
Energy and AI 12 (2023) 100233

A
2

•

•

•
•

A

K
E
L
S
M
R

1

a
t

h
R

Contents lists available at ScienceDirect

Energy and AI

journal homepage: www.elsevier.com/locate/egyai

Prognostics for Lithium-ion batteries for electric Vertical Take-off and
Landing aircraft using data-driven machine learning
Mihaela Mitici a,∗, Birgitte Hennink b, Marilena Pavel b, Jianning Dong c

a Faculty of Science, Utrecht University, Heidelberglaan 8, 3584 CS, Utrecht, The Netherlands
b Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, HS 2926, Delft, The Netherlands
c Electrical Engineering, Mathematics and Computer Science Faculty, TU Delft, 2628 CD, Delft, The Netherlands

H I G H L I G H T S

Prognostics for batteries of electric Ver-
tical Take-off and Landing aircraft.
Estimating the Remaining-Useful-Life and
State-of-Health of batteries.
eVTOLs flying varying mission profiles.
Feature importance quantification for
RUL and SOH estimation.

G R A P H I C A L A B S T R A C T

R T I C L E I N F O

eywords:
lectric Vertical Take-off and Landing vehicles
ithium-ion battery
tate-of-health
achine learning
emaining-useful-life

A B S T R A C T

The health management of batteries is a key enabler for the adoption of Electric Vertical Take-off and Landing
vehicles (eVTOLs). Currently, few studies consider the health management of eVTOL batteries. One distinct
characteristic of batteries for eVTOLs is that the discharge rates are significantly larger during take-off and
landing, compared with the battery discharge rates needed for automotives. Such discharge protocols are
expected to impact the long-run health of batteries. This paper proposes a data-driven machine learning
framework to estimate the state-of-health and remaining-useful-lifetime of eVTOL batteries under varying flight
conditions and taking into account the entire flight profile of the eVTOLs. Three main features are considered
for the assessment of the health of the batteries: charge, discharge and temperature. The importance of these
features is also quantified. Considering battery charging before flight, a selection of missions for state-of-
health and remaining-useful-lifetime prediction is performed. The results show that indeed, discharge-related
features have the highest importance when predicting battery state-of-health and remaining-useful-lifetime.
Using several machine learning algorithms, it is shown that the battery state-of-health and remaining-useful-life

are well estimated using Random Forest regression and Extreme Gradient Boosting, respectively.
. Introduction

Electric Vertical Take-off and Landing vehicles (eVTOLs) are seen
s a solution to the growing traffic congestion in large cities, the
raffic-related pollution and the inter-city connectivity needs. Several
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companies such as Airbus, Bell, Embraer, Joby Aviation, Kitty Hawk,
Pipistrel, Volocopter, and Aurora Flight Sciences have been designing,
building, and testing eVTOLs in the last few years [1].
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The management of the batteries remains one of the challenges
that the eVTOL industry faces today. The most frequently considered
battery chemistry for e-mobility is lithium-ion due to its high energy-
density, low self-discharge rates, and acceptable costs [2,3]. Several
studies have focused on the health management of lithium-ion bat-
teries for electric (on-ground) vehicles [4,5], on State-of-Health (SOH)
estimation [6] and Remaining-Useful-Life (RUL) estimation [2,7]. The
State-of-Charge (SOC) of the batteries has also been investigated in,
for instance, [8,9]. The batteries considered in these studies have been
subject to constant current (CC) and constant voltage (CV) charging
with a constant discharge C-rates. For eVTOLs, however, the take-off
and landing require larger discharge rates than the cruise phase. In the
long-run, this is expected to have a direct impact on the health of the
batteries. In turn, this is expected to influence the SOH and RUL of
the batteries, which are sensitive to the long-run degradation trends of
the batteries. Overall, given their safety-criticality and high cost, the
batteries and their health management remains a priority for eVTOLs.

Several data-driven machine-learning approaches for battery RUL
and SOH prediction have been proposed in the last years [10]. In [11]
a hybrid method is proposed to estimate the RUL of fuel cells. The
authors fuse particle filtering, to estimate the model parameters in
the training phase, with a long-short term memory recurrent neural
network to update the parameters in the prediction phase. In [12] a
hybrid convolutional neural network with long short-term memory and
a deep neural network are proposed to predict the lithium-ion battery
RUL. The model has been validated using the dataset from NASA and
Center for Advanced Life Cycle Engineering (CALCE). In [13] a unified
deep learning method is proposed for RUL prediction. For this, a long
short-term memory recurrent neural network has been developed to
estimate the capacity of the battery. Within ten cycles, the RUL has
been estimated with an error of only 0.13%.

For SOH estimation, many existing studies consider machine learn-
ing algorithms. In [14] a random forest is proposed to predict the SOH
for Lithium-ion batteries of electric (on-ground) vehicles. The authors
show that the average speed has a significant impact on the battery’s
health. In [15], a support vector machine is used for SOH estimation,
leading to prediction errors of less than 2%. The authors argue that
the SOH could be estimated using only the charge and discharge-
related measurements. Also in this paper, we show that charge and
discharge-related features have a high importance when estimating the
SOH and RUL of batteries. Nevertheless, we show that the temperature
at which the batteries are exposed to is also an important feature
when predicting the SOH. A random forest regression is proposed
in [16], achieving a Root Mean Square Error (RMSE) of 1.3%. The
authors consider the charging voltage and the capacity measurements
as features. In [17], a support vector machine is developed for SOH
prediction, achieving an RMSE of 2.49%–3.62%. The authors show that
the differential temperature curves during constant charging are of high
importance for the SOH prediction.

Some of the most frequently used datasets for battery SOH and RUL
predictions are [18–20], and [6,21]. For an extensive overview, please
see [22]. These batteries, however, are subject to constant CC and
CV cycling. For [20], lithium-ion batteries are charged and discharged
at different temperatures, but still with a CC-CV charging protocol.
The measured parameters are the capacity, internal resistance, voltage,
current, and temperature [23]. For [18], LFP/Graphite cells are cycled.
Here, the cells are always discharged at a 4 C-rate. For [6], the data was
recorded during the actual usage of electric vehicles.

To the best of our knowledge, the dataset available at [24], which
was released by Carnegie Mellon University, is the first battery dataset
generated specifically for eVTOLs. In contrast with the previously dis-
cussed datasets, these batteries are subject to different C-rates during
the discharge phase of a flight. Specifically, the take-off and landing of
eVTOLs are performed at a larger C-rate than the cruise phase. Also,
this eVTOL dataset cycles all battery cells until they reach EOL [24],
2

instead of containing only early-cycle measurements, as is the case
for [18]. All cells were tested in a Arbin 200 A cylindrical cell holder
paired with a BioLogic BCS-815 modular battery cycler. Another novel
aspect for this eVTOL dataset is that several parameters such as the
temperature, power during discharge, and cruise length [24] are varied
across multiple eVTOL missions.

Using the dataset provided in [24], a recent study [25] employed
machine learning algorithms to predict the SOH of lithium-ion batteries
for eVTOLs. Five machine learning algorithms have been assessed:
Linear regression, linear support vector machines (SVM), k-nearest
neighbors (kNN), random forest (RF) and light gradient boosting ma-
chine (LGBM). It was found that the kNN algorithm gives the best
validation and test scores with the lowest training time. However, this
study was performed using only the data recorded during the cruise
phase of the flight. This is a strong limitation of the analysis, given
that the vertical climb and descent are the most critical phases for the
battery life of eVTOLs. The goal of the present study is to perform
predictions for SOH and RUL of eVTOL batteries taking into account the
entire mission profile of eVTOLs (i.e., both the take-off, climb, cruise,
descent and landing). Moreover, we also identify which missions are
actually relevant for SOH and RUL prediction. These are the missions
where the battery is first charged to 100% SOC before performing a
flight, which we refer to as a capacity test. This is relevant because the
maximum available capacity test can determine the static capacity of
the battery, which is critical when estimating the SOH of the battery.
For practical applications, determining the real-time dynamic capacity
is more important than determining the static capacity of the battery,
since the real-time dynamic capacity can better reflect the battery’s
SOH. However, estimating the dynamic capacity accurately in real time
is a challenge [26]. As a result, the regular static capacity calibration
becomes an option and will be considered in this paper.

This paper proposed a framework to estimate the SOH and RUL of
eVTOLs batteries using machine learning algorithms. We generate fea-
tures based on measured variables and original voltage-capacity/time
curves. These features are generated taking into account the charging
and discharging protocols of the batteries, the temperature at which
the batteries are exposed to, and the phase of the eVTOL mission
(take-off/cruise/landing). Different from electric ground vehicles that
require similar discharge rates throughout the entire trip, we show that
for eVTOLs it is essential to perform feature engineering taking into
account the phases of the missions. This is due to the fact that take-
off and landing require large discharge rates than the cruise phase. We
show that the variation in the voltage during take-off has the highest
importance for both SOH and RUL prediction. This makes the take-
off phase not only safety-critical from a flight perspective, but also
of high importance for prognostics for batteries. Also different from
the on-ground electric vehicles, we consider an End-of-Life (EOL) of
85%, instead of 80%, due to more rapid battery degradation observed
for eVTOLs. We consider several machine learning algorithms for SOH
and RUL prediction: Support Vector regression (SVR), Random Forrest
(RF) regression, Gaussian Process regression (GPR), Extreme Gradient
Boosting (XGBoost), and Multi-layer Perceptron (MLP). The results
show that the RF regression has the best performance when predicting
the SOH of the batteries, with an MAE of 1.33% and RMSE of 1.80%.
For RUL prediction, the XGBoost leads to the best performance with an
MAE of 54.53 missions and an RMSE of 67.92 missions. We also discuss
the impact of the characteristics of the eVTOL mission on the battery
SOH and RUL predictions. we show that the CC charging current is of
high importance for RUL prediction, while the temperature and voltage
are of high importance for SOH prediction.

