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Memory T (TM) cells are one of the protagonists of a successful immune response. They are 

formed after a naive T (TN) cell (a type of white blood cell) recognizes an invading pathogen 

(by binding one of its molecules, referred to as the antigen) (Sprent and Surh, 2003). In a 

mouse, typically close to 102 TN cells that are specific for the pathogen give rise to about 105 

specific TM cells, a 103 fold increase (Kaech et al., 2002; Kalia et al., 2013). Such large 

numbers and their semi-activated state confer upon TM cells the ability to generate swift and 

effective successive immune responses (Cho et al., 1999); a property that is famously 

exploited during vaccination (Esser et al., 2003; Kaech et al., 2002; Todryk, 2018). 

Since their discovery in 1971, a lot of progress has been made in characterizing and 

understanding various aspects of TM cells (Gershon et al., 1971; Miller and Sprent, 1971; 

Qiu, 2022). We can now distinguish between antigen-inexperienced TN cells and antigen-

experienced TM cells confidently, based on the expression of certain cell surface proteins 

(Berard and Tough, 2002). Several studies have also highlighted that the TM-cell population 

is both kinetically heterogeneous with slow and fast sub-populations (Westera et al., 2013), 

and phenotypically heterogeneous where the responsibilities of TM cells are shared among 

many different sub-populations (Roberts et al., 2005; Sallusto et al., 2004). For example, 

central memory T (TCM) cells re-expand and generate a memory response upon re-

encountering the pathogen, and effector memory T (TEM) cells migrate to tissues to clear the 

pathogen through direct cytolytic activity (Roberts et al., 2005; Sallusto et al., 2004). 

In spite of the understandings garnered, many questions warrant additional study. For 

example, how many functional subsets does the TM-cell population have? Why do only ~5% 

of all activated cells become TM cells? When are TM cells formed and when do they 

differentiate into different subsets? The answers to these fundamental questions are required 

to better understand the mechanisms behind the generation of TM cells, which would then not 

only aid in the design of vaccines (Ahmed et al., 2009), but also improve T-cell therapies (for 

example, against cancer), and limit undesired T-cell responses (for example, in auto-immune 

diseases and chronic inflammation). For example, if it were known whether TM cells are 

generated during or after an immune response, vaccine developers could harness this 

knowledge to skew an immune response, upon vaccination, to generate a larger, and perhaps 

more potent, TM-cell pool (Ahmed et al., 2009). 

It is important that the TM cells generated after an immune response are sustained, and that 

the diversity of the TM-cell pool is maintained. For this, it is necessary to know whether TM 

cells can be long-lived. It is also essential to understand the effect of new infections (or 

vaccinations) on previous memories. Selin and Welsh, among other researchers, have 

addressed this by measuring the composition of the TM-cell repertoire before and after 

multiple infections (Hogan et al., 2013; Kim and Welsh, 2004; Selin et al., 1999, 1996; Vezys 

et al., 2008; Welsh and Selin, 2009). These studies were typically done in ‘clean’ (i.e., 

disease-free) mice and might not accurately reflect the effect of successive infections on the 

diversity of the TM-cell pool (as the TM-cell pool in these mice have limited diversity and 

their TM cells, therefore, experience limited competition). Further, it is feasible to work with 

only a few infections in such experimental studies. 
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The addition or deletion of methyl groups to the DNA (DNA methylation) has been used to 

study the generation of TM cells (Youngblood et al., 2017), as the DNA methylation pattern 

leaves behind a road map (or a trail) of a TN cell’s development into a TM cell. The dynamics 

of T cells can also be tracked by labelling them and subsequently following the label over 

time. For example, the incorporation of compounds like deuterium into the DNA of T-cell 

populations has been studied to infer the turnover (division) rate of the cells in the population 

and to understand its maintenance mechanisms (Baliu-Piqué et al., 2018). The principle 

behind these techniques is analogous to carbon dating a mummy, or analysing the ink of a 

person’s tattoo, to not only infer the age of the mummy or the tattoo, but to also pinpoint its 

place of origin. In this compilation of works, we focus on understanding the generation and 

maintenance of TM cells by collecting time-series data of labelled T cells and analysing these 

“ink trails”. 

 

1. When are memory T cells generated? 

Three different chronologies of TM-cell generation have been proposed (Figure I.1) (Henning 

et al., 2018; Kaech et al., 2002; Kalia et al., 2006). The first of these, the circular pathway, 

postulates that TCM cells are formed after (and from) TEM cells, and upon restimulation 

differentiate into TEM cells again. The second view, the linear pathway, suggests that TCM 

cells are the precursors of TEM cells. The third, the branched pathway, postulates that TCM and 

TEM cells are formed in parallel. 

The circular differentiation pathway. Support for this pathway propagates the traditional 

Effector-First view of TM-cell generation (Henning et al., 2018; Kaech et al., 2002; Kalia et 

al., 2006). In this traditional view, activated TN cells give rise to TEM cells which then 

differentiate into TCM cells after the antigen is cleared and the immune response is resolved. 

These TCM cells upon re-stimulation by the antigen revert back to TEM cells (Figure I.1a) 

(Henning et al., 2018; Kaech et al., 2002). This idea was recently strengthened by 

observations made by a group of researchers who followed the DNA methylation patterns of 

TN cells, and memory-phenotype T cells during and after an acute immune response (Akondy 

et al., 2017; Omilusik and Goldrath, 2017; Youngblood et al., 2017). As the loci of naive-

associated genes in memory-phenotype T cells were demethylated during the expansion 

phase and methylated again during the memory phase, it was suggested that TEM cells de-

differentiate into TCM cells (Youngblood et al., 2017), in at least some cases. This on-off-on 

cycle of naive- and effector-associated genes before, during and after an immune response 

motivated the name of this differentiation pathway. 

The linear differentiation pathway. This pathway supports the Memory-First principle where 

an activated TN cell goes through the TCM-cell phenotype before becoming a TEM cell (Figure 

I.1b) (Henning et al., 2018; Kaech et al., 2002). Unlike the circular differentiation pathway, 

where TN cells differentiate into TEM cells and then into TCM cells regardless of the strength 

of the stimulation, in the linear differentiation pathway it is proposed that the fate of a TN cell 

is driven by the strength and number of antigenic stimulations. Repeated and strong 
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stimulation drives a TN cell into the more differentiated TEM cells, whereas limited 

stimulation of a TN cell results in the formation of less differentiated TCM cells. Thus, the 

phenotypic make-up of a TCM cell is in between that of a TN and a TEM cell. This progressive 

differentiation mechanism is also neatly in line with the fact that TCM cells generate TEM cells 

upon subsequent stimulation. 

The branched differentiation pathway. By analysing the T-cell receptor repertoire and the 

proliferation history of T cells, it is postulated that the generation of memory-phenotype and 

effector-phenotype T cells is a unidirectional, but not necessarily linear, pathway (Song et al., 

2005). Thus, the formation of TCM and TEM cells are thought to be parallel processes (Figure 

I.1c). In this pathway, TN cells do not have to go through the TEM-cell stage before becoming 

TCM cells, as suggested by the circular differentiation pathway, and TN cells also do not have 

to go through the TCM phenotype in their journey to become TEM cells, as suggested by the 

linear differentiation pathway. 

 

 

Figure I.1: The different differentiation pathways that have been postulated to underlie the 

generation of TCM, TEM and effector (TE) T cells from TN cells. In the circular differentiation 

pathway, TE cells give rise to TEM cells in absence of antigen, which revert to TE cells upon 

re-encountering the pathogen. In the linear and branched differentiation pathways, TE cells 

are generated from TEM cells during the expansion phase. 

 

2. How are memory T cells maintained? 

The immunity imparted by TM cells against a pathogen often spans decades (Sprent and Surh, 

2003). Initially, this long-lived immunity was thought to be due to long lifespans of 

individual TM cells (Gowans and Uhr, 1966; Sprent, 1997; Sprent and Miller, 1976). This 

view has been amended in recent times by a rich body of work showing that on average 

circulating TM cells are, in fact, fairly short-lived (Baliu-Piqué et al., 2018; Gray and 

Matzinger, 1991; Macallan et al., 2017; Westera et al., 2013). 

Measuring the lifespan of memory T cells. Estimation of division and death rates1 of the 

cells in a cell population is crucial to calculate the lifespans of the cells in the population. 

 
1 In this thesis, the terms rate and per capita rate are used synonymously. 
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Identifying both division and death rates of the cells in a cell population simultaneously just 

from the changes in the population size is not possible. For example, a population that 

expands at a net growth rate of 2/day can have a division rate of 4/day and a death rate of 

2/day, or a division rate of 3/day and a death rate of 1/day. Even if one of the rates (division 

or death) is known, the accuracy of the other rate that is estimated tends to be poor as the 

measurements of a population’s size are notoriously noisy. Further, the noise in the 

measurements of the cell numbers makes it difficult to know whether the cell population is at 

steady state or not. Other techniques such as the dilution of T-cell receptor excision circles 

(TRECs) and the shortening of telomeres have been used to estimate cellular lifespans (De 

Boer and Perelson, 2013a). TRECs are small circles of DNA formed during T-cell 

development in the thymus and do not duplicate when cells divide (De Boer and Perelson, 

2013a). This makes TRECs suitable for analysing the division history of TN cells but not for 

TM cells (as TM cells have gone through clonal expansion). Telomeres are non-coding ends of 

chromosomes that are eroded when a cell divides (De Boer and Perelson, 2013a). 

Interpretation of telomere data is tricky as telomeres can be extended by the enzyme 

telomerase (Chan and Blackburn, 2004) and due to the transfer of telomeres by antigen 

presenting cells (APCs) to TM cells during their interaction (Carey et al., 2022; Lanna et al., 

2022). Unfortunately, the rate at which telomeres erode inform more about the division rate 

of their precursors than that of the population of interest (De Boer and Noest, 1998). The 

current state-of-the-art technique to measure the turnover rates of a cell population is to label 

the cells (using compounds like CFSE, BrdU or deuterium) to track their division history (see 

Figure I.2 for a graphical explanation of typical deuterium labelling experiments) (De Boer 

and Perelson, 2013a). Analysing the time course of the fraction of labelled DNA (in BrdU 

and deuterium labelling experiments), then informs about the average expected lifespan of 

the cells (even in a population that is at steady state). The best estimates, based on deuterium 

labelling of cell populations, for the expected lifespans of circulating TN cells and circulating 

TM cells are 6-9 years and ~ 0.5 year, respectively, in humans (Borghans et al., 2018), and ~ 

60 days (den Braber et al., 2012) and ~ 20 days (Westera et al., 2013), respectively, in mice. 

Implications of short lifespans. TM cells depend on cytokines for growth and survival (De 

Boer and Perelson, 1994). The relatively short lifespan of circulating TM cells makes them 

prone to competitive exclusion, due to their dependence on the same cytokines. The effects of 

this competition can be severe. Existing TM cells are lost (possibly due to competition) upon 

new infections, sometimes modestly, and at other times significantly (Vezys et al., 2008; 

Welsh and Selin, 2009). This erosion could impair the subsequent immune responses against 

a previously encountered pathogen (Huster et al., 2009). Recurrent infections by a pathogen 

are known to boost the number of TM cells specific for the pathogen, strengthening the TM-

cell response. These boosts can, however, also change the phenotypic distribution within the 

TM cell pool, causing a delayed response that could lead to inefficient protection of the host 

(Huster et al., 2009). Thus, the response of one’s immune system to a pathogen can be 

significantly moulded by its past infection history, possibly due to erosion of short-lived TM 

cells (Kim and Welsh, 2004; Selin et al., 1999, 1996; Vezys et al., 2008; Welsh and Selin, 

2009). The observation that efficient immune memory over many years is successfully 

maintained by short-lived TM cells, therefore, remains quite surprising. 
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Long-lived memory T cells. It has been postulated that long-term immunity would be 

compatible with short-lived TM cells amidst competitive exclusion if these cells were 

progenies of long-lived TM cells that maintain themselves (Di Rosa, 2016a; Radbruch et al., 

2021). One such hypothesis suggests that during an immune response some TM cells migrate 

to the bone marrow and reside in the stromal niches, becoming quiescent and long-lived 

(Siracusa et al., 2018, 2017). Another hypothesis proposes that stem-cell-like TM cells could 

act as the source through asymmetrical division (Ahmed et al., 2009; Borsa et al., 2019; 

Chang et al., 2014, 2007). A long-term deuterium labelling study has shown that the TM-cell 

pool becomes more quiescent (i.e., longer-lived) with time, crediting this to the presence of 

long-lived stem-cell-like TM cells (Akondy et al., 2017). However, it is uncertain whether this 

gradual quiescence of the TM cell pool is due to the preferential loss of the short-lived, 

circulating TM cells (and the persistence of ‘true’ long-lived TM cells), or due to the 

individual TM cells becoming long-lived. Regardless of how long-lived TM cells are formed, 

they would lead to the long-term maintenance of a diverse TM-cell repertoire. 

 

 

Figure I.2: A typical deuterium labelling experiment. 

 

The discussion presented above related to the generation and maintenance of TM cells is the 

focal point of this body of work. The chapters presented here not only discuss the most likely 
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differentiation pathways and maintenance mechanisms of TM cells, but they also address the 

heterogeneity in the TM-cell pool and the reliability of the estimates inferred from deuterium 

labelling data. 

 

Thesis Outline 

This thesis is a product of our efforts to better understand the ontogeny of TM cells and their 

maintenance mechanisms. We do this by improving upon the theoretical analysis (Chapter 

2), suggesting improvements in experimental design (Chapter 3), and in some cases, 

introducing new experimental and theoretical approaches (Chapters 1, 4 and 5) in an attempt 

to resolve previous debates about the generation and long-term maintenance of TM cells. 

 

Question 1 Do cells of an inflationary TM-cell response that is maintained during a chronic 

infection live longer than those of a non-inflationary TM-cell response? (Chapter 1) 

Most pathogens induce acute immune responses. It has been estimated that 

approximately 1 out of every 100 pathogens encountered by a human, results in a chronic 

infection (Virgin et al., 2009). In contrast to acute infections, chronic infections can induce 

both non-inflationary and inflationary TM-cell responses. The number of specific TM cells 

increases over time in an inflationary T-cell response. Circulating TM cells maintained after 

an acute response are known to be short-lived (< 2 months in mice) (Choo et al., 2010; 

Westera et al., 2013), but what about the non-inflationary and inflationary TM cells formed 

and/or maintained during a chronic response? Certain epitopes of the murine cytomegalovirus 

(MCMV) elicit chronic responses that are inflationary. It has been suggested that this 

accumulation of MCMV-specific TM cells is due to their long expected lifespans (Wallace et 

al., 2011). Through deuterium labelling of MCMV-specific TM cells, we studied whether this 

is indeed true. 

 

Question 2 How can the label gain rate of a population of cells be higher than its label loss 

rate? (Chapter 2) 

Estimation of the label gain and loss rates of MCMV-specific TM cells showed an 

unexpected behaviour i.e., the gain rate was higher than the loss rate. Such estimates would 

suggest that the population becomes labelled quicker than it gets unlabelled, which is 

unexpected for a population at steady state. This behaviour was not unique to MCMV-

specific TM cells and was also seen for human neutrophil populations in the bone marrow and 

murine NK cell populations in the blood. When can the estimated gain rate of label be higher 

than the estimated loss rate of label? We explore this question analytically and numerically 

using various mathematical models. 
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Question 3 Does a population’s label gain rate truly reflect its average turnover rate? 

(Chapter 3) 

 Most models used to analyse deuterium labelling data assume that the population of 

interest has no source of progenitor cells or is preceded by a rapidly dividing population. The 

label gain rate of a population that is at steady state is then interpreted as its turnover rate, 

which is used to calculate the average lifespan of the cells in question. However, the 

population of interest is not always independent of its precursors, and/or does not always 

have a rapidly turning over precursor population. Are the estimated turnover rates 

significantly different when the precursors do not turnover rapidly? We further discuss the 

explicit source model developed in the previous chapter to comment on this question and use 

multiple published datasets to support our analytical results. 

 

Question 4 Are the protective potential and division history of a TM cell related? (Chapter 4) 

 Often the many different TM-cell phenotypes are distinguished based on their 

protective potential and their ability to expand. A subset’s protective potential has been 

shown to be related to its ability to expand upon stimulation. For example, the more 

protective TCM cells expand more than TEM cells, which have limited protective abilities. As it 

has been suggested that cells age with division, a cell’s ability to expand is perhaps 

influenced by its division history. So, is the protective potential of a TM cell directly 

dependent on its division history? This question has remained unexplored due to the inability 

of staining dyes (like CFSE) to track the division history of a cell in vivo for over 10 

divisions. Using a Cre-lox module that can track the division history of a population over 

many more divisions, we explore the relation between the division history of the different 

TM-cell subsets and their functional properties. With the help of mathematical models, we 

also discuss the most likely differentiation pathway of T-cell differentiation based on the 

replicative history of TCM and TEM cells. 

 

Question 5 Are the relatively short lifespans of TM cells compatible with a diverse TM-cell 

pool? (Chapter 5) 

 Reports of highly diverse TM-cell repertoires are difficult to reconcile with the fact 

that short-lived TM cells depend on limiting resources for growth and survival. Resource 

specialization among TM cells and the presence of long-lived TM cells are often proposed as 

mechanisms to maintain the diversity of the TM-cell repertoire in the long-term. Do these 

mechanisms indeed maintain a diverse TM-cell repertoire, or are memories lost by 

competitive exclusion over time? We study different mechanisms using mathematical models 

and discuss the repercussions of both the lifespan and the age of an individual cell on the 

longevity of memory and the diversity of the TM-cell pool. 
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Discussion The generation and maintenance of TM cells. 

 Years after the discovery of TM cells, there is still a lack of consensus on the 

pathways underlying their generation and the mechanisms behind their maintenance. In this 

section, we attempt to bring together previous findings with results presented here to build a 

consensus. We also connect the dots between the chapters and discuss the contrasts and 

parallels between the different datasets. 
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Abstract 

The potential of memory T cells to provide protection against reinfection is beyond question. 

Yet, it remains debated whether long-term T-cell memory is due to long-lived memory cells. 

There is ample evidence that blood-derived memory phenotype CD8+ T cells maintain 

themselves through cell division, rather than through longevity of individual cells. It has 

recently been proposed, however, that there may be heterogeneity in the lifespans of memory 

T cells, depending on factors such as exposure to cognate Ag. CMV infection induces not 

only conventional, contracting T-cell responses, but also in inflationary CD8+ T-cell 

responses, which are maintained at unusually high numbers, and are even thought to continue 

to expand over time. It has been proposed that such inflating T-cell responses result from the 

accumulation of relatively long-lived CMV-specific memory CD8+ T cells. Using in vivo 

deuterium labelling and mathematical modelling, we found that the average production rates 

and expected lifespans of mouse CMV-specific CD8+ T cells are very similar to those of bulk 

memory-phenotype CD8+ T cells. Even CMV-specific inflationary CD8+ T-cell responses 

that differ 3-fold in size were found to turn over at similar rates. 

 

 

 

 

 

 

 

Abbreviations used in this article: CI, confidence interval; dpi, days post-infection; GC/MS, 

gas chromatography/mass spectrometry; KNL, KCSRNRQYL; MCMV, murine CMV; SL, 

SSIEFARL; 129/Sv, 129S2/SvPas Crl; TCM, central memory T; TEM, effector memory T; 

Tet+, tetramer-positive; TM, total memory T; TN, naive T; YFV, yellow fever virus. 

 



Chapter 1: Turnover of MCMV-expanded CD8+ T cells 
 

 19  
 

Introduction 

Memory CD8+ T cells are a crucial component of the adaptive immune response to viruses. 

Ag-specific memory CD8+ T cells convey immune protection against viral infections that 

may last for long periods of time, sometimes even life-long. There is ample evidence that 

memory T cells isolated from the blood and lymph nodes are relatively short-lived. Their 

lifespan is much shorter than that of naive T (TN) cells, and far shorter than the long-term 

immune protection they convey (Borghans et al., 2018; Crotty and Ahmed, 2004; Hellerstein 

et al., 2003; Macallan et al., 2017, 2004, 2003; Michie et al., 1992; Vrisekoop et al., 2008; 

Wallace et al., 2004; Westera et al., 2013). Memory T-cell populations are heterogeneous, 

both phenotypically and functionally. They consist of phenotypically defined sub-

populations, such as central memory T (TCM) and effector memory T (TEM) cells, and of 

subsets that differ in terms of exposure to their cognate Ag. In vivo deuterium labelling 

studies have shown that different subsets of memory T cells can have different kinetics. CD4+ 

TEM cells were shown to have shorter lifespans than did TCM cells (Macallan et al., 2004), and 

yellow fever virus (YFV)-specific memory T cells generated by vaccination, which can 

persist for years, were found to have longer lifespans than did bulk memory-phenotype cells 

(Akondy et al., 2017). 

CMV infection is a persistent, chronic infection, which, in contrast to YFV vaccination, 

results in continual Ag presentation. CMV is under constant immune surveillance, and it 

triggers ongoing CD8+ T-cell responses that provide effective viral control for long periods of 

time. A hallmark of the CD8+ T-cell response to CMV infection is the steady maintenance or 

accumulation of large populations of virus-specific effector CD8+ T cells over time, a 

phenomenon termed memory inflation (O’Hara et al., 2012). Expanded CD8+ T-cell 

populations specific for unique CMV epitopes can become extraordinarily large, composing 

up to 20% of the total memory T (TM) CD8+ cell pool (Bolinger et al., 2015; Dekhtiarenko et 

al., 2013; Karrer et al., 2003; Kim et al., 2015; Klenerman and Oxenius, 2016; Munks et al., 

2006). These large CMV-specific T-cell responses turned out to be maintained dynamically, 

through continuous production of relatively short-lived cells (Snyder et al., 2008). 

Nevertheless, a face-to-face comparison of the in vivo dynamics of CMV-specific and bulk 

memory-phenotype CD8+ T cells suggested that inflating CMV-specific memory CD8+ T-cell 

responses are composed of cells that are longer-lived than other memory cells. This has led to 

the hypothesis that T-cell inflation arises from the accumulation of relatively long-lived 

CMV-specific memory T cells (Wallace et al., 2011). 

In this study, we addressed this hypothesis using in vivo deuterium labelling and 

mathematical modelling, the state-of-the-art techniques to quantify lymphocyte turnover, in 

the setting of murine CMV (MCMV) infection, a relevant experimental model to study 

memory T-cell inflation (Klenerman and Oxenius, 2016). In contrast to the postulated 

hypothesis that CMV-specific T cells may have extended lifespans, we found no significant 

difference in the expected lifespans of MCMV-specific CD8+ T cells and bulk memory-

phenotype CD8+ T cells. Using recombinant viruses inducing inflationary CD8+ T-cell 
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responses of different magnitudes, we found that MCMV-specific T cells composing small 

and large inflationary T-cell responses had very similar turnover rates. 

 

Materials and Methods 

Mice 

129S2/SvPas Crl (129/Sv) mice were purchased from Charles River Laboratories (Sulzfeld, 

Germany). Mice were housed and handled in accordance with good animal practice as 

defined by the Federation of Laboratory Animal Science Associations and the national animal 

welfare body Die Gesellschaft für Versuchstierkunde (Society of Laboratory Animal 

Science). All animal experiments were approved by the responsible state office (Lower 

Saxony State Office of Consumer Protection and Food Safety, Germany; permit number 

33.19-42502-04-15/1836 and by the Animal Experiments Committee of Utrecht University, 

IVD Utrecht, the Netherlands; DEC AVD115002016714). 

 

Viruses 

Bacterial artificial chromosome-derived recombinant viruses MCMVie2SL and MCMVm45SL 

were generated and propagated as described previously (Dekhtiarenko et al., 2013), and the 

recombinant virus MCMVie2KNL was generated and propagated as described in Borkner et al. 

(Borkner et al., 2017). 

 

In vivo infection 

Female 8-wk-old mice were infected with 2 × 105 PFU of MCMVie2SL (𝑛 = 40), 

MCMVm45SL (𝑛 = 37), or MCMVie2KNL (𝑛 = 41) and housed in specific pathogen-free 

conditions throughout the experiment. Non-infected sex- and age-matched mice were used as 

controls (𝑛 = 10). 

 

Stable isotope labelling 

One hundred twenty days after MCMV infection, mice received 8% deuterated water (99.8% 
2H2O, Cambridge Isotope Laboratories) in their drinking water for 28 days. At day 4, mice 

were given an i.p. boost injection of 15 ml/kg 2H2O in PBS. To determine deuterium 

enrichment in the body water, EDTA plasma was collected during the up- and down-labelling 

phase and was frozen and stored at −80°C until analysis. 
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Sampling and cell preparation 

Spleen, thymus, and blood were isolated at different time points during and after label 

administration. Blood was collected in EDTA tubes. Single-cell suspensions from blood, 

spleen, and thymus were obtained as described previously (Oduro et al., 2016). 

 

Flow cytometry and cell sorting 

To determine the fraction of SSIEFARL (SL) and KCSRNRQYL (KNL) epitope-specific T 

cells, single-cell suspensions from blood and spleen were stained with allophycocyanin-

conjugated SL-Kb or KNL-Db tetramers for 15 min at 4°C. Samples were further stained for 

30 min at 4°C with anti-CD3-allophycocyanin-eFluor 780 (clone 17A2; eBioscience), anti-

CD3e-FITC (clone 145-2C11; BD Phamingen), anti-CD3-V500 (clone 500A2; BD), anti-

CD4-Pacific Blue (clone GK1.5; BioLegend), anti-CD4-Brilliant Violet 650 (clone GK1.5; 

BD Horizon), anti-CD4-allophycocyanin-H7 (GK1.5; BD), anti-CD8a-PerCP/Cy5.5 (clone 

53-6.7; BioLegend), anti-CD8a-Brillian Violet 786 (clone 53-6.7; BD), anti-CD44-Alexa 

Fluor 700 (clone IM7; BioLegend), anti-CD44-Alexa Fluor 450 (IM7; eBioscience), anti-

CD62L-eVolve 605 (clone MEL-14; eBioscience), anti-CD62L-FITC (MEL-14; 

eBioscience), and anti-CD127-PE/Cy7 (clone A7R34; BioLegend) mAbs. For intracellular 

staining, cells were subsequently fixed for 20 min at room temperature with 100 𝜇l of 

fixation/permeabilization buffer of the FoxP3 Transcription Factor Staining Set 

(eBioscience), permeabilized for 15 min at room temperature in 100 𝜇l of permeabilization 

buffer (eBioscience) and stained with Ki-67-PE (clone 16A8; BioLegend) in 100 𝜇l of 

permeabilization buffer for 30 min at room temperature. Cells were analyzed on an 

LSRFortessa flow cytometer using FACSDiva software (BD Biosciences) and FlowJo 

software (version 9.8.3). For infected mice, tetramer-positive (Tet+) (CD3+CD8+Tet+) T cells 

and tetramer-negative TN (CD3+CD8+Tet−CD62L+CD44−), TCM 

(CD3+CD8+Tet−CD62L+CD44+), and TEM (CD3+CD8+Tet−CD62L−CD44+) cells were sorted 

from spleen on a FACSAria II SORP (BD Biosciences), FACSAria III (BD Biosciences), or 

MoFlo XDP cell sorter (Figure S1.1a). For uninfected mice, TN, TCM, and TEM cells were 

sorted from spleen on a FACSAria III (BD Biosciences). 

 

DNA isolation 

Genomic DNA was isolated from total thymocytes and from sorted T-cell subsets from 

MCMV-infected and uninfected mice according to the manufacturer’s instructions using the 

NucleoSpin Blood QuickPure kit (Macherey-Nagel) and stored at −20°C until further 

analysis. 
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Measurement of 2H2O enrichment in body water and DNA 

Deuterium enrichment in plasma and DNA was analysed by gas chromatography/mass 

spectrometry (GC/MS) using an Agilent 5973/6890 GC/MS system (Agilent Technologies). 

Plasma was derivatized to acetylene (C2H2) as previously described (Westera et al., 2013). 

The derivative was injected into the GC/MS system equipped with a PoraPLOT Q 25 × 0.32 

column (Varian) and measured in selected ion monitoring mode monitoring ions m/z 26 

(M+0) and m/z 27 (M+1). From the ratio of ions, plasma deuterium enrichment was 

calculated by calibration against standard samples of known enrichment. DNA obtained from 

sorted lymphocytes and granulocytes was hydrolysed to deoxyribonucleotides and 

derivatized to pentafluoro tri-acetate (Westera et al., 2013). The derivative was injected into 

the GC/MS system equipped with a DB-17 column (Agilent Technologies) and measured in 

selected ion monitoring mode monitoring ions m/z 435 (M+0) and m/z 436 (M+1). From the 

ratio of ions, we calculated DNA deuterium enrichment by calibration against 

deoxyadenosine standards of known enrichment, as previously described (Westera et al., 

2015). 

 

Mathematical modelling of T-cell dynamics 

We deduced the dynamics of tetramer-negative TN, tetramer-negative TCM, tetramer-negative 

TEM, and tetramer-negative TM (calculated as the weighted average of TCM and TEM cells) 

CD8+ cells, and of Tet+CD8+ T cells from the deuterium labelling data using previously 

published mathematical models (Asquith et al., 2002; Vrisekoop et al., 2008). In brief, to 

monitor the changing levels of deuterium in body water during the course of the experiment, 

a simple label enrichment/decay curve was fitted to the deuterium enrichment in plasma 

(Vrisekoop et al., 2008): 

 𝑆(𝑡) = {
𝑓(1 − 𝑒−𝛿𝑡) + 𝑆0𝑒−𝛿𝑡, 𝑡 ≤ 𝜏

[𝑓(1 − 𝑒−𝛿𝜏) + 𝑆0𝑒−𝛿𝜏]𝑒−𝛿(𝑡−𝜏), 𝑡 > 𝜏
 (1.1) 

 

where 𝑆(𝑡) is the fraction of deuterium in plasma at time 𝑡 (in days), 𝑓 is the predicted 

plateau value of deuterium enrichment in the plasma, 𝛿 is the turnover rate of body water per 

day, 𝑆0 is the plasma enrichment level attained due to the i.p. 2H2O boost, and 2H2O 

administration was stopped at 𝜏 = 28 days. The level of label incorporation in the different 

cell subsets was described by 

 
𝑑𝑙(𝑡)

𝑑𝑡
= 𝑝𝑐𝑆(𝑡) − 𝑑∗𝑙(𝑡) (1.2) 

 

Here, 𝑙(𝑡) is the fraction of labelled DNA in the cell subset, 𝑝 is the average (per capita) 

production rate of the cells, 𝑑∗ is the average (per capita) rate at which labelled cells are lost 

(which need not be equal to the average loss rate of cells in the population (Asquith et al., 
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2002)), and 𝑐 is an amplification factor, which accounts for the multiple hydrogen atoms that 

can be replaced by deuterium (see Ref. (Vrisekoop et al., 2008)). To estimate the value of 𝑐, 

we first fitted equation 1.2 for a kinetically homogeneous population (𝑝 = 𝑑∗) (Westera et 

al., 2013) to the level of deuterium enrichment in the DNA of total thymocytes, as they are 

known to have a high turnover rate (Westera et al., 2013). The resulting estimated value of 𝑐 

was subsequently fixed to estimate the turnover rates of TN, TCM, TEM, and TM cells and 

Tet+CD8+ T cells. The best fits to the plasma and thymocyte data are shown in Figure S1.2 

(see Table S1.1 for the estimated parameter values). When modelling the deuterium 

enrichment levels of TN cells, a time delay (∆) was introduced between T-cell production in 

the thymus and the appearance of labelled DNA in TN cells in the spleen, based on previous 

observations (Westera et al., 2013). This was done by incorporating a delayed labelling curve 

of the deuterium enrichment in plasma [i.e., 𝑆(𝑡 − ∆)] in equation 1.2 when fitting the 

dynamics of TN cells. 

To estimate the rate of change in cell numbers, 𝑟, in the TN, TCM, TEM, TM, and Tet+ T-cell 

populations, we used a simple exponential growth/decay model, 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑟𝑁(𝑡) =

(𝑝 − 𝑑)𝑁(𝑡), which we fitted to the cell number data from the start of the experiment (i.e., 

120 days post-infection (dpi)) until 550 days later (see Table 1.2 and Figure S1.3). Results 

were very similar when 𝑟 was estimated based on cell numbers during the first 140 days of 

the experiment. Based on the resulting value of 𝑟 and the estimated value of 𝑝 from equation 

1.2, the cellular loss rates, 𝑝 − 𝑟, were calculated (see Table 1.2). The expected lifespans of 

cells can be calculated as the inverse of their average loss rates, that is, as 1/𝑑. 

Best fits to the labelling and cell number data were determined by minimizing the sum of 

squared residuals using the R function modCost() of the FME package (Soetaert et al., 2010). 

The fractions of labelled DNA, x, were transformed using the function arcsin(sqrt(x)) before 

the fitting procedure. Fitting the cell number data yielded estimates for the initial cell number 

at the start of the experiment at 120 dpi, 𝑁(0), and the exponential growth rate, 𝑟. The 95% 

confidence intervals (CIs) on the estimated parameters for both labelling and cell number data 

were determined using a bootstrap method where the data points were re-sampled 500 times. 

Fitting the exponential growth/decay model to these 500 data samples yielded 500 bootstrap 

trajectories. The 95% CI trajectories for the cell numbers were calculated by taking the 95% 

CI of these 500 bootstraps at each time point. 

 

Statistical analysis 

Statistical analyses were performed using GraphPad Prism. Comparisons between two and 

more groups were performed using Kruskal–Wallis and Dunn’s multiple comparison tests. A 

p-value < 0.05 was considered significant. 
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Results 

Induction of inflationary CD8+ T-cell responses of different magnitude and 

phenotype 

To study the kinetics of MCMV-specific and inflationary CD8+ T-cell responses during the 

memory phase of MCMV infection, we made use of 129/Sv mice to benefit from the well-

defined H2b MHC class I haplotype and the well-characterized arrays of epitopes associated 

with it, while circumventing a protective dominant role of NK cells in controlling the 

infection (Dekhtiarenko et al., 2013; Mitrović et al., 2012). The avidity of the viral epitope 

together with its context of gene expression define the kinetics and magnitude of the cognate 

inflationary CD8+ T-cell response (Dekhtiarenko et al., 2013). We used three well-

characterized MCMV mutants expressing low-avidity or high-avidity epitopes in different 

genetic contexts: the recombinant MCMVie2SL, which expresses the high-avidity HSV-1 

epitope SL inserted at the C terminus of the immediate-early 2 (ie2) gene (Dekhtiarenko et 

al., 2013); the MCMVie2KNL mutant expressing the low-avidity epitope KNL also inserted at 

the C terminus of the ie2 gene (21); and the MCMVm45SL recombinant, which expresses the 

same epitope as MCMVie2SL inserted in a different genetic context, the early m45 gene 

(Dekhtiarenko et al., 2013). 

SL-specific and KNL-specific CD8+ T cells were analysed 120 dpi using tetramer staining to 

determine the magnitude and the phenotype of the inflating T-cell response. As previously 

described (Borkner et al., 2017), the SL and the KNL epitopes expressed within the ie2 gene 

induced larger inflationary T-cell responses than does the SL epitope expressed within the 

m45 gene (Figure 1.1a). MCMVie2SL induced the inflationary response of the highest 

magnitude; a median of 13% of total CD8+ T cells were SL Tet+. The size of the specific 

response to MCMVie2KNL was ~9% of the CD8+ T cell pool, and significantly larger than the 

response to MCMVm45SL, which remained below 5%. Yet, even the latter recombinant virus 

induced a clearly detectable Tet+CD8+ T-cell population (Figure 1.1a). 

