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A B S T R A C T

The interpretability of an intelligent model automatically derived from data is a property that can be acted
upon with a set of structural constraints that such a model should adhere to. Often these are in contrast with
the task objective and it is not straightforward how to explore the balance between model interpretability
and performance. In order to allow an interested user to jointly optimise performance and interpretability,
we propose a new formulation of Neural Additive Models (NAM) which can be subject to a number of
constraints. Accordingly, our approach produces a new model that is called Constrainable NAM (or just
CNAM in short) and it allows the specification of different regularisation terms. CNAM is differentiable
and is built in such a way that it can be initialised as a solution of an efficient tree-based GAM solver
(e.g., Explainable Boosting Machines). From this local optimum the model can then explore solutions with
different interpretability-performance tradeoffs according to different definitions of both interpretability and
performance. We empirically benchmark the model on 56 datasets against 12 models and observe that on
average the proposed CNAM model ranks on the Pareto front of optimal solutions, i.e., models generated by
CNAM exhibit a good balance between interpretability and performance. Moreover, we provide two illustrative
examples which are aimed to show step by step how CNAM works well for solving classification tasks, but
also how it can yield insights when considering regression tasks.
. Introduction

Today’s society is accumulating more and more data whose use
an optimise existing processes and bring wealth and knowledge. This
otivates a need for tools that can process these data according to the

pecific tasks at hand.
Machine Learning (ML) and Artificial Intelligence (AI) recently

ained lots of success thanks to greater performance with respect to
raditional approaches on many benchmark problems [1,2]. The ML
nd AI approach consists in specifying the end goal and constraints to
e satisfied and the programme automatically adjust itself to satisfy
hose. Unfortunately these models, while effective, are typically not
nderstandable by humans. This is because their main job is only to
aximise predictive generalisation, without taking into account the

ntelligibility of the model itself.
The lack of interpretability of some AI-based systems is an issue

or a number of applications for which quality assurance, trust, legal
iability and adherence to ethical principles is a must. Motivated by
his, a lot of work has been done in the field of eXplainable Artificial
ntelligence (XAI) [3,4], a collective effort to explain the behaviour
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and predictions of ML models to allow debugging, oversight, auditing,
knowledge discovery, and safe democratisation of these new powerful
information-processing technologies in many domains [5,6].

In this paper we define explainability as the ability of a system to
give an explanation to the user, that is a report of (part of) the causal
reasoning that lead to a particular outcome. We refer to interpretability
instead of the less demanding property of a system of being inspectable
in its parts in a meaningful way. In this sense, interpretability is a
prerequisite for explainability.

XAI has evolved in different directions based on the requirements
stated by the stakeholders of the explainable systems. For example,
in order to build tools that are as widely applicable as possible some
researchers have prioritised the development of ‘‘black-box explain-
ers’’ [7]. In this context, no assumption is made on the model and we
are only left with the input–output relationship. In that case we have
to rely on post-hoc approaches. These typically involve approximating
the original model in an appropriate neighbourhood of data with an
interpretable model (a so-called white-box) and then inspecting that
to provide explanations, as suggested by [8,9] (this approach is also
vailable online 12 June 2023
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known as surrogating). The surrogation paradigm is a very powerful
one as it allows in principle to explain any black-box model, even deep
neural networks, as long as the surrogating models are powerful enough
to act like them. In virtue of this, if we want to enhance the explanation
of black boxes, we first need good interpretable models by design so
that we can later use them for surrogating.

To put it in other terms:

• we are interested in explaining black box models as these are
widely used;

• interpretability is a prerequisite for explainability, by the argu-
ment stated above;

• we should aim for models which are interpretable because these
make ideal surrogate models for explaining other models.

This opens up the question of what it really means for a model to
be interpretable. While with an imperative-style approach (where the
programme is hard-coded by a human) the interpretability is kept
in each sub-component, with the ML-style approach (as it is usually
employed) the only solutions explored are those that solve the task
regardless of the final form of the model. A way of leveraging the
power of the ML approach is to guide the search of models not only
based on their performance but also on some other targets that reflect
their interpretability. In this sense we can imagine that an appropriate
regularisation term into the target loss could constrain the optimisation
of both dimensions (i.e., interpretability and performance).

Just as the appropriate measure for predictive performance varies
from task to task, the appropriate constraints for interepretability are
also application-dependent (usually penalise complexity and favour
sparse representations) and should iteratively be refined with domain
experts [10]. Generalised Additive Models (GAM) and Neural Ad-
ditive Models (NAM) are well-studied classes of models that have
powerful predictive performance while retaining an interpretable struc-
ture. This work addresses a new formulation for fitting GAM, named
Constrainable Neural Additive Model (CNAM), such that appropriate
interpretable constraints can be enforced to jointly maximise perfor-
mance and interpretability. In order to benchmark this model against
other approaches we use a novel interpretability metric that is called
SHAP-Length [11], which exploits the well-known SHapley Additive
exPlanations (SHAP) first introduced by [9].

The main contributions in this work are as follows:

• a novel formulation of NAM, CNAM, such that interpretablilty
constraints can be enforced and jointly optimised alongside task-
related performance metrics;

• an extensive benchmark of CNAM on 56 binary classification
datasets against 13 different models;

• an illustrative use-case of CNAM on a classification dataset;
• an illustrative use-case of CNAM on a regression dataset.

The rest of the manuscript is organised as follows. In Section 2, we
discuss related work in the field. In Section 3, we describe the structure
and properties of CNAM. In Section 4, we experiment first with a bench-
mark study for explicitly exploring CNAM interpretability-performance
tradeoff on binary classification tasks and then go deeper with two
illustrative use cases: an astrophysics classification task and a socio-
economic regression task. Finally in Section 6, we draw conclusions
and delineate future work.

