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Abstract. In theory, a neural network can be trained to act as an arti-
ficial specification for a program by showing it samples of the programs
executions. In practice, the training turns out to be very hard. Programs
often operate on discrete domains for which patterns are difficult to dis-
cern. Earlier experiments reported too much false positives. This paper
revisits an experiment by Vanmali et al. by investigating several aspects
that were uninvestigated in the original work: the impact of using dif-
ferent learning modes, aggressiveness levels, and abstraction functions.
The results are quite promising.
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1 Introduction
Nowadays, many systems make use of external services or components to do some
of their tasks, allowing services to be shared, hence reducing cost. However, we
also need to take into account that third parties services may be updated on
the fly as our system is running in production. If such an update introduces an
error, this may affect the correctness of our system as well. One way to guard
against this is by doing run time verification [2]: at the runtime the outputs of
these services are checked against their formal specifications. Unfortunately, in
practice it is hard to persuade developers to write formal specifications.

A more pragmatic idea is to use ’artificial specifications’ generated by a com-
puter. Another use case is automated testing. Tools like QuickCheck, Evosuite,
and T3 [3,6,13] are able to generate test inputs, but if no specification is given,
only common correctness conditions such as absence of crashes can be checked.
Using artificial specifications would extend their range.

Although we cannot expect a computer to be able to on its own specify the
intent of a program, it can still try to guess this intent. One way to do this is by
observing some training executions to predict general properties of the program,
e.g. in the form of ’invariants’ (state properties) [5], finite state machine [12],
or algebraic properties [4]. These approaches cannot however capture the full
functionality of a program, e.g. [5] can only infer predefined families of predicates,
many are simple predicates such as such as o 6=null and x+y≥0. With respect to
these approaches, neural networks offer an interesting alternative, since they can
be trained to simulate a function [9].

The trade off of using artificial specifications is the additional overhead in
debugging. When a production-time execution violates such a specification, the
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failure may be either caused by an error triggered by the execution, or by an
error in the training executions that were reflected in the predictions, or due
to inaccuracy of the predictions. The first two cases expose errors (though the
second case would take more effort to debug). However, the failure in the last
case is a false alarm (false positive). Since we do not know upfront if a violation
is a real error or a false positive, we will need to investigate it (debugging),
which is quite labour intensive. If it turns out to be a false positive, the effort is
wasted. Despite the potential, studies on the use of neural networks as artificial
specifications are few: [16,1,11,10]. They either reported unacceptably high rate
of false positives, or do not address the issue.

In this paper we revisit an experiment by Vanmali et al. [16] that revealed
≈ 16% rate of false positives —a rate of above 5% is likely to render any approach
unusable in practice. The challenge lies in the discrete nature of the program
used as the experiment subject, making it very hard to train a neural network.
This paper explores several aspects that were left uninvestigated in the original
work, namely the influence of different learning modes, aggresiveness levels, and
abstraction. The results are quite promising.

2 Neural Network as an Artificial Specification
Consider a program P that behave as a function I→O. An artificial specification
φ is a predicate I×O→bool; φ(x, P (x))=T means that P ’s output is judged as
correct, and else incorrect. With respect to the intended specification G, φ’s
judgment is a true positive is when both φ and G judge a T, a true negative is
when they agree on the judgement F, a false positive is when φ judges F and G
judges T, and a false negative is when φ judges T and G judges F.

An neural network (NN) is a network of ’neurons’ [9] that behaves as a
function RM→RN . We will restrict ourselves to feed forward NNs (FNNs) where
the neurons are organized in linearly ordered layers [9]; an example is below:

In I0
In I1
In I2

O0

O1

The first layer is called the input layer, consisting of M neurons connected to the
inputs. The last layer is the output layer, consisting of N neurons that produce
the outputs. The layers in between are called hidden layers. An input neuron
simply passes on its input, else it has k inputs and an additional input called
’bias’ whose value is always 1 [9]. Each input connector has a weight wi. The
neuron’s output is the weighted sum of its inputs, followed by applying a so-
called activation function: out = f (Σ0≤i≤k wi.xi). A commonly used f is the
logistic function, which we also use in our experiments.

