
Student Code Refactoring Misconceptions
Eduardo Oliveira
Utrecht University
The Netherlands

e.carneirodeoliveira@uu.nl

Hieke Keuning
Utrecht University
The Netherlands

h.w.keuning@uu.nl

Johan Jeuring
Utrecht University
The Netherlands
j.t.jeuring@uu.nl

ABSTRACT
Teaching students to develop code of good quality is important.
Refactoring – rewriting a program into a semantically equivalent
program of better quality – is a common technique to improve code
quality. It is therefore relevant for students to learn about refactor-
ing, even for the smaller programs theywrite as beginners. However,
students make mistakes when refactoring programs. Some of these
mistakes appear often, and might be caused by misconceptions they
have. In this paper, we investigate common student code refactor-
ing misconceptions. We do this by analyzing log data containing
program snapshots of students working on refactoring exercises
in a tutoring system. We manually inspect all transitions from a
correct program state to an incorrect state. We then use grounded
theory to identify and categorize misconceptions students might
have when refactoring programs. As a result, this work (1) defines
the concept of refactoring misconception, and (2) provides an ini-
tial list of 25 such misconceptions, together with an accompanying
website with full details.

CCS CONCEPTS
• Social and professional topics → Computing education;
Software engineering education.

KEYWORDS
code refactoring; misconceptions; code quality; program snapshot
analysis; grounded theory; student code refactoring misconcep-
tions; programming education
ACM Reference Format:
Eduardo Oliveira, Hieke Keuning, and Johan Jeuring. 2023. Student Code
Refactoring Misconceptions. In Proceedings of the 2023 Conference on In-
novation and Technology in Computer Science Education V. 1 (ITiCSE 2023),
July 8–12, 2023, Turku, Finland. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3587102.3588840

1 INTRODUCTION
The CS Education community studies, amongst others, how to teach
programming to novice students. The interest in the question of
how to teach novice students to develop software of good quality
has increased in the last decade [22, 25, 30]. Good code quality
can be obtained through code refactoring. Code refactoring is an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE 2023, July 8–12, 2023, Turku, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07. . . $15.00
https://doi.org/10.1145/3587102.3588840

internal change in a program structure, made by a programmer,
that does not modify its observable behavior [14]. Inappropriate
refactoring may lead to either semantically incorrect code or a
decrease in code quality aspects, such as code readability.

Another topic of interest in programming education is under-
standing the difficulties novice students experience when learning
programming [2, 8, 26, 29]. Qian and Lehman [31] have performed
a literature review on student misconceptions in introductory pro-
gramming. They emphasize that raising educators’ awareness of
student misconceptions can contribute to a proper selection and
use of strategies and tools for teaching. Chiodini et al. [9] have
collected student programming activities for more than a decade
to identify their programming misconceptions. The authors intro-
duce a framework to structure these misconceptions as well as a
collection of such misconceptions.

Previous studies on programming misconceptions mostly target
either syntax errors or misconceptions that typically occur when a
student is following specifications to write a program from scratch.
As far as we are aware, student errors while refactoring programs
have not been studied. Our work addresses this gap by first intro-
ducing the concept of refactoring misconception (RM). Then, we
use a dataset from an experiment in which students worked on
refactoring exercises in a tutoring system [23]. From this dataset, we
analyze 482 sequences of program snapshots from 133 students. We
inspect all consecutive program snapshots in which a student turns
a correct program state into an incorrect state, due to an incorrect
refactoring step. Our goal is to identify and develop an organized
collection of RMs held by students, where we focus on small-scale
refactorings. The research question that guides this study is:

RQ:What are the common refactoring misconceptions that students
hold when refactoring simple programs? To which code quality issues
are they connected?

Our main contributions in this work are: (1) the definition of
a new concept of refactoring misconception and (2) the develop-
ment of a structured collection of refactoring misconceptions. The
rest of this paper is organized as follows: in Section 2, we present
background and related studies; in Section 3, we define the concept
of a refactoring misconception and provide examples of RMs; we
describe our processes of data collection and analysis in Section
4; in Section 5, we present a list of RMs as well as discuss a few
relevant cases; Section 6 is dedicated to the concluding remarks
and future work.

