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For the vast majority of local problems on graphs of small treewidth (where, by local we mean that a solution

can be verified by checking separately the neighbourhood of each vertex), standard dynamic programming

techniques give ctw |V |O (1) time algorithms, where tw is the treewidth of the input graphG = (V ,E) and c is

a constant. On the other hand, for problems with a global requirement (usually connectivity) the best–known

algorithms were naive dynamic programming schemes running in at least twtw time.

We bridge this gap by introducing a technique we named Cut&Count that allows to produce ctw |V |O (1)

time Monte-Carlo algorithms for most connectivity-type problems, including Hamiltonian Path, Steiner

Tree, Feedback Vertex Set and Connected Dominating Set. These results have numerous consequences

in various fields, like parameterized complexity, exact and approximate algorithms on planar and H -minor-

free graphs and exact algorithms on graphs of bounded degree. The constant c in our algorithms is in all

cases small, and in several cases we are able to show that improving those constants would cause the Strong

Exponential Time Hypothesis to fail. In all these fields we are able to improve the best-known results for some

problems. Also, looking from a more theoretical perspective, our results are surprising since the equivalence

relation that partitions all partial solutions with respect to extendability to global solutions seems to consist

of at least twtw equivalence classes for all these problems. Our results answer an open problem raised by

Lokshtanov, Marx and Saurabh [SODA’11].

In contrast to the problems aimed at minimizing the number of connected components that we solve using

Cut&Count as mentioned above, we show that, assuming the Exponential Time Hypothesis, the aforemen-

tioned gap cannot be bridged for some problems that aim to maximize the number of connected components

like Cycle Packing.
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1 INTRODUCTION AND NOTATION

The notion of treewidth was introduced independently by Rose in 1974 [73] (under the name of
partial k-tree) and in 1984 by Robertson and Seymour [72], and in many cases proved to be a good
measure of the intrinsic difficulty of various NP-hard problems on graphs, and a useful tool for
attacking those problems. Many of them can be efficiently solved through dynamic programming
if we assume the input graph to have bounded treewidth.

The interest in algorithms for graphs of bounded treewidth stems from their utility: such algo-
rithms are used as sub-routines in a variety of settings. Amongst them prominent are approxima-
tion algorithms [3, 17, 32, 40] and parametrized algorithms [35, 42] for a vast number of problems
on planar, bounded-genus and H -minor-free graphs, including Vertex Cover, Dominating Set,
and Independent Set. There are also applications in parametrized algorithms in general graphs
[64, 76] for problems like Connected Vertex Cover and Cutwidth and in exact algorithms
[42, 66] such as Minimum Maximal Matching and Dominating Set.

In many cases, where the problem to be solved is “local” (loosely speaking this means that the
property of the object to be found can be verified by checking separately the neighbourhood of
each vertex), matching upper and lower bounds for the runtime of the optimal solution are known.

For instance for the aforementioned 2tw(G ) |V |O (1) algorithm for Vertex Cover there is a matching
lower bound—unless the Strong Exponential Time Hypothesis (see [52]) fails, there is no algorithm

for Vertex Cover running faster than (2 − ε )tw(G ) for any ε > 0 (see [61]).
On the other hand, when the problem involves some sort of a “global” constraint—

e.g., connectivity—the best known algorithms usually have a runtime on the order of

2O (tw(G ) log tw(G )) |V |O (1) . In these cases, the typical dynamic programming routine has to keep track
of all the ways in which the solution can traverse the corresponding separator of the tree decom-
position, that is Ω(l l ) on the size l of the separator, and therefore of treewidth. This obviously
implies weaker results in the applications mentioned above. This problem was observed, for in-
stance, by Dorn, Fomin and Thilikos, [35, 36] and by Dorn et al. in [37], and the question whether

the known 2O (tw(G ) log tw(G )) |V |O (1) parametrized algorithms for Hamiltonian Path, Connected
Vertex Cover and Connected Dominating Set are optimal was explicitly asked by Lokshtanov,
Marx, and Saurabh [62].

The 2O (tw(G ) log tw(G )) |V |O (1) dynamic programming routines for connectivity problems were
thought to be optimal because of the following reasoning. Each node x of a tree decomposition of
a graphG decomposesG into two subgraphsG1andG2,whose intersection consists of the vertices
in a separator Bx (called a bag) that is associated with x . The subgraph G1 corresponds to the sub-
tree below x , whereas G2 corresponds to the part of the graph that has not yet been handled. One
then considers how a solution in the entire graph G can intersect the subgraph G1 and classifies
the partial solutions in G1 based on their behaviour with respect to the separator Bx : which pairs
of vertices of the separator Bx are connected by the partial solution in G1, and which still need to

be connected by the part of the solution that will be found in G2? This leads to 2Θ(tw(G ) log tw(G ))
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equivalence classes of partial solutions, as witnessed for example by the number of perfect match-
ings on |Bx | vertices (and |Bx | ≤ tw(G )+1). This approach to dynamic programming was expected
to be optimal as it was believed that an algorithm may have to store at least one partial solution for
each connectivity pattern on the separator Bx , in order to find a global solution if one exists. From
this point of view the results of this article come as a significant surprise, and follow-up research
shows that it suffices to maintain a single-exponential amount of information to obtain a correct
algorithm. In some sense, the classification of partial solutions based on the connectivity pattern
on the separator is too refined and a courser partition can still be used to find an optimal solution.

1.1 Our Results

In this article, we introduce a technique we named “Cut&Count”. Briefly stated, we first reduce
the original problem to the task of counting possibly disconnected “cut solutions” modulo 2 by
(i ) making sure that the number of disconnected cut solutions is always even and (ii ) using ran-
domization to guarantee with high probability that the number of connected cut solutions is odd if
and only if there is a solution. The reduction is performed in such a way that counting cut solutions
is a local problem and can be done sufficiently fast by standard dynamic programming.

For most problems involving a global constraint our technique gives a randomized algorithm

with runtime ctw(G ) |V |O (1) . In particular, we are able to give such algorithms for the three problems
mentioned in [62], as well as for all the other sample problems mentioned in [36]. Moreover, the
constant c is in all cases well defined and small. The randomization we mention comes from the
usage of the Isolation Lemma [65]. This gives us Monte Carlo algorithms with a one-sided error.
The formal statement of a typical result is as follows:

Theorem 1.1. There exists a randomized algorithm, which given in a graph G = (V ,E), a tree

decomposition of G of width t and a number k in 3t |V |O (1) time either states that there exists a
connected vertex cover of size at most k inG, or that it could not verify this hypothesis. If there indeed
exists such a cover, the algorithm will return “unable to verify” with probability at most 1/2.

We call an algorithm as in Theorem 1.1 an algorithm with false negatives. We see similar results

for a number of other global problems. As the exact value of c in the ctw(G ) expression is often
important and highly non-trivial to obtain, we gather the results in the second column of Table 1.

For a number of these results, we have matching lower bounds published in [28], such as the
following one:

Theorem 1.2. Unless the Strong Exponential Time Hypothesis is false, there do not exist a constant
ε > 0 and an algorithm that given an instance (G = (V ,E),T ,k ) together with a path decomposition

of the graph G of width p solves the Steiner Tree problem in (3 − ε )p |V |O (1) time.

Since each path decomposition is also a tree decomposition a lower bound for pathwidth im-
lies the same lower bound for treewidth. We have such matching lower bounds for several other
problems presented in the third column of Table 1. We feel that the results for Connected Ver-
tex Cover, Connected Dominating Set, Connected Feedback Vertex Set, and Connected
Odd Cycle Transversal are of particular interest here and should be compared to the algorithms
and lower bounds for the analogous problems without the connectivity requirement. For instance
in the case of Connected Vertex Cover the results show that the increase in running time to

3tw(G ) |V |O (1) from the 2tw(G ) |V |O (1) algorithm of [67] for Vertex Cover is not an artifact of the
Cut&Count technique, but rather an intrinsic characteristic of the problem. We see a similar in-
crease of the base constant by one for the other three mentioned problems.

We have found Cut&Count to fail for two maximization problems: Cycle Packing and Max
Cycle Cover. We believe this is an example of a more general phenomenon—problems that ask to
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Table 1. Summary of Our Results for Treewidth and Pathwidth Parametrizations

Problem name Algorithms param. Lower bounds
by treewidth

Steiner Tree 3tw(G ) 3pw(G )

Feedback Vertex Set 3tw(G ) 3pw(G )

Connected Vertex Cover 3tw(G ) 3pw(G )

Connected Dominating Set 4tw(G ) 4pw(G )

Connected Feedback Vertex Set 4tw(G ) 4pw(G )

Connected Odd Cycle Transversal 4tw(G ) 4pw(G )

Undirected/Directed Min Cycle Cover 4tw(G )/6tw(G )

Undirected/Directed Longest Path (Cycle) 4tw(G )/6tw(G )

Exact k-Leaf Spanning Tree 4tw(G ) 4pw(G )

Exact k-Leaf Outbranching 6tw(G )

Maximum Full Degree Spanning Tree 4tw(G )

Graph Metric Travelling Salesman Problem 4tw(G )

(Directed) Cycle Packing 2Ω(pw(G ) log pw(G ))

(Directed) Max Cycle Cover 2Ω(pw(G ) log pw(G ))

Maximally Disconnected Dominating Set 2Ω(pw(G ) log pw(G ))

For the sake of presentation in each entry we skip the |V |O (1) multiplicative term.

maximize (instead of minimizing) the number of connected components in the solution seem more
difficult to solve than the problems that ask to minimize (including problems where we demand
that the solution forms a single connected component). As an evidence we have presented lower

bounds for the time complexity of solutions to such problems in [28], proving that ctw(G ) solutions
of these problems are unlikely:

Theorem 1.3. Unless the Exponential Time Hypothesis is false, there does not exist a

2o (p log p ) |V |O (1) algorithm solving Cycle Packing or Max Cycle Cover (either in the directed and
undirected setting). The parameter p denotes the width of a given path decomposition of the input
graph.

To further verify this intuition, we investigated an artificial problem (the Maximally Discon-
nected Dominating Set), in which we ask for a dominating set with the largest possible number
of connected components, and indeed we found a similar phenomenon.

1.2 Previous Work

The Cut&Count technique has two main ingredients. The first is an algebraic approach, where
we assure that objects we are not interested in are counted an even number of times, and then
do the calculations in Z2 (or for example any other field of characteristic 2), which causes them to
disappear. This line of reasoning goes back to Tutte [77], and was previously used by Björklund [10]
and Björklund et al. [12].

The second is the idea of defining the connectivity requirement through cuts, which is frequently
used in approximation algorithms via linear programming relaxations. In particular, cut based con-
straints were used in the Held and Karp relaxation for the Travelling Salesman Problem from
1970 [49, 50] and appear up to now in the best known approximation algorithms, for example in
the recent algorithm for the Steiner Tree problem by Byrka et al. [20]. To the best of our knowl-
edge the idea of defining problems through cuts was never used in the exact and parameterized
settings.
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A number of articles circumvent the problems stemming from the lack of single exponential
algorithms parametrized by treewidth for connectivity–type problems. For instance in the case of
parametrized algorithms, sphere cuts [35, 37] (for planar and bounded genus graphs) and Cata-

lan structures [36] (for H -minor-free graphs) were used to obtain 2O (
√

k ) |V |O (1) algorithms for
a number of problems with connectivity requirements. To the best of our knowledge, however,
no attempt to attack the problem directly was published before; indeed the non-existence of

2o (tw(G ) log tw(G )) |V |O (1) algorithms was deemed to be more likely.
For classical graph problems the base of the exponent for treewidth parametrization was im-

proved a few times. For example, Alber et al. [1] gave a 4tw(G ) |V |O (1) time algorithm for Dominat-
ing Set, improving over the algorithm of Telle and Proskurowski [75]. Later, van Rooij et al. [79]
observed that one could use a generalisation of fast subset convolution [11] to improve the running

time of algorithms on graphs of bounded treewidth. Their results include a 3tw(G ) |V |O (1) algorithm
for Dominating Set, matching the space bound of the naive approach; see also [78].

