
1. Introduction
Glycerol dialkyl glycerol tetraethers are membrane-spanning lipids found in sediments and soils around the 
world. There are two main types of these molecules, branched and isoprenoid. Branched glycerol dialkyl glycerol 
tetraethers (brGDGTs) are characterized by their branched alkyl chains, with a differing number (4–6) and posi-
tion (5-methyl or 6-methyl) of methyl groups and cyclopentane moieties (0–2). This unique structure defies the 
classical evolutionary dichotomy of the lipid divide by combining traits of Bacteria and Archeal cell membranes 
(Weijers et al., 2006). Based on evidence including the presence of alkyl chains, the stereochemistry of the glyc-
erol group (Weijers et al., 2006), and most importantly, microbial culture studies (Y. Chen et al., 2022; Halamka 
et al., 2022, 2021; Sinninghe Damsté et al., 2011), brGDGTs have a bacterial source.

In contrast, isoprenoid glycerol dibiphytanyl glycerol tetraether GDGTs (isoGDGTs) are produced by Archaea (de 
Rosa et al., 1977; Sinninghe Damsté et al., 2002). Their structures contain two phytane chains (Langworthy, 1977) 
and vary in the number of cyclopentane moieties (0–8) (De Rosa et al., 1983). Crenarchaeol is a member of this 
group of particular importance as it has been shown to be specifically produced by Thaumarchaeota (Sinninghe 
Damsté et al., 2002). Crenarchaeol contains four cyclopentane rings, one cyclohexane ring, and has one identified 
stereoisomer known as crenarchaeol′ (Sinninghe Damsté et al., 2002, 2018).

Both isoprenoid and brGDGTs are used in paleoclimate studies as their distribution is correlated with variables 
such as temperature and pH, and these molecules are relatively stable through the geological record. In marine 
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sediments, the degree of cyclization of isoGDGTs is related to overlying water temperature, forming the basis 
of the TetraEther indeX of 86 carbons (TEX86) proxy (Schouten et al., 2002, 2013). Similarly, the methylation, 
cyclization, and isomerization of brGDGTs have been shown to respond to temperature and pH in terrestrial 
environments, such as peats, soils, lakes, and rivers (Dang et  al.,  2018; De Jonge, Stadnitskaia, et  al.,  2014; 
Martínez-Sosa et  al.,  2020; Raberg et  al.,  2022; Tierney et  al.,  2010; Weijers et  al.,  2007). The Methylation 
index of Branched Tetraethers 𝐴𝐴

(

𝑀𝑀𝑀𝑀𝑀𝑀
′

5𝑀𝑀𝑀𝑀

)

 proxy isolates the relationship between the methylation of brGDGTs 
and temperature (De Jonge, Hopmans, et al., 2014; Weijers et al., 2007) and has been widely used for terrestrial 
paleoclimate reconstructions (De Jonge, Hopmans, et al., 2014; Lauretano et al., 2021; Naafs et al., 2018; Zhao 
et al., 2022; Zheng et al., 2017).

Across environments, GDGT distributions broadly reflect the microbial community present. This is, for example, the 
basis of the Methane Index, which measures the contribution of methanotrophic archaea relative to marine Thaumar-
chaeota in the sedimentary isoGDGT pool (Zhang et al., 2011). Likewise, the distribution of isoGDGTs in marine 
systems reflects not only sea-surface temperature (captured by the TEX86 index), but also the water depth (and poten-
tially, different archeal communities) from which the isoGDGTs derive (Rattanasriampaipong et al., 2022; Taylor 
et al., 2013). Furthermore, previous work has found that the ratio of crenarchaeol/crenarchaeol′ can indicate which 
Thaumarchaeota group (Figures I1a or I1b in Supporting Information S1) is responsible for the production of these 
lipids in lake sediments (Li et al., 2016). In terrestrial settings, De Jonge et al. (2019) proposed the Community Index 
for brGDGTs, which is based on the inference that brGDGTs are produced by different communities of bacteria, each 
with a unique response to soil temperature. The combined use of some of the GDGTs, through the Branched and 
Isoprenoid Tetraether (BIT) index, is used to broadly discriminate between marine and terrestrial environments based 
on the dominance of brGDGT-producing bacteria in most terrestrial settings and crenarchaeol-producing Thaumar-
chaeota in marine settings (Hopmans et al., 2004). However, BIT values in soils, lakes, and peats all tend to be high, 
which limits the ability of this index to reliably distinguish between these different types of terrestrial settings.

Building on these observations, we posit that the full range of archeal and bacterial GDGTs (isoprenoidal and 
branched) contains information about their biological precursors and the overall composition of the microbial 
community. This information, based on ecological interactions rather than a physiological response, can in turn 
be used to discriminate between sediments deposited in terrestrial or marine environments, as well as whether 
terrestrial sediments are derived from freshwater, soil, or peatland environments. This would provide an additional 
tool for the identification of ancient depositional conditions in instances when it is not clear what the environ-
ment was, and therefore could inform the reconstruction of environmental variables, that is, which GDGT-based 
temperature proxy and calibration is most appropriate to use. Machine learning provides a way to model highly 
dimensional and nonlinear data with complex interactions and missing values (El Bouchefry & de Souza, 2020). 
In this case it allows us to investigate drivers of the abundance of 19 GDGT structures (high dimensionality) 
which have a complex and non-linear relationship to the environment, making this an ideal approach to extract 
the environmental information present in the distribution of GDGTs.

Machine learning has previously been used in the Geosciences to discriminate between magma (Ueki 
et al., 2018) as well as identifying the source of water from oil wells (Engle & Brunner, 2019). In the field of 
biomarker-based paleoclimatology, classification algorithms have been applied to identify sources of alkenones 
(Zheng et al., 2019), as well as plant waxes (Peaple et al., 2021). Machine learning regression algorithms, as 
well, as deep neural network applications, have also been applied to GDGTs as in order to generate temperature 
calibrations (Dunkley Jones et al., 2020; Véquaud et al., 2022; Zheng et al., 2022). Here, we use a compilation 
of GDGT distributions in 1,153 globally distributed soils, peats, and sediments from diverse depositional envi-
ronments to train a classification algorithm which is capable of identifying the environment in which a sample 
was formed based on the distribution of both branched and isoGDGTs. We then demonstrate the application of 
this algorithm by using it to interpret the paleoenvironment and the paleotemperature in a Paleogene deposit that 
records a transition from a lacustrine to a peatland environment. We also highlight the limitations of this approach 
in an application to a peatland data set that spans the onset of the Paleocene-Eocene Thermal Maximum (PETM).