2. Related work

The history of learning from data can be traced back to early
work in the 19th century where, motivated by the desire of predicting
astronomical data and minimising reconstruction errors, theoretical
foundations and closed-form solutions for Linear Models (LM) were de-
2

veloped, which minimised the Mean Squared Error (MSE) as proposed
by [12,13]. The target 𝑦 is modelled as �̂� from a set of features 𝑥𝑖 and
the task is to find a set of real coefficients 𝛽𝑖 such that

�̂� =
∑

𝑖
𝛽𝑖𝑥𝑖

and the MSE= 1∕𝑁
∑𝑁

𝑗 (𝑦𝑗 − 𝑦𝑗 )2, is minimised.
Much later, [14] unified some scattered views of modelling a certain

target with a LM and introduced Generalised Linear Models (GLM),
where the target 𝑦 is transformed with the so-called link function 𝑔(⋅)
with static coefficients 𝛼𝑖 such that

𝑔(𝑦) =
∑

𝑖
𝛼𝑖𝑥𝑖

This new modelling allows (among other things) to have linear
classifiers by choosing the logistic sigmoid as the link function, leading
to what is known as Logistic Regression (LR).

A further generalisation of LM was developed at Bell Labs by [15,
16] where the condition of having a static coefficient 𝛼𝑖 is relaxed
and the relationship is allowed to be a non-linear function 𝑓𝑖(⋅) of the
univariate feature such that

𝑔(𝑦) =
∑

𝑖
𝑓𝑖(𝑥𝑖)

This new formulation is appealing because it is more expressive than
GLM while keeping a relatively simple and understandable structure.
When the model is fitted one can indeed easily visualise each 𝑓𝑖
(also called a shape function) as a function of the 𝑥𝑖 values, naturally
providing both a global view of the behaviour of the model on a dataset
and a local explanation for the prediction of a single data point.

From a practical point of view, initially the 𝑓𝑖 were based on
Regression Splines of degree 𝑑 of the form 𝑓𝑖(𝑥𝑖) ∶=

∑𝑑
𝑘=1 𝛽𝑘𝑏𝑗 (𝑥𝑖)

(Spline-GAM) or other Kernel Expansions of the feature 𝑥𝑖. On the one
and, this allowed the injection of expert knowledge when designing
he model. On the other hand, the fitting procedure was slow and
ometimes did not converge properly. These fitting methods were then
hown to be outperformed by [17] with a procedure of bagging and
oosting binary decision trees leading to a class of models called
xplainable Boosting Machines (EBM). For optimisation of speed and
emory EBMs compress the representation of the function 𝑓𝑖 with a

lookup table, a data structure that bins the feature values and maps
each bin to the height of the shape function.

EBMs were then further generalised to allow also pairwise interac-
tions (EB2M) of the form 𝑓 (𝑥𝑖, 𝑥𝑗 ) by [18] and proved to be of value
with an application in healthcare [19].

A parallel development has attempted to model the shape functions
with neural networks. [20] pioneered the work with the so-called
Generalised Additive Neural Networks (GANN), where each 𝑓𝑖 was
represented as a small neural network. The optimisation process fol-
lowed an iterative approach and did not make use of backpropagation.
GANN were successfully used for example with the aim of improving
the performance of credit scoring applications [21]. Recently [22]
proposed Neural Additive Models (NAM), a modern reinterpretation
of GANN with more neurons, a new activation function ExU and a
sophisticated training procedure that included dropout, weight decay,
output penalty and feature dropout. They reported competitive task
performance compared to EBMs and other models on four datasets. It
is worth noting that NAM can be a building block for other models,
for example as the backbone of autoencoders. The main drawback of
NAM is the need for a careful setup of many hyperparameters and the
long training time that is required for the convergence of these models.
Moreover with their formulation it is more difficult to introduce expert
knowledge in the system and to explicitly require a part of a shape
function to have a specific form.

In an effort to put the human in the loop, [23] built GAM-Changer,
a framework where fitted GAM can be inspected and changed when
deemed appropriate. This enables a domain expert to interact with the
system and give some tools on how to correct the model where few
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Table 1
Short summary of related models in the literature. CNAM is the new model proposed in this work.

LM LR GLM Spline-GAM EBM EB2M NAM CNAM*

Classification tasks x x x x x x x
Regression tasks x x x x x x x
Can be backbone of Autoencoders x x x
Can use prior knowledge on target x x x x x x
Can use prior knowledge on data x x
Pairwise interactions x
Arbitrary initialisation x x x x x
Constrainable x x x
Explicitly balancing x
interpretability-performance
Fig. 1. Schematic view of the structure of CNAM (for classification) and how constraints are inserted. For regression the model is the same with the difference of not having a
logistic sigmoid non-linearity at the end.
statistics are available but human knowledge can be of help. While the
user does receive feedback on the performance of the modified model,
there is currently no way of fine-tuning the changed model keeping
fixed the human interventions.

With the aim of overcoming drawbacks of current state of the art
models, in this work we introduce the new CNAM, a way of building
GAM based on neural networks but with a specific structure such that it
is possible to initialise each shape function as an arbitrary curve and to
enforce constraints on parts of the network. This is important because
it allows us to:

1. leverage the power and speed of EBM which quickly converges
to a good solution;

2. leverage the expressiveness of differentiable programming,
opening the possibility of jointly optimising performance and
interpretability-related metrics.

To conclude this section, Table 1 summarises the main properties of
the most outstanding related models in the literature. As we will see in
the rest of the paper, CNAM is a promising tool for human-in-the-loop
solutions and can in principle be integrated into GAM-Changer enabling
a complete feedback-loop between a human and a machine.

3. Model structure

We can graphically represent CNAM as illustrated in Fig. 1. The
important novelty of CNAM is the construction of the shape functions
𝑓𝑖 as a sum of carefully initialised differentiable versions of the unit
step, which we will call Differentiable Step (DS). It is worth noting that
only a few shape functions are expected to take non-zero values, thus
effectively discarding some features from the final score by Regularisa-
tion (Few Features Selected). The parametrisation of the DS is what will
3

allow CNAM to be initialised to any arbitrary shape, in particular this
property will be used to initialise the model to the solution of EBM
(more on this in Section 3.2).

