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Abstract: Artificial intelligence (AI) applications have introduced transformative possibilities within
geohazard analysis, particularly concerning the assessment of rock slope instabilities. This study
delves into the amalgamation of AI and empirical techniques to attain highly precise outcomes in the
evaluation of slope stability. Specifically, our primary objective is to propose innovative and efficient
methods by investigating the integration of AI within the well-regarded Qslope system, renowned for
its efficacy in analyzing rock slope stability. Given the complexities inherent in rock characteristics,
particularly in coastal regions, the Qslope system necessitates adjustments and harmonization with
other geomechanical methodologies. Uncertainties prevalent in rock engineering, compounded by
water-related factors, warrant meticulous consideration during all calculations. To address these
complexities, we present a novel approach through the infusion of fuzzy set theory into the Qslope

classification, leveraging fuzziness to effectively quantify and accommodate uncertainties. Our
approach employs a sophisticated fuzzy algorithm encompassing six inputs, three outputs, and
756 fuzzy rules, thereby enabling a robust assessment of rock slope stability in coastal regions.
The implementation of this method capitalizes on the high-level programming language Python,
enhancing computational efficiency. To validate the potency of our AI-based approach, we conducted
preliminary tests on slope instabilities within coastal zones, indicating a promising initial direction.
The results underwent thorough evaluation, affirming the precision and dependability of the proposed
method. However, it is crucial to emphasize that this work represents a first attempt to apply AI
to the evaluation of rock slope stability. Our findings underscore a high degree of concurrence and
expeditious stability assessment, vital for timely and effective hazard mitigation. Nonetheless, we
acknowledge that the reliability of this innovative method must be established through broader
applications across diverse scenarios. The proposed AI-based approach’s effectiveness is validated
through a preliminary survey on a slope instability case within a coastal region, and its potential
merits must be substantiated through broader validation efforts.

Keywords: slope stability; fuzzy logic; Qslope; rock slope; geomechanics

1. Introduction

Geoengineers play a critical role in assessing slope stability for a wide range of geotech-
nical projects, including road and rail constructions, excavations, mines, and trench boring.
Dealing with discontinuous rock conditions requires the development of effective stabiliza-
tion schemes. New studies have aimed to propose innovative and efficient methods for
addressing the challenges posed by such conditions and ensuring the stability of slopes in
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geotechnical projects [1–3]. Achieving the objective of weak rock slope stability assessment
in geotechnical projects relies on the utilization of fast, efficient, and reliable methods. These
methods facilitate the appropriate design and implementation of suitable support systems,
enabling effective control of slope instabilities during their early stages [4]. Empirical
relations have been recognized as robust solutions due to their swift analysis and minimal
assumptions [5]. Leveraging the rapid quantification of rock slope features, empirical clas-
sifications facilitate prompt discussions and aid in the swift implementation of stabilization
measures when slope failure is detected in its initial stages [6].

The pioneer works of Ritter [7] helped develop the most basic classification of rock
mass, but Terzaghi [8] is known as the father of the modern engineering classification
systems for steel frame tunnels in sedimentary rocks. Cecil [9] modified Terzaghi’s ap-
proach and applied it to estimate rock mass properties. Deere and Deere [10] presented the
rock quality designation index (RQD), which is considered the first computational method
for evaluating rock engineering classifications. RQD is extensively used by geotechnical
engineering in different projects worldwide. RQD has improved the engineering classifica-
tion based on rock mass durability and engineering dimension [11]. Modern geotechnical
classification systems can be traced back to rock mass classifications, which in turn are
based on the rock mass rating (RMR) and Q system [12,13]. The latest version of RMR
was introduced in 1989 by Bieniawski [14], and the Q system was released in 1974 by
Barton [15]. For a variety of civil and mining engineering applications, RMR and Q are
used for preliminary rock mass quantifications. These categories are capable of studying
multiple discontinuous rock mass characteristics and offering appropriate descriptions
of the conditions of the rock mass in design applications. The RMR was defined primar-
ily for underground investigations, but with some modifications, it can also be used for
discontinuous rock structures at the surface. In contrast, the Q system is only used for un-
derground excavations [16]. The geological Strength Index (GSI) classification is introduced
by Hoek et al. [17] in their study.

RMR and Q classifications have become increasingly popular and are now widely
used as a result of being customized within specialized classification systems for particular
goals [18,19]. Some of the most significant classification systems that developed based on
RMR and Q can be categorized as following:

• Rock mass rating by Laubscher [20].
• Rock mass strength (RMS) by Stille et al. [21]
• Modified basic rock mass rating (MRMR) by Kendorski et al. [22]
• Simplified rock mass rating (SRMR) by Brook and Dharmaratne [23].
• Slope rock mass rating (SRMR) by Robertson [24].
• Natural slope methodology (NSM) by Shuk [25].
• Rock condition rating (RCR) by Goel et al. [26].
• Chinese slope mass rating (CSMR) by Chen [27].
• Rock mass number (RMN) by Goel et al. [28].
• Modified-rock mass rating (M-RMR) by Unal [29].
• QTBM by Barton [30].
• Slope mass rating (SMR) by Romana et al. [31].
• Slope stability probability classification (SSPC) by Hack et al. [32].
• Continuous slope mass rating (CSMR) by Tomás et al. [33].
• Alternative rock mass classification system (ARMCS) by Pantelidis [34].
• Fuzzy slope mass rating (FSMR) by Daftaribesheli et al. [35].
• Graphical slope mass rating (GSMR) by Tomás et al. [36].
• Slope stability rating (SSR) by Taheri [37].
• Global slope performance index (GSPI) by Sullivan [38].
• Qslope by Bar and Barton [39].
• SMR-Qslope [40].

The Qslope system is a notable approach that utilizes an empirical method for analyz-
ing slope stability in various regions of the world [41,42]. By incorporating slope angle
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(β) and the Qslope number, it offers rapid stability decisions while considering elementary
assumptions. However, rock engineering uncertainties can significantly impact the overall
behavior of the rock mass, necessitating the correction or modification of empirical classifi-
cations. Uncertainties arise from a lack of sufficient knowledge to make informed decisions
about events or targets. In the context of slope stability analysis, uncertainties primarily
stem from the inherent geomechanical features. To address these uncertainties, this study
proposes a novel approach that employs fuzzy logic to quantify and account for them
effectively. By incorporating fuzzy logic into the Qslope system, the proposed method offers
a new perspective on handling uncertainties in slope stability analysis.