Ag-specific CD8+ T cells composing an inflationary response typically present an effector 

phenotype and maintain their effector function (Klenerman and Oxenius, 2016). Accordingly, 

the vast majority (>80%) of Tet+CD8+ T cells composing large inflationary responses 

(MCMVie2SL and MCMVie2KNL) had a TEM cell phenotype (CD44+CD62L–). In contrast, only 

60% of the Tet+CD8+ T cells induced by MCMVm45SL presented a TEM cell phenotype, 

whereas the remaining 40% expressed TCM cell markers (CD44+CD62L+) (Figures 1.1b, 

S1.1b and S1.1c). Less than 2% of the Tet+ T cells had a TN cell phenotype (CD44−CD62L+). 

 

Ki-67 expression pattern of CD8+ T cells does not differ between MCMV-

induced inflationary responses of different magnitude 

To study the dynamics of CD8+ T cells in the stable phase of chronic MCMV infection, we 

first determined cell proliferation by measuring Ki-67 expression. The fraction of Ki-67hi cel- 
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Figure 1.1: Recombinant viruses induce inflationary responses of different magnitude and phenotype. 

Mice (129/Sv) were infected with MCMVie2SL, MCMVie2KNL, or MCMVm45SL, and at 120 dpi 

Tet+CD8+ T cells from spleen were characterized. (a) Median percentage of Tet+ cells within CD8+ T 

cells over time (𝑛 = 4 − 7 per time point per group). For significance, p-value = 0.04 for pooled time 

points of MCMVie2SL versus MCMVie2KNL, p-value < 0.0001 for pooled time points of MCMVie2SL 

versus MCMVm45SL, and p-value = 0.0006 for pooled time points of MCMVie2KNL versus MCMVm45SL. 

Pooled samples of different time points were compared using Kruskal–Wallis and Dunn’s multiple 

comparisons test. Data are pooled from two independent experiments. (b) Percentage of TEM (left; 

CD44+CD62L−) and TCM (right; CD44+CD62L+) cells within the Tet+CD8+ T-cell pool (MCMVie2SL 

𝑛 = 39, MCMVie2KNL 𝑛 = 41, MCMVm45SL 𝑛 = 38). Data are pooled from two independent 

experiments. Bars represent the median percentage. For the % of TEM cells, p-value > 0.999 for pooled 

time points of MCMVie2SL versus MCMVie2KNL, p-value < 0.0001 for pooled time points of 

MCMVie2SL versus MCMVm45SL, and p-value < 0.0001 for pooled time points of MCMVie2KNL versus 

MCMVm45SL. For the % of TCM cells, p-value = 0.976 for pooled time points of MCMVie2SL versus 

MCMVie2KNL, p-value < 0.0001 for pooled time points of MCMVie2SL versus MCMVm45SL, and p-value 

< 0.0001 for pooled time points of MCMVie2KNL versus MCMVm45SL. Pooled samples of different time 

points were compared using Kruskal–Wallis and Dunn’s multiple comparison tests. Median 

percentages of TN, TCM, and TEM cells within tetramer-negative and Tet+CD8+ T cells in MCMV-

infected and uninfected mice are shown in Figure S1.1b. Changes in the median percentage of TN, 

TCM, and TEM CD8+ cells over time are shown in Figure S1.1c. 
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ls within TN, TCM, and TEM CD8+ cells was not significantly different between uninfected 

mice and chronically infected mice for all three viruses (Figure 1.2). In line with previous 

reports (Sun et al., 2016), we found that the percentage of Ki-67hi cells was the lowest within 

TN cells (median over all groups of 0.4%), intermediate within TCM cells (median of 4.5%), 

and the highest within TEM cells (median of 12%) (Figure 1.2b). Approximately 5% of the 

Tet+CD8+ T cells were Ki-67hi. For each viral infection, the total fraction of Ki-67hi cells 

within the Tet+ cells was not significantly different from that of memory phenotype T cells, 

and it was in fact between the Ki-67 expression levels of TEM and TCM cells (Figure 1.2b). 

Based on Ki-67 expression, we thus found no indication that inflated MCMV-specific CD8+ 

T cells have different proliferation rates than do bulk memory phenotype CD8+ T cells. 

Because Ki-67 only provides a snapshot marker of T-cell proliferation, we next studied the 

average production and loss rates of the cells using in vivo deuterium labelling. 

 

Kinetics of TN, TCM, and TEM CD8+ cells during chronic MCMV infection 

The in vivo kinetics of memory CD8+ T cells have primarily been studied in bulk memory 

phenotype T cells (Westera et al., 2013). Here, we quantified the dynamics of TN, TCM, TEM 

and TM CD8+ cell subsets in chronically infected and uninfected 129/Sv mice. Mice received 
2H2O for 4 wk and were sacrificed at different time points during the labelling and the de-

labelling period. We subsequently used previously published mathematical models (Westera 

et al., 2013) (see Materials and Methods) to quantify the average production and loss rates 

of TN, TCM, TEM, and TM CD8+ cells based on their deuterium labelling data. 

Deuterium enrichment curves of TN, TCM, TEM, and TM cells were very similar in 

MCMVie2SL-, MCMVie2KNL-, and MCMVm45SL- infected animals (Figure 1.3). In line with 

this, the best fits of the model to the data yielded similar estimates for the average production 

rates 𝑝 and the average loss rates of labelled cells 𝑑∗ within the TN, TCM, TEM, and TM CD8+ 

cell populations for the three different viruses (Figure 1.4a, Table 1.1). The estimated 

average production rate 𝑝 of TN cells during chronic MCMV infection was 0.0090 per day for 

MCMVie2SL, 0.0095 per day for MCMVie2KNL, and 0.0077 per day for MCMVm45SL, 

suggesting that TN cells turn over relatively little. In contrast, TCM cells turned over 

significantly, with average production rates of 0.0132 per day for MCMVie2SL, 0.0151 per day 

for MCMVie2KNL, and 0.0139 per day for MCMVm45SL. The average production rates of TEM 

cells were consistently the highest, with 0.0204 per day for MCMVie2SL, 0.0229 per day for 

MCMVie2KNL, and 0.0205 per day for MCMVm45SL (Table 1.1). 

 

The turnover rate of MCMV-specific CD8+ T cells is independent of the 

magnitude of the inflationary response 

To investigate how the size of an MCMV-specific memory T-cell response is related to its 

turnover (Wallace et al., 2011), we quantified the turnover rates of Tet+CD8+ T cells compos- 
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Figure 1.2: Percentage Ki-67hi cells within CD8+ T-cell subsets in MCMV-infected and uninfected 

mice. (a) Representative Ki-67 staining of TN, TCM, and TEM cells and Tet+CD8+ T cells from blood of 

an MCMVm45SL-infected mouse at 17 mo post-infection. (b) Fraction of Ki-67hi TN, TCM, and TEM cells 

and Tet+CD8+ T cells from blood of MCMVie2SL-infected (𝑛 = 4 − 6), MCMVie2KNL-infected (𝑛 =

4 − 5), and MCMVm45SL-infected (𝑛 = 4 − 8) mice and age-matched and sex-matched uninfected 

mice (CTRL, 𝑛 = 8). For MCMVieKNL, p-value = 0.418 for pooled time points of % Ki-67hi Tet+ 

versus TEM cells, p-value > 0.999 for pooled time points of % Ki-67hi Tet+ versus TCM cells, and p-

value = 0.224 for pooled time points of % Ki-67hi Tet+ versus TN cells; for MCMVie2SL, p-value = 

0.583 for pooled time points of % Ki-67hi Tet+ versus TEM cells, p-value > 0.999 for pooled time 

points of % Ki-67hi Tet+ versus TCM cells, and p-value = 0.389 for pooled time points of % Ki-67hi 

Tet+ versus TN cells; for MCMVm45SL, p-value = 0.938 for pooled time points of % Ki-67hi Tet+ versus 

TEM cells, p-value > 0.999 for pooled time points of % Ki-67hi Tet+ versus TCM cells, and p-value = 

0.088 for pooled time points of % Ki-67hi Tet+ versus TN cells. Pooled samples of different time points 

were compared using Kruskal–Wallis and Dunn’s multiple comparison tests. Data are pooled from 

two independent experiments. Bars represent median percentages. 

 

ing large (MCMVie2SL) and intermediate (MCMVie2KNL) inflationary responses, as well as a 

low inflationary response (MCMVm45SL). Despite the clear differences in the height of the 

Ag-specific responses induced by these three viruses, the corresponding deuterium 

enrichment curves of Tet+CD8+ T cells were very similar (Figure 1.3). The best fits of the 

model to the deuterium-enrichment data of SL Tet+CD8+ T cells in MCMVie2SL- and 
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MCMVm45SL-infected mice (Figure 1.3) confirmed that, despite the 3-fold difference in the 

size of these inflationary responses (Figure 1.1a) and their different TCM and TEM 

compositions (Figure 1.1b), their average production rates 𝑝 and loss rates of labelled cells 

𝑑∗ were not significantly different (Figure 1.4a, Table 1.1). We estimated that SL Tet+CD8+ 

T cells had an average production rate of 0.0169 per day in MCMVie2SL-infected mice and 

0.0161 per day in MCMVm45SL-infected mice. For KNL-specific T cells, which comprised the 

intermediate inflationary response, we found an average production rate of 0.0195 per day 

(Table 1.1). Thus, there were no substantial differences in the average turnover rates of 

Tet+CD8+ T cells composing large, intermediate, and low inflationary responses. 

 

Figure 1.3: Deuterium labelling of tetramer-negative and Tet+CD8+ T cells in MCMV-infected mice. 

Deuterium enrichment in the DNA of TN, TCM, TEM, and TM cells and Tet+CD8+ T cells 120 d after 

MCMVie2SL, MCMVie2KNL, or MCMVm45SL infection. The curves represent the best fits of the model 

(Westera et al., 2013) to the deuterium enrichment data. Label enrichment was scaled between 0 and 

100% by dividing all enrichment levels by the estimated maximum enrichment level of thymocytes 

(Figure S1.2, Table S1.1). Parameter estimates corresponding to the best fits are given in Table 1.1. 

 

MCMV-specific CD8+ T cells do not have significantly longer lifespans than 

do memory phenotype CD8+ T cells 

Finally, to investigate the hypothesis that accumulation of inflationary responses in MCMV is 

due to accumulation of long-lived cells, we compared the average turnover rates of MCMV- 

specific (Tet+) CD8+ T cells to those of tetramer-negative TM CD8+ cells (see Materials and 

Methods). When comparing the best fits of the individual datasets, we found no statistical 

indication that TM cells and Tet+ T cells had different production rates 𝑝 or loss rates of 

labelled cells 𝑑∗ (Figure 1.4a, Table 1.1). 

Since the average loss rate 𝑑∗ of labelled cells may not be representative of the cell 

population as a whole (Asquith et al., 2002), we used additional information on absolute cell 
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CD8+ T-cell subset MCMVie2SL MCMVie2KNL MCMVm45SL 

Average production rate per day (𝒑) 

TN 
0.0090 (0.0084; 

0.0095) 

0.0095 (0.0085; 

0.0107) 

0.0077 (0.0068; 

0.0089) 

TCM 
0.0132 (0.0114; 

0.0154) 

0.0151 (0.0133; 

0.0177) 

0.0139 (0.0126; 

0.0153) 

TEM 
0.0204 (0.0184; 

0.0229) 

0.0229 (0.0203; 

0.0270) 

0.0205 (0.0192; 

0.0221) 

TM 
0.0169 (0.0149; 

0.0188) 

0.0192 (0.0172; 

0.0219) 

0.0182 (0.0171; 

0.0195) 

Tet+ 
0.0169 (0.0158; 

0.0182) 

0.0195 (0.0175; 

0.0222) 

0.0161 (0.0147; 

0.0176) 

Average loss rate of labelled cells per day (𝒅∗) 

TN 
0.0090 (0.0084; 

0.0095) 

0.0095 (0.0085; 

0.0107) 

0.0077 (0.0068; 

0.0089) 

TCM 
0.0131 (0.0111; 

0.0160) 

0.0113 (0.0093; 

0.0142) 

0.0115 (0.0102; 

0.0130) 

TEM 
0.0146 (0.0130; 

0.0163) 

0.0153 (0.0134; 

0.0180) 

0.0157 (0.0143; 

0.0170) 

TM 
0.0141 (0.0124; 

0.0158) 

0.0135 (0.0118; 

0.0160) 

0.0146 (0.0135; 

0.0161) 

Tet+ 
0.0116 (0.0104; 

0.0128) 

0.0120 (0.0100; 

0.0143) 

0.0126 (0.0113; 

0.0140) 

Table 1.1: Average production rates and loss rates of labelled cells in MCMV-infected mice. 

Estimated parameters and their corresponding 95% confidence intervals are shown. For TN cells, we 

report the best fits of the model with 𝑝 = 𝑑, as allowing for different values of 𝑝 and 𝑑 did not 

significantly improve the fit to the data (for significance, p-value of F-test = 1 for MCMVie2SL, p-value 

of F-test = 0.09 for MCMVie2KNL, and p-value of F-test = 0.54 for MCMVm45SL). 

 

numbers to compare the average loss rates 𝑑 of Tet+ and TM cells. Although these absolute 

cell numbers are notoriously noisy, we estimated a slight increase in cell numbers in the TCM, 

TEM, TM, and Tet+CD8+ T-cell populations (Table 1.2, Figure S1.3). The average production 

rates 𝑝 may thus not be equal to the average loss rates 𝑑 of cells. Even when accounting for 

this rate of increase, 𝑟, in cell numbers, we found very similar average loss rates 𝑑 (where 

𝑑 = 𝑝 − 𝑟, see Materials and Methods) of TM and Tet+ cells in MCMVie2SL-, MCMVie2KNL-, 

and MCMVm45SL-infected mice (Figure 1.4b, Table 1.2). We thus found no evidence for the 

previously proposed idea that CMV-specific T cells are longer-lived than other memory T 

cells (Wallace et al., 2011). 

Although an advantage of the current study is the face-to-face comparison of Tet+ and 

tetramer-negative cells in the same mouse, it is more than likely that the tetramer-negative T-

cell populations still contained MCMV-specific CD8+ T cells specific for other MCMV 

epitopes (Borkner et al., 2017; Dekhtiarenko et al., 2013; Munks et al., 2006). We wondered 
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whether this could have masked possible differences in the turnover of MCMV-specific and 

non-MCMV-specific memory CD8+ T cells. To investigate this, we compared the deuterium 

enrichment levels of TN, TCM, TEM, and TM cells in MCMV-infected mice to those in 

uninfected mice. Because these levels were very similar (Figure S1.4), we conclude that the 

expected lifespan of MCMV-specific memory CD8+ T cells is not significantly different from 

that of other memory-phenotype CD8+ T cells. 

 

Figure 1.4: Average production and loss rates of T cells in MCMV-infected mice. (a and b) 

Estimated average production rates 𝑝 per day (a) and average loss rates 𝑑 per day (b) for TN, TCM, TEM 

and TM CD8+ T cells and Tet+ memory CD8+ T cells. (a) Average production rates (𝑝) were based on 

the best fits of the deuterium labelling data of Figure 1.3. Their values are reported in Table 1.1. 

Whiskers represent the corresponding 95% confidence intervals. (b) The average loss rates (𝑑) were 

calculated from 𝑑 = 𝑝 − 𝑟, using the best estimates of 𝑝 (Table 1.1) and the estimated growth rate (𝑟) 

of the specific T-cell population (Table 1.2). Because the average loss rates were calculated based on 

other parameters, they are given without 95% confidence intervals. 

 

Discussion 

During the chronic phase of MCMV infection, we found no evidence that MCMV-specific 

CD8+ T cells are longer-lived or produced at higher rates than do bulk memory-phenotype 

CD8+ T cells. These findings are in line with our recent findings in humans, which showed 

that CMV-specific CD8+ T cells had similar turnover rates as bulk memory CD8+ T cells (van 

den Berg et al., 2021). Both outcomes are remarkable in the light of a previously published 

deuterated-glucose labelling study in humans, which reported that CMV-specific CD8+ T 

cells incorporated less deuterium than did CD45RO+ (memory) T cells (Wallace et al., 2011), 

which led to the hypothesis that inflating responses are composed of relatively long-lived 

memory T cells. We found that the turnover rates of Ag-specific T cells composing 

inflationary responses that varied up to 3-fold in size were not significantly different. This 

adds further support to our conclusion that the magnitude of inflationary responses is not 

explained by extended lifespans of MCMV-specific T cells. 

To interpret the deuterium labelling data, we used a previously proposed kinetic 

heterogeneity model (Asquith et al., 2002), which yields the average production rate 𝑝 of 

cells, as well the average loss rate 𝑑∗ of labelled cells. It was previously explained that cell 
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populations in steady state typically yield 𝑑∗ > 𝑝, because 𝑝 is representative of all cells in 

the population, whereas 𝑑∗ is biased toward cells that have just divided (Asquith et al., 2002). 

CD8+ T-cell subset MCMVie2SL MCMVie2KNL MCMVm45SL 

Average growth/decay rate of the cell population per day (𝒓) 

TN 
-0.00093 (-0.0028; 

0.00015) 

-0.00094 (-0.0039; 

0.00065) 

-0.0016 (-0.004; -

0.0004) 

TCM 
0.0014 (0.00032; 

0.0024) 

0.0017 (-0.0028; 

0.0027) 

0.0027 (0.0007; 

0.0044) 

TEM 
0.0026 (0.0013; 

0.0037) 

0.0040 (0.00025; 

0.0068) 

0.0015 (0.00014; 

0.0028) 

TM 
0.0020 (0.000895; 

0.0029) 

0.0030 (-0.00033; 

0.0043) 

0.0021 (0.00083; 

0.0033) 

Tet+ 
0.0032 (0.0021; 

0.0045) 

0.001 (-0.0021; 

0.008) 

0.0014 (-0.00025; 

0.0029) 

Calculated average T-cell loss rate per day (𝒅) 

TN 0.0099 0.0105 0.00939 

TCM 0.0118 0.0134 0.0112 

TEM 0.0178 0.0189 0.0190 

TM 0.0149 0.0162 0.0161 

Tet+ 0.0137 0.0185 0.0147 

Table 1.2: Average population growth rates and average loss rates in MCMV-infected mice. T-cell 

loss rates (𝑑) were calculated using the estimated average production rates (𝑝) (from the deuterium 

labelling experiments, Table 1.1) and the estimated overall growth/decay rates (𝑟) of the specific T-

cell populations (followed for 550 days, Figure S1.3) (see Materials and Methods). Overall 

growth/decay rates of the specific T-cell populations were estimated by simultaneously estimating 

each population size at the start of the experiment (i.e., 120 dpi), 𝑁(0), of which the values are given 

in Table S1.1. Estimated growth rates are reported with their corresponding 95% confidence intervals 

in brackets. Because the average loss rates were calculated based on other parameters, they are given 

without 95% confidence intervals. 

 

The estimated value of 𝑝 can thus safely be interpreted as the average production rate of cells, 

which apparently does not differ between inflationary CMV-specific T-cell responses and 

bulk memory T cells. The cellular production that we measured by in vivo deuterium 

labelling captures both T-cell division as well as a possible influx of cells from the naive 

compartment. Although it has previously been shown that naive T cells can continuously be 

recruited into the MCMV-specific T-cell response (Snyder et al., 2008), the contribution of 

this influx is probably relatively small, as memory inflation in mice was shown to be hardly 

affected by thymectomy (Loewendorf et al., 2011; Welten et al., 2019). Thus, assuming that 

the vast majority of MCMV-specific cells are formed by peripheral T-cell division, and not 

by continuous recruitment of new naive MCMV-specific T cells into the memory pool, the 

similar production rates of Tet+ and TM cells imply that MCMV-specific T cells do not divide 

more frequently than do other memory T cells, which is supported by their similar Ki-67 
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expression levels. It has recently been shown that the MCMV-specific inflationary T-cell 

response is “fueled” by a subset of TCF1+ MCMV-specific T cells (Welten et al., 2020), and 

that continual, stochastic encounters with MCMV maintain the inflationary response (Smith 

et al., 2020). 

To compare the average loss rates of Tet+ and TM cells, we used additional information on 

absolute cell numbers, which confirmed that also the expected lifespans of Tet+ and TM cells 

are very similar. We found that the expected lifespan (calculated as 1/𝑑) of bulk memory-

phenotype T cells was ~ 65 days, whereas that of MCMV-specific T cells was 73 days for the 

large inflationary response in MCMVie2SL-infected mice, 54 days for the intermediate 

inflationary response in MCMVie2KNL-infected mice, and 68 days for the low inflationary 

response in MCMVm45SL-infected mice. These estimates are well in line with previous studies 

showing the dynamic behaviour of inflating responses (Snyder et al., 2008). We thus found 

no evidence for the previously proposed idea that CMV-specific T cells are longer-lived than 

other memory T cells (Wallace et al., 2011). Instead, our data suggest that the explanation for 

the size differences between MCMV-specific CD8+ T-cell responses and for memory 

inflation in general should be sought earlier during infection. In line with this, several studies 

have shown that the inflationary potential of CMV-specific T cells is set early, during the 

acute phase of the response (Snyder et al., 2008; Welten et al., 2019), and is linked to the 

number of primed KLRG1− CMV-specific CD8+ T cells (Baumann et al., 2019) and to the 

early transcriptomic profile and TCM cell precursor content of the CMV-specific CD8+ T cells  

(Grassmann et al., 2020). 

Non-steady cell numbers in some of the populations may explain why we sometimes found 

values of 𝑑∗ lower than 𝑝 (see Table 1.1). This is typically not observed in deuterium 

labelling experiments (Asquith et al., 2002), and it suggests that cells that have recently 

divided live longer than other cells in the population. Alternatively, for populations that are 

not in steady state, if cellular turnover is dependent on cell densities, average production rates 

may decrease during the labelling experiment, although cell numbers are increasing. This 

could explain why, contrary to what is typically observed for populations in steady state, 

some turnover rates during the de-labelling phase were lower than during the up-labelling 

phase (see Chapter 2). In this light, it is interesting to note that the T-cell repertoire against 

CMV has recently been shown to continuously evolve during chronic infection, in that the 

relative immunodominance of high-affinity clones declines during chronic infection, most 

likely due to cellular senescence (Schober et al., 2020). 

A previous study in humans reported that YFV-specific CD8+ T cells triggered upon YFV 

vaccination divide sporadically, approximately every 666 days (Akondy et al., 2017), and less 

than bulk memory T cells. It was argued that the shorter intermitotic times of bulk memory T 

cells probably reflect their continuous Ag stimulation (Akondy et al., 2017). In line with this 

hypothesis, we found that MCMV-specific CD8+ T cells, which are repeatedly exposed to 

their cognate Ag, have similar life- spans as bulk memory-phenotype CD8+ T cells, which 

may also be continuously exposed to commensal and environmental Ags. However, the 

observation that lymphocytic choriomeningitis virus-specific memory CD8+ T cells 

transferred into naive mice had similar turnover rates to those of bulk memory-phenotype 
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CD8+ T cells (Choo et al., 2010) suggests that even Ag-specific T cells maintained in the 

absence of cognate Ag can turnover as fast as bulk memory-phenotype T cells. Although we 

cannot exclude the possibility that the differences in the maintenance of YFV-, MCMV-, and 

lymphocytic choriomeningitis virus-specific memory CD8+ T cells are due to mouse and 

human differences, the characteristics of different Ag- specific memory T cells may also 

depend on the nature of the infection, the duration of the stimulus, and the concomitant 

response to other Ags. It is therefore perhaps not surprising that Ag-specific T-cell responses 

against different infections have different dynamics (Althaus et al., 2007). Future studies into 

the dynamics of memory T cells specific for Ags that are presented persistently (chronic), 

intermittently (latent reactivating), or only once (acute) are needed to gain more insight into 

how Ag-specific memory T-cell responses are maintained in mice and humans. 

Chronic CMV infection in both mice and humans is under constant immune surveillance and 

triggers ongoing CD8+ T-cell responses. It is thought that CMV infection modulates the 

peripheral lymphoid pool (Chidrawar et al., 2009; Derhovanessian et al., 2009) and affects T-

cell differentiation and function (Miles et al., 2008), not only of CMV-specific T cells but 

also of T cells with other specificities (Lanfermeijer et al., 2021). Under this hypothesis, we 

directly compared the dynamics of TN, TCM, TEM, and TM cells in uninfected and chronically 

MCMV-infected mice (Figure S1.4) and found no significant differences in their kinetics. 

Despite differences in the composition of the T-cell pool, our results therefore suggest that 

the dynamics of non-MCMV-specific CD8+ T cells are not substantially affected during 

chronic MCMV infection. We previously observed that also cellular immune function was 

maintained during latency, as responses to heterologous virus infection and immune 

protection were not diminished in mice latently infected with MCMV or other herpesviruses 

(Marandu et al., 2015). 

The large prevalence of chronic CMV infection in the human population (>50%) (Cannon et 

al., 2010) and its effect on healthy aging (Aiello et al., 2017; Brodin et al., 2015; Roberts et 

al., 2010), together with the emerging interest in CMV-based vector vaccines (Bolinger et al., 

2015), highlight the need to understand how CMV-specific CD8+ T-cell responses are 

maintained. In vivo MCMV infection provided us with the means to address fundamental 

questions about the maintenance and turnover of inflated CD8+ T-cell responses. The finding 

that the maintenance of inflationary MCMV-specific CD8+ T cells does not differ from that of 

low inflationary memory CD8+ T cells suggests that inflationary CD8+ T-cell responses, such 

as those induced by CMV-based vector vaccines, may also result in a memory CD8+ T-cell 

response of high magnitude without substantial alterations in the dynamics of the cells. 
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Supplementary Information 

 

Figure S1.1: (a) Sort gating strategy. Strategy for sorting of tetramer-positive CD8+ T cells and 

tetramer-negative TN (CD62L+CD44−), TCM (CD62L+CD44+) and TEM (CD62L−CD44+) CD8+ T cells. 

(b) Composition of the CD8+ T-cell pool in MCMV-infected and uninfected mice. Median 

percentage of TN, TCM and TEM cells within tetramer-negative and tetramer-positive total CD8+ T cells 

(left) and median percentage of TCM and TEM cells within tetramer-negative and tetramer-positive 

memory phenotype CD8+ T cells (CD44+) (right) from MCMV-infected mice (MCMVie2SL (𝑛 = 39), 

MCMVie2KNL (𝑛 = 41), MCMVm45SL (𝑛 = 38)) and age- and sex- matched uninfected mice (CTRL 
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(𝑛 = 10)). (c) Composition of the CD8+ T-cell pool over time in MCMV-infected and uninfected 

mice. Mice (129/Sv) were infected at t=0 with MCMVie2SL, MCMVie2KNL or MCMVm45SL, age- and 

sex-matched uninfected 129/Sv mice were used as controls (CTRL). From 120 dpi onwards, tetramer-

negative and tetramer-positive CD8+ T cells from spleen were characterized. Median percentage of 

TN, TCM and TEM cells within tetramer-negative CD8+ T cells and median percentage of TCM and TEM 

cells within tetramer-positive CD8+ T cells over time (for MCMV-infected mice, 𝑛 = 4 − 7 per time 

point; for CTRL mice, 𝑛 = 2 per time point). 

 

Figure S1.2: Deuterium enrichment in plasma and thymocytes. Deuterium enrichment in the body 

water (plasma) and thymocytes. Symbols represent individual measurements during the up- and 

down- labelling phases of (a) MCMV-infected mice and (b) age-matched and sex-matched uninfected 

mice. The labelling data of thymocytes were fitted with equation 1.2 assuming 𝑝 = 𝑑∗, and their label 

enrichment was scaled between 0 and 100% by normalizing for their estimated maximum level of 

deuterium enrichment. The enrichment curves of thymocytes were used to normalize the deuterium 

enrichment data of the different T-cell subsets (see Material and Methods). Parameter estimates of 

the best fits are given in Table S1.1. 
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Figure S1.3: Estimation of the growth/decay rate 𝒓 of the different T-cell populations. We 

estimated the rate of change in cell numbers, 𝑟, and the cell numbers at the start of the experiment 

(i.e., 120 days p.i.), 𝑁(0), in the TN, TCM, TEM, TM, and Tet+ T-cell populations of MCMV-infected 

mice by fitting a simple exponential growth/decay model to the observed cell numbers in mice over 

550 days (see Material and Methods). The best fits to the data are given by the red curves. The grey 

curves represent the 95% confidence intervals (CI) and were calculated by taking the 95% CI, at each 

time point, of 500 bootstrap trajectories (see Material and Methods). The estimated values of 𝑟 and 

𝑁(0) and their 95% CI are given in Tables 1.2 and S1.1, respectively. 
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Figure S1.4: Enrichment level in TN, TCM, TEM and TM CD8+ T cells of uninfected mice is similar 

to that of MCMV-infected mice. 2H enrichment in the DNA of TN, TCM, TEM and TM of uninfected 

129/Sv mice (open diamonds) and tetramer-negative TN, TCM, TEM and TM CD8+ T cells of 

MCMVie2SL, MCMVie2KNL or MCMVm45SL infected mice (black symbols, which are also shown in 

Figure 1.3). 
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MCMV-infected 

mice 
Uninfected mice 

Plasma 

𝜹 (per day) 
0.3730 (0.2436; 

0.3844) 

0.2616 (0.1945; 

0.4198) 

𝒇 (per day) 
0.0545 (0.0526; 

0.0829) 

0.0455 (0.0430; 

0.0483) 

𝑺𝟎 0.0006 (0; 0.0007) 0 (0;0) 

Thymocytes 

𝒄 
3.0271 (2.7906; 

3.2116) 

3.9011 (3.5946; 

4.1589) 

𝒑 
0.1839 (0.1507; 

0.2314) 
N.I. 

Estimated population size at start of experiment, 𝑵(𝟎) 

CD8+ T-cell subset MCMVie2SL MCMVie2KNL MCMVm45SL 

TN 
2187085 

(1800056; 2643753) 

2193015 

(1597846; 2908849) 

2286946 

(1855345; 2810501) 

TCM 
394773 

(333631; 467489) 

423450 

(341455; 559050) 

346660 

(283320; 431499) 

TEM 
353468 

(286233; 451371) 

380288 

(258420; 541734) 

614460 

(509244; 760951) 

TM 
763465 

(624839; 918752) 

832600 

(643671; 1113140) 

979134 

(819990; 1168923) 

Tet+ 
324228 

(246843; 424190) 

198686 

(117330; 308198) 

109771 

(89367; 132410) 

Table S1.1: Estimated parameters and their corresponding 95% confidence intervals for 

deuterium enrichment in plasma and thymocytes of MCMV-infected and uninfected mice. Since 

allowing for different values of 𝑝 and 𝑑∗ did not significantly improve the description of the labelling 

curve of the thymocytes, we report the best fits of the model with 𝑝 = 𝑑∗. For uninfected mice, the 

turnover rate of thymocytes was non-identifiable (N.I.). Estimated values of 𝑵(𝟎). Overall 

growth/decay rates 𝑟 of the specific T-cell populations (Figure S1.3 and Table 1.2) were estimated by 

simultaneously estimating each population size at the start of the experiment (i.e., 120 days p.i.), 

𝑁(0), of which the values are given below, with 95% CI in brackets. 
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Abstract 

Deuterium labelling experiments are used to infer the kinetic properties of cell populations in 

vivo. A population that is at steady state does not gain labelled DNA at a faster rate than the 

rate at which the labelled DNA is lost, regardless of whether the population is homogeneous 

or heterogeneous. However, recently obtained datasets show that some populations can gain 

labelled DNA faster than they lose it, which does not have any mechanistic explanation yet. 

We studied various mathematical models to search for mechanisms that can account for such 

unexpected labelling data. For a population at steady state, either temporal heterogeneity (i.e., 

cells become longer-lived upon division), or a continued source of labelled precursor cells 

can theoretically generate labelling curves with a faster gain of label compared to the rate of 

loss. However, the effect size (i.e., the difference between the gain and loss rates) is so small 

that these models fall short in describing our experimental data satisfactorily. We show that 

prolonged label availability, and cell populations that are increasing in size, can explain our 

labelling data in a quantitative manner. We subsequently experimentally addressed and 

confirmed both mechanisms in vitro. 
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Introduction 

The use of deuterium to label cellular DNA started in the 1990s (Hellerstein and Neese, 

1992). Administered either in the form of heavy (deuterated) water or deuterated glucose, 

deuterium provides a non-toxic way to study multiple aspects of immune cell behaviour in 

vivo, by following the kinetics of its incorporation in and loss from cellular DNA (Borghans 

et al., 2018; Macallan et al., 2019). Deuterium labelling has been used to quantify cell 

population dynamics both under normal (homeostatic) conditions and upon perturbations 

(Ahmed et al., 2015; Baliu-Piqué et al., 2021; den Braber et al., 2012; Patel et al., 2017). An 

example is the key discovery of increased rates of T-cell loss under duress from HIV, and the 

ability of anti-retroviral therapy to normalise this increased turnover (Hellerstein et al., 1999; 

Mohri et al., 2001). 

Accurate estimation of the rates of cellular processes is essential for understanding how 

normal physiological conditions are maintained (Ahmed et al., 2020; Baliu-Piqué et al., 

2018). Determination of homeostatic loss rates of T cells promises a better understanding of 

the mechanisms involved in the maintenance of immune memory (Baliu-Piqué et al., 2021, 

2018; den Braber et al., 2012; Vrisekoop et al., 2008), which could aid the design of vaccines 

and inform us on how to deal with undesirable immune responses that result in chronic 

inflammation. Therefore, several studies have tried to characterize labelling curves in terms 

of their gain and loss rates, to better understand the mechanisms through which populations 

are maintained (Ahmed et al., 2020; Asquith et al., 2002; Baliu-Piqué et al., 2022; De Boer et 

al., 2012; Ganusov et al., 2010; van Grinsven, 2019; Vrisekoop et al., 2008). 

In a population that is at equilibrium, the number of new cells produced in any given time 

interval, expressed as a fraction of the total population (i.e., the per capita production), equals 

the fraction of the population that is removed. Mathematical models developed for 

interpreting deuterium labelling experiments exploit this steady state assumption because 

labelling is typically done in populations that are thought to be at steady state. Asquith and 

colleagues devised a phenomenological mathematical model with parameters for the per 

capita production rate of the population, 𝑝, and the per capita loss rate of the labelled 

population, 𝑑∗ (Asquith et al., 2002). They pointed out that although production and loss rates 

are expected to be equal in a population that is at steady state, labelling curves often yield 

𝑝 < 𝑑∗. The authors reasoned that such a behaviour is in fact expected for a kinetically 

heterogeneous population. Finite-term labelling results in a labelled population that is skewed 

towards the more rapidly dividing cell subset(s) (Asquith et al., 2002). Thus, the loss rate of 

the labelled population is, on average, higher than the loss rate of the total (labelled + 

unlabelled) population (Asquith et al., 2002). Later, more mechanistic models exploring this 

idea confirmed that a heterogeneous population at steady state would indeed yield estimates 

where 𝑝 < 𝑑∗ (De Boer et al., 2012; Ganusov et al., 2010). 

Several explanations of 𝑝 < 𝑑∗ and 𝑝 = 𝑑∗ labelling curves have been detailed before 

(Asquith et al., 2002; De Boer et al., 2012; Ganusov et al., 2010). Datasets of labelling curves 

with 𝑝 > 𝑑∗ behaviour have also been observed but have not been described mechanistically. 

For example, labelling of MCMV-tetramer+ memory T cells in MCMV-infected mice (Baliu-
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Piqué et al., 2022) and of neutrophil precursors (promyelocytes) in healthy humans (van 

Grinsven, 2019) resulted in labelling curves with 𝑝 > 𝑑∗ behaviour. The 𝑝 > 𝑑∗ labelling 

behaviour would be incompatible with a cell population consisting of a sub-population of 

slow cells and a sub-population of rapid cells, as it would suggest that the labelled population 

got enriched in cells undergoing slow turnover. In other words, it suggests that cells become 

quiescent (or longer-lived) upon division. Therefore, the emergence of datasets with 𝑝 > 𝑑∗ 

behaviour has exposed a major gap in our understanding and interpretation of deuterium 

labelling curves. 