The remainder of this paper is structured as follows. In Section 2,
the dataset on eVTOL batteries is analyzed. The selection of the eVTOL
missions to be considered for analysis is discussed in Section 3. In
Section 4 a generic methodology for the prediction of the SOH and
RUL of eVTOL batteries is introduced: the definition of SOH and RUL,
feature engineering, the machine learning algorithms considered. In

Section 5 this methodology is applied for SOH prediction. The results



Energy and AI 12 (2023) 100233M. Mitici et al.
Fig. 1. Generic mission profile of an eVTOL.

obtained for SOH prediction are presented in Section 6 In Section 7
the methodology introduced in Section 4 is applied for RUL prediction.
The results are presented in Section 8. In Section 9 the impact of the
characteristics of the eVTOL missions on SOH and RUL prediction is
discussed. Final conclusions are provided in Section 10.

2. Data description

We consider the health-monitoring dataset for Sony-Murata 18650
VTC-6 cell lithium-ion batteries available at [24]. These batteries are
used to perform short-range missions with the Vahana eVTOL. Vahana
is an eVTOL designed by Acubed (Airbus) for urban air mobility. It is
an all-electric, single-seat, tilt-wing vehicle with a range of 50 km [27].
During cruise Vahana achieves an average speed of 190 km∕h, with a
maximum of 220 km∕h. The longest flight performed by Vahana had a
total duration of 19 min and 56 s [27].

Fig. 1 shows a generic mission profile for Vahana: vertical take-off,
transition to forward flight, cruise for a specified distance, a transition
back to a hover, and a vertical landing.

To discuss the dataset provided in [24], we define a mission profile
for Vahana as a set of mission tasks whose specifications are unchanged
across a sequence of missions. From the beginning to the end of a mis-
sion, these tasks are CC battery Charging phase, CV battery Charging
phase, Rest period, eVTOL Take-off, eVTOL Cruise, eVTOL Landing, and
a Rest period. Considering these tasks, dataset [24] contains 22 mission
profiles (MP1–MP22), see Table 1.

Baseline mission profiles

Mission profiles VAH01, VAH17, and VAH27 are baseline mission
profiles (see Table 1). We refer to them as baseline mission profiles
because the other mission profiles are obtained by changing a mission
task of one of these baseline mission profile.

Under a baseline mission profile, the battery is charged with 1 C-
rate (CC charging phase). We note that a C-rate is a measure of the
rate at which a battery is discharged relative to its maximum capacity.
The CC charging phase ends as soon as the battery’s voltage reaches
4.2 V. Then, the CV charging phase starts with a constant voltage of
4.2 V until the current is below 𝐶∕30. After charging, the battery cell
rests until the cell temperature reaches 35 ◦C. After this Rest period,
the eVTOL performs a flight. The take-off has a duration of 75 s, with
a discharge power of 54W, 5 C-rate, and 1.12Wh discharge energy.
Afterwards, the cruise phase takes 800 s, at a discharge power of 16
W, 1.48 C-rate, and 3.55 Wh discharge energy. Then, the landing takes
place with a duration of 105 s, a discharge power of 54 W, 5 C-
rate, and 1.57 Wh discharge energy. Finally, the battery rests until its
temperature decreases to 27 ◦C.

Table 1 shows the 22 mission profiles obtained by changing the
following mission tasks of the baseline mission profiles: the duration
of the cruise phase, the power used during flight (i.e., take-off, cruise,
landing), the CC current, the CV voltage, and the ambient (chamber)
temperature.
3

Fig. 2. Charging and discharging of 1st capacity test, VAH01. The battery is first
discharged to 0% SOC, then is charged to 100% SOC. With 100% SOC, the 1st flight
is performed. During take-off, cruise, landing, the battery is discharged.

Measurements

During every mission, the following measurements are recorded
every time step: time (s), cell voltage (V), cell current (mA), energy
supplied to the cell during charge (Wh), charge supplied to the cell
during charge (mAh), energy extracted from the cell during discharge
(Wh), charge extracted from the battery cell during discharge (mAh),
cell surface temperature (◦C), cycle number (-) and cycle segment (-).

Capacity tests

Given a mission profile, after every 50th mission, the residual
battery charge is reduced to 0% SOC at a discharge rate of C/5 until
the voltage drops below 2.5 V. Then, the battery is charged to 100%
SOC at a charging rate of 1 C-rate and a constant voltage of 4.2 V.
After the battery is fully charged, the eVTOL performs a flight (take-off,
cruise, and landing). This ‘‘special’’ mission when the battery is charged
to 100% and only afterwards the eVTOL takes off, is referred to as a
capacity test. Table 1 shows the total number of capacity tests under
each of the 22 mission profiles.

Fig. 2 shows the charging and discharging protocol of the first
capacity test of VAH01. The CC charging phase in Fig. 2 has a duration
of 50 min, and the battery is charged with 3.0 A. Afterwards, the CV
charging phase takes place with 4.2 V for 33 min. The Rest period
following charging has a duration of 14 min. The discharge phase starts
with the take-off of the eVTOL. The duration of the take-off is 75 s.
During take-off, the voltage drops from 3.92 V to 3.62 V. The cruise
phase has a duration of 800 s. Hereafter, the landing phase has a
duration of 105 s. During landing, the voltage drops from 3.57 V to
3.1 V. Finally, the mission ends with a Rest period of 605 s. At the end
of the Rest period, the battery reaches a temperature of 27.3 ◦C.

To estimate the battery SOH and RUL, we consider the battery
capacity during capacity tests only, i.e., when the battery is charged
to 100% SOC before flight. We only focus on the capacity tests because
dynamic capacity estimation would require an extensive analysis and
hyperparameter tuning, which may be prone to estimation errors [26].
In contrast, a regular static capacity calibration is more reliable for
testing purposes. The battery cell capacity during a cycle is given by
the maximum amount of charge (in Ah) supplied to the cell during the
charging phase of this cycle. In Fig. 2, the red dotted line shows the
end of this charging phase of the 1st capacity test of VAH01.

Fig. 3 shows the mission immediately following the 1st capacity test
of VAH01. It can be seen that the battery follows the same mission
profile as in Fig. 2. However, the battery is now charged only from 3.8



Energy and AI 12 (2023) 100233M. Mitici et al.
Table 1
Mission profile characteristics, based on [24].

Cruise duration Power Take-off Power Cruise Power Landing CC CV Ambient Temperature VAH #Missions #Capacity tests

MP1 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH01 847 17

MP2 125% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH02 625 13

MP3 800 s 90% of 54 W 90% of 16 W 90% of 54 W 1 C 4.2 V 25 ◦C VAH05 1615 31

MP4 800 s 54 W 16 W 54 W 50% of 1 C 4.2 V 25 ◦C VAH06 9290 28

MP5 800 s 54 W 16 W 54 W 1 C 95.24% of 4.2 V 25 ◦C VAH07 339 44

MP6 800 s 54 W 16 W 54 W 1 C 4.2 V 80% of 25 ◦C VAH09 8527 46

MP7 800 s 54 W 16 W 54 W 1 C 4.2 V 120% of 25 ◦C VAH10 1431 28

MP8 800 s 80% of 54 W 80% of 16 W 80% of 54 W 1 C 4.2 V 25 ◦C VAH11 2249 44

MP9 50% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH12 2349 46

MP10 75% 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH13 1042 20

MP11 125% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH15 554 11

MP12 800 s 54 W 16 W 54 W 150% of 1 C 4.2 V 25 ◦C VAH16 559 11

MP13 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH17 1002 20

MP14 800 s 54 W 16 W 54 W 150% of 1 C 4.2 V 25 ◦C VAH20 611 12

MP15 125% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH22 579 12

MP16 800 s 54 W 16 W 54 W 1 C 97.62% of 4.2 V 25 ◦C VAH23 697 13

MP17 800 s 54 W 16 W 54 W 50% of 1 C 4.2 V 25 ◦C VAH24 801 16

MP18 800 s 54 W 16 W 54 W 1 C 4.2 V 80% of 25 ◦C VAH25 554 11

MP19 75% of 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH26 1164 22

MP20 800 s 54 W 16 W 54 W 1 C 4.2 V 25 ◦C VAH27 587 12

MP21 800 s 90% of 54 W 90% of 16 W 90% of 54 W 1 C 4.2 V 25 ◦C VAH28 1182 23

MP22 800 s 54 W 16 W 54 W 1 C 4.2 V 140% of 25 ◦C VAH30 919 18
Fig. 3. Charging and discharging phase of the 2nd mission, mission profile VAH01.

