
General Boolean Formula Minimization
with QBF Solvers?

Eduardo Calò1[0000−0003−3881−8994] and Jordi Levy2[0000−0001−5883−5746]

1 Utrecht University, the Netherlands
e.calo@uu.nl

https://www.uu.nl/staff/ECalo
2 IIIA, CSIC, Spain
levy@iiia.csic.es

https://www.iiia.csic.es/∼levy

Abstract. The minimization of propositional formulae is a classical
problem in logic, whose first algorithms date back at least to the 1950s
with the works of Quine and Karnaugh. Most previous work in the area
has focused on obtaining minimal, or quasi-minimal, formulae in con-
junctive normal form (CNF) or disjunctive normal form (DNF), with
applications in hardware design. In this paper, we are interested in the
problem of obtaining an equivalent formula in any format, also allowing
connectives that are not present in the original formula. We are primar-
ily motivated in applying minimization algorithms to generate natural
language translations of the original formula, where using shorter equiv-
alents as input may result in better translations. Recently, Buchfuhrer
and Umans have proved that the (decisional version of the) problem is
Σp

2 -complete.
We analyze three possible (practical) approaches to solving the problem.
First, using brute force, generating all possible formulae in increasing size
and checking if they are equivalent to the original formula by testing all
possible variable assignments. Second, generating the Tseitin coding of
all the formulae and checking equivalence with the original using a SAT
solver. Third, encoding the problem as a Quantified Boolean Formula
(QBF), and using a QBF solver. Our results show that the QBF approach
largely outperforms the other two.

Keywords: SAT Solvers · QBF Solvers · Boolean Formula Minimization
· Natural Language Processing

1 Introduction

The minimization of complex Boolean expressions is a longstanding problem
in logic. The first algorithms developed in the 1950s, e.g., the works of Quine,

? This project has received funding from the European Union’s Horizon 2020 re-
search and innovation program under the Marie Sk lodowska-Curie grant agreement
No. 860621 and the MICINN project PROOFS (PID2019-109137GB-C21).

ar
X

iv
:2

30
3.

06
64

3v
1

 [
cs

.A
I]

 1
2

M
ar

 2
02

3

https://www.uu.nl/staff/ECalo
https://www.iiia.csic.es/~levy

2 E. Calò and J. Levy

McCluskey [14,15,12], and Karnaugh [11] paved the way for extensions and opti-
mizations in the following years (e.g., the Petrick’s method [13], and the Espresso
heuristic logic minimizer [2], i.a.). These works have focused on obtaining mini-
mal equivalent representations in specific canonical forms (e.g., conjunctive nor-
mal form (CNF) or disjunctive normal form (DNF)), and confined the studies
to a limited set of connectives. Here, we are interested in the general Boolean
formula minimization, where no assumptions are made in the form of the input
formula or the output. In fact, our minimization methods allow us to use distinct
sets of connectives for the input and the output.

We frame Boolean minimization (i.e., finding the logically equivalent shortest
formula(e) to a given one) as a Quantified Boolean Formulae (QBF) satisfiability
problem and design an algorithm that consistently finds the shortest equivalents
of a given formula. We compare this algorithm with a brute force baseline, and
an approach based on SAT.

Motivation. We have two distinct motivations behind our work, which lay very
far from each other. Our first motivation is shared in [19], where the authors
present qbf2epr, a tool that translates QBF to formulas in effective proposi-
tional logic (EPR). Their aim is to generate benchmarks for EPR and compare
solvers for QBF and EPR. Similarly, our formula minimization problem, en-
coded as QBF, generates benchmarks for QBF solvers and allows us to compare
SAT and QBF techniques. The automated deduction community is divided into
sub-communities (e.g., SAT, QBF, SMT, MaxSAT, EPR), which try to solve
distinct classes of problems, from SAT which is NP-complete, to EPR which is
NEXPTIME-complete, passing by QBF which is PSPACE-complete, and each
one has its own competition and set of benchmarks. However, many ideas that
proved effective in one area (like learning in SAT) have been exported to others.
In this sense, problems that could be solved with two distinct technologies, like
ours, contribute to comparing the level of maturity reached in each area.