19

https://doi.org/10.1145/3587102.3588840
https://doi.org/10.1145/3587102.3588840
https://doi.org/10.1145/3587102.3588840
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588840&domain=pdf&date_stamp=2023-06-30

ITiCSE 2023, July 8–12, 2023, Turku, Finland Eduardo Oliveira, Hieke Keuning, and Johan Jeuring

2 BACKGROUND AND RELATEDWORK
Code Quality. Code quality has been a topic of interest in the

CS Education community. An ITiCSE working group has investi-
gated how code quality is perceived by educators, students and
professional developers [5]. A common definition of code quality
was not found, but a few terms were often used to describe code
quality, typically associated with readability and structure. In the
present work, we follow Stegeman et al.’s [35] definition of code
quality: "an aspect of software quality that concerns directly observ-
able properties of source code", such as algorithmic aspects (flow,
expressions) and structure (decomposition, modularization).

One way to evaluate code quality is through the presence or ab-
sence of quality issues. Beck and Fowler [3] label these quality issues
as code smells. McConnell [28] presents examples of code smells,
which range from issues that may be found in smaller programs,
e.g. having a deeply nested loop or duplicated code, to issues related
to more advanced topics, such as changing multiple inheritance
hierarchies in parallel after code updates.

Several recent studies focus on investigating code smells found
in student programs [6, 11, 12, 19, 40]. For example, Keuning et al.
[22] examine code quality issues present in Java snapshots written
by novice programmers over a period of time. They compose a list
of 24 major issues and find that students rarely fix these issues.
Similarly, Effenberger and Pelánek [13] identify code quality issues
in functionally correct Python programs for introductory program-
ming level problems. Furthermore, Luxton-Reilly et al. [27] propose
a taxonomy to classify different student program solutions in terms
of structure, syntax and style.

CodeRefactoring. Fowler [14] describes refactoring as "a change
made to the internal structure of software without modifying its ob-
servable behavior". Although software is usually associated with
large systems, code refactoring can also be used to improve the
quality of small programs. Beck and Fowler [3] present several code
smells that may indicate a need for refactoring and a catalog of
such refactorings to address these smells. For instance, the Extract
Method refactoring can be used to break down a long and complex
method into smaller ones; another example is the Replace Magic
Number with Symbolic Constant refactoring, which can be used to
increase code readability.

Fowler suggests that refactoring code may have several benefits
for programmers, including better code understanding and finding
bugs [14]. Most past studies addressed the impact of these advan-
tages on large systems, which are typically designed andmaintained
by experienced developers. Nonetheless, there have been recent
efforts to also present this topic to novices. Izu et al. [20] developed
a resource to support students with identifying and refactoring
code related to conditional statements; Ureel II and Wallace [37]
introduce a tool to detect antipatterns produced by novices and
to help them preserve promising code fragments; Wiese et al. [39]
analyze student difficulties with coding style when editing code;
Keuning et al. [24] designed a tutoring system to help students
improve functionally correct code; Birillo et al. [4] propose a tool
to assess the code quality of student programming solutions, and
compare their tool with Keuning et al.’s [24] tutoring system; and
Choudhury et al. [10] developed a programming tutor supporting
student code style skills.

Programming Misconceptions. The term misconception has
long been used in the field of learning sciences. Smith III et al. [33]
characterize misconception as "a student conception that produces a
systematic pattern of errors". Likewise, VanLehn [38] describes these
systematic errors as bugs, whereas occasional and unintentional
actions are slips.

There does not seem to be consensus on the definition of a pro-
gramming misconception in the context of programming education.
Chiodini et al. [9] present a few definitions from other studies,
such as Sorva’s [34], in which misconception is used to refer to
"understandings that are deficient or inadequate for many practical
programming contexts", and Qian and Lehman [31]’s, that defines it
as errors in conceptual understanding of programming topics.