The presented research introduces a novel approach to rock slope stability analysis
by integrating AI techniques with empirical methods, which represents a first attempt
to apply the AI-based Qslope method in rock slope stability evaluation. Specifically, the
study focuses on the application of AI within the context of the Qslope system, renowned
for its effectiveness in evaluating slope stability. In coastal areas where water-induced
geohazards play a crucial role, the complexities and uncertainties associated with rock
characteristics demand modifications and the integration of other geomechanical meth-
ods. To address uncertainties inherent in rock engineering, further compounded by rock
characterstric factors, the research proposes the incorporation of fuzzy set theory into
the Qslope classification. The resulting AI-based fuzzy method, featuring six inputs, three
outputs, and 756 fuzzy rules, enables robust assessments of rock slope stability in coastal
regions. The implementation utilizes the high-level programming language Python to
enhance computational efficiency. This study significantly contributes to the field of rock
engineering by offering an efficient and accurate approach to assess slope stability using
AI-based methods, particularly relevant for water-induced geohazards in coastal areas.

The research further highlights the significance of rapid stability assessment for timely
and effective hazard mitigation in slope stability risks. By leveraging AI with empirical
methods, this approach enhances the understanding and mitigation strategies for rock
slope instabilities. Moreover, the integration of fuzzy set theory in the Qslope classification
provides a comprehensive consideration of uncertainties inherent in rock engineering fac-
tors. As a result, the proposed AI-based approach offers a robust and adaptable solution for
analyzing slope stability in coastal areas. The research findings underscore the importance
of addressing slope stability challenges in coastal regions, where rock characteristics are
complex. By bridging AI techniques with the Qslope and validating the approach through
regular slope stability check and site survey, this study contributes to the field of rock
engineering and offers valuable insights into the efficient assessment of slope stability
using AI-based methods. Overall, the integration of fuzzy logic into the Qslope method
offers several advantages for estimating rock slope stability. Fuzzy logic excels in handling
uncertainties inherent in geotechnical data, providing a more flexible representation of com-
plex geological conditions and uncertain parameters. This enhanced adaptability allows
the Qslope method to deliver more accurate and reliable predictions of rock mass quality
(Q value) and subsequent slope stability assessments. Additionally, fuzzy logic-based
systems are more interpretable, enabling geotechnical engineers to better understand and
interpret the estimated Qslope values. The reduced sensitivity to parameter selection and
improved handling of vague or incomplete data further enhance the method’s robustness
and practicality. Moreover, the implementation of fuzzy logic improves computational
efficiency, allowing for faster slope stability assessments and facilitating timely hazard
evaluations and mitigation strategies. The incorporation of fuzzy logic into the Qslope
method provides a valuable tool for geotechnical engineers, offering more reliable, precise,
and efficient estimates of rock slope stability.

The application of fuzzy logic in conjunction with the Qslope system for rock slope
stability analysis offers several notable advantages. Fuzzy logic excels in handling un-
certainties inherent in rock engineering and complexities associated with water-induced
factors in coastal regions. By incorporating fuzzy sets, the Qslope becomes more adaptable,
allowing for a comprehensive representation of different degrees of membership for rock
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mass quality, thus providing a more versatile approach to assess slope stability. This so-
phisticated approach takes into account multiple parameters and their interactions, leading
to more reliable stability assessments compared to conventional methods. Additionally, the
rapid stability assessment enabled by fuzzy logic accelerates the analysis process, facili-
tating timely and effective hazard mitigation strategies in water-affected coastal regions.
However, the application of fuzzy logic in the Qslope system does come with certain limi-
tations. The development and refinement of a substantial number of fuzzy rules require
considerable effort and expertise. Constructing such an extensive set of rules demands a
deep understanding of both the Qslope system and fuzzy logic, making rule development
a complex task. Additionally, the interpretation of the decision-making process might be
challenging due to the opacity of the fuzzy rules, potentially making it difficult to under-
stand the rationale behind specific stability assessments. Furthermore, the success of fuzzy
logic-based methods heavily relies on the availability and accuracy of data for defining the
fuzzy sets and rules adequately. Obtaining and processing sufficient data, especially in
remote or inaccessible coastal regions, could pose challenges and impact the reliability of
the analysis. Moreover, the performance of fuzzy logic-based systems can be sensitive to
the selection of membership functions and fuzzy rules. Inaccurate parameter choices could
lead to misleading results or affect the overall reliability of slope stability assessments.
While fuzzy logic enhances the adaptability of the Qslope system, it may have limitations in
handling certain types of complex geological conditions or geological phenomena that are
not adequately represented by the current fuzzy rules. Therefore, a careful consideration of
these advantages and limitations is essential when implementing fuzzy logic in the Qslope
system for rock slope stability analysis in coastal areas.

2. Materials and Methods
2.1. Qslope Classification System

Qslope is an empirical method developed for analyzing slope stability based on the Q
method [39,40]. The method employs a stability chart, as depicted in Figure 1, which was
modified in 2020 by Azarafza et al. [43]. According to Bar and Barton [39], the Qslope number
relationship, expressed in Equation (1), encompasses key elements such as the shear force
element (Jr/Ja), block size (RQD/Jn), and external loading/stress factor (Jwice/SRFslope).

Qslope =
RQD

Jn

[
Jr
Ja

]
Jwice

SRFslope
(1)
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Figure 1. The process flowchart for the fuzzy-based Qslope method. Figure 1. The process flowchart for the fuzzy-based Qslope method.

In this equation, RQD represents the “rock quality designation”, Jn corresponds to the
“discontinuity set number”, Jr denotes the “discontinuity roughness number”, Ja signifies
the “discontinuity alteration number”, Jwice stands for “environmental and geological
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condition number”, and SRFslope represents the “strength reduction factor” [39–43]. RQD,
commonly used worldwide by geoengineers, serves as an indicator of rock mass quality
and can be estimated through direct or indirect procedures [1]. RQD signifies the degree
of jointing or fracture in a rock mass measured in percentage, where RQD of 75% or more
shows good-quality hard rock and less than 50% shows low-quality weathered rocks. The
direct estimation procedure for RQD is a percentage of intact drill core pieces longer than
10 cm recovered during a single core run, and RQD index (%) = 100 × Σ (length of core
pieces ≥ 0.10 m)/(total length of core run). As an indirect method that estimated RQD from
the rock mass and jointed intensity, various methods were developed [43]. Other factors
are provided based on Barton and Bar’s instructions [41,42]. The presented study used the
Palmstrom indirect method [43] as RQD = 115 − 3.3 Jv, where Jv is the sum of the number
of joints per unit volume of the rock mass. Other variables are estimated as the original
method addresses instructions.