In this article, we look for models that can mechanistically explain labelling curves with a 

gain rate that is higher than the loss rate. We begin by re-introducing the phenomenological 

model proposed by Asquith et al. (Asquith et al., 2002), and the datasets in which the accrual 

of label is faster than its loss, to precisely define what we mean by gain and loss. We then 

develop an analytical approach to determine the relationship between the labelling and de-

labelling rates that can be applied to all models. We show that even though some models can 

qualitatively show the desired 𝑝 > 𝑑∗ behaviour, they nevertheless fail to quantitatively 

explain the data at hand. Finally, we present two models that resolve this issue and 

successfully describe the data quantitatively. The first model allows for prolonged availability 

of label in short-term labelling studies, and the second model relaxes the steady state 

assumption. We provide experimental evidence for both mechanisms. 

 

Models and Results 

A basic and a phenomenological model of labelling dynamics (the 𝒑𝒅∗ 

model) 

For a basic mechanistic model, consider a homogeneous population that is at steady state, �̅�, 

has a source of 𝑠 cells/day, divides at per capita rate 𝑝/day and is lost at per capita rate 𝑑/day 

(equation 2.1a). The dynamics of the cell numbers, 𝑁(𝑡), the number, 𝐿(𝑡), and the fraction, 

𝑙(𝑡) =
𝐿(𝑡)

�̅�
, of labelled DNA in the population is then given by (De Boer and Perelson, 

2013a): 

 𝑑𝑁

𝑑𝑡
= 𝑠 + (𝑝 − 𝑑)𝑁 

(2.1a) 

   

 𝑑𝐿

𝑑𝑡
= 𝑠𝑐𝐷(𝑡) + 𝑝𝑐𝐷(𝑡)�̅� − 𝑑𝐿 

(2.1b) 

   

 𝑑𝑙

𝑑𝑡
= 𝑑(𝑐𝐷(𝑡) − 𝑙) 

(2.1c) 

where   

 �̅� =
𝑠

(𝑑 − 𝑝)
 (2.1d) 
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Here 𝐷(𝑡) is the level of deuterated water or glucose in plasma (or urine), and 𝑐 is the 

intracellular amplification or dilution factor (Ahmed et al., 2015). Note that, in this classic 

model, the label in the cells from the source is proportional to the deuterium concentration in 

plasma or urine (𝐷(𝑡)). 

The labelling curve of such a population has the same gain and loss rates, 𝑑 (equation 2.1c). 

To explain labelling curves where the gain rate is lower than the loss rate, the more 

phenomenological ‘𝑝𝑑∗’ model, which is used to model implicit kinetic heterogeneity in a 

population, was proposed (Asquith et al., 2002): 

 𝑑𝑙

𝑑𝑡
= 𝑝𝑐𝐷(𝑡) − 𝑑∗𝑙 

(2.2) 

 

where 𝑝 and 𝑑∗ were defined as the average per capita production rate of the total population, 

and the average per capita loss rate of the labelled population, respectively. The difference 

between the estimates of 𝑝 and 𝑑∗ depends on the length of the labelling period (Asquith et 

al., 2002), as the labelled population will be enriched in cells with the faster per capita 

turnover rate after a short labelling period, implying that 𝑑∗ > 𝑝. This averages out after a 

long period of labelling, i.e., over time 𝑑∗ → 𝑝, meaning that the fraction of labelled DNA 

will approach the expected asymptote (𝑙(𝑡 → ∞) =
𝑝𝑐𝑓

𝑑∗ = 𝑐𝑓; see equation 2.2, where 

𝐷(𝑡 → ∞) = 𝑓 defines the plateau of body water/glucose enrichment). 

 

Two datasets showing 𝒑 > 𝒅∗ behaviour 

As the 𝑝𝑑∗ model has only two parameters, it is routinely used to find an (initial) estimate for 

the label gain and loss rates. In recent years, a few datasets have surfaced with labelling 

curves that suggest 𝑝 > 𝑑∗. In this section, we discuss the experimental design behind two of 

these datasets and report the estimates of 𝑝 and 𝑑∗ obtained for them. 

 

Promyelocyte data 

 

An example of 𝑝 > 𝑑∗ behaviour can be seen in the labelling of promyelocytes in human 

bone marrow where 𝑝 was estimated to be 86% higher than that of 𝑑∗ (Figure 2.1a). 

Promyelocytes make up the earliest fully committed precursor of granulocytes and were 

measured as part of a short-term deuterium labelling study (with a 5.5 hour labelling period) 

of neutrophil differentiation in the bone marrow (van Grinsven, 2019) (see SI for details on 

experimental design and plasma enrichment). 

The labelling behaviour of the promyelocytes is quite surprising. With an estimated 𝑝 = 

0.26/day, about 6% of the promyelocyte population is labelled after 5.5 hours of label 

administration (Figure 2.1a). This would indicate that the population is expected to approach 

its labelling asymptote (100%) in about 4 days, while the de-labelling curve with an 
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exponential loss rate of 𝑑∗ = 0.14/day indicates that the mean expected residence time of the 

population is about one week (Table 2.1). These estimates seem to suggest that either there 

are other mechanisms at play, or the population is not at steady state, which we regard highly 

unlikely since the experiment was performed under homeostatic conditions. Unfortunately, 

the peak of the labelling curve in this short deuterated glucose study had to be inferred 

(because the first data point is at day 1, which is 18 hours after the end of the labelling 

period). The same is true for other deuterated glucose studies, however, 𝑝 > 𝑑∗ labelling 

behaviour has not been seen in any of the previous deuterated glucose studies. 

 

 

MCMV-specific memory T-cell data 

 

Murine cytomegalovirus (MCMV) is a persistent, chronic infection that is characterized by a 

phenomenon called memory inflation due to the accumulation of large numbers of virus 

specific CD8+ memory T cells. Mice were given deuterated water for 28 days, beginning 

from 120 days post-infection, to study the kinetics of MCMV-specific CD8+ T-cell responses 

during the memory phase of MCMV infection. ((Baliu-Piqué et al., 2022), see SI for details 

on experimental design and plasma enrichment). The labelling data of tetramer+ (MCMV-

specific) memory T-cells generated in three different MCMV infections also showed 𝑝 > 𝑑∗ 

behaviour (Figures 2.1b-d). The estimates of 𝑝 were as much as 58% higher than those of 𝑑∗ 

(Table 2.1), indicating that even after a long labelling period (4 weeks), the rate of gain of 

labelled DNA was much faster than the rate of loss. 

 
𝒑𝒅∗ 

𝒑 = 𝒅∗ 
𝒑 (/day) 𝒅∗ (/day) 

Promyelocytes 0.26 (0.22-0.32) 0.14 (0.11-0.19) 0.27 (0.22-0.32) 

Tetramer
+ MCMV-

specific T 

cells 

ie2SL 0.017 (0.015-0.018) 0.011 (0.01-0.012) 0.018 (0.016-0.019) 

ie2KNL 0.019 (0.017-0.022) 0.012 (0.01-0.015) 0.021 (0.018-0.024) 

m45SL 0.016 (0.014-0.018) 
0.013 (0.011-

0.015) 
0.017 (0.015-0.019) 

Table 2.1: Parameters for the best fits shown in Figure 2.1. The 95% confidence intervals were 

determined by bootstrapping the data 500 times and are reported in the parentheses. 

 

In all cases, the data is well described by a single exponential, with an asymptote predicted to 

be higher than the maximum possible labelling level in a population (i.e., 𝑝 > 𝑑∗). Although 

the 𝑝𝑑∗ model provides a good description of the data, the 𝑝 and 𝑑∗ estimates lose their 

mechanistic interpretation as they should vary with the length of the labelling period (i.e., 

ultimately 𝑝 ≈ 𝑑∗). What these data tell us is that the gain and loss rates of label are in fact 

not simply the proliferation and loss rates of a cell population. Therefore, moving forward, 

we use the 𝑝𝑑∗ model as the standard model to compare different models, but refrain from 

assigning any mechanistic meaning to the parameters. To make this distinction clear, we use 

∗ to denote phenomenological parameters. Henceforth, we refer to the 𝑝𝑑∗ model (Asquith et 
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al., 2002) as the 𝑝∗𝑑∗ model. To understand how to interpret datasets with 𝑝∗ > 𝑑∗ labelling 

behaviour, we now look for mechanistic models that can explain such labelling curves. 

 
Figure 2.1: The best fits of the phenomenological 𝑝𝑑∗ model (green line, equation 2.2) and the 

homogeneous model (referred to as 𝑝 = 𝑑) (blue line, equation 2.1c) to (a) the promyelocyte data 

and (b-d) tetramer+ MCMV-specific memory T-cell data for the three different viruses (ie2SL (b), 

ie2KNL (c), and m45SL (d)). The vertical red dashed line marks the stop of label administration. 

 

Heterogeneity 

Several mechanistic models have been proposed to describe the heterogeneity in a population 

of interest (POI). One is kinetic heterogeneity (KH, Figure 2.2a), where the POI is made up 

of multiple sub-populations with different kinetics (De Boer et al., 2012; Ganusov et al., 

2010). Another is temporal heterogeneity (TH, Figure 2.2b) where the POI is a population in 

which quiescent and recently divided cells are lost at different rates (De Boer et al., 2012; 

Ribeiro et al., 2002).  We first test whether these two mechanisms can account for 𝑝∗ > 𝑑∗ 

behaviour. 

 

KH cannot deliver 𝐩∗ > 𝐝∗ labelling behaviour 

Previous studies have shown that KH in a population can explain labelling data with 𝑝∗ < 𝑑∗ 

behaviour (De Boer et al., 2012; Ganusov et al., 2010). This is in line with the intuition that 

in a finite-term labelling experiment, the labelled population gets enriched in cells with faster 
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turnover (Asquith et al., 2002). Here we introduce a mathematical framework to find out 

whether a model can generate labelling curves where 𝑝∗ > 𝑑∗. We use this analytical 

approach to prove that the KH model cannot generate labelling curves with 𝑝∗ > 𝑑∗. 

 

Figure 2.2: Model cartoons of the (a) KH, (b) TH, (c) Explicit source, (d) Longer label availability, 

and (e) Non-steady state models. 

 

Consider a population that is at steady state and can be divided into multiple kinetically 

distinct homogeneous sub-populations (Figure 2.2a). The fraction of labelled DNA within 

each sub-population 𝑖, 𝑙𝑖, is given by (Ganusov et al., 2010): 

 𝑑𝑙𝑖

𝑑𝑡
= 𝑑𝑖(𝑐𝐷(𝑡) − 𝑙𝑖) 

(2.3) 

 

where, 𝑑𝑖 is the per capita loss rate of sub-population 𝑖. To simplify, consider the fraction of 

labelled DNA within a population that has two sub-populations, each occupying 𝛼 and 

(1 − 𝛼) fractions of the population, respectively (Figure 2.2a). The fraction of labelled DNA 

in that population can be written as: 

 𝑑𝑙

𝑑𝑡
= 𝛼

𝑑𝑙1

𝑑𝑡
+ (1 − 𝛼)

𝑑𝑙2

𝑑𝑡
= (𝛼𝑑1 + (1 − 𝛼)𝑑2)𝑐𝐷(𝑡) − (𝛼𝑑1𝑙1 + (1 − 𝛼)𝑑2𝑙2) 

(2.4) 

 

Since the single exponential 𝑝∗𝑑∗ model gives a good description of both the datasets 

(Figure 2.1), we re-write the multi-exponential KH model in the form of the 𝑝∗𝑑∗ model, 
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with the parameter 𝑝∗ as a coefficient of the deuterium term, 𝑐𝐷(𝑡), and a time-dependent 

“parameter” 𝑑∗(𝑡) replacing the time-independent 𝑑∗. Thus, equation 2.4 becomes: 

 𝑑𝑙

𝑑𝑡
= 𝑝∗𝑐𝐷(𝑡) − 𝑑∗(𝑡)𝑙 

 

with,   

 𝑝∗ = 𝛼𝑑1 + (1 − 𝛼)𝑑2 (2.5) 

   

 𝑑∗(𝑡) = 𝛽(𝑡)𝑑1 + (1 − 𝛽(𝑡))𝑑2  

where, 𝛽(𝑡) =
𝛼𝑙1(𝑡)

𝛼𝑙1(𝑡)+(1−𝛼)𝑙2(𝑡)
 is the fraction that the labelled DNA of the first sub-

population occupies in the total labelled population at any time 𝑡. 

Without loss of generality, suppose that the first sub-population has the slower loss rate i.e., 

𝑑1 < 𝑑2. Defining 𝜌(𝑡) as the ratio of the fractions of labelled cells in the first and the second 

population, 𝜌(𝑡) =
𝑙1(𝑡)

𝑙2(𝑡)
, we obtain that 𝜌(𝑡) < 1 during the labelling phase (and shortly 

thereafter). Using this it can be shown that 𝛽(𝑡) < 𝛼 during the entire labelling phase 

because 𝛽(𝑡) increases monotonically with 𝜌(𝑡), 

 
𝛽(𝑡) =

𝛼𝜌(𝑡)

𝛼𝜌(𝑡) + (1 − 𝛼)
< 𝛼 

(2.6) 

The de-labelling phase can be divided into two phases by the timepoint, 𝑡𝑐𝑟𝑖𝑡, at which the 

fraction labelled DNA within both sub-populations becomes equal i.e., 𝜌(𝑡) = 1, so that i) 

𝜌(𝑡) < 1, when 𝑡 < 𝑡𝑐𝑟𝑖𝑡, and ii) 𝜌(𝑡) > 1, when 𝑡 > 𝑡𝑐𝑟𝑖𝑡. 

By comparing 𝑝∗ and 𝑑∗(𝑡), we can find the condition when 𝑝∗ > 𝑑∗(𝑡) if 𝑡 < 𝑡𝑐𝑟𝑖𝑡: 

 𝑑∗(𝑡) − 𝑝∗ = (𝛽(𝑡) − 𝛼)(𝑑1 − 𝑑2) < 0, ∀ 𝑡 < 𝑡𝑐𝑟𝑖𝑡 (2.7) 

 

As 𝑑1 < 𝑑2 and 𝛽(𝑡) < 𝛼, the KH model fails to satisfy equation 2.7. Numerical non-linear 

parameter estimation confirmed our analytical result that the KH model cannot explain the 

promyelocyte and the MCMV datasets (Figure 2.3, Table 2.2). Therefore, KH cannot 

explain the 𝑝∗ > 𝑑∗ datasets considered in this article. 

Equation 2.7 is valid when 𝑡 < 𝑡𝑐𝑟𝑖𝑡. As the peak of the labelling curve is attained before 

𝑡𝑐𝑟𝑖𝑡, this time range (𝑡 ∈ [0, 𝑡𝑐𝑟𝑖𝑡]) provides information on both 𝑝∗ and 𝑑∗ (equation 2.2). 

Therefore, equation 2.7 is also valid for 𝑡 > 𝑡𝑐𝑟𝑖𝑡, and provides a necessary and sufficient 

condition for a model to show 𝑝∗ > 𝑑∗ behaviour. 

An exception to the above analysis would be a dataset that is skewed in measurements 

towards the late time points, and therefore fails to have a well-defined peak. In such cases, 

the KH model can generate labelling curves with 𝑝∗ > 𝑑∗ as the estimate of 𝑑∗ would be 

heavily influenced by a long tail (Figure S2.1). Labelling datasets that have multi-

exponential slopes, or are markedly skewed in their sampling times, are not considered 

further because these cases do not correspond to the datasets that we are trying to explain. 
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 Promyelocytes 
Total tetramer+ memory 

ie2SL ie2KNL m45SL 

𝒅𝟏 0.27 (0-0.31) 
0.017 (0.015-

0.019) 

0.021 (0.016-

0.022) 

0.017 (0.0013-

0.0189) 

𝒅𝟐 1 (0.23-5.55) 
4.01 (0.018-

7.28) 
5.65 (0.03-9.99) 

1.08 (0.016-

9.43) 

𝜶 1 (0-1) 1 (0-1) 1 (0.91-1) 1 (0-1) 

𝒅 0.27 (0.21-0.31) 
0.017 (0.016-

0.019) 

0.021 (0.018-

0.24) 

0.017 (0.015-

0.12) 

Table 2.2: The estimates for the best fits with the KH model as shown in Figure 2.3. The turnover 

rate of the entire population, 𝑑, is defined as 𝛼𝑑1 + (1 − 𝛼)𝑑2. Note the narrow confidence range of 

𝑑 despite the large confidence ranges of 𝛼 and 𝑑2. 

 

Temporal heterogeneity is insufficient to explain the relatively slow loss of label in our 

data 

Several studies have alluded to the possibility that activation of cells transiently changes their 

division and loss rates (De Boer et al., 2012; Ribeiro et al., 2002). Originally, TH was defined 

to model an increase in the loss rate of cells upon division. It was shown that this model, like 

the KH model, can account for the typical 𝑝∗ < 𝑑∗ behaviour (De Boer et al., 2012). In 

contrast, 𝑝∗ > 𝑑∗ should be achieved if cells transiently lower their loss rates following a 

division event. This would be in line with the intuition that for 𝑝∗ > 𝑑∗ behaviour, the 

labelled population should be enriched with cells that are lost more slowly than the 

population average. 

Consider a population, 𝑁, that can be split into a resting, 𝑅, and an activated, 𝐴,  sub-

population (Figure 2.2b). When a resting cell divides, it makes 2 activated cells at a rate 

𝑝/day, while an activated cell reverts to the resting state at a rate 𝑟/day, i.e., 

 𝑑𝑅

𝑑𝑡
= 𝑟𝐴 − (𝑝 + 𝑑𝑅)𝑅 

 

  (2.8) 

 𝑑𝐴

𝑑𝑡
= 2𝑝𝑅 − (𝑟 + 𝑑𝐴)𝐴 

 

 

where, 𝑑𝑖, 𝑖 ∈ {𝑅, 𝐴} denote the per capita loss rates of the sub-populations. We only 

consider the case where cells lower their loss rates upon division i.e., 𝑑𝐴 < 𝑑𝑅. 

One parameter of the model can be removed by assuming both populations are at steady state. 

Solving for the division rate, we obtain 𝑝 = 𝑑𝑅
(𝑟+𝑑𝐴)

(𝑟−𝑑𝐴)
 , which reveals that 𝑟 > 𝑑𝐴, i.e., the 

population is maintained if at least half of the daughter cells survive to revert to the resting 

state. Scaling the steady-state population size to unity i.e., �̅� = 1, we find: 
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�̅� =

𝑟 − 𝑑𝐴

𝑟 − 𝑑𝐴 + 2𝑑𝑅
 

 

  (2.9) 

 
�̅� =

2𝑑𝑅

𝑟 − 𝑑𝐴 + 2𝑑𝑅
 

 

 

Note that the above model describes a heterogeneous population only if 𝑑𝑅 > 0. The kinetics 

of the fraction of labelled DNA within the resting and activated populations, and within the 

population as a whole, are given by: 

 𝑑𝑙𝑅

𝑑𝑡
=

2𝑟𝑑𝑅

(𝑟 − 𝑑𝐴)
(𝑙𝐴 − 𝑙𝑅) 

 

   

 𝑑𝑙𝐴

𝑑𝑡
=

(𝑑𝐴 + 𝑟)

2
(𝑐𝐷(𝑡) + 𝑙𝑅 − 2𝑙𝐴) 

(2.10) 

   

 𝑑𝑙

𝑑𝑡
= �̅�𝑙𝑅 + �̅�𝑙𝐴 = 𝑝�̅�𝑐𝐷(𝑡) − 𝑑𝑅�̅�𝑙𝑅 − 𝑑𝐴�̅�𝑙𝐴 

 

 

where 𝑝 = 𝑑𝑅
(𝑟+𝑑𝐴)

(𝑟−𝑑𝐴)
, leaving the TH model with three free parameters: 𝑟, 𝑑𝑅 and 𝑑𝐴. 

Remarkably, the TH model fails to explain the high enrichment at late timepoints seen in the 

promyelocyte and the MCMV datasets (Figure 2.3). For MCMVie2KNL, the TH model (like 

the KH model) preferred a solution in which the population is near-homogeneous (Table 

2.3). In this case, the activated population had a higher turnover rate compared to the resting 

population. In contrast, for the other cases, the TH model preferred a solution where the 

population has equal proportions of activated and resting cells. In line with our intuition, the 

best estimate, in these cases, preferred a slower loss rate of the activated sub-population 

(Table 2.3). Thus, even a scenario where a population becomes more quiescent upon division 

is inadequate to explain the steep gain and slow loss of label observed in these datasets. 

Puzzled that we could not explain the data even with the necessary constraint on the loss rates 

of the sub-populations (𝑑𝐴 < 𝑑𝑅), we looked for mathematical explanations. As we did for 

the KH model, we derived the sufficient and necessary condition for the TH model to 

generate labelling curves with 𝑝∗ > 𝑑∗ behaviour (Text S2.1): 

 𝑑∗(𝑡) − 𝑝∗ = (𝛽(𝑡) − �̅�)(𝑑𝑅 − 𝑑𝐴) < 0, if 𝑡 < 𝑡𝑐𝑟𝑖𝑡  

   

 
⇒  {

𝑑∗ < 𝑝∗, 𝑑𝑅 > 𝑑𝐴

𝑑∗ ≥ 𝑝∗, 𝑑𝑅 ≤ 𝑑𝐴
 

(2.11) 
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As expected, in a version of TH in which cells are lost at a lower rate following division, 

labelling curves will exhibit 𝑝∗ > 𝑑∗ behaviour (Text S2.1, equation 2.11, Table 2.3, Figure 

2.3). 

 Promyelocytes 
Total tetramer+ memory 

ie2SL ie2KNL m45SL 

𝒅𝑨 0 (0-0) 0 (0-0) 0.365 (0-3.81) 
0.00061 (0-

5.38) 

𝒅𝑹 0.47 (0.37-0.55) 
0.032 (0.028-

0.034) 

0.002 (0.0002-

0.038) 

0.03 (0.0001-

0.033) 

𝒓 0.93 (0.75-1.10) 
0.064 (0.059-

0.07) 

0.406 (0.068-

5.47) 

0.061 (0.053-

7.64) 

�̅� 0.5 0.5 0.91 0.5 

�̅� 0.5 0.5 0.09 0.5 

𝒅 0.24 (0.18-0.27) 
0.016 (0.015-

0.017) 

0.035 (0.017-

0.041) 

0.015 (0.014-

0.034) 

𝒑 0.47 (0.37-0.55) 
0.032 (0.028-

0.034) 

0.038 (0.023-

0.047) 

0.031 (0.02-

0.036) 

Table 2.3: The estimates for the best fits using the TH model as shown in Figure 2.3. The turnover 

rate of the entire population, 𝑑, is defined as �̅�𝑑𝐴 + �̅�𝑑𝑅. Note the narrow confidence range of 𝑑 

despite the large confidence ranges of 𝑟 and 𝑑𝐴. The division rate, 𝑝, is calculated as 𝑑𝑅
(𝑟+𝑑𝐴)

(𝑟−𝑑𝐴)
. 

 

The difference between 𝑝∗ and 𝑑∗ depends on both the distribution of the sub-populations in 

the labelled population and the loss rates of the sub-populations (equation 2.11). 

Interestingly, for the TH model this difference is always very small compared to that between 

the estimates of the 𝑝∗𝑑∗ model (Figure 2.1). To understand this, consider an extreme case 

by setting 𝑑𝐴 = 0. Although the difference between 𝑝∗ and 𝑑∗ seems to increase when the 

loss rate of the resting cells, 𝑑𝑅, increases (equation 2.11), the difference between 𝑝∗ and 𝑑∗, 

in fact, decreases, because the activated sub-population, �̅�, starts dominating in size (as �̅� →

0 and 𝛽 → 0, see equation S2.4), making the population nearly homogeneous (equation 

2.9). The rates of both sub-populations determine their relative sizes (equation 2.9). This co-

dependency of the sub-populations sets a limit on the extent of the 𝑝∗ > 𝑑∗ behaviour. 

Therefore, even though labelling curves with 𝑝∗ > 𝑑∗ behaviour can be described to some 

extent with the TH model, the model fails to properly describe the presented datasets (Figure 

2.3). 

 

A labelled source fails to generate sufficiently large 𝒑∗ > 𝒅∗ behaviour 

The slow loss of labelled DNA seen in the POI could be due to a trickle of labelled cells from 

a source, even after the end of the labelling period. In this section, we analyse a homogeneous 

population that has a source. As the labelling dynamics of the POI is not affected by the 

source in an implicit source model (equation 2.1, Chapter 3), here we explicitly consider the 
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dynamics of the precursor population along with that of the POI (referred to as the explicit 

source model). 

Consider a POI, 𝑁2, that can proliferate (at per capita 𝑝2/day), can be lost (at per capita 

𝑑2/day) and is supplemented from a precursor population, 𝑁1,  that proliferates at per capita 

rate 𝑝1/day, is lost at per capita rate 𝑑1/day, of which a fraction, 𝑓1, is due to differentiation 

into the POI, 𝑁2 (Figure 2.2c). If this differentiation step is not accompanied by cell division, 

the dynamics of these populations are given by: 

 𝑑𝑁1

𝑑𝑡
= (𝑝1 − 𝑑1)𝑁1 

 

  (2.12) 

 𝑑𝑁2

𝑑𝑡
= 𝑓1𝑑1𝑁1 + (𝑝2 − 𝑑2)𝑁2 

 

 

Scaling 𝑁1 to 1 at steady state, we find: 

 𝑁1
̅̅ ̅ = 1 ⇒ 𝑝1 = 𝑑1  

  (2.13) 

 
𝑁2
̅̅̅̅ =

𝑓1𝑑1𝑁1
̅̅ ̅

𝑑2 − 𝑝2
 

 

 

where 𝑝2 < 𝑑2. Using the above, the change in the fraction of labelled DNA can be 

calculated as: 

 𝑑𝑙1

𝑑𝑡
= 𝑑1(𝑐𝐷(𝑡) − 𝑙1) 

(2.14a) 

   

 𝑑𝑙2

𝑑𝑡
= 𝑝2(𝑐𝐷(𝑡) − 𝑙1) + 𝑑2(𝑙1 − 𝑙2) 

(2.14b) 

 

Note that if the loss rate of the precursor population, 𝑑1, is comparable to or faster than the 

turnover rate of glucose/water (denoted as 𝛿), the labelling equation of the POI (equation 

2.14b) will approach that of a homogeneous population (as 𝑙1(𝑡) ≈ 𝑐𝐷(𝑡); see equation 

2.1b). Therefore, we require 𝑑1 ≪ 𝛿 to study the effect of a precursor population on the 

POI’s dynamics. 

It has been postulated that naive T cells and/or stem-like memory T cells can act as 

precursors of the memory T-cell population (Hogan et al., 2019; Weitering et al., 2021; 

Welten et al., 2020). As both naive T cells (Vrisekoop et al., 2008) and stem-like memory T 

cells (del Amo et al., 2018) turnover at a rate that is much slower than that of water, these 

populations could influence the dynamics of the MCMV-specific memory T cell population. 

The turnover rate of hematopoietic stem cells (HSCs), the precursor of promyelocytes, is un- 
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known. If HSCs are relatively faster than promyelocytes, that turnover rapidly (Figure 2.1a), 

the explicit source model would not help explain the data (as 𝑑1 ≈ 𝛿). However, if the 

turnover rate of HSCs (or any other intermediary population) would be relatively low, they 

could influence the dynamics of the promyelocytes. 

The three free parameters (𝑑1, 𝑝2, and 𝑑2) of the model (equation 2.14) were estimated by 

fitting the model to the two datasets on MCMV-specific memory cells and promyelocytes. 

The explicit source model also failed to explain the observed gain and loss of label together 

(Figure 2.3). In most cases, the loss of label slowed down initially (around the peak) 

compared to the previous models, however, the flux of labelled DNA from the precursors was 

not enough to sustain this slow loss. 

 

Figure 2.3: The best fits of the KH, TH, and explicit source models to (a) the promyelocyte data, and 

(b-d) the MCMV data for the three different viruses: (b) ie2SL, (c) ie2KNL, (d) m45SL. The best fits 

of the homogeneous model (referred to as the 𝑝 = 𝑑 model) is shown for comparison (blue line). The 

vertical red dashed line marks the stop of label administration. 

 

The sufficient and necessary condition for this model to show 𝑝∗ > 𝑑∗ labelling behaviour 

yielded a simple relationship (Text S2.2): 

 𝑑∗(𝑡) − 𝑝∗ = (𝑑2 − 𝑝2) (1 −
𝑙1(𝑡)

𝑙2(𝑡)
) < 0, if 𝑡 < 𝑡𝑐𝑟𝑖𝑡  

  (2.15) 

 ∴ 𝑑1 > 𝑝2 ⇒ 𝑝∗ > 𝑑∗  
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i.e., only if the precursor has a higher fraction of labelled DNA than the POI (𝑙1(𝑡) > 𝑙2(𝑡)), 

then the fraction labelled within the POI will increase, even after the stop of label 

administration, until the enrichment in the precursors matches that in the POI, leading to a 

slower loss of label relative to its gain. Interestingly, the labelled fraction in the precursor 

population will be higher than that in the POI if the turnover rate of the precursor is higher 

than the proliferation rate of the POI i.e., if 𝑑1 > 𝑝2. The estimates of the best fits confirm 

this relationship (Table 2.4). As the condition for observing the 𝑝∗ > 𝑑∗ labelling behaviour 

is dependent only on the rates of the POI and its immediate precursor (equation 2.15), adding 

an explicit source to the precursor of the POI does not explain the data any better (fits not 

shown). 

The enrichment in the POI reaches its peak at 𝑡𝑐𝑟𝑖𝑡. The extra labelling period, 𝑡𝑐𝑟𝑖𝑡 − 𝜏, is 

determined by the loss rates of both the POI and the precursor. As the loss rates determine 

both the enrichment in the POI as well as the length of the extra labelling period, it sets a 

quantitative limit on the capacity of the explicit source model to explain the large difference 

between the 𝑝∗ and 𝑑∗ that were estimated from the data. In conclusion, although an explicit 

source model can yield 𝑝∗ > 𝑑∗ labelling behaviour, the effect is too small to explain the 

labelling data of promyelocytes and MCMV-specific T cells in a satisfactory manner. 

 𝒅𝟏 (/day) 𝒅𝟐 (/day) 𝒑𝟐 (/day) 

Promyelocytes 0.89 (0.37-1.54) 0.4 (0.30-1.01) 0 (0-0.06) 

MCMV-

specific T cells  

ie2SL 0.03 (0.02-0.04) 0.03 (0.03-0.04) 
0.01 (0.009-

0.015) 

ie2KNL 0.02 (0.016-0.6) 0.80 (0.022-3) 
0.035 (0.013-

0.11) 

m45SL 
0.025 (0.015-

0.679) 
0.025 (0.016-3) 

0.015 (0.012-

0.056) 

Table 2.4: The estimates of the best fits found with the explicit source model as shown in Figure 2.3. 

Note that the best fit for the ie2KNL epitope does not satisfy the necessary condition to show 𝑝∗ > 𝑑∗ 

behaviour. 

 

Prolonged label availability yields 𝒑∗ > 𝒅∗ behaviour 

The washout rate of glucose in plasma might fail to convey the true deuterium availability 

period for cells. For example, if the newly formed promyelocytes in the bone marrow, which 

is a prime location for cell apoptosis (Tofts et al., 2011), can access labelled adenosine 

molecules through the nucleotide salvage pathway (Austin et al., 2012), after the loss of 

labelled cells, then the promyelocytes may continue to gain deuterated DNA after the end of 

the labelling period. The effective deuterium availability for cells in the bone marrow may, 

therefore, differ from that measured in plasma, 𝐷(𝑡). 

As the first data point is only at day one, the time at which the peak of labelling was achieved 

might not have been at 5.5 hours. If the peak of labelling was truly achieved at a later time 

point, forcing the labelling period to be 5.5 hours would return an estimate of 𝑝∗ that is higher 
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than its “true” value, to be able to explain the high enrichment observed on day 1. As the loss 

rate of label, 𝑑∗, which is estimated from the de-labelling phase of the labelling curve would 

remain unaffected, it would give rise to 𝑝∗ > 𝑑∗ labelling behaviour. We, hence, sought to 

estimate the effective label availability duration, instead of forcing it to be 5.5 hours, and 

considered the promyelocytes to be kinetically homogeneous (equation 2.1c, Figure 2.2d). If 

the promyelocytes were homogeneous, the best fit to the promyelocyte labelling data was 

obtained for an estimated 10 hours of label availability and the fit was identical (in terms of 

the sum squared residual) to the best fit found with the 𝑝∗𝑑∗ model (where the label was 

available for 5.5 hours, Figure 2.4). Therefore, a homogeneous promyelocyte population that 

renews itself in about a week is perfectly compatible with the experimental data if deuterium 

would remain available to the cells for 10 rather than for 5.5 hours. 

 
Figure 2.4: The best fits of the phenomenological 𝑝∗𝑑∗ and the 𝑝 = 𝑑 (homogeneous POI) models to 

the promyelocyte data: for the phenomenological model, 𝜏 was fixed to 5.5 hours (red line), and for 

the homogeneous POI model, 𝜏 was free to be estimated (blue line). The estimates of the best fit were: 

𝑑 = 0.14/day [0.11,0.19] and 𝜏 = 9.95 hours [8.91,11.49]. The 95% confidence intervals are reported 

in square brackets. 

 

To test the hypothesis that deuterated glucose is available for longer than the period over 

which it is administered, we performed in vitro experiments with two cell lines (see SI for 

details on the study design). The mono mac 6 cells, a monocytic cell line derived from 

peripheral human blood (Ziegler‐Heitbroc et al., 1988), showed a notable increase in its 

deuterium enrichment after the stop of labelling (at 12 hours) for at least an additional 8 hours 

(Figure 2.5a). Further, the HL-60 cell line, which resembles the promyelocytes (Birnie, 
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1988), also showed significant deuterium uptake after the stop of labelling (Figure 2.5d, 

where hour 0 is the start of labelling and hour 6 is the stop of labelling). 

The in vitro experiments clearly showed that deuterium was being incorporated into the cells 

for several hours after the cessation of label. Since the medium did not contain any deuterium 

during the de-labelling phase, the additional/delayed deuterium source can only be 

intracellular. We hypothesized that the uptake of deuterated glucose and its integration into 

intra-cellular compounds (like nucleotides) could add rate-limiting steps to the integration of 

deuterium into the DNA during cell division. We tested this hypothesis with an ‘intra-

cellular’ model, tracking the enrichment in the DNA, 𝐿, of cells in a population of size 𝑁, that 

are expanding in a medium with a deuterium concentration 𝐷, and having an intra-cellular 

concentration, 𝐼 (equation 2.16). 

 

 𝑑𝑁

𝑑𝑡
= (𝑝 − 𝑑)𝑁 

 

   

 𝑑𝐼

𝑑𝑡
= 𝛿(𝐷(𝑡) − 𝐼) 

(2.16) 

   

 𝑑𝐿

𝑑𝑡
= 𝑝(𝑐𝐼 − 𝐿) 

 

 

Here, 𝑝 and 𝑑 are the division and loss rates of the cells, respectively; 𝛿 is the turnover rate of 

the intra-cellular rate-limiting compound; and 𝑐 = 0.65. As no cell death was observed in the 

in vitro experiments, 𝑑 was set to 0. Note that the fraction of labelled DNA depends on the 

division rate, 𝑝, as the population is expanding, i.e., is not at steady state ((De Boer and 

Perelson, 2013a), also see the next section). 

The fit of the intra-cellular model (equation 2.16) to the labelling of the mono mac 6 data 

(Figure 2.5a) shows that an intracellular deuterium pool renewing itself every 3 hours 

(Figure 2.5b; 𝛿 = 7.62/day) suffices to explain the extended labelling period observed in the 

in vitro experiments. Further, the predicted increase in the population size is in line with that 

observed in the experiments (Figure 2.5c). Interestingly, by fitting the HL-60 data we also 

estimate that these cells continue to accumulate label for several hours after the stop of label 

administration (Figure 2.5d-e). Together these in vitro experiments, thus, suggest that a 

population can continue to accrue label for a few hours after label cessation. 