2. Materials and Methods
2.1. Global Data Set

We compiled a total of 1,153 globally distributed (Figure 1 and Table SI1 in Supporting Information S1) samples 
from different depositional environments: marine, lake, peat, river, and soil. These samples all have quantified 
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relative abundances for the full suite of the most commonly used isoGDGTs (GDGT-0, GDGT-1, GDGT-2, 
GDGT-3, crenarchaeol, and crenarchaeol′) and brGDGTs (IIIa, IIIa′, IIIb, IIIb′, IIa, IIa′, IIb, IIb′, IIc, IIc′, Ia, Ib, 
and Ic) in paleoenvironmental reconstructions, and were all analyzed with the updated High Performance Liquid 
Chromatography-Mass Spectrometry (HPLC-MS) method of Hopmans et al. (2016). From the 1,153 samples, 
475 are peat (Naafs et al., 2018), 215 are marine sediments (this study), 196 are soil (Dearing Crampton-Flood 
et al., 2020; Guo et al., 2020a, 2020b; Guo, Ma, et al., 2022; Pérez-Angel et al., 2020a, 2020b), 162 are lake sedi-
ments (Guo et al., 2020a, 2020b; Martínez-Sosa et al., 2021), and 105 are riverbed sediments (Kirkels, Usman, 
& Peterse,  2022). For the Colombian and Inner Mongolia soil samples (Guo, Ma, et  al.,  2022; Pérez-Angel 
et al., 2020a, 2020b) we include here newly reported isoGDGT values not part of the original data set.

All marine sediments were processed at the University of Arizona following the method used in Martínez-Sosa 
et al. (2021). Briefly, sediments were freeze-dried, homogenized, and spiked with a C46 internal standard before 
being extracted with an Accelerated Solvent Extraction system (run at 1,500 psi, 100°C, with dichlorometh-
ane:methanol (DCM: MeOH, 9:1)). Total Lipid Extracts (TLEs) were eluted through a deactivated SiO2 column 
with hexane:ethyl acetate (1:2) to obtain the polar fraction, and the elutant was dried under a N2 stream. Polar 
fractions were redissolved in hexane:isopropanol (99:1), and then passed through a 0.45 μm PTFE filter prior 
to being analyzed by HPLC-MS. GDGTs, isoprenoid and branched, were analyzed on an Agilent 1,260 Infinity 
HPLC coupled to an Agilent 6120 single quadrupole mass spectrometer using two BEH HILIC silica columns 
(2.1 × 150 mm, 1.7 μm; Waters) following the methodology of Hopmans et al. (2016). We calculated peak areas 
using the MATLAB package ORIGAmI (Fleming & Tierney, 2016) and quantified brGDGTs by comparing the 
obtained peaks with the internal standard (Huguet et al., 2006).

For all samples in this data set we calculated the relative abundance of all brGDGTs (except IIIc and IIIc′, due to 
their general low abundance), as well as isoGDGTs 0–3, crenarchaeol, and its isomer. For all the analyses we used 
the fractional abundance (FA) of each compound relative to the total sum of GDGTs (branched + isoprenoid), to 
account for the difference in the relative abundances of both GDGT types among the depositional environments. 
Although it is known that the ionization of isoGDGTs and brGDGTs in the MS might be different between labo-
ratories (Schouten et al., 2013), the potential impact of this is minimized in our statistical approach because the 
data are normalized before applying the machine learning techniques (see Section 2.2).

Figure 1. World map showing the distribution of the samples included in this work. Color code reflects the depositional environment which these samples were 
collected from. Red asterisk shows the modern location of the Giraffe pipe.
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We collected the environmental parameters associated with the samples using the data available in the source 
data sets (Table S1 in Supporting Information S1). For the marine sediments analyzed for this study, we obtained 
mean annual temperature of the top 200 m of the water column from the World Ocean Atlas 2018 (Locarnini 
et al., 2018).

2.2. Unsupervised Machine Learning

For the unsupervised machine learning analysis we centered and scaled the fractional abundances of GDGTs 
across the whole data set. The optimal number of clusters for this data set was calculated through a silhouette 
analysis, which calculates how similar a data point is within-cluster compared to other clusters. This analysis was 
performed by using the Partitioning Around Medoids method from the cluster R package (Maechler et al., 2019).

Samples were separated into clusters by applying the fuzzy version of the k-means clustering algorithm using the 
e1071 R package (Meyer et al., 2020). This method calculates the degree to which each sample belongs to each 
of the clusters (membership value) instead of assigning a single classification; we consider this a useful tool to 
classify depositional environments, which have diffuse boundaries. The fuzzy k-means analysis was performed 
using the best performing number of clusters from the silhouette analysis, with all other parameters of the func-
tion at default values.

Following the cluster analysis, we compared the cluster assignment of each sample to the available informa-
tion on their environmental data and depositional environment. Combining both the statistical results and the 
observation-based information we assigned one of four new labels to each of the samples.

2.3. Supervised Machine Learning

For the supervised machine learning we worked in the tidymodels and tidyverse R environments (Kuhn & 
Wickham, 2020; Wickham et al., 2019), where we used the fractional abundances of GDGTs as predictor varia-
bles and the statistical and observation based labels as the response variable. The data set was split into a training 
and testing set in a 3:1 ratio. To avoid subsampling the data set in a biased manner, we preserved the distribution 
of sample types in both sets. We tested the performance of four different algorithms commonly used for classi-
fication applications: Random Forest, eXtreme Gradient Boosting (XGBoost), K-Nearest Neighbor and Naive 
Bayes plus a control non-informative (null) model. Below we present a brief overview of each of them.

Random Forest is an ensemble classification algorithm, where classification of a sample is based on the voting 
results of an ensemble of independent decision trees. Importantly, each tree is presented with a randomly selected 
subset of samples and predictor variables, ensuring that the trees generate independent results. This enables the 
result from the voting to account for biases present in each individual decision tree. Random Forest algorithms 
are considered reliable and fast (Parmar et al., 2019).

XGBoost is a gradient tree boosting algorithm. In this case, similar to Random Forest, the algorithm uses a series 
of trees to classify samples. However, XGBoost iteratively improves the performance of this process by improv-
ing on the results of each previous iteration. This algorithm is particularly good for biased data and has been a 
preferred algorithm for diverse applications due to its scalability (T. Chen & Guestrin, 2016).