Qslope was initially developed based on Barton’s Q system, which is widely used to
assess the quality of rock mass [40]. While the main Q method is primarily employed
for underground structures, Qslope is specifically designed for evaluating slope stability
through an engineering discussion-making procedure. Qslope incorporates qualitative
indicators derived from field observations of the slope mass conditions. Bar and Barton
have provided discussion tables for grading the condition of rock slope masses [41]. By
estimating the relevant parameters, Qslope values are determined and plotted on the stability
chart shown, as introduced by Bar and Barton [39]. To apply the stability chart, knowledge
of the required support or the steepest slope angle (β) is necessary, which can be estimated
using Equation (2). This equation has been modified by Azarafza et al. [43] to establish
upper and lower limits, presented here as Equations (3) and (4). The obtained results
utilizing the Qslope stability chart allow for the estimation of the final stability condition. In
this study, we adopt the foundational principles of Qslope to develop a fuzzy-based method
for analyzing rock mass stability:

β = 20 log10(Q slope) + 65 (2)

Lowerlimite :β = 11.9 log10(Q slope) + 46.3 (3)

Upperlimite :β = 17.2 log10(Q slope) + 54.1 (4)

2.2. Fuzzy Logic and Model Implementation

Fuzzy logic or fuzzy set theory is a form of many-valued logic, which uses the used
truth value of variables by any number between 0 and 1. The fuzzy set theory was
developed by Zadeh [44] in the first place, has been expanding significantly in recent
years, and has extensive application in different aspects of engineering fields based on
address uncertainties in studies compared to classical calculations. The fuzzy set theory is a
multiple-valued logic founded on mathematical intelligence for the calculation of ‘degrees
of truth’ or ‘degrees of false’ rather than the Boolean logic (true or false) that is applied by
fuzzy sets and membership functions. The application of the fuzzy membership function
makes a difference between crisp and fuzzy descriptions. In the crisp sets, the membership
function has only two values (0 or 1), but in fuzzy sets, it is classified as specific, limited, and
identifiable ranges [45]. Fuzzy logic uses ‘if and/or then’ rules to establish the knowledge
base and perform logic inference. Considering a main fuzzy set theory architecture for
solving problems, the input information was converted into fuzzy data by the fuzzification
process, and the fuzzified information was processed by the fuzzy inference system (FIS),
which is operated based on the knowledge base. This base was defined by the user based
on engineering experiences and expertise. After analysis, the processed data were fuzzified
by using the defuzzification process, and the output was be reported.
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In the fuzzification stage, input parameters based on the technical comments of experts
are modified and associated with fuzzy memberships. After being fuzzified, the input
information is entered into the FIS engine, which is responsible for making logical decisions.
The FIS is operated based on knowledge-based instructions. The implication functions that
are used in the knowledge base are called the fuzzy “if–and/or–then” rule. The FIS structure
consists of three conceptual components: (i) the rules base, which contains the selection of
rules; (ii) the database, which defines the membership functions used in the fuzzy rules;
and (iii) the reasoning mechanism, which performs the inference procedure upon the rules
and the given facts to derive a reasonable output. The Mamdani–Assilian, Takagi–Sugeno–
Kang, Tsukamoto, and Singleton fuzzy models are the FIS systems commonly used by
engineering worldwide. The differences between these FIS systems are in the consequences
of their fuzzy rules, aggregation, and defuzzification procedures. Mamdani–Assilian
FIS is considered in this study to calculate the fuzzy applications. FIS takes fuzzified
information and analyzes the data, which leads to report results (known as consequences
or conclusions). These results have to convert to crisp sets until used for assessments. The
converting process was performed based on the defuzzification stage. Defuzzification is a
process that converts an aggregated fuzzy set into crisp values, typically representing the
most representative value within the fuzzy sets interval [35]. The centroid of area or center
of gravity, mean of maximum, and smallest of maximum is the most used defuzzification
function by researchers in the geo-engineering field. The centroid of area capability is
that all activated membership functions of the conclusions take part in the defuzzification
process, and so it is used in this research as well.

Fuzzy sets are characterized by triangular or trapezoid-shaped curves, wherein each
value exhibits an increasing slope, a peak at a value of 1 (which can vary in length from 0 to
greater values), and a decreasing slope. Fuzzy sets employ a sigmoid function, commonly
known as the standard logistic function [35]. One notable advantage of fuzzy logic systems
is their robustness in handling situations where input values are either unavailable or
unreliable. This resilience stems from the fact that the output of a fuzzy system represents
a consensus derived from all of the rules and inputs. Additionally, weightings can be
assigned to individual rules in the rule base, enabling control over the influence of each
rule on the output values. These rule weightings can be determined based on factors such
as rule priority, dependability, or consistency. The weightings assigned to rules can be
either fixed or dynamic, with the potential for adjustments based on the outcomes of other
rules [45]. By leveraging these rules, users (typically experts) can incorporate specific terms
that encompass the existing uncertainties inherent in the calculations.

As previously mentioned, the objective of this study is to develop a fuzzy-based Qslope
calculator for rapid decision making in the initial stage of slope stability analysis. The ability
to make fast and accurate decisions is crucial for implementing appropriate stabilization
measures. However, many geo-engineering processes involve linguistic variables and
vague predicates, which introduce numerous uncertainties and subjective judgments into
the decision-making process. Therefore, the application of fuzzy logic can provide a
systematic approach to handle complex and ambiguous geo-engineering problems.