V to 4.2 V. As a result, the duration of the CC and CV charging period
is shorter (83 min in the 1st capacity test vs. 55 min in this mission
immediately following this 1st capacity test). In contrast, during the
capacity test, the battery is charged from 3.2 V to 4.2V, and the CC
and CV charging duration is more extensive (28 min).

3. Selection of mission profiles for the prediction of State-of-
Health and Remaining-Useful-Life of eVTOL batteries

To estimate the SOH and RUL of eVTOL batteries, we consider
only 19 mission profiles of the total 22 profiles (see Table 1). Mission
profiles VAH06, VAH07, and VAH09 are not considered due to the
inconsistencies in the battery characteristics recorded over time.

For VAH06, the degradation of the battery capacity follows an
unexpected trend. During mission 766 (15th capacity test), the capacity
of the battery is 2.51Ah. However, during the following capacity tests,
4

Fig. 4. Capacity tests — VAH06.

from mission 903 until mission 8942, the battery’s capacity varies be-
tween 1.8–1.9Ah. Afterwards, VAH06 consists of four standard capacity
tests where the battery’s capacity degrades from 2.51Ah to 2.44Ah (see
also Fig. 4). This is unexpected as the battery’s capacity should degrade
over time, and not decrease and then increase again.

Fig. 5 shows the capacity tests for VAH07. Here, the battery’s
capacity increases over time as more capacity tests are performed.
However, this pattern is unexpected since the battery’s capacity is
expected to decrease over time.

Fig. 6 shows the capacity tests for VAH09. For capacity tests corre-
sponding to mission 728 until mission 6074, the battery capacity varies
between 1.8–1.9Ah. Afterwards, from mission 6277 until mission 6306,
the battery’s capacity increases to 2.46Ah. Then, from mission 6480 un-
til mission 8352, the capacity varies again between 1.8–1.9Ah. Finally,
during the last two capacity tests, the battery’s capacity degrades from
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Fig. 5. Capacity tests — VAH07.

Fig. 6. Capacity tests — VAH09.

2.43 to 2.41Ah. This pattern is unexpected as we expect the capacity
to decrease over time, and not to decrease, increase, and then decrease
again.

In Appendix, the current during the capacity tests of the selected
mission profiles is shown.

4. Methodology

In this section we propose a methodology to estimate the SOH
and RUL of eVTOL batteries. First, we define the SOH and RUL of
the batteries. Then, we perform feature engineering. Last, we propose
a generic framework for SOH and RUL estimation of batteries using
several machine learning algorithms.

4.1. Defining the State-of-Health and Remaining-Useful-Life for eVTOL
batteries

In general, the SOH of a battery is defined as the ratio between the
measured charging capacity during a capacity test, and the nominal
capacity of the battery.

Although in [28] a nominal battery capacity of 3.0Ah is indicated
in the dataset available at [24], all mission profiles, except VAH23,
have a battery capacity of more than 3.0Ah during the first capacity
test. For example, for mission profile VAH01, at the first capacity test,
5

Table 2
Mission profiles and capacity tests, EOL-threshold 85% of initially measured battery
capacity.

Missions until EOL is reached Capacity tests until EOL is reached

VAH01 613 13
VAH02 511 11
VAH05 766 16
VAH10 614 13
VAH11 817 17
VAH12 766 16
VAH13 562 12
VAH15 460 10
VAH16 460 10
VAH17 562 12
VAH20 460 10
VAH22 460 10
VAH23 562 12
VAH24 562 12
VAH25 513 11
VAH26 614 12
VAH27 512 11
VAH28 722 15
VAH30 511 11

the battery has a capacity of 3.03Ah. For mission profile VAH23, the
battery has a capacity of 2.71Ah during the first capacity test. Thus,
a capacity of 3.0Ah does not seem to be the nominal capacity for
all battery cells considered in [28]. Dataset [24] contains 𝑄𝑐ℎ𝑎𝑟𝑔𝑒𝑚,𝑐𝑖
(mAh), the amount of charge supplied to the cell during charging.
Therefore, we choose to determine the SOH of a battery as [29]:

𝑆𝑂𝐻𝑚,𝑐 =
max𝑖(𝑄𝑐ℎ𝑎𝑟𝑔𝑒𝑚,𝑐𝑖 )

max𝑖(𝑄𝑐ℎ𝑎𝑟𝑔𝑒𝑚,0𝑖 )
⋅ 100%, (1)

with 𝑄𝑐ℎ𝑎𝑟𝑔𝑒𝑚,𝑐𝑖 the maximum measured capacity during a capacity test
𝑐 of mission profile 𝑚, and 𝑐ℎ𝑎𝑟𝑔𝑒𝑚,0𝑖 the maximum battery capacity
measured during the first capacity test (𝑐 = 0) of mission profile 𝑚.

The remaining useful lifetime (RUL) of a battery is defined as the
remaining number of missions/cycles for this battery until the End of
Life (EOL), given that the battery has been used for 𝑐 >= 0 missions.
Formally, the RUL of a battery, estimated after 𝑐 missions under mission
profile 𝑚, is defined as:

𝑅𝑈𝐿𝑚,𝑐 = 𝑇 𝑚
𝐸𝑂𝐿 − 𝑇 𝑚,𝑐

𝑐𝑐 , (2)

with 𝑇 𝑚,𝑐
𝑐𝑐 the current mission/cycle number under mission profile 𝑚,

and 𝑇 𝑚
𝐸𝑂𝐿 the mission/cycle number when the battery capacity drops

for the first time below an EOL-threshold under mission profile 𝑚.
Existing studies based on experimental battery measurements set

the EOL-threshold to 80% of the nominal battery capacity [2,30–33].
To the best of our knowledge, EOL-thresholds for eVTOL batteries
have not yet been formally established. For eVTOL batteries, it is
expected that conservative safety margins will be considered. In [34], a
conservative EOL-threshold of 85% of a nominal battery capacity of an
eVTOL is considered. This eVTOL is designed for a total capacity of 5
persons with a range of 400 km [34]. Following [34], for our analysis,
we also consider an EOL-threshold of 85% of the initially measured
battery capacity.

The choice of the EOL-threshold has also an effect on the selec-
tion of the mission profiles. Using an EOL-threshold of 80%, not all
mission profiles in the dataset [24] will have their batteries reaching
EOL. Specifically, for mission profiles VAH01, VAH02, VAH15, VAH16,
VAH20, VAH23, VAH24, VAH25, VAH27, and VAH28 the series of
measurements stop before the battery capacity reaches 80% of the
initially measured battery capacity. In other words, by using an EOL-
threshold of 80% of the initial battery capacity, these mission profiles
will not have run-to-EOL series of measurements.

Considering an EOL-threshold of 85% of the initially measured
battery capacity, all mission profiles in dataset [24] have batteries that
reach their EOL. Table 2 shows the number of missions until each



Energy and AI 12 (2023) 100233M. Mitici et al.

p

r
f

C

c

m
i
c
c
a
C
e
c
f
C
t
w
i
t
o
T

D

t
d

d
V
t
i
p
i
l

c
c
b
𝑉

o
t

c
a
p
c
𝑄

i
A
v

e
m
a
p

T

b
V
1
F
a
a
c
r
l

t
t
I
w
b
a

s
d
𝑐

4
u

R
b
b
i
w
r
E
(
t
i
5
l

n
t
i
w

t
s
R

battery reaches its EOL, and the number of capacity tests until these
batteries reach their EOL.

4.2. Generating the features for SOH and RUL prediction based on [28]

To discuss the generation of features, let us first introduce some
notations. Let 𝐶𝑚 denote the number of capacity tests of a mission
rofile 𝑚, 1 ≤ 𝑚 ≤ 𝑀 .

Let 𝑡𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑠 and 𝑡𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑒 , 1 ≤ 𝑚 ≤ 𝑀 , 1 ≤ 𝑐 ≤ 𝐶𝑚, denote the
time step when phase ∈ {take-off, cruise, landing} of capacity test 𝑐 of
mission profile 𝑚 starts and ends, respectively.

Let 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑚,𝑐𝑠 and 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑚,𝑐𝑒 , 1 ≤ 𝑚 ≤ 𝑀 , 1 ≤ 𝑐 ≤ 𝐶𝑚, denote the
time step when the charging phase of capacity test 𝑐 of mission profile
𝑚 starts and ends, respectively.

Let 𝑇 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐
𝑖 , 𝑉 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐

𝑖 , 𝑄𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑖 and 𝑄𝑐ℎ𝑎𝑟𝑔𝑒𝑚,𝑐𝑖 denote the cell
surface temperature, voltage, discharge and charge capacity, respec-
tively, during a flight phase at time step 𝑖 of capacity test 𝑐 of mission
profile 𝑚, with phase ∈ {take-off, cruise, landing}, 𝑡𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑠 ≤ 𝑖 ≤
𝑡𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑒 , 1 ≤ 𝑐 ≤ 𝐶𝑚, 1 ≤ 𝑚 ≤ 𝑀 .

We consider a total of 33 features (Table 3). These features are
elated to the charging, discharging and temperature of the battery, as
ollows.

harge-related features

Fig. 7(a) shows the charging time vs. the charging voltage for the
apacity tests of the baseline mission profile VAH01.