Any continuous numeric function RM→RN , restricted within any closed sub-
set of RM , can be simulated with arbitrary accuracy by an FNN [7], which implies
that an FNN can indeed act as an artificial specification for P , if P is injectable
into such a numeric function. That is, there exists a continuous numeric function
F :RM→RN and injections πI :I→RN and πO:O→RN such that F encodes P : for
all x∈I, P (x)=π−1

O (F (πI(x))). However, finding a right FNN is hard. A common



1 approve ( C i t i z e n s h i p , State , Region , Sex , Age , Mar i t a l , Dependents , Income ) {
2 i f ( Region==5 | | Region==6) Amount=0 ;
3 e l s e i f (Age<18) Amount=0 ;
4 e l s e {
5 i f ( C i t i z e n s h i p==0) {
6 Amount = 5000+1000∗ Income ;
7 i f ( S ta t e==0)
8 i f ( Region==3 | | Region==4) Amount = Amount∗2 ;
9 e l s e Amount = ( i n t ) ( Amount∗1 .50) ;

10 e l s e Amount = ( i n t ) ( Amount∗1 .10) ;
11 i f ( Ma r i t a l==0)
12 i f ( Dependents>0) Amount = Amount+200∗Dependents ;
13 e l s e Amount = Amount+500;
14 e l s e Amount = Amount+1000 ;
15 i f ( Sex==0) Amount = Amount+500 ;
16 e l s e Amount = Amount+1000;
17 }
18 e l s e {
19 Amount = 1000 + 800 ∗ Income ;
20 i f ( Ma r i t a l==0)
21 i f ( Dependents>2) Amount = Amount+100∗Dependents ;
22 e l s e Amount = Amount+100 ;
23 e l s e Amount = Amount+300 ;
24 i f ( Sex==0) Amount = Amount+100 ;
25 e l s e Amount = Amount+200 ;
26 }
27 i f (Amount==0) Approved=F e l s e Approved=T;
28 r e t u r n ( Approved , Amount ) ; }

Fig. 1. The experiment subject: a credit approval program from [16].

technique to find one is by training an FNN using a set of sample inputs and
outputs, e.g. using the back propagation [9] algorithm. It might be easier to train
the NN to simulate α ◦ P instead, where α is some chosen abstraction on P ’s
output values. The trade off is that we get a weaker specification.

Since an NN does not literally produce a bool, we couple its output vector
z̄′=NN(πI(x̄)) to a so-called comparator C : RN→RN→bool to calculate the
judgement by comparing z̄′ with the observed output z̄=πO(α(P (x̄))). Basically,
if their values are ’far’ from each other, then the judgement is F, and else T.
By adjusting what ’far’ means we can tune the specification’s aggressiveness
without having to tamper with the NN’s internals. In our experiments (below),
the identity function id=(λx. x) will be used as the injector πI and πO. Because
id simply passes on its input, it will be omitted from the formulas.

3 Experiments
Figure 1 shows a credit approval program from the financial domain that was
used as the experiment subject by Vanmali et al [16]. The program takes 8
input parameters describing a customer. The output is a pair (b, y) where b is a
boolean indicating whether the credit request is approved, and if so y specifies
the maximum allowed credit. We will ignore b since [16] already shows that
an FNN can accurately predict its value. Despite its size, the subject is quite
challenging for an NN to simulate because it operates on a discrete domain (the
numeric values are all integers). The whole input domain has 224000 possible
values. We will use an FNN with 8 inputs (representing approve’s inputs) and a
hidden layer with 24 neurons (adding more layers and neurons does not really
improve the FNN’s accuracy).



Five variations of the FNN will be used, as listed below, along with the used
comparator C. C is parameterized with aggressiveness level A (integer 0 (least
aggressive) ... 5) that determines C’s policy to deal with non clear-cut cases.

1. The FNN direct has one output, which is trained to simulate y. Its com-
parator CA uses Euclidian distance, with sensitivity linearly scaled by A:
CA(y, y′) = |y − y′| < εmax − 0.01A, with εmax=0.09.

2. The FNN uniN has N outputs, trained to simulate αN ◦ approve. The ab-
straction αN maps approve’s y output to a vector z̄ : [0.0..1.0]N representing
one of N uniform sized intervals in y’s range [0..18000], such that the k-th
interval is represented by a vector of 0’s except a single 1 at the k-th position.
If v̄ : [0.0..1.0]N , let winner(v̄) be the index of the greatest element in v̄.
The comparator is more complicated. An obvious case is when z̄′ = NN(x̄)
and z̄ = α10(approve(x̄)) report the same winner. If the NN’s winner is
confident of itself, approve’s output is judged as correct. When they produce
different winners and the NN’s winner is confident of itself, we judge approve
to be incorrect. Other cases are non-clear-cut and judged depending on the
aggressiveness level. The full definition of CA is shown below. The original
work Vanmali et al. [16] only uses A = 3 aggressiveness level.