Chiodini et al. introduce the concept of programming language
misconception, which is "a statement that can be disproved by reason-
ing entirely based on the syntax and/or semantics of a programming
language" [9]. They also propose a structure for organizing collec-
tions of programming misconceptions, and present an inventory
of programming misconceptions following this structure.1 Each
misconception is exemplified and described in terms of its possible
origin, typical symptoms, value for the CS community as well as a
proper correction for the error. The listing below shows an example
of a programming misconception, AssignCompares, in which a sin-
gle equal operator (=) is incorrectly used in an attempt to compare
two values.

if (x = 1) {
...

}

Several other studies also address the topic of programming
misconceptions. Sirkiä and Sorva [32] analyze the typical mistakes
that students make in the context of programming with a visual
program simulation tool, compiling a total of 26 programming
misconceptions. Hristova et al. [18] identify a set of 20 programming
mistakes that often occur in student solutions. Based on their work,
Brown and Altadmri [7] survey educators to find out how often
students make such mistakes, and how much time they need to fix
them. Gusukuma et al. [15] evaluate the impact of a misconception-
driven feedback model on student learning.

Refactoring Behavior. Keuning et al. [23] designed and eval-
uated a refactoring tutoring system to help students refactor se-
mantically correct code. They carried out an experiment in which
133 students used the tutoring system to improve code of six pro-
gramming exercises. Their work focused on the analysis of student
behavior when using the system, such as the number of students
who requested hints to refactor code or completed each exercise.

Our work focuses on refactoring steps that students take to
improve code and their errors while refactoring those exercises.
We use their dataset to perform a deep analysis of student code
submissions by examining the refactoring steps taken between each
snapshot. Our goal is to identify and categorize incorrect refactoring
steps taken by students between these states that might have been
caused by a misconception.

1https://progmiscon.org/

20

Student Code Refactoring Misconceptions ITiCSE 2023, July 8–12, 2023, Turku, Finland

3 REFACTORING MISCONCEPTIONS
We define a refactoring misconception as follows:

A refactoring misconception (RM) is an error made by a
programmer when refactoring semantically correct code
resulting in incorrect code. The error shows an inadequate
understanding of a particular programming concept.

We give two typical examples of RMs. First, a programmer tries to
shorten the arithmetic expression in the green frame below. They
remove the second reference to the variable score and intend to use
a compound operator (-=), but do not swap the order of the equal
and minus sign. As a result, the refactored expression in the red
frame assigns -3 to the variable score.

score = score - 3; → score =- 3;

In the next example, a programmer tries to merge the two nested
conditions in the green frame. The red frame shows how the pro-
grammer uses an &&-operator to combine the boolean expressions,
but does not take into account the else part of the outer-if when
introducing the new boolean expression.

if (posOnly) {
if (value >= 0) {

sum += value;
}

}
else {

sum += value;
}

→
if (posOnly && value >= 0) {

sum += value;
}

We do not consider the following errors to be refactoring mis-
conceptions:

• Syntax errors and typos.
• Occasional errors – described elsewhere as slips [38].
• Programming misconceptions – errors when incrementally
developing code.

A refactoring misconception occurs when an existing piece of
semantically correct code is incorrectly changed, whereas a pro-
gramming misconception occurs when a programmer follows spec-
ifications to write a program from scratch, and makes an error. A
refactoring misconception can be identified through the analysis of
the transition between two code snapshots, whilst a programming
misconception can be detected in a single code snapshot. Thus, the
concept of refactoring misconception is fundamentally different
from programming misconception.

4 METHOD
In this section, we describe the tutoring system from which we
gathered data as well as the use of both transaction log analysis
and a grounded theory-based approach for our data collection and
analysis.

4.1 The RPT System
The Refactoring Programming Tutor (RPT)2 is a web-based system
which currently includes six Java programming exercises. In each
exercise, functionally correct code containing a number of quality
issues is given. The task is to remove the issues by refactoring
the code. The RPT target audience are undergraduate students,
who have already studied programming basics – such as loops,
conditionals and functions [23].

As presented in Figure 1, the RPT system contains a regular code
editor as well as two features to support code refactoring: (1) Check
progress and (2) Get hints. When a student checks their progress,
the system diagnoses the current and the previous state of the code
mainly to determine whether the code is still correct and whether
one or more code quality issues were solved. After evaluating the
code, the system presents one of these diagnoses:

• Expected: RPT identifies an adequate refactoring step.
• Correct: the code is correct, but RPT cannot recognize what
has been changed.