Mission profile VAH01 has 847 missions, out of which every 50th
ission is a capacity test. Fig. 7(a) shows that as the number of missions

ncreases, the duration of the CC charging phase decreases. The first
apacity test has a CC charging duration of 50 min, whereas the last
apacity test has a CC charging duration of 37 min. Hence, there is
26% decrease in the CC charging duration. As the duration of the

C charging phase is reduced, the cut-off voltage of 4.2 V is reached
arlier. Due to the lower duration of the CC charging phase, the CV
harging phase begins earlier and has a longer duration. During the
irst capacity test, the CV charging phase takes 33 min. In contrast, the
V charging phase has a duration of 64 min during the last capacity
est. Thus, for VAH01, the duration of the CV charging phase increases
ith 92%. The observed decrease in the CC charging duration and the

ncrease of the CV charging duration over the number of missions is due
o the battery polarization phenomenon [35]. Analyzing the charging
f the battery, we consider as features: 𝛥𝐶𝐶,𝑚,𝑐 , 𝛥𝐶𝑉 ,𝑚,𝑐 , and 𝛥𝑟𝑒𝑠𝑡,𝑚,𝑐 (see
able 3).

ischarge-related features

Regarding discharge-related features, we consider features related
o the discharge voltage of the battery, the discharge capacity, and the
uration of each discharge phase (see Table 3).
Discharge voltage: Fig. 7(b) shows the discharge capacity vs. the

ischarge voltage during capacity tests of the baseline mission profile
AH01. For take-off and landing, a higher C-rate (5C) is considered

han for cruise (1.48C). Fig. 7(b) shows that as the number of missions
ncreases, the minimum discharge voltage decreases during each flight
hase. Also, during take-off and landing, the discharge voltage drop
s higher than during cruise. This is expected since the take-off and
anding are performed at a higher C-rate.

Since the discharge voltage varies for every flight phase and across
apacity tests, we aim to capture the impact of these variations by
onsidering voltage-related features. Thus, we consider the following
attery-discharge related features: 𝑉 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐

𝑚𝑎𝑥 , 𝑉 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐
𝑚𝑖𝑛 , 𝑉 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐

𝑚𝑒𝑎𝑛 , and
𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐
𝑣𝑎𝑟 (see Table 3).

These voltage-related featured are considered since they reflect the
pen circuit voltage and internal resistance, which are closely related
o the remaining capacity and the aging of the battery [26,36].
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Discharge capacity : Fig. 7(b) shows that the discharge capacity in-
reases from take-off to cruise to landing. The discharge capacity
lso increases as the number of missions increases. To capture these
atterns, we consider the following features related to the discharge
apacity of the battery (see also Table 3): 𝑄𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑚𝑎𝑥 , 𝑄𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑚𝑖𝑛 ,
𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑚𝑒𝑎𝑛 , and 𝑄𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑣𝑎𝑟 (see Table 3).

The discharge capacity and its variation reflect the load character-
stics of the battery, which directly impacts the aging of the battery.
s such, we consider as features the maximum, minimum, mean and
ariance of the discharge capacity.
Duration of the discharge phase: We consider 𝛥𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐 , the duration of

ach discharge phase ∈ {take-off, landing, cruise} of capacity test 𝑐 of
ission profile 𝑚 (see also Table 3). Since the cruise duration varies

cross mission profiles, we also consider the duration of the cruise
hase as a feature.

emperature-related features

Fig. 7(c) shows the maximum, minimum, and average cell surface
attery temperature recorded during all missions of mission profile
AH01, with a total of 17 capacity tests. We note that for missions
–343, the temperature is recorded at an average interval of 4.7 s.
or missions 344 and onwards, the temperature is measured at an
verage interval of 22.9 s. During every capacity test, the maximum
nd average temperature decrease abruptly. This is because the battery
ell is allowed to rest at the end of a capacity test until the temperature
educes to 27 ◦C. Fig. 7(c) also shows that, as the battery is used for a
onger time, its maximum temperature increases.

During a capacity test, Fig. 7(d) shows that the highest cell surface
emperature is reached during landing. Fig. 7(d) also shows that the
emperature reaches a peak during take-off and decreases during cruise.
n Fig. 7(d), the tasks of the first capacity test are highlighted in orange,
hile the last capacity test is highlighted in blue. When considering
oth the take-off, landing, and cruise phases, the temperature increases
s the number of capacity tests increases.

To capture the change in battery surface temperature as more mis-
ions are performed, we consider as feature 𝑇 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐

𝑚𝑎𝑥 which is recorded
uring the discharge phase ∈ {take-off, landing, cruise} of capacity test
of each mission profile 𝑚, see also Table 3.

.3. Generic framework for SOH and RUL prediction of eVTOL batteries
sing machine learning

Fig. 8 shows the framework considered for estimating the SOH and
UL of eVTOL batteries. We first generate features (see Section 4.2)
ased on charge-related, discharge-related, and temperature-related
attery measurements. We next select those features with the highest
mportance for SOH and RUL prediction. With the selected features,
e estimate SOH and RUL using the following machine learning algo-

ithms: support vector regression (SVR), random forest (RF) regression,
xtreme Gradient Boosting (XGBoost), Gaussian Process Regression
GPR), and Multi-layer Perceptron (MLP). The hyperparameters of
hese algorithms are also tuned using a Bayesian hyperparameter tun-
ng algorithm. The SOH and RUL of the batteries are obtained using a
-fold cross validation. Below is a short description of the five machine
earning algorithms considered.

SVR is a supervised machine learning algorithm based on ker-
els [37]. SVR is considered a suitable algorithm for SOH/RUL estima-
ion because it excels at characterizing nonlinear relationships between
nputs and outputs [15]. This is also the case for your analysis, where
e expect a non-linear degradation of the battery capacity.

The RF regression is a supervised ensemble machine learning model
hat combines heterogeneous decision trees [38]. Only a randomly
elected portion of the training set is used to construct each forest tree.
F regression uses averaging to improve the prediction accuracy and
ontrol over-fitting [39].
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Fig. 7. Capacity tests — VAH01.
Table 3
Charge-related, discharge-related and temperature-related features.
Feature Unit Description Formula

𝛥𝐶𝐶,𝑚,𝑐 [s] Duration CC charging phase of capacity test 𝑐 of mission 𝑚

𝛥𝐶𝑉 ,𝑚,𝑐 [s] Duration CV charging phase of capacity test 𝑐 of mission 𝑚

𝛥𝑟𝑒𝑠𝑡,𝑚,𝑐 [s] Duration rest phase after charging of capacity test 𝑐 of mission 𝑚

𝛥𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐 [s] Duration flight phase of capacity test 𝑐 of mission 𝑚

𝑉 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐
𝑚𝑎𝑥 [V] Maximum voltage during flight phase of capacity test 𝑐 of mission 𝑚

𝑉 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐
𝑚𝑖𝑛 [V] Minimum voltage during flight phase of capacity test 𝑐 of mission 𝑚

𝑉 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐
𝑚𝑒𝑎𝑛 [V] Mean voltage during flight phase of capacity test 𝑐 of mission 𝑚

1
𝑡𝑒 − 𝑡𝑠 + 1

𝑡𝑒
∑

𝑡𝑠

𝑉 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐
𝑖 ,

1 ≤ 𝑚 ≤ 𝑀,1 ≤ 𝑐 ≤ 𝐶𝑚

𝑉 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐
𝑣𝑎𝑟 [V] Variance voltage during flight phase of capacity test 𝑐 of mission 𝑚

𝑄𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑚𝑎𝑥 [Ah] Maximum discharge capacity during flight phase of capacity test 𝑐 of mission 𝑚

𝑄𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑚𝑖𝑛 [Ah] Minimum discharge capacity during flight phase of capacity test 𝑐 of mission 𝑚

𝑄𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑚𝑒𝑎𝑛 [Ah] Mean discharge capacity during flight phase of capacity test 𝑐 of mission 𝑚
1

𝑡𝑒 − 𝑡𝑠 + 1

𝑡𝑒
∑

𝑡𝑠

𝑄𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑖 ,

1 ≤ 𝑚 ≤ 𝑀,1 ≤ 𝑐 ≤ 𝐶𝑚

𝑄𝑑𝑖𝑠𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐𝑣𝑎𝑟 [Ah] Variance discharge capacity during flight phase of capacity test 𝑐 of mission 𝑚

𝑇 𝑝ℎ𝑎𝑠𝑒,𝑚,𝑐
𝑚𝑎𝑥 [◦C] Maximum battery cell surface temperature during flight phase of capacity test 𝑐 of

mission 𝑚
7
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Fig. 8. Generic framework for predicting the SOH and RUL of batteries using machine learning algorithms.
XGBoost is a gradient-boosted decision-tree-based ensemble ma-
chine learning algorithm. XGBoost is based on an optimized distributed
gradient boosting, i.e., it makes use of parallel tree boosting to improve
performance and speed [40]. Unlike decision trees, each regression tree
of XCBoost contains a continuous score on each leaf, and additional
regularization terms help to smooth the final learned weights to avoid
over-fitting, i.e, it makes use of a built-in regularization [9,40].

GPR is a probabilistic non-parametric kernel-based model [41,42].
GPR is based on a kernel that predicts the output by incorporating
prior knowledge and obtaining a hypothesis of posterior probabil-
ity via a Bayesian approach. GPR has the advantages of adaptive
hyper-parameter acquisition and it has been shown to obtain a similar
performance when compared with neural networks and SVM [43].

