), IEEE, 2013, pp. 863–872.
doi: 10.1109/ICSE.2013.6606635.

[85] C. Ebert and M. Paasivaara, “Scaling Agile”, IEEE Software, vol. 34, no. 6, pp. 98–103, 2017.
doi: 10.1109/MS.2017.4121226.

https://doi.org/10.1007/978-3-540-45242-3_2
https://doi.org/10.1109/52.914732
https://doi.org/10.1109/MS.2005.27
http://ieeexplore.ieee.org/document/1407822/
https://doi.org/10.1109/MS.2013.97
http://dx.doi.org/10.1109/MS.2013.97
https://doi.org/10.1145/1833335.1833338
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.5555/1895260.1895271
https://doi.org/10.1016/j.infsof.2019.04.008
https://doi.org/10.1109/ICSE.2005.1553563
https://doi.org/10.1109/DASC.2006.35
https://doi.org/10.1109/SHARK-ADI.2007.6
https://doi.org/10.1145/1806799.1806842
https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.1109/MS.2017.4121226

150 BIBLIOGRAPHY

[87] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Professional, 2000,
isbn: 978-0-321-60580-1.

[88] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P. America, “A General Model of
Software Architecture Design Derived from Five Industrial Approaches”,
Journal of Systems and Software, vol. 80, no. 1, pp. 106–126, Jan. 2007, issn: 01641212.
doi: 10.1016/j.jss.2006.05.024. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121206001634 (visited on 01/30/2021).

[90] Technical Committee,
“ISO/IEC/IEEE 42010:2011 - Systems and Software Engineering — Architecture Description”,
Joint Technical Committee ISO/IEC JTC 1, Geneva, Switzerland, ISO/IEC/IEEE, 2011.
[Online]. Available: https://www.iso.org/standard/50508.html.

[91] Standards Committee, “IEEE Std 1016-2009 (Revision of IEEE Std 1016-1998), IEEE Standard for
Information Technology—Systems Design—Software Design Descriptions”,
Joint Technical Committee ISO/IEC JTC 1, Geneva, Switzerland, Standard, 2009.
doi: 10.1109/IEEESTD.2009.5167255. [Online]. Available:
https://ieeexplore.ieee.org/iel5/5167253/5167254/05167255.pdf.

[92] A. Tang, P. Liang, and H. Van Vliet, “Software Architecture Documentation: The Road Ahead”,
in 2011 Ninth Working IEEE/IFIP Conference on Software Architecture, IEEE, 2011, pp. 252–255.
[Online]. Available: http://www.cs.rug.nl/search/uploads/Publications/tang2011sad.pdf.

[93] B. A. Kitchenham, D. Budgen, and O. P. Brereton, “Using Mapping Studies as the Basis for Further
Research–a Participant-Observer Case Study”,
Information and Software Technology, vol. 53, no. 6, pp. 638–651, 2011.
doi: 10.1016/j.infsof.2010.12.011.

[94] K. Petersen, S. Vakkalanka, and L. Kuzniarz,
“Guidelines for Conducting Systematic Mapping Studies in Software Engineering: An Update”,
in Information and Software Technology, vol. 64, Aug. 2015, pp. 1–18.
doi: 10.1016/j.infsof.2015.03.007. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0950584915000646.

[95] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question Metric Approach”,
Encyclopedia of software engineering, vol. 2, pp. 528–532, 1994.
doi: 10.1.1.104.8626. [Online]. Available:
http://maisqual.squoring.com/wiki/index.php/The%20Goal%20Question%20Metric%20Approach.

[96] P. Kruchten, The Rational Unified Process: An Introduction. Addison-Wesley, 2004,
isbn: 978-0-321-19770-2.

[98] P. Rodríguez, A. Haghighatkhah, L. E. Lwakatare, et al., “Continuous deployment of software
intensive products and services: A systematic mapping study”,
Journal of Systems and Software, vol. 123, pp. 263–291, Jan. 2017, issn: 01641212.
doi: 10.1016/j.jss.2015.12.015. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121215002812 (visited on 01/30/2021).

[99] P. Diebold and M. Dahlem, “Agile Practices in Practice: A Mapping Study”, in Proceedings of the
18th International Conference on Evaluation and Assessment in Software Engineering - EASE ’14,
London, England, United Kingdom: ACM Press, 2014, pp. 1–10. doi: 10.1145/2601248.2601254.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2601248.2601254 (visited on 01/30/2021).

[100] V. T. Heikkilä, D. Damian, C. Lassenius, and M. Paasivaara,
“A Mapping Study on Requirements Engineering in Agile Software Development”,
in 2015 41st Euromicro Conference on Software Engineering and Advanced Applications,
Madeira, Portugal: IEEE, 2015, pp. 199–207.
doi: 10.1109/SEAA.2015.70. [Online]. Available: http://ieeexplore.ieee.org/document/7302452/.

[101] K. Curcio, T. Navarro, A. Malucelli, and S. Reinehr, “Requirements Engineering: A Systematic
Mapping Study in Agile Software Development”,
Journal of Systems and Software, vol. 139, pp. 32–50, May 2018, issn: 01641212.
doi: 10.1016/j.jss.2018.01.036. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121218300141 (visited on 01/30/2021).

https://doi.org/10.1016/j.jss.2006.05.024
https://linkinghub.elsevier.com/retrieve/pii/S0164121206001634
https://www.iso.org/standard/50508.html
https://doi.org/10.1109/IEEESTD.2009.5167255
https://ieeexplore.ieee.org/iel5/5167253/5167254/05167255.pdf
http://www.cs.rug.nl/search/uploads/Publications/tang2011sad.pdf
https://doi.org/10.1016/j.infsof.2010.12.011
https://doi.org/10.1016/j.infsof.2015.03.007
http://linkinghub.elsevier.com/retrieve/pii/S0950584915000646
https://doi.org/10.1.1.104.8626
http://maisqual.squoring.com/wiki/index.php/The%20Goal%20Question%20Metric%20Approach
https://doi.org/10.1016/j.jss.2015.12.015
https://linkinghub.elsevier.com/retrieve/pii/S0164121215002812
https://doi.org/10.1145/2601248.2601254
http://dl.acm.org/citation.cfm?doid=2601248.2601254
https://doi.org/10.1109/SEAA.2015.70
http://ieeexplore.ieee.org/document/7302452/
https://doi.org/10.1016/j.jss.2018.01.036
https://linkinghub.elsevier.com/retrieve/pii/S0164121218300141

BIBLIOGRAPHY 151

[102] M. Shafiq and U. sman Waheed, “Documentation in Agile Development A Comparative Analysis”,
in 2018 IEEE 21st International Multi-Topic Conference (INMIC), IEEE, Karachi: IEEE, Nov. 2018,
pp. 1–8, isbn: 978-1-5386-7536-6. doi: 10.1109/INMIC.2018.8595625. [Online]. Available:
https://ieeexplore.ieee.org/document/8595625/ (visited on 01/30/2021).

[103] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Studies in Software
Engineering”, 12th International Conference on Evaluation and Assessment in Software Engineering,
vol. 17, p. 10, Jun. 1, 2008, issn: 02181940. doi: 10.14236/ewic/EASE2008.8.

[104] B. Kitchenham, P. Brereton, M. Turner, et al., “The Impact of Limited Search Procedures for
Systematic Literature Reviews — a Participant-Observer Case Study”,
in 2009 3rd International Symposium on Empirical Software Engineering and Measurement,
A. S. I. of Electrical and E. Engineers, Eds., IEEE Computer Society, 2009, pp. 336–345.
doi: 10.1109/ESEM.2009.5314238.

[105] B. A. Kitchenham, P. Brereton, M. Turner, et al., “Refining the Systematic Literature Review
Process—Two Participant-Observer Case Studies”,
Empir Software Eng, vol. 15, no. 6, pp. 618–653, Dec. 2010. doi: 10.1007/s10664-010-9134-8.
[Online]. Available: http://link.springer.com/10.1007/s10664-010-9134-8 (visited on 01/30/2021).

[106] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from Applying the
Systematic Literature Review Process Within the Software Engineering Domain”,
Journal of Systems and Software, vol. 80, no. 4, pp. 571–583, Apr. 2007.
doi: 10.1016/j.jss.2006.07.009. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S016412120600197X (visited on 01/30/2021).

[107] C. Wohlin, “Guidelines for Snowballing in Systematic Literature Studies and a Replication in
Software Engineering”, Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering - EASE ’14, pp. 1–10, 2014. doi: 10.1145/2601248.2601268.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2601248.2601268 (visited on 01/30/2021).

[108] H. Zhang, M. A. Babar, and P. Tell, “Identifying Relevant Studies in Software Engineering”,
Information and Software Technology, vol. 53, no. 6, pp. 625–637, Jun. 2011.
doi: 10.1016/j.infsof.2010.12.010. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0950584910002260 (visited on 01/30/2021).

[109] W. B. Cavnar, J. M. Trenkle, et al., “N-Gram-Based Text Categorization”, in Proceedings of
SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, Citeseer,
vol. 161175, 1994. [Online]. Available: https://www.let.rug.nl/~vannoord/TextCat/textcat.pdf.

[110] T. A. Schwandt, Qualitative Data Analysis: An Expanded Sourcebook.
Thousand Oaks, CA, US: Sage Publications, Inc, 1994, vol. 19, isbn: 0-8039-4653-8.
doi: 10.1016/0149-7189(96)88232-2.

[113] A. Rüping,
Agile Documentation: A Pattern Guide to Producing Lightweight Documents for Software Projects.
Hoboken, NJ: John Wiley & Sons, 2004, vol. 51, isbn: 978-0-470-85617-8.
[Online]. Available: http://www.drdobbs.com/architecture-and-design/agile-documentation-
strategies/197003363%20%7B%%7D5Cn.

[132] M. Lopez-Nores, J. J. Pazos-Arias, J. Garcia-Duque, et al., “Bringing the Agile Philosophy to Formal
Specification Settings”, Int. J. Soft. Eng. Knowl. Eng., vol. 16, no. 6, pp. 951–986, Dec. 2006,
issn: 0218-1940. doi: 10.1142/S0218194006003075. [Online]. Available:
https://www.dropbox.com/home/publications?preview=lpeznores2006.pdf.

[147] M. O. Ahmad, D. Dennehy, K. Conboy, and M. Oivo, “Kanban in Software Engineering: A
Systematic Mapping Study”, Journal of Systems and Software, vol. 137, pp. 96–113, Mar. 2018,
issn: 01641212. doi: 10.1016/j.jss.2017.11.045. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0164121217302820.

[162] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements Engineering Paper Classification
and Evaluation Criteria: A Proposal and a Discussion”,
Requirements Eng, vol. 11, no. 1, pp. 102–107, Mar. 2006. doi: 10.1007/s00766-005-0021-6. [Online].
Available: http://link.springer.com/10.1007/s00766-005-0021-6 (visited on 01/30/2021).

https://doi.org/10.1109/INMIC.2018.8595625
https://ieeexplore.ieee.org/document/8595625/
https://doi.org/10.14236/ewic/EASE2008.8
https://doi.org/10.1109/ESEM.2009.5314238
https://doi.org/10.1007/s10664-010-9134-8
http://link.springer.com/10.1007/s10664-010-9134-8
https://doi.org/10.1016/j.jss.2006.07.009
https://linkinghub.elsevier.com/retrieve/pii/S016412120600197X
https://doi.org/10.1145/2601248.2601268
http://dl.acm.org/citation.cfm?doid=2601248.2601268
https://doi.org/10.1016/j.infsof.2010.12.010
https://linkinghub.elsevier.com/retrieve/pii/S0950584910002260
https://www.let.rug.nl/~vannoord/TextCat/textcat.pdf
https://doi.org/10.1016/0149-7189(96)88232-2
http://www.drdobbs.com/architecture-and-design/agile-documentation-strategies/197003363%20%7B%%7D5Cn
http://www.drdobbs.com/architecture-and-design/agile-documentation-strategies/197003363%20%7B%%7D5Cn
https://doi.org/10.1142/S0218194006003075
https://www.dropbox.com/home/publications?preview=lpeznores2006.pdf
https://doi.org/10.1016/j.jss.2017.11.045
http://linkinghub.elsevier.com/retrieve/pii/S0164121217302820
https://doi.org/10.1007/s00766-005-0021-6
http://link.springer.com/10.1007/s00766-005-0021-6

152 BIBLIOGRAPHY

[169] C. Le Goues and S. Yoo, “Search-Based Software Engineering 6th International Symposium, SSBSE
2014, Fortaleza, Brazil, August 26-29, 2014. Proceedings”, in Conference Proceedings SSBSE,
Springer, 2014, p. 164. doi: 10.1007/978-3-319-09940-8. [Online]. Available:
https://link.springer.com/content/pdf/10.1007/978-3-319-09940-8.pdf.

[170] T. Keuler, S. Wagner, and B. Winkler, “Architecture-Aware Programming in Agile Environments”,
in Proceedings of the 2012 Joint Working Conference on Software Architecture and 6th European
Conference on Software Architecture, WICSA/ECSA 2012, IEEE, Helsinki, Finland: IEEE, 2012,
pp. 229–233, isbn: 978-0-7695-4827-2. doi: 10.1109/WICSA-ECSA.212.35. [Online]. Available:
http://ieeexplore.ieee.org/document/6337725/.

[174] M. Kajko-Mattsson, “Problems in Agile Trenches”, in Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement - ESEM ’08,
ser. ESEM ’08, New York, NY, USA: ACM, 2008, p. 111, isbn: 978-1-59593-971-5. doi:
10.1145/1414004.1414025. [Online]. Available: http://doi.acm.org/10.1145/1414004.1414025%20http:
//portal.acm.org/citation.cfm?doid=1414004.1414025%20https:
//www.dropbox.com/home/publications?preview=kajkomattsson2008.pdf.

[175] M. Cohn, User Stories Applied: For Agile Software Development (Addison-Wesley Signature Series).
Boston: Addison-Wesley, 2004, isbn: 978-0-321-20568-1.