Our second motivation relates to a use case of minimization algorithms in
natural language processing. Grasping the meaning of logical formalisms is a
crucial task for many scholars, yet sometimes even experienced logicians might
have trouble deciphering a complex formula. Techniques from natural language
generation [18,8], and in particular logic-to-text generation methodologies [17,4],
can be used for simplifying and translating logical formulae into optimally intel-
ligible text in natural languages (NLs) (such as English, Mandarin, or Korean),
which can effectively explain formulae to systems’ users. For example, given the
following first-order formula:

∃x(Problem(x) ∧ ∀y(Researcher(y)→ Interested(y, x)))

we want a system that can automatically generate a faithful and comprehensible
explanation, via the following (or another semantically equivalent) text:

There is a problem that every researcher finds interesting.

General Boolean Formula Minimization with QBF Solvers 3

What are the characteristics that a formula should have to become a suitable
input for a logic-to-text translation system? One aspect that one might want to
look at is length. Brevity has surrounded linguistic debate at least since [10]. Ar-
guably, shorter utterances should be preferred over longer ones and unnecessary
prolixity should be avoided. This principle might also apply to logical formulae.
Intuitively, a short formula, rather than a longer logical equivalent, should be
better suited to be translated into NL. In this paper, we tackle exclusively the
logical aspect of the problem. We focus on propositional logic, a formalism in
which equivalence is decidable, and limit our examination to formulae’s length,3

aiming only for the shortest equivalents to a given formula.

Related Work: Formula Minimization. Boolean formula minimization is a
natural optimization problem in the second level of the Polynomial-Time Hier-
archy Σp

2 . Indeed, the problem is used by [7] to motivate the definition of the
Polynomial Hierarchy. Its decisional version can be formulated as the following
problem: Given a Boolean formula, prove the existence of a (smaller) formula
(in the same set of variables) that gets the same evaluation of the given for-
mula, for all possible assignments of the variables. The fact that both sets of
quantified variables, as well as the time to evaluate the formulae, are bounded
in the input proves its inclusion in Σp

2 . As we will see in Section 2, this corre-
sponds to our brute-force algorithm. It is assumed that both the given formula
and its minimization are circuits or formulae of the same form. However, in our
implementation, we leave open the possibility to use distinct sets of connectives.
Apart from some completeness proofs for some particular forms of the input and
output, the proof for the general form had eluded researchers until [3] proved
Σp

2 -completeness of the problem.
The optimization of complex Boolean expressions has been studied exten-

sively in electronic circuits, where practical matters (i.e., complex circuits take
up physical space and costs more resources in their implementation) make it cru-
cial to find optimal circuit representations. Well-known minimization methods
include the Quine-McCluskey algorithm [14,15,12] and the Karnaugh map [11].
In the Karnaugh map, Boolean results are transferred from a truth table onto
a two-dimensional grid, where each cell position represents one combination of
input conditions, while each cell value is the corresponding output value. Opti-
mal groups of 0s and 1s are identified, which represent the terms of a canonical
form that can be used to write a minimal expression. The Quine–McCluskey
algorithm finds all the prime implicants of a function and uses them in a chart
to find (i) the essential prime implicants of the function, and (ii) other prime
implicants that are necessary to cover the function. The method is functionally
identical to the Karnaugh map, but its tabular form makes it more efficient to
employ in computer systems.

However, despite this long history of research and attempts to extend well-
established methods (e.g., [22] tries to implement the XOr operator in the Quine-

3 We define length as the number of symbols (i.e., predicates and connectives, paren-
theses excluded) contained in a formula.

4 E. Calò and J. Levy

McCluskey algorithm), most work has focused on a limited set of connectives
and canonical forms (e.g., CNF or DNF). For our scope, we need a more general
approach where all connectives could be tackled, on demand.

Quantified Boolean Formulae. Quantified Boolean Formulae (QBFs) are an
extension of propositional logic, where universal and existential quantifications
are allowed [1]. The use of quantifiers results in a greater expressive power than
classic propositional logic. If all variables occurring in a QBF φ are bound, then
φ is called closed. QBFs often assume a canonical prenex conjunctive normal
form (PCNF) φ = ∃~x∀~y∃~z · · ·ψ, where the portion containing only quantifiers
and bound variables is called the prefix, followed by ψ that is a quantifier-free
Boolean formula with conjunctions over clauses, called the matrix.