function CA(z̄, z̄′)
k, j ← winner(z̄),winner(z̄′) ; agree← k = j
if agree ∧ |agree−z̄′

j | < thlow then (obvious match) T

else if ¬agree ∧ |agree−z̄′
j | > thhigh then (obvious mismatch) F

else (non-clear-cut cases) case A of
0 : (least aggressive: always accept) T
1 : (reject when the NN contradicts agreement) ¬(agree ∧ |T−z̄′

j | > thhigh)
2 : (always accept on agreement) agree
3 : (Vanmali et al. [16]: accept on conflicting results) ¬agree ∨ |T− z̄′

j | > thhigh

4 : (only accept if NN’s winner supports z̄) |agree− z̄′
j | < thlow

5 : (most aggressive: never accept) F
end function

The thresholds thlow and thhigh are set to 0.2/0.8.
3. The FNN uniminN is a less presumptuous variant of uni, with thlow/thhigh

set to 0.1/0.9. This will cause more cases to be regarded as non-clear-cut.
4. The FNN lowerN is like uniN , but trained to simulate αN ◦ low ◦ approve.
low is used to ’stretch’ αN to divide y into finer intervals in the lower region
of y’s range, e.g. if we believe the region to be more error prone, and growing
coarser towards the other end. We use the log function to do this: K ∗ log(1+
y/a) with K=8000 and a=100 controlling the steepness.

5. The FNN centerN is like uniN , but trained to simulate αN ◦ ctr ◦ approve.
ctr is used to ’stretch’ αN to divide y into finer intervals in the center region
of y’s range. We use logistic function ctr(y)=M/(1 + e−a(y−0.5M)) where
M=18000 (y’s maximum) and a=0.0006 determines the function’s steepness.

Training. We randomly generate 500 distinct inputs (from the space of
224000 values) and collect the corresponding approve’s outputs. This set of 500
pairs (input,output) forms the training data. For every type of FNN above and
every aggressiveness level an FNN is trained. N controls the granularity of the
used abstraction, so we also try various N (10..60). For each FNN, the connec-
tions’ weight is randomly initialized in [−0.5..0.5]. The training is done in a series



of epochs using the back propagation algorithm [9]. We tried both the incremen-
tal learning mode [9,8], where the FNN’s error is propagated back after each
training input, and batch learning modes, where only the average error is prop-
agated back, after the whole batch of training inputs (500 of them). Incremental
learning is thus more sensitive to the influence of individual inputs.

Evaluation. To evaluate the FNNs’ ability to detect errors, we run them on
21 erroneous variations (mutants) of the subject as in [16] —they are listed in the
Appendix. For each mutant, 500 distinct random inputs are generated, whose
outputs are ’error exposing’ (distinguishable from the corresponding outputs
of the correct subject). As an artificial specification, an FNN should ideally
reject all these error exposing outputs. Each rejection is a true positive. We also
generate 500 distinct random inputs and feed it to the (unmutated) subject.
The FNN should accepts the corresponding outputs —each rejection is a false
positive.

Fig. 2. The true positive and false positive rates (in %) of different FNNs.

Figure 2 shows some of the results. Except for direct, the training was done in
1500 epochs with learning rate 0.5. We can see that using abstraction improves
the FNN’s performance: compare direct with uni30. The latter obtains a true
positive rate 68% on aggressiveness 2, implying that out of two erroneous exe-
cutions, uni30 is likely to detect at least one, while when the aggressiveness level
is set low, its rate of false positives is only around 2%. Abstraction also makes
training easier: after 1500 epochs uni30 produces a mean square error (MSE) of
≈ 0.0001, whereas the shown results for direct is obtained after 10000 epochs
(incrementally) with 0.1 learning rate, yielding an MSE ≈ 0.0004.

The experiment in [16] uses unimin10. We believe [16] used batch learning
because the reported MSE after 1500 epochs matches, namely ≈ 0.05. However,
as can be seen in Figure 2, this leads to poor performance (batched unimin10).
Incremental learning yields a much more accurate FNN (≈ 0.0001 MSE), hence
also better performance (unimin10). The performance of the FNN in [16] under
our setup is indicated by the vanmali-markers in Figure 2.

The effect of using different abstractions and abstraction granularity (the N
parameter) is shown in Figure 3. Based on the results in Figure 2, we now use



the lowest aggressiveness level (0). The graph of uni shows that increasing N
can greatly improve the FNN’s ability to detect error, while keeping the false
positive rate below 5%. We also see αN and αN ◦ low perform significantly better
than αN ◦ ctr, implying that the choice of the abstraction function matters.
Compared to αN , αN ◦ low and αN ◦ ctr introduce non-linear granularity. The
results suggest that introducing more granularity in the region (of P ’s output)
which are more error prone pays off.