In this research, the “if-then” rules are employed to establish the core knowledge
base, which is implemented using the Mamdani-Assilian Fuzzy Inference System (FIS). The
fuzzy model comprises seven inputs, corresponding to the requirements of Qslope, and three
outputs, resulting in a total of 756 rules. To obtain crisp outputs from the fuzzy model, the
centroid of the area defuzzifier is utilized for defuzzification, ensuring accurate and reliable
results. The process flowchart of the fuzzy-based applied method is depicted in Figure 1.
This fuzzy inference system (FIS) is designed to calculate the Qslope values and provide
the stability status of the slope as the output. Each input parameter is estimated on-site
following the instructions provided by Bar and Barton, relying on observation methods
and the expertise of geoengineers. The output classes of the models are classified as ‘stable’
and ‘uncertain’ and ‘unstable’ categories, which are obtained based on Qslope values. The
input parameters are the main Qslope requirements, which contain RQD, Jn, Jr, Ja, Jwice, and



Water 2023, 15, 2949 7 of 21

SRFslope. Figures 2 and 3 present the inputs and output membership functions used in this
article. So, the program is operated based on entering the inputs and calculating the outputs.
The output parameters directly provide the slope stability status based on both main and
modified relationships. The entire modeling was implemented in Python programming
language. As seems to be the case in Figure 2, six different decision functions are defined
for fuzzy sets responsible for Qslope requirements that must be estimated during the ground
survey. These parameters are mainly measured based on geo-engineer experiences and
available necessities dictated in the original Qslope paper published by Bar and Barton [39].
These parameters are identified in Section 2.1. These parameters are converted into fuzzy
parameters using fuzzy membership functions presented in Figure 1. We also expected to
model categories of the results of the Qslope value in three different stability classes shown
in Figure 3. The stability classes are categorized in ‘stable,’ ‘uncertain,’ and ‘unstable,’
representing the main stability classification areas from the Qslope stability chart [39]. These
areas show the stability condition of slopes. All membership functions are defined by the
expert system based on the rule base. As seen in this figure, as the stability index increases,
the stability conditions in the slope also change from unstable to stable. Now, returning to
Figure 1, it can be stated that the process of implementing the fuzzy model is first, and the
input parameters are converted into fuzzy values and then analyzed by the processing core
and the fuzzy inference system. Finally, they are reported as fuzzy outputs. The point of
interest in Figure 1 is related to the output, which is a stability value for Qslope. This value
is used to calculate the classic Qslope [39] and modified Qslope [43]. These values are used to
estimate the primary stability condition in the slope.

Regarding the FIS analysis core, which is operated by Mamdani–Assilian, trapezoidal
membership functions are employed in the calculations. It is necessary to assign corre-
sponding values to the fuzzy system’s input and output components to construct a fuzzy
system. Output values are defined in the Gaussian membership function and added to the
fuzzy system.

The visualization process is structured into three main steps:

1. Data Input: This step involves providing the input data gathered from the field survey
and correctly placing the imported values in the system.

2. Rules-Based Database: In the second step, a rules-based database is prepared using
expert opinions. These rules establish the connection between the input parameters
and the stability categories, leveraging the expertise of professionals in the field of
slope stability assessment.

3. Output Export: The final step involves exporting the output value, which repre-
sents the stability index and ranges from 0 to 1.0. For instance, an output value of
0.7 indicates that the slope’s stability condition is mostly stable, whereas a value of
0.2 suggests primarily unstable conditions. Professionals should consider necessary
precautions during the design stage for slopes with an output value of 0.2. Conversely,
for slopes with an output value of 0.7, a less solid support system may be considered.

By following these three steps, our visualization process allows geotechnical profes-
sionals to efficiently and effectively assess the stability of rock slopes in coastal regions,
guiding them in making informed decisions for appropriate design and support strategies.

The Qslope fuzzy model is a classification system used to determine the stability of
slopes by incorporating fuzzy logic principles. It utilizes fuzzy sets and membership
functions to handle uncertainty and imprecise information in slope stability assessments.
The judging criteria and the determination of slope stability using the fuzzy Qslope model
involve the following steps:

• Input Parameters: The model considers various input parameters that characterize
the geological and geomechanical properties of the slope. These parameters typically
include factors such as rock mass quality, joint spacing, groundwater conditions,
slope geometry, and more. Each input parameter is assigned a linguistic variable or
descriptor, such as “low”, “medium”, or “high”, to represent qualitative descriptions.
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• Membership Functions: For each input parameter, membership functions are defined
to specify the degree of membership to different fuzzy sets. These fuzzy sets represent
different stability categories, such as “unstable”, “uncertain”, or “stable”. The member-
ship functions assign a value between 0 and 1 to each linguistic variable, representing
the degree of membership to a particular fuzzy set.

• Fuzzy Inference System: The fuzzy inference system combines the linguistic variables
and membership functions of the input parameters using fuzzy logic operations,
such as fuzzy AND and fuzzy OR. It applies a set of predefined rules that define the
relationship between the input parameters and the stability categories. These rules are
typically based on expert knowledge and experience in slope stability assessment.

• Fuzzy Output: The fuzzy inference system generates a fuzzy output, which represents
the degree of membership of the slope to each stability category. This fuzzy output is
typically a fuzzy set with membership values assigned to different stability categories,
such as “unstable”, “uncertain”, or “stable”. The membership values indicate the
likelihood or confidence of the slope belonging to each category.

• Defuzzification: To obtain a crisp or numerical value for the slope stability, defuzzifi-
cation is performed. Various defuzzification methods can be used, such as centroid,
mean of maximum, or weighted average, to convert the fuzzy output into a single
numerical value or score that represents the overall stability of the slope.

• Stability Classification: Based on the defuzzified value or score, the slope is classified
into a specific stability category, such as “unstable”, “uncertain”, or “stable”. The
classification depends on predefined thresholds or ranges associated with each stability
category.

In accordance with the fuzzy Qslope, the translation of numerical values (Q-value) into
“ambiguous” linguistic variables using the fuzzy-based Qslope method presents notable
advantages in the domain of slope stability analysis. Fuzzy logic serves as a suitable tool
to represent uncertain or imprecise data through linguistic variables, accommodating the
inherent uncertainties associated with complex geological conditions and limited data
availability. An essential advantage lies in its ability to integrate expert knowledge and
experience into the analysis, enabling the capture of intricate relationships through lin-
guistic rules and membership functions. Moreover, the flexibility of fuzzy logic proves
advantageous in handling complex non-linear and non-monotonic behavior, which tradi-
tional numerical methods may struggle to represent effectively. By incorporating fuzzy
logic, the Qslope method gains robustness against data outliers and variations, leading
to more reliable results. The interpretability of the fuzzy-based model is enhanced, as
linguistic variables allow for a clear understanding of the output and the implications for
engineers and stakeholders. Furthermore, the approach facilitates the integration of diverse
geological, geotechnical, and environmental factors into a unified framework, contributing
to a more comprehensive slope stability assessment. The utilization of fuzzy logic and
linguistic variables in the Qslope method contributes to a more flexible, interpretable, and
robust approach, especially when dealing with uncertain data, thereby providing valuable
insights and informed engineering decisions.