The QBF satisfiability problem [9] consists of determining, for a given QBF
φ, the existence of an assignment for the free variables, such that φ evaluates to
true under this assignment. Hence, φ is true iff, there exists a truth assignment
to ~x, such that, for all truth assignments to ~y, there exists a truth assignment to
~z,. . . such that ψ is true. Several QBF solvers have been developed over time,4

and applications of QBFs technologies range from AI to planning [5,6,20]. QBF
solvers only use to provide the instantiation of most externally existentially-
quantified variables ~x, since for the other ones, instantiation depends on previous
universal variables ~z = f(~y). In this work, we exploit QBFs to encode and solve
the Boolean minimization problem.

Structure of the Paper. The rest of the paper is structured as follows. Sec-
tion 2 introduces the algorithms that we employ in our experiments and the QBF
encoding we develop. Section 3 illustrates the experiments we carry out, com-
paring the three aforementioned approaches, and shows the results. We present
some reflections on possible future directions in Section 4.

2 Algorithms

In our experimentation, we analyze three algorithms that we will call brute-force,
SAT-based, and QBF-based.

The brute-force algorithm (see Alg. 1) is the algorithm that we mention in
Section 1 as proof that formula minimization is in Σp

2 . Two formulae φ and
ψ are equivalent iff φ ↔ ψ is a tautology. Like TAUT, the formula equivalence
problem is CoNP-complete. However, considering that we test the equivalence for
all formulae ψ smaller than φ, the average time for the calls to equivalent(φ, ψ)
is the same as considering ψ a random formula smaller than φ. Then, the average
time required by the function call is only O(|φ|). Notice that in this situation,
half of the calls finish after checking one assignment, 1/4 after checking two

assignments, etc. Hence, on average we check
∑2|φ|

i=1 i
1
2i < 2 assignments in every

call.
4 http://www.qbflib.org

http://www.qbflib.org

General Boolean Formula Minimization with QBF Solvers 5

Algorithm 1: Brute-force algorithm

Input: φ
Output: a minimal equivalent formula ψ

1 Function equivalent(φ, ψ):
2 foreach Assignment I : V ar(φ)→ {0, 1} do
3 if I(φ) 6= I(ψ) then
4 return true

5 return false

6 Function main(φ):
7 foreach i = 1, . . . , |φ| do
8 foreach formula s.t. |ψ| = i and V ar(ψ) ⊆ V ar(φ) do
9 if equivalent(φ, ψ) then

10 return ψ

We can also estimate the number of calls to this function as follows. The
number of distinct complete trees of size n that we can construct with k binary
symbols is kn. If the trees can have any form, then the computation is more
complicated. Let C be the set of possible binary symbols (hence, we are not
considering Not) and V be the set of possible leaves. The number of forms of
trees with m binary nodes and m + 1 leaves is given by the recurrence f(m) =∑m−1
i=0 f(i) f(m − i − 1) that define the Catalan numbers Cm. The number of

distinct trees will be Cm |C|m |V|m+1. Using this Stirling approximation, this can
be approximated as 4m√

πm3/2 |C|m |V|m+1. As a function of the tree size n = 2m+1,

this is O((4|C||V|)n/2/n3/2) calls to the equivalent function.

The second algorithm (see Alg. 2) is based on the use of a SAT solver and the
Tseitin encoding of the two formulae that we want to prove equivalent. Given
two formulae φ, ψ, we can find, in linear time |φ|+ |ψ|, a CNF formula Γ such
that the two formulae are equivalent iff Γ is not satisfiable. At first sight, it may
not look reasonable to use a SAT solver to check a property that on average only
requires linear time. However, experiments show that, in practice, we still can
get some gain with respect to the brute-force algorithm (see Section 3).