 

Non-steady state yields 𝒑∗ > 𝒅∗ behaviour 

It is known that MCMV infection generates T-cell responses that lead to memory inflation 

(O’Hara et al., 2012; Schober et al., 2020). Even though care was taken to label DNA with 

deuterium in the late memory phase, i.e., 120 days after infection, this does not guarantee that 

the tetramer+ population had approached steady state. We wondered whether a population 

that is not in steady state could have 𝑝∗ > 𝑑∗ labelling behaviour. 
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Assuming that tetramer+ cells form an inflating population, their proliferation rate may 

decline over time due to competition for resources (antigen or cytokines), and/or due to an 

increasing dominance of low-affinity clones (Schober et al., 2020). We studied whether this 

could explain the observed 𝑝∗ > 𝑑∗ labelling behaviour in the MCMV dataset, by describing 

the proliferation rate as a monotonically decreasing function. 

 
Figure 2.5: In vitro labelling experiments showing that the true labelling period is longer than the 

period of label administration. Lines depict the best fit of the intra-cellular model to the in vitro 

labelling data (a,d), the predicted deuterium enrichment in the intra-cellular compound (b,e), and the 

predicted increase in cell numbers (overlaid on the in vitro expansion of the mono mac 6 cells) (c,f). 

The predicted cell numbers were normalized such that they matched the mean of the measured cell 

numbers at the first measured time point (c). The parameters of the best fits with the intra-cellular 

model (equation 2.16) are: 𝛿 = 7.62/day [6.53,9.12] and 𝑝 = 0.17/day [0.16,0.17] for the mono mac 

6 cell line; 𝛿 = 6.18/day [0.93,12.05] and 𝑝 = 0.20/day [0.13,0.90] for the HL-60 cell line. The 95% 

confidence intervals are reported in square brackets. The vertical red dashed line marks the stop of 

label. The colours represent different experiments. 

 

Consider a population of MCMV-specific T cells, 𝑁, with a maximal per-capita proliferation 

rate, 𝑝𝑚𝑎𝑥/day and a per-capita loss rate, 𝑑/day (Figure 2.2e). If the actual proliferation rate, 

𝑝, decreases exponentially due to a parameter 𝑎 scaling the population density, the change in 

cell numbers for such a population is given by: 

 𝑑𝑁

𝑑𝑡
= (𝑝(𝑁) − 𝑑)𝑁 = (𝑝𝑚𝑎𝑥𝑒−𝑎𝑁 − 𝑑)𝑁 

(2.17) 
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Hence, the change in labelled DNA in the MCMV-specific T-cell pool follows: 

 𝑑𝐿

𝑑𝑡
= 𝑝𝑚𝑎𝑥𝑒−𝑎𝑁(𝑡)𝑐𝐷(𝑡)𝑁(𝑡) − 𝑑𝐿 

(2.18) 

 

and the change in the fraction of labelled DNA is: 

 𝑑𝑙

𝑑𝑡
=

𝑑(𝐿/𝑁)

𝑑𝑡
= 𝑝𝑚𝑎𝑥𝑒−𝑎𝑁(𝑡)(𝑐𝐷(𝑡) − 𝑙) 

(2.19) 

 

which depends on the per-capita proliferation rate only. Therefore, regardless of whether a 

population is at steady state or not, the rate of change of the fraction of labelled cells is 

dictated by the per capita production rate, which may decrease when a population expands. 

 𝒂 𝒑𝒎𝒂𝒙 𝒅 𝒓 𝑵(𝟎) 

ie2SL 

4.1e-06 

(1.1e-06 - 

9.0e-06) 

0.08 (0.03 - 

0.39) 

8.3e-03 

(6.4e-04 - 

1.1e-02) 

4.5e-03 (-

2.8e-03 - 

9.4e-03) 

3.08e+05 

(2.13e+05 - 

4.4e+05) 

ie2KNL 

7.3e-06 

(1.5e-06 - 

1.9e-05) 

0.1 (0.03 - 

1.32) 

7.2e-03 (0 - 

1e-02) 

5.5e-03 (-

3.7e-03 - 

1.3e-02) 

1.67e+05 

(8.96e+04 - 

2.96e+05) 

m45SL 

2.5e-05 

(1.7e-06 - 

4.8e-05) 

0.35 (0.02 - 

6.93) 

1.1e-02 (0-

1.3e-02) 

8e-04 (-3.3e-

03 - 4.6e-03) 

1.13e+05 

(8.57e+04 - 

1.45e+05) 

Table 2.6: The parameter estimates for the best fits shown in Figure 2.6. 

 

During the de-labelling phase (𝐷(𝑡) = 0), this simplifies into 
𝑑𝑙

𝑑𝑡
= −𝑝𝑚𝑎𝑥𝑒−𝑎𝑁(𝑡)𝑙, i.e., to 

𝑑𝑙

𝑑𝑡
= −𝑑∗(𝑡)𝑙, and during the initial part of the labelling phase this approaches 

𝑑𝑙

𝑑𝑡
=

𝑝∗(𝑡)𝑐𝐷(𝑡) where, 𝑝∗(𝑡) = 𝑝𝑚𝑎𝑥𝑒−𝑎𝑁(𝑡). Thus, the rate of change of the fraction of labelled 

cells in the POI is not constant. It follows that a homogeneous population that increases in 

size over time will generate labelling curves with 𝑝∗ > 𝑑∗ behaviour, whereas a 

homogeneous population that decreases over time will generate labelling curves with 𝑝∗ < 𝑑∗ 

behaviour (equation 2.19). Additionally, if the POI had a source, its labelling dynamics 

would also depend on the fraction of cells that are supplemented by the source (𝑠/𝑁, where 𝑠 

is the number of cells flowing into the POI per day and 𝑁 is the size of the POI). The POI, in 

such a case, will also show 𝑝∗ > 𝑑∗ labelling behaviour if the POI is expanding. 

The labelling data for the three different viruses are well-described by the non-steady state 

model due to the decreasing proliferation rates (Figure 2.6). Although the estimated 𝑝𝑚𝑎𝑥 

and 𝑎 differ among the responses to the different viruses (Table 2.6), the actual proliferation 

rate, 𝑝, approaches a similar asymptotic value for the three viruses (Figure 2.6 and Table 

2.6). The T-cell response to the non-inflationary epitope, m45SL, was estimated to expand 
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much less by having a loss rate that is about 2-fold higher than that of the responses to the 

other viruses. 

 

Figure 2.6: The best fits and the predictions of the non-steady state model to the MCMV data for the 

three different viruses: (left column) ie2SL, (middle column) ie2KNL, (right column) m45SL; the best 

fits (dark blue) of the non-steady state model to the labelling data (top row), the estimated 

proliferation, 𝑝, and loss, 𝑑, rates corresponding to the best fits to the labelling data (middle row), and 

the predicted change in cell numbers (dark blue) from the non-steady state model overlaid on the best 

fit (red) and 500 bootstraps (grey) of the exponential model to the measured cell numbers (bottom 

row). The vertical red dashed line marks the stop of label. 

 

Since it was necessary to have a 1.1 to 2.5 fold expansion in the population to explain the 

𝑝∗ > 𝑑∗ behaviour of the labelling data, we tested whether there was any evidence of 

inflation in the MCMV-specific T-cell populations. We fitted a simple exponential growth 

model, 
𝑑𝑁

𝑑𝑡
= 𝑟𝑁, to the cell numbers measured over time. The ie2SL and ie2KNL epitope-

specific populations showed an inflationary tendency, whereas the m45SL epitope-specific 

population barely showed an increase in size (Table 2.6). Bootstrapping the dataset provided 

wide confidence intervals due to the relatively noisy and sparse measurements (Figure 2.6). 

Approximately 90% of the bootstraps showed an increase in the population size (𝑟 > 0). 

Interestingly, in all three cases, the increase in cell numbers predicted by the best fit to the 

labelling data lay within the confidence intervals of the exponential growth model (Figure 

2.6). As the predicted inflation lay well within the observed variation in cell numbers, these 



Chapter 2: Unexpected deuterium labelling curves 
 

 61  
 

data are compatible with the hypothesis that the 𝑝∗ > 𝑑∗ labelling behaviour resulted from an 

expanding cell population due to the reduction of its per capita production over time. 

 

Discussion 

The datasets presented here suggest that the DNA of the POI gained more label than it lost 

per unit of time (𝑝∗ > 𝑑∗ labelling behaviour). We showed that this unusual labelling 

behaviour can be explained if either the POI has prolonged access to label, or if the POI was 

expanding and thus, reducing its per capita production. We provided additional in vitro and 

in vivo experimental support for the proposed mechanisms. 

The two cell populations for which we observed 𝑝∗ > 𝑑∗ behaviour had very disparate 

experimental setups. Promyelocyte curves came from human bone marrow in a short-term 

deuterated-glucose experiment under homeostatic conditions. In contrast, the MCMV data 

was derived from the spleens of mice in a long-term deuterated-water experiment in the 

memory phase of acute infection. This disparity suggests that the 𝑝∗ > 𝑑∗ behaviour was the 

characteristic of the POI and did not originate from the commonalities in the experimental 

designs. In addition to the populations reported here, murine natural killer (NK) cells after an 

MCMV infection also showed 𝑝∗ > 𝑑∗ behaviour in long-term labelling experiments with 

deuterated water. Unlike MCMV-specific T cells, NK cells could not be described as a 

homogeneous population with a declining per capita production rate (Lukas et al., manuscript 

in preparation). 

The labelling data of the promyelocytes was well-described by a homogeneous population 

when the label availability period was longer than the label administration period. The fact 

that the washout rate of body glucose is ~1.5 hours makes this finding difficult to grasp. 

However, that deuterium was available to cells for longer than 5.5 hours (i.e., the label 

administration period) was verified by in vitro experiments with mono mac 6 cells and HL-60 

cells, cell-lines known to be closely related to monocytes and neutrophils, respectively. If the 

pool of de-novo deuterated nucleotides were to be formed in the beginning of the cell cycle’s 

S-phase instead of being generated throughout the S-phase, this pool could act as a delayed 

source of intra-cellular labelled nucleotides after 5.5 hours. The extended availability of label 

is even more likely in vivo due to the salvage pathway in the bone marrow, through which 

newly dividing cells can pick up required molecules from the surroundings after the death of 

neighbouring cells (Austin et al., 2012). The prolonged label availability could also be due to 

the maintenance of the body glucose levels by multiple pathways (Nakrani et al., 2022), 

where the slower pathways can act as a late source of deuterated glucose. 

The possibility of a longer labelling period was disregarded in the case of MCMV-specific 

memory T cells as a few extra hours of label availability would be insignificant in a long-

term labelling experiment (28 days in this case). Further, T cells are thought to hardly use the 

salvage pathway (Macallan et al., 1998). Instead, we found that the 𝑝∗ > 𝑑∗ behaviour of 

MCMV-specific memory T cells may result from the inflationary behaviour of the MCMV-
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specific T-cell response. Therefore, unless there is compelling evidence for it, such a 

population should not be assumed to be at steady state. The inflationary capacity of MCMV-

specific CD8+ T cells is well-documented (Klenerman and Oxenius, 2016; O’Hara et al., 

2012). In a recent communication, it was shown that T cells with low affinity T-cell receptors 

(TCRs) dominate in the later part of the chronic response to MCMV, likely due to the 

senescence of high-affinity clones (Schober et al., 2020). Our choice of an exponentially 

decreasing cell density-dependent proliferation rate would be in line with this when low-

affinity clones expand slower than their high-affinity counterparts. It is important to note that 

the 𝑝∗ > 𝑑∗ behaviour requires a declining per capita production, and that a change in the 

loss rate will not have any effect because the loss rate is absent from the labelling equation 

(equation 2.19). Alternatively, the 𝑝∗ > 𝑑∗ behaviour of the MCMV-specific cells could be 

explained if the memory T-cell pool is largely maintained by a source (fits not shown). 

Although recent articles have proposed the presence of a TCF1+ stem-like cell population that 

maintains the memory T-cell pool (Weitering et al., 2021; Welten et al., 2020), their relative 

contribution to the maintenance of the memory T-cell pool has not been quantified. Here we 

show that a density-dependent proliferation rate is in line with both the labelling data and the 

inflation seen in the population size. 

Interestingly, we also found models that qualify to explain the 𝑝∗ > 𝑑∗ behaviour but 

nevertheless failed to satisfactorily explain the presented datasets. We developed a 

framework to assess the qualification of a model to yield 𝑝∗ > 𝑑∗ behaviour, merely through 

algebraic manipulations. TH and explicit source mechanisms, along with longer label 

availability and non-steady state mechanisms, passed the selection criteria of this procedure. 

Although the qualification of the TH and explicit source models reinforced our intuitive 

understanding of the 𝑝∗ > 𝑑∗ labelling behaviour, these models failed to explain the data 

presented in this paper, indicating inherent bounds on the 𝑝∗ > 𝑑∗ estimates that can be 

described by any model. Quantifying these bounds accurately is difficult because 

approximating multi-phasic slopes with single exponentials (as in the 𝑝∗𝑑∗ model) is non-

trivial. These approximations also depend strongly on the accurate estimation (and 

measurements) of the peak of the labelling curve. 

Finally, it is important to note that we analysed the presented datasets as if they were 

longitudinal even though they were in fact cross-sectional. Although it is highly unlikely, we 

cannot formally rule out the possibility that the 𝑝∗ > 𝑑∗ behaviour was in fact merely due to 

inter-individual differences. We nevertheless regard the mechanisms proposed here as the 

most parsimonious, because i) most data points in the de-labelling phase were higher than 

expected (Figures 2.1 and 2.3), ii) the slow loss of enrichment in the promyelocytes could be 

due to longer label availability, which is seen in vitro (Figures 2.4 and 2.5), and iii) the 

labelling dynamics of tetramer+ MCMV-specific memory T cells could be perfectly 

explained by the inflationary nature of the response (Figure 2.6), which is a well-documented 

phenomenon (Klenerman and Oxenius, 2016; O’Hara et al., 2012). 
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Supplementary Information 

 

Experimental design and plasma enrichment 

Deuterated water labelling is suitable for cell populations with slow turnover rates (for 

example, naive and memory T-cell populations) due to the relatively slow turnover rate of 

water, and labelling with deuterated glucose is more suitable for populations that turnover 

rapidly (like granulocytes) as glucose has rapid turnover (Borghans et al., 2018; Macallan et 

al., 2009).  

 

Promyelocytes 

Promyelocytes make up the earliest fully committed precursor of granulocytes and were 

measured as part of a short-term deuterium labelling study of neutrophil differentiation in the 

bone marrow. In this study, bone marrow samples were obtained from 12 healthy volunteers, 

by aspiration of a 40ml volume from the posterior iliac crest. The volunteers received 

deuterated glucose for 5.5 hours at different days prior to the aspiration. At each time point, 

ranging from 1 to 9 days after the deuterated glucose pulse, two volunteers were sampled. 

The samples on day 1 and day 8 after labelling were obtained from the same two donors by 

repeated bone marrow sampling. Similarly, the samples on day 2 and day 9 after labelling 

were taken from the same donors. 

Due to the fast washout rate of deuterated glucose, the fraction of body glucose that is 

deuterated, 𝐷(𝑡), can be approximated quite accurately with a step-function, analogous to a 

“pulse” of deuterium: 

 
𝐷(𝑡) = {

𝑓, 𝑡 ≤ 𝜏
0, 𝑡 > 𝜏

 
(S2.1) 

 

Here, 𝜏 (in days) is the end of the labelling period, and 𝑓 is the maximum level of enrichment 

in the plasma, which was measured to have a mean of 0.55 and a standard deviation of 0.05. 

As the data is cross-sectional and the enrichment in the plasma among the donors vary, the 

promyelocyte dataset was scaled before the fitting procedure (such that 𝑓 = 1), using the 

protocol outlined previously (where 𝑐 = 0.65) (Macallan et al., 2009). 

 

MCMV-specific memory T cells 

Murine cytomegalovirus (MCMV) is a persistent, chronic infection that is characterized by a 

phenomenon called memory inflation due to the accumulation of large numbers of virus 

specific CD8+ memory T cells. Three well-characterized MCMV-mutants expressing low or 

high-avidity epitopes (ie2SL: large inflationary response, ie2KNL: intermediate inflationary 
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response and m45SL: non-inflationary response) were used for the infections. Mice were 

given deuterated water for 28 days, beginning from 120 days post-infection. Their spleens 

were isolated at different time points during and after label administration to determine the 

fraction of labelled DNA in tetramer+ (MCMV-specific) memory T-cells. 

 

Compared to deuterated glucose, the washout rate of deuterated water is relatively slow 

(Macallan et al., 2009; Reinauer et al., 1990; Shimamoto and Komiya, 2000). The fraction of 

body water that is deuterated, 𝐷(𝑡), in this case is given by (Vrisekoop et al., 2008): 

 
𝐷(𝑡) = {

𝛽𝑒−𝛿𝑡 + 𝑓(1 − 𝑒−𝛿𝑡), 𝑡 ≤ 𝜏

(𝛽𝑒−𝛿𝜏 + 𝑓(1 − 𝑒−𝛿𝜏))𝑒−𝛿(𝑡−𝜏), 𝑡 > 𝜏
 

(S2.2) 

 

where, 𝛽 = 6 × 10−3 is the baseline enrichment in plasma due to a boost given in the 

beginning of the experiment, 𝛿 = 0.373 is the washout rate of body water (per day) and 𝑓 =

0.0545 is the predicted plateau of deuterium enrichment in plasma. These parameters were 

estimated by fitting the enrichment curves to the deuterium enrichment levels measured in 

plasma. Next, the fraction of labelled DNA in a rapidly dividing cell population (thymocytes, 

in this case) was fitted to estimate the amplification factor, 𝑐 = 3.0271, using equation 2.1b. 

This step was essential as the amplification factor, 𝑐, signifies the fold difference between the 

enrichment plateaus reached in plasma and the rapidly dividing population (Vrisekoop et al., 

2008). These parameters were then used to define the deuterium availability function when 

fitting the labelling kinetics of other cell populations. 

 

In-vitro experiment design 

Mono mac 6 cell line 

The mono mac 6 cells were cultured in a medium with equal concentration of normal glucose 

(1g/L) and deuterated glucose (1g/L) for 12 hours. After the 12-hour labelling period, the 

cells were washed with and cultured in a medium containing only 2g/L normal glucose (to 

mimic the de-labelling phase). Hourly samples were taken during the de-labelling period (i.e., 

sampled every hour from 12th to 24th hour, where the 12th hour is the start of the de-labelling 

phase, Figure 2.5a) to find out the deuterium incorporation in the population. Samples were 

also taken on a bi-hourly basis to estimate the population size (Figure 2.5c). 

 

HL-60 cell line 

The HL-60 cells were cultured in a medium with equal concentration of normal glucose 

(1g/L) and deuterated glucose (1g/L) for 6 hours. Hourly samples were taken during the 

labelling period. After the 6-hour labelling period, the cells were followed for 12 more hours 

after being washed with and cultured in a medium containing only 2g/L normal glucose (to 
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mimic the de-labelling phase). Hourly samples were taken during the labelling and de-

labelling period (Figure 2.5d) to find out the deuterium incorporation in the population. 

 

Figure S2.1 

A kinetically heterogeneous population can show 𝑝∗ > 𝑑∗ behaviour only if the data is 

skewed towards the late time points 

 

Figure S2.1: Best fit to a dataset generated with the KH model showing 𝑝∗ > 𝑑∗ behaviour. The 

generated dataset is skewed towards measurements at late time points during the de-labelling period, 

giving unfair importance to the tail of the dataset. The parameters used to generate data with the KH 

model are: 𝑑1 = 0.1, 𝑑2 = 0.5, and 𝛼 = 0.8. The parameters of the best fit with the 𝑝∗𝑑∗ model are: 

𝑝∗ = 0.16, 𝑑∗ = 0.15 (which is just a mild effect, that would probably be difficult to find in true data 

with experimental noise). The vertical black dashed line marks the stop of label. 

 

Text S2.1: the temporal heterogeneity (TH) model 

TH in a population can generate 𝑝∗ > 𝑑∗ behaviour only if activated cells are lost at a 

slower rate than the resting cells 

Equation 2.10 can be re-written as: 

 𝑑𝑙

𝑑𝑡
= 𝑝∗𝑐𝐷(𝑡) − 𝑑∗(𝑡)𝑙 

 

with,   
 𝑝∗ = 𝑝�̅� = 𝑑𝐴 + �̅�(𝑑𝑅 − 𝑑𝐴)  
  (S2.3) 

 𝑑∗(𝑡) = 𝑑𝐴 + 𝛽(𝑡)(𝑑𝑅 − 𝑑𝐴) 

 

 

where 𝛽(𝑡) =
�̅�𝑙𝑅(𝑡)

�̅�𝑙𝑅(𝑡)+�̅�𝑙𝐴(𝑡)
 is the fraction that the labelled DNA strands of the resting sub-

population occupy in the labelled population at any time 𝑡. Like for the KH model, it can be 
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shown that 𝛽(𝑡) < �̅� during the labelling phase, because 𝛽(𝑡) increases monotonically with 

𝜌(𝑡): 

 
𝛽(𝑡) =

�̅�𝜌(𝑡)

�̅�𝜌(𝑡) + 1 − �̅�
 

(S2.4) 

where 𝜌(𝑡) =
𝑙𝑅(𝑡)

𝑙𝐴(𝑡)
< 1, ∀ 𝑡 < 𝑡𝑐𝑟𝑖𝑡. Thus, as expected the activated sub-population dominates 

the labelled population during the labelling phase. This results in a drop in the fraction 

labelled within the entire population as soon as the labelling is stopped even though the 

labelled fraction within the resting sub-population increases (equation 2.10). As in the KH 

model, 𝑡𝑐𝑟𝑖𝑡 divides the labelling curve into regions where 𝑝∗ > 𝑑∗(𝑡) and 𝑝∗ < 𝑑∗(𝑡). From 

the sufficient and necessary condition, 

 𝑑∗(𝑡) − 𝑝∗ = (𝛽(𝑡) − �̅�)(𝑑𝑅 − 𝑑𝐴) < 0, if 𝑡 < 𝑡𝑐𝑟𝑖𝑡  

   

 
⇒  {

𝑑∗ < 𝑝∗, 𝑑𝑅 > 𝑑𝐴

𝑑∗ ≥ 𝑝∗, 𝑑𝑅 ≤ 𝑑𝐴
 

(S2.5) 

Therefore, a population with TH will generate labelling curves with 𝑝∗ > 𝑑∗ behaviour only 

if the activated sub-population has a slower loss rate than the resting sub-population. 

 

Text S2.2: the explicit source model 

A population can produce 𝑝∗ > 𝑑∗ behaviour if it has a precursor with higher enrichment 

Equation 2.14 can be re-written in the form: 

 𝑑𝑙

𝑑𝑡
= 𝑝∗𝑐𝐷(𝑡) − 𝑑∗(𝑡)𝑙 

 

with,   

 𝑝∗ = 𝑝2 (S2.6) 

   

 
𝑑∗(𝑡) = 𝑑2 (1 −

𝑙1(𝑡)

𝑙2(𝑡)
) +

𝑝2𝑙1(𝑡)

𝑙2(𝑡)
 

 

 

The necessary condition becomes: 

 𝑑∗(𝑡) − 𝑝∗ = (𝑑2 − 𝑝2) (1 −
𝑙1(𝑡)

𝑙2(𝑡)
) < 0, if 𝑡 < 𝑡𝑐𝑟𝑖𝑡  

   

 
∴ 𝑝∗ > 𝑑∗ ⇒

𝑙1(𝑡)

𝑙2(𝑡)
> 1  

(S2.7) 
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Therefore, the POI will provide 𝑝∗ > 𝑑∗ behaviour if the precursor population has higher 

fraction of labelled cells, 𝑙1(𝑡) > 𝑙2(𝑡). This makes intuitive sense because the label in the 

POI is retained by labelled cells trickling into the population. The fraction of labelled cells 

within the POI would be lower than that in its precursor when 𝑡 < 𝑡𝑐𝑟𝑖𝑡 if: 

 
𝑙1(𝑡) > 𝑙2(𝑡) ⇒

𝑑𝑙1

𝑑𝑡
|

𝑡=0
>

𝑑𝑙2

𝑑𝑡
|

𝑡=0
 

 

   

 ⇒ 𝑑1𝑐𝐷(0) > 𝛼2𝑑2𝑐𝐷(0) (S2.8) 

   

 ∴ 𝑙1(𝑡) > 𝑙2(𝑡) ⇒ 𝑑1 > 𝑝2 ⇒ 𝑝∗ > 𝑑∗ (S2.9) 

where 𝑝2 = 𝛼2𝑑2. Therefore, if the turnover rate of the precursor population is higher than 

the division rate of the POI, the precursor will have a larger fraction of cells that is labelled, 

implying that the population can produce 𝑝∗ > 𝑑∗ behaviour. 

Note that the necessary condition (equation S2.9) does not always imply that the POI is 

majorly maintained by a source. If the POI were majorly maintained by the source, the 

number of cells from the source would be higher than that contributed by division (see 

equation 2.12), i.e., 

 𝑓1𝑑1𝑁1
̅̅ ̅ > 𝑝2𝑁2

̅̅̅̅  (S2.10) 

 

Using equation 2.13, the above can be simplified to 

 𝑑2 − 𝑝2 > 𝑝2  ⇒  𝑑2 > 2𝑝2 (S2.11) 

 

Comparing equations 2.13, S2.9 and S2.11, we find that the POI can show 𝑝∗ > 𝑑∗ labelling 

behaviour when 𝑑1 > 𝑝2, and is not majorly maintained by the source if 𝑝2 < 𝑑2 < 2𝑝2. 

Thus, 𝑝∗ > 𝑑∗ labelling behaviour does not require that the POI is majorly maintained by the 

source. 
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Abstract 

Estimating production and loss rates of cell populations is essential but difficult. The current 

state-of-the-art method to estimate these rates involves mathematical modelling of deuterium 

labelling experiments. Current models typically assume that the labelling in the precursors of 

the population of interest (POI) is proportional to that in the body water/glucose. This 

assumption is not always true and could have a significant effect on the rates estimated from 

labelling experiments. Here we quantify the effect different turnover rates of the precursors 

could have on the estimated proliferation and loss rates of a POI by explicitly modelling the 

dynamics of the precursors. We find that the labelling curve of the POI only reflects its own 

turnover rate if either the turnover rate of the precursors is sufficiently fast, or the 

contribution from the precursors is sufficiently small. We describe three other realistic 

scenarios where the labelling of the POI depends on both its own (proliferation and loss) rates 

and on the turnover rate of its precursors. Uniquely identifying the turnover rate of a POI, 

therefore, requires measurements (or knowledge) quantifying the contribution of label from 

its precursors. 
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Introduction 

The estimation of the average production and loss rates of a cell population, and therefore of 

the expected lifespan of its cells, has remained challenging. Most estimation procedures 

either interfere with the true dynamics of the populations (as in adoptive transfer experiments 

or in-vitro cultures) or are toxic for the cells (for example during in-vivo labelling with 

compounds such as BrdU or radioactive diisopropylfluorophosphate (DFP32)) 

(CARTWRIGHT et al., 1964; Gratzner, 1982). In recent decades, naturally occurring heavy 

isotopes (such as H2, C13) have been proposed as alternative labelling compounds that are 

stable and non-toxic, and that should not alter the behaviour of the cells (Borghans et al., 

2018; Macallan et al., 1998). 

The current state-of-the-art technique to quantify the dynamics of cell populations involves 

the use of deuterium (H2) as the labelling agent. Deuterated water or glucose is ingested by 

human volunteers or mice and its incorporation in the DNA of a population of interest (POI) 

is followed over time. The kinetics of label uptake (upon labelling) and loss (after labelling is 

stopped) reveals information about the turnover of the POI, which is deciphered using 

mathematical models (Asquith et al., 2002; Borghans et al., 2018). These models often 

simplify all cellular processes into just gain and loss of cells in the POI (Asquith et al., 2002). 

It is common practice, in studies addressing maintenance mechanisms of the POI, to 

distinguish between the gain of cells in the population due to i) cell division and ii) 

maturation from a precursor population. These are typically considered as two separate 

processes by using two independent parameters. Typically, the gain of label from the 

precursor population has been modelled implicitly, with the assumption that the enrichment 

of the precursor population mimics that of the body water, i.e., the precursors turn over 

rapidly. In such a case, the rate at which the POI gains label is dictated by its turnover rate 

(De Boer and Perelson, 2013a). Here, we show that the labelling dynamics of the source 

(precursor population) can have a significant effect on the labelling dynamics of the POI. 

Depending on the turnover rates of the precursors and the POI, the labelling curve of the POI 

could reflect its own rates, its precursors’ rates, or their combination. To uniquely identify the 

kinetics of a POI that is (partly) maintained by a source, therefore, we propose to always 

consider (through prior knowledge or new measurements) the labelling curve of its 

immediate precursors. 

 

Implicit source (IS) model 

Any population is maintained due to gain of new cells (source from a precursor or from 

proliferation) and loss of resident cells (differentiation into another population or death). 

Consider a population, 𝑁, that is at equilibrium (denoted by �̅�), has a source of 𝜎 cells/day, a 

per capita proliferation rate, 𝑝/day and a per capita loss rate, 𝑑/day (equation 3.1a). The 

kinetics of the number of cells, 𝑁, the number of labelled DNA fragments, 𝐿, and fraction of 

labelled DNA, 𝑙, within this population can be described as: 



Chapter 3: Influence of the precursor population 
 

 74  
 

 𝑑𝑁(𝑡)

𝑑𝑡
= 𝜎 + (𝑝 − 𝑑)𝑁(𝑡) 

(3.1a) 

   

 𝑑𝐿(𝑡)

𝑑𝑡
= 𝜎𝐷(𝑡) + 𝑝𝐷(𝑡)�̅� − 𝑑𝐿(𝑡) 

(3.1b) 

   

 𝑑𝑙(𝑡)

𝑑𝑡
= 𝑑(𝐷(𝑡) − 𝑙(𝑡)) 

(3.1c) 

 

where 

 �̅� =
𝜎

(𝑑 − 𝑝)
 (3.1d) 

   

 𝐷(𝑡) = 𝑐𝑈(𝑡) = {
1, 𝑡 < 1
0, 𝑡 ≥ 1

 
(3.1e) 

 

This model suggests that the fraction of the population that is labelled can be accurately 

tracked if just the loss rate, 𝑑, of the population is known (equation 3.1c). The turnover rate, 

𝑑, is typically identifiable as the number of parameters to be estimated reduces from 3 to only 

1, when dealing with the labelled fraction of a population that is at steady state (equation 

3.1a vs equation 3.1c). Importantly, the precursor population (source) is assumed to label 

and de-label instantaneously (equation 3.1b). 

In the model, 𝐷(𝑡) is a function denoting the probability that deuterium is incorporated into 

newly synthesized deoxyribose molecules (𝑈(𝑡) is the level of deuterated water or glucose in 

plasma (or urine), and 𝑐 is the intracellular amplification or dilution factor (Ahmed et al., 

2015)). For simplicity, we treat it as a square pulse and scale time such that the labelling 

period (typically denoted as 𝜏 days) is 1 time unit. Scaling time scales the rates of the 

population. For example, if the memory T cell pool (i.e., the POI) is labelled for 28 days in 

mice and has been estimated to have a turnover rate of 0.02/day, the labelling period becomes 

1 (scaled unit of time, reflecting about a month) and the turnover rate of the POI becomes 

0.02 × 28 = 0.56 per scaled unit of time (i.e., approximately per month). This scaling 

simplifies the presentation of the results considerably. 

 

Explicit source (ES) model 

While the previous model assumed that the precursor population labels and de-labels 

instantaneously, in face, the dynamics of a source can have a major impact. This was 

illustrated by a study on the dynamics of neutrophils. The lifespan of blood neutrophils was 

estimated to be ~5 days when the precursors of neutrophils (in the bone marrow) were 

assumed to have a fast turnover, and ~0.5 day when the precursors were assumed to be slow, 

underlining the importance of explicitly considering the dynamics of the source (Borghans et 

al., 2018). 
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To quantify the effect of the source’s dynamics on the rate estimates of the POI, consider an 

experiment designed to find out the rates of a POI, 𝑁2, that has an unobserved precursor 

population, 𝑁1. The cells of the precursors, 𝑁1, have a source of 𝜎 cells/scaled time unit (stu), 

from their immediate precursors, they divide at a rate of 𝑝1/stu and are lost at a rate of 𝑑1/stu. 

A fraction 𝛼 of the cells leaving the precursor population mature into cells of the POI (i.e., 

the remaining (1 − 𝛼) fraction die or move elsewhere). Thus, the precursors obey the 

standard IS model (equation 3.1a). If the cells of the POI divide at a rate of 𝑝2/stu, and are 

lost at a rate of 𝑑2/stu, the kinetics of the precursors and the POI are written as: 

 𝑑𝑁1(𝑡)

𝑑𝑡
= 𝜎 + (𝑝1 − 𝑑1)𝑁1(𝑡) 

(3.2a) 

   

 𝑑𝑁2(𝑡)

𝑑𝑡
= 𝑘𝛼𝑑1𝑁1(𝑡) + (𝑝2 − 𝑑2)𝑁2(𝑡) 

(3.2b) 

   

with, 𝑁1
̅̅ ̅ =

𝜎

(𝑑1 − 𝑝1)
 (3.2c) 

   

 
𝑁2
̅̅̅̅ =

𝑘𝛼𝑑1𝑁1
̅̅ ̅

(𝑑2 − 𝑝2)
 

(3.2d) 

where 0 < 𝛼 ≤ 1 and, 𝑁1
̅̅ ̅ and 𝑁2

̅̅̅̅  are the steady state values of the precursors and the POI, 

respectively. If the differentiation of the precursors into the POI is accompanied by division, 

the parameter 𝑘 = 2, otherwise 𝑘 = 1. The POI is primarily maintained by the source if 𝑝2 <

𝑑2/2 (compare equations 3.2c and 3.2d). For simplicity, we no longer mention the units 

(stu) of the parameters as they are all scaled with respect to the labelling period. 

The number of labelled DNA strands in the precursors, 𝐿1, and in the POI, 𝐿2, in the ES 

model obey: 

 𝑑𝐿1(𝑡)

𝑑𝑡
= 𝜎𝐷(𝑡) + 𝑝1𝐷(𝑡)𝑁1

̅̅ ̅ − 𝑑1𝐿1(𝑡) 
(3.2g) 

   

 𝑑𝐿2(𝑡)

𝑑𝑡
= 𝛼𝑑1𝐿1(𝑡) + (𝑘 − 1)𝛼𝑑1𝑁1

̅̅ ̅𝐷(𝑡) + 𝑝2𝐷(𝑡)𝑁2
̅̅̅̅ − 𝑑2𝐿2(𝑡) 

(3.2h) 

Thus, if differentiation is accompanied with division, the POI gains label due to the inflow of 

labelled DNA strands from the precursors as well as due to the generation of de-novo DNA 

strands on replication of the labelled and unlabelled DNA strands. The kinetics of the 

fractions of labelled DNA strands in the precursors, 𝑙1, and the POI, 𝑙2, then follow: 

 
𝑑𝑙1(𝑡)

𝑑𝑡
= 𝑑1(𝐷(𝑡) − 𝑙1(𝑡)) (3.2i) 

   

 
𝑑𝑙2(𝑡)

𝑑𝑡
=

(𝑑2 − 𝑝2)

𝑘
(𝑙1(𝑡) + (𝑘 − 1)𝐷(𝑡)) + 𝑝2𝐷(𝑡) − 𝑑2𝑙2(𝑡) (3.2j) 
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 =
𝑑2

𝑘
(𝑙1(𝑡) + (𝑘 − 1)𝐷(𝑡) − 𝑘𝑙2(𝑡)) +

𝑝2

𝑘
(𝐷(𝑡) − 𝑙1(𝑡)) (3.2k) 

Transforming the system from cell numbers into fractions reduces the system to a 3-

parameter model: 𝑑1, 𝑝2 and 𝑑2 (equation 3.2). Note that after a long labelling period (or in 

rapidly turning over populations), 𝑙1(𝑡) → 𝐷(𝑡) = 1, and that regardless of the value of 𝑘, 

𝑙2(𝑡) → 1. 