[189] I. D. Coman and G. Succi, “An Exploratory Study of Developers’ Toolbox in an Agile Team”,
in Agile Processes in Software Engineering and Extreme Programming,
P. Abrahamsson, M. Marchesi, and F. Maurer, Eds., vol. 31,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 43–52, isbn: 978-3-642-01852-7.
[Online]. Available: http://link.springer.com/10.1007/978-3-642-01853-4_7 (visited on 01/30/2021).

[201] J. Hakim, T. Spitzer, and J. Armitage, “Sprint: Agile specifications in Shockwave and Flash”,
in Proceedings of the 2003 Conference on Designing for User Experiences - DUX ’03, ser. DUX ’03,
San Francisco, California: ACM Press, 2003, p. 1, isbn: 978-1-58113-728-6.
doi: 10.1145/997078.997111. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=997078.997111 (visited on 01/30/2021).

[203] A. Poth, M. Werner, and X. Lei, “How to Deliver Faster with CI/CD Integrated Testing Services?”,
in European Conference on Software Process Improvement,
X. Larrucea, I. Santamaria, R. V. O’Connor, and R. Messnarz, Eds., Springer,
vol. 896, Cham: Springer International Publishing, 2018, pp. 401–409.
doi: 10.1007/978-3-319-97925-0_33. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-97925-0_33 (visited on 01/30/2021).

[204] S. Mäkinen, M. Leppänen, T. Kilamo, et al., “Improving the Delivery Cycle: A Multiple-Case Study
of the Toolchains in Finnish Software Intensive Enterprises”,
Information and Software Technology, vol. 80, pp. 175–194, Dec. 2016, issn: 09505849.
doi: 10.1016/j.infsof.2016.09.001. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0950584916301434 (visited on 01/30/2021).

[205] ISO, ISO/IEC 25010:2011 Systems and Software Engineering — Systems and Software Quality
Requirements and Evaluation (SQUARE) — System and Software Quality Models.
Geneva: CH: ISO Geneva, 2011, isbn: 978 0 580 70223 5.
[Online]. Available: https://www.iso.org/standard/35733.html.

[206] D. L. Parnas, “Software Aging”,
in Proceedings of the 16th International Conference on Software Engineering,
T. Richard N. and C. Joëlle, Eds., ser. ICSE ’94,
Sorrento, Italy: IEEE Computer Society Press, 1994, pp. 279–287, isbn: 0-8186-5855-X.
doi: 10.5555/257734.257788.

[207] M. Fowler. “Specification By Example”, SpecificationByExample. (2011),
[Online]. Available: https://martinfowler.com/bliki/SpecificationByExample.html.

[208] V. Vernon, Implementing Domain-Driven Design. Addison-Wesley, 2013, isbn: 0-321-83457-7.
[210] S. Brown, Software Architecture for Developers Technical Leadership by Coding, Coaching,

Collaboration, Architecture Sketching and Just Enough up Front Design. Leanpub, 2014, vol. 7.
[Online]. Available: http://leanpub.com/software-architecture-for-developers.

[211] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship. Pearson Education, 2009,
isbn: 978-0-13-235088-4.

https://doi.org/10.1007/978-3-319-09940-8
https://link.springer.com/content/pdf/10.1007/978-3-319-09940-8.pdf
https://doi.org/10.1109/WICSA-ECSA.212.35
http://ieeexplore.ieee.org/document/6337725/
https://doi.org/10.1145/1414004.1414025
http://doi.acm.org/10.1145/1414004.1414025%20http://portal.acm.org/citation.cfm?doid=1414004.1414025%20https://www.dropbox.com/home/publications?preview=kajkomattsson2008.pdf
http://doi.acm.org/10.1145/1414004.1414025%20http://portal.acm.org/citation.cfm?doid=1414004.1414025%20https://www.dropbox.com/home/publications?preview=kajkomattsson2008.pdf
http://doi.acm.org/10.1145/1414004.1414025%20http://portal.acm.org/citation.cfm?doid=1414004.1414025%20https://www.dropbox.com/home/publications?preview=kajkomattsson2008.pdf
http://link.springer.com/10.1007/978-3-642-01853-4_7
https://doi.org/10.1145/997078.997111
http://portal.acm.org/citation.cfm?doid=997078.997111
https://doi.org/10.1007/978-3-319-97925-0_33
http://link.springer.com/10.1007/978-3-319-97925-0_33
https://doi.org/10.1016/j.infsof.2016.09.001
https://linkinghub.elsevier.com/retrieve/pii/S0950584916301434
https://www.iso.org/standard/35733.html
https://doi.org/10.5555/257734.257788
https://martinfowler.com/bliki/SpecificationByExample.html
http://leanpub.com/software-architecture-for-developers

BIBLIOGRAPHY 153

[212] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzigeorgiou, “Identifying, Categorizing
and Mitigating Threats to Validity in Software Engineering Secondary Studies”,
Information and Software Technology, 2018.
doi: 10.1016/j.infsof.2018.10.006. [Online]. Available: https://doi.org/10.1016/j.infsof.2018.10.006.

[213] Y. Beshawred, Open source & SaaS tools | StackShare, Jul. 2020.
[Online]. Available: https://stackshare.io/categories.

[214] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for Including Grey Literature and
Conducting Multivocal Literature Reviews in Software Engineering”,
Information and Software Technology, vol. 106, pp. 101–121, 5 Feb. 2019, issn: 09505849.
doi: 10.1016/j.infsof.2018.09.006.

[215] R. Yin, Case Study Research, Fourth Edition.
Thousand Oaks, CA: Sage Publications, Inc., Dec. 4, 2008, isbn: 978-1-4129-6099-1.

[216] Open Source Community, Bminor/Bash: Unofficial Mirror of Bash Repository. Updated Daily. 2020.
[Online]. Available: https://github.com/bminor/bash.

[217] Anonymous. “Firefox Source Code Directory Structure — Firefox Source Docs Documentation”.
(Jan. 2021),
[Online]. Available: https://firefox-source-docs.mozilla.org/contributing/directory_structure.html.

[218] Open Source Community, Latex2e/Base/Doc at Master ˙ Latex3/Latex2e, 2020.
[Online]. Available: https://github.com/latex3/latex2e/tree/master/base/doc.

[219] M. Fowler, Technology Radar | an Opinionated Guide to Technology Frontiers | Thoughtworks,
Oct. 2020. [Online]. Available: https://www.thoughtworks.com/radar.

[220] Gartner, Hype Cycle Research Methodology, Oct. 2020.
[Online]. Available: https://www.gartner.com/en/research/methodologies/gartner-hype-cycle.

[221] NetApplications. “Search Engine Market Share”. (Oct. 2020),
[Online]. Available: https://netmarketshare.com/search-engine-market-share.aspx?.

[222] B. Kitchenham and S. Charters, “Guidelines for Performing Systematic Literature Reviews in
Software Engineering”, Engineering, vol. 2, p. 1051, 4ve 2007, issn: 00010782.
[Online]. Available: http://cdn.elsevier.com/promis_misc/525444systematicreviewsguide.pdf.

[223] C. S. Peirce, N. Houser, and C. J. W. Kloesel, The Essential Peirce: Selected Philosophical Writings,
in collab. with P. E. Project. Bloomington: Indiana University Press, 1992, isbn: 978-0-253-21190-3.

[224] M. McLuhan and Q. Fiore, “The Medium Is the Message”,
New York Times, vol. 123, pp. 126–128, 1967.
[Online]. Available: https://www.tandfonline.com/doi/full/10.1080/08956308.2016.1209068.

[225] D. Kipperman, “Teaching Through Technology Concepts”,
Strengthening the position of technology education in the curriculum, 2009.
doi: 10.1007/978-3-319-38889-2_15-1.

[226] S. Jansen, A. Finkelstein, and S. Brinkkemper, “A Sense of Community: A Research Agenda for
Software Ecosystems”, 2009 31st International Conference on Software Engineering - Companion
Volume, no. June, pp. 187–190, 2009. doi: 10.1109/ICSE-COMPANION.2009.5070978. [Online].
Available: http://ieeexplore.ieee.org/document/5070978/ (visited on 01/30/2021).

[227] B. Fitzgerald and K.-J. Stol, “Continuous Software Engineering and Beyond: Trends and Challenges”,
in Proceedings of the 1st International Workshop on Rapid Continuous Software Engineering,
M. Tichy, J. Bosch, M. Goedicke, and M. Larsson, Eds., ser. RCoSE 2014,
New York, NY, USA: Association for Computing Machinery, 2014, pp. 1–9, isbn: 978-1-4503-2856-2.
doi: 10.1145/2593812.2593813. [Online]. Available: https://doi.org/10.1145/2593812.2593813.

[228] J. Cohen, “Special issue: Digital libraries”, Communications of the ACM, vol. 39, no. 11, Nov. 1996.
[229] J. 1. Field, Lifelong Learning and the New Educational Order. Stoke-on-Trent: Trentham, 2000,

isbn: 978-1-85856-198-1.
[230] L. Uden and A. Dix, “Lifelong Learning for Software Engineers”, International Journal of Continuing

Engineering Education and Life Long Learning, vol. 14, no. 1-2, pp. 101–110, 2004.
doi: 10.1504/IJCEELL.2004.004578.

[231] P. Kruchten, “Lifelong Learning for Lifelong Employment”,
IEEE Software, vol. 32, no. 4, pp. 85–87, 2015. doi: 10.1109/MS.2015.97.

https://doi.org/10.1016/j.infsof.2018.10.006
https://doi.org/10.1016/j.infsof.2018.10.006
https://stackshare.io/categories
https://doi.org/10.1016/j.infsof.2018.09.006
https://github.com/bminor/bash
https://firefox-source-docs.mozilla.org/contributing/directory_structure.html
https://github.com/latex3/latex2e/tree/master/base/doc
https://www.thoughtworks.com/radar
https://www.gartner.com/en/research/methodologies/gartner-hype-cycle
https://netmarketshare.com/search-engine-market-share.aspx?
http://cdn.elsevier.com/promis_misc/525444systematicreviewsguide.pdf
https://www.tandfonline.com/doi/full/10.1080/08956308.2016.1209068
https://doi.org/10.1007/978-3-319-38889-2_15-1
https://doi.org/10.1109/ICSE-COMPANION.2009.5070978
http://ieeexplore.ieee.org/document/5070978/
https://doi.org/10.1145/2593812.2593813
https://doi.org/10.1145/2593812.2593813
https://doi.org/10.1504/IJCEELL.2004.004578
https://doi.org/10.1109/MS.2015.97

154 BIBLIOGRAPHY

[232] L. K. Baartman and E. De Bruijn, “Integrating Knowledge, Skills and Attitudes: Conceptualising
Learning Processes Towards Vocational Competence”,
Educational Research Review, vol. 6, no. 2, pp. 125–134, 2011, issn: 1747938X. doi:
10.1016/j.edurev.2011.03.001. [Online]. Available: http://dx.doi.org/10.1016/j.edurev.2011.03.001.

[233] D. A. Schön, The Reflective Practitioner. New York, NY, USA: Basic Books, Inc., 1984,
isbn: 978-0-203-96337-1.
doi: 10.4324/9780203963371. [Online]. Available: https://doi.org/10.4324/9780203963371.

[234] J. Kruger and D. Dunning, “Unskilled and Unaware of It: How Difficulties in Recognizing One’s Own
Incompetence Lead to Inflated Self-Assessments.”,
Journal of personality and social psychology, vol. 77, no. 6, p. 1121, 1999.
doi: 10.1037//0022-3514.77.6.1121.

[235] M. Csikszentmihalyi, S. Abuhamdeh, and J. Nakamura, Flow. London, UK: Springer, 2014,
isbn: 0-06-133920-2.

[236] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns, Buildings, Construction.
Berkeley, CA: Oxford university press, 1977, isbn: 0-19-501919-9.

[237] J. O. Coplien. “Canonical Form”. (2021),
[Online]. Available: http://wiki.c2.com/?CanonicalForm (visited on 04/02/2021).

[238] J. Bergin, J. Eckstein, M. Volter, et al., Pedagogical Patterns: Advice for Educators.
Pleasantville, NY: Joseph Bergin Software Tools, 2012, isbn: 1-4791-7182-4.

[239] D. Jones. “Software Effort Estimation Is Mostly Fake Research”, The Shape of Code. (Jan. 17, 2021),
[Online]. Available: http://shape-of-code.coding-guidelines.com/2021/01/17/software-effort-
estimation-is-mostly-fake-research/ (visited on 01/30/2021).

[240] T. Kuhn, The Structure of Scientific Revolutions. Princeton University Press, 1970, vol. 111,
isbn: 978-0-226-45812-0.

[241] I. Douven, “Abduction”, in The Stanford Encyclopedia of Philosophy, E. N. Zalta, Ed., Summer 2021,
Metaphysics Research Lab, Stanford University, 2021. [Online]. Available:
https://plato.stanford.edu/archives/sum2021/entries/abduction/ (visited on 04/25/2022).

[242] G. Stevens, M. Rohde, M. Korn, and V. Wulf,
“Grounded Design: A Research Paradigm in Practice-Based Computing”, in Socio-Informatics,
V. Wulf, V. Pipek, D. Randall, M. Rohde, K. Schmidt, and G. Stevens, Eds.,
Oxford University Press, 2018.

[243] S. T. March and G. F. Smith, “Design and Natural Science Research on Information Technology”,
Decision support systems, vol. 15, no. 4, pp. 251–266, 1995, issn: 0167-9236.
doi: 10.1016/0167-9236(94)00041-2.

[244] H. A. Simon, The Sciences of the Artificial. Cambridge, Massachusetts: MIT Press, 1996,
isbn: 978-0-262-19374-0. [Online]. Available: https://doi.org/10.7551/mitpress/12107.001.0001.

[245] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information Systems Research”,
MIS quarterly, vol. 28, pp. 75–105, 2004.
doi: 10.2307/25148625. [Online]. Available: https://www.jstor.org/stable/25148625.

[246] B. Dunbar. “Technology Readiness Level”, NASA. (Apr. 2021), [Online]. Available:
https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level
(visited on 06/17/2021).

[247] G. Sperling, “The Information Available in Brief Visual Presentations.”,
Psychological monographs: General and applied, vol. 74, no. 11, pp. 1–29, 1960.
doi: 10.1037/h0093759.