Naive Bayes is a statistical algorithm, in which Bayes Theorem is applied to calculate the posterior probability of 
a new sample belonging to each possible categorical classification. The algorithm determines the classification 
by choosing that with the highest probability. Although this is a fast classification algorithm it is a relatively bad 
estimator (Sen et al., 2020).

K-nearest neighbor is another statistics-based method, where samples are classified as the voting result of their k 
closest neighbors. Neighbors are given priority based on their closeness to the new data. While this is an effective 
algorithm for large data sets, it can be computationally expensive as all the distances from the neighbors need to 
be calculated for all new data (Sen et al., 2020).

For all algorithms the hyperparameter values—parameters whose values control the learning process but are not 
part of the final model (i.e., number of independent trees used for a Random Forest)—were selected (tuned) as 
those with the best performance from a distribution of possible combination of values for each hyperparameter. 
Due to the required computing power for the hyperparameter tuning step, this was run using a High-Performance 
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Computing cluster. Finally, the best hyperparameter values were selected by comparing their Receiver Operating 
Characteristic Area Under the Curve (ROC-AUC) score on the validation set (Table S1 in Supporting Informa-
tion S1). ROC-AUC is a metric that measures the tradeoff between the true positive rate and false positive rate 
of the model, for this parameter higher values on the (0,1) range are desirable. An additional metric, F1, was 
applied to evaluate the performance of all the trained algorithms. F1 is calculated as the mean of the precision 
and recall—the ability to identify true positives—of the model. For reproducibility, a detailed script with the 
packages and parameter values used for this process is available on GitHub (Martínez-Sosa et al., 2023). Finally 
we can identify which GDGTs contribute the most to the classification process through the importance metric. 
This value is calculated based on how much each GDGT contributes to decreasing the probability of incorrectly 
classifying a sample across all decision trees (Gini importance) (Greenwell et al., 2020; Wright et al., 2019). This 
metric shows how often a GDGT was selected to split the data and what was its discriminative power (Menze 
et al., 2009), larger values indicate a better variable to separate the data.

For this work, all analyses were performed in R (v. 4.1.3) (R Core Team, 2022). Additional dimensionality reduc-
tion analyses were done over the fractional abundances of all GDGTs using Principal Component Analysis (PCA) 
through the princomp() function from base R. For the PCA analyses the loadings of variables were visually 
inspected and corroborated by obtaining the eigenvector values. Correlation between environmental parameters 
for each sample and their scores on the principal components was performed by applying the cor.test () function 
from the psych R package using a Spearman correlation (Revelle & Revelle, 2015).

2.4. Giraffe Kimberlite Pipe

We analyzed GDGTs from 83 samples from diamond exploration drill core BHP 99-01 from the Giraffe kimber-
lite pipe (paleolatitude ∼63°N) (Wolfe et al., 2017). This core is stored at the Geological Survey of Canada core 
repository (Calgary), and it contains ≥50 vertical-equivalent meters of lacustrine sediment topped with ∼32 m 
of peat. The sediments were dated to 37.84 ± 1.99 Ma by glass fission-track dated rhyolitic tephra beds (Wolfe 
et al., 2017). Our data set spans 83.5 vertical-equivalent meters and includes 19 samples from the peat section and 
64 from the lacustrine section. For each sample, between 0.5 and 1 g of sediment was processed to obtain TLEs 
in the same manner as for the marine samples. For these samples, the GDGTs were isolated using a two-layer 
chromatography column filled with a 1:1 mix of LC-NH2 (bottom layer) and 5% deactivated silica (top layer) gels 
as the solid phase (Windler et al., 2019). The GDGTs were recovered using dichloromethane:isopropanol (2:1) as 
the solvent. Branched and isoGDGTs were analyzed in all samples using the same HPLC-MS method described 
for the marine samples in Section 2.1.

2.5. Cobham Lignite Bed

The Cobham lignite bed, Kent, UK (∼48°N paleolatitude) is composed of a sand and mud unit at the base, 
overlain, in succession, by a charcoal-rich lower laminated lignite (LL), a charcoal-poor upper LL, a middle clay 
layer, and a charcoal-poor blocky lignite (BL). The Woolwich Shell Beds overly the Cobham Lignite (Collinson 
et al., 2009). A carbon isotope excursion is present near the top of the charcoal-poor upper LL, which is inter-
preted as being the characteristic excursion from the Paleocene Eocene Thermal Maximum (PETM, ∼56 million 
years ago). Collinson et al. (2009) interpreted the units above this as representing the early part of the PETM. 
We tested our algorithm on the 27 samples obtained from this site previously analyzed by Inglis et al. (2019) and 
publicly available at the PANGAEA data repository (Inglis et al., 2019).

3. Results
3.1. Fuzzy K-Means Classification

Our silhouette analysis showed that the global GDGT data is best separated into four clusters, a value which was 
then used to perform a fuzzy k-means classification. The four identified groups consist of between 219 and 465 
samples each. When we compare the composition of each cluster using PCA, there is a clear differences between 
depositional environments (Figures 2a and 2b, and Table 1). 86.9% of the peat samples fall within Group 1, while 
84.6% of the lacustrine samples are assigned to Group 2. In turn, 92.4% of the river samples are assigned to Group 
3%, and 91.6% of the marine samples are assigned to Group 4 (Figures 2a and 2b). Soil samples are more spread 
across the different groups, with the majority assigned to Group 3 (43.9%).
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3.2. Within-Group Analyses

We analyzed the GDGT distribution within each of the clusters identified in the unsupervised machine learning 
step to assess its influence on the clustering results and how well it correlated with environmental parameters.

3.2.1. GDGT Distribution

Across the entire data set crenarchaeol′, GDGT-1–GDGT-3, Ib, Ic, IIc, IIc′, IIIb, and IIIb′ have the smallest 
proportion (<0.1 FA) of all GDGTs (Figure 3). There are, however, characteristic patterns associated with the 
different clusters. Samples from cluster 4 have a higher proportion of crenarchaeol, GDGT-0, and to a lesser 
extent GDGT-1 and GDGT-2 compared with the other clusters (Figure 3a). For crenarchaeol, cluster 3 is the 

Figure 2. Samples from the data set plotted in reduced dimensional space based on the fractional abundance of glycerol dialkyl glycerol tetraethers. Plots show the 
same analysis with samples colored based on the depositional environment (a), their assigned group based on the fuzzy k-means analysis (b), and the curated clusters (c).
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next group with the highest proportion, while cluster 2 has the second highest proportion of GDGT-0. Cluster 1 
consistently shows the lowest isoGDGT values. On the other hand clusters 1, 2, and 3 have a higher proportion 
of brGDGTs than cluster 4. Cluster 1 has the highest proportion of brGDGTs Ia and IIa, while cluster 2 has the 
highest proportion of IIIa and IIIa′. Although cluster 3 has lower proportion values than cluster 1, it is also domi-
nated by the penta- and tetramethylated brGDGTs, and it shows the highest proportion of GDGT Ib. Both clusters 
2 and 3 show comparable levels of IIa′, the most abundant 6-methyl brGDGDT.