 

The labelling curve of the POI reflects its own or its precursor’s turnover 

rates in special cases 

The ES model is a very general model, no longer requiring the assumption that the precursors 

are fast. In this model, every POI can have a source (of potentially recently divided cells), can 

divide, and has a loss rate. If 𝑘 = 2 and 𝑝1 > 0, the ES model can also represent a population 

of stem cells, 𝑁1, dividing asymmetrically into 𝑁1 and 𝑁2 cells (see SI). 

Trivially, the labelling curve of the ES model is defined by the turnover rate of the POI, 𝑑2, if 

the source into the POI is negligible, i.e., if 𝑝2 → 𝑑2 (in equation 3.2k). Therefore, in this 

section, we discuss the label gain and loss rates in two well-known cases of the ES model 

where the POI does have a significant source from the precursors: 1) a rapidly turning over 

precursor, and 2) a rapidly turning over, non-dividing POI. Throughout this article, we use 

label gain rate (and label loss rate) to refer to the rate at which a population gains (and loses) 

labelled DNA. 

If the precursors turn over rapidly, e.g., 𝑑1 ≥ 10, the unlabelled cells in the precursor 

population would be rapidly replaced by labelled cells. The precursors can, in such a case, be 

approximated by the deuterium availability in plasma, i.e., 𝑙1(𝑡) ≈ 𝐷(𝑡) (equation 3.2i). The 

labelling in the POI (equation 3.2k) will then boil down to: 

 𝑑𝑙2(𝑡)

𝑑𝑡
≈ 𝑑2(𝐷(𝑡) − 𝑙2(𝑡)) 

(3.3) 

which is the familiar IS model showing that the enrichment of the POI is determined by just 

the turnover rate of the POI, 𝑑2. Thus, the gain and loss rates estimated from labelling 

experiments where the precursors turn over rapidly (relative to the labelling period) indeed 

reflect the turnover rate of the POI (De Boer and Perelson, 2013a). Consequently, as rapidly 

dividing thymocytes are the precursors of slowly dividing naive T cells, the estimated 

lifespan of naive T cells can be trusted (Vrisekoop et al., 2008). 

If the only source of label into the POI is due to the flow of labelled DNA from the 

precursors (i.e., 𝑘 = 1 and 𝑝2 = 0), the labelling dynamics in the POI (equation 3.2k) obeys: 

 𝑑𝑙2(𝑡)

𝑑𝑡
≈ 𝑑2(𝑙1(𝑡) − 𝑙2(𝑡)) 

(3.4) 
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If the cells of the POI turn over rapidly (e.g., 𝑑2 ≫ 1), the enrichment of the POI mimics that 

of the precursors (equation 3.4). Therefore, measuring only the POI will, in fact, reveal the 

turnover rate of the precursors. The neutrophils are a prime example of this case, as it is 

uncertain whether the slow labelling rate of mature neutrophils in blood reflects their own 

rate, or that of their precursors in the bone marrow (Borghans et al., 2018; Lahoz-Beneytez et 

al., 2016). These special cases showcase that the labelling curve of the POI sometimes 

reflects the turnover rate of the POI and sometimes that of its precursors. 

 

The label gain and loss rates of the POI do not equal its turnover rate if the 

POI and the precursors have comparable turnover rates 

Above we estimated the label gain and loss rates in a few extreme cases where either the 

source into the POI is negligible, or the precursors or the POI are short-lived. However, in 

many labelling experiments, the duration of the labelling period is comparable to the POI’s 

lifespan, to avoid scenarios where the POI either hardly labels or becomes rapidly labelled 

during the labelling period. This is important as an accurate estimation of the POI’s rates 

requires the collection of enough informative data points during the labelling period. As 

estimating the label gain and loss rates in these cases is not straight forward, here we derive 

first-order approximations for the POI’s label gain and loss rates. 

Denoting the label gain and loss rates as 𝑝∗(𝑡) and 𝑑∗(𝑡), respectively, the labelling curve of 

a POI can be written as (from equation 3.1c): 

 
𝑑𝑙(𝑡)

𝑑𝑡
= 𝑝∗(𝑡)𝑈(𝑡) − 𝑑∗(𝑡)𝑙(𝑡) (3.5) 

The label gain rate reflects the dynamics of the entire population (Asquith et al., 2002), as de-

novo labelled DNA molecules are made if a cell (with either labelled or unlabelled DNA 

molecules) divides during the labelling phase. The label loss rate, however, reflects the loss 

rate of the labelled cells only (Asquith et al., 2002), as the POI loses label only when a cell 

with labelled DNA is lost. 

In the ES model introduced above, the fraction labelled DNA in the precursors is determined 

only by its loss rate, 𝑑1, whereas the fraction labelled DNA in the POI is dependent not just 

on its own rates but also on the rates of its precursor population (equation 3.2j). The rate of 

label gain in the POI, 𝑝∗(𝑡), during the labelling phase (𝑡 ≤ 1) is (from equation 3.2j, with 

𝐷(𝑡) = 1 during the labelling phase): 

 
𝑝∗(𝑡) =

𝑑𝑙2(𝑡)

𝑑𝑡
=

(𝑑2 − 𝑝2)

𝑘
(𝑙1(𝑡) + 𝑘 − 1) + 𝑝2 − 𝑑2𝑙2(𝑡) 

(3.6a) 

If the label gain can be approximated well by a linear increase, the expression for the gain 

rate (equation 3.6a) can be simplified by noticing that 𝑙1(𝑡) = 1 − 𝑒−𝑑1𝑡 ≈ 𝑑1𝑡, and 𝑙2(𝑡) ≈

𝑝∗(𝑡)𝑡. During the labelling phase (𝑡 < 1), the rate of label gain in the POI can then be 

approximated by: 
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𝑝∗(𝑡) ≈

𝑑2(𝑑1𝑡 + 𝑘 − 1) + 𝑝2(1 − 𝑑1𝑡)

𝑘(1 + 𝑑2𝑡)
 

(3.6b) 

The initial slope (when 𝑡 → 0) and the slope at the end of the labelling phase (when 𝑡 → 1) of 

the POI, then, become 

 𝑝∗(0) ≈
𝑑2(𝑘 − 1) + 𝑝2

𝑘
 (3.6c) 

   

 𝑝∗(1) ≈
𝑑2(𝑑1 + 𝑘 − 1) + 𝑝2(1 − 𝑑1)

𝑘(1 + 𝑑2)
 (3.6d) 

As we are in a regime where the gain of label in the POI can be approximated well by a 

straight line, 𝑝∗(𝑡) ≈ 𝑝∗(0) ≈ 𝑝∗(1) (see Figures 3.1 and 3.2, and Table 3.1 below). If the 

labelling curves of both the precursors and the POI can be approximated reasonably by a 

straight line, the population with the faster labelling dynamics can be identified just by 

comparing the initial gain rate of these populations. Hence, the gain in label in the POI 

(during the labelling phase) is faster than that in its precursor if 

 𝑙2(𝑡) > 𝑙1(𝑡) ⇔ 𝑝∗(0)𝑡 > 𝑑1𝑡 ⇔ 𝑝∗(0) > 𝑑1 (3.7) 

As opposed to the rate of label gain, 𝑝∗(𝑡) =  
𝑑𝑙2(𝑡)

𝑑𝑡
, which is defined on the total population, 

the label loss rate, 𝑑∗(𝑡) =
1

𝑙2(𝑡)

𝑑𝑙2(𝑡)

𝑑𝑡
, is only defined on the labelled fraction (see equation 

3.5). So, the rate of label loss in the POI, 𝑑∗(𝑡), in the de-labelling phase (i.e., when 𝐷(𝑡) =

0 in equation 3.2j, again for simplicity) is 

 

𝑑∗(𝑡) = −

(𝑑2 − 𝑝2)
𝑘

𝑙1(𝑡) − 𝑑2𝑙2(𝑡)

𝑙2(𝑡)
 

(3.8a) 

   

 
= 𝑑2 −

(𝑑2 − 𝑝2)

𝑘

𝑙1(𝑡)

𝑙2(𝑡)
 

(3.8b) 

 

Again, as 𝑙1(𝑡) ≈ 𝑑1𝑡 and 𝑙2(𝑡) ≈ 𝑝∗(𝑡)𝑡, the above expression simplifies to 

 
𝑑∗(𝑡) ≈ 𝑑2 −

(𝑑2 − 𝑝2)

𝑘

𝑑1

𝑝∗(𝑡)
 

(3.8c) 

It is important to keep in mind that the approximated downslope is accurate for only a short 

period of time in the de-labelling phase as the approximations of 𝑙1(𝑡) and 𝑙2(𝑡) are not 

accurate for 𝑡 > 1. 

As 𝑝∗(0) = 0 in some cases, for example, when 𝑝2 = 0 and 𝑘 = 1, we typically use the 

approximation 𝑝∗(𝑡) ≈ 𝑝∗(1) for defining 𝑑∗(𝑡). Thus, the initial rate at which label is lost in 

the beginning of the de-labelling phase is 
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𝑑∗(1 + 휀) ≈ 𝑑2 −

(𝑑2 − 𝑝2)

𝑘

𝑑1

𝑝∗(1)
 

(3.8d) 

where 휀 > 0 is small. 

The approximations of the gain and loss rates of label in the POI show that these rates are not 

dictated only by the turnover rate of the POI but also by the division rate of the POI and the 

turnover rate of the precursors. 

 

Label uptake in the POI is generally lower than its true turnover rate 

Models that consider an implicit source (like the IS model) predict that, in a population that is 

at steady state, the rate of label gain in the POI, 𝑝∗(𝑡), is the same as its death rate, i.e., 𝑑2 

(see equation 3.1c). To test the validity of this prediction, we compare the turnover rate of 

the POI analytically with the rates estimated from the more general explicit source model 

(equations 3.6c-d and 3.8c, Table 3.1), and empirically with the true gain by using 

numerical simulations (Figures 3.1, 3.2 and S3.1). 

 

The turnover rates of the precursors and the POI are comparable 

We first consider scenarios where the lifespans of the precursors and the POI are comparable 

to the duration of the labelling period (e.g., 0.1 ≤ 𝑑1 < 1, 0.1 ≤ 𝑑2 < 1), for example, 

labelling studies that track memory T cells, which might have a source from less-

differentiated memory T-cell phenotypes, in blood (Ahmed et al., 2020). For the numerical 

simulations, we consider examples where the precursors’ and the POI’s lifespans are 

comparable, e.g., either 2-fold or 5-fold longer than the duration of the labelling period 

(Figures 3.1 and 3.2). Further, the POI may (left column in figures) or may not (right column 

in figures) divide. 

 

Precursors are faster than the POI. If the precursors turn over faster than the POI, i.e., 𝑑1 >

𝑑2 > 𝑝2, the labelling in the POI, during the labelling phase, cannot be higher than that in the 

precursors (𝑝∗(0) < 𝑑1 in equation 3.7, Figure 3.1). 

If the differentiation of the precursors into the POI is not accompanied by division (i.e., if 

𝑘 = 1), the initial rate of label gain in the POI, 𝑝∗(0), is given by its division rate, 𝑝2 

(equation 3.6c, Figures 3.1a-b, Table 3.1). The predicted initial label gain rate, 𝑝∗(0) = 𝑝2, 

can have any value between 0 and 𝑑2 (Figures 3.1a-b), and therefore, is not the average 

turnover rate of the POI, as was previously assumed. If the cells in the POI do not divide (i.e., 

if the gain of label in the POI is only due to the influx of labelled precursors), the labelling 

curve of the POI has an initial delay during which the gain of label in the POI is zero (Figure 
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3.1b). This initial delay in the gain of label is given by 𝑝∗(0) = 𝑝2 = 0, which is infinitely 

smaller than the expected 𝑑2. 

After the initial phase, the labelling curve is best described by 𝑝∗(1), which depends on all 

three parameters of the model (equation 3.6d). The slope, 𝑝∗(𝑡), increases over time, starting 

at the POI’s division rate, 𝑝2, up to 𝑝∗(1), where the gain rate of label in the POI is higher 

than its own division rate, and is approaching its turnover rate (Table 3.1). The slope of the 

labelling curve approaches the turnover rate of the POI as cells of the POI that are lost are 

replaced by labelled cells from the higher enriched precursors. Numerical simulations 

confirm that the predicted slopes describe the true labelling curve faithfully (Figures 3.1a-b) 

and are similar to each other if the POI is a dividing population (Figure 3.1a). 

The initial rate of label gain in the POI cannot be zero if the differentiation of precursors into 

the POI is accompanied by cell division (i.e., if 𝑘 = 2 in equation 3.6c, Figures 3.1c-d). 

Like before (the case when 𝑘 = 1), the approximated gain rate increases from the initial 

𝑝∗(0) to 𝑝∗(1) due to the higher enrichment of the incoming precursors. The label gain rate 

of the POI is closer (relative to the case when 𝑘 = 1) to, but still smaller than, its true 

turnover rate (Figures 3.1c-d). Thus, if the precursors are faster than the POI, the label gain 

rate in the POI increases over the labelling period due to an influx of precursors into the POI, 

provided 𝑑1, 𝑑2 < 1 and regardless of whether differentiation is accompanied by division 

(Table 3.1). 

 

Precursors are slower than the POI. If the POI is faster than the precursors, i.e., 𝑑2 > 𝑑1, 

the labelling in the POI can be either faster or slower than the labelling in the precursors 

(equation 3.7, Figures 3.2a-b, Table 3.1). The labelling of the POI is faster than the 

precursors if the division rate of the POI is faster than the turnover rate of the precursors, i.e., 

𝑝2 > 𝑑1. If the cells in the POI do not divide, the labelling in the POI can be faster than that 

in the precursors only if the precursors go through division-linked differentiation and the POI 

is at least 2-fold faster than the precursors, 𝑑2 > 2𝑑1 (equation 3.7; also see equations 3.12 

and 3.13). 

Some properties stay unchanged compared to the case where precursors are faster than the 

POI. For example, if the precursors do not divide while differentiating into the POI (𝑘 = 1), 

the initial rate of label uptake reflects the division rate of the POI, 𝑝∗(0) = 𝑝2 (equation 

3.6c). This implies that a non-dividing POI would initially have a zero labelling rate (Figure 

3.2b). If the differentiation of the precursors is linked with division (𝑘 = 2), the initial rate of 

label gain in the POI reflects both its division and death rates (equation 3.6c). The 

approximated slopes (𝑝∗(0) and 𝑝∗(1)) were, in all cases, much lower than the true turnover 

rate of the POI, 𝑑2. The slope declined over time during the labelling period, starting at a 

value defined by its own (division and loss) rates and moving towards the turnover rate of the 

precursors. The low enrichment of the precursors diluted the enrichment in the POI, causing a 

decline in the slope of the labelling curve. Therefore, the POI’s label gain rate initially 



Chapter 3: Influence of the precursor population 
 

 81  
 

reflects its own rates and is influenced by the rates of its precursors later in the labelling 

period. 

Finally, to confirm these analytical results, the phenomenological model (equation 3.5) was 

used to numerically estimate the label gain and loss rates of the POI in all cases (i.e., whether 

the precursors are faster or slower than the POI) by non-linear parameter fitting. In all cases 

where the model was able to describe the artificial data, the estimated label gain rate, 𝑝∗, lay 

between the analytically predicted initial and final label gain rates (𝑝∗(0) and 𝑝∗(1), 

respectively) (Table 3.1). The estimated label loss rate, 𝑑∗, and the predicted initial label loss 

rate, 𝑑∗(1 + 𝜖), however, differed considerably. As the estimated label loss rate, 𝑑∗, is based 

upon the labelling dynamics of the POI during the entire de-labelling phase, it need not be 

similar to the initial gain or loss of label after the end of the labelling period (i.e., 𝑑∗(1 + 𝜖), 

Table 3.1). Note that the phenomenological model (equation 3.5) is unable to describe the 

labelling curve if the precursor population differentiates without division into a non-dividing 

POI (see Table 3.1, Figures S3.2 and S3.3). 

 

Figure 3.1: Precursors are faster than the POI. The rate of label gain is lower than the POI’s 

turnover rate, 𝑑2 (blue vector), if the precursors turn over faster than the POI. The coloured vectors 

represent the slopes identified in the legend and the arrows give the direction of extrapolation of these 

slopes. Note that the slopes are calculated as the label gain or loss rate multiplied by the fraction of 

unlabelled or labelled cells, respectively, for example, 𝑑∗(1 + 𝜖)𝑙2. The loss rate of the precursors, 

𝑑1, and the POI, 𝑑2, were set to 0.5 and 0.2, respectively. The division rate of the POI, 𝑝2, was either 

set to 0.1 (in (a) and (c)) or 0 (in (b) and (d)). Note that the dynamics in (a) and (d) are identical, 

which can also be seen in Table 3.1 (see the sub-section Division-linked differentiation below for 

details). 

 



Chapter 3: Influence of the precursor population 
 

 82  
 

The turnover rates of the precursors and the POI are not comparable 

If the POI is much faster than the precursors, the label gain rate approaches the turnover rate 

of the precursors, which was highlighted above as a well-known special case (Borghans et al., 

2018; Lahoz-Beneytez et al., 2016). Note that the approximated slopes describe the labelling 

curve for a short period of time, as linear approximations do not give good descriptions of 

𝑙1(𝑡) and 𝑙2(𝑡) when 𝑑1, 𝑑2 > 1 (see Figure S3.1 and Table S3.1). Similarly, if the 

precursors are faster than the POI, the label gain rate in the POI approaches its own turnover 

rate as the label gain rate in the POI cannot be higher than its turnover rate, which was also 

reported above as a special case. Therefore, the approximated rates give a good description of 

the gain and loss of label in a population. 

Condition 𝒅𝟏 𝒅𝟐 𝒑𝟐 𝒌 𝒑∗(𝟎)  𝒑∗(𝟏)  𝒅∗(𝟏 + 𝝐)  𝒑∗ 𝒅∗ 

Faster 

precursors 
0.5 0.2 

0.1 
1 0.10 0.13 -0.20 0.12 0.04 

2 0.15 0.15 0.03 0.16 0.13 

0 
1 0 0.08 -1 - - 

2 0.10 0.13 -0.20 0.12 0.04 

Slower 

precursors 
0.2 0.5 

0.25 
1 0.25 0.20 0.25 0.24 0.27 

2 0.38 0.27 0.41 0.37 0.40 

0 
1 0 0.07 -1 - - 

2 0.25 0.20 0.25 0.24 0.27 

Table 3.1: The true proliferation and turnover rate (𝑑1, 𝑑2, and 𝑝2), and the predicted label gain and 

loss rates (i.e., 𝑝∗(0), 𝑝∗(1), and 𝑑∗(1 + 𝜖) using equations 3.6c-d and 3.8c) corresponding to the 

simulations shown in Figures 3.1 and 3.2. The parameters (𝑝∗ and 𝑑∗) of the best fits (shown in 

Figures S3.2 and S3.3) of the phenomenological model (equation 3.5) to the labelling data of the 

POI. The estimated label gain rate initially (see 𝑝∗(0)) reflects the proliferation rate of the POI (when 

𝑘 = 1) and then changes to reflect the influence of the precursor’s rate (captured by 𝑝∗(1)). The 

estimates of 𝑝∗ and 𝑑∗ are not reported for the cases in which the phenomenological model fails to 

describe the data (see Figures S3.2 and S3.3). Note that the estimated loss rate, 𝑑∗(1 + 𝜖), gives the 

rate at which the labelled population loses labelled DNA soon after the end of the labelling period (𝜖 

is a very small positive number). The negative sign indicates that the population, in fact, gains 

labelled DNA for a short period after the end of labelling (see equation 3.5). The rates (expressed as 

stu) are scaled with respect to the labelling period. 

 

The label gain rate can maximally be the turnover rate of the POI. The examples above 

showed that the rate at which the POI gains label was invariably lower than the POI’s 

turnover rate. Here we show that this is always the case, provided that the lifespans of the 

POI and the precursors are comparable to the duration of the labelling period. 

If the precursors are not fast, i.e., if 𝑑1 < 1 (and hence, 𝑙1(1) < 1), both the slopes, 𝑝∗(0) 

and 𝑝∗(1), are smaller than the expected value, 𝑑2, as 

 𝑝∗(0) ≈
𝑑2(𝑘 − 1) + 𝑝2

𝑘
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 =
𝑑2(𝑘 − (1 − 𝛼2))

𝑘
< 𝑑2  

and  (3.9) 

 𝑝∗(1) ≈
𝑑2(𝑑1 + 𝑘 − 1) + 𝑝2(1 − 𝑑1)

𝑘(1 + 𝑑2)
  

   

 =
𝑑2(𝑘 + (𝑑1 − 1)(1 − 𝛼2))

𝑘(1 + 𝑑2)
< 𝑑2  

as 
(𝑘+(𝑑1−1)(1−𝛼2))

𝑘(1+𝑑2)
< 1, when 𝑑2 >

(𝑑1−1)(1−𝛼2)

𝑘
, which always holds true as 𝑑1 < 1. Here 

𝑝2 = 𝛼2𝑑2, with 0 ≤ 𝛼2 < 1. Thus, the rate at which the POI gets labelled is always lower 

than its turnover rate, 𝑑2, provided 𝑑1, 𝑑2 < 1. Interpreting the label gain rate as the true 

turnover rate would, therefore, overestimate the POI’s lifespan whenever the precursors are 

not very fast and/or play a significant role in the maintenance of the POI. 

 

Figure 3.2: Precursors are slower than the POI. The rate of label gain is lower than the POI’s true 

turnover rate, 𝑑2 (blue vector), if the precursors turn over slower than the POI. The coloured vectors 

represent the slopes identified in the legend and the arrows give the direction of extrapolation of these 

slopes. Note that the slopes are calculated as the label gain or loss rate multiplied by the fraction of 

unlabelled or labelled cells, respectively, for example, 𝑑∗(1 + 𝜖)𝑙2. The loss rate of the precursors, 

𝑑1, and the POI, 𝑑2, were set to 0.2 and 0.5, respectively. The division rate of the POI, 𝑝2, was either 

set to 0.1 (in (a) and (c)) or 0 (in (b) and (d)). Note that the dynamics in (a) and (d) are identical, 

which can also be seen in Table 3.1 (see the sub-section Division-linked differentiation below for 

details). 
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The initial label loss in the POI is accurately predicted 

We have shown that the estimated gain rates tend to be reasonable predictors of the 

enrichment in the precursors and the POI. As the relative enrichment of populations at the 

end of the labelling period influences the rate at which label is lost (equation 3.8b, Chapter 

2), the initial rate at which label is lost, 𝑑∗(1), can be approximated well by using the 

estimated gain rates (equation 3.8c). 

When the lifespans of the POI and the precursors are comparable to the labelling period, the 

estimated gain and loss rates give a good description of the labelling curves (Figures 3.1 and 

3.2). The estimated loss rates predicted whether the POI started to lose or continued to accrue 

label at the end of the labelling phase (Table 3.1). If the precursors are more enriched 

compared to the POI, the labelling of the POI continues after the labelling period in most 

cases (4 out of 5 cases, see Figures 3.1a,b,d and Figure 3.2b). In these cases, the gain of 

label in the POI is primarily due to the inflow of highly labelled precursor cells (also see the 

subsection Timing of the peak). In the other four cases (see Figure 3.1c and Figures 

3.2a,c,d), the label gain in the POI was driven by proliferation. 

Note that even when the cells in the POI are very short-lived, the estimates of the initial loss 

rate accurately informed on whether the POI gained or lost label after the labelling period 

(Table S3.1). So, the estimated rates do provide a faithful description of the de-labelling 

curve, but only for a very short period of time (Figure S3.1). Thus, the predicted label gain 

rate, 𝑝∗(1), can be used to find a good approximation of the initial loss rate (equation 3.8c). 

 

The POI can have four different labelling behaviours 

Unlike the IS model where the labelling of the POI is determined only by the death rate of the 

POI (equation 3.1c), in the ES model the POI can have four qualitatively different slopes at 

which the POI gains and loses label (summarized in Table 3.2). The labelling of the POI is 

determined by: 

1) its own turnover rate, 𝑑2, if the precursors turn over rapidly. In this case, the 

labelling in the precursors approximates the label availability in the plasma. In this case, the 

ES model approximates the IS model, and the rates of labelling and de-labelling are primarily 

driven by the POI’s loss rate. An example of this case are naive T cells, that have the rapidly 

dividing thymocytes as their precursors (Vrisekoop et al., 2008). 

2) the turnover rate of the precursors, 𝑑1, if the POI is fast. An example would be 

mature neutrophils in blood, which are thought to mimic the labelling curve of their 

precursors in the bone marrow (Borghans et al., 2018; Lahoz-Beneytez et al., 2016). The POI, 

here mature neutrophils, are probably much faster than their precursors in the bone marrow. 

They attain the enrichment of the precursors as they are replaced (by the cells flowing in from 

the precursors, post-mitotic pool) much faster than the change in the enrichment of the 

precursors. 
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3) its division rate, 𝑝2, if differentiation is not accompanied by division (𝑘 = 1). This 

is because the increase in enrichment due to the division in the POI would initially be the 

major contributor compared to the label flowing in from the precursors. Note that the 

precursors and the POI should have lifespans that are comparable to the length of the 

labelling period. A likely example for such a case would be central memory T cells 

undergoing homeostatic differentiation into effector memory T cells (Restifo and Gattinoni, 

2013; Sallusto et al., 2004). 

4) the average of its division and death rates, (𝑝2 + 𝑑2)/2, if the precursors go 

through division-linked differentiation (𝑘 = 2). Here, along with the label gain due to the 

division in the POI, the source from the precursors also has a significant contribution of 

labelled cells as the precursor cells also divide and pick up label when they differentiate into 

the POI. Thus, if a naive T cell were to undergo homeostatic differentiation into memory T 

cells (Gossel et al., 2017), the gain of label by memory T cells would reflect both its division 

and death rates. 

Since the labelling in the POI depends on the enrichment of its immediate precursors only 

(equation 3.2j), it is sufficient to have knowledge or data on the immediate precursors (and 

not the precursors’ precursor) to distinguish the rates of the POI from that of its precursors. 

So, even a phenomenological description of the precursors’ labelling curve, 𝑙1(𝑡), would 

suffice to correctly estimate the turnover rate of the POI. Therefore, it is essential and 

sufficient to measure and model the immediate precursor population of the POI to reliably 

interpret the estimated rates. 

 

The peaks of the labelling curves can help distinguish scenarios 

Timing of the peak. It is possible to infer some properties of the precursors and the POI just 

by comparing both the height and the time of their peaks. The POI reaches its peak 

enrichment either 1) at the end of the labelling period, or 2) after the end of the labelling 

period. 

In general, the peak of the POI will be at the end of the labelling phase if the cells flowing 

into the POI from the precursors have lower enrichment than the cells in the POI, i.e., 

 𝑙2(1) > 𝑙1(1) ⇔ 𝑝∗(0) > 𝑑1 (3.10) 

Consider two specific scenarios where the POI reaches its peak enrichment at the end of the 

labelling period. First, if the precursors differentiate without dividing (i.e., when 𝑘 = 1), 

 𝑝∗(0) > 𝑑1 ⇔ 𝑝2 > 𝑑1 (3.11) 

i.e., if the division rate of the cells in the POI is higher than the loss rate of the precursors. 

Second, if the differentiation of the precursors is accompanied by division (i.e., when 𝑘 = 2), 

 𝑝∗(0) > 𝑑1  
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  (3.12) 

 ⇒ {
𝑝2 > 𝑑1, or

𝑑2/2 > 𝑑1 > 𝑝2
  

i.e., the loss rate of the precursors is less than either the division rate or half of the loss rate of 

the POI. In summary, the peak of the POI is at the end of the labelling period only when the 

enrichment of the POI is largely due to division (within the POI or by differentiating 

precursors). 

There are two corollaries of this finding. One, a non-dividing POI always achieves its peak 

labelling after the stop of labelling. Two, the peak of the POI will be after the end of the 

labelling phase if the precursor cells flowing into the POI after the end of the labelling phase 

have higher enrichment than the cells in the POI, i.e., 

 𝑙1(1) > 𝑙2(1) ⇒ 𝑑1 > 𝑝∗(0)  

   

 ⇒ {
𝑑1 > 𝑑2, or

𝑑2 > 𝑑1 > 𝑝2
   when 𝑘 = 1 (3.13) 

   

 ⇒ {
𝑑1 > 𝑑2, or

2𝑑1 > 𝑑2 > 𝑑1 > 𝑝2
   when 𝑘 = 2  

Complementary to the previous conclusion, the peak of the POI is after the end of the 

labelling phase only when differentiating precursors (without division) are the major 

contributor of label in the POI. Therefore, the population architecture underlying a labelling 

curve can be partially realized by comparing the location of the peaks of the POI and its 

precursors (provided the dataset is sufficiently dense). 

 

Division-linked differentiation. To further pinpoint the properties of the precursors and the 

POI, it is important to be able to distinguish between labelling curves where differentiation is 

accompanied by division from those where it is not. Unfortunately, whether a population 

goes through division-linked differentiation is, in general, unidentifiable (i.e., curves with 

𝑘 = 1 and 𝑘 = 2 are indistinguishable). To demonstrate this, we compare the labelling 

equations of the POI when 𝑘 = 1 and 𝑘 = 2 (equation 3.2j). Denoting the division rate of 

the POI, 𝑝2, as 𝑝21 when 𝑘 = 1, and as 𝑝22 when 𝑘 = 2, we find 

 
𝑑𝑙2(𝑡)

𝑑𝑡
│

𝑘=1
=

𝑑𝑙2(𝑡)

𝑑𝑡
│

𝑘=2
 (3.14a) 

   

 ⇒ 𝑑2(𝑙1 − 𝑙2) + 𝑝21(𝐷(𝑡) − 𝑙1) =
𝑑2(𝑙1 + 𝐷(𝑡) − 2𝑙2) + 𝑝22(𝐷(𝑡) − 𝑙1)

2
 (3.14b) 

   

 ⇒ 𝑝22 = 2𝑝21 − 𝑑2 (3.14c) 

where 𝑝21 ≥ 𝑑2/2. Therefore, the labelling curve of any population whose precursor goes 

through division-linked differentiation can also be explained by a scenario where the 



Chapter 3: Influence of the precursor population 
 

 87  
 

precursors differentiate without division (see Table 3.1 for examples). On the other hand, the 

labelling curve of a population whose precursors do not go through division-linked 

differentiation cannot be described with 𝑘 = 2 if more than half of the production of the POI 

is due to the source, i.e., 𝑝2 < 𝑑2/2. Thus, one can conclude that the influx into the POI is 

not accompanied by division if 𝑝2 < 𝑑2/2 in the estimates of the best fit. In a scenario where 

it is not known whether differentiation is linked with division, it is safe to conclude that the 

POI is primarily maintained by self-proliferation only if 𝑝2 ≥ 3𝑑2/4. Fortunately, the above 

transformation (equation 3.14) does not affect the turnover rate of the POI, 𝑑2. Therefore, 

the turnover rate of the POI is identifiable if (and only if) the labelling in the precursors is 

known. 

Scenarios 𝒑∗(𝟎) 𝒑∗(𝟏) 𝒅∗(𝟏 + 𝜺) Constraints 

General cases 

Differentiation 

without 

division 

𝑝2 
𝑑2𝑑1 + 𝑝2(1 − 𝑑1)

(1 + 𝑑2)
 

𝑑2 − (𝑑2

− 𝑝2)
𝑑1

𝑝∗(1)
 

𝑘 = 1 

Division-

linked 

differentiation 

(𝑑2 + 𝑝2)

2
 

𝑑2(𝑑1 + 1) + 𝑝2(1 − 𝑑1)

2(1 + 𝑑2)
 

𝑑2

−
(𝑑2 − 𝑝2)

2

𝑑1

𝑝∗(1)
 

𝑘 = 2 

Special cases 

Precursors 

turn over 

about as fast 

as deuterated 

water/glucose 

 

OR 

 

The source is 

negligible 

𝑑2 𝑑2 𝑑2 

1 ≪ 𝑑1 

 

OR 

 

𝑑1 ≈ 0 

 Rapidly 

turning over, 

non-dividing 

POI with 

precursors 

that do not 

divide while 

differentiating 

𝑑1 𝑑1 𝑑1 

0 < 𝑑1 < 𝑑2  
1 ≪ 𝑑2 

𝑝2 = 0 

𝑘 = 1 

Table 3.2: A POI with a precursor population has 4 qualitatively different gain and loss rate 

scenarios. Knowledge about the precursor helps and is crucial to identify the turnover rate of the POI. 

 

Intersecting labelling curves. Consider a simple scenario where precursors differentiate 

without division into a non-dividing POI, i.e., 𝑘 = 1 and 𝑝2 = 0 (see above). We have seen 

above that the peak enrichment in the POI will then be reached after the end of the labelling 
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phase (where 𝐷(𝑡 > 1) = 0). More importantly, the peak occurs when 𝑙2(𝑡) = 𝑙1(𝑡) 

(equation 3.4, see Figure 3.3a). This provides a cardinal property of a chain of populations: 

 𝑙2(𝑡) = 𝑙1(𝑡) ⇔ 𝑘 = 1, 𝑝2 = 0 (3.15) 

i.e., if during the de-labelling phase, a population reaches its peak when its labelling curve 

intersects that of its precursors, then this is proof that the POI is not dividing, and its 

precursors differentiate into the population without division. This immediately implies that 

such a population (𝑘 = 1, 𝑝2 = 0) has a lower peak than its precursor (Figure 3.3a). 

The above discussions have all focused on scenarios where cells are lost or are produced 

randomly (i.e., the times to death or division are exponentially distributed and are 

independent of the cell’s age). However, several cellular processes may require a minimum 

length of time. If the cells of the POI were to have an ‘internal clock’ programming their 

departure time, i.e., if cells would require a fixed amount of time to mature or die, then the 

peak of labelling achieved in the POI can be higher than that in the precursors (Figure 3.3b). 

For example, the maturation process of promyelocytes into mature neutrophils in the bone 

marrow has been shown to be a conveyor-belt-like process, where each maturation stage has 

a pre-determined time. Consider the kinetics of this 3-population system: 

 
𝑑𝑁1(𝑡)

𝑑𝑡
= 𝜎 − 𝑑1𝑁1(𝑡) (3.16a) 

   

 
𝑑𝑁2(𝑡)

𝑑𝑡
= 𝑑1𝑁1(𝑡) − 𝑑1𝑁1(𝑡 − ∆2) (3.16b) 

   

 
𝑑𝑁3(𝑡)

𝑑𝑡
= 𝑑1𝑁1(𝑡 − ∆2) − 𝑑1𝑁1(𝑡 − ∆2 − ∆3) (3.16c) 

   

with, 𝑁1
̅̅ ̅ = 1, 𝑁2

̅̅̅̅ = 𝑑1𝑁1
̅̅ ̅∆2, and 𝑁3

̅̅̅̅ = 𝑑1𝑁1
̅̅ ̅∆3 (3.16d) 

The residence times in 𝑁1, 𝑁2 and 𝑁3 are 1/𝑑1, ∆2 and ∆3, respectively. The dynamics of the 

labelled fraction are defined as 

 
𝑑𝑙1

𝑑𝑡
= 𝑑1(𝐷(𝑡) − 𝑙1) (3.16e) 

   

 
𝑑𝑙2

𝑑𝑡
=

𝑙1(𝑡) − 𝑙1(𝑡 − ∆2)

∆2
 (3.16f) 

   

 
𝑑𝑙3

𝑑𝑡
=

𝑙1(𝑡 − ∆2) − 𝑙1(𝑡 − ∆2 − ∆3)

∆3
 (3.16g) 

   

where 𝑙1(𝑡 − ∆) = 0, if 𝑡 < ∆ (3.16h) 
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Here a population, 𝑁1, governed by random cellular processes (i.e., an exponentially 

distributed loss rate, 𝑑1) differentiates into a population, 𝑁2, that with fixed maturation time 

(∆2) differentiates into a successive stage, 𝑁3, that also has a fixed maturation time (∆3). 