[248] S. Ainsworth, “DeFT: A Conceptual Framework for Considering Learning With Multiple
Representations”, Learning and instruction, vol. 16, no. 3, pp. 183–198, 2006.
doi: 10.1016/j.learninstruc.2006.03.001.

[249] M. Drury, K. Conboy, and K. Power, “Obstacles to Decision Making in Agile Software Development
Teams”, Journal of Systems and Software, vol. 85, no. 6, pp. 1239–1254, 2012.
doi: 10.1016/j.jss.2012.01.058.

https://doi.org/10.1016/j.edurev.2011.03.001
http://dx.doi.org/10.1016/j.edurev.2011.03.001
https://doi.org/10.4324/9780203963371
https://doi.org/10.4324/9780203963371
https://doi.org/10.1037//0022-3514.77.6.1121
http://wiki.c2.com/?CanonicalForm
http://shape-of-code.coding-guidelines.com/2021/01/17/software-effort-estimation-is-mostly-fake-research/
http://shape-of-code.coding-guidelines.com/2021/01/17/software-effort-estimation-is-mostly-fake-research/
https://plato.stanford.edu/archives/sum2021/entries/abduction/
https://doi.org/10.1016/0167-9236(94)00041-2
https://doi.org/10.7551/mitpress/12107.001.0001
https://doi.org/10.2307/25148625
https://www.jstor.org/stable/25148625
https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level
https://doi.org/10.1037/h0093759
https://doi.org/10.1016/j.learninstruc.2006.03.001
https://doi.org/10.1016/j.jss.2012.01.058

BIBLIOGRAPHY 155

[250] N. B. Moe, A. Aurum, and T. Dybå, “Challenges of Shared Decision-Making: A Multiple Case Study
of Agile Software Development”,
Information and Software Technology, vol. 54, no. 8, pp. 853–865, 2012, issn: 0950-5849.
doi: 10.1016/j.infsof.2011.11.006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584911002308.

[251] W. B. Rouse, “Agile Information Systems for Agile Decision Making”, in Agile Information Systems,
K. C. DeSouza, Ed., London: Routledge, 2007, pp. 16–30, isbn: 978-0-08-046368-1.

[252] Anonymous. “STEPE—Social, Technical, Economic, Political and Ecological Factor Model”. (1990),
[Online]. Available: https://pages.gseis.ucla.edu/faculty/richardson/STEPE.htm (visited on
08/27/2022).

[253] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen,
“New Directions on Agile Methods: A Comparative Analysis”,
in Proceedings 25th International Conference on Software Engineering 2003,
ser. Proceedings - International Conference on Software Engineering, IEEE,
vol. 2003, Portland: IEEE Institute of Electrical and Electronic Engineers, 2003, pp. 244–254.
doi: 10.1109/ICSE.2003.1201204.

[254] T. Dybå and T. Dingsøyr, “Empirical Studies of Agile Software Development: A Systematic Review”,
Information and Software Technology, vol. 50, no. 9-10, pp. 833–859, Aug. 2008, issn: 09505849.
doi: 10.1016/j.infsof.2008.01.006. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0950584908000256 (visited on 01/30/2021).

[255] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe, “Cost, Benefits and
Quality of Software Development Documentation: A Systematic Mapping”,
Journal of Systems and Software, vol. 99, pp. 175–198, Jan. 2015, issn: 01641212.
doi: 10.1016/j.jss.2014.09.042. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121214002131 (visited on 01/30/2021).

[256] S. Committee, “ISO/IEC/IEEE International Standard - Systems and Software Engineering – Life
Cycle Processes –Requirements Engineering”, ISO/IEC/IEEE 29148:2011(E), pp. 1–94, Dec. 2011.
doi: 10.1109/IEEESTD.2011.6146379.

[257] U. Van Heesch, V.-P. Eloranta, P. Avgeriou, K. Koskimies, and N. Harrison, “Decision-Centric
Architecture Reviews”, IEEE Software, vol. 31, no. 1, pp. 69–76, 2014. doi: 10.1109/MS.2013.22.

[258] E. Ries. “Minimum Viable Product: A Guide”. (Aug. 2009), [Online]. Available:
http://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html (visited on
11/01/2021).

[259] M. A. Cohen, J. Eliasberg, and T.-H. Ho, “New Product Development: The Performance and
Time-to-Market Tradeoff”, Management Science, vol. 42, no. 2, pp. 173–186, 1996, issn: 0025-1909.
doi: 10.1287/mnsc.42.2.173. [Online]. Available:
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.42.2.173.

[260] K. E. W. Morand, “Software Requirements As Executable Code”,
Regis University, Dayton Memorial Library, Thesis, 2012.
[Online]. Available: https://epublications.regis.edu/theses/232/.

[261] A. Silva, T. Araújo, J. Nunes, et al.,
“A Systematic Review on the Use of Definition of Done on Agile Software Development Projects”,
in Proceedings of the 21st International Conference on Evaluation and Assessment in Software
Engineering, 2017, pp. 364–373. doi: 10.1145/3084226.3084262.

[262] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep, and H. Erdogmus, “What Do We Know About
Test-Driven Development?”, IEEE software, vol. 27, no. 6, pp. 16–19, 2010.
doi: 10.1109/MS.2010.152.

[263] M. Ghafari, T. Gross, D. Fucci, and M. Felderer,
“Why Research on Test-Driven Development Is Inconclusive?”, in Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM), 2020,
pp. 1–10. doi: 10.1145/3382494.3410687.

[264] C. Solis and X. Wang, “A Study of the Characteristics of Behaviour Driven Development”,
in 37th EUROMICRO Conference on Software Engineering and Advanced Applications, IEEE, 2011,
pp. 383–387. doi: 10.1109/SEAA.2011.76.

https://doi.org/10.1016/j.infsof.2011.11.006
https://www.sciencedirect.com/science/article/pii/S0950584911002308
https://pages.gseis.ucla.edu/faculty/richardson/STEPE.htm
https://doi.org/10.1109/ICSE.2003.1201204
https://doi.org/10.1016/j.infsof.2008.01.006
https://linkinghub.elsevier.com/retrieve/pii/S0950584908000256
https://doi.org/10.1016/j.jss.2014.09.042
https://linkinghub.elsevier.com/retrieve/pii/S0164121214002131
https://doi.org/10.1109/IEEESTD.2011.6146379
https://doi.org/10.1109/MS.2013.22
http://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html
https://doi.org/10.1287/mnsc.42.2.173
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.42.2.173
https://epublications.regis.edu/theses/232/
https://doi.org/10.1145/3084226.3084262
https://doi.org/10.1109/MS.2010.152
https://doi.org/10.1145/3382494.3410687
https://doi.org/10.1109/SEAA.2011.76

156 BIBLIOGRAPHY

[265] A. Scandaroli, R. Leite, A. H. Kiosia, and S. A. Coelho,
“Behavior-Driven Development as an Approach to Improve Software Quality and Communication
Across Remote Business Stakeholders, Developers and QA: Two Case Studies”,
in Proceedings of the 14th International Conference on Global Software Engineering, ser. ICGSE ’19,
Montreal, Quebec, Canada: IEEE Press, 2019, pp. 105–110. doi: 10.1109/ICGSE.2019.00016.

[266] K. Pugh, Lean-Agile Acceptance Test-Driven Development: Better Software Through Collaboration.
Boston, MA: Pearson Education, 2010, isbn: 978-0-321-71408-4.

[267] S. Park and F. Maurer, “A Literature Review on Story Test Driven Development”,
in Agile Processes in Software Engineering and Extreme Programming,
A. Sillitti, A. Martin, X. Wang, and E. Whitworth, Eds., Springer,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 208–213, isbn: 978-3-642-13054-0.
doi: 10.1007/978-3-642-13054-0_20.

[268] B. Losada, J.-M. López-Gil, and M. Urretavizcaya, “Improving Agile Software Development Methods
by Means of User Objectives: An End User Guided Acceptance Test-Driven Development Proposal”,
in Proceedings of the XX International Conference on Human Computer Interaction,
ser. Interacción ’19, New York, NY, USA: Association for Computing Machinery, 2019,
isbn: 978-1-4503-7176-6. doi: 10.1145/3335595.3335650.

[269] F. Beetz and S. Harrer, “Gitops: The Evolution of Devops?”,
IEEE Software, vol. 39, no. 4, pp. 70–75, 2022. doi: 10.1109/MS.2021.3119106.

[270] F. F.-H. Nah, S. Faja, and T. Cata, “Characteristics of ERP Software Maintenance: A Multiple Case
Study”, Journal of software maintenance and evolution: research and practice, vol. 13, no. 6,
pp. 399–414, 2001. doi: 10.1002/smr.239.

[271] C. Ghezzi, “Of Software and Change”,
Journal of Software: Evolution and Process, vol. 29, no. 9, e1888, 2017. doi: 10.1002/smr.1888.

[272] R. Cross and L. Sproull, “More Than an Answer: Information Relationships for Actionable
Knowledge”, Organization science, vol. 15, no. 4, pp. 446–462, 2004. doi: 10.1287/orsc.1040.0075.

[273] J. Lighthill, “Artificial Intelligence: A General Survey. Science Research Council”,
Science Research Council (SRC), Government Report, 1973. [Online]. Available:
http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p001.htm (visited on
12/02/2021).

[274] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Global Edition, 4th ed.
London, England: Pearson Education, 2021, isbn: 978-1-292-40117-1.

[275] D. H. Hubel and T. N. Wiesel, “Receptive Fields, Binocular Interaction and Functional Architecture
in the Cat’s Visual Cortex”, The Journal of Physiology, vol. 160, no. 1, pp. 106–154, 1962. doi:
10.1113/jphysiol.1962.sp006837. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/14449617/.

[276] J. L. McClelland, D. E. Rumelhart, P. R. Group, et al.,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations.
MIT press Cambridge, MA, 1986, vol. 1, isbn: 978-0-262-29140-8.
[Online]. Available: https://doi.org/10.7551/mitpress/5236.001.0001.

[277] F. V. Veen. “The Neural Network Zoo”, The Asimov Institute. (Sep. 2016),
[Online]. Available: https://www.asimovinstitute.org/neural-network-zoo/ (visited on 08/27/2022).

[278] Anonymous. “Conventional Commits”, Conventional Commits. (2022),
[Online]. Available: https://www.conventionalcommits.org/en/v1.0.0/ (visited on 08/27/2022).

[279] L. DalleMule and T. H. Davenport, “What’s Your Data Strategy”,
Harvard Business Review, vol. 95, no. 3, pp. 112–121, 2017.
[Online]. Available: https://hbr.org/webinar/2017/04/whats-your-data-strategy.

[280] J. Yang, S. C. Han, and J. Poon, “A Survey on Extraction of Causal Relations From Natural
Language Text”, Knowledge and Information Systems, vol. 64, no. 5, pp. 1161–1186, 2022,
issn: 01641212. doi: 10.1007/s10115-022-01665-w.

[281] T. O. Motta, R. R. Gomes e Souza, and C. Sant’Anna,
“Characterizing Architectural Information in Commit Messages: An Exploratory Study”,
in Proceedings of the XXXII Brazilian Symposium on Software Engineering - SBES ’18,
U. Kulesza, R. Prikladnicki, M. A. Gerosa, C. Werner, and R. Andrade, Eds.,
Sao Carlos, Brazil: ACM Press, 2018, pp. 12–21. doi: 10.1145/3266237.3266260.

https://doi.org/10.1109/ICGSE.2019.00016
https://doi.org/10.1007/978-3-642-13054-0_20
https://doi.org/10.1145/3335595.3335650
https://doi.org/10.1109/MS.2021.3119106
https://doi.org/10.1002/smr.239
https://doi.org/10.1002/smr.1888
https://doi.org/10.1287/orsc.1040.0075
http://www.chilton-computing.org.uk/inf/literature/reports/lighthill_report/p001.htm
https://doi.org/10.1113/jphysiol.1962.sp006837
https://pubmed.ncbi.nlm.nih.gov/14449617/
https://doi.org/10.7551/mitpress/5236.001.0001
https://www.asimovinstitute.org/neural-network-zoo/
https://www.conventionalcommits.org/en/v1.0.0/
https://hbr.org/webinar/2017/04/whats-your-data-strategy
https://doi.org/10.1007/s10115-022-01665-w
https://doi.org/10.1145/3266237.3266260

BIBLIOGRAPHY 157

[282] M. F. Porter, “An Algorithm for Suffix Stripping”,
Program: electronic library and information systems, vol. 14, no. 3, pp. 130–137, 1980,
issn: 0033-0337. doi: 10.1108/eb046814.

[283] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016,
isbn: 978-0-262-03561-3. [Online]. Available: http://www.deeplearningbook.org.

[284] S. Bozinovski, “Reminder of the First Paper on Transfer Learning in Neural Networks, 1976”,
Informatica, vol. 44, no. 3, 2020. doi: 10.31449/inf.v44i3.2828.

[285] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, 2018.
doi: 10.48550/arXiv.1810.04805.

[286] R. K. Yin, Qualitative Research from Start to Finish, Second edition.
New York London: The Guilford Press, 2016, isbn: 978-1-4625-1797-8.

[287] A. S. Lee and G. S. Hubona, “A Scientific Basis for Rigor in Information Systems Research”,
MIS quarterly, pp. 237–262, 2009. doi: 10.2307/20650291.

[288] R. A. Gonzalez and H. G. Sol, “Validation and Design Science Research in Information Systems”,
in Research Methodologies, Innovations and Philosophies in Software Systems Engineering and
Information Systems, M. Mora, Ed., IGI Global, 2012, pp. 403–426, isbn: 978-1-4666-0179-6.

[289] C. Marshall and G. B. Rossman, Designing Qualitative Research.
London: SAGE Publications, Inc., Jan. 7, 2015, isbn: 978-1-4522-7100-2.

[290] Standards Committee, IEEE Recommended Practice for Software Requirements Specifications. 1998,
vol. 1998, p. 37, isbn: 0-7381-0332-2. [Online]. Available:
http://www.math.uaa.alaska.edu/%7B%%7D7B%7B~%7D%7B%%7D7Dafkjm/cs401/IEEE830.pdf.