3.2.2. Environmental Influence on Glycerol Dialkyl Glycerol Tetraethers

To better understand the effect that environmental parameters (such as temperature, elevation, and pH) might 
have had on the classification of the samples, we performed a PCA for each of the sample types separately 
(Figure 4 and Figure SI1 and Table SI2 in Supporting Information S1).

For peats (Figure 4a), primarily classified in cluster 1, the main component (64.6% of variability) is positively 
associated with GDGT Ia, while negatively related to GDGT IIa. This component is strongly associated with 
MAAT (ρ = 0.77, Spearman’s correlation and Figure SI1a in Supporting Information S1). Peats classified in clus-
ter 1 plot throughout the first component, however, those peats classified as part of cluster 3 and 4 are associated 
with higher temperatures, while those classified as part of cluster 2 are associated with lower MAATs (Figure 4a).

For lake sediments (Figure 4b), which are mostly classified as part of cluster 2, the first component (36.6% of 
variability) is associated negatively with GDGT Ia, while positively related to GDGT IIIa. The second compo-
nent (32.4% variability) is positively associated with GDGT-0. Both components have a strong correlation with 
MAAT (ρ = −0.65 and 0.51, respectively, and Figure SI1b in Supporting Information S1). While the majority 
of the distribution cloud is classified in cluster 2, samples with more negative values on PC1, which have higher 
MAAT values, are classified as cluster 3 and 1 (Figure 4b and Fiure. SI1b in Supporting Information S1). Addi-
tionally, four samples are classified in cluster 4, which were identified as sediments from Lake Kivu, Mono Lake, 
and two from Lake Malawi.

Soil samples are classified into a wide range of clusters (Figure 4c), with 44% of the samples labeled as part 
of cluster 3, 31% as cluster 2, 20% as cluster 1%, and 10% as cluster 4. The first component of the PCA for 
this sample type (47% of variability) is negatively associated with brGDGT Ia, while the second component is 
positively related with GDGT IIa and negatively with crenarchaeol. The environmental parameters show strong 
correlations to both the first and second components: pH (ρ = 0.47 and −0.74), MAAT (ρ = −0.45 and −0.42), 
and elevation (ρ = −0.21 and −0.56, respectively). Additionally, the assigned cluster strongly correlates with the 
sample location (Figure SI1c in Supporting Information S1). Most samples from the Godavari river catchment 
(98%) and Inner Mongolia (69%) were classified as cluster 3, while 70% of samples from Carminowe creek are 
classified as cluster 2. Finally, 47% of samples from Colombia are classified as cluster 1.

Similar to soils, the river sediments are mostly classified as cluster 3 (Figure 4d). For these samples the first prin-
cipal component explains 51.4% of the variance and is negatively associated with brGDGT Ia. For this sample 
type, the most determinant variable for their cluster classification was location site (Figure SI1d in Supporting 
Information S1), with all but one out of 98 samples from the Godavari classified in cluster 3, while all samples 
from Carminowe Creek are classified as cluster 2.

Type C. 1 C. 2 C. 3 C. 4 Peat-type Lake-type Soil-type Marine-type Total

Lake 7.4 84.6 5.6 2.5 0.6 97.5 1.2 0.6 162

Marine 0 5.6 2.8 91.6 0 0 0 100 215

Peat 86.9 5.7 4.4 2.9 100 0 0 0 475

River 0 7.6 92.4 0 0 0 100 0 105

Soil 20.4 30.6 43.9 5.1 0 0 100 0 196

Note. At the right is the total number of samples from each type. The highest percentage for each type of sample in the fuzzy 
k-means clusters is indicated in bold.

Table 1 
Percentage of the Total of Each Sample Type Assigned to Each of the Four Clusters Determined by Fuzzy k-Means Analysis 
(Left) As Well As the Four Manually Curated Clusters (Right)
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An additional PCA with both river and soil samples (data not shown) showed that none of the first three compo-
nents (88% of combined variance) separated these samples by type, but rather soil and river samples cluster 
together based on the location (Godavari or Carminowe).

Finally, for the marine sediments, primarily classified as cluster 4 (Figure 4e), the first component of the PCA 
(52.6% of variability) is positively associated with GDGT Ia and negatively associated with crenarchaeol. The 
second component (37.2%) is positively associated with GDGT-0. The first component is associated with the 
sample's distance to the coast (ρ = 0.43 and Figure SI1e in Supporting Information S1), while the second compo-
nent shows a strong correlation with the mixed layer temperature (ρ = −0.79). We, however, do not find a strong 
association between samples classified as cluster 2 or 3 and environmental parameters considered here.

Figure 3. Box plots showing the distribution of the fractional abundance of all Glycerol dialkyl glycerol tetraethers (GDGTs) in each of the fuzzy k-means clusters, 
following the color code of Figure 2b. GDGTs separated by isoprenoid GDGTs (a), hexamethylated branched GDGTs (brGDGTs) (b), pentamethylated brGDGTs (c), 
and tetramethylated brGDGTs (d).
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Figure 4. Principal component analysis (PCA) of each sample type with samples colored based on their assigned K-means cluster. Each panel shows the PCA for peat 
(a), lake sediments (b), soils (c), river sediments (d), and marine sediments (e).
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Following the aim of this study, we considered the description of each sample, the effects of environmental 
parameters in it, as well as the K-means classification. With this information we generated new classification 
labels, which we prioritized in cases where the fuzzy K-means classification and these labels disagreed. The 
informed labels are named according to the dominant depositional environment. Group 1 was renamed as Peat-
type, Group 2 as Lake-type, Group 3 as Soil-type, and finally Group 4 as Marine-type (Figure 2c). While Soil-type 
combines samples from rivers and soils, we name it as such since we have a much larger representation of soils 
in the data set, but also mechanistically it is more likely that GDGTs from the soils are influencing nearby rivers 
rather than the other way around.