As the cells only mature in the 2nd and 3rd populations (the non-random populations) and do 

not divide, the gain of label in these populations is solely due to differentiation of the 1st 

population (with random cellular processes). The 2nd population gathers label as soon as 

labelling starts, as there is no fixed time in the 1st population before which a cell can mature. 

However, the 3rd population gains label only after the labelled cells in the 2nd population have 

matured, i.e., after ∆2 units of time. 

The dynamics of an analogous system where the three populations have random cellular 

processes is: 

 
𝑑𝑁1(𝑡)

𝑑𝑡
= 𝜎 − 𝑑1𝑁1(𝑡)  

   

 
𝑑𝑁2(𝑡)

𝑑𝑡
= 𝑑1𝑁1(𝑡) − 𝑑2𝑁2(𝑡)  

   

 
𝑑𝑁3(𝑡)

𝑑𝑡
= 𝑑2𝑁2(𝑡) − 𝑑3𝑁3(𝑡)  

   

 𝑁1
̅̅ ̅ =

𝜎

𝑑1
;  𝑁2

̅̅̅̅ =
𝑑1

𝑑2
𝑁1
̅̅ ̅;  𝑁3

̅̅̅̅ =
𝑑2

𝑑3
𝑁2
̅̅̅̅  (3.17) 

   

 
𝑑𝑙1(𝑡)

𝑑𝑡
= 𝑑1(𝐷(𝑡) − 𝑙1(𝑡))  

   

 
𝑑𝑙2(𝑡)

𝑑𝑡
= 𝑑2(𝑙1(𝑡) − 𝑙2(𝑡))  

   

 
𝑑𝑙3(𝑡)

𝑑𝑡
= 𝑑3(𝑙2(𝑡) − 𝑙3(𝑡))  

In a 3-population system that only has populations with random cellular processes (Figure 

3.3a), the successive populations (2nd and 3rd) attain their peak where their labelling curves 

intersect with their immediate precursors, and therefore, the peak of a successive population 

cannot be higher than its immediate precursor. This property, however, does not hold in a 

system that has populations on a conveyor belt (Figure 3.3b), as the peak of the 3rd 

population can be higher than that of the 2nd. Of note, the peak of the 2nd and 3rd population 

cannot be higher than that of the 1st population (i.e., the source of their labelling). In the 

simulation presented here (Figure 3.3b), as the maturation time in the 3rd population is 

shorter than that of the 2nd, the 3rd population has a higher fraction that is labelled at its peak 

(even though the total amount of labelled cells going through them is the same). Since these 

curves are different, one would obtain different parameter estimates if such labelling data 

were fitted with equations 3.16 and 3.17. For example, we have estimated the residence time 
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of mature neutrophils in blood to be ~ 10 hours or ~ 1.6 days, depending on whether the 

mature blood neutrophils are assumed to undergo random or conveyor-belt-like cellular 

processes, respectively (van Grinsven et al., manuscript in preparation). Therefore, it is also 

important to know whether the measured populations undergo non-random cellular processes. 

 

Figure 3.3: Non-dividing populations with the same differentiation properties show different 

behaviours if they have pre-programmed cellular processes. A 3-population system is shown 

where cells of either all populations (a, equation 3.17) or only the first population (b, equation 3.16) 

have random cellular processes. The parameters of the models are: 𝑑1 = 0.1, 
1

𝑑2
= ∆2= 5, 

1

𝑑3
= ∆3=

4. The values are scaled with respect to the labelling period. 

 

In certain cases (for example, the case shown in Figure 3.3b), it is possible to infer the model 

architecture from the labelling curves. In this example, the 3rd population has a delayed gain 

of label (therefore, no proliferation) and peaks well after the stop of the labelling period (so, 

the source, i.e., the 2nd population, is the major contributor of label). Moreover, its peak is 

higher than that of its precursor population, which is not possible for populations with 

random cellular processes. In such a case, one should choose equation 3.16 to explain the 

data. So, it is safe to conclude that the cells in a population are not governed by random 

processes if the peak of the population is higher than its precursor and the peak is reached 

after the end of the labelling period (see above and equation 3.2j). Finally, it is also clear 

from the marked delay in the labelling of the 3rd population, that the 2nd population is a 

‘waiting box’. 
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The estimated turnover rate of a POI can depend on its assumed 

underlying maintenance mechanism 

The ES model can explain a wide variety of labelling curves, including the curves generated 

by the IS model. Both 𝑝∗ ≤ 𝑑∗ and 𝑝∗ > 𝑑∗ labelling behaviour can be explained by the ES 

model (Table 3.2; also see Chapter 2). This generality of the ES model is troubling, 

however. Most current estimates of cell lifespans are based on IS-like models that do not 

consider a precursor population, and the estimated rate at which label is gained is generally 

interpreted as the average turnover rate of the POI (Asquith et al., 2002; De Boer and 

Perelson, 2013a). Since in the ES model, the same estimate could be reflecting the rate of the 

precursors (𝑑1), of the POI (𝑑2, 𝑝2) or anything in between, this questions some of the current 

interpretations. We illustrate this using two examples. 

 

Labelling of CD8+ memory T cells by Westera et al. (2013) 

In the study by Westera et al. (2013) (Westera et al., 2013) murine CD8+ memory T cells 

were measured in a deuterium labelling experiment. The mice were drinking deuterated water 

for 1, 4 or 8 weeks. Using IS-like models (where the labelling in the source is the same as 

that in the body water), it was concluded that the CD8+ memory T-cell pool is heterogeneous, 

because the data was best described with the kinetic heterogeneity (KH) model (Westera et 

al., 2013). Above, we showed that a population whose label gain rate is slower than its loss 

rate can also be described by the ES model (Table 3.2), and hence as alluded to previously 

(Westera et al., 2013), is not conclusive evidence for heterogeneity in the POI. Further, recent 

reports have claimed that the memory T-cell pool in laboratory mice is partly (~10%) 

maintained by a continuous influx from naive T cells (Gossel et al., 2017). Therefore, we re-

analysed the data from Westera et al. by fitting the data both to the KH model (with 3 

parameters: 𝑑1, 𝑑2 and 𝛼) and to the ES model with 𝑘 = 1 (again with 3 parameters 𝑑1, 𝑑2 

and 𝑝2); see Figure 3.4. Disturbingly, a homogeneous POI with a source (i.e., the ES model 

in equation 3.2) explains the Westera et al. data (Westera et al., 2013) equally well, but with 

very different estimates for the turnover rate of the POI (Figure 3.4, Table 3.3). The ES 

model estimated a turnover rate of �̅� = 𝑑2 = 0.24/day (i.e., a lifespan of 4 days) of the POI, 

which is about 5-fold higher than the average turnover rate of �̅� = 0.046/day (i.e., a ~ 20-day 

lifespan) estimated using the KH model (Table 3.3). Thus, the presence of a source that does 

not get instantaneously labelled can have a remarkable influence on the estimated lifespan of 

the POI (Table 3.3). However, since the estimated division rate of the POI, i.e., 𝑝2 =

0.04/day, would suggest that only a mere ~17% (calculated as 𝑝2/𝑑2) of the POI is replaced 

by self-replication, one would require a much larger contribution from the naive T cell pool 

than the estimated ~10% (Gossel et al., 2017). Thus, although it is possible that CD8+ 

memory T cells are maintained by an influx from a precursor population, it is not very likely. 



Chapter 3: Influence of the precursor population 
 

 92  
 

 

Figure 3.4: The best fits to the data from Westera et al. (2013) (Westera et al., 2013) with the KH 

model and the ES model with 𝑘 = 1. The data shows the labelling of the CD8+ memory T cells in 1-

week (a), 4-week (b) and 8-week (c) labelling experiments with deuterated water. 

KH 
𝒅𝟏 𝒅𝟐 𝜶 �̅� = 𝜶𝒅𝟏 + (𝟏 − 𝜶)𝒅𝟐 

0.239 0.017 0.116 0.043 

 

ES 
𝒅𝟏 𝒅𝟐 𝒑𝟐 𝑵𝟐

̅̅ ̅̅ /𝑵𝟏
̅̅ ̅̅  �̅� = 𝒅𝟐 

0.017 0.239 0.043 0.1 0.239 

Table 3.3: The estimates of the models for the best fits shown in Figure 3.4. The size of the total 

population in the KH model can be scaled to any value. Note the large difference in the estimated 

turnover rates of the POI, �̅�, in the KH model and the ES model. 

 

Labelling of CD57+ memory T cells by Ahmed at al. (2020) 

A dataset that seems uniquely suited for our analysis was generated by Ahmed et al. (2020) 

who measured the label gain and loss in both the POI, i.e., CD57+CD4+ memory T cells, and 

their precursor population, i.e., CD57-CD4+ memory T cells (Ahmed et al., 2020). To find out 

the dynamics of the POI, they used a phenomenological chain of two populations describing 

both the POI and the precursors (see (Ahmed et al., 2020) for their model). Their analysis 

showed that the POI was maintained largely (~ 95%) by division rather than by the source 

from the precursors (~5%). Hence, the POI and the precursors were maintained 

independently. 
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To re-analyse these data, we considered a three population chain model where the 

CD57+CD4+ cells are fed by the CD57-CD4+ population, that is in turn fed by an unknown 

precursor population. The labelling dynamics of both the CD57+CD4+ and the CD57-CD4+ 

populations were well-described by this three population chain model (Figure 3.5a). Both 

populations were estimated to have fast turnover rates (𝑑0, 𝑑1 and 𝑑2 signify the turnover 

rates of the precursors of CD57-CD4+, CD57-CD4+ and CD57+CD4+ populations, 

respectively. See the legend of Figure 3.5) and a similar size, with ~ 14% (𝑝1/𝑑1) of the 

CD57-CD4+ cells and ~ 33% (𝑝2/𝑑2) of the CD57+CD4+ cells being maintained by division. 

If either the CD57-CD4+ cells (in a two population chain model, Figure 3.5b) or the 

CD57+CD4+ cells (i.e., modelled as a single compartment model, Figure 3.5c) were 

described with the implicit source model, the description of the labelling data became 

significantly worse (Figures 3.5b-c). 

Notably, the turnover rate of the two POI, CD57-CD4+ and CD57+CD4+ memory T cells, 

estimated from a two population chain model and a three population chain model differed by 

2-fold. This was due to the poor description of the precursors, CD57-CD4+ memory T cells. If 

the description of the labelling dynamics of the CD57-CD4+ memory T cells would have 

stayed the same, the estimates of the CD57+CD4+ memory T cells would have also remained 

unchanged. 

 

Figure 3.5: The best fits of the three population ES model (a), two population ES model (b), and IS 

model (c) to the data from Ahmed et al. (2020) (Ahmed et al., 2020). The data shows the labelling of 

CD57-CD4+ and CD57+CD4+ memory T cells in labelling experiments with deuterated water. The 

estimates of the best fit of the three population ES model are: 𝑑0 = 0.001/day, 𝑑1 = 0.28/day, 𝑑2 =

0.4/day, 𝑝1 = 0.04/day, and 𝑝2 = 0.13/day. 
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Note that both examples are from labelling experiments with deuterated water and the body 

water enrichment approaches its asymptote slowly. Therefore, even a population that is 

entirely self-renewing can have an initial delay in gaining label (Figure 3.5). 

Both examples demonstrate that the estimated parameters can strongly depend on the 

underlying model, and hence that one should always test whether the estimates change when 

a precursor with a realistic turnover rate is added. In the first example, one could argue that 

the previous KH model provides the best explanation, as the ES model requires an 

unrealistically large contribution from the naive T-cell compartment. In the second example, 

however, the estimates found from the ES model could be realistic, as they are in line with 

previous estimates stating that as much as a quarter of the CD4+ memory T-cell population 

could be maintained by a source from naive T cells (Gossel et al., 2017). 

 

Discussion 

Deuterium labelling is hailed as the current best technique to accurately measure the turnover 

rates of a cell population in vivo. In this article, we share some disturbing insights in the 

current modelling approaches. We show that models that fail to consider a slow source of 

label can severely underestimate the true turnover rate of the POI. The rate at which the POI 

gains label is not simply its average turnover rate but can be markedly influenced by the rate 

at which its precursors gain label. We also show that typically one cannot tell from the 

labelling data whether cells divide while differentiating into the POI. Therefore, unless one is 

convinced that 1) the precursors are much faster, or 2) hardly play any role in maintaining the 

POI, a source should be modelled explicitly (with the ES model) and ideally be matched with 

the labelling data of the precursors. 

We found that the rate at which the POI gains label is always lower or equal to the true 

turnover rate of the POI. Depending on the dynamics of its precursor, the labelling in the POI 

can follow 4 different scenarios. In cases where the lifespans of both the precursors and the 

POI are comparable to the labelling duration, the rate of labelling varies with time and is not 

given by the rates of any single population. So, we defined two label gain rates, one at the 

beginning of the labelling period, 𝑝∗(0), and the other at its end, 𝑝∗(1). We showed that 

these approximated gain rates tend to be in good agreement with each other, and that both are 

smaller than the turnover rate, 𝑑2, of the POI. Thus, interpreting the label gain rate as the 

turnover rate can markedly overestimate the lifespan of the measured population. 

There are two cases where one can be certain that the estimated rate reflects a POI’s true 

turnover rate. First, when the source population’s turnover rate is sufficiently fast, the 

labelling in the POI is largely dictated by its own turnover rate. For example, thymocytes, 

that act as a precursor to slowly turning-over naive T cells, turn over rapidly. Therefore, 

estimating the true turnover rate of naive T cells does not require measuring the labelling in 

the thymocytes. Second, when the population is largely maintained by proliferation (i.e., 

when the source into the POI is negligible). Memory T cells are a likely example of this 
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scenario as they are thought to be largely maintained by proliferation. Therefore, although 

measuring the label incorporation in the precursors should be treated as the standard 

procedure, it may not be necessary in all deuterium labelling experiments. 

Using two case studies as examples, we showed how estimates can become very different 

when the assumption of a rapid source population is released. A study that focused on the 

labelling dynamics of the CD8+ memory T cells was originally explained by a kinetically 

heterogeneous population and concluded that these cells had a ~20 day lifespan (Westera et 

al., 2013). The ES model, in contrast, suggested that the CD8+ memory T-cell pool could be 

homogeneous, where cells lived only ~4 days and were maintained by a much larger influx. 

Although some studies have estimated that circulating CD8+ memory T cells could be short-

lived (Bresser et al., 2022; Gossel et al., 2017), a very short-lived memory T-cell population 

that is primarily maintained by an influx from a large precursor population is not in line with 

many previous studies and can probably be discarded. Nevertheless, it remains important to 

study the possibility of a slow precursor, as in other cases this may provide a realistic 

description. In the second example that dealt with the maintenance mechanism of 

CD4+CD57+ memory T cells (Ahmed et al., 2020), the ES model suggested that these cells 

were only partly maintained by influx, as opposed to the original interpretation that suggested 

that they were largely maintained by self-replication. This is similar to previous conclusions 

on CD4+ memory T cell pool, that are maintained by an influx from the naive CD4+ T cell 

pool (Gossel et al., 2017). Additionally, in contrast to the original conclusion where the 

differentiation of CD4+CD57- cells was accompanied by a clonal burst, the ES model 

preferred a solution where differentiation is not accompanied by division. As very little is 

known about these two POIs, it is difficult to favour one of these solutions, underlying the 

importance of considering an explicitly modelled source when analysing deuterium labelling 

data. 

Here we show that even deuterium labelling, the current state-of-the-art method to estimate a 

population’s lifespan, can be prone to error. For several populations, it is essential to have 

information on the dynamics of the precursors to not undermine the reliability of the 

estimates of the POI found from deuterium labelling experiments. 
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Supplementary Information 

 

The ES model describes both non-stem-like and stem-like populations 

The ES model makes only the most fundamental assumptions (of a possible source, of 

possible division in the population, and of loss from the population), that should be true for 

any population and, thus, is very general. With a few substitutions, we can express the system 

of equations (equations 3.2a-d) in the classical form of stem cells (Lander et al., 2009), i.e., 

 𝑑𝑁1

𝑑𝑡
= 𝜎 + (𝑝1 − 𝑑1)𝑁1 

 

   

 = 𝜎 − (1 − 𝛼)𝑑1𝑁1 − 𝛼𝑑1𝑁1 − 𝑝1𝑁1 + 2𝑝1𝑁1  

   

 = 𝜎 − (1 − 𝛼)𝑑1𝑁1 + (2𝛽 − 1)𝛿𝑁1 (S3.1a) 

   

 𝑑𝑁2

𝑑𝑡
= 2𝛼𝑑1𝑁1 + (𝑝2 − 𝑑2)𝑁2 

 

   

 = 2(1 − 𝛽)𝛿𝑁1 + (𝑝2 − 𝑑2)𝑁2 (S3.1b) 

where 𝛿 = 𝑝1 + 𝛼𝑑1 is the total division rate of the precursor population, and 𝛽 =
𝑝1

𝛿
< 1 is 

the fraction of the daughter cells that replenish the precursor population. The fraction (1 − 𝛽) 

of daughter cells differentiate into the next population, 𝑁2. Therefore, the ES model is 

general enough to describe both non-stem-like and stem-like populations. 
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The initial gain and loss rates are well-described even when the POI is very 

short-lived 

 

Figure S3.1: The estimated labelling rates when the POI is very short-lived. The loss rate of the 

POI was chosen to be 20 times higher than that of the precursors (𝑑1 = 0.5, 𝑑2 = 10). Note that the 

slopes are calculated as the label (gain or) loss rate multiplied by the fraction of (un)labelled cells, for 

example, 𝑑∗(1 + 𝜖)𝑙2. The division rate of the POI, 𝑝2, was either set to 5 (in (a) and (c)) or 0 (in (b) 

and (d)). 

𝒅𝟏 𝒅𝟐 𝒑𝟐 𝒌 𝒑∗(𝟎)  𝒑∗(𝟏)  𝒅∗(𝟏 + 𝝐)  

0.5 10 

5 
1 5 0.68 6.33 

2 7.5 0.80 8.43 

0 
1 0 0.46 -1 

2 5 0.68 6.33 

Table S3.1: The true and calculated rates corresponding to the simulations shown in Figure S3.1. The 

rates (expressed as stu) are scaled with respect to the labelling period. 
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The best description of the labelling in the POI by the phenomenological 

𝒑∗𝒅∗ model 

 

Figure S3.2: The best fits of the phenomenological model (equation 3.5 in the main text) to the 

labelling curve of the POIs shown in Figure 3.1. The black circles show the data, and the red 

trajectory shows the best fit. 

 

Figure S3.3: The best fits of the phenomenological model (equation 3.5 in the main text) to the 

labelling curve of the POIs shown in Figure 3.2. The black circles show the data, and the red 

trajectory shows the best fit. 
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Abstract 

Clonal expansion is a core aspect of T-cell immunity. However, little is known with respect 

to the relationship between replicative history and the formation of distinct CD8+ memory T-

cell subgroups. To address this issue, we developed a genetic-tracing approach, termed the 

DivisionRecorder, that reports the extent of past proliferation of cell pools in vivo. Using this 

system to genetically ‘record’ the replicative history of different CD8+ T-cell populations 

throughout a pathogen-specific immune response, we demonstrate that the central memory T-

cell (TCM) pool is marked by a higher number of prior divisions than the effector memory T-

cell pool, owing to the combination of strong proliferative activity during the acute immune 

response and selective proliferative activity after pathogen clearance. Furthermore, by 

combining DivisionRecorder analysis with single-cell transcriptomics and functional 

experiments, we show that replicative history identifies distinct cell pools within the TCM 

compartment. Specifically, we demonstrate that lowly divided TCM cells display enriched 

expression of stem-cell-associated genes, exist in a relatively quiescent state, and are superior 

in eliciting a proliferative recall response upon activation. These data provide the first 

evidence that a stem-cell-like memory T-cell pool that reconstitutes the CD8+ T-cell effector 

pool upon reinfection is marked by prior quiescence. 
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Introduction 

The CD8+ T-cell compartment serves to provide protection against intracellular pathogens 

and also acts as a modifier of cancer growth. Upon antigen encounter, naive T cells (TN) 

undergo extensive gene-expression alterations, while entering a highly proliferative state, 

dividing every 4 to 6 hours (Hwang et al., 2006; Yoon et al., 2010) in mice. This phase of 

clonal expansion gives rise to a phenotypically and functionally diverse pool of effector T 

cells (TEFF) that exceeds its precursor population size by > 10,000-fold (Blattman et al., 2002; 

Obar et al., 2008). Unlike TN cells, these TEFF cells have the capacity to disseminate to 

peripheral tissues and can scan for and kill infected or transformed cells. Upon antigen 

clearance, around 95% of the TEFF pool succumbs to apoptosis, leaving behind a small long-

lived pool of memory T cells (TM) that is equipped to provide long-term protection against 

recurring pathogens. 

The central role of proliferation in the T-cell response has inspired many to study the 

relationship between replication and T-cell state. While earlier work hinted that memory 

precursor T cells have undergone limited clonal expansion (Buchholz et al., 2016; Restifo 

and Gattinoni, 2013), more recent work studying acute T-cell responses in humans 

demonstrated that TM cells, as a whole, are derived from precursor cells that have undergone 

an extensive number of divisions (Akondy et al., 2017). Furthermore, prior work has shown 

that cell cycle speed can differ substantially between phenotypically distinct T-cell subsets at 

different time points in the T-cell response. Specifically, TCM cells, a subgroup of memory 

cells that are endowed with a high level of multipotency, have been documented to undergo 

homeostatic proliferation after pathogen clearance, while effector memory T cells (TEM) have 

a low turnover rate (Obar and Lefrançois, 2010; Sarkar et al., 2008). In contrast, during the 

effector phase, a TCM-like state has been linked to lower division speed and reduced clonal 

burst size compared with that of their TEM-like and terminally differentiated counterparts 

(Buchholz et al., 2013; Gerlach et al., 2013; Kinjyo et al., 2015; Kretschmer et al., 2020). 

The phase-dependent association of proliferative activity within specific cell states, in 

combination with the reported phenotypic instability of certain T-cell subsets (Gerlach et al., 

2016; Herndler-Brandstetter et al., 2018), makes it difficult to deduce the replicative history 

(i.e., the cumulative number of prior divisions) of different TM cell populations and the 

possible relationship between replicative history and functional properties. Here, we develop 

a genetic-tracing approach - termed DivisionRecorder - that allows for the measurement of 

prior division of cell pools over extensive rounds of division, and we apply this approach to 

determine to what extent replicative history identifies distinct TM cell states and behaviours. 

In this effort, we focus on three central issues: (1) What are the differences in replicative 

history between (precursor-)TCM and TEM cells in the effector and memory phase? (2) Is there 

heterogeneity in prior division within the TCM pool? (3) If so, does replicative history of cells 

within the TCM pool predict their capacity to mount a secondary T-cell response? 
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Results 

Division-linked genetic labelling of cell pools 

The genome contains a large number of hypervariable short tandem nucleotide repeats 

(STRs) that accumulate intra-allelic length mutations through DNA polymerase slippage 

during cell division. Such slippage mutations in endogenous STRs have been used to study 

lineage trees in various organisms and tissues (Reizel et al., 2011; Shlush et al., 2012), and 

synthetic STRs have previously been employed in a probabilistic-labelling approach to define 

stem cells in the intestinal epithelium and the mammary gland (Davis et al., 2016; Kozar et 

al., 2013). To investigate the replicative history of TM cells, we engineered a synthetic STR-

reporter system to continuously ‘record’ proliferation in cell pools. This genetically encoded 

system, termed DivisionRecorder, utilizes a synthetic STR domain to achieve a division-

linked low-probability acquisition of a fluorescent mark (Figure 4.1a). The DivisionRecorder 

consists of two separate elements: (1) a retroviral-vector encoded module that contains a 

synthetic STR linked to an out-of-frame CRE recombinase gene; and (2) a CRE-activity 

reporter module that irreversibly induces the expression of a red fluorescent protein (RFP). In 

its base configuration, all cells that contain the DivisionRecorder express only GFP (hereafter 

referred to as DRGFP cells). As cells undergo successive divisions, slippage mutations that 

occur within the synthetic STR yield in-frame variants of the downstream CRE recombinase 

gene at a fixed, division-dependent, probability (𝑝). The resulting CRE activity induces an 

irreversible activation of the RFP gene, giving rise to GFP+RFP+ cells (hereafter referred to as 

DRRFP) that pass this genetically encoded label on to subsequent generations, resulting in a 

cumulative increase in the DRRFP cell fraction within the DivisionRecorder+ (DR+, i.e., the 

sum of DRGFP and DRRFP) population as the cell pool expands (Figure 4.1b, Supplementary 

Note 4.1). Importantly, when 𝑝 is small (< 0.01) the DivisionRecorder yields a near-linear 

relationship between the DRRFP fraction and the average number of divisions over dozens of 

population doublings (Figure 4.1c) (Weber et al., 2016), thereby allowing analysis of 

replicative history - at the population level - far beyond what can be achieved with classical 

cell-labelling dyes (Tempany et al., 2018) (Figure 4.1d). 

To test the utility of the DivisionRecorder, we established a reporter cell line carrying a lox-

STOP-lox-RFP cassette. Following retroviral introduction of the GFP-STR-CRE module, a 

progressive increase in DRRFP cells was observed over time, whereas no label acquisition was 

observed when the STR was replaced with a stable DNA sequence (Figure 4.1e-f). 

Moreover, the rate at which DRRFP cells accumulated was dependent on the sequence stability 

of the STR (Koole et al., 2013; Lai and Sun, 2003), underpinning that 𝑝 is linked to the 

likelihood of STR slippage (Figure 4.1g). Similarly, upon introduction of the 

DivisionRecorder into immortalized embryonic fibroblasts from the Ai9 mouse strain - which 

carries an endogenous lox-STOP-lox-RFP cassette (Madisen et al., 2010) - a low and 

predictable DRRFP cell acquisition was observed, with a [G]33 STR conferring a 𝑝 of 0.0052 

± 0.00074 (Figure 4.1h-i), thereby enabling the measurement of replicative history over 

many cell divisions (in theory > 1,500 population doublings, Figure 4.1d). 
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Figure 4.1: DivisionRecorder activation is a proxy for replicative history. a) Schematic overview 

of the DivisionRecorder system, b) Cartoon depicting progressive DivisionRecorder activation in a 

proliferating cell pool, c) Simulation of the minimal ODE model (see Supplementary Note 4.2 for 

detailed description and equations), depicting DRRFP acquisition as a function of population doublings 

for the indicated values of DRRFP acquisition probability (𝑝), d) Maximal number of theoretically 

recordable population doublings, approximated by calculating the number of division events required 

to reach a 99% DRRFP population. Approximate maximums for selected values of 𝑝 are indicated, 

colors correspond to legend in panel c, e,f) Percentage of DRRFP cells over time in cultured 

DivisionRecorder+ (DR+) CRE-activity reporter HEK 293T cells (𝑛 = 3 replicates per group) in which 

the CRE recombinase gene was preceded by either a stable nucleotide region (indicated as ‘no STR’) 

or a repeat of 24 guanines (indicated as ‘with STR’). Representative plots (e) and summarizing line 

graphs (f) are shown, g) Percentage of DRRFP cells across population doublings in DR+ CRE-activity 

reporter HEK 293T cells (𝑛 = 3 replicates per group) in which the CRE recombinase gene was 

preceded by either a low-stability STR ([G]24) or a high-stability STR ([CA]30). Dots indicate 

individual samples, lines represent fitted linear regression, dotted lines indicate bounds of the 95% 

confidence interval, h,i) Percentage of DRRFP cells across population doublings in immortalized DR+ 

mouse embryonic fibroblasts. Representative flow cytometry plots (h) and summarizing graph (i) are 

shown. Best fits of the minimal ODE model are depicted (100 bootstraps per experimental replicate, 

Supplementary Note 4.2). The blue line represents the median of the bootstraps, grey lines represent 

individual fits, dots indicate experimental measurements (𝑛 = 3 replicates). 𝑝 indicates the estimated 

DRRFP acquisition probability. Depicted experimental data are representative of at least two 

independent experiments. The p value in g was determined by two-sided analysis of covariance 

(ANCOVA). 
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Figure 4.2: The DivisionRecorder can be applied to study T-cell division kinetics in vivo. a) 

Overview of experimental setup, b,c) DR+ OT-I T cells were transferred into recipient mice 24 hours 

post infection with Lm-OVA. Spleen samples were analyzed for the percentage of DRRFP cells at day 

1-4 post cell transfer. Representative pseudo-color density plots (b), and boxplots (c) in which the 

boxes indicate group median and 25th/75th percentiles, whiskers represent min/max, dots represent 

individual samples (𝑛 = 8 mice for day 1 and 2; 𝑛 = 7 mice for day 3 and 4), d,e) CTV-stained OT-I T 

cells were retrovirally transduced with the DivisionRecorder and transferred into recipient mice (𝑛 = 

4) 24 hours following infection with Lm-OVA. At 48 hours after transfer, splenic DR+ OT-I T cells 

were assessed for CTV dilution (d), and the percentage of DRRFP cells within each division peak was 

analyzed (e). All depicted data are representative of at least two independent experiments; lines and 

symbols indicate individual mice or samples. p values were determined by two-sided Kruskal-Wallis 

test, with Dunn’s multiple-comparisons test (c), or two-sided repeated-measurement correlation test 

(e). 

 

To test whether the DivisionRecorder can be used as a proxy for replicative history in the 

CD8+ T-cell compartment in vivo, we generated Ai9;OT-I mice, in which all T cells 

recognize the OVA257-264 epitope, thereby allowing examination of T-cell pools in the context 

of equal TCR affinity. Ai9;OT-I T cells were isolated, modified with the DivisionRecorder to 

obtain DR+ OT-I T cells and transferred into Listeria monocytogenes-OVA (Lm-OVA) 

infected mice, and the fraction DRRFP cells was measured over time (Figure 4.2a). At early 

timepoints following cell transfer (d1-d4), a rapid increase in DRRFP cells was observed 

(Figure 4.2b-c), coinciding with the proliferative burst of the antigen-specific CD8+ T-cell 

pool. To determine whether the observed accumulation of DRRFP cells formed an accurate 

measure of prior cell division, DR+ OT-I T cells were stained with CellTrace Violet (CTV) 

prior to cell transfer. Notably, analysis of the fraction DRRFP cells within cell pools with 

different degrees of CTV dilution revealed a close correlation (Figure 4.2d-e, 𝑟𝑟𝑚 = 0.94), 
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providing direct evidence that in vivo DRRFP acquisition reflects the extent of past division in 

the CD8+ T-cell pool. In conclusion, these data establish that the DivisionRecorder allows for 

long-term measurement of division history in cell pools in vivo, in a way that is compatible 

with downstream methodologies such as single-cell sequencing (see below). 

 

CD8+ TCM cells are derived from replicative mature T cells 

Having validated the utility of the DivisionRecorder to record T-cell division, we next sought 

to determine the replicative history of the total CD8+ TM pool relative to that of the TEFF pool. 

Analysis of the size of the DR+ OT-I T-cell compartment in blood following Lm-OVA 

infection showed the characteristic rapid expansion phase, with T-cell numbers peaking 

around day 6, and subsequent contraction into a stable memory pool (Figure 4.3a). Notably, 

DRRFP cells remained detectable following formation of T-cell memory, thus allowing 

analysis of replicative history at late time points after infection (Figure 4.3b). 

If TM cells are primarily derived from T cells that underwent limited proliferation upon first 

encounter of the antigen, the fraction of DRRFP cells would be expected to decay during the 

contraction phase, owing to the decline in the number of clonally expanded TEFF cells 

(Supplementary Figure 4.1 and Supplementary Note 4.3). However, analysis of DRRFP 

frequencies in blood demonstrated that the fraction of DRRFP cells did not decline, but instead 

continued to increase during the contraction and memory phase (an increase of 2.07% ± 

0.77% between day 13 and 59, Figure 4.3c). This increase in DRRFP frequencies following 

pathogen clearance was not restricted to T-cell responses induced by Lm-OVA infection, but 

was also observed upon infection with LCMV-OVA (Kallert et al., 2017) (Figure 4.3d), and 

was not due to anatomical redistribution of cells with distinct division histories, as the 

fraction of DRRFP cells increased concurrently in peripheral blood and the primary sites of 

Lm-OVA infection (spleen/liver; Figure 4.3e-f). Thus, in line with work by Akondy et al. 

(Akondy et al., 2017), our results support the notion of a replicative ‘mature’, rather than 

‘nascent’, CD8+ TM pool, and extend this observation beyond the peripheral blood 

compartment to the sites of infection. 

It has been well-documented that TCM cells are able to maintain the memory pool through 

infrequent homeostatic cell division (Becker et al., 2002; Gerlach et al., 2016; Wherry et al., 

2003), and recent work has shown that precursor-TCM cells slow down their replicative cycle 

early during the expansion phase (Kretschmer et al., 2020), suggesting limited clonal 

expansion of these cells during the early phase of the T-cell response. However, it is difficult 

to translate cell cycle activity at a given timepoint into cumulative proliferative history, and 

we therefore wished to directly test the relationship between cell state (e.g., TCM or TEM) and 

replicative history during different stages of the T-cell response. To this end, the fraction of 

DRRFP cells within the TM pool was calculated at varying expression levels of proteins 

associated with either multipotency or terminal differentiation (Figure 4.3g). This analysis 

revealed a positive correlation between replicative history and the expression of the TCM-

associated proteins CD27 (𝑟𝑟𝑚 = 0.81, p = 6.2 × 10-14) and CD62L (𝑟𝑟𝑚 = 0.62, p = 5.6 × 10-
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7) (Gerlach et al., 2016; Graef et al., 2014; Olson et al., 2013), and a negative relationship 

between prior division and the expression of the TEM-associated proteins KLRG1 (𝑟𝑟𝑚 = -

0.83, p = 9.0 × 10-15) and CX3CR1 (𝑟𝑟𝑚 = -0.75, p = 4.5 × 10-11) (Gerlach et al., 2016; 

Herndler-Brandstetter et al., 2018; Youngblood et al., 2017). Likewise, defining multipotent 

TCM and terminally differentiated TEM subsets by joint expression or absence of CD62L and 

CD27, respectively, (Supplementary Figure 4.2a), and further partitioning on the basis of 

the expression of KLRG1 or CX3CR1 revealed a positive association between division 

history and a less differentiated cell state (Supplementary Figure 4.2b). Furthermore, the 

division history of CD27hiKLRG1lo TCM cells present in lymph nodes equalled that of TCM 

cells in the spleen, implying that division history is dictated by cell state rather than 

anatomical location (Supplementary Figure 4.2c). 

Next, to delineate at which point the divergence in replicative history between T cells with a 

TCM-like multipotent and TEM-like terminally differentiated phenotype developed, we 

assessed the link between phenotypic marker expression and DRRFP fractions throughout the 

T-cell response. Notably, replicative history varied minimally across TEFF cell states at the 

peak of the antigen-specific T-cell response (d6 post transfer, Figure 4.3h and 

Supplementary Figure 4.2d-f), followed by selective accumulation of DRRFP within the 

CD27hiKLRG1lo early-TCM pool directly after the peak of the expansion phase (Figure 4.3h-i 

and Supplementary Figure 4.1g), owing to continued replicative activity of this subset 

(Figure 4.3j-k). The observation that the division history of CD27loKLRG1hi T cells stays 

constant after the effector phase (Figure 4.3i) suggests that, in addition to the previously 

documented lack of proliferative activity of this cell pool (Gerlach et al., 2016; Voehringer et 

al., 2001; Wherry et al., 2003), this terminally differentiated subset does not receive notable 

replenishment by the replicative active CD27hiKLRG1lo T-cell pool (Supplementary Figure 

4.1h). The substantial number of divisions that we observe in the CD27hiKLRG1lo cell pool at 

the peak of the response appears at odds with proposed limited clonal expansion of precursor-

TM cells. However, these observations may either be reconciled by the reported trans-

differentiation between TEFF cell states (Gerlach et al., 2016; Herndler-Brandstetter et al., 

2018; Youngblood et al., 2017), or by the fact that a reduced proliferative activity may form a 

property of only a small part of the memory precursor pool (Kinjyo et al., 2015; Kretschmer 

et al., 2020; Lin et al., 2016). In summary, the above data indicate that the high amount of 

prior division of the TCM pool results from both strong proliferative activity during the 

effector phase and selective proliferative activity after pathogen clearance. 