1.3 Consequences of the Cut&Count Technique

As already mentioned, algorithms for graphs of bounded treewidth have a number of applications
in various branches of algorithmics. Thus, it is not a surprise that the results obtained by our
technique give a large number of corollaries.

We would like to emphasize that the strength of the Cut&Count technique shows not only in
the quality of the results obtained in various fields, which are frequently better than the previously
best known ones, achieved through a plethora of techniques and approaches, but also in the ease
in which new strong results can be obtained.

1.3.1 Solution Size Parametrizations. Let us recall the definition of the Feedback Vertex Set
problem:

Feedback Vertex Set
Input: An undirected graph G and an integer k
Question: Is it possible to remove k vertices from G so that the remaining vertices induce a
forest?

This problem is on Karp’s original list of 21 NP-complete problems [56]. It has also been ex-
tensively studied from the parametrized complexity point of view. Let us recall that in the fixed-

parameter setting (FPT) the problem comes with a parameterk , and we are looking for a solution

with time complexity f (k )nO (1) , where n is the input size and f is some function (usually expo-
nential in k). Thus, we seek to move the intractability of the problem from the input size to the
parameter.

There is a long sequence of FPT algorithms for Feedback Vertex Set [4, 14, 22, 31, 38, 39, 47,
55, 69, 70]. The best—so far—result in this series is the deterministic 3.83kk |V |2 result of Cao, Chen
and Liu [21].1 Our technique gives an improvement of their result:

Theorem 1.4. There exists a Monte Carlo algorithm with constant one-sided error probability that

solves the Feedback Vertex Set problem in a graph G = (V ,E) in 3k |V |O (1) time and polynomial
space.

We give similar improvements for Connected Vertex Cover (from the 2.4882k |V |O (1) de-

terministic algorithm of [8] to our randomized 2k |V |O (1) algorithm) and Connected Feedback

1After the extended abstract of this article was published, parameterized algorithms for Feedback Vertex Set were im-

proved to run in time 3.62k nO (1) deterministically by Pilipczuk and Kociumaka [58], and in 2.70k nO (1) time probabilisti-

cally by Li and Nederlof [60].
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Table 2. Table Summarizes the Running Times of Solution Size Parametrizations

in Comparison with Previous Work

Problem name Algorithms param. Previous best algorithms
by solution size param. by solution size

Feedback Vertex Set 3k 3.83k [21]

Connected Vertex Cover 2k 2.4882k [8]

Connected Feedback Vertex Set 3k 46.2k [63]

In each entry, we skip the |V |O (1) multiplicative term. Note that all our algorithms are randomized, while

the previous works are all deterministic algorithms.

Vertex Set (from the 46.2k |V |O (1) deterministic algorithm of [63] to our randomized 3k |V |O (1)

algorithm). This is summarized in Table 2.

1.3.2 Parametrized Algorithms for H -minor-free Graphs. A large branch of applications of al-
gorithms parametrized by treewidth is the bidimensionality theory, used to find subexponential
algorithms for various problems in H -minor-free graphs. In this theory, we use the theorem of
Demaine et al. [33], which ensures that any H -minor-free graph either has treewidth bounded by

C
√
k , or a 2

√
k × 2

√
k grid as a minor. In the latter case we are assumed to be able to answer the

problem in question (for instance a 2
√
k × 2

√
k grid as a minor guarantees that the graph does not

have a Vertex Cover or Connected Vertex Cover smaller than k). Thus, we are left with solv-
ing the problem with the assumption of bounded treewidth. In the case of, for instance, Vertex

Cover, a standard dynamic programming algorithm suffices, thus giving us a 2O (
√

k ) algorithm to
check whether a graph has a vertex cover no larger than k . In the case of Connected Vertex

Cover, however, the standard dynamic programming routine gives a 2O (
√

k log k ) complexity—thus,
we lose a logarithmic factor in the exponent.

There were a number of attempts to deal with this problem, taking into account the structure of
the graph, and using it to deduce some properties of the tree decomposition under consideration.
The latest and most efficient of those approaches is due to Dorn, Fomin and Thilikos [36], and
exploits the so-called Catalan structures. The approach deals with most of the problems mentioned
in our article, and is probably applicable to the remaining ones. Thus, the gain here is not in
improving the running times (though our approach does improve the constants hidden in the big-
O notation these are rarely considered to be important in the bidimensionality theory), but rather
in simplifying the proof—instead of delving into the combinatorial structure of each particular
problem, we are back to a simple framework of applying the Robertson–Seymour theorem and
then following up with a dynamic programming algorithm on the obtained tree decomposition.

1.3.3 Exact Algorithms for Graphs of Bounded Degree. Another application of our methods can
be found in the field of solving problems with a global constraint in graphs of bounded degree.
The problems that have been studied in this setting are mostly local in nature (such as Vertex
Cover, see, e.g., [19]); however global problems such as the Travelling Salesman Problem and
Hamiltonian Cycle have also received considerable attention [13, 41, 45, 46, 53].

Throughout the following, we let n denote the number of vertices of the given graph. The start-
ing point is the following theorem by Fomin et al. [42]:

Theorem 1.5 ([42]). For any ε > 0 there exists an integer Nε such that for any graph G with
n > Nε vertices,

pw(G ) ≤ 1

6
n3 +

1

3
n4 +

13

30
n5 + n≥6 + εn,
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where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 5} and n≥6 is the number of
vertices of degree at least 6.

This theorem is constructive, and the corresponding path decomposition (and, consequently,
tree decomposition) can be found in polynomial time. Combining this theorem with our results
gives randomized algorithms running faster than 2n time for graphs of maximum degree 3, 4, and

(in the case of the 3tw(G ) and 4tw(G ) algorithms) 5.

Furthermore, Björklund [9] suggested a simple modification of our 4tw(G ) |V (G ) |O (1) time algo-

rithm for Hamiltonian Cycle in the case of path decompositions of cubic graphs, leading to 3pw(G )

dependency on pathwidth in that case (see Section 4.3.1 of [24] for the proof). Consequently, we get
the following theorem which improves over previously best results: the deterministicO (1.251n ) al-
gorithm of Iwama and Nakashima [53] for maximum degree three, and the randomizedO (1.657n )
algorithm of Björklund [10] for maximum degree four. Corollary 1.6 was later improved in [27] to
O (1.16n ) and O (1.51n ), respectively.

Corollary 1.6. There exists a Monte Carlo algorithm with constant one-sided error probability
that solves the Hamiltonian Cycle problem in O (1.201n ) time for cubic graphs and O (1.588n ) for
graphs of maximum degree 4.

1.3.4 Exact Algorithms on Planar Graphs. Recall that n denotes the number of vertices of the
given graph. We begin with a consequence of the work of Fomin and Thilikos [44]:

Proposition 1.7. For any planar graph G, tw(G ) + 1 ≤ 3
2

√
4.5n ≤ 3.183

√
n. Moreover, a tree

decomposition of such width can be found in polynomial time.

As a direct consequence, we immediately obtain O (c
√

n ) algorithms, with small constants c , for
solving problems with a global constraint on planar graphs. For the Hamiltonian Cycle problem
on planar graphs we obtain the following result:

Corollary 1.8. There exists a Monte Carlo algorithm with constant one-sided error probability

that solves the Hamiltonian Cycle problem on planar graphs in O (43.183
√

n ) = O (26.366
√

n ) time.

To the best of our knowledge, the best algorithm known before was the O (26.903
√

n ) of

Bodlaender et al. [37]. Similarly, we obtain an O (26.366
√

n ) algorithm for Longest Cycle on pla-

nar graphs which improves the O (27.223
√

n ) algorithm of [37]. After our results, Cut&Count and
the follow up rank-based approach where used in combination with branch decompositions lead-

ing to O (25.036
√

n ) time randomized algorithms and O (26.570
√

n ) time deterministic algorithms [68]
for these problems.

In the same way, we obtain—as in the previous subsections—well-behaved c
√

n algorithms for
all connectivity problem mentioned in this article.

1.4 Further Developments

Since the extended abstract of this article was published [29], the study of connectivity problems pa-
rameterized by treewidth has been very active. Bodlaender et al. [15] have shown two approaches
in this line of research. In the first approach, a matrix with rows and columns indexed by partial
solutions is analyzed and its rank is upper bounded via a formula inspired by the Cut&Count tech-
nique. It was shown that this can be combined with a Gaussian elimination algorithm to give a

deterministic ctw(G ) |V (G ) |O (1) time algorithm for connectivity problems, which can be seen as a
derandomization of this work, yet by using a different approach. The algorithms of [15] provide
worse constants c in the base of the exponential function, nevertheless, can handle arbitrary real
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weights in the weighted variants of problems. A second approach of [15] borrows some ideas from
the proof of the Matrix Tree Theorem and allows solving counting variants of some of the prob-

lems. For example a 15tw(G ) |V (G ) |O (1) time algorithm is presented, which counts the number of
Hamiltonian cycles in a graph when given its tree decomposition.

On the other hand, Fomin et al. [43] have given an explanation of why the ctw(G ) dependency
on treewidth can be reached for connectivity problems via matroid theory. They gave a single
exponential time algorithm computing representative families for linear matroids. One of the im-

mediate consequences of their work is ctw(G ) dependency on treewidth for connectivity problems
using deterministic algorithms.

The gap between the best known upper and lower bounds for the Hamiltonian Cycle prob-

lem parameterized by pathwidth was closed in [27], by showing a (2 +
√

2)pw(G ) |V (G ) |O (1) time

algorithm together with a (2+
√

2− ϵ )pw(G ) |V (G ) |O (1) lower bound based on the Strong Exponen-
tial Time Hypothesis. The algorithmic part of [27] is based on the rank based approach from [15],
tailor made for the Hamiltonian Cycle setting. Curticapean et al. [23] showed a gap between

the complexity of a counting version and the regular version by showing a (6 − ϵ )pw(G ) |V (G ) |O (1)

lower bound for counting the number of Hamiltonian cycles.
Finally, after publishing our initial results, Cut&Count was applied in the context of various

different problems and graph-width parameters. For example, it was applied to r -Dominating
Set parameterised by treewidth by Borradaile and Le [18]. Regarding other graph-width param-
eters, Cut&Count was applied to branchwidth by Pino et al. [68], to treedepth by Hegerfeld and
Kratsch [48], and to cliquewidth, Q-rankwidth, rankwidth, and MIM-width by Bergougnoux [5]
(see also Bergougnoux and Kanté [6, 7]).

In Section 6, we give examples of currently open problems related to the study of connectivity
problems parameterized by treewidth.

1.5 Organization of the Article

As the reader might have already noticed, there is a quite a large amount of material covered by the
set of our results. To keep the volume of the article reasonable, we focus only on the algorithmic
part of the results. All the other proofs can be found in the extended version of the article on
arXiv.org [28] and the dissertation of the first author [24].