Once initialised, the structure of CNAM is transparent enough that
each component has a clear interpretation and this facilitates the
formal definition of appropriate regularisers for the problem at hand.
As introduced in Section 1, having a model that is flexible enough
to enforce different constraints (e.g., sparsity) is key for targeting
specific interpretability needs of different use cases. An enumeration
of different desirable constraints will be the objective of the following
section.

3.1. Desirable constraints

We now proceed to list desirable constraints that could be useful
in different situations. These can be appropriate when prior knowledge
exists and can help the model to generalise better where data is scarce:

• Monotonicity of the shape functions (e.g., in a banking context
we might want to enforce that the bigger the ‘‘Loan amount
term’’ the lower should be the probability of granting the loan).
More formally: for any 𝑥𝑖, 𝑥𝑗 such that 𝑥𝑖 ≤ 𝑥𝑗 we have that
𝑓 (𝑥𝑖) ≤ 𝑓 (𝑥𝑗 ) (positive monotonicity) or 𝑓 (𝑥𝑖) ≥ 𝑓 (𝑥𝑗 ) (negative
monotonicity).

• Smoothness of the shape functions. This could be useful as a
smooth function is simpler to describe compared to a jagged one
(jagged representations are also more likely to be influenced by
noise in the data). A user might be interested to explore if a
smooth relationship between the feature and its target reasonably
model the task at hand. Moreover, since a smooth curve is easier
to describe in words than a jagged one, such constraint becomes
then useful when the objective is to use natural language in order
to provide explanations [24,25].
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Fig. 2. The effect of changing the parameters of the differentiable steps and how they can form a 𝑓𝑖.
• Few shape functions (useful for problems where the number of
features is so large that would be impractical to manually assess
every shape function). In other words this entails having a sparse
representation following the principle of Ockam’s razor: ‘‘if two
models describe the same event, the model with less assumptions
(i.e., the model that relies on fewer variables) is preferable’’. It is
possible to mathematically enforce some sparseness of a linear
combination of terms 𝑥 parametrised by the dot product with
𝑤 resulting in 𝑤.𝑥 by minimising the 𝐿1 Norm of 𝑤, that is:
𝑚𝑖𝑛

∑

𝑖 |𝑤𝑖|

• Local freezing some part of the shape function (e.g., to help
optimise fairness measures). For example if we had a categorical
variable describing some protected attribute one might want to
enforce that the score for the protected attribute match some
formal description of fairness.

It is important to note that the desirable constraints listed above are
not an exhaustive list and are context-dependent. Furthermore, some
of these constraints may conflict with maximising task performance
or even among themselves. For instance, while enforcing monotonicity
of a shape function may improve the model’s interpretability, it may
negatively impact its task performance. Similarly, enforcing sparsity of
shape functions may help with interpretability, but at the cost of some
loss in predictive accuracy.

Another approach that could be considered is to measure the agree-
ment of feature importances as indicated by a human expert with what
the model currently predicts. While this could help the model quickly
converge to a well-generalising solution, it should be kept in mind that
human ranking could introduce biases that are not present in the data.
Developing a suitable metric for measuring such agreement is a topic
for future research.

Despite these considerations, the main motivation behind this novel
approach is that once the desirable constraints are defined, the opti-
4

misation procedure can explore different solutions that aim to satisfy
all the given constraints. In the following section, we will discuss
how to precisely define each component of CNAM and how to define
appropriate regularisers that enforce the desirable constraints.

3.2. Model construction

CNAM specifies the structure of how each shape function can be
constructed in a rather straightforward way. Intuitively, we develop the
idea that each shape 𝑓𝑖 is a sum of 𝑗 step functions, an approximation
of indicator functions

𝑓𝑖(𝑥𝑖) =
∑

𝑗
𝑠𝑡𝑒𝑝𝑗 (𝑥𝑖)

This way the model can be rewritten as

𝑔(𝑦) =
∑

𝑖

∑

𝑗
𝑠𝑡𝑒𝑝𝑗 (𝑥𝑖)

As introduced previously, we want 𝑠𝑡𝑒𝑝(⋅) (the DS) to be a soft ver-
sion of an indicator function that adds or subtracts a specific (learnable)
quantity at a certain position in the shape function. We parametrise
DS with three parameters: 𝑝𝑜𝑠𝑥, 𝑝𝑜𝑠𝑦, 𝑠𝑝𝑒𝑒𝑑. DS can then be defined as
follows:

𝑠𝑡𝑒𝑝(𝑥𝑖) ∶= 𝑝𝑜𝑠𝑦 ∗ 𝜎(𝑠𝑝𝑒𝑒𝑑 ∗ (𝑥𝑖 − 𝑝𝑜𝑠𝑥))

where

• 𝜎(⋅) is the Logistic Sigmoid function, that is: 𝜎(𝑥) = 1
1+𝑒−𝑥 ;

• 𝑝𝑜𝑠𝑥 is the position on 𝑥 where the shape is centred (see
Fig. 2(a));

• 𝑝𝑜𝑠𝑦 is the maximum height of the step (see Fig. 2(b));
• 𝑠𝑝𝑒𝑒𝑑 is a parameter that specifies how quickly the step grows

(see Fig. 2(c)).



Information Fusion 99 (2023) 101882E. Mariotti et al.
When many carefully initialised DS are added up they can form a
curve of arbitrary shape (see Fig. 2(d)).

Then, without loss of generality, we can aggregate all the shape
functions 𝑓𝑖 with a linear layer parametrised by a vector 𝛼 to produce
the final prediction (log-odds in case of classification), as follows:

𝑔(𝑦) =
∑

𝑖
𝛼𝑖 ⋅ 𝑓𝑖(𝑥𝑖)

The previous formulation can be useful for enforcing some regulari-
sation like the 𝐿1 norm on 𝛼𝑖 in order to favour a sparse representation
(i.e., when few shape functions are desired).