[291] Bureau of Labor Statistics, U.S. Department of Labor. “Average Number of Years That Employees
Stayed In The Top 10 Biggest Companies in Tech”, MobileMonkey. (2022), [Online]. Available:
https://mobilemonkey.com/articles/employee-tenure-in-tech-companies/ (visited on 09/11/2022).

[292] Anonymous. “HackerLife”, hackerlife. (2017),
[Online]. Available: https://hackerlife.co (visited on 09/11/2022).

[293] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, and T. Tiropanis, “Open Source Research Software”,
Computer, vol. 53, no. 8, pp. 84–88, Jul. 2020. doi: 10.1109/MC.2020.2998235.

[294] K. R. Larsen, R. Lukyanenko, R. M. Mueller, et al., “Validity in Design Science Research”,
in International Conference on Design Science Research in Information Systems and Technology,
S. Hoffman, O. Müller, and M. Rossi, Eds., ser. Lecture Notes in Computer Science, Springer,
vol. 12388, Springer, 2020, pp. 272–282, isbn: 978-3-030-64823-7.
doi: 10.1007/978-3-030-64823-7_25.

[295] A. Jansen, J. Bosch, and P. Avgeriou, “Documenting After the Fact: Recovering Architectural Design
Decisions”, The Journal of Systems & Software, vol. 81, no. 4, pp. 536–557, 2008.
doi: 10.1016/j.jss.2007.08.025. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S016412120700194X.

[296] A. Shahbazian, Y. Kyu Lee, D. Le, Y. Brun, and N. Medvidovic,
“Recovering Architectural Design Decisions”,
in 2018 IEEE International Conference on Software Architecture (ICSA),
Seattle, WA: IEEE, Apr. 2018, pp. 95–9509, isbn: 978-1-5386-6398-1. doi: 10.1109/ICSA.2018.00019.
[Online]. Available: https://ieeexplore.ieee.org/document/8417122/ (visited on 11/26/2022).

[297] H. Touvron, T. Lavril, G. Izacard, et al. “LLaMA: Open and Efficient Foundation Language Models”.
(Feb. 27, 2023), [Online]. Available: http://arxiv.org/abs/2302.13971 (visited on 05/15/2023),
preprint.

https://doi.org/10.1108/eb046814
http://www.deeplearningbook.org
https://doi.org/10.31449/inf.v44i3.2828
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.2307/20650291
http://www.math.uaa.alaska.edu/%7B%%7D7B%7B~%7D%7B%%7D7Dafkjm/cs401/IEEE830.pdf
https://mobilemonkey.com/articles/employee-tenure-in-tech-companies/
https://hackerlife.co
https://doi.org/10.1109/MC.2020.2998235
https://doi.org/10.1007/978-3-030-64823-7_25
https://doi.org/10.1016/j.jss.2007.08.025
http://linkinghub.elsevier.com/retrieve/pii/S016412120700194X
https://doi.org/10.1109/ICSA.2018.00019
https://ieeexplore.ieee.org/document/8417122/
http://arxiv.org/abs/2302.13971

158 BIBLIOGRAPHY

List of References in Mapping Study
[S31] T. Theunissen and U. Van Heesch, “Specification in Continuous Software Development”,

in Proceedings of the 22ND European Conference on Pattern Languages of Programs,
A. for Computing Machinery, Ed., ser. EuroPLoP ’17, ACM,
New York, NY, USA: Association for Computing Machinery, 2017, pp. 1–19,
isbn: 978-1-4503-4848-5. doi: 10.1145/3147704.3147709.

[S32] U. Van Heesch, T. Theunissen, O. Zimmermann, and U. Zdun, “Software Specification and
Documentation in Continuous Software Development: A Focus Group Report”,
in Proceedings of the 22Nd European Conference on Pattern Languages of Programs,
(Irsee, Germany), C. Preschern and C. Kreiner, Eds., ser. EuroPLoP ’17,
New York, NY, USA: ACM, 2017, 35:1–35:13, isbn: 978-1-4503-4848-5.
doi: 10.1145/3147704.3147742. [Online]. Available: http://doi.acm.org/10.1145/3147704.3147742.

[S60] B. K. Beck and P. Date, Test-Driven Development by Example. 2002, isbn: 0-321-14653-0.

[S61] U. van Heesch, P. Avgeriou, and R. Hilliard, “A Documentation Framework for Architecture
Decisions”, Journal of Systems and Software, vol. 85, no. 4, pp. 795–820, Apr. 2012, issn: 01641212.
doi: 10.1016/j.jss.2011.10.017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121211002755 (visited on 01/30/2021).

[S74] G. Borrego, A. L. Morán, R. R. Palacio Cinco, O. M. Rodríguez-Elias, and E. García-Canseco,
“Review of Approaches to Manage Architectural Knowledge in Agile Global Software Development”,
IET Software, vol. 11, no. 3, pp. 77–88, Jun. 2017. doi: 10.1049/iet-sen.2016.0197. [Online].
Available: https://onlinelibrary.wiley.com/doi/10.1049/iet-sen.2016.0197 (visited on 01/30/2021).

[S75] J. Nawrocki, M. Jasinski, B. Walter, and A. Wojciechowski,
“Extreme Programming Modified: Embrace Requirements Engineering Practices”,
in Proceedings IEEE Joint International Conference on Requirements Engineering,
Essen, Germany: IEEE Comput. Soc, 2002, pp. 303–310, isbn: 978-0-7695-1465-9.
doi: 10.1109/ICRE.2002.1048543. [Online]. Available: http://ieeexplore.ieee.org/document/1048543/
(visited on 01/30/2021).

[S76] C. J. Stettina and E. Kroon, “Is There an Agile Handover? An Empirical Study of Documentation
and Project Handover Practices Across Agile Software Teams”,
in 2013 International Conference on Engineering, Technology and Innovation, ICE 2013 and IEEE
International Technology Management Conference, ITMC 2013,
The Hague, Netherlands: IEEE, 2015, pp. 1–12, isbn: 978-1-4673-7383-8.
doi: 10.1109/ITMC.2013.7352703. [Online]. Available:
https://www.dropbox.com/home/publications?preview=stettina2013.pdf.

[S86] B. Fitzgerald and K.-J. Stol, “Continuous Software Engineering: A Roadmap and Agenda”,
Journal of Systems and Software, vol. 123, pp. 176–189, Jan. 2017, issn: 01641212.
doi: 10.1016/j.jss.2015.06.063. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121215001430 (visited on 01/30/2021).

[S89] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, and P. Avgeriou,
“Industrial Implementation of a Documentation Framework for Architectural Decisions”,
in 2014 IEEE/IFIP Conference on Software Architecture, IEEE, Sydney, Australia: IEEE, Apr. 2014,
pp. 225–234, isbn: 978-1-4799-3412-6. doi: 10.1109/WICSA.2014.32. [Online]. Available:
http://ieeexplore.ieee.org/document/6827122/ (visited on 01/30/2021).

[S97] M. Kersten, “A Cambrian Explosion of DevOps Tools”,
IEEE Softw., vol. 35, no. 2, pp. 14–17, Mar. 2018, issn: 0740-7459. doi: 10.1109/MS.2018.1661330.
[Online]. Available: http://ieeexplore.ieee.org/document/8314153/ (visited on 01/30/2021).

[S111] S. Voigt, J. von Garrel, J. Müller, and D. Wirth,
“A Study of Documentation in Agile Software Projects”, in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
Ciudad Real Spain: ACM, Sep. 8, 2016, pp. 1–6, isbn: 978-1-4503-4427-2.
doi: 10.1145/2961111.2962616. [Online]. Available: https://dl.acm.org/doi/10.1145/2961111.2962616
(visited on 01/30/2021).

https://doi.org/10.1145/3147704.3147709
https://doi.org/10.1145/3147704.3147742
http://doi.acm.org/10.1145/3147704.3147742
https://doi.org/10.1016/j.jss.2011.10.017
https://linkinghub.elsevier.com/retrieve/pii/S0164121211002755
https://doi.org/10.1049/iet-sen.2016.0197
https://onlinelibrary.wiley.com/doi/10.1049/iet-sen.2016.0197
https://doi.org/10.1109/ICRE.2002.1048543
http://ieeexplore.ieee.org/document/1048543/
https://doi.org/10.1109/ITMC.2013.7352703
https://www.dropbox.com/home/publications?preview=stettina2013.pdf
https://doi.org/10.1016/j.jss.2015.06.063
https://linkinghub.elsevier.com/retrieve/pii/S0164121215001430
https://doi.org/10.1109/WICSA.2014.32
http://ieeexplore.ieee.org/document/6827122/
https://doi.org/10.1109/MS.2018.1661330
http://ieeexplore.ieee.org/document/8314153/
https://doi.org/10.1145/2961111.2962616
https://dl.acm.org/doi/10.1145/2961111.2962616

BIBLIOGRAPHY 159

[S112] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira,
“A Study of the Documentation Essential to Software Maintenance”,
in Proceedings of the 23rd Annual International Conference on Design of Communication
Documenting & Designing for Pervasive Information - SIGDOC ’05,
Coventry, United Kingdom: ACM Press, 2005, p. 68, isbn: 978-1-59593-175-7.
doi: 10.1145/1085313.1085331. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1085313.1085331 (visited on 01/30/2021).

[S114] S. Voigt, D. Huttemann, and A. Gohr, “SprintDoc: Concept for an Agile Documentation Tool”,
in 2016 11th Iberian Conference on Information Systems and Technologies (CISTI),
Gran Canaria, Spain: IEEE, Jun. 2016, pp. 1–6, isbn: 978-989-98434-6-2.
doi: 10.1109/CISTI.2016.7521550. [Online]. Available: http://ieeexplore.ieee.org/document/7521550/
(visited on 01/30/2021).

[S115] E. Rubin and H. Rubin, “Supporting Agile Software Development Through Active Documentation”,
Requirements Eng, vol. 16, no. 2, pp. 117–132, Jun. 2011. doi: 10.1007/s00766-010-0113-9. [Online].
Available: http://link.springer.com/10.1007/s00766-010-0113-9 (visited on 01/30/2021).

[S116] S. Gerdes, S. Jasser, M. Riebisch, S. Schröder, M. Soliman, and T. Stehle,
“Towards the Essentials of Architecture Documentation for Avoiding Architecture Erosion”,
in Proccedings of the 10th European Conference on Software Architecture Workshops - ECSAW ’16,
ser. ECSAW ’16, New York, NY, USA: ACM, 2016, pp. 1–4, isbn: 978-1-4503-4781-5. doi:
10.1145/2993412.3004844. [Online]. Available: http://doi.acm.org/10.1145/2993412.3004844%20https:
//www.dropbox.com/home/publications?preview=gerdes2016.pdf%20http:
//dl.acm.org/citation.cfm?doid=2993412.3004844.

[S117] T. Sauer, “Using Design Rationales for Agile Documentation”,
in WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2003., Linz, Austria: IEEE Comput. Soc, 2003,
pp. 326–331, isbn: 978-0-7695-1963-0. doi: 10.1109/ENABL.2003.1231431. [Online]. Available:
http://ieeexplore.ieee.org/document/1231431/ (visited on 01/30/2021).

[S118] R. Ankori, “Automatic Requirements Elicitation in Agile Processes”, in Proceedings - IEEE
International Conference on Software - Science, Technology and Engineering 2005, SwSTE ’05,
vol. 2005, 2005, pp. 101–109, isbn: 0-7695-2335-8. doi: 10.1109/SWSTE.2005.8. [Online]. Available:
https://www.dropbox.com/home/publications?preview=10.1109%7B%%7D40SWSTE.2005.8.pdf.

[S119] A. Bollin and D. Rauner-Reithmayer,
“Formal Specification Comprehension: The Art of Reading and Writing Z”, in Proceedings of the 2nd
FME Workshop on Formal Methods in Software Engineering - FormaliSE 2014,
Hyderabad, India: ACM Press, 2014, pp. 3–9, isbn: 978-1-4503-2853-1.
doi: 10.1145/2593489.2593491. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2593489.2593491 (visited on 01/30/2021).

[S120] G. Borrego,
“Condensing Architectural Knowledge from Unstructured Textual Media in Agile GSD Teams”,
in 2016 IEEE 11th International Conference on Global Software Engineering Workshops (ICGSEW),
Orange County, CA, USA: IEEE, Aug. 2016, pp. 69–72, isbn: 978-1-5090-3625-7.
doi: 10.1109/ICGSEW.2016.16. [Online]. Available: http://ieeexplore.ieee.org/document/7579489/
(visited on 01/30/2021).

[S121] G. Borrego, A. L. Moran, and R. Palacio, “Preliminary Evaluation of a Tag-Based Knowledge
Condensation Tool in Agile and Distributed Teams”,
in 2017 IEEE 12th International Conference on Global Software Engineering (ICGSE),
Buenos Aires, Argentina: IEEE, May 2017, pp. 51–55, isbn: 978-1-5386-1587-4.
doi: 10.1109/ICGSE.2017.14. [Online]. Available: http://ieeexplore.ieee.org/document/7976687/
(visited on 01/30/2021).