MLP is a feed-forward neural network with multiple layers and
adaptive weights [44,45]. All hidden layers include batch normaliza-
tion to improve the neural network’s stability.

5. Predicting the State-of-Health of eVTOL batteries

In this section we apply the methodology introduced in Section 4 to
estimate the SOH of eVTOL batteries.

5.1. Feature selection and feature importance quantification

In Section 4.2, a total of 33 features have been considered. From
these 33 features, we select for SOH prediction only the features with
high importance. The importance of the features is obtained using a
random forest regression model.

Based on the importance of the 33 features considered, we select
the top 65% (i.e., 21) features with the highest importance (see Fig. 9).
The variance of the voltage during take-off has the highest importance,
8

followed by the minimum voltage during take-off, and the duration
of the CC charging phase. The results show that the features related
to take-off have a high importance. This can be explained by the fact
that the battery experiences a high discharge voltage during take-off.
During high discharge voltages, the internal resistance increases, which
impacts the SOH [46]. Also, the duration of the CC charging phase
has a high importance for the prediction of the SOH. As the battery
performs more missions, the SOH decreases while the duration of the
CC charging phase increases (see Fig. 7(a)).

Fig. 9 shows that the variance of the voltage during take-off has
the highest importance, followed by the minimum voltage during take-
off, and the duration of the CC charging phase. The results show that
the features related to take-off have a high importance, This can be
explained by the fact that the battery experiences a high discharge
voltage during take-off. During high discharge voltages, the internal
resistance increases, which impacts the SOH [46]. Also, the duration
of the CC charging phase has a high importance for the prediction of
the SOH. As the battery performs more missions, the SOH decreases
while the duration of the CC charging phase increases (see Fig. 7(a)).

5.2. Setup for the machine learning algorithms

5-fold cross-validation
Using the framework in Section 4.3, we employ a 5-fold cross

validation to estimate the SOH of the batteries. The folds are generated
using group K-fold such that each fold contains a unique set of mission
profiles used for testing. In each fold, the number of mission profiles
selected for testing is approximately the same (3–4 mission profiles per
fold). Also, the number of capacity tests of these selected 3–4 mission
profiles is approximately the same (75 capacity tests used for testing).
Having a total of 19 mission profiles (see Section 2) with a total of
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Fig. 9. Feature importance — SOH estimation.

380 capacity tests, we aim to allocate mission profiles to folds such
that each of the 5 folds contains approximately 380∕5 capacity tests
available for testing. Each mission profile is allocated to one and only
one fold. Indeed, the number of capacity tests available for testing in
each fold varies between 74–84 capacity tests per fold. We obtain the
following 5 folds used for testing:

• Fold 1: the test dataset consists of mission profiles VAH12, VAH22,
VAH24.

• Fold 2: the test dataset consists of mission profiles VAH11, VAH27,
VAH30.

• Fold 3: the test dataset consists of mission profiles VAH02, VAH05,
VAH13, VAH15.

• Fold 4: the test dataset consists of mission profiles VAH10, VAH17,
VAH20, VAH23.

• Fold 5: the test dataset consists of mission profiles VAH01, VAH16,
VAH26, VAH28.
9

Table 4
Optimized hyperparameters — SOH.

Hyperparameters

SVR 𝐾𝑒𝑟𝑛𝑒𝑙 = 𝐿𝑖𝑛𝑒𝑎𝑟
𝑇 𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 0.186

RF Regression

𝑇 𝑟𝑒𝑒𝑠 = 797
𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ = 30
𝑀𝑖𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝐿𝑒𝑎𝑓 = 2
𝑀𝑖𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑝𝑙𝑖𝑡 = 4

XGBoost

𝑇 𝑟𝑒𝑒𝑠 = 3100
𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ = 19
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 = 0.25
𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 = 0.80

GPR 𝐴𝑙𝑝ℎ𝑎 = 0.069
𝐾𝑒𝑟𝑛𝑒𝑙 = 𝐷𝑜𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑡 +𝑊 ℎ𝑖𝑡𝑒𝑘𝑒𝑟𝑛𝑒𝑙

MLP

𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 96
𝑁𝑒𝑢𝑟𝑜𝑛𝑠1st 𝐿𝑎𝑦𝑒𝑟 = 90
𝑁𝑒𝑢𝑟𝑜𝑛𝑠2nd 𝐿𝑎𝑦𝑒𝑟 = 90
𝑁𝑒𝑢𝑟𝑜𝑛𝑠3rd 𝐿𝑎𝑦𝑒𝑟 = 40

Hyperparameter tuning

Table 4 shows the optimal hyperparameters obtained for each of the
five machine learning algorithms considered. We performed hyperpa-
rameter tuning based on a Bayesian optimization algorithm [2].

5.3. Performance metrics

For every mission profile used for testing, we predict the SOH
at each capacity test. The performance of our SOH predictions is
evaluated using the Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and the Mean Absolute Percentage Error (MAPE). These
metrics are defined, for the estimated SOH of a battery under mission
profile 𝑚, 1 ≤ 𝑚 ≤ 𝑀 , as follows:

𝑀𝐴𝐸𝑚
𝑆𝑂𝐻 = 1

𝐶𝑚

𝐶𝑚
∑

𝑖=1
|𝑆𝑂𝐻𝑚,𝑖 − ̂𝑆𝑂𝐻𝑚,𝑖

|,

𝑅𝑀𝑆𝐸𝑚
𝑆𝑂𝐻 =

√

√

√

√
1
𝐶𝑚

𝐶𝑚
∑

𝑖=1

(

̂𝑆𝑂𝐻𝑚,𝑖 − 𝑆𝑂𝐻𝑚,𝑖
)2

𝑀𝐴𝑃𝐸𝑚
𝑆𝑂𝐻 = 1

𝐶𝑚

𝐶𝑚
∑

𝑖=1

|𝑆𝑂𝐻𝑚,𝑖 − ̂𝑆𝑂𝐻𝑚,𝑖
|

𝑆𝑂𝐻𝑚,𝑖 ⋅ 100%,

where 𝑆𝑂𝐻𝑚,𝑖 is the true battery SOH at capacity test 𝑖 of mission
profile 𝑚, ̂𝑆𝑂𝐻𝑚,𝑖 is the predicted SOH at capacity test 𝑖 of mission
profile 𝑚, 1 ≤ 𝑚 ≤ 𝑀 .

The overall performance of our SOH predictions across all 𝑀 mis-
sion profiles is evaluated using:

𝑀𝐴𝐸𝑆𝑂𝐻 = 1
𝑀

𝑀
∑

𝑗=1
𝑀𝐴𝐸𝑗

𝑆𝑂𝐻

𝑅𝑀𝑆𝐸𝑆𝑂𝐻 = 1
𝑀

𝑀
∑

𝑗=1
𝑅𝑀𝑆𝐸𝑗

𝑆𝑂𝐻

𝑀𝐴𝑃𝐸𝑆𝑂𝐻 = 1
𝑀

𝑀
∑

𝑗=1
𝑀𝐴𝑃𝐸𝑗

𝑆𝑂𝐻

6. Results — State-of-Health prediction for eVTOL batteries

Table 5 shows the MAE, RMSE, and MAPE obtained across all
mission profiles for SOH estimation.

Table 6 shows the MAE, RMSE, and MAPE obtained for SOH predic-
tion for each mission profile. The last row of Table 6 gives the average
of these metrics. The results show that the SOH estimation errors
obtained for the baseline mission profiles are below the average MAE,
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Table 5
Results — predicting SOH [%].

MAE RMSE MAPE

SVR 1.48 2.20 0.02
RF Regression 1.33 1.80 0.02
XGBoost 1.39 1.91 0.02
GPR 1.48 2.27 0.79
MLP 2.75 7.49 0.03

Fig. 10. Second to last capacity test — VAH05.

RMSE and MAPE. The lowest prediction errors are obtained for mission
profiles VAH02, VAH10, VAH12, VAH13, VAH15, VAH16, VAH26 and
VAH28, when considering the RF regression.

The highest prediction errors are obtained for VAH05, regardless of
the machine algorithms considered (see Table 6). For the second to last
capacity test of VAH05, the RF regression predicts a SOH of 88.98%,
whereas the true SOH is 76.29%. For the last capacity test of VAH05,
the RF regression predicts the SOH to be 72.63%, while the true SOH
is 56.21%. The high SOH prediction errors for VAH05 for the second to
last capacity test can be explained by analyzing the current and voltage
during that specific second to last capacity test (see Fig. 15(c)). Fig. 10
shows the second last to capacity test of VAH05. Fig. 10 shows that
the current oscillates during the CC phase. Also, the current during the
discharge phases does not follow the pattern of standard capacity tests
(see Fig. 2). In fact, during discharge, the voltage exhibits 4 peaks.
The second-highest value of the RMSE, when using RF regression, is
achieved for mission profile VAH22 (see Table 6). Fig. 15(l) shows that
during the second to last capacity test of VAH22, the current does not
follow the pattern of a standard capacity test. During the second to last
capacity test of VAH22, the SOH is estimated to be 89.79%, while the
true SOH is 82.64%. The SOH for the last capacity test is estimated
to be 80.21%, while the true SOH is 69.53%. This could be explained
by the fact that the current and voltage oscillate during the charging,
take-off, cruise and landing of the second capacity test of VAH22 (see
Fig. 11).