Section 2 is devoted to presenting the background material for our algorithms: In Section 2.2,
we recall the notion of treewidth, and in Section 2.3, we introduce the Isolation Lemma. In Sec-
tion 3, we present the Cut&Count technique on two examples: the Steiner Tree problem and
the Directed Min Cycle Cover problem. Moreover, Section 3.3 contains a general overview of
how our framework can be applied to connectivity problems. Section 4 contains the details of the
dynamic programming for Min Cycle Cover, Feedback Vertex Set, and Connected Vertex
Cover exhibiting some non-trivial tricks required to complete the proofs. Finally, in Section 5, we

consider the solution size parametrizations and present 3k |V |O (1) and 2k |V |O (1) time algorithms
for Feedback Vertex Set and Connected Vertex Cover, respectively.

2 PRELIMINARIES AND NOTATION

2.1 Notation

LetG = (V ,E) be a graph (possibly directed). ByV (G ) and E (G ),we denote the sets of vertices and
edges of G, respectively. For a vertex set X ⊂ V (G ) by G[X ], we denote the subgraph induced by
X . For an edge set X ⊂ E, we takeV (X ) to denote the set of the endpoints of the edges of X . Note
that in the graph G[X ] for an edge set X the set of vertices remains the same as in the graph G.

ACM Transactions on Algorithms, Vol. 18, No. 2, Article 17. Publication date: February 2022.
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For an undirected graphG = (V ,E), the open neighbourhood of a vertexv , denoted N (v ), stands
for {u ∈ V : uv ∈ E}, while the closed neighbourhood N [v] is N (v ) ∪ {v}. Similarly, for a set
X ⊂ V (G ) by N [X ], we mean

⋃
v ∈X N [v] and by N (X ), we mean N [X ] \ X .

By a cut of a set X ⊂ V , we mean a pair (X1,X2), with X1 ∩ X2 = ∅, X1 ∪ X2 = X (note that one
of the sides of a cut might be empty). We refer to X1 and X2 as to the (left and right) sides of the
cut.

We denote the degree of a vertex v in a graph H by degH (v ), or shortly deg(v ) when it is clear
which graph it refers to. For X ⊆ V or X ⊆ E, degX (v ) is a short for degG[X ] (v ). If G is a directed

graph, we denote the in- and out-degree of v in G by indegG (v ) and outdegG (v ), respectively. By
a degree of a vertex in a directed graph we denote the sum of its indegree and outdegree.

In a directed graph G by weakly connected components, we mean the connected components of
the underlying undirected graph. For a (directed) graph G, we let cc(G ) denote the number of
(weakly) connected components of G.

We denote the symmetric difference of two sets A and B by A�B. For two integers a,b, we use
a ≡ b to indicate that a is even if and only if b is even. We use Iverson’s bracket notation: If p is a
predicate, we let [p] be 1 if p if true and 0 otherwise. Ifω : U → Z, we shorthandω (S ) =

∑
e ∈S ω (e )

for S ⊆ U .
For a function s by s[v → α], we denote the function s \ {(v, s (v ))} ∪ {(v,α )}. Note that this

definition works regardless of whether v belongs to the domain of s or not (in the latter case we
extend the domain).

2.2 Treewidth

Definition 2.1 (Tree Decomposition, [72]). A tree decomposition of a (undirected or directed)
graph G = (V ,E) is a tree T in which each node x ∈ T has an assigned set of vertices Bx ⊆ V
(called a bag) such that

⋃
x ∈T Bx = V with the following properties:

— for any uv ∈ E, there exists an x ∈ T such that u,v ∈ Bx ;
— if v ∈ Bx and v ∈ By , then v ∈ Bz for all z on the path from x to y in T.

In what follows, we identify nodes of T and the bags assigned to them. The width of a tree
decomposition T (denoted as tw(T)) is the size of the largest bag of Tminus one, and the treewidth
of a graph G is the minimum width over all possible tree decompositions of G.

Dynamic programming algorithms on tree decompositions are often presented on nice tree de-
compositions which were introduced by Kloks [57]. We refer to the tree decomposition definition
given by Kloks as to a standard nice tree decomposition.

Definition 2.2. A standard nice tree decomposition is a tree decomposition where:

— Every bag has at most two children.
— If a bag x has two children y, z, then Bx = By = Bz .
— If a bag x has one child y, then either |Bx | = |By | + 1 and By ⊆ Bx or |Bx | + 1 = |By | and
Bx ⊆ By .

We present a slightly different definition of a nice tree decomposition.

Definition 2.3 (Nice Tree Decomposition). A nice tree decomposition is a tree decomposition with
one special bag r called the root with Br = ∅ and in which each bag is one of the following types:

— Leaf bag: a leaf x of T with Bx = ∅.
— Introduce vertex bag: an internal vertex x of T with one child vertex y for which Bx =

By ∪ {v} for some v � By . This bag is said to introduce v .
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— Introduce edge bag: an internal vertex x of T labeled with an edge uv ∈ E with one child
bag y for which u,v ∈ Bx = By . This bag is said to introduce uv .

— Forget bag: an internal vertex x of T with one child bag y for which Bx = By \ {v} for some
v ∈ By . This bag is said to forget v .

— Join bag: an internal vertex x with two child vertices y and z with Bx = By = Bz .

We additionally require that every edge in E is introduced exactly once.

We note that this definition is slightly different than usual. In our definition we have the extra
requirements that bags associated with the leafs and the root are empty. Moreover, we added the
introduce edge bags.

Given a tree decomposition, a standard nice tree decomposition of equal width can be found in
polynomial time [57] and in the same running time, it can easily be modified to meet our extra
requirements, as follows: add a series of forget bags to the old root, and add a series of introduce
vertex bags below old leaf bags that are nonempty; Finally, for every edgeuv ∈ E add an introduce
edge bag above the first bag with respect to the in-order traversal of T that contains u and v .

For two bags x ,y of a rooted tree we say that y is a descendant of x if it is possible to reach x
when starting at y and going only up the tree. In particular, x is its own descendant. By fixing the
root of T, we associate with each bag x in a tree decomposition T a vertex set Vx ⊆ V where a
vertex v belongs to Vx if and only if there is a bag y which is a descendant of x in T with v ∈ By .
We also associate with each bag x of T a subgraph of G as follows:

Gx = (Vx ,Ex = {e : e is introduced in a descendant of x }).

For an overview of tree decompositions and dynamic programming on tree decompositions
see [16, 51].

2.3 Isolation Lemma

An important ingredient of our algorithms is the Isolation Lemma:

Definition 2.4. A function ω : U → Z isolates a set family F ⊆ 2U if there is a unique S ′ ∈ F
with ω (S ′) = minS ∈F ω (S ).

Lemma 2.5 (Isolation Lemma, [65]). Let F ⊆ 2U be a set family over a universeU with |F | > 0,
and let N > |U | be an integer. For each u ∈ U , choose a weight ω (u) ∈ {1, 2, . . . ,N } uniformly and
independently at random. Then prob[ω isolates F ] ≥ 1 − |U |/N .

The Isolation Lemma allows us to count objects modulo 2, since with a large probability it
reduces a possibly large number of solutions to some problem to a unique one (with an additional
weight constraint imposed).

An alternative method to a similar end is obtained by using Polynomial Identity Testing [34, 74,
80] over a field of characteristic two. This second method has been already used in the field of exact
and parameterized algorithms [10, 59]. The two methods do not differ much in their consequences:
Both use the same number of random bits, and the challenge of giving a full derandomization
seems to be equally difficult for both methods [2, 54]. The usage of the Isolation Lemma gives
greater polynomial overheads; however, we choose to use it because it requires less preliminary
knowledge and it simplifies the presentation.

3 CUT&COUNT: ILLUSTRATION OF THE TECHNIQUE

In this section, we present the Cut&Count technique by demonstrating how it applies to the
Steiner Tree and Directed Min Cycle Cover problems. We go through the details in an
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expository manner, as we aim not only at showing the solutions to these particular problems but
also to show the general workings.

We have chosen Steiner Tree and Directed Min Cycle Cover problems to show that our
technique can be applied both to vertex and edge selection problems, and both to undirected and
directed graphs and also that not only it allows for ensuring connectivity but more generally it
allows to minimize the number of connected components.

In the last section of this chapter, we give an overview of the Cut&Count technique.

3.1 Steiner Tree

Steiner Tree
Input: An undirected graph G = (V ,E), a set of terminals T ⊆ V and an integer k .
Question: Is there a set X ⊆ V of cardinality k such that T ⊆ X and G[X ] is connected?

In what follows, we will call the set X asked for in the question of the Steiner Tree problem
a solution. Let N = 2|V | and for each v ∈ V choose a weight ω (v ) ∈ {1, . . . ,N } uniformly and
independently at random. For eachW ∈ {1, . . . ,kN }, let SW be the set of solutions of weightW .
Clearly, if there is no solution, then for every weight W we have SW = ∅. However, if there is a
solution, then by the Isolation Lemma, for someW ∈ {1, . . . ,kN }, with probability at least 1/2 (at

least 1 − |U |
N
= 1 − |V |

2 |V | = 1/2), we have |SW | = 1; in particular, we have that |SW | is odd. Hence,

we reduced the decision problem to the problem of counting the number of weight W solutions
modulo 2. A method to perform this counting efficiently is described in two parts: the Cut part
and the Count part.

The main goal of the Cut part is to define a set CW such that (1) |CW | ≡ |SW | (mod 2) and

(2) |CW | can be computed using 2O (tw(G )) |V |O (1) arithmetic operations. In the Count part we prove
that the set |CW | indeed has the desired properties.

From here on, we will simply write a ≡ b instead of a ≡ b (mod 2) for equivalence modulo two.
The Cut part. In the Cut part we always start with defining a set of candidate solutions which is
a superset of all solutions to the problem we are solving. Those candidate solutions are local, in
the sense that they are easy to control using standard dynamic programming techniques on tree
decompositions. In the Steiner Tree problem, we look for a set X of size k containing all the
terminals such that G[X ] is connected. The set of candidate solutions RW is obtained by relaxing
the connectivity constraint:

RW = {X ⊆ V : T ⊆ X ∧ ω (X ) =W ∧ |X | = k }.

In this easy application of the Cut&Count method, the only requirement that remains is that the
set of terminals is contained in the candidate solution, i.e, it need not be connected. Although the
cardinality of RW can be easily computed within the desired time bound, the parity of |RW | does
not need to match the parity of |SW |.

In order to describe the required set CW , we define a set of consistent cuts of induced subgraphs
of G. Recall, a cut of a graph G = (V ,E) is a partition of the set V into two sets (V1,V \V1).

Definition 3.1. A cut (V1,V2) of an undirected graphG = (V ,E) is consistent if u ∈ V1 and v ∈ V2

implies uv � E. A consistently cut subgraph of G is a pair (X , (X1,X2)) such that (X1,X2) is a
consistent cut of G[X ].

To break the symmetry, instead of considering all 2k cuts ofG[X ], we consider only 2k−1 of them
by selecting some vertex v1 (in most applications arbitrarily chosen) and assuring that v1 ∈ X1. In
the current Steiner Tree problem setting, let v1 be an arbitrary terminal from T (w.l.o.g. T � ∅).
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Define CW as

CW = {(X , (X1,X2)) : X ∈ RW ∧ (X1,X2) is a consistent cut of G[X ] ∧v1 ∈ X1}.

The Count part. The crucial part follows, which is to prove that in the set of candidate solu-
tions each solution of the problem is consistent with exactly one cut, whereas all other candidate
solutions are consistent with an even number of cuts.