3.3. Supervised Machine Learning

The new informed labels generated through the unsupervised machine learning phase were used for the supervised 
classification. We tested the performance of all four classification algorithms against each other and compared 
them with the null model using both the F1 and ROC-AUC parameters. Our results suggest that overall, all meth-
ods performed significantly better than the noninformative control and relatively similar to each other. For the 
F1 scores, Random Forest performed the best (0.95), followed by XGBoost (0.94), K-Nearest Neighbor (0.91), 
and Naive Bayes (0.87). In contrast, the null model had a score of 0.58. Similarly, for the ROC-AUC parameter 
Random Forest, XGBoost, and K-Nearest Neighbor had the same performance (0.99), followed by Naive Bayes 
(0.96), and the null model had a value of only 0.5. Based on these results we chose the Random Forest algorithm 
for our study. The performance of this algorithm in the test set is similar to the one obtained for the training set 
(0.94 and 0.99 for F1 and ROC-AUC respectively, Figure 5).

Finally, we diagnose the importance that each predictor variable has on the trained classification algorithm. This 
analysis shows that brGDGT IIa′ and crenarchaeol have the highest importance scores (>90), followed by IIb′, 
IIIa′, IIIb, Ia, and crenarchaeol′ (>30). All other variables had importance values <30 (Figure 5b).

The finalized model, named Branched and isoGDGT Machine learning Classification algorithm (BIGMaC), is 
available on Github as an R object (Martínez-Sosa et al., 2023).

Figure 5. Confusion matrix and importance value for all the glycerol dialkyl glycerol tetraethers (GDGTs) considered in the classification model. The confussion 
matrix (a) shows the performance of the BIGMaC Random Forest algorithm in the test data set. Columns show the true label of the samples and rows show the 
predicted label. Diagonal cells are color-coded based on Figure 2. The bar plot (b) shows the importance value of each GDGT, calculated based on Gini impurity, used 
in the BIGMaC classification algorithm.
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4. Discussion
4.1. Unsupervised Machine Learning

While our fuzzy k-means clusters show strong patterns that reflect relationships with depositional environments 
(Figure 2a), some samples whose context was unequivocally documented cluster in with samples unrelated to 
their depositional environment (i.e., soils plotting as peats).

For both peats and lakes, temperature has a strong influence on the GDGT distribution, causing samples at either 
ends to be clustered with other sample types (Figures 4a and 4b, and Figures SI1a and SI1b in Supporting Infor-
mation S1). At high temperatures, samples from these depositional environments tend to have a higher proportion 
of brGDGT Ia, and lower proportion of IIa and IIIa (Weijers et al., 2007), which causes the lake sediments to be 
classified as cluster 1 and 3 (high Ia), or peats as cluster 3 and 4 (low IIa and IIIa). At lower temperatures, the 
opposite effect causes some of the peats to be classified as cluster 2. In addition, particularly deep (i.e., Lake 
Malawi) or hypersaline alkaline lakes also showed an increased proportion of isoGDGTs compared with other 
lakes, causing them to be classified with marine samples. These distinct distributions could be due to specific 
niches in the water column associated with water chemistry, stratification, and/or nutrient content, as previous 
work has suggested (Baxter et al., 2021; Kumar et al., 2019; Sinninghe Damsté et al., 2022).

Soil samples cluster into several different groups, which may reflect the fact that soils are highly diverse environments 
with diffuse boundaries and are often in contact with other depositional settings. Furthermore, studies have shown 
that chemical properties of soils (i.e., pH, metal concentrations) have great spatial heterogeneity even at small scales 
(Yavitt et al., 2009). Indeed, the main factor that separated soils in this study is their location (Figure 4c and Figure 
SI1c in Supporting Information S1), which overrides any other environmental signal. However, this may simply be 
a feature of the limited existence of soil data sets with both branched and isoGDGTs (represented by only four loca-
tions). It is clear from our results that soils require a more in-depth analysis, with the use of more extensive data sets.

While there is some debate regarding the relative influence that soil input and in situ production have on the GDGT 
pool in river organic matter (De Jonge, Stadnitskaia, et al., 2014; Kirkels et al., 2020; Zell et al., 2013), our analysis 
shows that the river sediments more closely resemble soils rather than peats or lake sediments, and similarly to 
soils, the sample location shows the strongest correlation with how these samples are classified by fuzzy k-means 
(Figure 4d and Figure SI1d in Supporting Information S1). We do find a difference in the 5-methyl/6-methyl propor-
tion in these groups, where soils have a relatively similar proportion of these isomers, while river sediments contain 
relatively more 6-methyl brGDGTs (Figure SI2b and SI2c in Supporting Information  S1). Although this could 
be interpreted as soil-derived GDGTs dominating river inputs, with some autochthonous production of 6-methyl 
brGDGTs in rivers, our river data come from only two locations and primarily from only one system (the Godavari 
river), so this interpretation could be particular to this watershed. Notably, within the Godavari River, the member-
ship value for the samples, which measures the degree of belonging to each cluster, varies with their location and 
collection season (Figure 6). Membership to the soil-dominated Group 3 is higher in the lower Godavari basin, as 
well as from the wet (post-monsoon) season (Figures 6c and 6d). In contrast, membership to the lake-dominated 
Group 2 is overall higher in the dry season, and in the upper basin year-round (Figures 6a and 6b). These results are 
in line with those presented in the original study by Kirkels, Zwart, et al. (2022), where it was noted that GDGTs from 
soils have a stronger  influence on the river's GDGT content during the wet season and within the lower basin, which 
experiences higher precipitation. In contrast, in-situ production of brGDGTs, characterized by a high proportion of 
6-methyl isomers, has a stronger influence on the GDGT content of samples from the dry season as well as those 
from the upper basin.

Notably, for marine sediments the first dimension of their PCA is dominated by a positive relation with brGDGT 
Ia and a negative one with crenarchaeol and it is associated with distance from the coast, although this is true only 
for samples more than 10 km away from the nearest coast, suggesting that more coastal samples may be affected 
by other GDGT sources (Figure 4e and Figure SI1e in Supporting Information S1). The second dimension, which 
is positively related to GDGT-0, more closely follows the mixed layer temperature, as shown by the Spearman 
correlation between this variable and the principal component (ρ  =  −0.79). Although GDGT-0 is tradition-
ally omitted from the TEX86 calculation because it is a generic isoGDGT produced by many types of archaea 
(including methanotrophs and methanogens) (Kim et al., 2010; Schouten et al., 2002), our analysis shows that it 
is strongly influenced by temperature. Furthermore, the PCA shows no relation between GDGT-0 and brGDGTs 
(Figure 4e), which suggests that GDGT-0 is not influenced by terrestrial sources. Our results suggest that temper-
ature strongly influences the abundance of GDGT-0 and, unlike previously thought (Guo, Yuan, et al., 2022; Kim 
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et al., 2010), other environmental parameters may not be as important in open marine settings. This supports the 
observation of Cramwinckel et al. (2018) that, at higher temperatures, the ratio of crenarchaeol to GDGT-0 might 
be more sensitive to temperature changes than TEX86.