Table 7 shows the intermediate errors obtained for SOH prediction
when employing RF regression, which is the best performing machine
learning algorithm among all five considered (see Table 5). The number
of capacity tests differs across the eVTOLs since each battery reaches
its EOL at a different moment in time. This is a result of the type of
missions each eVTOL performs. Overall, the results show that the SOH
is consistently well estimated as the number of missions performed
increases.

7. Predicting the remaining useful life of eVTOL batteries

In this section we apply the methodology introduced in Section 4 to
estimate the RUL of eVTOL batteries.
10
Fig. 11. Second to last capacity test — VAH22.

7.1. Feature selection and feature importance quantification

In Section 4.2, 33 features have been generated. In this section
we quantify the importance of the features for RUL prediction using
a RF regression model. We select the top 65% (21 features) with the
highest importance (see Fig. 12). The results shows that the mean and
the variance of the voltage during take-off are the most important
features. This is expected since the take-off is performed at a high C-
rate, which leads to a high internal impedance during take-off. In turn,
a higher internal impedance is expected to affect the remaining life of
the battery. The voltage during landing, cruise, as well as the duration
of the CC charging phase are also shown to be of high importance for
RUL estimation.

7.2. Setup for the machine learning algorithms

5-fold cross-validation
Using the framework in Section 4.3, we employ a 5-fold cross

validation to estimate the battery RUL. Compared with the estimation
of SOH, where a total of 380 capacity tests are considered, for RUL
estimation, only 215 capacity tests are considered. This is because we
consider an EOL of 85% of the initially measured battery capacity.

The 5 folds are generated using group K-fold such that each fold
contains a unique set of mission profiles used for testing. In each fold,
the number of mission profiles selected for testing is approximately the
same (4 mission profiles per fold). Also, the number of capacity tests of
these selected 4 mission profiles is approximately the same (45 capacity
tests used for testing). Thus, having a total of 19 mission profiles (see
Section 2) with a total of 215 capacity tests, we aim to allocate mission
profiles to folds such that each of the 5 folds contains approximately
215∕5 capacity tests used for testing. Each mission profile is allocated
to one and only one fold. We obtain the following 5 folds for testing:

• Fold 1: the test dataset consists of mission profiles VAH11, VAH16,
VAH20, VAH24.

• Fold 2: the test dataset consists of mission profiles VAH05, VAH15,
VAH17, VAH26.

• Fold 3: the test dataset consists of mission profiles VAH02, VAH12,
VAH23, VAH27.

• Fold 4: the test dataset consists of mission profiles VAH10, VAH28,
VAH30.

• Fold 5: the test dataset consists of mission profiles VAH01, VAH13,

VAH22, VAH25.
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Table 6
Error metrics SOH [%].

SVR RF Regression XGBoost GPR MLP

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

VAH01 1.09 1.47 0.01 1.29 1.51 0.01 1.2 1.53 0.01 1.18 1.57 0.01 2.14 2.3 0.02
VAH02 0.89 1.07 0.01 0.85 1.01 0.01 2.13 2.64 0.02 0.61 0.85 0.01 1.91 2.2 0.02
VAH05 2.82 7.62 0.04 1.82 3.88 0.03 2.02 3.85 0.03 3.04 9.74 0.04 18.36 94.69 0.24
VAH10 0.55 0.71 0.01 0.87 1.01 0.01 0.86 1.04 0.01 0.65 0.87 0.01 2.08 2.44 0.03
VAH11 1.79 1.91 0.02 1.51 1.7 0.02 1.92 2.41 0.02 1.33 1.49 0.02 1.47 1.69 0.02
VAH12 2.78 2.99 0.04 0.65 0.84 0.01 0.91 1.16 0.01 3.52 3.73 0.04 1.71 1.9 0.02
VAH13 0.87 1.13 0.01 0.58 0.71 0.01 0.84 1.07 0.01 0.89 1.09 0.01 1.12 1.55 0.01
VAH15 1.0 1.2 0.01 0.31 0.46 0.0 0.72 1.03 0.01 0.79 0.98 0.01 1.75 2.03 0.02
VAH16 0.66 1.13 0.01 1.26 1.45 0.01 0.82 0.97 0.01 0.65 1.05 0.01 0.7 1.03 0.01
VAH17 1.24 1.4 0.01 0.46 0.63 0.01 1.08 1.4 0.01 0.89 1.07 0.01 0.56 0.86 0.01
VAH20 1.13 1.44 0.01 1.85 2.34 0.02 1.17 1.53 0.01 0.92 1.25 0.01 0.78 1.19 0.01
VAH22 2.54 5.52 0.03 1.79 3.74 0.02 1.95 4.19 0.03 2.02 4.72 0.02 5.21 12.92 0.07
VAH23 2.11 2.72 0.02 2.95 3.74 0.03 2.45 3.19 0.03 2.31 2.69 0.03 7.27 7.62 0.08
VAH24 3.9 4.0 0.04 1.55 2.08 0.02 2.55 2.71 0.03 4.28 4.39 0.05 1.19 1.48 0.01
VAH25 0.94 1.62 0.01 2.0 2.71 0.02 1.85 2.46 0.02 0.86 1.44 0.01 2.06 2.76 0.02
VAH26 1.32 2.14 0.02 1.17 1.64 0.01 0.8 1.31 0.01 1.5 2.35 0.02 1.34 2.11 0.02
VAH27 1.33 1.84 0.01 1.03 1.32 0.01 1.05 1.39 0.01 1.46 1.9 0.02 1.21 1.64 0.01
VAH28 0.63 1.07 0.01 0.89 1.1 0.01 0.69 0.86 0.01 0.61 1.14 0.01 0.57 0.86 0.01
VAH30 0.56 0.8 0.01 2.36 2.43 0.03 1.36 1.58 0.02 0.63 0.82 0.01 0.89 1.04 0.01
Average 1.48 2.20 0.02 1.33 1.80 0.02 1.39 1.91 0.02 1.48 2.27 0.02 2.75 7.49 0.03
Table 7
Results — predicting SOH [%] at each capacity test using RF Regression, N.A.= Non-Applicable.

Capacity Test

1st [%] 5th [%] 10th [%] 15th [%] 20th [%] 25th [%] 30th [%] 35th [%] 40th [%] 45th [%]

VAH01 Predicted SOH 96.90% 91.31% 85.93% 80.89% N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100.00% 91.85% 86.83% 82.66% N.A. N.A. N.A. N.A. N.A. N.A.

VAH02 Predicted SOH 98.36% 91.88% 85.15% N.A. N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 91.14% 85.52% N.A. N.A. N.A. N.A. N.A. N.A. N.A.

VAH05 Predicted SOH 98.42% 94.37% 88.52% 84.31% 82.25% 77.85% 88.98% N.A. N.A. N.A.
True SOH 100% 92.84% 88.22% 85.14% 82.53% 79.33% 76.29% N.A. N.A. N.A.

VAH10 Predicted SOH 97.82% 92.99% 87.24% 83.71% 80.68% 77.32% N.A. N.A. N.A. N.A.
True SOH 100% 91.87% 86.72% 83.16% 79.63% 76.49% N.A. N.A. N.A. N.A.

VAH11 Predicted SOH 98.69% 93.94% 91.62% 88.09% 84.74% 81.42% 78.86% 76.32% 71.81%
True SOH 100% 93.25% 89.26% 86.48% 82.20% 80.05% 77.70% 75.62% 73.01% N.A.

VAH12 Predicted SOH 99.19% 92.01% 88.26% 84.96% 80.78% 79.33% 77.96% 75.19% 73.54% 70.68%
True SOH 100% 92.89% 88.53% 85.34% 81.28% 78.31% 75.89% 75.03% 73.69% 71.61%

VAH13 Predicted SOH 99.12% 92.96% 88.04% 82.87% N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 92.52% 87.64% 84.20% N.A. N.A. N.A. N.A. N.A. N.A.

VAH15 Predicted SOH 98.72% 90.69% 84.93% N.A. N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 90.87% 84.76% N.A. N.A. N.A. N.A. N.A. N.A. N.A.

VAH16 Predicted SOH 96.81% 91.97% 83.91% N.A. N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 91.24% 84.92% N.A. N.A. N.A. N.A. N.A. N.A. N.A.

VAH17 Predicted SOH 98.84% 91.75% 86.78% 83.10% N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 91.74% 86.31% 82.34% N.A. N.A. N.A. N.A. N.A. N.A.

VAH20 Predicted SOH 95.91% 89.48% 81.49% N.A. N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 90.89% 84.08% N.A. N.A. N.A. N.A. N.A. N.A. N.A.

VAH22 Predicted SOH 98.96% 90.38% 84.48% N.A. N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 90.82% 84.59% N.A. N.A. N.A. N.A. N.A. N.A. N.A.

VAH23 Predicted SOH 90.84% 89.19% 88.49% N.A. N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 91.25% 85.95% N.A. N.A. N.A. N.A. N.A. N.A. N.A.

VAH24 Predicted SOH 98.82% 95.81% 87.32% 81.45% N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 91.95% 86.72% 82.18% N.A. N.A. N.A. N.A. N.A. N.A.