The third algorithm (see Alg. 3) is based on the use of a QBF solver. Here, in-
stead of testing every possible minimal formula ψ, we test every possible depth δ.
This supposes a significant improvement since there is a linear number of depths
to try, instead of an exponential number of formula candidates. Second, instead
of a Tseitin encoding of the candidate, we compute a scheme of the candidate.
The equivalence between the original formula and this scheme can be encoded
as a QBF formula with three quantifier alternations: ∃~x.∀~y.∃~z.Γ . In Alg. 3,
these three sets of variables are represented as ∃(1), ∀(1), and ∃(2) and individual
variables are named x, y, and z, respectively. If the QBF formula is true, the
values we got for variables x ∈ ∃(1) will encode the minimal formula. Notice that
QBF solvers only provide the instantiations of the most external existentially-

6 E. Calò and J. Levy

Algorithm 2: SAT-based algorithm

Input: φ
Output: a minimal equivalent formula ψ

1 Function tseitin(φ, x):
2 if φ = φ1 ∧ φ2 then
3 y1, y2 := freshvars()
4 return tseitin(φ1, y1) ∪ tseitin(φ2, y2) ∪ CNF ({x↔ y1 ∧ y2})
5 · · · /* Similarly for other connectives or variables */

6 Function equivalent(φ, ψ):
7 x1, x2 := freshvars()
8 Γ := tseitin(φ, x1) ∪ tseitin(ψ, x2) ∪ CNF ({¬(x1 ↔ x2)})
9 return SAT (Γ) 6= satisfiable

10 Function main(φ):
11 foreach i = 1, . . . , |φ| do
12 foreach formula s.t. |ψ| = i and V ar(ψ) ⊆ V ar(φ) do
13 if equivalent(φ, ψ) then
14 return ψ

quantified variables, since the values of the other existentially-quantified vari-
ables depend on more externally universally-quantified variables.5 Basically, for
every node i of the scheme and every truth constant, variable y of the original
formula, or connective c, we have a variable xic that gets the value true when
at position i we have the connective c (resp. variable y or constant). The con-
straints CNF ({xfalse +

∑
y∈∀(1) xy +

∑
c∈C xc = 1}) ensure that one, and only

one, of them get the value true. Variables in ∀(1) are just the set of variables in
the original formula. The original formula and the scheme are equivalent if for
all assignments to these variables, both the original formula and scheme get the
same evaluation. Variables in zi ∈ ∃(2) encode the truth values for every possible
subformula at position i of the scheme or of the Tseitin encoding of the original
formula. The clauses in the QBF formula encode restrictions of the form

xifalse → ¬zi

xiy → (zi ↔ y)

xic → (zi ↔ zi·1 c zi·2)

The intended meanings of these constraints are: if at position i of the scheme
we have the constant false, the sub-scheme is evaluated to false, if there is an
original variable y ∈ ∀(1), it is evaluated to y, and if there is a connective c ∈ C,
then the sub-scheme gets the same value as the connective c operated on the
evaluations zi·1 of the left-child of i and the evaluation zi·2 of the right-child.

5 In the case of using a QBF solver unable to provide these instantiations, we cannot
compute the minimal equivalent formula.

General Boolean Formula Minimization with QBF Solvers 7

Algorithm 3: QBF-based algorithm

Input: φ
Output: a minimal equivalent formula ψ

1 Function scheme(δ, z):

2 xfalse := freshvar(∃(1))
3 Γ := CNF ({xfalse → ¬z})
4 foreach y ∈ ∀(1) do

5 xy := freshvar(∃(1))
6 Γ := Γ ∪ CNF ({xy → (z ↔ y})
7 if δ > 0 then

8 z1, z2 := freshvar(∃(2))
9 Γ := Γ ∪ scheme(δ − 1, z1) ∪ scheme(δ − 1, z2)

10 foreach c ∈ C do

11 xc := freshvar(∃(1))
12 Γ := Γ ∪ CNF ({xc → (z ↔ z1 c z2)})

13 return Γ ∪ CNF ({xfalse +
∑

y∈∀(1) xy +
∑

c∈C xc = 1})

14 Function equivalent(φ, δ):

15 z1, z2 := freshvars(∃(2))
16 ∀(1) := V ars(φ)
17 Γ := tseitin(φ, z1) ∪ scheme(δ, z2) ∪ CNF ({z1 ↔ z2})
18 return QBF (Γ) = true

19 Function main(φ):
20 foreach δ = 1, . . . , depth(φ) do
21 foreach formula s.t. depth(ψ) = i and V ar(ψ) ⊆ V ar(φ) do
22 if equivalent(φ, δ) then
23 return ψ

Notice that the size of the QBF formula we get isO(2depth(φ)·(|C|+|V ars(φ)|)).
Assuming that the original formula is balanced, in practice 2depth(φ) ≈ |φ|. There-
fore, we could consider it a polynomial encoding. Notice also that we do not make
a profit from the commutativity and associativity of most connectives.