Since our intention with the supervised machine learning was to test whether GDGT distributions can be 
used to identify the depositional environment, we generated four new groups which broadly follow the 
fuzzy k-means clusters, but considered the actual depositional environmental that the samples came from 
(Figures  2a–2c). For example, although some of the peat samples fell into cluster 2 (lakes) or cluster 4 
(marine), since they were derived from peatlands, we re-assigned them as such. As noted above, some of 
these false assignments appear to be associated with the effect of temperature on GDGT distributions in peats. 
Similarly, although soils fell into several different clusters, this seems to be because their GDGT distributions 

Figure 6. Maps for the Godavari River sample locations for the dry (left column) and wet (right column) seasons. Maps show the sample memberships, calculated 
through fuzzy k-means analysis, to the lake-dominated Group 2 (a and b), and to the soil-dominated Group 3 (c and d).
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were influenced by the site location, so we assigned them all to a single soil group. By manually reassigning 
samples to match their true environment, we feed the classification algorithm a more realistic data set that 
includes some of the uncertainties associated with the relationship between GDGT distributions and their 
depositional settings. While we cannot rule out that the effects observed here are due to artifacts of the 
clustering technique used, as we only tested the performance of fuzzy k-means based on Euclidian distances, 
which can be affected by high dimensionalities, the environmentally relevant results obtained give us confi-
dence in the approach used.

4.2. Curated Clusters

The manual curation of these clusters does not alter the general composition of the groups compared with the 
statistically derived ones (Table  1). Peat-type and Marine-type are very similar in composition and size to 
Group 1 and 4 respectively. While Group 1, with 465 samples, had 87% of the peats and 20% of the soils; Peat-
type, with 476 samples, has all of the peats and only one lake sediment. Similarly, Group 4, with 225 samples, 
had 92% of the marine sediments, while Marine-type includes all of them and has a total of 216 samples. The 
reduction in size from Group 4 to Marine-type is mostly due to the reassignment of lake sediments, peats and 
soils. The largest change observed is between Group 2 and Lake-type (86 sample difference), and Group 3 
and Soil-type (84 sample difference). Most of this comes from the reassignment of 60 soils from Group 2 to 
Soil-type.

The sample reassignment also does not alter the general GDGT distribution patterns of the groups when we compare 
them before and after the reassignment (Figure 3). It does, however, preserve the cluster selection for samples 
where the depositional environments may not be as clear (i.e., humic-rich lakes which are classified as Peat-type).

4.3. Supervised Classification

In general, all of the machine learning algorithms exhibited good performance in the training phase, with F1 and 
ROC-AUC scores above 0.85 and 0.95 respectively. Nevertheless, we chose the Random Forest algorithm since 
it was the best performing one across all parameters, in addition to being widely used in the field of Geosciences 
(El Bouchefry & de Souza, 2020; Peaple et al., 2021). This algorithm also performed well in the testing phase 
(0.94 and 0.99, for F1 and ROC-AUC respectively, and Figure 5). This result suggests that the algorithm is not 
overfitting the data, as the algorithm's performance would have significantly decreased if it had been trained to 
only classify samples it had previously been exposed to.

When we apply the BIGMaC algorithm to the complete data set, we can investigate the importance of each 
GDGT in the model. This analysis shows that the two compounds that contribute the most to the classification 
are IIa′ and crenarchaeol, although all GDGTs contribute to some extent to the classification, and thus relying 
only on these two compounds may not be as effective as the complete model. While these compounds have 
not been specifically associated with particular environments, they have very specific distributions in the iden-
tified clusters (Figure 3), and also could be associated with characteristics of the depositional environments. 
BrGDGT IIa′ is the 6-methyl GDGT with the highest abundance in lakes and soils, however, these isomers are 
less abundant in peats although this could also be due to most of the peats in our data set being acidic (Naafs 
et al., 2017) and the inclusion of less acidic samples could change the variables used. In addition, generally all 
brGDGTs have a lower abundance in marine environments (Hopmans et al., 2004). In contrast, crenarchaeol 
is generally the most abundant isoGDGT in marine sediments (Liu et al., 2011), and it has been shown that it 
is also present in relatively high proportion in soils, but not in lakes (Naeher et al., 2014), and it has generally 
a low proportion in peats (Naafs et al., 2017). These specific distributions form four distinct patterns, which 
likely explain their selection as the most informative variables: low IIa′—low crenarchaeol (Peat-type), high 
IIa′—low crenarchaeol (Lake-type), low IIa′—high crenarchaeol (Marine-type), and high IIa′—high crenar-
chaeol (Soil-type).

4.4. Applications

We demonstrate that our model can be successfully used to analyze changes in depositional environments through 
time by testing the BIGMaC algorithm on GDGTs measured in two different sites: the Eocene-aged post-eruption 
peat and lacustrine sediments recovered from the Giraffe kimberlite pipe in the subarctic; and the Cobham lignite 
bed, dated to the beginning of the PETM.
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4.4.1. Giraffe Kimberlite Pipe

When we apply the BIGMaC algorithm to the Giraffe kimberlite pipe core we see that the samples are generally 
correctly classified with the general stratigraphy previously described for the core (Hamblin et al., 2003; Wolfe 
et al., 2017) (Figure 7 and GDGT distributions shown in Figure SI4 in Supporting Information S1). All samples 
from the top peatland section are classified as Peat-type, and all samples from the lacustrine section below 85 m 
are classified as Lake-type. However, we also identified a section, between 76.5 and 85 m, within the lacustrine 
facies that is classified as Peat-type. Furthermore, the samples immediately above the excursion oscillate between 
Lake-type and Soil-type for at least one m (Figure 7), before returning to being classified as Lake-type for the 
last 4.8 m of the lake section. The results from our classification algorithm are in contrast to other approaches 
previously used to determine the origin of GDGTs in sediments. For example, applying the BIT index to this core 