The fuzzy Qslope model allows for a more flexible and interpretable approach to slope
stability assessment by incorporating linguistic variables and membership functions. It
captures the inherent uncertainty and vagueness in slope stability evaluations, providing a
quantitative measure of stability and aiding in decision making regarding slope stabilization
measures, design considerations, and risk management strategies.
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2.3. Data Preparations

To assess the stability of slopes, several essential factors need to be considered, which
can be obtained through field surveys and laboratory tests. The uniaxial compressive
strength (UCS) of the rock [46] is a key parameter that is determined by conducting tests
on rock samples obtained from the slope. Additionally, a geomechanical survey based
on the Geological Strength Index (GSI) classification system [17] is performed to evaluate
the slope’s characteristics. The GSI is a tool for rock mass characterization developed by
Hoek and his colleagues for geotechnical designs that are used for rock mass strength
and deformation modulus estimations. GSI provides a description of rock mass based
on the Hoek–Brown criterion and rock mass quality, which involves rock blocks, UCS,
joint intensity, block size, etc. [47] The results utilize Hoek–Brown criterion parameter
calculations with spreadsheets or the Rocklab program. The GSI index is estimated based
on several standard charts presented by the Hoek team [17]. Based on field rock mass
investigations, which range from blocky to disintegrated rock structures (poorly interlocked
and heavily fractured rock mass), the GSI system divides the rock mass environment into
five categories from very good to very poor [47]. The GSI value has an interval of 5 and
ranges from 10 to 80. There are four charts considered for rock mass structures and five
categories of rock mass quality [48]. In this study, the GSI value is utilized to estimate the
geomechanical properties of the target slope, enabling a comprehensive understanding of
its stability characteristics.

2.4. Model Validation

To model validation, geoengineering researchers used two paths for model verification.
The first uses modeling and computer programs; the second uses back-analysis validation
based on actual results from a case study. The presented study used a back-analysis vali-
dation path. In this case, the model was implemented in real conditions, and estimated
results were compared with field data and stability assessments. The agreements and dif-
ferences between the results and the real conditions are investigated to verify the modeling
performance. The model was placed for conducting a back-analysis for a slope located
in Assalouyeh, which belongs to the Bushehr province, southwest of Iran. A slope was
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selected in the South Pars region (Assalouyeh) to demonstrate the presented methodology’s
performance as a slope stability estimator.

South Assalouyeh is located in the southwest of Iran, and shown in Figure 4. Geo-
logically, the studied region is related to discontinuous sedimentary rock masses from the
Aghajari and Mishan formations. These formations mainly consist of grey to cream marl-
stone, shale, marly limestone, layered limestone, and some sandstone. Geo-structurally,
the slopes have three or four discontinuity sets and several unsystematic discontinuity sets
oriented favorably to different scale instabilities. The selected slope belongs to the Aghajari
formation and comprises marly limestone with sandstone geo-units. A view of the studied
slope is presented in Figure 5. Table 1 provides a detailed description of the studied slope.
After consideration of the target slope for stability analysis, the slope was investigated
regarding geotechnical sampling and slope characteristics. This information was used to
provide a stability evaluation with the limit equilibrium method. The limit equilibrium
method is a verification procedure used to verify the fuzzy model’s results. SLIDE program
from Rocscience Inc. (Toronto, ON, Canada) [49] was used for the limit equilibrium method.
SLIDE is a well-known program that provides the safety factor for slopes using 2D limit
equilibrium stability analysis to evaluate the safety factor or probability of failure of circular
or noncircular failure surfaces in soil or rock slopes [50].

Water 2023, 15, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 4. The location of the South Pars region (Assalouyeh) in Iran. 

 
Figure 5. A view of the selected slope. 

SLIDE (known as Slide2) is a piece of geotechnical software developed by Rocscience 
[49], specifically designed for two-dimensional slope stability analysis. With SLIDE, users 
can create detailed models of slope geometries and define material properties for different 
layers. The software supports cohesive and non-cohesive soils, groundwater conditions, 
and seismic effects. It employs limit equilibrium and finite element methods for compre-
hensive slope stability analysis using various established methods, such as Bishop, Janbu, 

Figure 4. The location of the South Pars region (Assalouyeh) in Iran.

Table 1. The geometrical properties of the studied slope.

No. Parameter Unit Value

1 Slope height, H m 17
2 Slope angle, β degree 63
3 Slope surface - Natural
4 Seepage - Dry
5 Weathering - Low to medium
6 GSI - 52
7 Geology - Marlstone
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SLIDE (known as Slide2) is a piece of geotechnical software developed by Roc-
science [49], specifically designed for two-dimensional slope stability analysis. With SLIDE,
users can create detailed models of slope geometries and define material properties for
different layers. The software supports cohesive and non-cohesive soils, groundwater
conditions, and seismic effects. It employs limit equilibrium and finite element methods for
comprehensive slope stability analysis using various established methods, such as Bishop,
Janbu, Spencer, and Morgenstern-Price. SLIDE offers powerful modeling capabilities, al-
lowing users to create accurate representations of slope configurations, including layered
slopes, embankments, and benches. Material models can be chosen from a predefined
library or customized, considering factors such as cohesion, friction angle, and unit weight.

The software incorporates groundwater analysis, enabling the simulation of steady-
state or transient seepage conditions and the consideration of pore pressure effects on
slope stability. Sensitivity analysis and parametric studies can be performed to evaluate
the influence of different factors on stability, while optimization tools help refine slope
designs. SLIDE provides visualization tools, including safety factor contours, displace-
ment vectors, and stress distributions, to aid in the interpretation of results. Users can
generate comprehensive reports containing input data, analysis results, and visualizations
for documentation purposes. Overall, SLIDE is a versatile software package that assists
engineers and geotechnical professionals in analyzing slope stability, optimizing designs,
and making informed decisions about slope stabilization measures. It combines advanced
analysis methods, comprehensive modeling capabilities, and visualization tools to ensure
accurate and efficient slope stability assessments.

In addition to the SLIDE model, the fuzzy model was validated by comparing the
results with expert opinions and the empirical regulations of Qslope. The stability analysis
based on Qslope is determined by utilizing the empirical relationship presented in Equation
(1), along with Equations (2)–(4). To further validate the fuzzy model, 10 rock engineering
experts’ opinions were collected regarding the selected slope’s stability. These expert
opinions were considered as an additional means of validation, with the majority of
responses considered as the primary determinant.
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These verification procedures, including the comparison with expert opinions and the
application of the fuzzy model, were performed to assess the capability and performance
of the proposed model, ensuring its reliability and effectiveness in slope stability analysis.