When in a node of the scheme we put a Not, we only use one of the children,
and in the case of putting a variable, we do not use any of the children. To
avoid useless search in the QBF solver we can force all these useless nodes to be
fixed to a dummy value by adding the constraints CNF ({xi¬ → xi·2dummy}) and

CNF ({(xiy ∨ xidummy ∨ xifalse)→ (xi·1dummy ∧ xi·2dummy)}).

In this approach, we only bound the depth of the scheme. If we also want
to limit its size, we can add the encoding of some cardinality constraint that
bound the number of nodes in the schema that are distinct from the dummy:∑
i ¬xidummy ≤ size bound

8 E. Calò and J. Levy

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

C
P
U

 t
im

e

size original formula

brute (mean)
SAT (mean)
QBF (mean)

brute (median)
SAT (median)
QBF (median)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

C
P
U

 t
im

e

size minimized formula

brute (mean)
SAT (mean)
QBF (mean)

brute (median)
SAT (median)
QBF (median)

Fig. 1. Average and median time required by the three algorithms with respect to the
size of the original formula (left) and the resulting minimized formula (right).

3 Experiments and Results

We conduct some experimentation with our algorithms. The three algorithms
are implemented in Python 3 and are publicly available at https://gitlab.nl4xai.
eu/eduardo.calo/QBF-boolean-minimization. In the case of the SAT-based al-
gorithm, we use the Python module python-sat6 as SAT solver. In the case of
the QBF-based algorithm, we use the CAQE [16,21] QBF solver, although any
other QBF solver that accepts QDIMACS standard7 input and output may be
used.

For every size in s = 1, . . . , 20, we generate 100 random formulae of size s
and minimize them using the three algorithms. We make sure that all syntac-
tically distinct formulae are generated with the same probability. However, we
do not take into account the commutativity and associativity of connectives or
other formula equivalences. Formulae of size s are generated over a set of

√
s

variables8 and connectives C = {Not, And, Or} and minimization are searched
among formulae with connectives C′ = {Not, And, Or, Implies}.

We use a cluster with 11 calculating nodes with 2 Intel Xeon CPUs at 2.2GHz
with 10 cores/CPU and 92GB of RAM. We set a time-out of 20, 000s. The brute-
force and the SAT-based algorithms reach the time-out in some instances for
s = 15, 18, 19, 20. These values are not considered in the computation of the mean
and median times. Therefore, these mean and median values are abnormally low.

In Figure 1 (left), we show the average and median (logarithm of) CPU
time required by each one of the algorithms as a function of the size of the
input formula. We clearly observe that the QBF-based algorithm outperforms
the other two algorithms, which seem to require exponential time on the size of
the input. We also observe that the SAT-based is consistently better than the
brute-force algorithm (a constant distance between the functions, in logarithmic
axes, means an improvement of constant factor). This is quite surprising since,

6 https://github.com/pysathq/pysat
7 http://www.qbflib.org/qdimacs.html
8 Using s/c or sc variables does not seem to affect substantially the results.

https://gitlab.nl4xai.eu/eduardo.calo/QBF-boolean-minimization
https://gitlab.nl4xai.eu/eduardo.calo/QBF-boolean-minimization
https://github.com/pysathq/pysat
http://www.qbflib.org/qdimacs.html

General Boolean Formula Minimization with QBF Solvers 9

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16 18 20

si
ze

 m
in

im
iz

e
d
 f

o
rm

u
la

size original formula

mean size
√size

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

si
ze

 m
in

im
iz

e
d
 f

o
rm

u
la

instance number

size=8
size=20

Fig. 2. Average size of the minimized formula w.r.t. the size of the original formula
(left) and distribution of minimized sizes for formulae of original size 8 and 20 (right).

as we mention in Section 2, the computation of the formula equivalence can be
done in linear average time. It is also remarkable that, in the case of brute-force
and SAT-based, there is a significant difference between the average and median
time. The reason, as we comment in detail below, is the significant variability in
the times required by each instance. The same effect produces a fluctuation in
the values of the average time. We can conclude that, although in most of the
instances (attending to the median), the three algorithms minimize the formula
in less than one second, for sizes smaller than 20, just a few instances make brute-
force and SAT-based require around 1h on average when the size is around 20.