Fig. 3. The effect of different abstractions and the abstraction granularity (N). uni
shows the TP and FP rates of the uniN configuration with its aggressiveness level set to
0 —recall that this FNN uses the function αN as abstraction. center and lower show the
TP and FP rates of the same FNN, but they use respectively αN ◦ ctr and αN ◦ low
as the abstraction.

4 Conclusion

The experiment showed that, contrary to earlier attempts, it is possible to train
Neural Networks, given an appropriate abstraction, to become an artificial spec-
ification for a non-trivial program with acceptable precision. As future work,
more case studies are needed to see how this generalizes.
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A Results on Individual Mutations

The table below shows each of the mutation used in our experiment for simulat-
ing errors. The mutations are the same as originally used in [16].

line mutation

2:
Region == 5
|| Region == 6

M1: Region==5,
M2: Region==5 && Region==6

M3: Region==4 || Region==5,
M4: Region==3 || Region==4

3: Age<18
M5: Age>18,
M6: Age<25

5: Citizenship ==0 M7: Citizenship ==1

7: State==0 M8: State==1

8:
Region == 3
|| Region == 4

M9: Region==3,
M10: Region==3 && Region==4

M11: Region==2 || Region==3

M12: Region==1 || Region==2

11: Marital==0 M13: Marital==1

12: Dependents>0
M14: Dependents==0

M15: Dependents<0

15: Sex==0 M16: Sex==1

20: Marital==0 M17: Marital==1

21: Dependents>2

M18: Dependents>=2

M19: Dependents<2

M20: Dependents<=2

24: Sex==0 M21: Sex==1

http://joelself.github.io/FannCSharp


Figure 4 shows the true positive and false positive rates of the FNNs on in-
dividual mutants. Two results of two FNNs are shown. The first is uni30 with
its aggressiveness level set to 0; recall that uni30 uses the function αN as the
abstraction function. The second is lower30, with aggressiveness 0, but it uses
αN ◦ low as the abstraction.

Let’s first consider the true positives (top graph). We see here that on mutants
M16, M17, and M20 uni actually performs very poorly. See the top graph in
Figure 4 —uni’s results on these three cases are annotated in the graph.

In contrast, the hardest mutants for lower are M13 and M14, but even on
these mutants lower has a true positive rate of >10%. Whether this 10% is good
enough depends on the situation. We have defined the rate of true positives as
the percentage of wrong executions that the FNN judges as wrong as well. In
particular, note that the metric is not defined as the percentage of mutations
that can be discovered. If we would define it like this, lower would have 100%
rate of true positives because with enough test cases eventually it will be able to
detect all mutants. So, 10% individual rate of true positives for e.g. M14 means
thus that if we manage to trigger at least 10 distinct executions that expose the
mutation, statistically the FNN has a good chance to detect at least one of them,
and thus identifying the mutation. While this sounds very encouraging, note that
the actual probability for detecting the error also depends on the probability of
producing executions that expose it. In the experiments, the probability of the
latter is simply 1: we knew upfront that there is a mutation, so generating
the set of error exposing executions for each mutant was not problematic. In
a real regression testing setup, it is not possible to steer the testing process
towards exposing a particular error; we do not even know upfront if the new
version of the program would contain any regression error at all. There are
indeed tools to automatically generate test inputs capable of generating a large
number of test cases [3,14]. However, it is hard to generate test cases that are
evenly distributed over all control paths in the target program. Some paths may
even be left uncovered because they are too difficult to cover, even by tools
that employ more sophisticated techniques like an evolutionary algorithm [6] or
symbolic calculation [15].

The bottom graph in Figure 4 shows the individual false positive rate of uni
and lower. Each bar in this graph also has its own error bar to indicate the
standard deviation σ of the value the bar represents (the error bar is capped
above at 100 and below at 0, since true/false positive rates can only range
between [0..100]). For each mutant M , and each experiment (e.g. lower), the
error EM of the false positive rate of the experiment is calculated by randomly
dividing the set of 500 executions used in the experiment, into 5 bags of 100
elements and then we calculate the false positive rate of the experiment with
respect to each bag. EM is defined as the standard deviation of these values.
The error bars indicate that sometimes the false positive rate can peak above
5%, though in average both configurations, uni and lower, produce rates that are
below 5%, for every individual mutant.



Fig. 4. The graph at the top shows the individual true positive rate of the uni30 with its
aggressiveness level set to 0 (left bars) and that of the same FNN but using αN ◦ low
as the abstraction function (right bars) on each mutant (M0..M20). The bottom graph
shows the individual false positive rate.
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