2.5. Practical Example for Model Implementation

The practical benefits of incorporating fuzzy logic into the Qslope method for rock
slope stability analysis are significant and diverse. Firstly, fuzzy logic enhances the accu-
racy and reliability of slope stability assessments by effectively handling uncertainties and
complex geological data. This practical advantage allows geotechnical engineers to make
well-informed decisions regarding potential hazards and necessary stabilization measures
with increased confidence in the results. Moreover, the adaptability of fuzzy logic enables
the Qslope method to handle real-world data scenarios, including incomplete or uncertain
information, making it a valuable tool for assessing slope stability in challenging geolog-
ical conditions. This flexibility in data representation ensures that the method remains
applicable and practical in various geotechnical settings. The advantages of the fuzzy logic
Qslope method are further underscored by its computational efficiency, leading to time and
cost savings. The faster computational speed enables geotechnical engineers to analyze
multiple slopes efficiently, facilitating timely hazard mitigation strategies. Additionally, the
interpretable results provided by fuzzy logic-based models allow engineers and stakehold-
ers to gain deeper insights into the factors influencing slope stability, enabling effective
communication and collaboration during decision-making processes.

It is essential to consider the limitations of the fuzzy logic Qslope method. Developing
a comprehensive set of fuzzy rules and membership functions can be complex and requires
expertise, which may be a practical challenge in some applications. Adequate and accurate
data is crucial for the method’s performance, and the reliance on such data may pose
limitations in data-scarce or remote regions. Furthermore, the interpretation of linguistic
rules in fuzzy logic may still involve some subjectivity, potentially introducing biases in the
analysis. Careful calibration of membership functions and fuzzy rules is necessary to ensure
the method’s sensitivity to parameter selection does not adversely impact the model’s
performance and reliability. The calibration plays a key role in reducing and controlling
the errors that appear during calculation and assumptions. In conclusion, the fuzzy logic
Qslope method brings practical benefits, including improved accuracy, adaptability to real-
world data, time and cost efficiency, and enhanced interpretability. Its advantages in
handling uncertainties, adaptability, and interpretable results make it a valuable tool for
slope stability analysis. Nonetheless, considering the complexity of rule development,
data requirements, interpretation subjectivity, and sensitivity to parameter selection are all
crucial for its successful implementation and reliable slope stability assessments.

Regarding the results in Tables 2 and 3, it can be stated that the fuzzy logic Qslope is
capable of providing reliable results with low uncertainties. We can point out the practical
benefit of the proposed method based on the explicit step-by-step development of the
example presented as follows (and, for simplicity, we will consider three input parameters:
Q-value, joint roughness coefficient (JRC), and groundwater condition (GW)):

• Step 1: Linguistic Variables and Membership Functions: Define linguistic variables for
each input parameter. For instance, the Q-value can be categorized as the different
parameters that are presented in Figures 1–3.

Table 2. Result of Roclab software for studied slope.

Evaluation Criteria Results

Hoek–Brown mb = 1.261; s = 0.0048; a = 0.505
Mohr–Coulomb C = 1.102 MPa; phi = 28.93◦
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Table 3. The calculated result of stability analysis with different applied methods.

Analysis Method Estimated sValue Representative Factor of Safety Description Decision

Limit equilibrium method 1.035 1.035 Stable with a low safety
factor Critical state

Expert opinion Failure ~1.00 Slope need attention Unstable
Qslope 0.094 <1.00 Unstable Local unstable
Fuzzy Qslope_classic 44.49 (<50%) 1.047 Unstable Local unstable

Fuzzy Qslope_modified
36.45 (<50%)
34.12 (<50%)

1.057 (Upper)
1.059 (Lower) Unstable Local unstable

Assign membership functions to each linguistic variable, determining the degree of
membership for each value within the categories. Membership functions can take various
shapes, such as triangular or trapezoidal (see Figures 1–3).

• Step 2: Fuzzy Rule Base: Create a set of fuzzy rules that relate the input variables to
the output (slope stability assessment). For example:

IF Q-value is poor AND JRC is low AND GW is high, THEN Stability is Low.
IF Q-value is moderate AND JRC is medium AND GW is medium THEN Stability is Medium.
IF Q-value is good AND JRC is high AND GW is low THEN Stability is High.

• Step 3: Fuzzification: Given specific input values for Q-value, JRC, and GW, apply the
membership functions to determine the degree of membership for each input in their
respective linguistic categories.

• Step 4: Rule Evaluation: Evaluate each fuzzy rule based on the degree of membership
of the inputs. Combine the fuzzy rules using fuzzy logic operators (e.g., AND, OR) to
obtain the overall fuzzy output for each stability category.

• Step 5: Defuzzification: Convert the fuzzy output obtained from Step 4 into a crisp
output value for slope stability. Defuzzification methods, such as the Center of Gravity
or Weighted Average, can be employed for this purpose.

• Step 6: Interpretation: Interpret the crisp output value to determine the final slope
stability assessment. For example, if the defuzzified value falls into the “Stable”
category, the slope stability is assessed as “Stable” (See Figure 3).

• Step 7: Validation and Fine-Tuning: Validate the fuzzy logic Qslope model by compar-
ing its stability assessments to real-world slope stability data or expert knowledge
(verification stage). Fine-tune the model by adjusting the membership functions and
fuzzy rules based on validation results to improve accuracy.

This step-by-step development process showcases how fuzzy logic can be integrated
into the Qslope method to assess slope stability more comprehensively, considering uncer-
tainties and complex data. The example provided is simplified for illustrative purposes,
and in practice, the model would involve multiple input parameters and more intricate
fuzzy rule bases. Nonetheless, this example highlights the practical application of fuzzy
logic in enhancing the Qslope method for slope stability analysis.