In Figure 1 (right), we show the average and median (logarithm of) CPU time
as a function of the size of the obtained minimal formula. Here the differences
between the mean and median times are smaller. Hence, we can conclude that
the size of the output determines the time required by the algorithms. Again,
it is clear that the QBF-based algorithm outperforms the other two. We still
observe that the median time is smaller than the average time, which indicates
that significant variability still exists. Curiously, the times depend on the parity
of the formula sizes: even-size formulae are easier than odd-size formulae. The
reason could be that, except in the case of negation, the rest of the connectives
are binary.

In Figure 2 (left), we show how the average size of the minimized formula
grows with respect to the size of the original formula. We observe that the growth
is close to the square root of the original size. Recall that we generate random
formulae of size s and with

√
s variables. Curiously, we observe that odd-size

formulae are simplified more than even-size formulae, although the reason for
this is not clear. In Figure 2 (right), we show the distribution of sizes of the
minimized formulae (for original formulae of sizes 20 and 8).

As mentioned above, we observe significant variability in CPU times, for the
brute-force and SAT-based algorithms. In Figure 3, we sort the instances in
decreasing order of CPU time and represent, in double logarithmic axes, these
times for the 100 instances. We observe that this representation is close to a
line (truncated on the top due to time-outs) with an increasing (negative) slope
when the size increases. This implies that the CPU time in these algorithms

10 E. Calò and J. Levy

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100

C
P
U

 t
im

e

instance number

size=18
size=19
size=20

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100

C
P
U

 t
im

e

instance number

size=18
size=19
size=20

Fig. 3. Distribution of times for the instances solved with the brute-force algorithm
(left) and SAT-based algorithm (right).

follows a power-law probability distribution, where the time required by a few
instances is responsible for most of the average time. The standard solution in
these situations is to use some kind of restart policy or some randomization
of the algorithm. In our case, we could randomize the order of the candidates
to minimal formulae. However, since we want to obtain the minimal equivalent
formula, we cannot randomize the order of the sizes of formulae that we try.

4 Conclusion and Future Work

In this paper, we have analyzed the practical use of three algorithms for general
Boolean formula minimization. A simple algorithm that proves that the problem
is in Σp

2 , one based on the use of a SAT solver to check formula equivalences,
and one that uses a Tseitin encoding of a formula’s scheme and a QBF solver.
We show that the third one clearly outperforms the other two. Therefore, the
use of QBF solvers represents the state-of-the-art for the Boolean minimization
problem.

Our experiments have been limited to Boolean formulae. The first natural
extension of this work would be to see if this or similar methods could scale up
to other (more expressive) formalisms, e.g., first-order logic (FOL). This would
open up a range of interesting research questions, as in FOL, equivalence is
undecidable. Adapting the QBF approach would probably not be feasible, yet, a
semi-brute force approach, e.g., using a first-order theorem prover, could prove
successful.

References

1. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified boolean formulas. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability
- Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp.
1177–1221. IOS Press (2021). https://doi.org/10.3233/FAIA201015

https://doi.org/10.3233/FAIA201015

General Boolean Formula Minimization with QBF Solvers 11

2. Brayton, R.K., Hachtel, G.D., Hemachandra, L.A., Newton, A.R., Sangiovanni-
Vincentelli, A.L.M.: A comparison of logic minimization strategies using espresso:
An apl program package for partitioned logic minimization. In: Proceedings of the
International Symposium on Circuits and Systems. pp. 42–48 (1982)

3. Buchfuhrer, D., Umans, C.: The complexity of boolean formula minimiza-
tion. Journal of Computer and System Sciences 77(1), 142–153 (2011).
https://doi.org/https://doi.org/10.1016/j.jcss.2010.06.011, celebrating Karp’s Ky-
oto Prize