• Similar: the code has not changed much in comparison to
its previous state.

• Buggy: RPT identifies an incorrect refactoring step.
• Test case failed: the code is not functionally correct.
• Compiler error: the code contains a syntax error or an un-
supported language construct.

Figure 1: RPT - Home screen

4.2 Dataset
In 2019, Keuning et al. [23] carried out an experiment atWindesheim
University of Applied Sciences, in the Netherlands, with mostly
second-year Computing students, who were enrolled in a C# pro-
gramming course. A total of 133 students gave consent to participate
in the experiment in which they attempted to solve the refactoring
exercises present in RPT.

This experiment resulted in a dataset with 12,254 log entries.
The dataset includes, amongst others, the program snapshots from
the students. A program snapshot contains the current state of the
program that the student is working on. A new snapshot is logged
in the database when the student clicks on the Check progress or
Get hints button.
2http://hkeuning.nl/rpt

21

ITiCSE 2023, July 8–12, 2023, Turku, Finland Eduardo Oliveira, Hieke Keuning, and Johan Jeuring

Table 1: Refactoring Misconceptions

Misconception Description Occ.
Arithmetic Expressions
A1. IncorrectArithmeticExpressionUpdate Update an arithmetic expression incorrectly. 10
A2. DoubleNegatedArithmeticExpression Use an unnecessary minus sign as a compound operator in a subtraction. 3
A3. BadArithmeticExpressionShortening * Simplify an arithmetic expression incorrectly. 23
Boolean Expressions
B1. IncorrectNegationEvenCheck Incorrectly change an even/odd check. 9
B2. IncorrectBooleanExpressionSimplification * Incorrectly simplify a single boolean expression. 12
B3. IncorrectComposedExpressionSimplification * Incorrectly simplify a composed boolean expression. 8
B4. UnnecessaryComparisonOperatorUpdate Update a comparison operator unnecessarily. 14
B5. UnnecessaryLogicalOperatorUpdate Update a logical operator unnecessarily. 4
Conditionals
C1. IfsMerged * Merge if statements incorrectly. 45
C2. RequiredIfStatementRemoved Remove a required if statement. 38
C3. UnnecessaryElseKept Keep an unnecessary else block after an update in the if statement. 35
C4. BadIfElseSimplification * Update a boolean expression incorrectly in an if-else block simplification. 28
C5. ConditionalCopiedToOuterIf Copy an unnecessary boolean expression from the inner if to the outer if statement. 10
C6. ElseRemoved Remove an else block without updating the boolean expression in the if statement. 37
Flow
F1. ReturnMoved Move a flow-related command (return/break/continue) to an incorrect location. 7
F2. ElseBlockMovedToInnerIf Unnecessarily move an else block from the outer if to the inner if statement. 4
F3. StatementReplacedByFlowCommand Replace a statement/group of commands by an incorrect flow-related command. 6
F4. ReplacedByReturn * Incorrectly move a return command to replace a statement. 5
F5. SelfAssignmentReplacedByReturn Replace a self-assignment by a return command. 6
Loops
L1. ForEachVariablesNotUpdated * Replace a for loop by a for-each loop without updating the references to the variables. 71
L2. BadForLoopValues Use an incorrect initial value/increment in a for loop. 9
L3. ForReplacedByForEach * Replace a for loop by an incorrect for-each loop. 18
L4. ReversedComparisonOperatorInWhile Reverse a comparison operator in a while loop unnecessarily. 6
L5. IncorrectForLoopBreak Use an incorrect break condition in a for loop. 7
L6. ForReplacedByWhile Replace a for loop by an incorrect while loop. 3

An asterisk (*) indicates that the RM is discussed in this paper.

4.3 Data Analysis
To answer our research question, we performed a transaction log
analysis (TLA) [21], addressing three major stages: (i) data collec-
tion, (ii) data preparation and (iii) data analysis. For the first TLA
stage, we used the dataset from Keuning et al. [23] described in 4.2.