This formulation is well-suited for binary classification tasks and
regression tasks. However, we acknowledge that extending our model
to other tasks requires additional considerations. One possible approach
for non-binary classification is to use a one-vs-rest fashion, where
a separate model is trained for each class. This approach increases
the complexity of the system, but it can be effective for multiclass
classification problems.

3.3. Enforceable constraints

With this formulation we can now begin to impose some of the
constraints discussed in Section 3.1 by specifying additional loss terms
to be jointly optimised or by imposing some structural changes. Here’s
how the list of possible enforceable constraints enumerated in Sec-
tion 3.1 can be implemented:

• Monotonicity of the shape functions: This can be achieved by
imposing 𝑝𝑜𝑠𝑦 and 𝑠𝑝𝑒𝑒𝑑 to be always greater (or smaller) than
zero. This can be done by applying the function 𝑚𝑎𝑥(𝑥, 0), also
known as ReLU [26,27], to them.

• Smoothness of the shape functions: This can be achieved by
incentivising small values for the 𝑠𝑝𝑒𝑒𝑑 parameters of the various
DS of a given shape function. This can be done by minimising the
𝐿2 norm of the 𝑠𝑝𝑒𝑒𝑑, that is to add to the final loss function the
component 𝜆

√

∑

𝑖 𝑠𝑝𝑒𝑒𝑑
2
𝑖 . The parameter 𝜆 controls the amount

of regularisation. Notice that with this formulation we can have
smooth functions that are still able to model big jumps if neces-
sary, something that spline-based GAM failed to achieve because
the splines implicitly encode a prior of global smoothness. On the
other hand, enforcing an 𝐿2 on the 𝑠𝑝𝑒𝑒𝑑 still allows local speeds
to be very high if appropriate.

• Few shape functions: this can be enforced by imposing sparsity
(i.e., 𝐿1 regularisation) on the final linear layer that aggregates
the shape functions 𝑓𝑖. That is, we can represent without loss of
generality the models as 𝑔(𝑥) = 𝛼1 ∗ 𝑓1(𝑥1) + ⋯ + 𝛼𝑝 ∗ 𝑓𝑝(𝑥𝑝)
and then incentivise a sparse representation by adding to the
final loss the 𝐿1 norm of 𝛼: 𝜆2

∑𝑝
𝑖 |𝛼𝑖|, where 𝜆2 controls the

amount of regularisation. This is similar to what [28] proposed
with Lasso, but it is now possible to apply it to close-to-optimal
EBM solutions, something that up to now was not possible to do.

• Local freezing: we can exclude parts of the model from the
optimisation process by setting the gradient of a certain step to 0.
This prevent any further updates on that parameter and thus any
change on that part of the function.

3.4. Parameter initialisation

As already anticipated earlier, one of the key features of CNAM
is the ability to be initialised as solutions of faster solvers (e.g. EBM)
easily. This is important because if we try to optimise the model from
a typical random initialisation (e.g., following the principles delineated
by [29]) we observed empirically that the training can be unstable and
result in suboptimal solutions with respect to EBM. On the other hand
if we optimise the model while starting from the solution found by
EBM, then CNAM is able to end up finding solutions that have similar
5

Fig. 3. Example of applying algorithm 1 to some random dummy data with the aim
of initialising CNAM as a good approximation of EBM.

or higher performance while also optimising the interpretability con-
straints (thus finding a solution that exhibits a better balance between
performance and interpretability). This will be shown later with the
experiments in Section 4.

For the specific initialisation we set the initial value of speed to a
large value (we found 100 to be heurisically a good guess) to better
approximate the unit step. The translation parameter 𝑝𝑜𝑠𝑥 can be set
as the 𝑥-positions of the lookup table of the shape function of EBM.
The height of the shape function (described by 𝑝𝑜𝑠𝑦) is finally set to
the 𝑦-position of the EBM by first initialising all the 𝑝𝑜𝑠𝑦 to 0 and then
adjusting the 𝑝𝑜𝑠𝑦 from the right-most to the left-most using Algorithm
1. An illustration of how this algorithm works can be seen in Fig. 3.

That said, the random initialisation can still be useful for some
use-cases where it is not straightforward to train an EBM (e.g. as
components of an Autoencoder). We still suggest to initialise the pa-
rameter 𝑝𝑜𝑠𝑥 for shape 𝑖 as the quantiles of the univariate distribution
of feature 𝑖. On the other hand for classification and regression pur-
poses we consistently found in our preliminary experiments that EBM
already converges to a close-to-optimal solution and initialising CNAM
to that vastly improves the final model across both performance and
intelligibility metrics.

Algorithm 1 Initialise CNAM as EBM
Require: 𝑦𝐸𝐵𝑀

𝑦𝐶𝑁𝐴𝑀 ← 𝑦𝐸𝐵𝑀 ∗ 0 ⊳ Initialise all as zero
𝑦𝐶𝑁𝐴𝑀 [−1] ← 𝑦𝐸𝐵𝑀 [−1]
for 𝑘 = 2, 𝑘 ≤ 𝐿𝑒𝑛𝑔𝑡ℎ(𝑦𝐸𝐵𝑀 ) + 1, 𝑘 + + do

𝑦𝐶𝑁𝐴𝑀 [−𝑘] ← 𝑦𝐸𝐵𝑀 [−𝑘] ⊳ Set the height to the desired one
𝑦𝐶𝑁𝐴𝑀 [−𝑘 + 1] ← 𝑦𝐶𝑁𝐴𝑀 [−𝑘 + 1] − 𝑦𝐶𝑁𝐴𝑀 [−𝑘] ⊳ fix the effect

on the following bin
end for

return 𝑦𝐶𝑁𝐴𝑀

3.5. Optimisation

Once we have initialised the CNAM parameters, we can opti-
mise the final loss, which includes both task-performance and task-
interpretability terms, using a gradient-based optimiser such as ADAM
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Fig. 4. A benchmark of the performance-interpretability tradeoffs regarding different models on 56 datasets. The 𝑥-axis represents the relative Rank of interpretability (measured
as SHAP-Length) while the 𝑦-axis corresponds to the relative Rank of performance (measured as ROC AUC, Accuracy, F1-Score). The best models lie in the lower-left part of the
plots. The dotted blue lines highlight the Pareto front, i.e. the set of non-dominated solutions. Various instantiations of CNAM on average lie on that Pareto front. Interestingly,
even without regularisation, CNAM scores better than EBM (without pairwise interactions).