Lemma 3.2. Let G = (V ,E) be a graph and let X be a subset of vertices such that v1 ∈ X ⊆ V . The

number of consistently cut subgraphs (X , (X1,X2)) such that v1 ∈ X1 is equal to 2cc(G[X ])−1.

Proof. By definition, we know for every consistently cut subgraph (X , (X1,X2)) and connected
component C of G[X ] that either C ⊆ X1 or C ⊆ X2. For the connected component containing v1,
the choice is fixed, and for all cc(G[X ])−1 other connected components we are free to choose a side

of a cut, which gives 2cc(G[X ])−1 possibilities leading to different consistently cut subgraphs. �

Now it is easy to see that instead of calculating |SW | mod 2 directly, we can calculate |CW | mod
2 instead.

Lemma 3.3. Let G,ω,CW , and SW be as defined above. Then for everyW , |SW | ≡ |CW |.

Proof. By Lemma 3.2, we know that |CW | =
∑

X ∈RW
2cc(G[X ])−1. Therefore, |CW | ≡ |{X ∈

RW |cc(G[X ]) = 1}| = |SW |. �

Now the only missing ingredient left is a sub-procedure CountC, which computes the cardinality
of CW modulo 2. It is a standard application of dynamic programming.

Lemma 3.4. GivenG = (V ,E),T ⊆ V , an integer k ,ω : V → {1, . . . ,N } and a nice tree decomposi-
tion T of width t , there exists an algorithm that can determine |CW | modulo 2 for every 0 ≤W ≤ kN
in 3tN 2 |V |O (1) time.

Proof. We use dynamic programming, but we first need some preliminary definitions. Recall
that for a bag x ∈ T we denoted by Vx the set of vertices in bags of all descendants of x , while by
Gx we denoted the graph composed of verticesVx and the edges Ex introduced by the descendants
of x . Let v1 ∈ T an arbitrary terminal from T . We now define “partial solutions”: for every bag
x ∈ T, for integers i = 0, . . . ,k , and w = 0, . . . ,kN and for every s ∈ {0, 11, 12}Bx , define

Rx (i,w ) = {X ⊆ Vx : (T ∩Vx ) ⊆ X ∧ |X | = i ∧ ω (X ) = w },
Cx (i,w ) = {(X , (X1,X2)) : X ∈ Rx (i,w ) ∧ (X , (X1,X2)) is a consistently

cut subgraph of Gx ∧ (v1 ∈ Vx ⇒ v1 ∈ X1)},
Ax (i,w, s ) = |{(X , (X1,X2)) ∈ Cx (i,w ) : (s (v ) = 1j ⇒ v ∈ X j )

∧ (s (v ) = 0⇒ v � X )}|.

The intuition behind these definitions is as follows: The set Rx (i,w ) contains all sets X ⊂ Vx that
could potentially be extended to a candidate solution from R = ⋃RW , subject to an additional
restriction that the cardinality and weight of the partial solution are equal to i andw , respectively.
Similarly, Cx (i,w ) contains consistently cut subgraphs, which could potentially be extended to
elements of C = ⋃CW , again with the cardinality and weight restrictions. The integer Ax (i,w, s )
counts those elements of Cx (i,w ) which additionally behave on vertices of Bx in a fashion pre-
scribed by the sequence s . 0, 11, and 12 (we refer to them as colours) describe the position of any

ACM Transactions on Algorithms, Vol. 18, No. 2, Article 17. Publication date: February 2022.



Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time 17:13

particular vertex with respect to a set X with a consistent cut (X1,X2) of G[X ]—the vertex can
either be outside X , in X1 or in X2. In particular, note that

∑

s ∈{0,11,12 }Bx

Ax (i,w, s ) = |Cx (i,w ) |

—the various choices of s describe all possible intersections of an element of C with Bx . Observe
that since we are interested in values |CW | modulo 2 it suffices to compute values Ar (k,W , ∅) for
allW (recall that r is the root of the tree decomposition), because |CW | = |Cr (k,W ) |.

We now give the recurrence for Ax (i,w, s ) which is used by the dynamic programming algo-
rithm. In order to simplify the notation, let v denote the vertex introduced and contained in an
introduce bag, and let y, z denote the left and right children of x in T, if present (if there is only
one child, we denote it by y).

— Leaf bag x :

Ax (0, 0, ∅) = 1.

All other values of Ax (i,w, s ) are zeroes.
— Introduce vertex v bag x : for i = 0, . . . ,k , for w = 0, . . . ,kN , for s ∈ {0, 11, 12}By

Ax (i,w, s[v → 0]) = [v � T ]Ay (i,w, s ),

Ax (i,w, s[v → 11]) = Ay (i − 1,w − ω (v ), s ),

Ax (i,w, s[v → 12]) = [v � v1]Ay (i − 1,w − ω (v ), s ).

where s[v → 0] is the sequence s with the element representingv replaced by 0, and [v � T ]
is Iverson’s bracket notation which equals 1 if v � T and 0 otherwise. For the first case
above note that by definition v can not be coloured 0 if it is a terminal. For the other cases,
the accumulators i ,w have to be updated and we have to make sure we do not put s (v1) = 12.

— Introduce edge uv bag x : for i = 0, . . . ,k , for w = 0, . . . ,kN , for s ∈ {0, 11, 12}Bx

Ax (i,w, s ) = [s (u) = 0 ∨ s (v ) = 0 ∨ s (u) = s (v )]Ay (i,w, s ).

Here, we filter table entries inconsistent with the edge (u,v ), i.e., table entries where the
endpoints are coloured 11 and 12.

— Forget vertex v bag x : for i = 0, . . . ,k , for w = 0, . . . ,kN , for s ∈ {0, 11, 12}Bx

Ax (i,w, s ) =
∑

α ∈{0,11,12 }
Ay (i,w, s[v → α]).

In the child bag, the vertex v can have three states so we sum over all of them.
— Join bag: for i = 0, . . . ,k , for w = 0, . . . ,kN , for s ∈ {0, 11, 12}Bx

Ax (i,w, s ) =
∑

i1+i2=i+ |s−1 ( {11,12 }) |

∑

w1+w2=w+ω (s−1 ( {11,12 }))
Ay (i1,w1, s )Az (i2,w2, s ).

The only valid combinations to achieve the colouring s is to have the same colouring in both
children. Since vertices coloured 1j in Bx are accounted for in the accumulated weights of
both of the children, we add their contribution to the accumulators.

It is easy to see that the Lemma can now be obtained by combining the above recurrence with

dynamic programming. The running time follows because there are 3tN |V |O (1) valuesAx (i,w, s ) to
compute, which can takeO (N |V |) time each in a join bag. Note that as we perform all calculations
modulo 2, we take only constant time to perform any arithmetic operation. �

We conclude this section with the following theorem.
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Theorem 3.5. There exists a Monte-Carlo algorithm that given a tree decomposition of width t
solves Steiner Tree in 3t |V |O (1) time. The algorithm cannot give false positives and may give false
negatives with probability at most 1/2.

Proof. Our algorithm is as follows. Set N = 2|V |, obtain a nice tree decomposition T, and
choose the weightsω : V → {1, . . . ,N } uniformly and independently at random. Using Lemma 3.4,

calculate |CW | modulo 2, for everyW = 0, . . . ,kN in 3t |V |O (1) time. If for someW we have |CW | ≡
1, then return yes. Otherwise return no.

To prove correctness use the Isolation Lemma (Lemma 2.5), where we substitute U with V and
F with S. We infer that if S � ∅, then with probability at least 1/2 there exists an index W , for
which |SW | = 1 and consequently by Lemma 3.3 we have |CW | ≡ 1. �

3.2 Directed Cycle Cover

Directed Min Cycle Cover
Input: A directed graph D = (V ,A), an integer k .
Question: Can the vertices of D be covered with at most k vertex disjoint directed cycles?

This problem is significantly different from the one considered in the previous section, since
the aim is to maximize connectivity in a more flexible way: in the previous section the solution
induced one connected component, while it may induce at most k weakly connected components
in the context of the current section. Note that with the Cut&Count technique as introduced above,
the solutions we are looking for cancel modulo 2.

We introduce a concept called markers. A set of solutions consists of pairs (X ,M ), where X ⊆ A
is a cycle cover and M ⊆ X , |M | = k is a set of marked arcs, such that each cycle in X contains at
least one marked arc. Since |M | = k , this ensures that for every solution (X ,M ) the cycle cover X
consists of at most k cycles. Note that distinguishing two different sets of marked arcs of a single
cycle cover is considered to induce two different solutions. For this reason, with each arc of the
graph we associate two random weights: the first contributes to the weight of a solution, when an
arc belongs to X , while the second contributes additionally, when it belongs to M as well. When
we relax the requirement that in the pair (X ,M ) each cycle in X contains at least one arc from
M , we obtain a set of candidate solutions. The objects we count are pairs consisting of (i ) a pair
(X ,M ), where X ⊆ A is a cycle cover and M ⊆ X is a set of k markers, (ii ) a cut consistent with
D[X ], where all the marked arcs from M have both endpoints on the left side of the cut. We will
see that candidate solutions that contain a cycle without any marked arc cancel modulo 2. Formal
definitions follow.

The Cut part. Let ·X·, ·M· be symbols. As said before, we assume that we are given a weight
function ω : A × {·X·} ∪A × {·M·} → {1, . . . ,N }. The arguments A × {·X·} correspond to the con-
tribution of choosing an arc to belong to X , while A× {·M·} correspond to additional contribution
of choosing it to M as well.

Definition 3.6. For a directed graphD = (V ,A) a cut (V1,V2) is consistent if (V1,V2) is a consistent
cut in the underlying undirected graph. A consistently cut subgraph of D is a pair (X , (V1,V2))
where X ⊆ A such that (V1,V2) is a consistent cut of the underlying undirected graph of D[X ].

Definition 3.7. For an integerW we define

(1) RW to be the family of candidate solutions, that is, RW is the family of all pairs (X ,M ), such
that X ⊆ A is a cycle cover, i.e., outdegD[X ] (v ) = indegD[X ] (v ) = 1 for every vertex v ∈ V ;

M ⊆ X , |M | = k and ω (X × {·X·} ∪M × {·M·}) =W ;
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(2) SW to be the family of solutions, that is, SW is the family of all pairs (X ,M ), where (X ,M ) ∈
RW and every cycle in X contains at least one arc from the set M ;

(3) CW as all pairs ((X ,M ), (V1,V2)) such that (X ,M ) ∈ RW , (V1,V2) is a consistent cut of D[X ]
and V (M ) ⊆ V1.

Observe that the graph D admits a cycle cover with at most k cycles if and only if there exists
W such that SW is nonempty.

The Count part. We proceed to the Count part by showing that candidate solutions that contain
an unmarked cycle cancel modulo 2.

Lemma 3.8. Let D,ω,CW , and SW be defined as above. Then, for everyW , |SW | ≡ |CW |.
Proof. For subsets M ⊆ X ⊆ A, let cc(M,X ) denote the number of weakly connected compo-

nents of D[X ] not containing any arc from M . Then,

|CW | =
∑

(X ,M )∈RW

2cc(M,X ) .