[S122] L. Briand, “Software Documentation: How Much Is Enough?”,
in Seventh European Conference onSoftware Maintenance and Reengineering, 2003. Proceedings.,
Benevento, Italy: IEEE Comput. Soc, 2003, pp. 13–15, isbn: 978-0-7695-1902-9.
doi: 10.1109/CSMR.2003.1192406. [Online]. Available: http://ieeexplore.ieee.org/document/1192406/
(visited on 01/30/2021).

https://doi.org/10.1145/1085313.1085331
http://portal.acm.org/citation.cfm?doid=1085313.1085331
https://doi.org/10.1109/CISTI.2016.7521550
http://ieeexplore.ieee.org/document/7521550/
https://doi.org/10.1007/s00766-010-0113-9
http://link.springer.com/10.1007/s00766-010-0113-9
https://doi.org/10.1145/2993412.3004844
http://doi.acm.org/10.1145/2993412.3004844%20https://www.dropbox.com/home/publications?preview=gerdes2016.pdf%20http://dl.acm.org/citation.cfm?doid=2993412.3004844
http://doi.acm.org/10.1145/2993412.3004844%20https://www.dropbox.com/home/publications?preview=gerdes2016.pdf%20http://dl.acm.org/citation.cfm?doid=2993412.3004844
http://doi.acm.org/10.1145/2993412.3004844%20https://www.dropbox.com/home/publications?preview=gerdes2016.pdf%20http://dl.acm.org/citation.cfm?doid=2993412.3004844
https://doi.org/10.1109/ENABL.2003.1231431
http://ieeexplore.ieee.org/document/1231431/
https://doi.org/10.1109/SWSTE.2005.8
https://www.dropbox.com/home/publications?preview=10.1109%7B%%7D40SWSTE.2005.8.pdf
https://doi.org/10.1145/2593489.2593491
http://dl.acm.org/citation.cfm?doid=2593489.2593491
https://doi.org/10.1109/ICGSEW.2016.16
http://ieeexplore.ieee.org/document/7579489/
https://doi.org/10.1109/ICGSE.2017.14
http://ieeexplore.ieee.org/document/7976687/
https://doi.org/10.1109/CSMR.2003.1192406
http://ieeexplore.ieee.org/document/1192406/

160 BIBLIOGRAPHY

[S123] J. Choudhury and B. Thushara, “Software Documentation in a Globally Distributed Environment”,
in 2014 IEEE 9th International Conference on Global Software Engineering,
Shanghai, China: IEEE, Aug. 2014, pp. 90–94, isbn: 978-1-4799-4360-9.
doi: 10.1109/ICGSE.2014.23. [Online]. Available: http://ieeexplore.ieee.org/document/6915258/
(visited on 01/30/2021).

[S124] H. B. Christensen and K. M. Hansen, “Towards Architectural Information in Implementation”,
in Proceeding of the 33rd International Conference on Software Engineering - ICSE ’11, 2011, p. 928,
isbn: 978-1-4503-0445-0. doi: 10.1145/1985793.1985948.

[S125] E. Di Nitto, P. Jamshidi, M. Guerriero, I. Spais, and D. A. Tamburri,
“A Software Architecture Framework for Quality-Aware Devops”,
in Proceedings of the 2nd International Workshop on Quality-Aware DevOps,
Saarbrücken Germany: ACM, Jul. 21, 2016, pp. 12–17, isbn: 978-1-4503-4411-1.
doi: 10.1145/2945408.2945411. [Online]. Available: https://dl.acm.org/doi/10.1145/2945408.2945411
(visited on 01/30/2021).

[S126] Prashant Gandhi, N. Haugen, M. Hill, and R. Watt,
“Creating a Living Specification Using FIT Documents”, in Agile Development Conference (ADC’05),
Denver, CO, USA: IEEE Comput. Soc, 2005, pp. 253–258, isbn: 978-0-7695-2487-0.
doi: 10.1109/ADC.2005.19. [Online]. Available: http://ieeexplore.ieee.org/document/1609829/
(visited on 01/30/2021).

[S127] I. Hadar, S. Sherman, E. Hadar, and J. J. Harrison,
“Less Is More: Architecture Documentation for Agile Development”, in 2013 6th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE),
San Francisco, CA, USA: IEEE, May 2013, pp. 121–124, isbn: 978-1-4673-6290-0.
doi: 10.1109/CHASE.2013.6614746. [Online]. Available:
http://ieeexplore.ieee.org/document/6614746/ (visited on 01/30/2021).

[S128] A. Hess, P. DIebold, and N. Seyff,
“Towards Requirements Communication and Documentation Guidelines for Agile Teams”,
in Proceedings - 2017 IEEE 25th International Requirements Engineering Conference Workshops,
REW 2017, Lisbon, Portugal: IEEE, 2017, pp. 415–418, isbn: 978-1-5386-3488-2.
doi: 10.1109/REW.2017.64. [Online]. Available:
https://www.dropbox.com/home/publications?preview=hess2017.pdf.

[S129] A. Jarzębowicz and K. Połocka,
“Selecting Requirements Documentation Techniques for Software Projects: A Survey Study”,
in 2017 Federated Conference on Computer Science and Information Systems (FedCSIS),
Sep. 24, 2017, pp. 1189–1198, isbn: 978-83-946253-7-5. doi: 10.15439/2017F387. [Online]. Available:
https://fedcsis.org/proceedings/2017/drp/387.html (visited on 01/30/2021).

[S130] R. K. Kavitha and M. S. Irfan Ahmed,
“A Knowledge Management Framework for Agile Software Development Teams”,
in 2011 International Conference on Process Automation, Control and Computing,
Coimbatore, Tamilnadu, India: IEEE, Jul. 2011, pp. 1–5, isbn: 978-1-61284-765-8.
doi: 10.1109/PACC.2011.5978877. [Online]. Available: http://ieeexplore.ieee.org/document/5978877/
(visited on 01/30/2021).

[S131] A. I. M. Leite, “An Approach to Support the Specification of Agile Artifacts in the Development of
Safety-Critical Systems”,
in Proceedings - 2017 IEEE 25th International Requirements Engineering Conference, RE 2017,
Lisbon, Portugal: IEEE, 2017, pp. 526–531, isbn: 978-1-5386-3191-1. doi: 10.1109/RE.2017.43.
[Online]. Available: https://www.dropbox.com/home/publications?preview=leite2017.pdf.

[S133] J. Medeiros, A. Vasconcelos, M. Goulão, C. Silva, and J. Araújo,
“An Approach Based on Design Practices to Specify Requirements in Agile Projects”,
in Proceedings of the Symposium on Applied Computing - SAC ’17, ser. SAC ’17,
New York, NY, USA: ACM, 2017, pp. 1114–1121, isbn: 978-1-4503-4486-9. doi:
10.1145/3019612.3019753. [Online]. Available: http://doi.acm.org/10.1145/3019612.3019753%20https:
//www.dropbox.com/home/publications?preview=p1114-medeiros.pdf%20http:
//dl.acm.org/citation.cfm?doid=3019612.3019753.

https://doi.org/10.1109/ICGSE.2014.23
http://ieeexplore.ieee.org/document/6915258/
https://doi.org/10.1145/1985793.1985948
https://doi.org/10.1145/2945408.2945411
https://dl.acm.org/doi/10.1145/2945408.2945411
https://doi.org/10.1109/ADC.2005.19
http://ieeexplore.ieee.org/document/1609829/
https://doi.org/10.1109/CHASE.2013.6614746
http://ieeexplore.ieee.org/document/6614746/
https://doi.org/10.1109/REW.2017.64
https://www.dropbox.com/home/publications?preview=hess2017.pdf
https://doi.org/10.15439/2017F387
https://fedcsis.org/proceedings/2017/drp/387.html
https://doi.org/10.1109/PACC.2011.5978877
http://ieeexplore.ieee.org/document/5978877/
https://doi.org/10.1109/RE.2017.43
https://www.dropbox.com/home/publications?preview=leite2017.pdf
https://doi.org/10.1145/3019612.3019753
http://doi.acm.org/10.1145/3019612.3019753%20https://www.dropbox.com/home/publications?preview=p1114-medeiros.pdf%20http://dl.acm.org/citation.cfm?doid=3019612.3019753
http://doi.acm.org/10.1145/3019612.3019753%20https://www.dropbox.com/home/publications?preview=p1114-medeiros.pdf%20http://dl.acm.org/citation.cfm?doid=3019612.3019753
http://doi.acm.org/10.1145/3019612.3019753%20https://www.dropbox.com/home/publications?preview=p1114-medeiros.pdf%20http://dl.acm.org/citation.cfm?doid=3019612.3019753

BIBLIOGRAPHY 161

[S134] S. Pinna, P. Lorrai, M. Marchesi, and N. Serra, “Developing a Tool Supporting XP Process”,
in Extreme Programming and Agile Methods - XP/Agile Universe 2003,
F. Maurer and D. Wells, Eds., ser. LECTURE NOTES IN COMPUTER SCIENCE,
vol. 2753, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 151–160.
doi: 10.1007/978-3-540-45122-8_17. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-45122-8_17 (visited on 01/30/2021).

[S135] C. R. Prause and Z. Durdik,
“Architectural Design and Documentation: Waste in Agile Development?”,
in 2012 International Conference on Software and System Process, ICSSP 2012 - Proceedings,
ser. ICSSP ’12, Piscataway, NJ, USA: IEEE Press, Jun. 2012, pp. 130–134, isbn: 978-1-4673-2352-9.
doi: 10.1109/ICSSP.2012.6225956. [Online]. Available:
https://www.dropbox.com/home/publications?preview=prause2012.pdf%20http:
//dl.acm.org/citation.cfm?id=2664360.2664380%20https://www.dropbox.com/home/publications?
preview=10.0000%7B%%7D40dl.acm.org%7B%%7D402664360.2664380.pdf%20http:
//dx.doi.org/10.1109/ICSSP.2012.6225956.

[S136] S. Saito, Y. Iimura, A. K. Massey, and A. I. Anton,
“How Much Undocumented Knowledge Is There in Agile Software Development?: Case Study on
Industrial Project Using Issue Tracking System and Version Control System”,
in Proceedings - 2017 IEEE 25th International Requirements Engineering Conference, RE 2017,
Lisbon, Portugal: IEEE, 2017, pp. 194–203, isbn: 978-1-5386-3191-1. doi: 10.1109/RE.2017.33.
[Online]. Available: https://www.dropbox.com/home/publications?preview=saito2017.pdf.

[S137] H. F. Soares, N. S. R. Alves, T. S. Mendes, M. Mendonca, and R. O. Spinola,
“Investigating the Link Between User Stories and Documentation Debt on Software Projects”,
in Proceedings - 12th International Conference on Information Technology: New Generations, ITNG
2015, Las Vegas, NV, USA: IEEE, 2015, pp. 385–390, isbn: 978-1-4799-8827-3.
doi: 10.1109/ITNG.2015.68. [Online]. Available:
https://www.dropbox.com/home/publications?preview=soares2015.pdf.

[S138] C. J. Stettina and W. Heijstek, “Necessary and Neglected? An Empirical Study of
Internaldocumentation in Agile Software Development Teams”, in Proceedings of the 29th ACM
International Conference on Design of Communication - SIGDOC ’11, ser. SIGDOC ’11,
New York, NY, USA: ACM, 2011, p. 159, isbn: 978-1-4503-0936-3. doi: 10.1145/2038476.2038509.
[Online]. Available: http://doi.acm.org/10.1145/2038476.2038509%20http:
//dl.acm.org/citation.cfm?doid=2038476.2038509%20https:
//www.dropbox.com/home/publications?preview=stettina2011.pdf.

[S139] C. J. Stettina, W. Heijstek, and T. E. Fægri, “Documentation Work in Agile Teams: The Role of
Documentation Formalism in Achieving a Sustainable Practice”,
in Proceedings - 2012 Agile Conference, Agile 2012, Dallas, TX, USA: IEEE, 2012, pp. 31–40,
isbn: 978-0-7695-4804-3. doi: 10.1109/Agile.2012.7. [Online]. Available:
https://www.dropbox.com/home/publications?preview=stettina2012.pdf.

[S140] T. Waits and J. Yankel, “Continuous System and User Documentation Integration”,
in 2014 IEEE International Professional Communication Conference (IPCC),
Pittsburgh, PA, USA: IEEE, Oct. 2014, pp. 1–5, isbn: 978-1-4799-3749-3.
doi: 10.1109/IPCC.2014.7020385. [Online]. Available: http://ieeexplore.ieee.org/document/7020385/
(visited on 01/30/2021).

[S141] J. A. Diaz-Pace, M. Nicoletti, S. Schiaffino, and S. Vidal,
“Producing Just Enough Documentation: The Next SAD Version Problem”,
in Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), C. Le Goues and S. Yoo, Eds.,
vol. 8636, Cham: Springer International Publishing, 2014, pp. 46–60.
doi: 10.1007/978-3-319-09940-8_4. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-09940-8_4 (visited on 01/30/2021).

[S142] L. T. Heeager, “How Can Agile and Documentation-Driven Methods be Meshed in Practice?”,
in Agile Processes in Software Engineering and Extreme Programming,
G. Cantone and M. Marchesi, Eds., vol. 179, Cham: Springer International Publishing, 2014,
pp. 62–77. doi: 10.1007/978-3-319-06862-6. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-06862-6_5 (visited on 01/30/2021).

https://doi.org/10.1007/978-3-540-45122-8_17
http://link.springer.com/10.1007/978-3-540-45122-8_17
https://doi.org/10.1109/ICSSP.2012.6225956
https://www.dropbox.com/home/publications?preview=prause2012.pdf%20http://dl.acm.org/citation.cfm?id=2664360.2664380%20https://www.dropbox.com/home/publications?preview=10.0000%7B%%7D40dl.acm.org%7B%%7D402664360.2664380.pdf%20http://dx.doi.org/10.1109/ICSSP.2012.6225956
https://www.dropbox.com/home/publications?preview=prause2012.pdf%20http://dl.acm.org/citation.cfm?id=2664360.2664380%20https://www.dropbox.com/home/publications?preview=10.0000%7B%%7D40dl.acm.org%7B%%7D402664360.2664380.pdf%20http://dx.doi.org/10.1109/ICSSP.2012.6225956
https://www.dropbox.com/home/publications?preview=prause2012.pdf%20http://dl.acm.org/citation.cfm?id=2664360.2664380%20https://www.dropbox.com/home/publications?preview=10.0000%7B%%7D40dl.acm.org%7B%%7D402664360.2664380.pdf%20http://dx.doi.org/10.1109/ICSSP.2012.6225956
https://www.dropbox.com/home/publications?preview=prause2012.pdf%20http://dl.acm.org/citation.cfm?id=2664360.2664380%20https://www.dropbox.com/home/publications?preview=10.0000%7B%%7D40dl.acm.org%7B%%7D402664360.2664380.pdf%20http://dx.doi.org/10.1109/ICSSP.2012.6225956
https://doi.org/10.1109/RE.2017.33
https://www.dropbox.com/home/publications?preview=saito2017.pdf
https://doi.org/10.1109/ITNG.2015.68
https://www.dropbox.com/home/publications?preview=soares2015.pdf
https://doi.org/10.1145/2038476.2038509
http://doi.acm.org/10.1145/2038476.2038509%20http://dl.acm.org/citation.cfm?doid=2038476.2038509%20https://www.dropbox.com/home/publications?preview=stettina2011.pdf
http://doi.acm.org/10.1145/2038476.2038509%20http://dl.acm.org/citation.cfm?doid=2038476.2038509%20https://www.dropbox.com/home/publications?preview=stettina2011.pdf
http://doi.acm.org/10.1145/2038476.2038509%20http://dl.acm.org/citation.cfm?doid=2038476.2038509%20https://www.dropbox.com/home/publications?preview=stettina2011.pdf
https://doi.org/10.1109/Agile.2012.7
https://www.dropbox.com/home/publications?preview=stettina2012.pdf
https://doi.org/10.1109/IPCC.2014.7020385
http://ieeexplore.ieee.org/document/7020385/
https://doi.org/10.1007/978-3-319-09940-8_4
http://link.springer.com/10.1007/978-3-319-09940-8_4
https://doi.org/10.1007/978-3-319-06862-6
http://link.springer.com/10.1007/978-3-319-06862-6_5

162 BIBLIOGRAPHY

[S143] R. Hoda, J. Noble, and S. Marshall,
“How Much Is Just Enough?: Some Documentation Patterns on Agile Projects”,
in Proceedings of the 15th European Conference on Pattern Languages of Programs, ACM,
ACM, 2010, 13:1–13:13, isbn: 978-1-4503-0259-3.
doi: 10.1145/2328909.2328926. [Online]. Available: http://doi.acm.org/10.1145/2328909.2328926.