Fig. 5. A box plot of the results of the benchmark for the different models across the different statistics.
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Fig. 6. Performance-Interpretability tradeoff on the MAGIC Telescopes dataset. CNAM
configurations are coloured by the amount of 𝜆1 regularisation, with blue indicating
high regularisation and green representing low regularisation. More interpretable
models with lower SL (x-axis) and better performance (y-axis) are situated in the upper-
left corner of the figure. It is important to note that 𝜆2 also influences the results, but
we have omitted its visualisation for the sake of clarity.

[30]. This technique allows us to iteratively adjust the parameters of
CNAM towards a solution that minimises the target loss, even without
an explicit closed-form formula for it. To control for overfitting, we
periodically evaluate against a validation set and employ an early
stopping criterion [31].

4. Experiments

CNAM can be used both for binary classification or regression. We
first benchmark the model with different regularisation parameters on
56 binary classification datasets (see Section 4.1). Subsequently, we
perform a deep dive into two specific datasets, a classification task
(see Section 4.2) and a regression task (see Section 4.3), to provide
a more in-depth analysis of the model’s behaviour. We implemented
CNAM as an open-source software (available online at https://gitlab.
nl4xai.eu/ettore.mariotti/cnam), using Python and pytorch [32] as
the deep learning backend infrastructure, structuring the code using
pytorch-lightning library.

In our experiments, we explore the tradeoff between performance
and interpretability by varying the weights of the weighted loss func-
tion according to the specific application domain. Although we lack
theoretical convergence guarantees, our empirical observations suggest
that by trying different coefficients, we can obtain a diverse set of solu-
tions that effectively navigate the performance-interpretability tradeoff.
Later in the subsections, we demonstrate this practically with different
choices of regularisation parameters as the added term for the loss.

4.1. Binary classification benchmark

In this section we focus our attention to the task of binary classi-
fication and we benchmark CNAM against other classifiers across 56
tabular datasets taken from [33]. We measure both task-performance
and task-interpretability scores. The datasets are related to different
domains and include both real-data as well as simulated-data and spans
both in size and class imbalance. The basic properties of each dataset
are reported in Table 2.

In order to compare the results we rank the models for each dataset
sorting them with respect to the specific metric value they scored. Once
this ranking is obtained, we average the rank across all the datasets. We
selected three measures of classification performance:
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• Accuracy: the fraction (percentage) of correctly classified in-
stances.

• F1-Score: the geometric mean of precision and recall.
• ROC AUC: the area under the receiver operating characteristic

curve (i.e., under the ROC curve), that is the curve of true
positives versus false positives at all classification thresholds.

For measuring interpretability in terms of model complexity we
opted for the so-called SHAP-length metric [11] which is a model-
agnostic metric which allows us to compare heterogeneous models.
This metric returns the number of SHAP attributions of each data point
such that the set of attributions 𝜙𝑖 captures a given fraction (we settled
at 90% here) of the overall explanation mass ∑

𝑖 |𝜙𝑖|. More formally:
𝑆𝐿90% ∶= the smallest 𝑖 such that

∑

𝑖 sorted(|𝜙𝑖|)
∑

𝑖 |𝜙𝑖|
≤ 0.9. This intuitively

captures the length of the ‘‘compressed’’ explanation of each prediction,
that is what a user would have to read in order to get a rough sense
of what is the impact of different features. These lengths are then
averaged across all the data points of the dataset in order to return
a single interpretability score per dataset-model pair. It is important to
note that SL might not always be the ideal measure of interpretability.
Indeed, the best interpretability metric depends on the context, user
preference, and the specific domain of the task. A model with a lower
SL will typically have more sparse explanations, so the lower the SL,
the less cognitive load burden on the user. This is a key consideration
when choosing an interpretability metric, as the goal is to provide users
with concise yet meaningful explanations that help them understand
the model’s behaviour and decision-making process.

As stated before, given the scores of each model on each dataset
we can rank each model on the same dataset according to the various
metrics. Once we have computed the ranking of all the metrics for all
the models across all the datasets we can average them and delineate
the Pareto front with the best solutions. The Pareto front is the set of
all the Pareto-efficient solutions, that is all those solutions in multi-
objective problems where no other solution is better than them in one
of the objectives.

We tested CNAM against a pool of 12 different models, most of them
implemented by the scikit-learn package [34]: Explainable Boosting
Machines with pariwise interactions (EB2M) and without interactions
(EBM-GAM), rf100 (Random Forest with 100 trees), rf1k (Random
Forest with 1000 trees), svm (Support Vector Machine), XGB (eX-
tremely Gradient Boosting trees), lr (Logistic Regression), small-tree
(a decision tree with maximum tree depth of 4), big-tree (a decision
tree unconstrained), 3-nnc, 5-nnc, 10-nnc (respectively 3-, 5-, and 10-
nearest neighbours classifiers).