3. Results and Discussions

In rock structure studies, the uncertainties are related to geometrical properties that
originate from the rock mass features. In this regard, employing the fuzzy method proves
to be highly advantageous as it does not require much information about the environment
and focuses on proper approximation of environmental elements to obtain accurate results.
Hence, the application of fuzzy approaches in various analyses that face uncertainties
is an advantage. Using fuzzy logic to estimate the stability condition of the slopes with
appropriate accuracy can help in rapid stabilizations. The proposed method used fuzzy and
Qslope principles to investigate the slope stability status. The representation of input-output
parameter variations leads to a fast decision on the stability of slopes. The selected slope
in the South Pars region was analyzed regarding stability by the proposed method in the
same way as the limit equilibrium method and expert opinion, which were compared with



Water 2023, 15, 2949 15 of 21

the algorithm results. To conduct the limit equilibrium evaluations, several geotechnical
tests, such as uniaxial compressive strength, which was the same as the GSI index, were
performed. The GSI index was estimated based on a field geomechanics survey to determine
the Hoek–Brown criteria. Rocklab program [51] was used to provide the index geotechnical
properties of the slope. Figures 6 and 7 present the view and limit equilibrium analysis
results for the selected slope. Table 2 provides the geomechanical properties of the rock
materials by using Roclab software. Table 3 illustrates the stability analysis results for
the verification slope based on different assessment methods. As can be seen in Table 2,
the fuzzy description prepared by the applied method is in good agreement with the
expert opinion, and it limits equilibrium analyses. So, using the proposed fuzzy-based
Qslope method is capable of providing proper results in stability assessments. In this
regard, the fuzzy model provides appropriate results that could be used as alternative or
complementary solutions for primary stability analyses of slopes.
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In Table 2, the expert opinions were established for geotechnical experts who used
their knowledge of geology, rock mechanics, and slope behavior to evaluate factors such
as rock mass quality, jointing patterns, weathering, groundwater conditions, and other
relevant parameters to provide an approximation with basic (limited) data to predict the
slope stability condition on the studied slope.

Table 2 presents two values for Qslope derived from different methods. The first value,
referred to as ‘Qslope_classifc,’ is based on the original Barton method [39]. The second
value, named ‘Qslope_modified,’ is derived from a modified method developed by Azarafza
et al. [43]. The first value is estimated based ordinary procedure of Barton and the second
value is estimated based on the modified method. Upon examining these two outcomes, it
is apparent that there is minimal disparity between them. However, it is worth noting that
the improved method exhibits a less conservative approach compared to the conventional
method. The conventional ordinary method (Qslope_classifc) relies on the utilization of the
relationship illustrated in Figure 1 and the corresponding Equation (1). In contrast, the
second method employs Equations (3) and (4) to derive its results. On the contrary, the
Qslope value obtained from Equation (1) in this table indicates that the slope falls within the
“Uncertain” zone when plotted on Figure 1. The findings presented in this table suggest
that further investigation is warranted for the studied area due to cross-sectional instability.
The presence of localized instabilities within the domain indicates its classification as low
stability. Consequently, it is crucial to implement maintenance techniques to stabilize the
area and ensure its stability. In the Qslope fuzzy model, these input parameters are defined as
linguistic variables, which represent qualitative descriptions rather than precise numerical
values. Examples of input parameters can include rock quality, joint spacing, water pressure,
and slope geometry. Each input parameter is assigned membership functions that describe
the degree of membership to different fuzzy sets, such as “low”, “medium”, or “high”
stability. The model combines these linguistic variables and membership functions using
fuzzy logic operations, such as fuzzy AND and fuzzy OR, to calculate a fuzzy output that
represents the slope stability. The output is typically represented by fuzzy sets, such as
“safe”, “uncertain”, or “unstable”. According to Figure 6, an output parameter <0.25 means
“unstable”, 0.25–0.50 means uncertain with tendency to unstable side, 0.50–0.75 means
uncertain with tendency to stable side, >0.75 means “stable”. The Qslope fuzzy model
allows for the incorporation of expert knowledge and linguistic descriptions, providing a
more flexible and interpretable approach to slope stability assessment. It helps capture the
inherent uncertainty and vagueness associated with rock slope stability evaluations. The
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model’s outputs can be further analyzed and used to make informed decisions regarding
slope stabilization measures and risk management strategies.

The Qslope fuzzy model utilizes an output parameter that is modified based on specific
ranges to classify the slope stability. The modified classification criteria are as follows (see
Figure 6):

• If the output parameter is less than 0.25, it is categorized as “unstable”.
• If the output parameter falls within the range of 0.25 to 0.50, it is classified as “uncertain

with a tendency towards the unstable side”.
• If the output parameter is between 0.50 and 0.75, it is considered “uncertain with a

tendency towards the stable side”.
• If the output parameter is greater than 0.75, it is designated as “stable”.

These classifications help provide a clearer understanding of the slope stability assess-
ment by assigning linguistic categories to the fuzzy output parameter. By incorporating
these ranges and interpretations, the Qslope fuzzy model offers a more nuanced represen-
tation of the slope stability condition, accounting for varying degrees of uncertainty and
tendencies towards stability or instability. In the Qslope fuzzy model, the output parameter
represents the fuzzy classification of slope stability. However, to further analyze and in-
terpret the results, the fuzzy output can be transformed into more traditional engineering
parameters, such as beta (β) and safety factor. Beta (β in Equations (2)–(4)) is a numerical
index that quantifies the level of uncertainty associated with the slope stability classifica-
tion (see Figure 1). It provides a measure of the degree to which the slope is either stable
or unstable. The fuzzy output parameter can be mapped to a corresponding beta value
using the membership functions defined in the fuzzy model. This mapping allows for a
more quantitative representation of uncertainty and provides a basis for comparison and
decision making. On the other hand, the safety factor is a well-established engineering
parameter used to assess slope stability. It represents the ratio of resisting forces (such as
shear strength) to driving forces (such as gravitational forces) acting on the slope. The
fuzzy output parameter can be converted to a safety factor value based on predefined rules
or relationships that link the fuzzy classification to safety factor values. These rules can be
derived through expert knowledge or empirical correlations.

By transforming the fuzzy output parameter to beta and safety factor (F.S) values,
the Qslope fuzzy model provides a more familiar and interpretable representation of slope
stability. Beta offers a numerical measure of uncertainty, while the safety factor provides an
engineering parameter commonly used in slope stability analysis. This allows engineers
and geotechnical professionals to better understand and utilize the results for decision
making, design, and risk management purposes.

Based on the provided values of F.S = 1.035 and Fuzzy Output (Beta) = 0. 4449 (classic
Qslope), we can use the relationship between beta and the factor of safety to determine the
fuzzy Qslope model’s classification.