To see this, note that for any ((X ,M ), (V1,V2)) ∈ CW and any vertex set C of a cycle from X not
containing arcs from M , we have ((X ,M ), (V1�C,V2�C )) ∈ CW —we can move all the vertices
of C to the other side of the cut, also obtaining a consistent cut. Thus, for any set of choices
of a side of the cut for every cycle not containing a marker, there is an object in CW . Hence,

(analogously to Lemma 3.2) for anyW and (M,X ) ∈ RW , there are 2cc(M,X ) cuts (V1,V2) such that
((X ,M ), (V1,V2)) ∈ CW and the lemma follows, because

|CW | ≡ |{((X ,M ), (V1,V2)) ∈ CW : cc(M,X ) = 0}| = |SW |. �

Now, it suffices to present a dynamic programming routine counting |CW |modulo 2 in a bottom-
up fashion. This procedure is technical, because we optimize the base of the exponential function.
However, the ideas of the proof of the following lemma are not directly related to the Cut&Count
technique itself, we postpone the proof to Section 4.1, where we also show how to solve the
Longest Path problem in a similar manner.

Lemma 3.9. GivenD = (V ,A), an integerk , a weight functionω : A×{·X·}∪A×{·M·} → {1, . . . ,N }
and a tree decomposition T of width t , there is an algorithm that can determine |CW | modulo 2 for

every 0 ≤W ≤ (k + |V |)N in 6tN 2 |V |O (1) time.

Combining all the observations, we can conclude the following:

Theorem 3.10. There exists a Monte-Carlo algorithm that, given a tree decomposition of width t ,
solves Directed Min Cycle Cover in 6t |V |O (1) time. The algorithm cannot give false positives and
may give false negatives with probability at most 1/2.

Proof. The algorithm is as follows. Set U = A × {·X·} ∪ A × {·M·}, N = 2|U |, and choose
the weights ω : A ∪ V → {1, . . . ,N } uniformly and independently at random. Using Lemma 3.9

calculate |CW | modulo 2, for everyW = 0, . . . , (k + |V |)N in 6t |V |O (1) time. If for someW we have
|CW | ≡ 1, then return yes. Otherwise return no.

The correctness follows from Lemma 3.8 and Isolation Lemma (Lemma 2.5). �

3.3 General Idea Overview

The Cut&Count technique applies to problems with certain connectivity requirements. LetS ⊆ 2U

be a set of solutions (usually the universeU is the set of vertices or edges/arcs of the input graph);
we aim at deciding whether it is empty. Conceptually, Cut&Count can naturally be split in two
parts:
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— The Cut part: Relax the connectivity requirement by considering the set R ⊇ S of possibly
disconnected candidate solutions. Furthermore, consider the set C of pairs (X ,C ) where
X ∈ R and C is a consistent cut of X .

— The Count part: Compute |C| modulo 2 using a sub-procedure. Non-connected candidate
solutionsX ∈ R\S cancel since they are consistent with an even number of cuts. Connected
candidates x ∈ S remain.

Note that we need the number of solutions to be odd in order to make the counting part work.
For this we use the Isolation Lemma (Lemma 2.5): We introduce uniformly and independently
chosen weights ω (v ) for every v ∈ U and compute |CW | modulo 2 for every W , where CW =

{(X ,C ) ∈ C : ω (X ) =W }. If for someW we have |CW | ≡ 1, then return yes. Otherwise return no.
The general setup can thus be summarized as in Algorithm 1:

ALGORITHM 1: Cut&Count general schema.

1: for every v ∈ U do

2: Choose ω (v ) ∈ {1, . . . , 2|U |} uniformly at random.
3: for everyW ∈ {0, . . . , 2|U |2} do

4: if |{(X ,C ) ∈ C : ω (X ) =W }| ≡ 1 then return yes

5: return no

The following corollary that we use throughout the article follows from Lemma 2.5 by setting
F = S and N = 2|U |:

Corollary 3.11. Let S ⊆ 2U and C ⊆ 2U × (2V × 2V ). Suppose that for everyW ∈ Z:

|{(X ,C ) ∈ C : ω (X ) =W }| ≡ |{X ∈ S : ω (X ) =W }|.

Then, Algorithm 1 returns no if S is empty and yes with probability at least 1
2 otherwise.

When applying the technique, both the Cut and the Count part are non-trivial: In the Cut part,
one has to find the proper relaxation of the solution set, and in the Count part one has to show
that the number of non-solutions is even for each W and provide an algorithm which computes
|CW | mod 2. Usually, the count part requires more explanation.

4 CUT&COUNT APPLIED TO SEVERAL PROBLEMS

In this section, we give full details of dynamic programming routines on graphs of bounded
treewidth for several problems. First, in Section 4.1, we present the full desciption of Min Cycle
Cover (ommited in Section 3.2) and Longest Path. Next, in Section 4.2, we consider Feedback
Vertex Set, while in Section 4.3 the Connected Vertex Cover problem is studied.

While obtaining the 6t dependency in Section 4.1 is non-trivial, the content of Sections 4.2
and 4.3 is not very deep on its own. However, in Section 5, we use the algorithms from this section
for Feedback Vertex Set and Connected Vertex Cover to obtain the best known solution size
parametrizations for those problems, which is the reason why we give the details of the application
of Cut&Count here.

In all algorithms we assume that we are given a tree decomposition of the input graphG of width
t . The algorithms all start with constructing a nice tree decomposition, as in Definition 2.3. In the
dynamic programming descriptions, we follow the notation from the Steiner Tree example (see
Lemma 3.4). Moreover, we solve unweighted versions of all the problems; however, the algorithms
can be easily extended to the weighted case when weights are bounded by a polynomial in |V |.
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4.1 Longest Cycles, Paths, and Cycle Covers

In this section, we consider the following three problems, both in the directed and undirected
setting.

Directed Min Cycle Cover
Input: A directed graph D = (V ,A) and an integer k .
Question: Can the vertices of D be covered with at most k vertex disjoint directed cycles?

Directed Longest Cycle
Input: A directed graph D = (V ,A) and an integer k .
Question: Does there exist a directed simple cycle of length k in D?

Directed Longest Path
Input: A directed graph D = (V ,A) and an integer k .
Question: Does there exist a directed simple path of length k in D?

We capture all three problems in the following artificial one.

Directed Partial Cycle Cover
Input: A directed graph D = (V ,A) and integers k and �.
Question: Does there exist a family of at most k vertex disjoint directed cycles in D that cover
exactly � vertices?

Note that for k = 1 the above problem becomes Directed Longest Cycle, whereas for � = |V |
it becomes Directed Min Cycle Cover. The Directed Longest Path problem can be easily
reduced to Directed Longest Cycle: given a (Directed) Longest Path instance (D,k ), we add
one additional vertex v to D and connect all vertices d ∈ V to v by arcs in both directions (d,v )
and (v,d ). Moreover, given a tree decomposition T of D, a tree decomposition for the modified
graph can be easily constructed by adding v to every bag. This increases the width of the new
decomposition by one compared to the width of T.

We now show how to solve Directed Partial Cycle Cover using the Cut&Count technique, in

time 6t |V |O (1) . Observe that the undirected cases of all the problems considered in this subsection
can be reduced to the directed ones by bidirecting edges. Moreover, if we want to optimize the

constant in the undirected case, it is possible to design 4tw(G ) |V |O (1) time algorithms, as shown
in [24, 28].

Theorem 4.1. There exists a Monte-Carlo algorithm that given a tree decomposition of width t
solves Directed Partial Cycle Cover in 6t |V |O (1) time. The algorithm cannot give false positives
and may give false negatives with probability at most 1/2.

Proof. We use the Cut&Count technique. To count the number of cycles we use marked arcs.
The objects we count are subsets of arcs, together with sets of marked arcs, thus we take U =
A × {·X·, ·M·}. As usual, we assume we are given a weight function ω : U → {1, 2, . . . ,N }, where
N = 2|U | = 4|A|. We also assume k ≤ �.

The Cut part. For an integerW we define

(1) RW to be the family of pairs (X ,M ), where M ⊆ X ⊆ A, |X | = �, |M | = k , ω (X × {·X·} ∪M ×
{·M·}) =W , and each vertex v ∈ V (X ) has indegree and outdegree 1 in G[X ].

(2) SW to be the family of pairs (X ,M ) ∈ RW , such that each connected component of G[X ] is
either an isolated vertex or contains an arc from M .
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(3) CW to be the family of pairs ((X ,M ), (X1,X2)), where (X ,M ) ∈ RW and (X1,X2) is a consis-
tent cut of the graph (V (X ),X ) with V (M ) ⊆ X1.

Note that if |X | = � and each vertex in V (X ) has indegree and outdegree one, then |V (X ) | = �.
Thus, similarly as before we need to check if SW � ∅ for someW .

The Count part. Let ((X ,M ), (X1,X2)) ∈ CW be a set of arcs X with markers M and (X1,X2) a
consistent cut of (V (X ),X ). Let cc(X ,M ) denote the number of weakly2 connected components of
G[X ] that are not isolated vertices and do not contain an arc from M . IfC ⊆ X is the set of arcs of
such a weakly connected component of G[X ], then ((X ,M ), (X1�V (C ),X2�V (C ))) ∈ CW , i.e., the

weakly connected component C can be on either side of the cut (X1,X2). Thus, there are 2cc(M,X )

elements in CW that correspond to any pair (X ,M ) ∈ RW , and we infer that |SW | ≡ |CW |.
To finish the proof we need to describe a procedure CountC(ω,W ,T) that, given a nice tree

decomposition T, a weight function ω and an integerW , computes |CW | modulo 2.
As usual we use dynamic programming. We follow the notation from the Steiner Tree example

(see Lemma 3.4). Let Σ = {00, 011, 012, 101, 102, 11}. For every bag x ∈ T of the tree decomposition,
integers 0 ≤ i,b ≤ |V |, 0 ≤ w ≤ 2N |V | and s ∈ ΣBx (called the colouring) define

Rx (i,b,w ) = {(X ,M ) : M ⊆ X ⊆ Ex ∧ |M | = i ∧ |X | = b ∧ ω (X × {·X·} ∪M × {·M·}) = w
∧ (∀v ∈V (X )\Bx

indegG[X ] (v ) = outdegG[X ] (v ) = 1)

∧ (∀v ∈Bx
max{indegG[X ] (v ), outdegG[X ] (v )} ≤ 1)},

Cx (i,b,w ) = {((X ,M ), (X1,X2)) : (X ,M ) ∈ Rx (i,b,w ) ∧ V (M ) ⊆ X1

∧ (X1,X2) is a consistent cut of the graph (V (X ),X ), }
Ax (i,b,w, s ) = |{((X ,M ), (X1,X2)) ∈ Cx (i,b,w ) : (s (v ) = ioj ⇒ v ∈ X j )

∧ ((s (v ) = io ∨ s (v ) = ioj ) ⇒ (indegG[X ] (v ) = i ∧ outdegG[X ] (v ) = o))}|,
here io and ioj are the decompositions of the symbols from Σ = {00, 011, 012, 101, 102, 11} into
integer variables i, o, and j.

The value of s (v ) contains information about the indegree and outdegree ofv and, in case when
the degree of v is one, s (v ) also stores information about the side of the cut v belongs to. We note
that we do not need to store the side of the cut for v if its degree is 0 and 2, since it is not yet or
no more needed. The accumulators i , b, and w keep track of the size of M , the size of X and the
weight of (X ,M ), respectively.

The algorithm computesAx (i,b,w, s ) for all bags x ∈ T in a bottom-up fashion for all reasonable
values of i , b, w, and s . Before we present the routine computing the values Ax (i,b,w, s ), we first
recall a variant of fast subset convolution [11], as it is needed to handle join bags efficiently. We
follow notation from [11]. Let f ,д : 2B → R for some finite set B and ring R. In all our applications
the ring R is Z2, thus the ring operations take constant time.