[S144] ISO, IEC, and IEEE,
“Systems and Software Engineering – Developing User Documentation in an Agile Environment”,
ISO/IEC/IEEE, Technical Report, 2012, pp. 1–36.
[Online]. Available: https://doi.org/10.1109/IEEESTD.2012.6170923.

[S145] G. Wagenaar, S. Overbeek, G. Lucassen, S. Brinkkemper, and K. Schneider, “Working Software Over
Comprehensive Documentation – Rationales of Agile Teams for Artefacts Usage”,
J Softw Eng Res Dev, vol. 6, no. 1, p. 7, Dec. 2018, issn: 2195-1721.
doi: 10.1186/s40411-018-0051-7. [Online]. Available:
https://jserd.springeropen.com/articles/10.1186/s40411-018-0051-7 (visited on 01/30/2021).

[S146] A. Aguiar, “Tutorial on Agile Documentation with Wikis”,
in Proceedings of the 5th International Symposium on Wikis and Open Collaboration - WikiSym ’09,
ser. WikiSym ’09, New York, NY, USA: ACM, 2009, p. 1, isbn: 978-1-60558-730-1. doi:
10.1145/1641309.1641365. [Online]. Available: http://doi.acm.org/10.1145/1641309.1641365%20http:
//portal.acm.org/citation.cfm?doid=1641309.1641365.

[S148] H. Aman and R. Ibrahim,
“XML-DocTracker: Generating software requirements specification (SRS) from XML schema”,
in ICISS 2016 - 2016 International Conference on Information Science and Security, 2017, pp. 1–5,
isbn: 978-1-5090-5493-0. doi: 10.1109/ICISSEC.2016.7885872. [Online]. Available:
https://www.dropbox.com/home/publications?preview=aman2016.pdf.

[S149] C. O. De Melo, D. S. Cruzes, F. Kon, and R. Conradi,
“Interpretative Case Studies on Agile Team Productivity and Management”,
in Information and Software Technology, vol. 55, Feb. 2013, pp. 412–427.
doi: 10.1016/j.infsof.2012.09.004. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0950584912001875.

[S150] L. Delgadillo and O. Gotel, “Story-Wall: A Concept for Lightweight Requirements Management”,
in 15th IEEE International Requirements Engineering Conference (RE 2007),
Delhi, India: IEEE, Oct. 2007, pp. 377–378, isbn: 978-0-7695-2935-6. doi: 10.1109/RE.2007.41.
[Online]. Available: http://ieeexplore.ieee.org/document/4384210/ (visited on 01/30/2021).

[S151] J. Kaariainen, J. Koskela, P. Abrahamsson, and J. Takalo, “Improving Requirements Management in
Extreme Programming with Tool Support - an Improvement Attempt That Failed”,
in Proceedings. 30th Euromicro Conference, 2004., ser. EUROMICRO ’04,
Washington, DC, USA: IEEE Computer Society, 2004, pp. 342–351, isbn: 0-7695-2199-1.
doi: 10.1109/EURMIC.2004.1333389. [Online]. Available:
http://ieeexplore.ieee.org/document/1333389/%20https:
//www.dropbox.com/home/publications?preview=kaariainen2004.pdf.

[S152] K. Könnölä, S. Suomi, T. Mäkilä, T. Jokela, V. Rantala, and T. Lehtonen, “Agile Methods in
Embedded System Development: Multiple-Case Study of Three Industrial Cases”,
Journal of Systems and Software, vol. 118, pp. 134–150, Aug. 2016, issn: 01641212.
doi: 10.1016/j.jss.2016.05.001. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0164121216300413.

[S153] M. Mahoney, “Telling Stories about Software Evolution”, in 2011 AGILE Conference,
Salt Lake City, UT, USA: IEEE, Aug. 2011, pp. 127–130, isbn: 978-1-61284-426-8.
doi: 10.1109/AGILE.2011.22. [Online]. Available: http://ieeexplore.ieee.org/document/6005493/
(visited on 01/30/2021).

[S154] X. Wang, K. Conboy, and O. Cawley, ““Leagile” Software Development: An Experience Report
Analysis of the Application of Lean Approaches in Agile Software Development”,
Journal of Systems and Software, vol. 85, no. 6, pp. 1287–1299, Jun. 2012, issn: 01641212.
doi: 10.1016/j.jss.2012.01.061. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121212000404 (visited on 01/30/2021).

https://doi.org/10.1145/2328909.2328926
http://doi.acm.org/10.1145/2328909.2328926
https://doi.org/10.1109/IEEESTD.2012.6170923
https://doi.org/10.1186/s40411-018-0051-7
https://jserd.springeropen.com/articles/10.1186/s40411-018-0051-7
https://doi.org/10.1145/1641309.1641365
http://doi.acm.org/10.1145/1641309.1641365%20http://portal.acm.org/citation.cfm?doid=1641309.1641365
http://doi.acm.org/10.1145/1641309.1641365%20http://portal.acm.org/citation.cfm?doid=1641309.1641365
https://doi.org/10.1109/ICISSEC.2016.7885872
https://www.dropbox.com/home/publications?preview=aman2016.pdf
https://doi.org/10.1016/j.infsof.2012.09.004
http://linkinghub.elsevier.com/retrieve/pii/S0950584912001875
https://doi.org/10.1109/RE.2007.41
http://ieeexplore.ieee.org/document/4384210/
https://doi.org/10.1109/EURMIC.2004.1333389
http://ieeexplore.ieee.org/document/1333389/%20https://www.dropbox.com/home/publications?preview=kaariainen2004.pdf
http://ieeexplore.ieee.org/document/1333389/%20https://www.dropbox.com/home/publications?preview=kaariainen2004.pdf
https://doi.org/10.1016/j.jss.2016.05.001
http://linkinghub.elsevier.com/retrieve/pii/S0164121216300413
https://doi.org/10.1109/AGILE.2011.22
http://ieeexplore.ieee.org/document/6005493/
https://doi.org/10.1016/j.jss.2012.01.061
https://linkinghub.elsevier.com/retrieve/pii/S0164121212000404

BIBLIOGRAPHY 163

[S155] J. Wettinger, U. Breitenbücher, O. Kopp, and F. Leymann, “Streamlining Devops Automation for
Cloud Applications Using Tosca as Standardized Metamodel”,
Future Generation Computer Systems, vol. 56, pp. 317–332, Mar. 2016, issn: 0167739X.
doi: 10.1016/j.future.2015.07.017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167739X15002496 (visited on 01/30/2021).

[S156] V.-P. Eloranta and K. Koskimies,
“Lightweight Architecture Knowledge Management for Agile Software Development”,
in Agile Software Architecture,
H. Duran-Limon, C. Y. Laporte, O. Karam, M. Mora, and A. Mishra, Eds., Elsevier, 2014,
pp. 189–213, isbn: 978-0-12-407772-0. doi: 10.1016/B978-0-12-407772-0.00007-1. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/B9780124077720000071 (visited on 01/30/2021).

[S157] P. O. Antonino, T. Keuler, N. Germann, and B. Cronauer, “A Non-Invasive Approach to Trace
Architecture Design, Requirements Specification and Agile Artifacts”,
in Proceedings of the 2014 23rd Australian Software Engineering Conference, ser. ASWEC ’14,
Washington, DC, USA: IEEE Computer Society, 2014, pp. 220–229, isbn: 978-1-4799-3149-1.
doi: 10.1109/ASWEC.2014.30. [Online]. Available: https://doi.org/10.1109/ASWEC.2014.30.

[S158] N. Kerzazi and B. Adams, “Who Needs Release and Devops Engineers, and Why?”,
in Proceedings of the International Workshop on Continuous Software Evolution and Delivery,
(Austin, Texas), ser. CSED ’16, New York, NY, USA: ACM, 2016, pp. 77–83,
isbn: 978-1-4503-4157-8.
doi: 10.1145/2896941.2896957. [Online]. Available: http://doi.acm.org/10.1145/2896941.2896957.

[S159] S. G. Rojas and J. M. C. Mora, “Source Code Documentation Simul Loco”,
Iberian Conference on Information Systems and Technologies, CISTI, pp. 669–673, 2012,
issn: 21660727. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-84869003196%7B&%7DpartnerID=tZOtx3y1.

[S160] S. S. S. I. Perera, “Continuous Scrum: A Framework to Enhance Scrum with DevOps”,
in 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer),
IEEE, Colombo: IEEE, Sep. 2017, pp. 1–7. doi: 10.1109/ICTER.2017.8257808. [Online]. Available:
http://ieeexplore.ieee.org/document/8257808/.

[S161] S. Jones, J. Noppen, and F. Lettice,
“Management Challenges for DevOps Adoption within UK SMEs”,
in Proceedings of the 2nd International Workshop on Quality-Aware DevOps, ACM, 2016, pp. 7–11.
doi: 10.1145/2945408.2945410.

[S163] D. Wells. “Extreme Programming: A Gentle Introduction.”,
Extreme Programming: A Gentle Introduction. (Oct. 8, 2013),
[Online]. Available: http://www.extremeprogramming.org/ (visited on 07/26/2020).

[S164] S. R. Palmer and M. Felsing, A Practical Guide to Feature-Driven Development.
Pearson Education, 2001, isbn: 0-13-067615-2.

[S165] A. Cockburn,
“Crystal Clear [electronic Resource]: A Human-Powered Methodology for Small Teams”,
in The Agile Software Development Series, D. O’Hagan, Ed., Pearson Education, 2005,
1 online resource (xxii, 312 p.) isbn: 0-201-69947-8.
[Online]. Available: http://proquest.safaribooksonline.com/0201699478.

[S166] J. A. Highsmith,
“Adaptive Software Development: A Collaborative Approach to Managing Complex Systems”,
in Journal of Evolutionary Biology, J. A. Highsmith, Ed., vol. 12, Addison-Wesley, 2000, p. 392,
isbn: 0-932633-40-4. [Online]. Available: http://books.google.com/books?id=R1ZyQgAACAAJ.

[S167] T. Karvonen, T. Suomalainen, M. Juntunen, T. Sauvola, P. Kuvaja, and M. Oivo, “The CRUSOE
Framework: A Holistic Approach to Analysing Prerequisites for Continuous Software Engineering”,
in International Conference on Product-Focused Software Process Improvement, Springer, 2016,
pp. 643–661. doi: 10.1007/978-3-319-49094-6_52.

[S168] J. V. Alavandhar and O. \ cNikiforova, “Several Ideas on Integration of Scrum Practices Within
Microsoft Solutions Framework”, Applied Computer Systems, vol. 21, no. 1, pp. 71–79, 2017.
doi: 10.1515/acss-2017-0010.

https://doi.org/10.1016/j.future.2015.07.017
https://linkinghub.elsevier.com/retrieve/pii/S0167739X15002496
https://doi.org/10.1016/B978-0-12-407772-0.00007-1
https://linkinghub.elsevier.com/retrieve/pii/B9780124077720000071
https://doi.org/10.1109/ASWEC.2014.30
https://doi.org/10.1109/ASWEC.2014.30
https://doi.org/10.1145/2896941.2896957
http://doi.acm.org/10.1145/2896941.2896957
http://www.scopus.com/inward/record.url?eid=2-s2.0-84869003196%7B&%7DpartnerID=tZOtx3y1
https://doi.org/10.1109/ICTER.2017.8257808
http://ieeexplore.ieee.org/document/8257808/
https://doi.org/10.1145/2945408.2945410
http://www.extremeprogramming.org/
http://proquest.safaribooksonline.com/0201699478
http://books.google.com/books?id=R1ZyQgAACAAJ
https://doi.org/10.1007/978-3-319-49094-6_52
https://doi.org/10.1515/acss-2017-0010

164 BIBLIOGRAPHY

[S171] R. P. Maranzato, M. Neubert, and P. Herculano,
“Scaling Scrum Step by Step: "The Mega Framework"”, in Proceedings of the 2012 Agile Conference,
ser. AGILE ’12, IEEE Computer Society, Washington, DC, USA: IEEE Computer Society, 2012,
pp. 79–85, isbn: 978-0-7695-4804-3.
doi: 10.1109/Agile.2012.22. [Online]. Available: https://doi.org/10.1109/Agile.2012.22.

[S172] R. L. Nord, I. Ozkaya, and P. Kruchten, “Agile in Distress: Architecture to the Rescue”,
in Agile Methods. Large-Scale Development, Refactoring, Testing, and Estimation,
T. Dingsøyr, N. B. Moe, R. Tonelli, S. Counsell, C. Gencel, and K. Petersen, Eds., vol. 199,
Cham, 2014, pp. 43–57, isbn: 978-3-319-14358-3. doi: 10.1007/978-3-319-14358-3_5. [Online].
Available: http://link.springer.com/10.1007/978-3-319-14358-3_5 (visited on 01/30/2021).