In our analysis, we were particularly interested in examining
four different scenarios, in which a student program state went
from a previous "good state" – (1) Expected, (2) Correct, (3) Similar
or (4) at the beginning of the exercise – to a failed test case, which
is labeled as Not Equivalent in the dataset.

For the data preparation stage, we retrieved all consecutive snap-
shots from Exercises 1 to 5 in the dataset, in which a good state
submission was followed by a submission with a Not Equivalent
state. Submissions for Exercise 6 were not considered in this study,
since this exercise asks to design a complete solution to a problem
from scratch, and is less directly related to refactoring code.

For the final TLA stage, we adopted a grounded theory-based
analysis in which three authors actively participated. Our analysis
followed the first two iterative coding phases proposed by Strauss
and Corbin [36], which are open coding and axial coding. We did not
perform the third phase, selective coding, as we were not propos-
ing a new theory or modifying a previous one. We performed the
following activities:

Open coding. Initially, one researcher identified all incorrect
refactoring steps between two program snapshots which trans-
formed a correct program state to an incorrect state. Then, the
researcher inspected the sequences of program snapshots surround-
ing (before and after) these incorrect states. For group discussion,
the researcher selected a subset of those sequences that represented
the most common student errors. Then, all three researchers indi-
vidually analyzed this subset of program snapshots and developed
an initial coding of misconceptions.

Axial coding. One researcher evaluated the initial coding and
proposed a preliminary categorization of those misconceptions.
Then, the researchers carried out multiple rounds of discussion
to refine the collection of misconceptions and categorization. For
this, each misconception was analyzed in terms of the conditions in
which it occurred, such as the type of exercise and code structures
involved. When fewer than three different students performed the
same incorrect step, the researchers considered it to be an occasional
error, not an actual RM.

5 RESULTS AND DISCUSSION
We analyzed 482 sequences of student program snapshots and iden-
tified 25 refactoring misconceptions. We classified each misconcep-
tion according to the code structure related to it. The only exception

22

Student Code Refactoring Misconceptions ITiCSE 2023, July 8–12, 2023, Turku, Finland

is Flow, which derives from Stegeman et al.’s rubric [35]. Our five
categories are (1) Arithmetic Expressions, (2) Boolean Expressions,
(3) Conditionals, (4) Flow and (5) Loops. The list of refactoring
misconceptions is shown in Table 1, which also includes a short
description and the number of occurrences of each misconception.
A full description of the RMs along with code examples can be
found online.3 Here we discuss eight cases of frequent refactoring
misconceptions in student solutions. We give at least one example
from each category, and also include some particularly illustrative
examples.

Case C1. IfsMerged. In Exercise 2, combining two nested if state-
ments into a single one is considered a desirable refactoring step,
as it reduces duplication. 45 students took incorrect steps when
attempting to solve this issue. In Section 3, this RM case was further
discussed. In addition to these 45 cases, RPT already recognizes a
specific instance of this error, of which 441 occurrences were found
in the dataset.

Case A3. BadArithmeticExpressionShortening. In Exercises
1, 3 and 4, using compound operators to simplify an arithmetic
expression is an appropriate refactoring step. A common student
error when attempting to do this is described in Section 3. Another
typical error was to assign the simplified expression to count itself
(count = count++), which does not increase the value of count.

count = count + 1; → count = count++;

Case B2. IncorrectBooleanExpressionSimplification. In Ex-
ercise 3, a possible refactoring step concerns the shortening of a
boolean expression, in which, for example, stop == false can be
simplified to !stop. 12 students rewrote this expression omitting the
logical NOT operator (!), consequently changing the semantic of
the expression. This error might have been influenced by the short-
ening of a boolean expression in the previous exercise, in which
posOnly == true should be shortened to posOnly.

if (stop == false) {
total += array[i];

}

↓

if (stop) {
total += array[i];

}

Case B3. IncorrectComposedExpressionSimplification. To
deal with the merging of nested if statements (Case C1) in Exercise
2, students wrote a composed boolean expression in a single if
statement. This new expression typically contained an unnecessary
check for the value of the variable posOnly being true. When stu-
dents attempted to simplify the expression, a common incorrect
step was to remove another (required) part of the expression, not