Definition 4.2. The subset convolution of f and д is defined as a function f ∗ д : 2B → R as
follows:

( f ∗ д) (T ) =
∑

T1,T2⊆T

[T1 ∪T2 = T ][T1 ∩T2 = ∅]f (T1)д(T2).

By computing a function h : 2B → R, we mean determining h(T ) for every T ⊆ B. Björklund
et al. [11] proved that subset convolution can be computed efficiently. The following generalization
of the subset convolution can be found in [30, 79].

2We stress this for clarity: in G[X ] weakly connected components are always strongly connected components due to the

requirements imposed on X . That is, every vertex v ∈ V (X ) has indegree and outdegree 1 in G[X ].
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Definition 4.3. Letp ≥ 2 be an integer constant and let B be a finite set. For t1, t2, t ∈ {0, 1, . . . ,p−
1}B ,we say that t1+t2 = t iff t1 (b)+t2 (b) = t (b) for allb ∈ B. For functions f ,д : {0, 1, . . . ,p−1}B →
R define

( f ∗p д) (t ) =
∑

t1+t2=t

f (t1)д(t2).

Note that here the addition is not evaluated in ZB
p but in ZB , i.e., not modulo p.

Theorem 4.4 (Generalized Subset Convolution [30, 78, 79]). The generalized subset convo-

lution can be computed in p |B | |B |O (1) ring operations.

Note that in [30] only the case R = Z is considered. However, in our applications (R = Z2), we
can perform calculations in Z and at the end take all computed values modulo 2 within the claimed
time bound.

We now give the recurrence for Ax (i,b,w, s ) that is used by the dynamic programming algo-
rithm. In order to simplify notation, let v be the vertex introduced and contained in an introduce
bag, (u,v ) the arc introduced in an introduce edge (arc) bag, and y, z the left and right child of x
in T if present.

— Leaf bag:

Ax (0, 0, 0, ∅) = 1.

— Introduce vertex bag:

Ax (i,b,w, s[v → 00]) = Ay (i,b,w, s ).

The new vertex has indegree and outdegree 0.
— Introduce edge (arc) bag: For the sake of simplicity of the recurrence formula let us define

functions insubs, outsubs : Σ→ 2Σ.

α ∈ Σ 00 011 012 101 102 11

insubs(α ) ∅ ∅ ∅ {00} {00} {011, 012}
outsubs(α ) ∅ {00} {00} ∅ ∅ {101, 102}

Intuitively, for a given stateα ∈ Σ the values insubs(α ) and outsubs(α ) are the sets of possible
states a vertex can have before adding an incoming and respectively outgoing arc.
We can now write the recurrence for the introduce arc bag.

Ax (i,b,w, s ) =Ay (i,b,w, s ) +
∑

αu ∈outsubs(s (u ))

∑

αv ∈insubs(s (v ))

∑

j ∈{1,2}

[(αu = 10j ∨ s (u) = 01j ) ∧ (αv = 01j ∨ s (v ) = 10j )]

(Ay (i,b − 1,w − ω (((u,v ), ·X·)), s[u → αu ,v → αv ])

+ [j = 1]Ay (i − 1,b − 1,w − ω ((u,v ), ·X·) − ω ((u,v ), ·M·), s[u → αu ,v → αv ])).

To see that all cases are handled correctly, first notice that we can always choose not to use
the introduced arc. Observe that in order to add the arc (u,v ) by the definition of insubs and
outsubs we need to have αu ∈ outsubs(s (u)) and αv ∈ insubs(s (v )). We use the integer j to
iterate over two sides of the cut the arc (u,v ) can be contained in. Finally we check whether
j = 1 before we make (u,v ) a marker.

— Forget vertex v bag x :

Ax (i,b,w, s ) = Ay (i,b,w, s[v → 11]) +Ay (i,b,w, s[v → 00]).

The forgotten vertex must have degree 0 or 2.
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Fig. 1. The join table of Directed Partial Cycle Cover where it is indicated which states combine to which

other states.

— Join bag: We have two children y and z. Figure 1 shows how two individual states of a
vertex in y and z combine to a state of x . XX indicates that two states do not combine. The
correctness of the table is easy to check.

For colourings s1, s2, s ∈ ΣBx , we say that s1 + s2 = s if for each vertexv ∈ Bx the values of
s1 (v ) and s2 (v ) combine into s (v ) as in Figure 1. We can now write the recurrence formula
for join bags.

Ax (i,b,w, s ) =
∑

i1+i2=i

∑

b1+b2=b

∑

w1+w2=w

∑

s1+s2=s

Ay (i1,b1,w1, s1)Az (i2,b2,w2, s2).

A straightforward computation of the above formula leads to 36t |V |O (1) time complexity. We
now show how to use the Generalized Subset Convolution to obtain a better time bound.
Let ϕ, ρ : Σ→ {0, 1, 2, 3, 4, 5} where

ϕ (00) = 0 ϕ (011) = 1 ϕ (012) = 2 ϕ (102) = 3 ϕ (101) = 4 ϕ (11) = 5

ρ (00) = 0 ρ (011) = 1 ρ (012) = 1 ρ (102) = 1 ρ (101) = 1 ρ (11) = 2.

Let ϕ : ΣBx → {0, 1, 2, 3, 4, 5}Bx be obtained by extending ϕ in the natural way. Define
ρ : ΣBx → Z as ρ (s ) =

∑
e ∈Bx

ρ (e ). Hence, ρ reflects the total number of 1’s in a state s , i.e.,
the sum of all degrees of vertices in Bx . Then, define

f i,b,w
m (ϕ (s )) = [ρ (s ) =m]Ay (i,b,w, s ),

дi,b,w
m (ϕ (s )) = [ρ (s ) =m]Az (i,b,w, s ),

hi,b,w
m (ϕ (s )) =

∑

i1+i2=i

∑

b1+b2=b

∑

w1+w2=w

∑

m1+m2=m

(
f i1,b1,w1
m1

∗6 дi2,b2,w2
m2

)
(ϕ (s )).

We claim that

Ax (i,b,w, s ) = hi,b,w
ρ (s )

(ϕ (s )).

To see this, first notice that the values of accumulators are divided among the children, and
that no vertex or edge is accounted for twice by the definition of Ax . Hence, it suffices to
prove that exactly all combinations of table entries from Ay and Az that combine to state s
according to Table 1 contribute to Ax (i,b,w, s ). Notice that if α , β ∈ Σ, and γ = ϕ−1 (ϕ (α ) +

ϕ (β )), then ρ (γ ) ≤ ρ (α )+ρ (β ). This implies that the only pairs that contribute tohi,b,w
m (ϕ (s ))

are the pairs not leading to crosses in Table 1 since for the other pairs we have ρ (γ ) <
ρ (α ) + ρ (β ). Finally, notice that for every such pair, we have that γ is the correct state, and
hence correctness follows.

Finally we obtain that, by Theorem 4.4, the values Ax (i,b,w, s ) for a join bag x can be

computed in time 6t |V |O (1) .
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It is easy to see that the above recurrence leads to a dynamic programming algorithm that computes

the parity of |SW | for all values of W in 6t |V |O (1) time, since |CW | = Ar (k, �,W , ∅) and |SW | ≡
|CW |. Moreover, as we count the parities and not the numbers Ax themselves, all arithmetical
operations can be done in constant time. Thus, the proof of Theorem 4.1 is finished. �

4.2 Feedback Vertex Set

In this section, we show an algorithm for a more general version of the Feedback Vertex Set
problem, where we are additionally given a set of vertices that have to belong to the solution.

Constrained Feedback Vertex Set
Input: An undirected graph G = (V ,E), a subset S ⊆ V , and an integer k .
Question: Does there exist a setY ⊂ V of cardinality k such that S ⊆ Y andG[V \Y ] is a forest?

This constrained version of the problem is useful when we want to obtain not only binary output,
but also use self-reducibility to find the actual set of vertices—the solution Y . We take advantage
of this generalized problem definition in Section 5.1.

Here, defining a solution candidate with a relaxed connectivity condition to work with our
technique is somewhat more tricky, as there is no explicit connectivity requirement in the problem
to begin with. We proceed by choosing the (presumed) forest left after removing the candidate
solution and using the following simple lemma:

Lemma 4.5. A graph G = (V ,E) with n vertices and m edges is a forest iff it has at most n −m
connected components.

Proof. Let E = {e1, . . . , em }. Consider a graph G0 = (V , ∅) with the same set of vertices and an
empty set of edges. We add edges from the set E to the graph G0 one by one. Observe that G is a
forest iff after adding each edge from E to the graph G0 the number of connected components of
G0 decreases. Since initially G0 has n connected components the lemma follows. �

Theorem 4.6. There exists a Monte-Carlo algorithm that given a tree decomposition of width t
solves the Constrained Feedback Vertex Set problem in 3t |V |O (1) time. The algorithm cannot
give false positives and may give false negatives with probability at most 1/2.

Proof. We use the Cut&Count technique. As the universe we take the set U = V × {·F·, ·M·},
where V × {·F·} is used to assign weights to vertices from the chosen forest and V × {·M·} for
markers. As usual we assume that we are given a weight function ω : U → {1, . . . ,N }, where
N = 2|U | = 4|V |.

The Cut part. For integers A,B,C, andW we define

(1) RA,B,C
W

to be the family of solution candidates: marked subgraphs excluding S of size and

weight prescribed by super-/sub-scripts, i.e., RA,B,C
W

is the family of pairs (X ,M ), where
X ⊆ V \ S , |X | = A, G[X ] contains exactly B edges, M ⊆ X , |M | = C and ω (X × {·F·}) +
ω (M × {·M·}) =W ;

(2) SA,B,C
W

to be the set of solutions: the family of pairs (X ,M ), where (X ,M ) ∈ RA,B,C
W

andG[X ]
is a forest containing at least one marker from the set M in each connected component;

(3) CA,B,C
W

to be the family of pairs ((X ,M ), (X1,X2)), where (X ,M ) ∈ RA,B,C
W

, M ⊆ X1, and
(X1,X2) is a consistent cut of G[X ].

Observe that by Lemma 4.5, the graph G admits a feedback vertex set of size k containing S if and

only if there exist integers B,W such that the set Sn−k,B,n−k−B
W

is nonempty.
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The Count part. Similarly as in the case of Min Cycle Cover (analogously to Lemma 3.8)

note that for any A,B,C ,W ,(X ,M ) ∈ RA,B,C
W

, there are 2cc(M,G[X ]) cuts (X1,X2) such that

((X ,M ), (X1,X2)) ∈ CA,B,C
W

, where by cc(M,G[X ]), we denote the number of connected com-
ponents ofG[X ],which do not contain any marker from the set M . Hence, by Lemma 4.5 for every

A,B,C ,W satisfying C ≤ A − B we have |SA,B,C
W

| ≡ |CA,B,C
W

|.
Now we describe a procedure CountC(ω,A,B,C,W ,T) that, given a nice tree decomposition T,

weight function ω and integers A,B,C ,W , computes |CA,B,C
W

| modulo 2 using dynamic program-
ming.