[S173] U. van Heesch and P. Avgeriou,
“A Pattern Driven Approach Against Architectural Knowledge Vaporization”, in Proceedings of the
14th European Conference on Pattern Languages of Programs (EuroPLoP), Irsee,
Conference Proceedings, 2009, pp. 1–12.
[Online]. Available: http://www.cs.rug.nl/%20paris/papers/EPLOP09.pdf.

[S176] W. Aslam and F. Ijaz, “A Quantitative Framework for Task Allocation in Distributed Agile Software
Development”, IEEE Access, vol. 6, pp. 15 380–15 390, 2018. doi: 10.1109/ACCESS.2018.2803685.

[S177] M. Callanan and A. Spillane, “DevOps: Making It Easy to Do the Right Thing”,
IEEE Softw., vol. 33, no. 3, pp. 53–59, May 2016. doi: 10.1109/MS.2016.66. [Online]. Available:
https://ieeexplore.ieee.org/document/7436644/ (visited on 01/30/2021).

[S178] P. Kruchten, “The 4+1 View Model of Architecture”,
IEEE Softw., vol. 12, no. 6, pp. 42–50, Nov. 1995, issn: 07407459. doi: 10.1109/52.469759. [Online].
Available: http://ieeexplore.ieee.org/document/469759/ (visited on 01/30/2021).

[S179] D. Ståhl and J. Bosch, “Cinders: The Continuous Integration and Delivery Architecture Framework”,
Information and Software Technology, vol. 83, pp. 76–93, Mar. 2017, issn: 09505849.
doi: 10.1016/j.infsof.2016.11.006. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S095058491630369X (visited on 01/30/2021).

[S180] F. Cannizzo, G. Marcionetti, and P. Moser,
“Evolution of the Tools and Practices of a Large Distributed Agile Team”, in Agile 2008 Conference,
IEEE Computer Society, Toronto, ON, Canada: IEEE, 2008, pp. 513–518, isbn: 978-0-7695-3321-6.
doi: 10.1109/Agile.2008.32. [Online]. Available: http://ieeexplore.ieee.org/document/4599531/
(visited on 01/30/2021).

[S181] T. Buchmann, “Towards Tool Support for Agile Modeling”,
in Proceedings of the 2012 Extreme Modeling Workshop on - XM ’12, ACM, ACM, 2012, pp. 9–14,
isbn: 978-1-4503-1804-4. doi: 10.1145/2467307.2467310. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2467307.2467310.

[S182] G. Wedemann, “Scrum as a Method of Teaching Software Architecture”,
in Proceedings of the 3rd European Conference of Software Engineering Education, ser. ECSEE’18,
New York, NY, USA: ACM, 2018, pp. 108–112, isbn: 978-1-4503-6383-9.
doi: 10.1145/3209087.3209096. [Online]. Available: http://doi.acm.org/10.1145/3209087.3209096.

[S183] H.-M. Chen, R. Kazman, and S. Haziyev,
“Agile Big Data Analytics Development: An Architecture-Centric Approach”,
in Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS),
ser. HICSS ’16, Washington, DC, USA: IEEE Computer Society, 2016, pp. 5378–5387,
isbn: 978-0-7695-5670-3.
doi: 10.1109/HICSS.2016.665. [Online]. Available: http://dx.doi.org/10.1109/HICSS.2016.665.

[S184] C. Miyachi, “Agile Software Architecture”,
SIGSOFT Softw. Eng. Notes, vol. 36, no. 2, pp. 1–3, Mar. 2011, issn: 01635948.
doi: 10.1145/1943371.1943388. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1943371.1943388.

[S185] L. J. Waguespack and W. T. Schiano, “Scrum Project Architecture and Thriving Systems Theory”,
in Proceedings of the 2012 45th Hawaii International Conference on System Sciences, ser. HICSS ’12,
Washington, DC, USA: IEEE Computer Society, 2012, pp. 4943–4951, isbn: 978-0-7695-4525-7.
doi: 10.1109/HICSS.2012.513. [Online]. Available: https://doi.org/10.1109/HICSS.2012.513.

https://doi.org/10.1109/Agile.2012.22
https://doi.org/10.1109/Agile.2012.22
https://doi.org/10.1007/978-3-319-14358-3_5
http://link.springer.com/10.1007/978-3-319-14358-3_5
http://www.cs.rug.nl/%20paris/papers/EPLOP09.pdf
https://doi.org/10.1109/ACCESS.2018.2803685
https://doi.org/10.1109/MS.2016.66
https://ieeexplore.ieee.org/document/7436644/
https://doi.org/10.1109/52.469759
http://ieeexplore.ieee.org/document/469759/
https://doi.org/10.1016/j.infsof.2016.11.006
https://linkinghub.elsevier.com/retrieve/pii/S095058491630369X
https://doi.org/10.1109/Agile.2008.32
http://ieeexplore.ieee.org/document/4599531/
https://doi.org/10.1145/2467307.2467310
http://dl.acm.org/citation.cfm?doid=2467307.2467310
https://doi.org/10.1145/3209087.3209096
http://doi.acm.org/10.1145/3209087.3209096
https://doi.org/10.1109/HICSS.2016.665
http://dx.doi.org/10.1109/HICSS.2016.665
https://doi.org/10.1145/1943371.1943388
http://portal.acm.org/citation.cfm?doid=1943371.1943388
https://doi.org/10.1109/HICSS.2012.513
https://doi.org/10.1109/HICSS.2012.513

BIBLIOGRAPHY 165

[S186] S. Akman, E. B. Aksuyek, and O. Kaynak,
“ALM Tool Infrastructure with a Focus on DevOps Culture”,
in Systems, Software and Services Process Improvement,
X. Larrucea, I. Santamaria, R. V. O’Connor, and R. Messnarz, Eds.,
vol. 896, Cham: Springer International Publishing, 2018, pp. 291–303.
doi: 10.1007/978-3-319-97925-0_24. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-97925-0_24 (visited on 01/30/2021).

[S187] J. Baptista, “Agile Documentation with uScrum”,
in Proceedings of the 26th Annual ACM International Conference on Design of Communication,
ACM, 2008, pp. 275–276. doi: 10.1145/1456536.1456596.

[S188] W. Behutiye, P. Karhapää, D. Costal, M. Oivo, and X. Franch, “Non-functional Requirements
Documentation in Agile Software Development: Challenges and Solution Proposal”,
in International Conference on Product-Focused Software Process Improvement,
M. Felderer, D. Méndez Fernández, B. Turhan, M. Kalinowski, F. Sarro, and D. Winkler, Eds.,
vol. 10611, Cham: Springer International Publishing, 2017, pp. 515–522.
doi: 10.1007/978-3-319-69926-4_41. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-69926-4_41 (visited on 01/30/2021).

[S190] M. Eckhart and J. Feiner,
“How Scrum Tools May Change Your Agile Software Development Approach”,
in International Conference on Software Quality,
vol. 238, Cham: Springer International Publishing, 2016, pp. 17–36.
doi: 10.1007/978-3-319-27033-3_2. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-27033-3_2.

[S191] G. Goth, “Agile Tool Market Growing with the Philosophy”,
IEEE Software, vol. 26, no. 2, pp. 88–91, 2009. doi: 10.1109/MS.2009.30.

[S192] E. Hossain, P. L. Bannerman, and D. R. Jeffery,
“Scrum Practices in Global Software Development: A Research Framework”, in Proceedings of the
12th International Conference on Product-focused Software Process Improvement,
Springer-Verlag, 2011, pp. 88–102. doi: 10.1007/978-3-642-21843-9_9.

[S193] M. Isham, “Agile Architecture IS Possible You First Have to Believe!”, in Agile 2008 Conference,
IEEE, Toronto, ON, Canada: IEEE, 2008, pp. 484–489, isbn: 978-0-7695-3321-6.
doi: 10.1109/Agile.2008.16. [Online]. Available: http://ieeexplore.ieee.org/document/4599526/
(visited on 01/30/2021).

[S194] A. V. K. Prasad, S. Ramakrishna, B. P. Rani, M. U. Kumar, and D. Shravani, “Designing
Dependable Business Intelligence Solutions Using Agile Web Services Mining Architectures”,
in Information Technology and Mobile Communication, A. Mobasheri, Ed., Springer, 2011,
pp. 301–304, isbn: 978-3-642-20573-6. doi: 10.1007/978-3-642-20573-6_51.

[S195] F. Raith, I. Richter, and R. Lindermeier,
“How Project-Management-Tools Are Used in Agile Practice: Benefits, Drawbacks and Potentials”,
in Proceedings of the 21st International Database Engineering & Applications Symposium, ACM,
2017, pp. 30–39. doi: 10.1145/3105831.3105865.

[S196] D. Rost, B. Weitzel, M. Naab, T. Lenhart, and H. Schmitt,
“Distilling Best Practices for Agile Development from Architecture Methodology”,
in Software Architecture, D. Weyns, R. Mirandola, and I. Crnkovic, Eds., Springer,
vol. 9278, Cham: Springer International Publishing, 2015, pp. 259–267.
doi: 10.1007/978-3-319-23727-5_21. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-23727-5_21 (visited on 01/30/2021).

[S197] V. Schneider and R. German,
“Integration of Test-Driven Agile Simulation Approach in Service-Oriented Tool Environment”,
in Proceedings of the 46th Annual Simulation Symposium,
Society for Computer Simulation International, 2013, p. 7, isbn: 978-1-62748-030-7.
doi: 10.5555/2499604.2499615.

https://doi.org/10.1007/978-3-319-97925-0_24
http://link.springer.com/10.1007/978-3-319-97925-0_24
https://doi.org/10.1145/1456536.1456596
https://doi.org/10.1007/978-3-319-69926-4_41
http://link.springer.com/10.1007/978-3-319-69926-4_41
https://doi.org/10.1007/978-3-319-27033-3_2
http://link.springer.com/10.1007/978-3-319-27033-3_2
https://doi.org/10.1109/MS.2009.30
https://doi.org/10.1007/978-3-642-21843-9_9
https://doi.org/10.1109/Agile.2008.16
http://ieeexplore.ieee.org/document/4599526/
https://doi.org/10.1007/978-3-642-20573-6_51
https://doi.org/10.1145/3105831.3105865
https://doi.org/10.1007/978-3-319-23727-5_21
http://link.springer.com/10.1007/978-3-319-23727-5_21
https://doi.org/10.5555/2499604.2499615

166 BIBLIOGRAPHY

[S198] S. W. Shin and H. K. Kim,
“A Framework for SOA-Based Application on Agile of Small and Medium Enterprise”,
in Computer and Information Science, R. Lee and H.-K. Kim, Eds., vol. 131,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 107–120, isbn: 978-3-540-79186-7.
doi: 10.1007/978-3-540-79187-4_10. [Online]. Available:
http://link.springer.com/10.1007/978-3-540-79187-4_10 (visited on 01/30/2021).

[S199] S. V. Shrivastava and U. Rathod, “A Risk Management Framework for Distributed Agile Projects”,
Information and software technology, vol. 85, pp. 1–15, 2017. doi: 10.1016/j.infsof.2016.12.005.

[S200] W. Wild, B. Weber, and H. Baumeister, “AOSTA: Agile Open Source Tools Academy”,
in International Conference on Agile Processes and Extreme Programming in Software Engineering,
Springer, 2008, pp. 248–249. doi: 10.1007/978-3-540-68255-4_42.

[S202] E. Knauss, G. Liebel, J. Horkoff, et al.,
“T-Reqs: Tool Support for Managing Requirements in Large-Scale Agile System Development”,
in 2018 IEEE 26th International Requirements Engineering Conference (RE), IEEE,
Banff, AB: IEEE, Aug. 2018, pp. 502–503, isbn: 978-1-5386-7418-5. doi: 10.1109/RE.2018.00073.
[Online]. Available: https://ieeexplore.ieee.org/document/8491180/ (visited on 01/30/2021).

[S209] R. Nord and J. Tomayko, “Software Architecture-Centric Methods and Agile Development”,
IEEE Softw., vol. 23, no. 2, pp. 47–53, Mar. 2006, issn: 0740-7459. doi: 10.1109/MS.2006.54.
[Online]. Available: http://ieeexplore.ieee.org/document/1605178/ (visited on 01/30/2021).

https://doi.org/10.1007/978-3-540-79187-4_10
http://link.springer.com/10.1007/978-3-540-79187-4_10
https://doi.org/10.1016/j.infsof.2016.12.005
https://doi.org/10.1007/978-3-540-68255-4_42
https://doi.org/10.1109/RE.2018.00073
https://ieeexplore.ieee.org/document/8491180/
https://doi.org/10.1109/MS.2006.54
http://ieeexplore.ieee.org/document/1605178/

Summaries

Nederlandstalige Samenvatting
Met de introductie van het Agile Manifesto, Lean Software Development en DevOps wordt er steeds minder gedocu-
menteerd en is de documentatie van een lagere kwaliteit. Het Agile Manifesto hecht meer waarde aan werkende software
dan aan begrijpelijke documentatie, Lean Software Development veronderstelt dat alles wat niet bijdraagt aan klant-
waarde opgevat moet worden als verspilling en met DevOps is documentatie beperkt tot gecodeerde infrastructuur om
voortdurende wetswijzigingen te volgen en snel de markt op te kunnen.

Naast deze ontwikkelingen valt te onderkennen dat softwareontwikkelaars geen zin hebben om een software product
te documenteren en dat softwareontwikkelaars en andere belanghebbenden geen zin hebben om te lezen, kortom TL;DR
(te lange tekst, ga ik niet lezen). Dit leidt er toe dat ontwikkelaars telkens tijd moeten investeren om te begrijpen wat de
broncode doet en hoe het werkt. Wat niet uit de broncode gehaald kan worden, zijn ontwerpbeslissingen en de rationale
waarom de softwareapplicatie werkt als zodanig. Kennisborging betreft dan ook in de eerste plaats ontwerpbeslissingen
en rationale.