VAH25 Predicted SOH 96.18% 90.17% 94.01% N.A. N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 91.94% 86.85% N.A. N.A. N.A. N.A. N.A. N.A. N.A.

VAH26 Predicted SOH 97.41% 92.42% 87.52% 81.47% 77.27% N.A. N.A. N.A. N.A.
True SOH 100% 92.34% 87.38% 82.55% 78.82% N.A. N.A. N.A. N.A. N.A.

VAH27 Predicted SOH 99.12% 91.82% 84.73% N.A. N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 91.10% 85.51% N.A. N.A. N.A. N.A. N.A. N.A. N.A.

VAH28 Predicted SOH 96.80% 91.82% 87.76% 83.71% 81.44% N.A. N.A. N.A. N.A. N.A.
True SOH 100% 92.68% 87.92% 84.36% 81.78% N.A. N.A. N.A. N.A. N.A.

VAH30 Predicted SOH 98.20% 93.99% 87.79% 83.87% N.A. N.A. N.A. N.A. N.A. N.A.
True SOH 100% 91.40% 85.77% 81.52% N.A. N.A. N.A. N.A. N.A. N.A.
11
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Fig. 12. Feature importance — RUL estimation.

Hyperparameter tuning

Table 8 shows the optimal hyperparameters obtained for each ma-
chine learning algorithm considered. The hyperparameter tuning is
based on the Hyperopt Bayesian algorithm [47].

7.3. Performance metrics

For every mission profile used for testing, we predict the RUL at
each capacity test. The performance of the RUL predictions is evalu-
ated using the Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and the Mean Absolute Percentage Error (MAPE). These per-
formance metrics are defined for the estimated RUL of a battery under
12
Table 8
Optimized hyperparameters — RUL.

Hyperparameters

SVR 𝐾𝑒𝑟𝑛𝑒𝑙 = 𝑙𝑖𝑛𝑒𝑎𝑟
𝑇 𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 88.75

RF Regression

𝑇 𝑟𝑒𝑒𝑠 = 1951
𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ = 104
𝑀𝑖𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝐿𝑒𝑎𝑓 = 3
𝑀𝑖𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑝𝑙𝑖𝑡 = 2

XGBoost

𝑇 𝑟𝑒𝑒𝑠 = 5100
𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ = 29
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 = 0.25
𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 = 0.91

GPR 𝐴𝑙𝑝ℎ𝑎 = 1.0
𝐾𝑒𝑟𝑛𝑒𝑙 = 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐

MLP

𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 64
𝑁𝑒𝑢𝑟𝑜𝑛𝑠1𝑠𝑡𝐿𝑎𝑦𝑒𝑟 = 40
𝑁𝑒𝑢𝑟𝑜𝑛𝑠2𝑛𝑑𝐿𝑎𝑦𝑒𝑟 = 10
𝑁𝑒𝑢𝑟𝑜𝑛𝑠3𝑟𝑑𝐿𝑎𝑦𝑒𝑟 = 30

Table 9
Results — RUL prediction [#missions].

MAE RMSE MAPE

SVR 66.48 79.03 0.38
RF Regression 63.25 75.81 0.39
XGBoost 54.53 67.92 0.39
GPR 59.37 72.86 0.27
MLP 75.45 87.97 0.44

mission profile 𝑚, 1 ≤ 𝑚 ≤ 𝑀 , as follows:
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where 𝑅𝑈𝐿𝑚,𝑖 is the true battery RUL at capacity test 𝑖 of mission
profile 𝑚, ̂𝑅𝑈𝐿𝑚,𝑖 is the predicted RUL at capacity test 𝑐 of mission
profile 𝑚, 1 ≤ 𝑚 ≤ 𝑀 .

The overall performance of our RUL predictions across all 𝑀 mis-
sion profiles is evaluated using:
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8. Results — remaining useful life prediction for eVTOL batteries

Table 9 shows the MAE, RMSE, and MAPE obtained when consid-
ering all 19 mission profiles. From all considered machine learning
algorithms, XGBoost leads to the lowest RUL estimation errors.

Table 10 shows the MAE, RMSE, and MAPE obtained for RUL
estimation. In the last row, the average MAE, RMSE, and MAPE for
each algorithm is given.

The results show that the lowest RUL estimation errors (MAE,
RMSE) are obtained using XGBoost, and for mission profiles with an
increase in the cruise duration (VAH02, VAH15, VAH22) or a 50%
increase of the CC charging current (VAH16 and VAH20).
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Fig. 13. Second to last capacity test — VAH25.

Table 10 also shows that the highest RUL prediction errors are
obtained for VAH11. Mission profile VAH11 has the largest power
reduction (20%) during take-off, cruise, and landing.

Compared with the results obtained for SOH prediction, RUL pre-
diction errors are significantly lower for mission profiles VAH05 and
VAH22. This is because the EOL (85% of the initially measured capac-
ity) of the batteries used for VAH05 and VAH22 is reached before the
non-standard capacity tests of VAH05 and VAH22.

For mission profile VAH25, XGBoost leads to RUL estimation errors
above average. This can be explained by the non-standard second to last
capacity test in VAH25. In Fig. 13, the second to last capacity test of
VAH25 is plotted with respect to the voltage considered. Fig. 13 shows
that the capacity test follows a different pattern than the standard
capacity tests (see Fig. 2). The CC charging current is lower, and the
discharge phases are not clearly distinguishable. The reason behind it
is that sduring the second to last capacity test, two capacity tests have
been performed one after the other. Yet, these have been reported as
only one capacity test in the dataset provided in [24]. For this second
to last capacity test, the RUL is estimated to be 434 missions, while the
true RUL is 52 missions. This large error for this capacity test increases
significantly the overall RUL prediction error for this mission profile.

XGBoost also leads to large RUL estimation errors for mission profile
VAH28. VAH28 has a 10% power reduction during take-off, cruise,
and landing, compared with the baseline mission profiles. These results
can be explained by the fact that the 6th capacity test of this mission
profile exhibits abnormal trends. Also here, two capacity tests have
been performed one after the other, but these have been reported as
only one capacity test in dataset [24]. Fig. 14 shows the current and
voltage during the 6th capacity test. Fig. 14 shows that the CC charging
current is lower compared to the standard capacity tests (see Fig. 2).
Besides, the current and voltage during the discharge phases do not
follow the pattern of the standard capacity tests (see Fig. 2). During
the discharge phase, the take-off, cruise, and landing cannot be clearly
distinguished. For this 6th capacity test, the RUL is estimated to be
148 missions, while the true RUL is 466 missions. Also here, these
large errors obtained for an early capacity test increase the overall RUL
estimation errors for this mission.

Table 11 shows the RUL prediction errors obtained at every capacity
test. Also here, the number of capacity tests differs for every eVTOL
since the EOL of the battery is reached at the different moment in
time for each battery. The results show that the prediction errors are
smaller in the initial phase of the eVTOL usage. In general, after the
7th capacity tests, all prediction errors increase for all eVTOLs.
13
Fig. 14. Second to last capacity test — VAH28.

9. The impact of mission characteristics on the estimation of the
State-Of-Health and Remaining Useful Life of eVTOL batteries

One of the mission characteristics that is varied across mission
profiles is the duration of the cruise phase. Mission profiles VAH02,
VAH15, and VAH22 have a cruise phase extended by 25% compared
to the baseline mission profiles. Mission profiles VAH12, VAH13, and
VAH26 have a 50%, 25% and 25% shorter cruise duration, respectively,
compared with the baseline mission profiles.

When estimating SOH using RF regression, the estimation errors
(MAE, RMSE, MAPE) for these mission profiles are below the average
estimation errors (see Table 6). The exception is mission profile VAH22,
where the second to last capacity test exhibits unexpected patterns in
the voltage and the current of the charging and discharging phases (see
also Fig. 11). In this case study, thus, after increasing or decreasing the
duration of the cruise phase, the SOH is still well estimated.

The importance of the duration of the cruise phase for SOH esti-
mation was ranked as low in Section 5.1. This does not mean that
the characteristics of the cruise phase are of no importance for SOH
estimation. In fact, the following features related to the cruise phase
have been ranked as having a high importance (in decreasing order of
importance): maximum temperature during cruise, minimum voltage
during cruise, maximum voltage during cruise, and minimum discharge
capacity during cruise. The results show that the maximum tempera-
ture during cruise is of high importance for SOH estimation. This is
also in accordance with existing literature [48,49] where the battery
temperature is shown to be highly correlated with the SOH of the
battery.

Similarly, when considering the RUL estimation using XGBoost, the
RUL estimation errors for mission profiles VAH02, VAH15, VAH22
are below the average errors. Also in this case, the feature regarding
cruise duration, 𝛥𝑐𝑟𝑢𝑖𝑠𝑒, is shown to have a low importance for RUL
estimation (see Section 7.1). Nonetheless, several features related to
cruise phase have been shown to have a high importance for RUL
prediction. In decreasing order of importance, the following features
have been selected for RUL estimation: mean voltage during cruise,
maximum discharge capacity during cruise, variance discharge ca-
pacity during cruise, minimum discharge capacity during cruise, and
maximum temperature during cruise.

Another mission characteristic that has been varied across several
mission profiles is the CC charging current. Mission profiles VAH16
and VAH20 have a 50% increase of the CC charging current, while
VAH24 has a 50% reduction of the CC charging current when compared
to the baseline mission profiles. For both VAH16, VAH20 and VAH24,



Energy and AI 12 (2023) 100233M. Mitici et al.
Table 10
Error metrics RUL prediction [#missions], EOL-threshold 85% of battery capacity.