For every bag x ∈ T of the tree decomposition, integers 0 ≤ a ≤ |V |, 0 ≤ b < |V |, 0 ≤ c, ≤ |V |,
0 ≤ w ≤ 2N |V | and s ∈ {0, 11, 12}Bx (called a colouring) define

Rx (a,b, c, ,w ) = {(X ,M ) : X ⊆ Vx \ S ∧ |X | = a ∧ |Ex ∩ E (G[X ]) | = b
∧ M ⊆ X \ Bx ∧ |M | = c, ∧ ω (X × {·F·}) + ω (M × {·M·}) = w },

Cx (a,b, c, ,w ) = {((X ,M ), (X1,X2)) : (X ,M ) ∈ Rx (a,b, c, ,w )

∧ M ⊆ X1 ∧ (X , (X1,X2)) is a consistently cut subgraph of Gx },
Ax (a,b, c, ,w, s ) = |{((X ,M ), (X1,X2)) ∈ Cx (a,b, c, ,w ) :

(s (v ) = 1j ⇒ v ∈ X j ) ∧ (s (v ) = 0⇒ v � X )}|.

Note that we assume b < |V | because otherwise an induced subgraph containing b edges is defi-
nitely not a forest.

Similarly as in the case of Steiner Tree, s (v ) = 0 means v � X , whereas s (v ) = 1j corresponds
to v ∈ X j . The accumulators a,b,c, and w keep track of the number of vertices and edges in the
subgraph induced by vertices from X , number of markers already used and the sum of weights
of chosen vertices and markers. Hence Ax (a,b, c, ,w, s ) is the number of pairs from Cx (a,b, c, ,w )
with a fixed interface on vertices from Bx . Note that we ensure that no vertex from Bx is yet
marked, because we decide whether to mark a vertex or not in its forget bag. Recall that the tree
decomposition is rooted in an empty bag; hence, for every vertex, there exists exactly one forget
bag forgetting it.

The algorithm computes Ax (a,b, c, ,w, s ) for all bags x ∈ T in a bottom-up fashion for all rea-
sonable values of a, b, c,,w, and s (defined above). We now give the recurrence forAx (a,b, c, ,w, s )
that is used by the dynamic programming algorithm. In order to simplify notation let v be the
vertex introduced and contained in an introduce bag, uv the edge introduced in an introduce edge
bag, and let y, z stand for the left and right child of x in T if present.

— Leaf bag:

Ax (0, 0, 0, 0, ∅) = 1.

— Introduce vertex bag:

Ax (a,b, c, ,w, s[v → 0]) = Ay (a,b, c, ,w, s ),

Ax (a,b, c, ,w, s[v → 1j ]) = [v � S]Ay (a − 1,b, c, ,w − ω ((v, ·F·)), s ).

— Introduce edge bag:

Ax (a,b, c, ,w, s ) = [s (u) = 0 ∨ s (v ) = 0 ∨ s (u) = s (v )]

· Ay (a,b − [s (u) = s (v ) � 0], c, ,w, s ).

Here, we remove table entries not consistent with the edge uv , and update the accumulator
b storing the number of edges in the induced subgraph.
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— Forget bag:

Ax (a,b, c, ,w, s ) = Ay (a,b, c,−1,w − ω ((v, ·M·)), s[v → 11]})

+
∑

α ∈{0,11,12 }
Ay (a,b, c, ,w, s[v → α]})).

If the vertex v was in X1, then we can mark it and update the accumulator c,. If we do not
mark the vertex v then it can have any of the three states with no additional requirements
imposed.

— Join bag:

Ax (a,b, c, ,w, s ) =
∑

a1+a2=a+ |s−1 ( {11,12 }) |

∑

b1+b2=b

∑

c,1+c,2=c,∑

w1+w2=w+ω (s−1 ( {11,12 })×{·F· })
Ay (a1,b1, c,1 ,w1, s )Az (a2,b2, c,2 ,w2, s ).

The only valid combinations to achieve the colouring s is to have the same colouring in both
children. Since vertices coloured 1j in Bx are accounted for in both tables of the children, we
add their contribution to the accumulators a and w .

Since |CA,B,C
W

| = Ar (A,B,C,W , ∅) the above recurrence leads to a dynamic programming algo-

rithm that computes the parity of |CA,B,C
W

| for all reasonable values ofW ,A,B,C in 3t |V |O (1) time.
Consequently we finish the proof of Theorem 4.6. �

4.3 Connected Vertex Cover

In this section, we show a 3t |V |O (1) time algorithm for Connected Vertex Cover. Similarly as
in Section 4.2, we solve a more general version of the problem where additionally as a part of the
input we are given a set S ⊆ V which contains vertices that must belong to a solution.

Constrained Connected Vertex Cover
Input: An undirected graph G = (V ,E), a subset S ⊆ V and an integer k
Question: Does there exist a subset X ⊆ V of cardinality k such that S ⊆ X ,G[X ] is connected
and each edge e ∈ E is incident with at least one vertex from X?

Remark 4.7. In the algorithms, we assume that the set S ⊆ V is non-empty, so we can choose one
fixed vertexv1 ∈ S that needs to be included in a fixed side of all considered cuts (cf. algorithm for
Steiner Tree in Section 3.1). To solve the problem where S = ∅, we simply take an edgeuv can call
the algorithm with S = {u} and S = {v}. Note that this does not increase the probability that the
(Monte-Carlo) algorithm gives a wrong answer. Our algorithms can only give false negatives, so in
the case of a YES answer in the first run, we do not need the second run to give a correct answer.

Theorem 4.8. There exists a Monte-Carlo algorithm that given a tree decomposition of width t
solves Constrained Connected Vertex Cover in 3t |V |O (1) time. The algorithm cannot give false
positives and may give false negatives with probability at most 1/2.

There exists an easy proof of Theorem 4.8 by a reduction to the Steiner Tree problem—
subdivide all edges of the graphG and consider the vertices from S and those created from the sub-
divisions as terminals. Such a transformation does not change the treewidth of the graph by more
than one. Nonetheless, we prove the theorem by a direct application of the Cut&Count technique,
in a similar manner as for the Steiner Tree problem in Section 3.1. Our motivation for choosing
the second approach is that we need it to develop an algorithm for Connected Vertex Cover
parameterized by the solution size in Section 5.2, which relies on the algorithm we describe here.
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Proof. We use the Cut&Count technique. As the universe for Algorithm 1, we take the vertex
set U = V . Recall that we generate a random weight function ω : U → {1, 2, . . . ,N }, taking
N = 2|U | = 2|V |. By Remark 4.7, we may assume that S � ∅ and we may choose one fixed vertex
v1 ∈ S .

The Cut part. For an integerW we define

(1) RW to be the family of solution candidates (vertex covers) of size k and weight W : RW is
the family of sets X ⊆ V such that S ⊆ X , |X | = k , ω (X ) =W and X is a vertex cover of G;

(2) SW to be the family of solutions of size k and weightW , that is sets X ∈ RW such thatG[X ]
is connected;

(3) CW to be the family of pairs (X , (X1,X2)), whereX ∈ RW ,v1 ∈ X1 and (X1,X2) is a consistent
cut of G[X ].

The Count part. By a similar argument as in Lemma 3.2 for each X ∈ RW there exist 2cc(G[X ])−1

consistent cuts of G[X ] where v1 ∈ X1, thus for anyW we have |SW | ≡ |CW |.
To finish the proof we need to describe a procedure CountC(ω,W ,T) that, given a nice tree

decomposition T, a weight function ω and an integerW , computes |CW | modulo 2.
For every bag x ∈ T of the tree decomposition, integers 0 ≤ i ≤ |V |, 0 ≤ w ≤ N |V | and

s ∈ {0, 11, 12}Bx define:

Rx (i,w ) = {X ⊆ Vx : (S ∩Vx ) ⊆ X ∧ |X | = i ∧ ω (X ) = w

∧ X is a vertex cover of Gx },
Cx (i,w ) = {(X , (X1,X2)) : X ∈ Rx (i,w ) ∧ (X , (X1,X2)) is a consistently

cut subgraph of Gx ∧ (v1 ∈ Vx ⇒ v1 ∈ X1)},
Ax (i,w, s ) = |{(X , (X1,X2)) ∈ Cx (i,w ) : (s (v ) = 1j ⇒ v ∈ X j ) ∧ (s (v ) = 0⇒ v � X )}|.

Similarly as in the case of Steiner Tree, s (v ) = 0 means v � X , whereas s (v ) = 1j corresponds to
v ∈ X j . The accumulators i and w keep track of the number of vertices in the solution and their
weights, respectively. Hence, Ax (i,w, s ) is the number of pairs from C of candidate solutions and
consistent cuts on Gx , with fixed size, weight, and interface on vertices from Bx .

The algorithm computes Ax (i,w, s ) for all bags x ∈ T in a bottom-up fashion for all reason-
able values of i , w, and s . We now give the recurrence for Ax (i,w, s ) that is used by the dynamic
programming algorithm. In order to simplify notation denote by v the vertex introduced and con-
tained in an introduce bag, by uv the edge introduced in an introduce edge bag, and let y, z be the
left and right child of x in T if present.

— Leaf bag:

Ax (0, 0, ∅) = 1.

— Introduce vertex bag:

Ax (i,w, s[v → 0]) = [v � S]Ay (i,w, s ),

Ax (i,w, s[v → 11]) = Ay (i − 1,w − ω (v ), s ),

Ax (i,w, s[v → 12]) = [v � v1]Ay (i − 1,w − ω (v ), s ).

We take care of the restrictions imposed by the conditions (S ∩Vx ) ⊆ X and v1 ∈ X1.
— Introduce edge bag:

Ax (i,w, s ) = [s (u) = s (v ) � 0 ∨ (s (u) = 0 ∧ s (v ) � 0) ∨ (s (u) � 0 ∧ s (v ) = 0)]Ay (i,w, s ).
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Here, we remove table entries not consistent with the edge uv , i.e., table entries where the
endpoints are colored 11 and 12 (thus creating an inconsistent cut) or 0 and 0 (thus leaving
an edge that is not covered).

— Forget bag:

Ax (i,w, s ) =
∑

α ∈{0,11,12 }
Ay (i,w, s[v → α]).

In the child bag, the vertex v can have three states, and no additional requirements are
imposed, so we sum over all the three states.

— Join bag:

Ax (i,w, s ) =
∑

i1+i2=i+ |s−1 ( {11,12 }) |

∑

w1+w2=w+ω (s−1 ( {11,12 }))
Ay (i1,w1, s )Az (i2,w2, s ).

The only valid combination to achieve the colouring s is to have the same colouring in both
children. Since vertices coloured 1j in Bx are accounted for in both tables of the children, we
add their contribution to the accumulators.

It is easy to see that the above recurrence leads to a dynamic programming algorithm that computes

the parity of |SW | for all values ofW in 3t |V |O (1) time, since |CW | = Ar (k,W , ∅) and |SW | ≡ |CW |.
Moreover, as we count the parities and not the numbersAx themselves, all arithmetical operations
can be done in constant time. Thus, the proof of Theorem 4.8 is finished. �

5 SOLUTION SIZE PARAMETERIZATION

In this section, we show how the Cut&Count technique may be used to obtain FPT algorithms
when parameterized by the solution size. We study vertex deletion problems in which the remain-
ing graph has to be of constant treewidth, i.e., Feedback Vertex Set and Connected Vertex
Cover, and improve the best known FPT algorithms for those problems. The main idea behind
the new results is the combination of the iterative compression technique, developed by Reed et al.
[71], and the Cut&Count technique.

5.1 Feedback Vertex Set

Theorem 5.1 (Theorem 1.4, Restated). There exists a Monte-Carlo algorithm, which solves the

Feedback Vertex Set problem for a graph with n vertices in 3knO (1) time and polynomial space.
The algorithm cannot give false positives and may give false negatives with probability at most 1/2.