3https://sites.google.com/view/refactoring-misconceptions

the actual redundant check.

if (!posOnly || (posOnly && i > 0)) {
sum += i;

}

↓

if (posOnly && i > 0) {
sum += i;

}

Case C4. BadIfElseSimplification. In Exercise 4, simplifying
an if-else statement to a single if statement is part of a larger correct
refactoring step, as shown in the green frame below. In most cases,
students properly extracted the return statements from both if and
else blocks, but could not apply De Morgan’s rules [16] properly
when updating the boolean expression. When attempting to move
the remaining statement (score -= 3) to the if block and remove
else, 28 students also updated the expression by replacing EQUAL
operators by NOT EQUAL (!= symbol), but they did not update the
OR-operator by an AND-operator.

if (day == 6 || day == 7) {
return score;

} else {
score -= 3;
return score;

}

→

if (day != 6 || day != 7) {
score -= 3;

}
return score;

Case F4. ReplacedByReturn. An expected refactoring step in
Exercise 3 is to remove the stop variable, which handles the for loop
flow, and to exit this loop as soon as a given condition is met – this
is displayed in the green frame below. When attempting to code an
immediate exit to the for loop, students moved the method return
to the loop. A possible correct refactoring step here could be the
use of a break command to exit the for-loop.

for (int i = 1; i < arr.length; i += 2) {
if (!stop) {

if (arr[i] != -1) {
total += arr[i];

} else {
stop = true;

}
}

}
return total;

↓

for (int i = 1; i < arr.length; i += 2) {
if (arr[i] != -1) {

total += arr[i];
} else {

return total;
}

}

23

ITiCSE 2023, July 8–12, 2023, Turku, Finland Eduardo Oliveira, Hieke Keuning, and Johan Jeuring

Case L1. ForEachVariablesNotUpdated. In Exercises 1 and
2, replacing a for loop by a for-each loop is considered a correct
refactoring step – it is a safer option when iterating through the
arrays, since their elements cannot be modified during the iteration.
71 students took an incorrect step in which they did not update the
reference to the for-each variable created to get the current item.
In a for loop, this can be done by referring to the array along with
the index (nums[i] in the green frame), whereas in a for-each loop,
it is only necessary to refer to the element (i in the red frame).

for (int i = 0; i < nums.length; i++) {
sum += nums[i];

}

↓

for (int i : nums) {
sum += nums[i];

}

Case L3. ForReplacedByForEach. In Exercises 1 and 2, replac-
ing a for loop by a for-each loop is considered a proper refactoring
step. This is not the case in Exercise 3, since the for loop in this
exercise should only iterate through the elements at odd indices.
Still, 18 students incorrectly attempted to replace the for loop by a
for-each loop. In some cases, the i variable from the for-each loop,
which gets an element from the array, was incorrectly used in an
attempt to increment the index.

for (int i = 1; i < arr.length; i += 2) {
if (arr[i] != -1) {

total += arr[i];
} else {

break;
}

}

↓

for (int i : arr) {
if (i != -1) {

total += i;
} else {

break;
}
i += 2;

}

Summary. Our results show that several student refactoring
misconceptions involve rewriting boolean expressions. We find
common student errors when updating conditionals (C1, C4), which
is also discussed by Izu et al. [20]. These errors may indicate an
insufficient understanding of formal logic, such as how to apply De
Morgan’s rules in boolean expressions – an issue also identified in
other studies [1, 17]. We think that the typical RMs from the other
categories may be related to a lack of comprehension of code flow
and control structures, as a considerable number of students could
not distinguish when to use and how to update a few structures.

Two examples are the incorrect use of a return command (F1, F4,
F5) and an incorrect association of a for-each loop with indices (L1).
We expect that our set of RMs may also be found when students
work in other imperative programming languages, such as C# or
Python, but with a slightly different syntax.