First, we calculate the fuzzy output parameter using the relationship:

FS ≈ |(1 + Beta)/(1 − Beta)|

Plugging in the given value of Fuzzy Output = 0.4449 into the equation, where
FS ≈ 1.047. Next, we can classify the fuzzy output parameter based on the previously
defined ranges:

• If the fuzzy output parameter is less than 0.25, it is categorized as “unstable”.
• If the fuzzy output parameter falls within the range of 0.25 to 0.50, it is classified as

“uncertain with a tendency towards the unstable side”.
• If the fuzzy output parameter is between 0.50 and 0.75, it is considered “uncertain

with a tendency towards the stable side”.
• If the fuzzy output parameter is greater than 0.75, it is designated as “stable”.
• In this case, the fuzzy output parameter of approximately 0.0175 would fall into the

“unstable” category according to the given ranges.
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Therefore, based on the F.S value of 1.035 (SLIDE) and Fuzzy Output value (Beta), the
fuzzy Qslope model would classify the slope as “ uncertain with a tendency towards the
unstable side”. Based on the findings of the comparative verification, it can be concluded
that the fuzzy Qslope model yields dependable and precise results in a more time-efficient
manner compared to traditional methods. The fuzzy Qslope model offers several advantages
over traditional methods in slope stability assessment:

• Handling Uncertainty: The fuzzy logic principles employed in the Qslope model allow
for the effective handling of uncertainty and imprecise information. It accommodates
the inherent vagueness and variability associated with geological and geotechnical
parameters, providing a more robust framework for slope stability analysis.

• Flexibility and Interpretability: The fuzzy Qslope model uses linguistic variables
and membership functions, making it a flexible and interpretable approach. It en-
ables the incorporation of expert knowledge and allows for the integration of qual-
itative and quantitative data, providing a comprehensive understanding of slope
stability conditions.

• Faster Analysis: The fuzzy Qslope model can expedite the analysis process compared
to traditional methods. By leveraging fuzzy logic techniques, it simplifies and auto-
mates complex calculations, reducing the time required for manual assessments. This
time efficiency can be particularly advantageous when dealing with large-scale slope
stability evaluations.

• Risk Evaluation: The fuzzy Qslope model facilitates a more nuanced evaluation of
slope stability risks. By providing fuzzy output values, it offers a range of stability cat-
egories (such as “unstable”, “uncertain”, or “stable”) with corresponding membership
degrees. This enables a more detailed understanding of the potential risks and assists
in prioritizing mitigation measures.

• Improved Decision Making: The fuzzy Qslope model assists in making informed
decisions regarding slope stabilization techniques and risk management strategies.
By providing quantifiable measures of stability and a clear classification system, it
helps engineers and geologists evaluate the effectiveness of different interventions
and select the most appropriate solutions for slope stability challenges.

4. Conclusions

The presented study aimed to develop a fuzzy-based model for estimating slope
stability conditions using the principles of Qslope. The model utilized fuzzy logic set theory
in conjunction with the Qslope empirical classification system to assess the stability of slopes.
The model incorporated six input parameters, namely, RQD, Jn, Jr, Ja, Jwice, and SRFslope,
which are essential requirements for the Qslope classification system in rock slopes. These
input parameters were fuzzified using trapezoidal membership functions, and entered into
the fuzzy inference system (FIS) for evaluations. The outputs were classified into “stable”,
“uncertain”, and “unstable” classes, which were fuzzified using Gaussian membership
functions and incorporated into the fuzzy system.

The fuzzy-based Qslope model was implemented using the Python programming lan-
guage. The input and output parameters were ordered according to the Qslope stability
procedure, providing a fast and reliable perspective on slope stability. To validate the
proposed model, a real case study was conducted on a selected slope in the South Pars
region (Assalouyeh), located in southwest Iran. Various verification procedures, includ-
ing limit equilibrium analysis, expert opinions, and classic/modified Qslope assessments,
were performed on the selected slope and compared with the results obtained from the
fuzzy-based Qslope model. The stability of the slope was evaluated using the SLIDE 2D
limit equilibrium software, with required data obtained from geotechnical tests and the
GIS index.

The results of the study demonstrated good agreement between the applied fuzzy-
based Qslope model and the comparative options. The SLIDE analysis yielded a safety
factor of 1.035, while experts suggested a safety factor of approximately 1.00. The Qslope
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classification determined the slope condition as “uncertain” (based on Figure 1). The fuzzy
model, for both the classic and modified procedures, also classified the slope condition as
“uncertain”, which aligned with the original Qslope method. Additionally, the stability index
value of 43.82 fell within the “uncertain” class. These findings confirm the capability of the
proposed model to provide accurate results in stability assessments. The fuzzy model offers
a viable alternative or a complementary solution for primary stability analyses of slopes, as
demonstrated by its satisfactory performance in this study. Considering the limitations of
the fuzzy logic Qslope method is imperative. The process of developing a comprehensive set
of fuzzy rules and membership functions can be intricate, demanding specialized expertise,
thereby posing practical challenges in certain applications. The method’s performance
heavily relies on adequate and accurate data, which may present limitations in regions with
scarce or remote data availability. Additionally, the interpretation of linguistic rules in fuzzy
logic might entail some subjectivity, potentially introducing biases in the analysis. Hence,
meticulous calibration of membership functions and fuzzy rules becomes indispensable to
mitigate the method’s sensitivity to parameter selection, ensuring the optimal performance
and enhanced reliability of the model.

In the realm of slope stability analysis, future research on the fuzzy-based Qslope
method should focus on several key aspects to enhance its applicability and reliability.
Firstly, efforts should be made to expand the existing fuzzy rule base, incorporating a
comprehensive range of geological, geotechnical, and environmental parameters relevant
to slope stability. The optimization of membership functions using data-driven techniques
or optimization algorithms is warranted to refine the model’s accuracy. Furthermore, the in-
tegration of uncertainty analysis is essential to quantify the model’s reliability and to assess
the associated risks. Comparative studies should be conducted to contrast the performance
of the fuzzy-based Qslope method with conventional slope stability analysis methods. The
approach should be validated through rigorous case studies and field investigations to
ascertain its suitability for real-world slope stability scenarios. Additionally, exploring
the potential integration of fuzzy logic with data-driven approaches could lead to more
adaptive and robust models. The development of user-friendly software to implement
the fuzzy Qslope method can facilitate its widespread use by practitioners and engineers.
Further exploration into multi-hazard consideration and sensitivity analysis will contribute
to a more comprehensive understanding of the method’s limitations and strengths. Lastly,
investigations into the applicability of the fuzzy Qslope method in diverse geological settings
and rock formations would offer valuable insights into its practicality and versatility.
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