Om kennisverlies te voorkomen zijn twee hoofdonderzoeksvragen gesteld, waarvan de beantwoording heeft geresul-
teerd in drie benaderingen met bijbehorende artefacten. De eerste vraag gaat over welke kennis iemand vooraf nodig
heeft om te beginnen met een project of iteratie. De tweede vraag gaat over welke kennis achteraf nodig is om het werk
van iemand anders te implementeren, te onderhouden of te gebruiken. De benaderingen heten: ‘Just enough Upfront’,
‘Executable Documentation’ en ‘Automatic Text Analysis’. Met ‘Just enough Upfront’ is het voldoende om schetsen te
hebben waarmee een idee gecommuniceerd wordt tussen ontwikkelaars en belanghebbenden. Verder is een stricte gecod-
ificeerde definitie nodig van hoe (sub)systemen met elkaar communiceren en tenslotte is er een plan van aanpak nodig.
Karakteristieken van ‘Executable Documentation’ zijn dat ze redelijk leesbare specificaties bevatten van een systeem,
en die specificaties kunnen ook uitgevoerd worden. Verder is deze benadering van toepassing als de oplossing van een
probleem al goed gespecificeerd is. De laatste benadering betreft ‘Automatic Text Analysis’, waarbij met behulp van
machine learning en neurale netwerken causale relaties in tekst en dan met name git commit messages geïdentificeerd
worden om ontwerpbeslissingen op te halen. Deze laatste benadering ondersteunt kennisverwerking.

167

168 SUMMARIES

English Summary
With the introduction of the Agile Manifesto, Lean Software Development, and DevOps, documentation has
become lower in quality and lesser in quantity leading to knowledge evaporation. The Agile Manifesto val-
ues working software over comprehensive documentation, Lean Software Development considers everything
that does not contribute to customer value as waste, and in DevOps, documentation is primarily found in
infrastructure-as-code to keep up with continuously changing legislation and demands for fast time-to-market.

Next to the aforementioned developments, another issue causing knowledge evaporation concerns the re-
luctance of software developers to write down information about a software product, and on top of that in
general software developers and other stakeholders do not like to read documentation; in short TL;DR. This
leads to substantial time investments by new team members to understand what source code intends to do
and, foremost, why source code functions the way it does. How source code functions can be distilled from the
source code itself. Design decisions or a rationale cannot be revealed from the source code alone. Therefore,
knowledge preservation concerns design decisions and rationale in the first place.

To prevent knowledge evaporation, we phrased two main research questions and answers to these questions
have led to three approaches with corresponding artifacts. The first question concerns which knowledge some-
one needs upfront before starting a project or iteration. The second question deals with which knowledge others
need afterwards to deploy, maintain, or use a software product. The approaches are ‘Just enough Upfront’,
‘Executable Documentation’, and ‘Automatic Text Analysis’. ‘Just enough Upfront’ advocates informal white-
board sketches to communicate the main objectives between stakeholders, a strict codified interface description
between (sub)systems, and a plan of approach. Design decisions are documented afterwards to include pro-
gressive insights and deviations from the planned objectives. Characteristics of ‘Executable Documentation’
concerns human readable requirements and specifications which can be executed. This approach is typically
in use when specifications are clearly defined. With ‘Automatic Text Analysis’, machine learning with neural
networks is used to identify causal relations in text, especially git comments, for revealing design decisions. As
such, this approach assists in retrieving knowledge.

169

Curriculum Vitae

Personal
Name Theo Theunissen
Date of Birth 2 November 1964
City Overasselt, NL
Marital status Married to Judith
Children Sophie (1997), Sarah (1999)

Professional
2012 – present Stichting HAN University of Applied Sciences

Function: Lecturer and researcher in Computer Science
Tasks: As a computer science teacher for senior students,
my responsibilities include coordinating tasks, developing
guidelines for multiple disciplines, serving as a member
of the quality board, and serving as a member of the ad-
visory board. Additionally, I am an active member of the
‘lectoraat’, which serves as a bridge between education,
research, and professional practice.

2003 - 2012 Self employed
Function: Owner
Tasks: I held a role as a general manager, responsible for
initiating projects, managing customer relationships, and
defining start-ups.

1999 - 2003 IBM Global Services N.V.
Function: Senior Consultant Media & Entertainment
Tasks: Managing / Senior Consultants lead engage-
ments, manage intellectual capital throughout the en-
gagement, participate in business development activities
and usually become subject matter experts in an indus-
try, solution and/or methodology. They develop strong,
long lasting client relationships and are role models, men-
tors, and coaches for other team members. All senior
Consultant professionals (Executive Consultant, Princi-
pal, Managing Principal) must: be thought leaders, be
solid practitioners, develop the skills and methodology of
their practice, have excellent engagement management
skills, establish positive, lasting client relationships

1996 - 1999 Nielsen Holdings plc (formerly VNU B.V.)
Function: Project Manager at corporate office for large
and high profile projects, Team leader of project man-
agers, Development Manager, Member of Management
Team
Tasks: These functions demanded my ability to manage
projects with high stakes with new technology and com-
plex environments. I was responsible for feasible business
plans and project plans, the selection of third parties and
the execution of the project.

1994 – 1996 Oracle B.V.
Function: Senior Consultant Advanced Technology
Tasks: This function demanded my skills of being able
to adapt new technology at an early stage, investigate
whether this new technology is commercially useful or
not and define conditions for commercial usability. I
also coached other consultants and skilled them to bring
projects back or up to speed.

Education
1988 - 1994 Philosophy (MA), Cognitive Science, Radboud University

Nijmegen

170

SIKS Dissertations

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines
02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through decision support: pre-

scribing a better pill to swallow
03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge Worker Support
04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and an Application in Explain-

ing Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social Networks from

Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on Cultural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Development in West Africa - An

ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Algorithms and Experi-

ments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn from Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces: Automatic Analysis of

Player Behavior in the Interactive Tag Playground
22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Systems
23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An Iterative and data

model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching and Browsing Be-

havior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational Models to Study the

Role of Human Awareness and Control in Behavioural Choices, with Applications in Aviation and
Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on epidemic prediction

and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems - Markets and prices for

flexible planning
30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring

171

172 SIKS DISSERTATIONS

32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks for Crisis Organisa-
tions

33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just one example
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis, and Enactment
35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classification and Recommenda-

tion
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction behavior optimized for

robot-specific morphologies
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computational inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art & Interaction Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal Style Selection for an

Artificial Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for Analysing Institutional

Design and Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of Bilingual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innovation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational Performance Alignment

in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks using Argumenta-

tion
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach with Autonomous

Products and Reconfigurable Manufacturing Machines
04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health Insurance Data using

Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspective on Variation

in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social touch through haptic

technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling Player Traits from Video

Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing: The Role of Per-

ceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming (A Play on

Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning

173

25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guidelines, with applications to
Multimorbidity Analysis and Literature Search

26 Merel Jung (UT), Socially intelligent robots that understand and respond to human touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social Robots: People’s Pref-

erences, Perceptions and Behaviors
28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Performance: A Moderated Media-

tion Model of Social Innovation, and Enterprise Governance of IT"
30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documentation: A Model of

Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation Framework that Enables

Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and compressive sensing

methods to increase noise robustness in ASR
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Human Control in

Relation to Emotions, Desires and Social Support For applications in human-aware support systems
41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental Processes and a

Smart Environment to Provide Support for a Healthy Lifestyle
42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with applications on ADHD

datasets
43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics in Agile Requirements

Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling, Model-Driven Develop-

ment of Context-Aware Applications, and Behavior Prediction
04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in Data-Centric Engi-

neering Tasks
05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Information Seeking Process
06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-Technical Systems
07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior change through

intelligent technology
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Collaborative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks

174 SIKS DISSERTATIONS

21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and playing scenario-based
serious games

22 Eric Fernandes de Mello Araújo (VUA), Contagious: Modeling the Spread of Behaviours, Perceptions
and Emotions in Social Networks

23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-Autonomous Telepresence

Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational Messages for Behavior

Change Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Software Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and how they make you feel
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The "K" in "semantic web" stands for "knowledge": scaling semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems. A graph-based approach
to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for Assessing Class Size
Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Databases: Extracting Event Data
from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked Cultural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Processes
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy efficiency in software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behavioral Engagement in

MOOCs
12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behavior & Improving

Learning Outcomes in Massive Open Online Courses
15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and Partially Observable En-

vironments
16 Guangming Li (TUE), Process Mining based on Object-Centric Behavioral Constraint (OCBC)

Models
17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts
18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human collective intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery and Design Pattern

Detection
22 Martin van den Berg (VU),Improving IT Decisions with Enterprise Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verification
24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing Labeled Data for Natural Language

Processing
25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image description
26 Prince Singh (UT), An Integration Platform for Synchromodal Transport
27 Alessandra Antonaci (OUN), The Gamification Design Process applied to (Massive) Open Online

Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to prepare airline pilots for

critical situations
29 Daniel Formolo (VU), Using virtual agents for simulation and training of social skills in safety-critical

circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence in Games

175

33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Artificial Neural Networks
34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network Features for Classification of

Epilepsy and PNES
35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learning programming
36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Master Complex Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OUN), Learning visually grounded and multilingual representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour
02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic Graphical Models
03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language Understanding
04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TUE), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Requirements Elicitation - An

Approach and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for reusable game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for Digital Humanities

Research
10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMethods for Long-Tail

Entity Recognition Models
12 Ward van Breda (VU), Predictive Modeling in E-Mental Health: Exploring Applicability in Person-

alised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mixing Evolutionary Algo-

rithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases
15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning for Configurable Assessments in

Serious Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feedback from Multimodal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with Uncertainties: Elec-

tricity Markets in Renewable Energy Systems
19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems
20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisations
21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life as it could be
22 Maryam Masoud Khamis (RUN), Understanding complex systems implementation through a mod-

eling approach: the case of e-government in Zanzibar
23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to studying writing pro-

cesses using keystroke logging
24 Lenin da Nóbrega Medeiros (VUA/RUN), How are you feeling, human? Towards emotionally sup-

portive chatbots
25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based mixed-Integer op-

Timization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training complex skills with

augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst
31 Gongjin Lan (VU), Learning better – From Baby to Better
32 Jason Rhuggenaath (TUE), Revenue management in online markets: pricing and online advertising
33 Rick Gilsing (TUE), Supporting service-dominant business model evaluation in the context of busi-

ness model innovation
34 Anna Bon (MU), Intervention or Collaboration? Redesigning Information and Communication Tech-

nologies for Development
35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Production

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for Social Interaction in Public
Space

176 SIKS DISSERTATIONS

02 Rijk Mercuur (TUD), Simulating Human Routines: Integrating Social Practice Theory in Agent-
Based Models

03 Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with Smart Devices
04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive learning analytics for self-

regulated learning
05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Systems
06 Daniel Davison (UT), "Hey robot, what do you think?" How children learn with a social robot
07 Armel Lefebvre (UU), Research data management for open science
08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Programming on Computational Think-

ing
09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic and Non-Verbal Robots to

Promote Children’s Collaboration Through Play
10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning
11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic Vision
12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs
13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding and Facilitating Predictabil-

ity for Engagement in Learning
14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their Support
15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Resource Re-Configurations

through the Business Services Paradigm
16 Esam A. H. Ghaleb (UM), Bimodal emotion recognition from audio-visual cues
17 Dario Dotti (UM), Human Behavior Understanding from motion and bodily cues using deep neural

networks
18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making Tools and Formal Systems -

Facilitating the Construction of Bayesian Networks and Argumentation Frameworks
19 Roberto Verdecchia (VU), Architectural Technical Debt: Identification and Management
20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided Exposure Bias in Recom-

mender Systems
21 Pedro Thiago Timbó Holanda (CWI), Progressive Indexes
22 Sihang Qiu (TUD), Conversational Crowdsourcing
23 Hugo Manuel Proença (LIACS), Robust rules for prediction and description
24 Kaijie Zhu (TUE), On Efficient Temporal Subgraph Query Processing
25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Combining AI and Self-Adaptation

to Create Adaptive E-Health Mobile Applications
26 Benno Kruit (CWI & VUA), Reading the Grid: Extending Knowledge Bases from Human-readable

Tables
27 Jelte van Waterschoot (UT), Personalized and Personal Conversations: Designing Agents Who Want

to Connect With You
28 Christoph Selig (UL), Understanding the Heterogeneity of Corporate Entrepreneurship Programs

2022 01 Judith van Stegeren (UT), Flavor text generation for role-playing video games
02 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Optimisation: A Deep Learning

Journey
03 Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away: Reinforcement Learning For

Personalized Healthcare
04 Ünal Aksu (UU), A Cross-Organizational Process Mining Framework
05 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time Over-Parameterization
06 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in Real Time Bidding
07 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards Automatic Co-located Collaboration

Analytics
08 Maikel L. van Eck (TU/e), Process Mining for Smart Product Design
09 Oana Andreea Inel (VUA), Understanding Events: A Diversity-driven Human-Machine Approach
10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of Collaborative Search Engines
11 Mirjam de Haas (UT), Staying engaged in child-robot interaction, a quantitative approach to study-

ing preschoolers’ engagement with robots and tasks during second-language tutoring
12 Guanyi Chen (UU), Computational Generation of Chinese Noun Phrases
13 Xander Wilcke (VUA), Machine Learning on Multimodal Knowledge Graphs: Opportunities, Chal-

lenges, and Methods for Learning on Real-World Heterogeneous and Spatially-Oriented Knowledge
14 Michiel Overeem (UU), Evolution of Low-Code Platforms

	Acronyms
	Introduction
	The Disappearance of Technical Specifications in Web and Mobile Applications
	Specification in Continuous Software Development
	Software Specification and Documentation in Continuous Software Development - A Focus Group Report
	A Mapping Study on Documentation in Continuous Software Development
	Tools are the Message for Communication
	Continuous Learning with the Sandwich of Happiness and Result Planning
	Approaches for Documentation in Continuous Software Development
	Evaluation of Approaches for Documentation in Continuous Software Development
	Conclusion
	Bibliography
	Summaries
	Curriculum Vitae
	SIKS Dissertations