5.1 Threats and Limitations
A few aspects need to be considered when interpreting our results.
In this paper, we focus on code refactoring steps that lead to se-
mantically incorrect code. We do not address refactoring steps that
decrease code quality, since these are not considered refactoring
misconceptions in our definition.

Also, Keuning et al.’s [24] tutoring system may not have diag-
nosed all student steps correctly, including both correct refactoring
steps and errors. We attempted to mitigate this by manually in-
specting a sample of student snapshots in our analysis. Another
aspect of the tutoring system that may have influenced the data
and consequently our results is the wording of the hints available
for each exercise. In some cases, these hints might have influenced
students to take incorrect refactoring steps.

In addition, not all students worked on all five exercises. Most
students had difficulties completing Exercises 2 and 3. As a con-
sequence, the last two exercises were mostly attempted by more
experienced students, who succeeded in completing the previous
exercises. We also recognize that the experiment was conducted in
a specific scenario: a homogeneous group of students who worked
on five programming exercises containing specific code quality
issues. Therefore, further research is needed to improve the validity
and extend our set of RMs.

6 CONCLUSIONS AND FUTUREWORK
We analyzed 482 sequences of program snapshots from 133 students
working on refactoring exercises in a tutoring system, and identified
25 refactoring misconceptions. This work makes the following
contributions: First, the introduction of the concept of a refactoring
misconception. Then, the development of an initial catalogue of
refactoring misconceptions held by CS students.

From this study, we advise educators to address code refactoring
topics in programming courses, including both the use of correct
refactoring rules and the existence of refactoring misconceptions,
specifically on the use of multiple control structures and formal
logic. We also hope that developers of programming tutors take
refactoring misconceptions into account to provide adequate feed-
back to student refactoring errors.

As future work, we intend to replicate this study in other con-
texts, extend our set of RMs and determine their occurrences in
other datasets. Also, we are conducting a think-aloud study with
students working on refactoring exercises, to better comprehend
their reasoning when refactoring code.

REFERENCES
[1] Vicki L Almstrum. 1996. Investigating student difficulties with mathematical

logic. Teaching and Learning Formal Methods (1996).
[2] Jecton Tocho Anyango and Hussein Suleman. 2018. Teaching Programming in

Kenya and South Africa: What is difficult and is it universal?. In Koli Calling.

24

Student Code Refactoring Misconceptions ITiCSE 2023, July 8–12, 2023, Turku, Finland

[3] Kent Beck and Martin Fowler. 2018. Bad Smells in Code. In Refactoring: improving
the design of existing code. Chapter 3.

[4] Anastasiia Birillo, Ilya Vlasov, Artyom Burylov, Vitalii Selishchev, Artyom Gon-
charov, Elena Tikhomirova, Nikolay Vyahhi, and Timofey Bryksin. 2022. Hy-
perstyle: A Tool for Assessing the Code Quality of Solutions to Programming
Assignments. In SIGCSE.

[5] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle Van Assema, Rodrigo Duran,
Sara Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie
MacKellar. 2018. " I know it when I see it" Perceptions of Code Quality: ITiCSE’17
Working Group Report. In ITiCSE.

[6] Dennis M Breuker, Jan Derriks, and Jacob Brunekreef. 2011. Measuring static
quality of student code. In ITiCSE.

[7] Neil CC Brown and Amjad Altadmri. 2017. Novice Java programming mistakes:
Large-scale data vs. educator beliefs. Transactions on Computing Education (2017).

[8] Yuliya Cherenkova, Daniel Zingaro, and Andrew Petersen. 2014. Identifying
challenging CS1 concepts in a large problem dataset. In SIGCSE.

[9] Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya Tafliovich, André L
Santos, and Matthias Hauswirth. 2021. A curated inventory of programming
language misconceptions. In ITiCSE.

[10] Rohan Roy Choudhury, Hezheng Yin, and Armando Fox. 2016. Scale-driven
automatic hint generation for coding style. In ITS.

[11] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B Rowe, and
Nasser Giacaman. 2018. Understanding semantic style by analysing student code.
In ACE.

[12] Stephen H Edwards, Nischel Kandru, and Mukund BM Rajagopal. 2017. Investi-
gating static analysis errors in student Java programs. In ICER.