 

Replicative history identifies distinct TCM cell states 

Increasing evidence suggests that the TCM pool is highly heterogeneous in terms of both gene-

expression profiles and prior and ongoing replicative behavior (Gerlach et al., 2016; 

Herndler-Brandstetter et al., 2018; Johnnidis et al., 2021), providing an incentive to test for 

possible associations between division history and transcriptional states within this cell pool. 

To this end, we carried out single-cell mRNA sequencing (scRNAseq) on DRGFP and DRRFP 

memory OT-I T cells (75-85 days following Lm-OVA infection Supplementary Figure 4.3). 
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Figure 4.3: The multipotent TM cell pool is formed by replicative ‘mature’ cells. a-c) Kinetics of 

DR+ OT-I T cells (a) and the percentage of DRRFP relative to day 4 (c) in response to Lm-OVA, 

measured in peripheral blood (𝑛 = 6 mice). Representative flow cytometry plots (b) showing DRRFP 

and DRGFP frequencies at indicated time points, and line graphs (a,c) depicting kinetics of single mice 

(grey) and group median (black), d) DRRFP percentages within blood at day 5/6 (TEFF) and day > 60 

(TM) following LCMV-OVA infection (𝑛 = 7), e) Representative plots depicting DRRFP frequencies in 

blood (Bl), spleen (Spl) and liver (Liv), f) Percentage of DRRFP cells detected in the indicated organs 

of recipient mice at the indicated time points (𝑛 = 6 mice per time point; response to Lm-OVA). 

Boxplots indicate the group median and 25th and 75th percentiles, whiskers represent the minimum and 

maximum, and dots represent individual samples, g) Moving average of surface marker expression 

level on splenic DR+ cells plotted against the percentage of DRRFP cells within each window during 

memory phase (day 86; 𝑛 = 6); means are shown in black. DRRFP percentages within each window are 

corrected for the total percentage of DRRFP cells detected in that sample, h) Gating strategy (left) and 

DRRFP percentages (right) of CD27hiKLRG1lo and CD27loKLRG1hi cells in spleen during the effector 

(d6, top) and memory phase (d86, bottom; 𝑛 = 6) in response to Lm-OVA, i) DRRFP percentages 

within the CD27hiKLRG1lo and CD27loKLRG1hi cell populations in blood, comparing effector (day 

5/6) and memory (day > 60) phases. Data are shown for Lm-OVA (top; 𝑛 = 22) and LCMV-OVA 

(bottom; 𝑛 = 7) infections. Lines connect data from individual mice, j,k) Ki67 expression by 

CD27hiKLRG1lo and CD27loKLRG1hi OT-I cells in blood in response to Lm-OVA. Representative 

flow cytometry plot (j), and line graphs (k) in which solid lines indicate population means and shaded 

areas indicate the 95% confidence interval (𝑛 = 11 mice). All depicted data are representative of at 
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least two independent experiments; lines and symbols indicate individual mice or samples. p values 

were determined by two-sided Kruskal-Wallis test with Dunn’s multiple comparisons test (f), or two-

sided Wilcoxon’s signed-rank test (d,h,i). 

 

In addition, to test whether DR+ OT-I TM cells assume the same spectrum of transcriptional 

states as non-modified T cells, we performed scRNAseq on OT-I TM cells that were 

generated through adoptive transfer of a small number (2,000) of naive OT-I T cells, 

followed by Lm-OVA infection 24 hours later. DR+ OT-I and unmodified OT-I TM cells were 

jointly grouped into 23 transcriptionally distinct MetaCells (MCs) (Baran et al., 2019), 

including 4 TEM and 19 TCM MCs, on the basis of the expression of a small set of 

multipotency- and effector-associated genes (Figure 4.4a,b). Notably, while TM cells derived 

from small numbers of unmodified OT-I T cells showed a proportionally greater contribution 

to TEM MCs - consistent with the relationship between precursor frequency and TEM 

formation (Badovinac et al., 2007) - DR+ OT-I T cells and unmodified OT-I T cells were 

equal in their potential to yield the 19 distinct TCM MCs (Supplementary Figure 4.4), 

indicating that the introduction of the DivisionRecorder did not measurably impact the ability 

of T cells to differentiate into different TCM states. 

Among the observed TCM MCs, two transcriptionally distinct subgroups could be identified 

(Figure 4.4b). Specifically, while all TCM cells showed the expected high expression of Bcl2, 

Sell, and Cd27 and minimal expression of CX3CR1, Zeb2, Gzma, and Prdm1 (Figure 4.4c, 

Supplementary Figure 4.5a), a dichotomy was observed in the expression of multipotency-

associated (e.g., Myb and Ccr7) and effector-associated (e.g., Tbx21 and Lgals1) genes within 

the TCM pool (denoted as TCM(mult.) and TCM(eff.), respectively in the figures; Figure 4.4b, 

Supplementary Figure 4.5a). Next, we assessed the relationship between transcriptional 

state and replicative history within the TM cell pool. In line with the flow cytometry data, the 

replicative history of TCM - as a whole - exceeded that of TEM, thereby validating the 

scRNAseq approach. Strikingly, TCM cells enriched for effector genes had overall higher 

DRRFP/DRGFP ratios compared with TCM cells enriched for multipotency genes, demonstrating 

that stemness-related transcriptomic features are inversely associated with division history 

within the TCM pool (Figure 4.4d). Correspondingly, comparison of the three TCM MCs with 

the highest and lowest level of prior division (hdTCM and ldTCM, respectively) revealed that 

ldTCM cells were marked by the expression of key multipotency-associated genes, including 

Tcf7, Sell, Myb, and Eomes, and several survival factors (Gimap and Birc family members, 

Supplementary Figure 4.5b-c). Moreover, one ldTCM MC was highly enriched for 

transcripts involved in inhibitory function (Lag3, Cd160, Tox), suggesting a possible analogy 

with the inhibitory signalling-dependent TCM-precursor subset identified by Johnnidis et al. 

(Johnnidis et al., 2021) (Supplementary Figure 4.5c). In contrast, hdTCM cells commonly 

expressed genes related to terminal differentiation, such as Lgals1 and S100 family members, 

and showed increased transcript levels for cytotoxicity-associated genes (Nkg7, Ctsw; 

Supplementary Figure 4.5b-c). This link between replicative history and a multipotency 

versus effector-associated gene expression signature within the TCM pool was further 

validated by differential gene expression analysis and gene set enrichment analysis (Figure  
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Figure 4.4: Replicative history identifies distinct transcriptional states within the TCM pool. 

Single-cell transcriptomics profiling of DR+ T cells obtained from spleen in memory phase (day 75 

and day 85 after Lm-OVA infection). a) 2D projection of all profiled cells. Colors indicate MCs (left) 

or relative expression of effector- and multipotency-associated genes (right). Gene list in 

Supplementary Table 4.1, b) Hierarchical clustering of MCs by their expression of effector- and 

multipotency-associated genes used in a. MCs are divided into three clusters on the basis of Euclidean 

distance, c) Expression of selected genes by each MC cluster, d) DRRFP/DRGFP ratio within each MC, 

depicted as waterfall plot (left) and boxplot (right), e,f) Enrichment of gene signatures from MsigDB 

(C7, collections deposited by Goldrath (GR) and Kaech (KA), Supplementary Table 4.2) by gene set 

enrichment analysis comparing ldTCM and hdTCM (e) and enrichment plots (f) of two representative 

gene sets. NES, normalized enrichment score, g) Heatmaps depicting genes involved in immune 

function that were significantly (p < 0.05) depleted (left) or enriched (right) within ldTCM (see 

Supplementary Figure 4.4d and Supplementary Table 4.3). Selected genes are annotated; complete 

gene lists are provided in Supplementary Table 4.4, h) QstemScore of all TCM MCs depicted as 

waterfall plot (left) and boxplot (right). QstemScore is based on marker genes of quiescent stem cells 

(Supplementary Table 4.5) (Youngblood et al., 2017), see methods for calculation. Data depicted 

were accumulated in two independent experiments (3-4 mice per experiment). Boxplots (c,d,h) 

indicate group median and 25th and 75th percentiles, whiskers indicate the interquartile range 

multiplied by 1.5, and dots signify individual MCs. The phenotype clusters TEM, TCM (eff.), and TCM 

(mult.) contain four, nice, and ten MCs, respectively. p values were determined by two-sided Tukey’s 

HSD test (c), two-sided Student’s t test with false-discovery rate correction (d,h), the FGSEA 

algorithm followed by the Benjamini-Hochberg procedure (e), or two-sided Wilcoxon rank-sum test 

with Bonferroni correction (g).  Significant p values (< 0.05) are indicated in the plots. 
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4.4e-g, Supplementary Figure 4.5d). In line with this association, ex vivo antigen 

stimulation of DR+ TCM cells collected from mice > 60 days post Lm-OVA infection showed 

that TCM cells that had undergone more prior divisions were more likely to degranulate and 

less likely to produce IL-2 than their less divided TCM counterparts (Supplementary Figure 

4.5e-f). 

The observed divergence in replicative history between distinct TCM states potentially reflects 

the selective quiescence of a subset of TCM cells with a less differentiated state. Of note, 

ldTCM showed reduced expression of Myc targets and genes involved in cell metabolism 

(Supplementary Figure 4.5g), suggesting that these cells exist in a transcriptionally 

enforced replicative quiescent state. To test for such a transcriptional state, we scored the 

expression of a core gene set of quiescent stem cells from various tissues (Cheung and 

Rando, 2013) (hereafter referred as QstemScore). Notably, TCM cells that showed increased 

expression of multipotency-associated genes were marked by a higher QstemScore than that 

of TCM cells with increased expression of effector-associated genes (Figure 4.4h). Moreover, 

variation in QstemScore could also be detected in gp33-specific P14 TCM cells from an 

external dataset (Kurd et al., 2020), and those P14 TCM cells that prominently expressed this 

gene set transcriptionally resembled the multipotency-signaturehieffector-signaturelo OT-I 

ldTCM described here (Supplementary Figure 4.6). Together, these data suggest a link 

between TCM quiescence and the expression of multipotency-associated genes, driving the 

divergence in replicative history between distinct TCM states. 

To directly test whether replicative behaviour in the TCM pool is associated with a 

multipotency-associated state and relates to the functional capacity of TCM to re-expand upon 

secondary activation, we established a DivisionRecorder-independent, CTV-based serial-

transfer approach (Figure 4.5a). Naive OT-I and GFP;OT-I T cells were transferred into 

primary recipients that were subsequently exposed to Lm-OVA infection. At day 30 post-

infection, early TM cells were collected, CTV labelled and transferred into infection-matched 

secondary recipients. At 75 days later, CTVhi (div0-2) and CTVlo (div5+) TCM cells were 

isolated, and the resulting TCM populations were then profiled by scRNAseq or were 

transferred at a 1:1 ratio into tertiary recipients that were subsequently challenged with Lm-

OVA. Strikingly, comparison of quiescent (div0-2) cells and proliferative (div5+) TCM cells 

by gene set enrichment analysis revealed a clear negative association between quiescence and 

an effector-like transcriptional state, while quiescence was positively associated with 

multipotency-associated gene expression (Figure 4.5b-c, Supplementary Figure 4.7a). 

Likewise, inspection of MCs (Supplementary Figure 4.7b-e) that were enriched in the div0-

2 cells, showed a prominent expression of multipotency-associated genes (Myb, Tcf7, Id3), 

whereas those enriched in div5+ cells showed increased expression of effector-associated 

genes (Id2, S00a4, Lgals1) (Figure 4.5d-e). Furthermore, comparison of the expansion 

potential of div0-2 and div5+ TCM cells demonstrated that quiescent TCM cells were superior 

in generating offspring upon renewed infection (Figure 4.5f-g), further demonstrating that 

replicative heterogeneity in the TCM pool is both linked to transcriptional state and 

functionality. 
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Figure 4.5: Replicative history is linked to recall potential within the TCM pool. a) Experimental 

setup. Primary recipient mice received 5×105 naive OT-I and 5×105 naive GFP;OT-I T cells. Thirty 

days after Lm-OVA challenge, CD8+ T cells were enriched, labelled with CTV, and transferred into 

infection-matched secondary recipient mice (one primary recipient per secondary recipient).  At d105 

after infection, splenic CD27+KLRG1− TM cells that had either divided 0-2 or 5+ times and were 

either GFP+ or GFP− were isolated by FACS, b) Enrichment of gene signatures from MsigDB (C7, 

collections deposited by Goldrath (GR) and Kaech (KA), Supplementary Table 4.2) between div0-2 

and div 5+ cells. Top and bottom 5 pathways are depicted, c) Enrichment plots of representative 

pathways detected by gene set enrichment analysis, d) Ratio of normalized counts between div0-2 and 

div5+ cells within each MC separately calculated for GFP+ and GFP− populations. Bars indicate 

averages, dots indicate ratios of either GFP+ or GFP− OT-I T cells. Red dotted lines indicate a fold 

change of 2, e) Waterfall plots depicting top and bottom six marker genes for selected MCs, filtered 

for genes involved in immune function (Supplementary Table 4.3), f) Flow cytometry plots 

depicting pre-transfer mixes of div0-2 and div5+ TCM cells, g) TM cells (8,000-12,000 total) as 

described in f were transferred into infection-naive mice, followed by Lm-OVA challenge 24 hours 

later. Ratios between div0-2- and div5+-derived cells were determined from peripheral blood samples 

at indicated days post infection. Lines connect populations from individual mice (experiment 1, 𝑛 = 3; 

experiment 2, 𝑛 = 5). Depicted scRNAseq data were collected from four mice, data describing recall 

potential was obtained from eight mice. p values were determined by the FGSEA algorithm followed 

by the Benjamini-Hochberg procedure (e). 

 

Re-expansion potential of TCM cells is linked to prior division 

Having observed a link between prior division and recall potential in adoptive transfer 

experiments, we set out to verify this relationship without disruption of the TM niche, through 

re-challenge of recipient mice carrying DR+ memory OT-I T cells. In case the capacity for 

renewed expansion would primarily be restricted to replicative quiescent TCM cells, the 

fraction of DRRFP cells should show an initial decay upon reinfection - due to the increased  
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Figure 4.6: The secondary TEFF pool is predominantly generated by previously quiescent 

memory T cells.  a) Kinetics of the percentage of DRRFP cells in blood upon secondary Lm-OVA 

infection. Values are relative to the DRRFP percentage within the respective memory pools (𝑛 = 6 

mice); the black line represents the group mean, b,c) DRRFP percentages in the indicated organs (b) or 

within splenic CD27loKLRG1hi and CD27hiKLRG1lo populations (c) at indicated time points (𝑛 = 6 

mice per time point) following secondary infection. Boxplots indicate group median and 25th and 75th 

percentiles, whiskers represent the minimum and maximum, and dots represent individual samples, d) 

DRRFP percentages in blood during the memory phase (day > 60) and at the peak of the secondary 

response (day 4/5 post-recall). Memory pools were generated with LCMV-OVA, recall infection was 

performed with Lm-OVA, e) DRRFP acquisition in blood following primary and secondary infection. 

Values are relative to DRRFP percentage at the peak of the primary or secondary response. Lines 

represent group medians (𝑛 = 6 mice per group), and greyed areas represent 95% confidence intervals, 

f) DRRFP percentages in blood during effector and memory phases of the primary and secondary 

responses. Lines connect data from individual mice (𝑛 = 6), g) DRRFP percentages in blood (𝑛 = 5 

mice) upon tertiary infection. Mice were challenged twice with Lm-OVA with a > 60 day interval and 

were subsequently infected with LCMV-OVA > 60 days after secondary infection. Depicted data are 

representative of at least two independent experiments. p values were determined by two-sided 

Kruskal-Wallis test with Dunn’s multiple-comparisons test (b,c), two-sided Wilcoxon signed-rank test 

(d,f), or repeated-measures one-way ANOVA followed by Dunnett correction (g). 

 

preponderance of offspring derived from this previously quiescent population - followed by a 

gradual recovery throughout the contraction phase, as a result of novel division-dependent 

label acquisition. Notably, analysis of the fraction DRRFP T cells in blood revealed a steep 

decline during the first days following secondary infection, followed by a gradual recovery 

during secondary memory formation (Figure 4.6a, Supplementary Note 4.4). This transient  
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Figure 4.7: Modelled T-cell responses are consistent with the presence of a replication-

competent quiescent TCM population. a) Division history of TCM and TEM pools generated by 

modelled T-cell responses (see Supplementary Note 4.5) during which a high (capped at 1% of the 

TEFF pool size) or low (capped at 0.1% of the TEFF pool size) fraction of T cells acquire quiescence 

during the effector phase (top). Three re-expansion functions were used to restrict which fraction of 
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TCM with a given number of prior divisions will re-expand during recall (bottom). For reference, the 

division history of TCM is shown as a shaded area, b) Modelled DRRFP percentages within the 

CD27loKLRG1hi and CD27hiKLRG1lo populations during secondary responses, with each re-

expansion function applied to a memory pool containing either a high or low number of quiescent TCM 

cells. Black dots indicate experimental measurements, c) Best fit of the modelled T-cell response 

(number of quiescent T cells capped to 1% of TEFF) experimental data obtained from spleen, depicting 

either cell numbers (left) or DRRFP percentages (right). See Supplementary Note 4.5 for details. 

Lines indicate the modelled populations; dots indicate experimental measurements. 

 

reduction in the DRRFP fraction was observed in multiple anatomical compartments (blood, 

spleen, liver), occurred independent of cell phenotype, and was also observed in LCMV-

OVA-induced TM pools responding to secondary challenge (Figure 4.6b-d). Of note, DRRFP 

cell accumulation during the secondary contraction phase occurred at a comparable rate as 

observed during the primary response (Figure 4.6e), yielding a secondary TM pool that - 

despite extensive renewed clonal expansion - had undergone a similar number of divisions as 

the initial memory pool (Figure 4.6f, median fold difference = 1.03). Thus, the replicative 

histories of the TEFF and TM pools of the secondary T-cell response mimic those of the 

primary T-cell response, supporting the notion that the secondary expansion wave is mounted 

by a group of TCM cells that has undergone limited prior division. Furthermore, this low-

division TCM pool is able to repeatedly reconstitute the effector T-cell pool, as the same 

decrease in the fraction of DRRFP cells was observed upon tertiary infection of mice (Figure 

4.6g). 

To determine whether the observed data are consistent with re-expansion being driven by a 

TM-cell subset that becomes quiescent early in the immune response, we simulated T-cell 

responses in which a fraction of TCM precursors acquires replicative quiescence during the 

primary T-cell response (see Supplementary Note 4.5, Supplementary Figure 4.8a). 

Specifically, T-cell responses were simulated that yielded quiescent T cells at a frequency of 

either ~ 0.1% or ~ 1% of the TEFF pool, resulting in TM pools in which quiescent TCM cells 

accounted for ~ 3% and ~ 25% of the memory population (Figure 4.7a). Modelling of DRRFP 

labelling rates during recall responses in which the potential to re-expand was either abruptly 

lost as a function of the number of prior divisions (fun 1 and 2), or was lost more gradually 

across division history (fun 3), demonstrated that the transient drop in DRRFP fractions is 

consistent only with models in which the capacity to re-expand is restricted to cells that have 

undergone limited clonal expansion (Figure 4.7b). Furthermore, the stringency of this 

relation is strongly dependent on the relative size of the quiescent TCM pool (Figure 4.7b). 

Taken together, our data establish that replicative state is not homogeneously distributed 

within the TCM pool and is linked to distinct transcriptional and functional properties. 

Specifically, our observations are consistent with a dichotomy in the TCM pool in which a 

self-renewing TCM population maintains the TM pool but marginally contributes to secondary 

expansion, and a replication-competent quiescent TCM population is required to form the TEFF 

pool that arises upon renewed infection (Figure 4.7c, Supplementary Figures 4.8 and 4.9). 
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Discussion 

Here, we report the development and application of the DivisionRecorder to dissect the 

replicative history of cell pools in vivo. We show that this approach allows longitudinal 

examination of division history, and how it may be combined with technologies such as flow 

cytometry and scRNAseq to couple cell state to division history. In the application presented 

here, the DivisionRecorder requires viral transduction to introduce one of its modules. While 

this did not considerably disrupt cell behaviour in our study, development of a fully germline-

encoded DivisionRecorder system will be attractive, for instance, to follow replicative 

behaviour of cell pools that are not amenable to adoptive transfer. 

Using the DivisionRecorder, we demonstrate that, as a whole, the multipotent CD8+ T-cell 

pool has undergone substantial proliferation at the peak of the expansion phase, and continues 

to proliferate following pathogen clearance, resulting in a cumulative replicative age of the 

TCM pool that exceeds that of the TEFF and TEM pool. Previous work has shown that a fraction 

of CD62Lhi precursor-TM cells divide at a lower rate than do terminally differentiated effector 

subsets (Kinjyo et al., 2015; Kretschmer et al., 2020; Lin et al., 2016). In line with this, we 

observed a lower fraction of Ki67hi cells within the multipotent effector pool than in the 

terminally differentiated pool, early post infection. At the same time, our data indicate that 

this difference does not result in a reduced cumulative number of past divisions within the 

entire CD62Lhi TEFF pool. Conceivably, these findings may be reconciled by the ability of 

highly proliferative CD62Llo TEFF cells to phenotypically convert to a less differentiated 

CD62Lhi state (Gerlach et al., 2016; Herndler-Brandstetter et al., 2018; Youngblood et al., 

2017). Alternatively, the precursor-TCM pool may harbour a heterogeneity in replicative 

history that is not revealed by the phenotypic markers used. 

In line with the latter possibility, by combining the DivisionRecorder with scRNAseq we 

reveal that, although the TCM pool has undergone substantial prior division as a whole, 

replicative history is heterogeneous within this pool and is associated with specific 

transcriptional states. First, our data demonstrate the presence of TCM cells that bear 

transcriptional similarities to TEM cells but, in contrast to TEM cells, remain highly 

proliferative in the absence of inflammation (Supplementary Figure 4.9).  Second, we 

identify a population of quiescent TCM cells that expresses reduced levels of effector-

associated genes, and high levels of pro-survival genes and genes associated with quiescent 

stem cells (Cheung and Rando, 2013).  Several recent studies have reported the early 

emergence of TCF-1hi and CD62Lhi effector cells that develop into TM cells exhibiting 

stemness features (Grassmann et al., 2020; Pais Ferreira et al., 2020). Moreover, Johnnidis et 

al. (Johnnidis et al., 2021) propose early expression of inhibitory receptors as a mechanism 

preserving hallmark memory features. Although these early T-cell subsets bear similarities to 

the quiescent TCM observed here, further investigations into the developmental origin of 

distinct TCM states are necessary to better understand the lineage relationships between the 

TCM states described here and those present during the early phases of the T-cell response. 

A hallmark of immunological memory is the ability to efficiently generate a new wave of 

TEFF upon renewed infection. Our data demonstrate that this ability is predominantly confined 
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to a subgroup of replicative nascent TM cells. The combined observations of a less 

differentiated quiescent TCM population, and the reconstitution of the secondary and tertiary 

TEFF pool by the output of these nascent progenitors, make a compelling argument for the 

presence of a bona fide stem-cell population within the TM pool. A growing body of work has 

examined a stem-cell-like TM cell (TSCM) population (Gattinoni et al., 2011, 2009), generally 

using cell phenotype to enrich and study these cells ex vivo. Using a function-driven, 

phenotype-agnostic, approach that does not require removal of cells from their niche, we 

observe a cell behaviour that fits the profile of stem-cell-like TM cells in situ. 

In high-turnover tissues, such as the bone marrow (Laurenti et al., 2015; Wilson et al., 2008), 

the intestinal epithelium (Schepers et al., 2011; Yan et al., 2012), and skin epidermis (Clayton 

et al., 2007; Ito et al., 2005), two distinct behaviours of multipotent progenitor cells have 

been described: actively dividing cells that promote normal tissue homeostasis, and quiescent 

cells that have been documented to break their dormancy upon tissue injury and exhibit 

profound re-population capacity (An et al., 2018; Laurenti et al., 2015; Sugimura et al., 2012; 

Yan et al., 2012). We propose that the two TCM behaviours we describe provide the T-cell 

compartment with the same capacity for renewal. Thus, the T-cell pool can be viewed as an 

autonomous tissue that abides by organizing principles akin to those of the hematopoietic 

system and solid organs. 

 

Methods 

DivisionRecorder vector generation 

In order to prevent expression of Cre recombinase during bacterial cloning, a synthetic intron 

- containing a splice donor, a branch site, a pyridine rich region, and a splice acceptor - was 

inserted into the Cre gene through three-fragment isothermal assembly. To prevent low-level 

Cre translation occurring from alternative start sites, two ATG codons (position 78 and 84) 

were replaced by TGT codons. Finally, the Cre start codon was replaced by an EcoRI-spacer-

XhoI site, to facilitate subsequent introduction of synthetic STRs. To generate the 

DivisionRecorder vector, two lox511 sites were introduced into the multiple cloning site of 

the pMX retroviral vector. Subsequently, an eGFP gene and the modified Cre recombinase 

gene were introduced directly upstream and downstream of the 5’ lox511 site, respectively. 

Finally, a P2A element was inserted directly in between the eGFP gene and the 5’ Lox511 

site. Together, this resulted in a cassette comprising from, 5’ to 3’: Kozak, an eGFP gene, a 

P2A site, a lox511 site, an EcoRI restriction site, spacer, an XhoI restriction site, a Cre 

recombinase gene, and a lox511 site. In its base configuration, Cre recombinase is out of 

frame. Synthetic STR domains were ordered as oligonucleotides (Invitrogen) and 

subsequently dimerized. STR dimers were inserted via the EcoRI and XhoI sites. Full 

sequences of all oligonucleotides are supplied in Supplementary Table 4.6. The retroviral 

expression vector of the DivisionRecorder is available from Addgene (Plasmid #179446). 
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Cre-activity reporter vector generation 

LoxP sites were introduced into the multiple cloning site of the pCDH-CMVp-MCS-PGK-

BlastR vector. In addition, a Katushka open reading frame was introduced, resulting in a 

vector containing from 5’ to 3’; the CMV promoter, a floxed scrambled open reading frame, 

a Katushka open reading frame, the PGK promoter, and a blasticidin resistance gene. The 

Cre-activity reporter plasmid is available from Addgene (Plasmid #179457). 

 

Establishment of cell lines 

The Cre-activity reporter cell line used in Figure 4.1 was generated by retroviral transduction 

of HEK 293T cells (ATCC) with the Cre-activity reporter plasmid and subsequent Blasticidin 

selection (2 µg/ml, InvivoGen). Transduced cells were seeded at 1% confluency, and 

resulting single cell-derived colonies were transferred to individual wells. Clones were then 

examined for efficiency of induction of Katushka expression upon transfection with Cre 

recombinase, and the best-performing clone was selected. Cre-activity reporter cells were 

cultured in IMDM (Gibco) supplemented with 8% FCS (Sigma), 100 U/ml penicillin (Gibco), 

100 µg/ml streptomycin (Gibco) and 2 mM glutamax (Gibco). A mouse embryonic fibroblast 

(MEF) cell line from the Ai9 mouse strain was generated by modification of E14.5 

embryonic fibroblasts with a retroviral vector encoding short-hairpin RNA directed against 

the p53 mRNA. Resultant cells were cultured in IMDM supplemented with 8% FCS, 100 

U/ml penicillin, 100 µg/ml streptomycin and 2 mM glutamax. 

 

Mice 

C57BL/6J-Ly5.1, OT-I, UBC-GFP and Ai9 mice were obtained from Jackson Laboratories, 

and strains were maintained in the animal department of The Netherlands Cancer Institute 

(NKI). Ai9 and OT-I mice, and UBC-GFP and OT-I mice were crossed to obtain the Ai9;OT-

I and GFP;OT-I strains, respectively. Between 5-10 mice, both male and female aged 6 to 15 

weeks, were used for each experiment. All animal experiments were approved by the Animal 

Welfare Committee of the NKI, in accordance with national guidelines. 

 

Generation of DivisionRecorder+ OT-I T cells 

Platinum-E cells (Cell Biolabs) cultured in IMDM supplemented with 8% FCS, 100 U/ml 

penicillin, 100 µg/ml streptomycin, and 2 mM glutamax were transfected with the 

DivisionRecorder vector using FuGene6 (Promega). Retroviral supernatant was collected 48 

hours after transfection and stored at -80°C. Spleens from Ai9;OT-I mice were collected and 

mashed through a 70-µm strainer (Falcon) into a single cell suspension and resulting 

splenocytes were subsequently treated with NH4Cl to remove erythrocytes. Subsequently, 

splenocytes were cultured in T cell medium (RPMI (Gibco Life Technologies) with 8% FCS, 
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100 U/ml penicillin, 100 µg/ml streptomycin, glutamax, 10mM HEPES (pH 7.4), MEM non-

essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco), 50µM 2-mercaptoethanol, 

supplemented with 1ng/ml recombinant murine IL-7 (PeproTech) and 2 µg/mL 

ConcanavalinA (Merck)). After 48 hours, splenocytes were re-seeded on RetroNectin 

(Takara)-coated plates in T cell medium supplemented with 60 IU/mL human IL-2 and 

DivisionRecorder virus and were centrifuged for 90min at 400g to allow spinfection. Virus 

concentration was chosen such that a transduction efficiency of approximately 10-15% was 

achieved, in order to minimize the occurrence of multiple retroviral integrations 

(Supplementary Note 4.6). Cells were collected 24 hours later, and a small aliquot was 

stained with anti-CD8-PercpCy5.5, anti-Vb5-PeCy7, anti-CD45.2-AF700 and DAPI to 

determine the fraction of viable OT-I T cells (DAPI−CD8+Vb5+CD45.2+) by flow cytometry 

(Fortessa, BD Bioscience), which generally was around ~ 80%. CD8+Vb5+CD45.2+ cells that 

expressed GFP were considered DivisionRecorder+ OT-I cells. Within the initial population 

of DivisionRecorder+ OT-I cells, the fraction of cells that already showed reporter activation 

(as inferred by tdTomato expression) 24 hours after transduction was consistently between 

0.4 and 0.8%. Activated splenocytes were prepared for adoptive transfer (see below). 

 

Infection, adoptive transfer and cell recovery 

C57BL/6J-Ly5.1 mice were infected with 5,000-10,000 CFU of a recombinant Listeria 

monocytogenes strain that expresses ovalbumin or with 5,000 PFU artLCMV-OVA (Kallert 

et al., 2017). Approximately 24 hours later, infected mice received 5,000-40,000 

DivisionRecorder+ OT-I T cells through intravenous tail vein injection. For secondary 

challenge experiments, mice were infected with a 10-fold higher Lm-OVA does compared to 

primary infection (that is, 50,000-100,000 CFU) at indicated time points. To analyse OT-I T-

cell responses in peripheral blood over time, 25- to 50-µL blood samples were obtained from 

the tail vein at the indicated time points and were treated with NH4Cl supplemented with 0.2 

mg/ml grade-II DNaseI (Roche) to remove erythrocytes (see ‘Flow cytometric analysis’). To 

obtain spleen and liver samples, mice were euthanized, organs were collected, and single-cell 

suspensions were prepared by means of mashing through a 100-µM or 70-µm strainer 

(Falcon), respectively. Subsequently, erythrocytes were removed by treatment with NH4Cl. 

To purify leukocytes from single-cell suspensions of liver tissue, cell suspensions were 

separated over a 37.5% Percoll (Sigma) density gradient. Obtained blood, spleen and liver 

samples were further processed for flow cytometric analysis, scRNAseq or functional in vitro 

assays, as indicated. Samples were monitored for the occurrence of retroviral silencing, 

which was not observed in any of the examined samples (Supplementary Note 4.7). 

 

Validation of DivisionRecorder functionality 

To assess the ability of the DivisionRecorder to faithfully report on the replicative history of 

T-cell populations using dilution of cell dyes as a reference, as described in Figure 4.2d-e, 



Chapter 4: Replicative history marks functional disparity 
 

 121  
 

we employed an experimental approach that was optimized to obtain sufficient DRRFP events 

within the limited number of cell divisions that can be followed using cell dyes such as CTV 

(i.e., by transferring a high number of cells modified at a high transduction efficiency). 

Conclusions from this experiment are restricted to the validation of the functionality of the 

DivisionRecorder in dividing CD8+ T cells. Splenic CD8+ T cells were isolated using the 

Mouse CD8 T Lymphocyte Enrichment Set (BD Biosciences) and were subsequently stained 

with CellTrace Violet (Thermo Fisher). Next, cells were activated for 16 hours in T-cell 

medium supplemented with 0.05 µg/mL SIINFEKL peptide and 60 IU/mL IL-2. Following 

this activation step, cells were seeded onto RetroNectin (Takara Bio)-coated plates and were 

transduced with DivisionRecorder virus by spinfection for 4 hours in the presence of IL-2 and 

SIINFEKL peptide. Analysis of CellTrace Violet signal by flow cytometry indicated that the 

cells had not undergone a full cell division post labelling. Subsequently, 6×106 OT-I T cells 

were transferred into Lm-OVA infected recipients. Spleens were collected 48 hours after 

adoptive transfer, processed into single-cell suspensions and prepared for flow cytometric 

analysis. In order to accurately determine the fraction of DRRFP cells per division during the 

initial stages of the proliferative burst when cumulative switching rate is still low, analysis of 

a large number of DivisionRecorder+ OT-I T cells events is required. For this reason, a 

transduction efficiency of ~ 60% was chosen in these experiments, instead of the 10-15% 

transduction efficiency used in other experiments. Note that a high transduction efficiency 

will result in the more frequent occurrence of cells that carry multiple retroviral integrations. 

The presence of cells with multiple integrations will result in a higher, yet stable, DRRFP 

acquisition rate, as compared to the experimental setup used in the remainder of the study. 

 

Ex vivo analysis of degranulation and cytokine secretion potential of 

memory T cells 

Spleens were collected from recipient mice at > 60 days post-infection, and CD8 T cells were 

isolated using the Mouse CD8 T Lymphocyte Enrichment Set (BD Biosciences). Following 

isolation, T cells were plated at 1×106 cells per well in 96-well round bottom plates in T-cell 

medium supplemented with 0.05 µg/mL SIINFEKL peptide to selectively activate OVA-

specific T cells. Following a 4-hour incubation, capacity of indicated T-cell populations to 

either produce the indicated cytokines or to degranulate was assessed. To allow analysis of 

cytokine production, Brefeldin A (GolgiPlug, BD Biosciences) was added 30 minutes after 

initiation of T-cell stimulation. To allow analysis of degranulation, T-cell medium was 

supplemented with anti-CD107a and anti-CD107b antibodies at the initiation of T-cell 

stimulation, and Brefeldin A (GolgiPlug, BD Biosciences) and Monensin (GolgiStop, BD 

Biosciences) were added 30 minutes after initiation of T-cell stimulation. At the end of the T-

cell stimulation period, cells were stained for KLRG1 and CD27 and prepared for flow 

cytometric analysis (see below). 
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Flow cytometric analysis 

Cells were taken up in PBS (Invitrogen) supplemented with 0.5% BSA (Fisher Scientific) and 

stained with antibodies directed against the indicated cell surface proteins (1:200 dilution), 

for 30 minutes on ice. To allow detection of intracellular cytokine production, cells were 

fixed and permeabilized with CytoFix/CytoPerm (BD Biosciences) according to the 

manufacturer’s protocol and were subsequently stained using antibodies against IL-2, TNFα 

and IFNγ. To detect intranuclear Ki67 expression, the Foxp3/Transcription factor Staining 

buffer set (eBioscience) was used. See Supplementary Table 4.7 for list of antibodies used 

in the study. All samples were acquired on a BD LSR Fortessa (BD Bioscience); DRGFP and 

DRRFP cells were identified as CD8+Vβ5+CD45.2+GFP+tdTomato− and 

CD8+Vβ5+CD45.2+GFP+tdTomato+, respectively. Flow cytometry data analysis was 

performed using FlowJo V10. An example of the used gating strategy is depicted in 

Supplementary Figure 4.10. 