Figure 7. CBT′ values (a) and inferred temperature (b) calculated from Giraffe core branched GDGTs plotted against vertical-equivalent depth. The temperature 
reconstruction was generated by applying the Dearing Crampton-Flood et al. (2020) Bayesian calibration for Peat and Soil-type samples, and Martínez-Sosa 
et al. (2021) calibration for Lake-type samples. Palynological estimates of mean annual temperature with their associated error from Wolfe et al. (2017) are shown in red 
diamonds in (b). Samples are color-coded based on the predicted groups. White and gray shading indicates peat and lacustrine sediments in the core, respectively. Zones 
in the lake section as described by Siver and Lott (2023) are shown as colored areas: Botryococcus Zone in light orange, Going Acidic Zone in light gray, Aulacoseira 
Zone in purple, Eunotiod Zone in orange, Mixing Zone in gray, and Heterotrophic Zone in light purple. The peat and lake sections of the core are indicated at the 
bottom of the plot with black and white rectangles, respectively.
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shows that for the majority of the core, the mean value is 0.999 ± 0.001, suggesting a terrestrial setting. The BIT 
index record only deviates from these values in the one-m section where the BIGMaC classifies samples as either 
Lake-type or Soil-type, although even in this section the BIT index values are only reduced to 0.97. Since the 
BIT index is unable to distinguish between soil, peat and lake deposits, this showcases the advantage of using the 
classification algorithm where all GDGTs are considered over a singular index.

By using the CBT′ index, which has been shown to be strongly associated with pH in peats (Naafs et al., 2017) 
and mildly correlated to pH in lakes (Martínez-Sosa et al., 2021), we estimate that in general the peat section 
has much lower CBT′ values (associated with lower pH) than those in the lacustrine section. While this trend is 
maintained for most of the core, a marked decrease in CBT′ values occurs in the section within the lacustrine 
facies that is classified as Peat-type.

Our results show a close relationship with the independently developed microfossil-based ecological reconstruc-
tion done by Siver and Lott (2023) for this site. While Hamblin et al. (2003) had previously speculated this site 
to be a shallow lacustrine setting with intermittent wet and dry periods, the microfossil ensemble suggest that the 
lake was initially a shallow (∼1m) slightly acidic lake, this is represented by the Botryococcus Zone (BZ) between 
102.8 and 124.6 m (Figure 7). All samples in this section are classified as Lake-type with generally stable CBT′ 
values. While Siver and Lott (2023) reported a shift in the microfossil ensemble within this region between 112.1 
and 109 m, which was interpreted as an acidifying section, we do not find evidence of this in the CBT′ values; 
however, this subsection does roughly align with an estimated reduction in 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

′

5𝐴𝐴𝑀𝑀
 values. Following this initial 

section, the microfossils suggest that the lake deepened to between 3 and 5 m in the Aulacoseira Zone (AZ) (Siver 
& Lott, 2023), between 102.1 and 89.5 m. BIGMaC still classifies all samples from this section as Lake-type, 
however there is a declining trend in CBT′ values throughout this region, shifting from vales of −0.2 to −0.55. 
The following section located between 89.2 and 79.6 m, identified by the microfossil ensemble as Eunotiod Zone 
(EZ), is thought to represent a period characterized by enhanced acidity and increase in dissolved humic mate-
rial. This section corresponds to the large CBT′ excursion in our record, with values from −0.5 to below −1.5. 
Microfossils in this section are associated with low pH environments, such as lakes and bogs. This is in agreement 
with our BIGMaC results, where all but one sample in this section are classified as Peat-type, with the exception 
being a sample right at the bottom that BIGMaC still classified as Lake-type. We note that the CBT′ values are 
lower than those of previously reported lakes with a pH of 4.3 (Martínez-Sosa et al., 2021). In contrast, these 
values correlate to a pH between 4 and 5 in peats, which is more in line with what is associated with the described 
organisms in this section (Siver & Lott, 2023). Between 79.4 and 76.4 m the microfossil ensemble suggests the 
presence of a transitional zone that is not associated with any of the other sections. Our results classify all samples 
within this section as Peat-type, although the CBT′ values have a steep increase, going from −1.5 to −0.5, which 
could suggest a transitory state toward a higher pH environment. The following section, between 76 and 73.1 m, 
identified as the Heterotrophic Zone by the microfossil ensemble, is interpreted as a period with higher pH and 
in line with conditions of an eutrophic body of water. Our analysis shows a transitory period at the beginning 
of this section where BIGMaC interprets two samples as Soil-type, while the rest of the samples are classified 
as Lake-type. The CBT′ values are on par with those of the previous sections that were classified as Lake-type. 
Finally, the top-most part of the lake section is interpreted as a body of water with increased acidity and levels of 
dissolved humic matter. While the CBT′ values do show a small decrease, the BIGMaC algorithm still classifies 
all samples in this section as Lake-type.

Overall, there is a good agreement in the interpretation of both independent proxy-based reconstructions for 
the lake section of the core. Differences between the interpretations could be due to constraints of the specific 
proxies. For example, while the microfossil ensemble suggests periods of increased acidification throughout the 
BZ region, this is not reflected in the CBT′ values. In contrast, while the microfossil ensemble suggests a sudden 
transition from the AZ to the EZ sections, our results show a decreasing trend in CBT′ values throughout AZ 
leading to the much steeper acidification in EZ. It is possible that the decreases in pH in both cases have different 
origins, which are only captured by one of the proxies. This underscores the advantage of combining independent 
proxies for paleoenvironmental reconstructions.

To generate a temperature reconstruction for the Giraffe core, we applied the previously published BayMBT cali-
bration for lakes or soil/peat, depending on the results of BIGMaC for each sample. These particular calibrations 
were chosen as they are consistent with each other and allow us to generate a continuous confidence interval 
for the reconstruction. However, we emphasize that the choice of temperature calibration is independent from 
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BIGMaC and any GDGT-based calibration can be used. For example, we also applied the peat-specific calibra-
tion (Naafs, 2017) to the sections of the core classified as Peat-type but it generated only marginally different 
results than BayMBT, so we chose to use the latter.

Our reconstruction suggests a relatively stable climate with no clear trend (Figure  7a). The mean tempera-
ture of our reconstruction (19 ± 3.2°C) agrees with independent studies. A pollen reconstruction at this site 
(red diamonds in Figure 7a), suggests a MAAT of 14.5 ± 1.3°C, with a warmest month mean temperature of 
24.5 ± 0.8°C (Wolfe et al., 2017). In addition, Jahren and Sternberg (2003) estimated a mean annual temperature 
of 13.2 ± 2°C for the middle Eocene Arctic based on oxygen isotopes measured in calcite preserved in fossil 
Metasequoia. While our estimate is at the upper end of both estimates, they fall within the confidence interval of 
our reconstruction (Figure 7a). Moreover, both the peat/soil and lake calibrations predict mean annual tempera-
tures above freezing (MAF) rather than strictly MAAT, so if there were freezing temperatures during the winter, 
the GDGT estimates are expected to be higher. Conversely, if we had used only the lakes or soil/peat calibration 
for the entire core, there would be large temperature swings of more than 6°C associated with changes in core 
lithology. In particular, the excursion to Peat-type samples within the lacustrine section would be estimated to be 
5.7°C higher without the BIGMaC-based correction.