SVR RF Regression XGBoost GPR MLP

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

VAH01 99.21 104.42 0.53 105.72 117.74 0.34 62.64 75.85 0.28 70.28 80.3 0.32 69.91 85.41 0.42
VAH02 37.21 48.7 0.32 53.49 67.41 0.24 52.72 57.54 0.22 23.26 30.66 0.1 80.52 87.69 0.33
VAH05 75.78 91.53 0.32 34.48 45.09 0.15 35.99 47.14 0.12 24.38 34.42 0.14 121.01 129.48 0.63
VAH10 29.19 34.14 0.2 30.16 34.62 0.22 36.43 43.5 0.15 82.54 96.59 0.27 47.57 52.29 0.2
VAH11 139.37 173.13 0.96 163.78 187.94 0.98 199.58 224.73 1.1 145.87 173.34 0.71 367.18 383.3 1.93
VAH12 114.59 138.36 0.29 102.78 114.45 0.31 97.43 109.16 0.28 133.43 155.36 0.32 38.82 44.07 0.14
VAH13 52.43 61.41 0.19 20.87 25.01 0.1 24.91 28.7 0.11 16.94 18.96 0.07 27.3 32.41 0.14
VAH15 12.17 15.9 0.1 22.02 25.92 0.18 18.15 23.79 0.14 14.13 18.55 0.12 13.87 19.83 0.14
VAH16 67.75 70.88 0.41 50.78 55.66 0.32 30.77 34.77 0.21 73.73 75.08 0.43 74.94 89.47 0.34
VAH17 40.64 49.44 0.25 36.31 40.37 0.18 26.18 31.57 0.19 22.81 31.52 0.21 43.31 48.81 0.31
VAH20 59.21 61.67 0.41 41.84 46.07 0.31 19.63 27.21 0.18 63.19 63.93 0.39 66.32 78.78 0.25
VAH22 10.37 12.5 0.06 28.92 32.25 0.17 8.76 14.41 0.07 12.54 15.86 0.11 7.12 9.28 0.07
VAH23 133.27 169.15 0.38 126.67 149.08 0.94 115.34 131.3 0.67 124.96 154.4 0.41 129.93 145.97 0.85
VAH24 40.19 43.46 0.23 62.81 79.2 0.54 45.09 56.82 0.37 72.57 94.38 0.29 87.77 106.45 0.74
VAH25 69.66 112.77 0.82 73.85 161.69 1.09 65.27 126.31 0.88 29.14 44.76 0.33 72.94 114.6 0.74
VAH26 58.81 70.97 0.4 28.62 31.21 0.18 31.7 35.01 0.17 36.94 41.49 0.23 60.3 65.11 0.27
VAH27 55.31 59.54 0.38 13.3 17.67 0.09 14.91 19.19 0.06 36.07 41.73 0.14 30.45 34.06 0.13
VAH28 66.99 80.77 0.34 53.92 57.31 0.2 49.74 91.25 0.17 75.56 128.24 0.25 68.73 111.97 0.47
VAH30 100.98 102.77 0.66 151.42 151.74 0.9 100.76 112.24 0.75 69.77 84.71 0.32 25.63 32.51 0.19
Average 66.48 79.03 0.38 63.25 75.81 0.39 54.53 67.92 0.32 59.37 72.86 0.27 75.45 87.97 0.44
Table 11
Results RUL prediction [#missions] at each capacity test using XGBoost, N.A.= Non-Applicable.

Capacity Test

1st [#missions] 3rd [#missions] 5th [#missions] 7th [#missions] 9th [#missions] 11th [#missions] 13th [#missions] 15th [#missions]

VAH01 Predicted RUL 484 458 401 279 67 46 N.A. N.A.
True RUL 612 510 408 306 204 102 N.A. N.A.

VAH02 Predicted RUL 568 451 375 273 78 N.A. N.A. N.A.
True RUL 510 408 306 204 102 N.A. N.A. N.A.

VAH05 Predicted RUL 656 617 573 460 417 314 198 N.A.
True RUL 765 663 561 459 357 255 153 N.A.

VAH10 Predicted RUL 597 449 392 279 246 110 N.A. N.A.
True RUL 613 511 409 306 204 102 N.A. N.A.

VAH11 Predicted RUL 757 764 737 695 621 575 520 369
True RUL 816 714 612 510 408 306 204 102

VAH12 Predicted RUL 643 532 382 305 200 228 87 N.A.
True RUL 765 663 561 459 357 255 153 N.A.

VAH13 Predicted RUL 681 596 405 324 262 122 N.A. N.A.
True RUL 663 561 459 357 255 153 N.A. N.A.

VAH15 Predicted RUL 460 365 238 141 N.A. N.A. N.A. N.A.
True RUL 459 357 255 153 N.A. N.A. N.A. N.A.

VAH16 Predicted RUL 479 415 277 208 N.A. N.A. N.A. N.A.
True RUL 459 357 255 153 N.A. N.A. N.A. N.A.

VAH17 Predicted RUL 516 443 345 255 177 N.A. N.A. N.A.
True RUL 561 459 357 255 153 N.A. N.A. N.A.

VAH20 Predicted RUL 450 349 250 199 N.A. N.A. N.A. N.A.
True RUL 459 357 255 153 N.A. N.A. N.A. N.A.

VAH22 Predicted RUL 460 356 249 147 N.A. N.A. N.A. N.A.
True RUL 459 357 255 153 N.A. N.A. N.A. N.A.

VAH23 Predicted RUL 303 343 290 210 252 N.A. N.A. N.A.
True RUL 561 459 357 255 153 N.A. N.A. N.A.

VAH24 Predicted RUL 499 417 324 266 219 N.A. N.A. N.A.
True RUL 561 459 357 255 153 N.A. N.A. N.A.

VAH25 Predicted RUL 454 413 299 161 36 N.A. N.A. N.A.
True RUL 512 410 307 205 103 N.A. N.A. N.A.

VAH26 Predicted RUL 665 554 446 265 178 N.A. N.A. N.A.
True RUL 613 511 409 255 153 N.A. N.A. N.A.

VAH27 Predicted RUL 548 408 330 135 N.A. N.A. N.A. N.A.
True RUL 511 409 307 153 N.A. N.A. N.A. N.A.

VAH28 Predicted RUL 691 603 512 347 297 166 100 N.A.
True RUL 721 619 517 414 312 210 108 N.A.

VAH30 Predicted RUL 654 423 384 317 262 N.A. N.A. N.A.
True RUL 510 408 306 204 102 N.A. N.A. N.A.
14
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Fig. 15. Current during capacity tests for all 19 selected mission profiles.
the RUL estimation errors are below the average estimation errors. The
change in the CC charging current is directly reflected in the change
in the duration of the CC charging phase, i.e., an increase in the CC
charging current leads to a decrease of the duration of the CC charging
phase and vice versa. The importance of the CC charging current for
RUL estimation is reflected by the fact that the CC charging phase
duration, 𝛥𝐶𝐶 , is shown to have a high importance for RUL estimation
(see Section 7.1). This is also in accordance with existing literature [50]
15
where the CC charging duration is related to the battery’s degradation.
As the battery’s capacity decreases gradually, it takes less time to fully
charge the battery [51].

10. Conclusions

In this paper, a data-driven machine learning framework is proposed
to predict the state of health and remaining useful lifetime of batteries
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Fig. 15. (continued).
for Electric Vertical Take-off and Landing vehicles . We consider a
dedicated dataset of batteries for Electric Vertical Take-off and Landing
vehicles. These batteries are used to perform realistic flights. The flights
are performed under varying conditions: temperature, cruise duration,
discharge power, CC charging current and CV charging voltage. The
Electric Vertical Take-off and Landing vehicles perform the take-off and
landing at higher C-rates (5C-rate) than the cruise (1.48C-rate).

A total of 33 features have been generated based on charge-related,
discharge-related, and temperature-related parameters. The importance
16
of these features for state-of-health and remaining-useful-life estimation
has been quantified. The results show that the features with the highest
importance for state-of-health are the (variance, minimum) voltage
recorded during take-off and the duration of the CC-CV charging phase.
For RUL estimation, the voltage during take-off (variance, minimum),
landing and cruise are of highest importance. The selected features for
remaining-useful-life, but not for state-of-health estimation, are mean
voltage during cruise and landing, maximum discharge capacity during
cruise and landing, and variance discharge capacity during cruise.
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Fig. 15. (continued).
We have considered five machine learning algorithms for state-of-
health and remaining-useful-life prognostics: Support Vector Machine,
Random Forest regression, Extreme Gradient Boosting, Gaussian pro-
cess regression, and Multilayer perceptron. The lowest state-of-health
estimation errors are obtained using a Random forest regression (Mean
Absolute Error= 1.33%). Extreme Gradient Boosting leads to the lowest
17
remaining-useful-life estimation errors (Mean Absolute Error=54.33

missions). The results also show that when increasing the cruise du-

ration by up to a 25%, the state-of-health and remaining-useful-life

are well estimated by Random Forest regression and Extreme Gradient

Boosting, respectively.
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