[13] Tomáš Effenberger and Radek Pelánek. 2022. Code Quality Defects across Intro-
ductory Programming Topics. In SIGCSE.

[14] Martin Fowler. 2018. Refactoring: improving the design of existing code.
[15] Luke Gusukuma, Austin Cory Bart, Dennis Kafura, and Jeremy Ernst. 2018.

Misconception-driven feedback: Results from an experimental study. In ICER.
[16] Paul Richard Halmos. 1960. Naive set theory. van Nostrand.
[17] Geoffrey L Herman, Michael C Loui, Lisa Kaczmarczyk, and Craig Zilles. 2012. De-

scribing the what and why of students’ difficulties in Boolean logic. Transactions
on Computing Education (2012).

[18] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. Identi-
fying and correcting Java programming errors for introductory computer science
students. SIGCSE (2003).

[19] Christopher Hundhausen, Anukrati Agrawal, Dana Fairbrother, and Michael
Trevisan. 2009. Integrating pedagogical code reviews into a CS 1 course: an
empirical study. SIGCSE (2009).

[20] Cruz Izu, Paul Denny, and Sayoni Roy. 2022. A Resource to Support Novices
Refactoring Conditional Statements. In ITiCSE.

[21] Bernard J Jansen. 2006. Search log analysis: What it is, what’s been done, how to
do it. Library & information science research (2006).

[22] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code quality issues in
student programs. In ITiCSE.

[23] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2020. Student refactoring
behaviour in a programming tutor. In Koli Calling.

[24] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A tutoring system to
learn code refactoring. In SIGCSE.

[25] Diana Kirk, Tyne Crow, Andrew Luxton-Reilly, and Ewan Tempero. 2020. On
assuring learning about code quality. In ACE.

[26] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of the
difficulties of novice programmers. SIGCSE (2005).

[27] Andrew Luxton-Reilly, Paul Denny, Diana Kirk, Ewan Tempero, and Se-Young
Yu. 2013. On the differences between correct student solutions. In ITiCSE.

[28] Steve McConnell. 2004. Code complete.
[29] Ioana T Mow. 2008. Issues and difficulties in teaching novice computer program-

ming. In Innovative Techniques in Instruction Technology, E-learning, E-assessment
and Education.

[30] Sebastian C Müller and Thomas Fritz. 2016. Using (bio) metrics to predict code
quality online. In ICSE.

[31] Yizhou Qian and James Lehman. 2017. Students’ misconceptions and other
difficulties in introductory programming: A literature review. Transactions on
Computing Education (2017).

[32] Teemu Sirkiä and Juha Sorva. 2012. Exploring programming misconceptions:
an analysis of student mistakes in visual program simulation exercises. In Koli
Calling.

[33] John P Smith III, Andrea A DiSessa, and Jeremy Roschelle. 1994. Misconceptions
reconceived: A constructivist analysis of knowledge in transition. The journal of
the learning sciences (1994).

[34] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
Transactions on Computing Education (2013).

[35] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a rubric
for feedback on code quality in programming courses. In Koli Calling.

[36] Anselm Strauss and Juliet Corbin. 1990. Basics of qualitative research.
[37] Leo C Ureel II and Charles Wallace. 2019. Automated critique of early program-

ming antipatterns. In SIGCSE.
[38] Kurt VanLehn. 1982. Bugs are not enough: Empirical studies of bugs, impasses

and repairs in procedural skills. The Journal of Mathematical Behavior (1982).
[39] Eliane S Wiese, Anna N Rafferty, Daniel M Kopta, and Jacqulyn M Anderson.

2019. Replicating novices’ struggles with coding style. In ICPC.
[40] Eliane S Wiese, Michael Yen, Antares Chen, Lucas A Santos, and Armando Fox.

2017. Teaching students to recognize and implement good coding style. In L@S.

25

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Refactoring Misconceptions
	4 Method
	4.1 The RPT System
	4.2 Dataset
	4.3 Data Analysis

	5 Results and Discussion
	5.1 Threats and Limitations

	6 Conclusions and Future Work
	References