In order to evaluate the capabilities of CNAM we evaluated 3 differ-
ent variations of the proposed model, each with different regularisation
coefficients. The regularisation was set up such that a sparsity con-
straint (𝐿1 norm on the 𝛼) is added to the classical cross entropy loss:
𝑙𝑜𝑠𝑠 = 𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝜆1 ∗

∑

𝑖 |𝛼𝑖|. This way 𝜆1 becomes a macroscopic
hyperparameter that favours model simplicity at the potential cost of
task performance. We benchmarked CNAM with 𝜆1 = 0, 𝜆1 = 0.1,
𝜆1 = 1 in order to show how CNAM behaves with no regularisaion,
small regularisation and strong regularisation.

Every model is evaluated with 5-fold stratified cross validation.
For each single dataset the models are ordered from the best to the
worst thus producing a ranking (lower values thus correspond to better
models). The ranking is then averaged across all the datasets and the
results are reported in Figs. 4 and 5.

Fig. 4 reports for the sake of clarity and readability only the mean of
the computed rankings. In Fig. 5 the interested reader can see further
details in the form of box plots that help understand what is the
distribution of the rankings.

The results suggest that CNAM unconstrained is equivalent to (if
sometimes marginally better than) EBM-GAM. This makes sense as by
design CNAM is initialised as a good approximation of EBM-GAM.

https://gitlab.nl4xai.eu/ettore.mariotti/cnam
https://gitlab.nl4xai.eu/ettore.mariotti/cnam
https://gitlab.nl4xai.eu/ettore.mariotti/cnam
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Table 2
Basic properties of each dataset tested in our benchmark study.
Dataset # Instances # Features Class imbalance

analcatdata aids 50 4 0.000000
analcatdata asbestos 83 3 0.011758
analcatdata bankruptcy 50 6 0.000000
analcatdata boxing1 120 3 0.090000
analcatdata boxing2 132 3 0.005739
analcatdata creditscore 100 6 0.211600
analcatdata cyyoung8092 97 10 0.255181
analcatdata cyyoung9302 92 10 0.344518
analcatdata fraud 42 11 0.145125
analcatdata japansolvent 52 9 0.001479
analcatdata lawsuit 264 4 0.732840
appendicitis 106 7 0.364543
australian 690 14 0.012132
backache 180 32 0.521605
biomed 209 8 0.079691
breast 699 10 0.096375
breast cancer 286 9 0.164507
breast cancer wisconsin 569 30 0.064940
breast w 699 9 0.096375
buggyCrx 690 15 0.012132
bupa 345 5 0.000412
clean1 476 168 0.016966
cleve 303 13 0.007940
colic 368 22 0.068053
corral 160 6 0.015625
credit a 690 15 0.012132
crx 690 15 0.012132
german 1000 20 0.160000
glass2 163 9 0.004554
heart c 303 13 0.007940
heart h 294 13 0.077792
heart statlog 270 13 0.012346
house votes 84 435 16 0.051795
hungarian 294 13 0.077792
irish 500 5 0.012544
labour 57 16 0.088950
lupus 87 3 0.038182
molecular biology promoters 106 57 0.000000
monk1 556 6 0.000000
monk2 601 6 0.098895
monk3 554 6 0.001577
mux6 128 6 0.000000
parity5 32 5 0.000000
pima 768 8 0.091254
prnn crabs 200 7 0.000000
prnn synth 250 2 0.000000
profb 672 9 0.111111
saheart 462 9 0.094470
sonar 208 60 0.004530
spect 267 22 0.345762
spectf 349 44 0.207560
threeOf9 512 9 0.004944
tic tac toe 958 9 0.094181
vote 435 16 0.051795
wdbc 569 30 0.064940
xd6 973 9 0.114332
Instead, when a regularisation of the form discussed above is applied,
we can see how the different models actually loose classification per-
formance but gain in interpretability, returning models on the Pareto
front of the best tradeoffs. This is important because it is an indication
that the model cannot only retain competitive task performance but can
successfully explore the tradeoff between competing constraints in a
way that the result lie on the set of Pareto-efficient solutions. Moreover,
CNAM reg 1 turns up as the second best from the point of view of
interpretability (see the plot related to ‘‘Explanation Length’’ on the
bottom right side of Fig. 5), only behind small-tree while it is much
better from the performance viewpoint (i.e., CNAM reg 1 is always
better ranked than small-tree in the other pictures in Fig. 5).

Finally, it is worth noting that in a specific application a user should
experiment with different regularisation parameters (and also specific
8

regularisations fit to the specific domain) according to his or her needs.
4.2. Illustrative example on how to address a classification task: MAGIC
dataset

In order to gain more intuition of the behaviour of CNAM on a
specific dataset we provide as an application the use of CNAM for
the MAGIC Telescopes classification dataset [35], a real-world dataset
(taken from the UCI repository [36]) that is much larger than all of
those included in the set of the previous benchmark study. In this
dataset the task is to distinguish between two different kind of particles
(gamma-like vs hadrons) given a representation of the image captured
by the telescope. From a physical point of view, a particle enters the
atmosphere and produce an elliptic flash of light that is captured by the
camera of the telescope. The image is then described by the following
10 numerical features, some of which describe an ellipsoidal shape

fitted on the pixels:
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Fig. 7. Visual representation of each shape function of CNAM on the MAGIC Telescopes dataset. Each shape function demonstrates the contribution of a given feature value to
the final prediction, which is the sum of the partial scores. The blue solid line represents the most interpretable CNAM instance (CNAM best SL), identified as having the shortest
Shap Length (SL), while the dotted red line indicates the best-performing instance (CNAM best ROC AUC), which has the highest AUC (Area Under The Curve) ROC (Receiver
Operating Characteristics) curve score among models trained with varying lambda1 and lambda2 regularisation parameters. The data distribution is visualised as a histogram in
the background, with the counts reported on the right-axis of the plot.
• fLength: major axis of ellipse
• fWidth: minor axis of ellipse
• fSize: log 10 of the sum of content of all pixels (photon count)
• fConc: the ratio of sum of two highest pixels over fSize
• fConc1: the ratio of highest pixel over fSize
• fAsym: distance from highest pixel to centre, projected onto major

axis
• fM3Long: 3rd root of third moment along major axis
• fM3Trans: 3rd root of third moment along minor axis
• fAlpha: angle of major axis with vector to origin
• fDist: distance from origin to centre of ellipse

The dataset has 19020 instances (12332 gamma and 6688 hadron),
with a class imbalance of 0.542. In this task the Accuracy metric is not
meaningful as classifying a hadron (background) as a gamma (signal)
9

is worse than vice versa (classifying the signal as background). For
comparing different classifier a more sensible metric is ROC AUC, as
it allows the evaluation of the performances at different classifying
thresholds.