4. Calò, E., van der Werf, E., Gatt, A., van Deemter, K.: Enhancing and evaluat-
ing the grammatical framework approach to logic-to-text generation. In: Proceed-
ings of the 2nd Workshop on Natural Language Generation, Evaluation, and Met-
rics (GEM). pp. 148–171. Association for Computational Linguistics, Abu Dhabi,
United Arab Emirates (Hybrid) (Dec 2022)

5. Cashmore, M., Fox, M.: Planning as qbf. In: International Conference on Auto-
mated Planning and Scheduling Doctoral Consortium (ICAPS 2010) (2010)

6. Diptarama, R.Y., Shinohara, A.: Qbf encoding of generalized tic-tac-toe. In: 4th
International Workshop on Quantified Boolean Formulas (QBF) Co-located with
19th International Conference on Theory and Applications of Satisfiability Testing
(SAT), Bordeaux, France. pp. 14–26 (2016)

7. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. freeman San
Francisco (1979)

8. Gatt, A., Krahmer, E.: Survey of the state of the art in natural language generation:
Core tasks, applications and evaluation. Journal of Artificial Intelligence Research
61, 65–170 (2018)

9. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean for-
mulas. In: Handbook of satisfiability, pp. 761–780. IOS Press (2009)

10. Grice, H.P.: Logic and conversation. In: Speech acts, pp. 41–58. Brill (1975)
11. Karnaugh, M.: The map method for synthesis of combinational logic

circuits. Transactions of the American Institute of Electrical Engi-
neers, Part I: Communication and Electronics 72(5), 593–599 (1953).
https://doi.org/10.1109/TCE.1953.6371932

12. McCluskey, E.J.: Minimization of boolean functions. The Bell System
Technical Journal 35(6), 1417–1444 (1956). https://doi.org/10.1002/j.1538-
7305.1956.tb03835.x

13. Petrick, S.R.: A direct determination of the irredundant forms of a boolean function
from the set of prime implicants. Air Force Cambridge Res. Center Tech. Report
pp. 56–110 (1956)

14. Quine, W.V.: The problem of simplifying truth functions.
The American Mathematical Monthly 59(8), 521–531 (1952).
https://doi.org/10.1080/00029890.1952.11988183

15. Quine, W.V.: A way to simplify truth functions. The American Mathematical
Monthly 62(9), 627–631 (1955). https://doi.org/10.1080/00029890.1955.11988710

16. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: 2015 For-
mal Methods in Computer-Aided Design (FMCAD). pp. 136–143 (2015).
https://doi.org/10.1109/FMCAD.2015.7542263

17. Ranta, A.: Translating between language and logic: what is easy and what is dif-
ficult. In: Proceedings of the International Conference on Automated Deduction.
pp. 5–25. Springer (2011)

18. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Stud-
ies in Natural Language Processing, Cambridge University Press (2000).
https://doi.org/10.1017/CBO9780511519857

https://doi.org/https://doi.org/10.1016/j.jcss.2010.06.011
https://doi.org/10.1109/TCE.1953.6371932
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1080/00029890.1952.11988183
https://doi.org/10.1080/00029890.1955.11988710
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1017/CBO9780511519857

12 E. Calò and J. Levy

19. Seidl, M., Lonsing, F., Biere, A.: qbf2epr: A tool for generating epr formulas from
qbf. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR-2012. Third Workshop
on Practical Aspects of Automated Reasoning. EPiC Series in Computing, vol. 21,
pp. 139–148. EasyChair (2013). https://doi.org/10.29007/2b5d

20. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A Survey on Applications of Quantified
Boolean Formulas. In: 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI). pp. 78–84. IEEE, Portland, OR, USA (Nov 2019).
https://doi.org/10.1109/ICTAI.2019.00020

21. Tentrup, L.: CAQE and QuAbS: Abstraction Based QBF Solvers. Journal
on Satisfiability, Boolean Modeling and Computation 11, 155–210 (Sep 2019).
https://doi.org/10.3233/SAT190121

22. Turton, B.C.: Extending Quine-McCluskey for Exclusive-Or logic syn-
thesis. IEEE Transactions on Education 39(1), 81–85 (Feb 1996).
https://doi.org/10.1109/13.485236

https://doi.org/10.29007/2b5d
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.3233/SAT190121
https://doi.org/10.1109/13.485236

	General Boolean Formula Minimization with QBF Solvers