Proof. Let v1,v2, . . . ,vn be an arbitrary ordering of the vertices of the given graph G = (V ,E).
Let us denote Gi = G[{v1,v2, . . . ,vi }] for all 1 ≤ i ≤ n. Observe that if G admits a feedback vertex
set of size at most k , i.e., there is a set A ⊆ V , |A| ≤ k such that G[V \A] is a forest, then so do all
the graphsGi , becauseGi [{v1,v2, . . . ,vi } \A] is a forest as well and |A∩{v1,v2, . . . ,vi }| ≤ |A| ≤ k .

We construct feedback vertex sets A1,A2, . . . ,An of size at most k consecutively in the graphs
G1,G2, . . . ,Gn = G. If at any step the algorithm finds out that the set we seek does not exist (with
high probability), we answer NO. We begin with A1 = ∅, which is a feasible solution in the graph
G1. The idea of iterative compression is that when we are to construct the set Ai+1, we can use the
previously constructed set Ai . Let Bi+1 = Ai ∪ {vi+1}. Observe that Bi+1 is a feedback vertex set
in Gi+1. If |Bi+1 | ≤ k , then we take Ai+1 = Bi+1. Thus, we are left with the case in which, given
a feedback vertex set, call it B, of size k + 1, we need to construct a feedback vertex set of size at
most k or determine that none such exists.

As B is a feedback vertex set, the graph induced by the rest of the vertices is a forest. Thus,
we can construct a tree decomposition of the graph Gi+1 of width at most k + 2 by creating a tree
decomposition of the forest of width 1 and adding the whole set B to each bag. We apply (using the
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tree decomposition obtained above as the input) the dynamic programming algorithm described in

Section 4.2, running in 3knO (1) time, which tests whether the graphGi+1 admits a feedback vertex
set of size at most k . Observe that this algorithm, as described in the proof of Theorem 4.6, uses
exponential space. However, in each step when computing Ax (a,b, c,w, s ) the algorithm refers
only to values Ay (a′,b ′, c ′,w ′, s ′), where s ′ = s on the intersection of the domains of s and s ′. In
our case the intersection of every two bags of the tree decomposition contains B. Therefore, we
can reorder the computation in the following manner: for every evaluation s : B → {0, 11, 12}, we
fix it as the “core” evaluation for every bag in the decomposition and run the algorithm to compute
all the values Ax (a,b, c,w, s ), where s |B = s . Such a computation takes polynomial time and space.

As there are 3k+1 such possible evaluations s , the algorithm runs in 3knO (1) time and in polynomial
space. We make n independent runs of the algorithm in order to assure that the probability of a
false negative is at most 1

2n .
Once, we have done this, we already tested with high probability whether the desired feedback

vertex set exists or not. If the answer is negative, we answer NO. Otherwise we need to explicitly
construct the set Ai+1 in order to use it in the next step of the iterative compression. We make use
of the algorithm for Constrained Feedback Vertex Set, given by Theorem 4.6. The algorithm
considers the vertices of Gi+1 one by one, building a set K which at the end will be the set Ai+1

we want to construct. We begin with K = ∅ and preserve an invariant that at each step there is
a feedback vertex set of size at most k containing the set K . When considering the vertex v , we

test in 3knO (1) time whether the graph admits a constrained feedback vertex set of size at most k
with S = K ∪ {v}, making n independent runs of the algorithm given by Theorem 4.6 in order to
reduce the probability of a false negative to at most 1

2n . If the answer is positive, we can safely add
v to K as we know that there is a feedback vertex set of size at most k containing K ∪ {v} (recall
our algorithms do not return false positives). Otherwise we simply proceed to the next vertex. The
computation terminates when K is already a feedback vertex set or when we have exhausted all
vertices. Observe that if Gi+1 admits a feedback vertex set of size at most k , this construction will
terminate building a feedback vertex set Ai+1 of size at most k unless there was an error in at
least one of the tests. If we exhaust all vertices, we answer NO, as an error has occurred. Note
that in each run of the algorithm for Constrained Feedback Vertex Set, we can reorder the
computation in the same way as in the previous paragraph to reduce space usage to polynomial.

Observe that the described algorithm at most n2 + n times makes n independent runs of the
algorithm from Theorem 4.6 as a subroutine: at most n + 1 times in each of the n steps of the
iterative compression. Each of these groups of runs has the probability of a false negative bounded

by 1
2n , thus the probability of a false negative is bounded by n2+n

2n , which is lower than 1
2 for n

large enough. �

5.2 Connected Vertex Cover

Now we proceed to the algorithm for Connected Vertex Cover. The previously best FPT algo-

rithm is due to Binkele-Raible [8], and runs in 2.4882knO (1) time complexity. As in Section 5.1 our
algorithm uses iterative compression; however, we make use of the connectivity requirement in

order to reduce the complexity from 3knO (1) down to 2knO (1) .

Theorem 5.2. There exists a Monte-Carlo algorithm which solves the Connected Vertex Cover

problem for a graph with n vertices in 2knO (1) time and polynomial space. The algorithm cannot give
false positives and may give false negatives with probability at most 1/2.

Proof. Firstly observe that the Connected Vertex Cover problem is contraction–closed. This
means that if a graphH admits a connected vertex coverA of size at most k , thenH ′ obtained from
H by contracting an edge of H (and reducing possible multi-edges to simple edges) also admits a
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connected vertex cover A′ of size at most k . Indeed, the contracted edge uv needs to be covered
by A, so u ∈ A or v ∈ A. Thus, we can construct A′ by removing u and v from A and adding the
vertex obtained from the contracted edge. It can be easily seen that A′ is a connected vertex cover
of H ′ of size at most k .

Moreover, without loss of generality, we can assume that the given graphG is connected. There-
fore, we can consider a sequence of graphsG1,G2, . . . ,Gn = G, whereGi is obtained fromGi+1 by
contracting any edge and reducing possible multi-edges to simple edges, and G1 is a graph com-
posed of a single vertex. The argument from the previous paragraph ensures that we can proceed
as in the proof of Theorem 5.1, namely, construct connected vertex covers for G1,G2, . . . ,Gn con-
secutively, and the only thing we have to show is how to construct a connected vertex cover of
size k in Gi+1 given a connected vertex cover Ai of size k in Gi , or determine that none exists.

LetGi be the graph constructed fromGi+1 by contracting an edge uv . We construct a set B from
Ai by removing the vertex obtained in the contraction (if it was contained in Ai ) and inserting
both u and v . Observe that B is of size at most k + 2 and it is a connected vertex cover of Gi+1. As
V (Gi+1) \B is an independent set, we can construct a path decomposition ofGi+1 of width at most
k + 2: for every vertex from V (Gi+1) \ B, we introduce a bag, connect the bags in any order, and
then add the set B to every bag.

Now we are going to test whether Gi+1 admits a connected vertex cover of size at most k . We
could apply the algorithm from Theorem 4.8. As in the proof of Theorem 5.1, also this dynamic
programming algorithm during the computation of Ax (i,w, s ) refers only to values Ay (i ′,w ′, s ′)
for s ′ such that s = s ′ on the intersection of domains of s and s ′. Therefore, similarly as before,
we would iterate through all possible evaluations s : B → {0, 11, 12}, each time computing all the
values Ax (i,w, s ) such that s |B = s in polynomial time, thus using only polynomial space in the

whole algorithm. Unfortunately, the algorithm given by Theorem 4.8 runs in 3knO (1) time.
We can, however, reduce the complexity by bounding the number of reasonable evaluations

s : B → {0, 11, 12} by 3 · 2k+1. Since B is a connected vertex cover in Gi+1, it induces a graph
consisting of a single large connected component. Take any spanning tree of the single, large
component in Gi+1[B] and root it at some vertex r . We present the evaluation s in the following
manner. For the root r , we choose any value from {0, 11, 12} for s giving 3 choices in total. Now
consider the rest of the tree (containing all the remaining vertices from B) in a top–down manner.
Observe that every vertex v from the tree has only two possible evaluations, depending on the
evaluation of its parent u:

— if s (u) = 0, the two possible options are 11, 12, as otherwise the edge connecting v with its
parent would not be covered;

— if s (u) = 1j , the two possible options are 0 and 1j , as otherwise the evaluation s would not
describe any consistent cut.

Thus, each of k + 2 elements of B has only two options, except for r , which has 3 options. This
means we only need to consider 3 · 2k+1 possible “core” evaluations s , which yields an algorithm

with running time 2knO (1) , using polynomial space. As previously, we make n independent runs
of the algorithm in order to reduce the probability of a false negative to at most 1

2n .
Once, we have tested whetherGi+1 admits a connected vertex cover of size at mostk , we can con-

struct it explicitly similarly as in the proof of Theorem 5.1 using the algorithm for Constrained
Connected Vertex Cover. We consider vertices one by one, each time determining whether
the vertex can be inserted into the connected vertex cover we are constructing by running the

algorithm from Theorem 4.8 n times. Observe that all these runs can be done in 2knO (1) time and
polynomial space complexity using the same technique as in the testing. Thus, we succeed in
constructing Ai+1 unless at least one of the tests returns a false negative.
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The algorithm makes at mostn2+n groups ofn independent runs of algorithm from Theorem 4.8.

Therefore, the probability of a false negative is bounded by n2+n
2n , which is less than 1

2 for n large
enough. �

We would like to note that after the extended abstract of this article was published, Cygan [25]

has obtained a deterministic 2knO (1) time algorithm for Connected Vertex Cover. Moreover,
Cygan et al. [26] have shown that unless the Strong Exponential Time Hypothesis fails there does

not exist an algorithm with (2 − ε )knO (1) running time, which computes the parity of the number
of connected vertex covers of size k in a given graph. Moreover, improving over the 2k dependency
for the decision variant of Connected Vertex Cover would lead to a refutation of the Set Cover
Conjecture [26]. To the best of our knowledge this is the first example of a problem parameterized
by the solution size where there exists some evidence showing that the best known dependency
f (k ) might be optimal.

6 OPEN PROBLEMS

As we have already mentioned in Section 1.4, since the extended version of this article was pub-
lished the research on algorithms for connectivity problems on bounded treewidth graphs has
been very active. Still, however, there are unresolved questions, which we believe are worth
investigating.

Perhaps the most natural question to ask is whether the base of the exponential function given
by the Cut&Count technique, which is optimal for several problems under the Strong Exponential
Time Hypothesis (see Table 1), can be obtained by a deterministic algorithm. Secondly, despite we
know that weighted [15, 43] and (some) counting problem variants [15] can be solved in single-
exponential time, we do not know whether the same complexity can be obtained as for the regular
versions of these problems. It would be very interesting to see a separation between the best pos-
sible dependency on treewidth (or pathwidth) between a weighted problem variant and its regular
unweighted counterpart.

Finally, for the concrete problem of Hamiltonicity, we do not have matching upper and lower
bounds for the case of bounded treewidth. For graphs of bounded pathwidth, we know that a

(2+
√

2)pw(G ) |V (G ) |O (1) time algorithm exists [27] and there is matching (2+
√

2−ϵ )pw(G ) |V (G ) |O (1)

lower bound under the Strong Exponential Time Hypothesis [27]. For the more general case of

bounded treewidth graphs this article gives a 4twG |V (G ) |O (1) time algorithm, so there is a gap

between 2 +
√

2 and 4 in the base of the exponential function.
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