For illustrative purposes we will fit CNAM with different regulari-
sation parameters, namely 𝜆1 (encouraging sparsity, that is the shape
functions are more often to 0) and 𝜆2 (encouraging smooth shapes),
drawing them randomly from a log-uniform distribution 𝑌 = log(𝑋)
where 𝑋 = 𝑈 (−6, 1). Each candidate configuration is evaluated with a
5-fold stratified cross-validation with the ROC AUC score (performance)
and 𝑆𝐿90% (interpretability). For comparison we will also fit other
competitive models: EBM-GAM (as it is CNAM initialisation), EB2M and
Random Forest with 1000 trees (as both models demonstrated high
performances on the benchmark study). In Fig. 6 is shown how each
model scores in the performance-interpretability space.
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Fig. 8. A modified version of Fig. 7, with each shape function adjusted for scale and without the histograms in the background for ease of comparison between the CNAM best
SL and CNAM best ROC AUC models. In each plot, the left axis represents the log-odds contribution of the CNAM best SL (blue solid line), while the right axis corresponds to the
contribution of the CNAM best ROC AUC (red dotted line).
It is interesting to notice how EB2M and Random Forest both per-
form significantly better in terms of average ROC AUC than EBM-GAM
and CNAM, suggesting that higher-order interactions between features
are relevant for the specific task. That said, CNAM solutions have very
similar performances as EBM-GAM, while being more interpretable
(having a smaller 𝑆𝐿90%).

To understand how the model behaves globally (global explanation)
it is possible to visualise each univariate shape function of CNAM as a
function of the feature values. Indeed in Fig. 7 it is possible to see such
an explanation. The blue histogram describes the empirical distribution
of data (with counts mapped on the right axis of each plot) while the
two lines in each ax show the shape functions of the most interpretable
(CNAM best SL) and of the best-performing CNAM solution (CNAM
best ROC AUC) of the Pareto front which is depicted in Fig. 6.

As it is, it is not straightforward how to make a comparison of the
two different solutions as they might have a different fit intercept on
the final linear layer. For better appreciating the difference between
10
the solutions, Fig. 8 shows them scaled (the contribution of CNAM
best SL is marked on the left axis, the one of CNAM best ROC AUC
is marked on the right axis). Both models rely heavily on the fAlpha
feature in a remarkably similar way, but while CNAM best ROC AUC
also take into account other quantities, CNAM best SL sacrifices the
use of some features (like fDist, fConc, fConc1, fAsym) in order to gain
more interpretability while keeping performance reasonable. This could
be useful information for the data scientist working on the task, as he
or she might decide to refine the measurement of fAlpha or introduce
new features that describe a similar physical phenomenon. It could be
argued that by reducing the reliance on some features it is possible to
obtain a more interpretable model at the price of some performance,
but this can still be useful for directing the attention of the user to
relevant information that can enhance globally the pipeline of the
experiment (that is, measuring new things, discover biases or problems
in simulations and in general design better experiments).
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Fig. 9. Performance-Interpretability tradeoff on the California Housing dataset. CNAM
configurations are coloured by the about of regularisation, blue means high regulari-
sation while green means low regularisation. As a reminder, the best models would be
in the upper-left corner of the figure.

Still, as remarked earlier, the significantly higher performance of
Random Forest and EB2M suggests that restricting the modelling to
only the univariate components (as EBM-GAM and CNAM do) might
be inappropriate for this specific task. The final choice of which class
of models to use depends on the data and the impact that such an intel-
ligent system has on the world. While a physicist might be comfortable
with not knowing why a given event was labelled as either gamma-like
or hadron (thus opting for a black box with higher performances), a
doctor might trust more on a less performing yet more interpretable
model for a diagnostic system that should guide his or her decision
process.

4.3. Illustrative example on how to address a regression task: California
housing dataset

In order to show how CNAM can be used not only for solving and
gaining insights in classification problems but also for regression tasks,
in this section we go in depth with the California Housing dataset [37].
This dataset, derived from the 1990 U.S. census, describes each Cali-
fornia district based on 9 numerical features and aims at predicting the
median house value of that district. It has 20640 instances. The features
are the following:

• MedInc: the median income in a district.
• HouseAge: the median age of the house in a district.
• AveRooms: the average number of rooms per household.
• Population: the population of the district.
• AveOccup: the average number of household members.
• Latitude: the latitude of the district.
• Longitude: the longitude of the district.

The target to be modelled is the median house value for each
California district (in 100k $).

We fit the model following the setup described earlier in the classifi-
cation experiment. One significant difference is the performance metric,
which in this context is the 𝑅2 score. The 𝑅2 score, also known as
coefficient of determination, is a regression metric that represents the
target proportion of variance that has been explained by the features
and is defined as 𝑅2(𝑦, �̂�) = 1 −

∑

𝑖 𝑦𝑖−𝑦𝑖
∑

𝑖 𝑦𝑖−
∑𝑛
𝑖 𝑦𝑖
𝑛

. In linear settings, it is

equivalent to the square of a correlation coefficient. Our focus is on
finding different solutions that explore the tradeoff between the two
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quality metrics (i.e., 𝑅2 and 𝑆𝐿90%). We also fit an LR model (for its
simplicity), EBM-GAM, EB2M and Random Forest that will serve as
baselines for comparison, as we did in the previous illustrative example
(Section 4.2).