4.4.2. Cobham Lignite Bed

While the application of the BIGMaC algorithm in the Giraffe pipe showcases its strengths, our analysis of the 
Cobham lignite illustrates that there are some limitations of the approach. Inglis et al. (2019) previously showed 
that increased precipitation during the PETM in this area caused changes in the hydrology of the site, and that 
this potentially caused the brGDGTs to become unreliable as temperature proxies. Namely, while several lines 
of evidence suggest an increase in temperature during the PETM, the temperature reconstructions based on 
brGDGTs suggest cooling. We applied BIGMaC to this site to investigate whether changes in the depositional 
settings could explain the discrepancy (Figure  8). Almost all samples preceding 54.15  cm, identified as the 
start of the PETM, are predicted to be Peat-type, with the exception of one sample from the upper LL unit that 
is classified as Soil-type. In contrast, there is a wider variation in the sample classification during the PETM, 
where samples are classified as Peat-type (10), Soil-type (3) and Lake-type (1). Besides one sample classified 
as Peat-type from the PETM upper LL, all other PETM samples are located in the BL unit. The variations in 
predicted depositional environments do not coincide with changes in either 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

′

5𝐴𝐴𝑀𝑀
 or CBT′ values, nor are they 

organized in any evident pattern within the unit. Moreover, the PETM samples are primarily classified as Peat-
type and Soil-type, suggesting that adjusting for the predicted depositional environment would not significantly 
increase the temperature reconstructed by Inglis et al. (2019), as would be the case if the samples were classified 
as Lake-type. Vegetation and charcoal records suggest that the Cobham site became waterlogged and may have 
even developed areas of open water during the PETM (Inglis et al., 2019). Given this perspective, the oscillating 
results from BIGMaC likely point to an unstable, dynamically changing depositional environment with mixed 
sources of brGDGTs. Since BIGMaC is a categorical classification algorithm, it cannot detect mixed signatures. 
This underlines the need to incorporate mixing models in studies where input from different sources is expected, 
and suggests that BIGMaC would benefit from incorporating this capability in future updates.

Overall, this application suggests that other environmental parameters, not considered in this work, could still 
affect the distribution of GDGTs, and we include the Cobham lignite example as a reminder that applying the 
BIGMaC algorithm is not always a panacea and is best done in concert with other independent proxies to accu-
rately interpret the results.

5. Conclusions
Our analyses of GDGTs in 1,153 globally distributed samples from soils, lakes, rivers, and marine sediments 
show that the depositional environment from which samples were obtained has a significant and measurable 
impact on the combined distribution of isoprenoid and brGDGTs, which allows us to cluster the samples from our 
data set into environmentally relevant groups. Furthermore, we find that the distribution of GDGTs in each cluster 
is uniquely impacted by the environment. There is a strong association between temperature and the Lake-type 
and Peat-type groups. Marine-type samples are also clearly influenced by temperature and their distance from the 
coast, at least for samples more than 10 km away from the shore. The cause of this distinction is an observation 
that deserves further study. Although they are represented by a limited sample set, soils show variability that is 

 25724525, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023PA

004611 by U
trecht U

niversity L
ibrary, W

iley O
nline L

ibrary on [10/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Paleoceanography and Paleoclimatology

MARTÍNEZ-SOSA ET AL.

10.1029/2023PA004611

17 of 21

strongly influenced by their location. Additionally, while our analysis groups soil and river samples together into 
the Soil-type cluster, river systems seem to have more 6-methyl brGDGTs and their GDGT distributions reflect 
local changes within the catchment.

We used the data set presented here to train the Random Forest classification algorithm BIGMaC, which is 
capable of identifying the environment in which a sample was formed based on the distribution of GDGTs. Our 
results show that GDGTs IIa′ and crenarchaeol are the most influential compounds in the classification algo-
rithm, due to their combined unique changes between the four depositional groups. As a demonstration, we apply 
the BIGMaC model to an independent record from the Giraffe kimberlite, which was stratigraphically shown to 
record a transition from a lacustrine environment to peatland. Our BIGMaC algorithm is not only able to recreate 
the transition, but further suggests an excursion to peatland conditions within the upper lacustrine section of the 
core, which is consistent with independent evidence for more acidic conditions. This result is encouraging for the 
application of our classification algorithm, as it comes from a data set not included in the training or testing sets, 

Figure 8. Calculated 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴
′

5𝐴𝐴𝑀𝑀
 (a) and CBT′ (b) values of the Cobham lignite bed across the site thickness (cm). Samples are color coded based on the BIGMaC 

predicted groups. Different units are colored and labeled on the top as: lower laminated lignite (LL, dark green), upper LL (UL, light green), clay (C, white), and blocky 
lignite (BL, purple).
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thus providing an independent testing case. Using the BIGMaC results as a guide, we apply brGDGT-derived 
calibrations specific to lakes or soils and peats as needed downcore and obtain a relatively stable temperature 
estimate for this area that is in general agreement with the pollen record.

While our Giraffe pipe results showcase the usefulness of our approach when applied to clear changes in deposi-
tional environments; the application of BIGMaC in the Cobham site shows that this approach may not be suitable 
in cases where the depositional environment is changing rapidly and thereby results in mixed sources of GDGTs. 
It is possible that the future integration of a mixing model in the BIGMaC workflow could improve its perfor-
mance in this type of scenario.

Ultimately, we show that the combined set of branched and isoGDGTs is an effective tool for identifying deposi-
tional environments that can be used in combination with more established proxies to gain a better understanding 
of past environments.

Data Availability Statement
The GDGT fractional abundance data used for training the BIGMaC algorithm in the study are directly available 
at Pangaea via Naafs (2017), Guo et al. (2020b), Dearing Crampton-Flood et al. (2019), Guo et al. (2021), and 
Inglis et al. (2019); as well as on Zenodo via Martínez-Sosa et al. (2023a, 2023b), and Pérez-Angel et al. (2020b). 
V1.0 of the BIGMaC algorithm used for the classifications of samples based on GDGT fractional abundances 
is preserved at Martínez-Sosa et al. (2023), available via MIT license and developed openly in the tidymodels 
environment in R.
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