Fig. 9 summarises graphically the result of the experiment. Interest-
ingly, CNAM offers a set of solutions belonging to the Pareto front of
optimal solutions in terms of 𝑆𝐿90% and 𝑅2 score. Notably, we found
solutions that have a similar 𝑅2 score as LR while being almost twice
as interpretable. Conversely, we also find solutions that have the same
interpretability as LR while performing significantly better (𝑅2=0.75 vs
𝑅2=0.6, i.e., an improvement of 25%).

In Fig. 10 we plotted the shape functions of the three CNAM
configurations chosen from the Pareto front of the earlier experiment,
similarly to what was done in Fig. 7. The solid blue line (CNAM
best SL) is the model that has the same 𝑅2 score of LR while being
roughly twice more interpretable in terms of 𝑆𝐿90%. The red dotted
line (CNAM best 𝑅2) is the model that reached the highest 𝑅2 score
while the green dash-dotted line (CNAM Smooth) is a configuration
where smoothness was encouraged thanks to the regularisation of the
𝑠𝑝𝑒𝑒𝑑 parameters. It is possible to see how the shape functions of CNAM
best SL are more often close to zero, de facto ignoring features such
as HouseAge, AveBedrms, Population, giving less importance to the
geographical location (Latitude and Longitude are less prominent) and
instead relying a lot mainly on MedInc. CNAM best 𝑅2 is more jagged
and uses more features in a precise way, this way it can closely model
what the data has to say and can achieve a relatively higher 𝑅2. CNAM
Smooth has an in-between representation with the characteristic of
being smoother. It can be argued that the smoothness of the shape
functions gives an overall easier-to-describe global explanation.

5. Limitations

In our experiments, we employed the SHAP-Length metric to assess
the interpretability of models with diverse structures. Future develop-
ments might yield alternative metrics better suited for specific use cases
or expert preferences, allowing for more tailored evaluations.

CNAM’s applicability to various data types presents some challenges
and considerations. The key requirement for maintaining interpretabil-
ity is the use of interpretable features. Adapting CNAM to other tasks
involving different data types, like images, text, or time series, requires
representing these data types in tabular format through feature engi-
neering. A coherent explanation of the model’s predictions might be
difficult to derive when applying CNAM directly to pixel-level data in
images or to neural network embeddings of text or time series data.

In the context of data fusion, the key to preserving interpretability
in a CNAM model lies in the effective transformation of unstruc-
tured data into an interpretable tabular format. Through representation
learning or feature engineering techniques, unstructured data can be
converted into a tabular form with interpretable features, allowing for
the effective application of CNAM to data fusion tasks.

Finally, CNAM is restricted to univariate feature modelling, which
disregards higher-order feature interactions. Although this simplifica-
tion allows for easy-to-understand, interpretable models, it inevitably
constrains the expressiveness of the model when faced with complex
interactions between features. Balancing this trade-off remains a chal-
lenge and a potential direction for future research. Feature engineering
techniques that explicitly encode known interactions or domain-specific
knowledge could be incorporated into the tabular data before apply-
ing CNAM. Alternatively, research could explore the development of
constrained higher-order interaction terms that maintain some level of
interpretability, although this would require a careful design for finding
out the right balance between expressiveness and understandability.
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Fig. 10. The shape functions of three different models fitted on the California Housing dataset with different constraints. The dotted red line represents the solution that only
maximised the performances on the task (𝑅2 score). The blue solid one is the model that balanced complexity and interpretability (measured with 𝑆𝐿90%). The green dot-dashed
line instead is the result of a model with a penalty that encouraged a smooth representation (a useful property for example when verbalising the plot is of interest). Note: for
better readability we excluded from the plot data points with extreme values (i.e. districts with vacation resorts with a high number of empty rooms and few resident households).
6. Conclusions and future work

This work introduces CNAM, a constrainable NAM that can be
initialised to match an arbitrary function. Its structure allows for in-
spection and, if needed, constraining to achieve a more interpretable
behaviour. By adjusting various regularisation coefficients, it is possi-
ble to explicitly explore the performance-interpretability tradeoff. We
benchmarked the model on 56 classification datasets against 12 models
and observed how CNAM on average finds sweet spots on the Pareto
front of multi-objective solutions. We illustrated the effectiveness of
CNAM on a specific classification task and a regression task, high-
lighting the balance between performance and interpretability. It is
worth noting that CNAM is available as open source software at https:
//gitlab.nl4xai.eu/ettore.mariotti/cnam.

As future work, more specific constraints could be designed to ac-
commodate specific needs. For example, it would be of interest to give
the model the ability to express an explanation of its behaviour with
natural language, rather than just with the visual modality. Another
12
promising direction would be to enhance the human–computer interac-
tion via integration with GAM-changer [23]. This way, both the model
and the user could benefit from a feedback loop that iteratively refines
the desired objectives in terms of performance and interpretability.
In addition, exploring more intelligent search techniques, for instance
by resorting to multiobjective metaheuristics, would be a valuable
direction for future research to further improve the model’s capability
in the search for better tradeoffs in the Pareto space.

Efficiently creating counterfactual explanations [38] using CNAM
by exploiting the specific structure of the model is another potential
research direction. Additionally, it would be intriguing to explore
whether a differentiable version of diverse and compelling counter-
factuals properties (as proposed in [39]) could be formalised and
subsequently incorporated into CNAM.

Finally, enabling pairwise interactions could significantly boost the
task performance, albeit at the cost of harder interpretability.

https://gitlab.nl4xai.eu/ettore.mariotti/cnam
https://gitlab.nl4xai.eu/ettore.mariotti/cnam
https://gitlab.nl4xai.eu/ettore.mariotti/cnam
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