For the moving average analysis depicted in Figure 4.3g and Supplementary Figure 4.2e, 

CD8+Vβ5+CD45.2+GFP+ events were exported and further processed using the R package 

flowCore (Hahne et al., 2009). In brief, outlier events (i.e., antibody aggregates/cell doublets) 

were removed, fluorescence intensities of each of the cell surface proteins were normalized 

using an inverse hyperbolic sine transformation and subsequently scaled between 0 and 1. To 

obtain the depicted moving averages, the fraction of DRRFP cells was calculated within 

windows that each contained 10% of total cells, starting with the 10% of cells with the lowest 

expression levels for the indicated marker, and with subsequent windows moving up by steps 

of 2.5%. 

 

Single-cell RNA sequencing and data analysis of DivisionRecorder 

modified cells 

The scRNAseq dataset of DivisionRecorder modified and unmodified OT-I TM cells was 

obtained in two independent experiments, comprising 11 mice in total (See Supplementary 

Figure 4.3). Experiment 1 included 3 mice containing DR+ TM cells (mouse 1-3), which were 

processed in a single batch. Experiment 2 included 4 mice containing DR+ TM cells (mouse 4-

7) and 4 mice containing TM cells derived from naive OT-I T cells (unmodified, mouse 8-11), 

which were processed in two separate batches (batch 1: mouse 4-5 and mouse 8-9, batch 2:  

mouse 6-7 and mouse 10-11). 

Spleens of mice that received DivisionRecorder+ OT-I T cells (𝑛 = 7) or mice that received 

naive OT-I T cells (𝑛 = 4) were collected > 65 days following infection. Splenocytes were 

stained with fluorochrome-conjugated antibodies directed against CD8, CD45.2 and Vβ5 

(See Supplementary Table 4.7), to allow purification of transferred cells by FACS using the 

BD FACSAria Fusion Flow Cytometer (BD Biosciences). DR+ cells were subsequently 

FACS purified on the basis of their expression of RFP and GFP. Following the isolation of 

DRGFP and DRRFP TM cells by FACS (FACSAria Fusion, BD Biosciences), obtained cell 
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populations were barcode-labelled with distinct anti-mouse TotalSeq Hashtag antibodies 

(TotalSeq-A0301-0306, Biolegend), and pooled, with an equal number of cells from each 

mouse to form the total pool of cells for scRNAseq. If the amount of sorted DRRFP cells from 

a particular sample was limited, it was pooled together with another DRRFP sample to reduce 

cell loss during cell hashing (as indicated in Supplementary Figure 4.3). Single-cell RNA 

isolation and library preparation was performed according to the manufacturer’s protocol of 

the 10X Genomics Chromium Single Cell 3’ kit, and the cDNA library was sequenced on a 

NextSeq 550 Sequencing System (Illumina). Cumulative data tallied to a total of ~ 39,500 

cells. Feature-barcode matrices were generated using the Cell Ranger software of the 10X 

Genomics Chromium pipeline. Cells that could be ascribed to multiple samples or to no 

sample (inferred from the detection of multiple or no Hash tags), cells with a transcript (UMI) 

count lower than 1,500 and cells with a mitochondrial-gene fraction higher than 0.12 were 

excluded from downstream analysis. Next, cells were further filtered based on gene counts, 

setting upper and lower thresholds separately for each sample-batch to control for differences 

in sequencing depth (gene-count-thresholds: experiment 1, 1,200-3,000; experiment 2 batch 

1, 800-2,500; experiment 2 batch 2, 1,000-3,000). Subsequent analysis of the remaining 

27,559 cells was performed using the Seurat (Butler et al., 2018) and MetaCell (Baran et al., 

2019) R packages. 

To examine enrichment or depletion of DRRFP cells within the different MetaCells, cell 

counts were first normalized across hashtags. Data obtained from the different mice were 

subsequently aggregated and used to calculate the ratio of DRRFP versus DRGFP cells in each 

MetaCell. The immune signature gene list used in several analyses was composed of gene 

clusters involved or proposed to be involved in T-cell function. The full gene list is described 

in Supplementary Table 4.3. 

Differential gene-expression testing was performed using the FindMarkers function 

(Wilcoxon rank-sum test) implemented in Seurat, comparing all ldTCM to all hdTCM. 

Significantly differentially expressed genes (p < 0.05) were subsequently used for gene-set 

enrichment analysis using the R package fgsea (Korotkevich et al., 2021), testing for enriched 

gene-sets from the C7 immunologic or the H Hallmark gene-sets from Molecular Signatures 

Database (only including sets that consisted of > 10 genes). Results from this analysis were 

filtered for collections deposited by Kaech and Goldrath (Supplementary Table 4.2), 

focusing on relevant CD8+ T-cell biology. 

To calculate the QstemScore, the log2 enrichment values of genes that were positively or 

negatively associated with stem cell quiescence (Supplementary Table 4.5) were first 

summed within each MetaCell resulting in a positive and a negative score. QstemScore was 

then obtained by subtracting the negative score from the positive score. 

 

Re-analysis of LCMV-specific TM cell scRNAseq dataset 

Single-cell transcriptomes from P14 TM cells (collected from spleen at day 90 post infection) 

were obtained from the Gene Expression Omnibus (accession GSE131847, sample 
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GSM3822202). All single cells from this dataset were clustered by applying the MetaCell 

algorithm. Next, TCM MetaCells were determined on the basis of the expression levels of core 

effector- and multipotency-related genes (Supplementary Table 4.1). QstemScores were 

then calculated for each of the TCM MetaCells, and the two highest- and two lowest-scoring 

MetaCells were selected. Pearson correlations were subsequently calculated between each of 

these four TCM MetaCells and all of the TCM MetaCells from the OT-I dataset described here. 

 

CTV-based serial transfer experiment and analysis 

Spleens from OT-I and GFP;OT-I mice were collected and CD8+ T cells were isolated using 

the Mouse CD8 T Lymphocyte Enrichment Set (BD Biosciences), according to the 

manufacturer’s protocol. The obtained cells were mixed in a 1:1 ratio and transferred to 4 

primary recipient C57BL/6J-Ly5.1 mice (1.5×106 T cells per recipient), and 24 hours later 

recipients were infected with 5,000-10,000 CFU Lm-OVA. At 30 days following infection, 

spleens and lymph nodes were collected and CD8+ T cells were enriched using the Mouse 

CD8 T Lymphocyte Enrichment Set (BD Biosciences), replacing the supplied antibody-

cocktail with a mixture of anti-mouse CD19, CD20 and CD4 biotinylated antibodies (used 

1:200 each, see Supplementary Table 4.7 for information on antibody clones). The enriched 

cell pool was subsequently stained with CellTrace Violet (Thermo Fisher) and re-transferred 

into four infection-matched secondary C57BL/6J-Ly5.1 recipients. At 74 days after 

secondary transfer (104 days post-infection), spleens and lymph nodes were collected from 

the secondary recipients and stained with anti-mouse KLRG1-PE, CD27-APC, and CD45.2-

AF700 (see Supplementary Table 4.7 for information on antibody clones). Next, stained 

cell pools were first enriched for transferred cells (i.e., CD45.2+) through FACS using the BD 

FACSAria Fusion Flow Cytometer (BD Biosciences), and subsequently sorted again to 

obtain 4 populations of TCM cells based on both GFP expression and CTV dilution: 

KLRG1−CD27+GFP+div0-2, KLRG1−CD27+GFP+div5+, KLRG1−CD27+GFP−div0-2, and 

KLRG1−CD27+GFP−div5+. These cell pools were then further processed for tertiary transfer 

or single-cell RNA sequencing. 

For tertiary transfer, GFP−div0-2 cells were mixed 1:1 with the GFP+div5+ cells (experiment 

1), or GFP+div0-2 cells were mixed 1:1 with GFP−div5+ cells (experiment 2), thereby 

controlling for potential confounding effects of the donor strain. Next, 10,000 cells from each 

pool were transferred in naive tertiary recipient C57BL/6J-Ly5.1 mice (3 mice for experiment 

1, 4 mice for experiment 2). Twenty-four hours later, recipients were infected with 10,000 

CFU Lm-OVA and the ratio of GFP+ over GFP− cells within the transferred population 

(Ly5.2+) in blood was monitored by flow cytometry over time. 

For scRNAseq analysis, cell pools obtained by cell-sorting were barcode-labelled with 

distinct anti-mouse TotalSeq Hashtag antibodies (TotalSeq-A0301-0304, Biolegend) and 

subsequently pooled. Single-cell mRNA isolation and library preparation was performed 

according to the manufacturer’s protocol of the 10X Genomics Chromium Single Cell 3’ kit, 

and the cDNA library was sequenced on a NextSeq 550 Sequencing System (Illumina). 
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Feature-barcode matrices were generated using the Cell Ranger software of the 10X 

Genomics Chromium pipeline, resulting in 13,064 single-cell transcriptomes. Cells that could 

be ascribed to multiple samples or to no sample (inferred from the detection of multiple or no 

hashtags), cells with a transcript (UMI) count lower than 2,000 and cells with a 

mitochondrial-gene fraction higher than 0.12 were excluded from downstream analysis. 

Finally, cells with a gene-count of > 2,800 were additionally excluded from further analysis. 

Subsequent analysis of the remaining 9,702 cells was performed using the Seurat (Butler et 

al., 2018) and MetaCell (Baran et al., 2019) R packages. 

Differential gene-expression testing was performed using the FindMarkers function 

(Wilcoxon rank-sum test) implemented in Seurat, comparing all CTVhi (div0-2) cells to all 

CTVlo (div5+) cells. Significantly differentially expressed genes (p < 0.05) were 

subsequently used for gene-set enrichment analysis using the R package fgsea (Korotkevich 

et al., 2021), testing for enriched gene-sets from the C7 immunologic gene-sets (including 

only sets that consisted of > 10 genes). Results from this analysis were filtered for collections 

deposited by Kaech and Goldrath (Supplementary Table 4.2), focusing on relevant CD8+ T-

cell biology. 

For the MetaCell-based analysis, the number of cells within each hashtag-MetaCell 

combination was counted, and subsequently normalized to 1,000 cells within each hashtag. 

The ratios of CTVhi over CTVlo was then calculated separately for the GFP;OT-I- and OT-I-

derived cells. 

 

Statistical analysis 

Flow cytometric data were acquired using BDFACSDiva (v8.0) software. Flow cytometric 

data were analysed using FlowJo (v10.4.2), R (v6.3.1, ‘Action of the Toes’), and FlowCore 

(v1.52.1). Single-cell RNA sequencing data were analysed using R (v6.3.1), Seurat (v3.1.1), 

and MetaCell (v0.3.41). Data were visualized using Graphpad (V8.4.1, Prism software) and 

GGplot (v3.2.1). No statistical methods were used to predetermine sample sizes, and sample 

sizes were chosen on the basis of those reported in previous publications (Gerlach et al., 

2013; Kok et al., 2020). Data distribution was assumed to be normal, but this was not 

formally tested. Mice were stratified according to age and sex where appropriate. Data 

collection and analysis were not performed blind to the conditions of the experiments. No 

data points were excluded from the analyses. 

 

Data availability 

Transcriptomic data presented in the manuscript have been deposited to the Gene Expression 

Omnibus (GEO), and can be accessed under the GEO accession numbers GSE169154 and 

GSE184947. The gp33-specific P14 T cell scRNAseq dataset was retrieved from GEO 

(accession GSE131847, sample GSM3822202). All statistical source data of the figures 
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presented in the present study can be found online (https://doi.org/10.1038/s41590-022-

01171-9). Indicated gene sets used in gene set enrichment analyses were retrieved from the 

Molecular Signatures Database (MSigDB) at http://www.gsea-msigdb.org/gsea/msigdb. Any 

additional data supporting the findings of this study are available from the corresponding 

author upon request. Source data can be found online (https://doi.org/10.1038/s41590-022-

01171-9). 

 

Code availability 

R scripts that were used to produce the main and supplementary figures in the manuscript are 

available from GitHub (https://github.com/kasbress/DivisionRecorder_analysis). 
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Supplementary Information 

 

 

Figure S4.1: Simulation of different scenarios of memory T-cell formation. Simulated data 

depicting a responding antigen-specific T-cell population (blue), comprised of TEFF undergoing clonal 

expansion and subsequent contraction (red), plus memory precursor T cells (MP, green) that develop 

into TM. Activated TEFF are modelled to divide rapidly for 6 days (expansion phase), die at a fixed rate 

throughout the response, and can differentiate into MP cells only during the expansion phase. Cell 

numbers (top row) and DRRFP percentages (bottom row) are shown for three scenarios: (left) TEFF can 

give rise to MP cells during the entire expansion phase, irrespective of the number of prior divisions, 

(middle) only TEFF that have gone through at most 24 divisions can give rise to MP cells, or (right) 

only TEFF that have gone through at most 10 divisions can give rise to MP cells. Note the strong decay 

in DRRFP percentage that is observed during memory formation in case T-cell memory is founded by 

T cells that have undergone few divisions. See Supplementary Note 4.3 for detailed description and 

equations. 
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Figure S4.2: Evaluation of the division history of T-cell subsets throughout a response to Lm-

OVA. a) Gating strategy used to identify indicated TM populations (d86) in spleen samples, b) DRRFP 

percentages within splenic TM populations (𝑛 = 6 mice) as identified in panel a, c) DRRFP percentages 

within the CD27hiKLRG1lo TCM subset in spleen and lymph nodes (LN) and within the 

CD27loKLRG1hi TEM subset in spleen, d) Cell surface expression of CX3CR1, CD62L, and CD43 

within splenic CD27loKLRG1hi and CD27hiKLRG1lo populations at the peak of the TEFF phase (day 6 

post infection) and in memory phase (day 86 post infection), e) Moving-average of surface marker 

expression of splenic DR+ OT-I T cells during effector phase (day 6), depicted as in Figure 4.3g, f) 

Boxplots depicting DRRFP percentages within TEFF (day 6 post infection) subsets in spleen (𝑛 = 6 

mice), relative to the total DRRFP percentage, g) Kinetics of DRRFP percentages within 

CD27loKLRG1hi (left) and CD27hiKLRG1lo (right) DR+ OT-I T-cell populations in blood. Values are 

relative to the percentage of DRRFP cells detected at the peak of the response (day 6). Grey lines 

represent individual mice (𝑛 = 22), red and blue lines indicate group mean, h) Simulation of the 

phenotype model (See Supplementary Note 4.5 for details) illustrating a scenario in which 

conversion of CD27hiKLRG1lo to CD27loKLRG1hi cells occur only after the peak of the response at a 

low rate. Depicted are the overall cell numbers (left), and the percentage DRRFP cells of DR+ OT-I T 

cells (right) in CD27hiKLRG1lo cells (blue), CD27loKLRG1hi cells (red) and the total T-cell population 

(green). Note that in this scenario the fraction DRRFP within the terminally differentiated 

CD27loKLRG1hi population would increase to almost twice the experimentally observed frequency. 

All depicted data are representative of at least two independent experiments. Boxplots (c,d,g) 

represent group median and 25th/75th percentiles, whiskers indicate the interquartile range multiplied 
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by 1.5 (c,d) or min/max (g), dots indicate individual samples. p values were determined by one-way 

ANOVA followed by Tukey’s HSD post-hoc test (c and d), two-sided Student’s t test (c), two-sided 

repeated measurement correlation test (h), or two-sided Friedman test (g). All significant (< 0.05) p 

values are indicated in the plots. 

 

Figure S4.3: Single cell mRNA sequencing of DivisionRecorder+ memory T cells. Single cell 

mRNA sequencing was performed on DivisionRecorder modified and unmodified OT-I memory T 

cells (day 75 and 85 post Lm-OVA infection), isolated from spleens (𝑛 = 7 mice with DR+ memory T 

cells; 𝑛 = 4 with unmodified memory T cells). Obtained data were aggregated from two independent 

experiments (experiment 1: M1-3; experiment 2: M4-11). All cells were jointly analyzed and 

clustered. a) Cell count per sample, b) Total cell count per MC, c) Sample composition of each MC, 

d) Relative contribution of DRGFP and DRRFP to the total DR+ pool within each MC. 
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Figure S4.4: TCM transcriptional states are preserved in DR+ OT-I T cells. Comparison of 

transcriptional states of splenic memory T cells generated by either DivisionRecorder modified, or 

unmodified OT-I T cells (day 75 and 85 post Lm-OVA infection). a,b) Memory OT-I T cells cluster 

into TCM (blue) and TEM (red). 2D projection colored by subset (a), and violin plots depicting 

normalized UMI counts of selected genes (b) are shown, c) 2D projection of either DR+ (left) or 

unmodified (right) memory OT-I T cells, d) Contribution of DR+ and unmodified memory T cells to 

the TCM and TEM subsets, e) Contribution of DR+ and unmodified OT-I T cells to the 19 MCs that 

jointly make up the TCM subset. Dots indicate individual mice (𝑛 = 3 per condition). Note that all TCM 

states are generated in near-equal proportions by DR+ and unmodified memory T cells. Depicted 

scRNAseq data was obtained from six individual mice and was aggregated from two independent 

experiments. p values were determined by two-sided student’s t test followed by Bonferroni 

correction for multiple testing (d and e). p values < 0.05 are indicated. 
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Figure S4.5: Replicative history identifies distinct transcriptional states within the TCM pool. 

Single cell transcriptomic profiling of DR+ T cells obtained from spleen in memory phase (day 75 and 

85 post Lm-OVA infection). a) Log2 enrichment of selected genes in each MC cluster. Boxplots 

indicate group median and 25th/75th percentiles, whiskers indicate the interquartile range multiplied by 

1.5, dots signify individual MCs. The phenotype clusters TEM, TCM (eff.) and TCM (mult.) contain 4, 9 

and 10 MCs, respectively. For definition of TCM (eff.) and TCM (mult.), see Figure 4.4b, b) Top and 

bottom marker genes of ldTCM (top, MC2, 11, 14) and hdTCM (bottom, MC6, 8, 18), see Figure 4.4d 

for ldTCM and hdTCM definitions, c) Heatmaps depicting z-score transformed enrichment values of 
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genes related to cell survival (left), cytotoxicity and effector function (middle), inhibitory markers 

(top-right), and transcription factors involved in T-cell multipotency (bottom-right). Expression is 

depicted for the three ldTCM and three hdTCM MCs, d) Volcano plot depicting differentially expressed 

genes in ldTCM versus hdTCM. Significantly (adjusted p-value < 0.05) differentially expressed genes 

are depicted in red. Selected genes are highlighted, e) Cytokine release of CD27hiKLRG1lo DR+ T 

cells (isolated from spleen at day > 60 post infection) 4 hours post ex vivo stimulation. Percentage 

DRRFP cells within cytokine producers (+) and non-producers (−), relative to the average DRRFP 

percentage within each sample, is depicted. Lines connect individual ex vivo stimulated samples (𝑛 = 

12), obtained from three mice, f) Ex vivo degranulation of CD27hiKLRG1lo DR+ T cells (isolated from 

spleen at day > 60 post infection) 4 hours post ex vivo stimulation. Percentage DRRFP cells within the 

CD107a/b positive (+) or negative (−) cell populations is depicted. Lines connect individual ex vivo 

stimulated samples (𝑛 = 17), obtained from five mice, g) Enrichment of gene signatures from MsigDB 

(Hallmark) by gene set enrichment analysis comparing ldTCM and hdTCM. Data depicted was 

accumulated in two independent experiments (3-4 mice per experiment). p values were determined by 

Tukey’s HSD test (a), Wilcoxon rank-sum test with Bonferroni correction (d), two-sided Wilcoxon 

signed-rank test (e,f), the FGSEA algorithm followed by Benjamini-Hochberg procedure (g). p values 

< 0.05 are indicated. 
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Figure S4.6: gp33-specific P14 TCM with increased expression of genes associated with 

replicative quiescence resemble OT-I ldTCM. Re-analysis of scRNAseq profiled splenic P14 

memory T cells, published in Kurd et al. (Kurd et al., 2020). a,b) 2D projection of P14 memory T 

cells 90 days post LCMV infection, colors indicate individual MCs (a), or the relative expression of 

effector- and multipotency-associated genes (b). Gene list in Supplementary Table 4.1, c) P14 

memory T cells cluster into TCM (blue) and TEM (red). 2D projection colored by subset (top), and 

violin plots depicting normalized UMI counts of selected genes (bottom) are shown, d) QstemScore 

of all TCM MCs in the Kurd et al. (Kurd et al., 2020) dataset, e) Pearson correlations between the Kurd 

et al. (Kurd et al., 2020) P14 TCM MCs that score high (MC1,3) or low (MC6,7) for QstemScore, and 

all OT-I TCM MCs described here. Data are depicted as waterfall plots and asterisks indicate 

significant correlations. TCM (eff.), TCM (mult.), ldTCM and hdTCM MCs are defined in Figure 4.4. p 

values were determined by two-sided Pearson correlation test followed by Bonferroni correction (e). p 

values < 0.05 are indicated in the plots. 
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Figure S4.7: Single cell mRNA sequencing analysis of highly divided and less divided splenic 

TCM. a) Volcano plot depicting differentially expressed genes in div0-2 versus div5+ TCM. 

Significantly differentially expressed genes (adjusted p < 0.05) are depicted in red. Selected immune-

related genes are highlighted, b) Cell count per MC, c) Number of sequenced cells per sample 

included in the analysis, d) Sample composition of each MC, e) 2D projection, colours indicate 

different MCs. Depicted scRNAseq data was collected from 4 individual mice. p values were 

determined by Wilcoxon rank-sum test with Bonferroni correction (a). 
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Figure S4.8: Modelled T-cell responses are consistent with the presence of a replication-

competent quiescent TCM population. a) Cartoon of the phenotype model depicting phenotypes, the 

considered interactions among them and the parameters associated with the interactions. Arrows 

indicate various events occurring during the response, such as cell division (denoted with 𝜆), 

differentiation to a different phenotype (denoted with 𝛿), cell death during contraction (denoted with 

𝜇), and recruitment toward the secondary response during recall infection (denoted with 𝑟). Subscripts 

indicate the phenotype of the cell that the parameter is affecting. Full list of parameters can be found 

in Supplementary Note 4.5, b-d) Best fit of the modelled T-cell response to the experimental 

measurements depicting either cell numbers (top plot in each panel), or DRRFP percentages (bottom 

plot in each panel). The total number of quiescent T cells generated was either capped at 1% (b) or 

0.1% (c,d) of the TEFF pool. Lines depict the modelled populations; dots indicate the experimental 

measurements obtained from peripheral blood (b,d) or spleen (c). See Supplementary Note 4.5 for 

more details and calculations. Experimental data points are representative of at least two independent 

experiments, dots indicate individual mice (𝑛 = 6 mice per time point). 
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Figure S4.9: Model describing replicative behaviors in the CD8+ memory T-cell pool. Upon 

infection, antigen-specific CD8+ T cells activate and rapidly expand (phase 1, p1). Following 

pathogen clearance (p2), a subset of memory T cells continues to divide, resulting in a progressive 

increase in the replicative history of the overall T-cell memory pool (dotted line). Within this 

population, three separate behaviors of transcriptionally disparate memory T-cell pools can be 

distinguished. Top) Terminally differentiated TEM cells that cease division after the inflammation 

phase (p1) and that are marked by high transcription of effector- and minimal expression of 

multipotency-associated genes ([E], [M]). Upon reactivation, these cells exert rapid effector functions, 

but lack the potential to re-expand. Middle) A subgroup of TCM that continues to proliferate in the 

memory phase, exhibits diminished levels of multipotency-associated transcripts, and that abundantly 

expresses effector-associated genes. Although the functionality of these cells upon reinfection 

requires further study, their heightened expression of effector-associated genes suggests that these 

cells exert cytotoxic activity upon reinfection. The contribution of these cells to the secondary TEFF 

pool is limited. Bottom) A subgroup of TCM cells that shows low expression of effector-associated 

genes but increased expression of multipotency-associated genes, and that exists in a near-quiescent 

state after the inflammation phase. Upon renewed infection, this cell pool is primarily responsible for 

the generation of a new wave of secondary TEFF. Based on their transcriptional profile, these cells are 

expected to have limited immediate cytotoxic functions. 
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Figure S4.10: Gating strategy. General gating applied to flow cytometry data presented in the study. 

Single lymphocytes were first selected using morphology gates and were subsequently gated on CD8+ 

T cells and transferred OT-I T cells (Vβ5+CD45.2+). Next, DRRFP and DRGFP could be directly 

selected, or first separated by phenotype depending on the analysis. The data presented here was 

analyzed from blood of a recipient of DR+ cells and was acquired 6 days post infection with Lm-OVA. 

Phenotype gates other than those shown here are defined in their respective figures. 
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Supplementary Notes 

Supplementary Note 4.1: Division-coupled stochastic labelling as a proxy of 

division history 

If we would consider a hypothetical T-cell response comprising of two independent 

populations (A and B; see Figure SN4.1 below): Both populations start dividing at timepoint 

1 with the same amount of RFP label. Population A undergoes a large amount of expansion, 

and subsequently stops dividing and contracts significantly. Population B undergoes a low 

level of proliferation but experiences no contraction. At the timepoint of measurement 

(timepoint 3), population A and B have an equal size. 

Due to the high level of proliferation in population A, it accumulates a larger amount of RFP+ 

cells at time-point 2 as compared to its counterpart. As population A stops dividing, it stops 

accumulating RFP+ cells. Next, because RFP labelling occurred stochastically, contraction 

will occur to the same extent in the labelled and the unlabelled cell pool. As a result, the two 

equally sized populations that are analysed at timepoint 3 will contain different fractions of 

RFP+ cells, which reflect the difference in division history between these populations. 

 

Figure SN4.1: The proportion of RFP+ cells in a population reflects only the division history of the 

population. The illustration shows two populations, A and B, that have the same size and the same 

proportion of RFP+ cells in the beginning. Population A divides much more than population B but 

also goes through a large contraction such that the sizes of populations A and B are the same at the 

end. In such a scenario, population A has a higher proportion of RFP+ cells, as cells of population A 

did more divisions. 
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Supplementary Note 4.2: Minimal ODE model (Figure 4.1b-d, i) 

We detail the results from Weber et al. (Weber et al., 2016), as originally shown for a 

branching process for a system of ordinary differential equations (ODEs). As in Weber et al. 

(Weber et al., 2016), the average generation number is defined as the mean of the generation 

numbers of all the cells in the population. 

For cells dividing at a rate 𝜆/day and dying at a rate 𝑑/day, according to the ODE  
𝑑𝑁

𝑑𝑡
= (𝜆 − 𝑑)𝑁, the equations for change in unlabelled (DRGFP, 𝐺) and labelled (DRRFP, 𝑅) 

cells with time can be written as 

 𝑑𝐺

𝑑𝑡
= (2 − 𝑘)𝜆𝐺 + 𝑘𝜆(1 − 𝑝)𝐺 − 𝜆𝐺 − 𝑑𝐺 

 

  (4.1) 

 𝑑𝑅

𝑑𝑡
= 𝑘𝜆𝑝𝐺 + 2𝜆𝑅 − 𝜆𝑅 − 𝑑𝑅 

 

the fraction of DRRFP labelled cells, 𝑓𝑅 at time 𝑡 is 

 𝑓𝑅(𝑡) = 1 − 𝑓𝐺(0)𝑒−𝑘𝜆𝑝𝑡 (4.2) 

where, 𝑝 is the labelling probability and 𝑘 is the number of daughter cells that get labelled. 

𝑘 = 1 is the asymmetric case when only one daughter cell can be labelled during cell 

division, and 𝑘 = 2 is the symmetric case when both daughters can get labelled during cell 

division. 

In such a model, the average generation number, 𝜇𝑡 = 2𝜆𝑡 , is independent of the death rate 

(De Boer and Perelson, 2013a). For this ODE, the relationship between the fraction of DRRFP 

labelled cells in a population and its average generation number at some timepoint 𝑡 is 

 
𝜇𝑡 = 2𝜆𝑡 = −

2

𝑘𝑝
𝑙𝑛 (

𝑓𝐺(𝑡)

𝑓𝐺(0)
) 

(4.3) 

 

MEF experiment described in Figure 4.1h-i 

Linear regression on the cell number data from the MEF experiment was used to infer the 

division rate 𝜆 (Figure SN4.2). Using the same minimal ODE and assuming no cell death, 

the estimate for the division rate in the MEF data is 𝜆 = 0.698/day. The 95% confidence 

interval for the fit is 0.673-0.723. 

With the division rate known, equation 4.2 was fitted to the fraction of DRRFP labelled cells 

to estimate the switching probability 𝑝. Figure 4.1i shows the fits of 300 bootstraps (100 per 

MEF experiment) on the MEF data. The basic statistics of the switching probability estimates 

from these fits are 𝑝 = 0.0053 (mean), 0.0052 (median), 0.0043-0.0063 (95% CI). 
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Figure SN4.2: Immortalized DivisionRecorder+ (DR+) mouse embryonic fibroblasts were cultured, 

counted, and analyzed every 3-4 days. Natural log of the number of DR+ cells is shown for three 

experimental replicates. Black dots represent the experimental data, the best fit of the linear regression 

is depicted by the blue line. The slope of this regression line is the division rate of the cells in the 

MEF experiment. 
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Supplementary Note 4.3: Expected DRRFP fraction in the memory T-cell pool 

(Supplementary Figure 4.1) 

In Supplementary Figure 4.1 we model the expected DRRFP fractions in the memory T-cell 

pool for a several scenarios where memory is generated from a subset of T cells that have 

undergone different number of divisions during the effector phase.  

Consider the clonal expansion and subsequent contraction of a T-cell population with two 

phenotypes: activated 𝐴 cells and quiescent 𝑄 cells. Activated cells divide at a rate 𝜆𝐴 =

2/day for 6 days (expansion phase), die at a rate 𝑑𝐴 = 0.2/day throughout, and can 

differentiate into quiescent cells at a rate 𝛼𝑖 during the expansion phase. One daughter cell of 

a dividing unlabelled cell (DRGFP, 𝑋𝐺) can become permanently labelled (DRRFP, 𝑋𝑅) with a 

switching probability 𝑝 = 0.0013. The labelling is genetic i.e., the daughters of a labelled 

cell cannot be unlabelled. In the model below, 𝑖 ≥ 0 denotes the division number. 

 𝐴𝐺𝑖+1

′ = 𝜆𝐴𝐴𝐺𝑖
+ (1 − 𝑝)𝜆𝐴𝐴𝐺𝑖

− (𝛼𝑖 + 𝜆𝐴 + 𝑑𝐴)𝐴𝐺𝑖+1
  

   

 𝐴𝑅𝑖+1

′ = 𝑝𝜆𝐴𝐴𝐺𝑖
+ 2𝜆𝐴𝐴𝑅𝑖

− (𝛼𝑖 + 𝜆𝐴 + 𝑑𝐴)𝐴𝑅𝑖+1
  

  (4.4) 

 𝑄𝐺𝑖+1

′ = 𝛼𝑖𝐴𝐺𝑖+1
  

   

 𝑄𝑅𝑖+1

′ = 𝛼𝑖𝐴𝑅𝑖+1
  

   

We analyse two variants of the model. In the first variant, activated cells can only become 

quiescent when they have completed less than or equal to 𝑛 divisions. In the second variant, 

we allow quiescent cells to be formed from activated cells throughout the expansion phase 

regardless of their prior division number (referred to as `all’). To create a similar number of 

quiescent cells in all cases we adjust the rate at which quiescent cells are formed. We depict 

two examples of the first variant in Extended Data Figure 4.1 (left and middle panels): 𝑛 =

10 and 𝑛 = 24 (i.e., in the left panel we set 𝛼𝑖 = 0.25/day when 𝑖 < 10 (and 𝑡 < 6 days), 

and 𝛼𝑖 = 0 otherwise, and in the middle panel we set 𝛼𝑖 = 0.1/day when 𝑖 < 24 (and 𝑡 < 6 

days), and 𝛼𝑖 = 0 otherwise). The second variant shown in Extended Data Figure 4.1 (right 

panel) has the lowest rate at which quiescent cells are formed, 𝛼𝑖 = 0.05/day for all 𝑖. 

By numerical integration of equation 4.4, we show in Extended Data Figure 4.1 that if the 

population that is persisting during the memory phase were composed of quiescent cells only, 

the percentage of DRRFP labelled cells would decrease after the peak, regardless of when 

quiescent cells appear. Naturally, the decrease in the percentage of DRRFP labelled cells after 

the peak is smaller when more quiescent cells are formed during the expansion phase. Note 

that we would not obtain much more quiescent cells if we would increase 𝛼𝑖 in the 𝑛 = 10 

scenario because a too large 𝛼𝑖 cripples the expansion of the activated cells. 
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Supplementary Note 4.4: Reduction in DRRFP fractions during recall responses 

(Figure 4.6) 

In Figure 4.6 we apply the DivisionRecorder to assess the replicative recall potential of high- 

and low-division memory T cells, in situ. Based on the reduction in the fraction of DRRFP 

cells that we reproducibly observe early upon recall, we conclude that secondary TEFF cells 

predominantly derive from low-division TCM, a conclusion that is in line with the data 

obtained using a CTV-based serial transfer approach (Figure 4.5). 

As a potential alternative explanation for the observed reduction in DRRFP fractions, it could 

be proposed that recall responses would be based on the output of only a very small pool of 

memory T cells, and the numerical dominance of GFP-positive cells over RFP-positive cells 

(92.5% versus 7.5%, respectively) would make it likely that such cells would all be GFP-

positive, even if replicative recall potential was identical for GFP-positive cells and RFP-

positive cells. To determine how small the responding cell pool would have to be to achieve a 

reproducible drop in the fraction of DRRFP cells without occasional 'jackpot events', in which 

one of the early responders would be RFP-positive (thereby resulting in a secondary TEFF 

pool that is largely RFP-positive, something that is not experimentally observed), we 

modelled memory pools with 7.5% RFP-positive cells, responding to a secondary infection, 

allowing various numbers of these cells to expand, and then assessed the DRRFP fractions 

within the resulting TEFF pools (Figure SN4.3). This analysis indicates that secondary TEFF 

pools generated from a very small precursor pool (< 20 cells) would show a reduction in 

DRRFP fraction in the majority of mice, even if replicative recall potential would be equal 

between low-division and high-division TCM populations. However, models that assume such 

a tight bottleneck do show the occurrence of jackpot events, an observation that is 

inconsistent with the experimental data (Figure 4.6). In addition, an assumption of a 

responding cell pool of < 20 cells is inconsistent with the widely held view that recall 

responses are more rapid because of the larger pool of responding cells. Based on this 

analysis, we conclude that the observed drop in labelling rate during recall responses cannot 

be explained by T-cell expansion during recall responses being driven by a very small pool of 

reactivated T cells. 
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Figure SN4.3: Random sampling of precursor cells initiating the recall response. Expected DRRFP 

fractions in secondary TEFF pools (vertical axis) when a random sample of responding cells of a 

particular size (horizontal axis) is selected from a memory population that contains 7.5% DRRFP cells 

(marked by horizontal dashed line). Selected responding cells expand to an equal degree to form the 

secondary TEFF pool. Simulations were repeated 39 times (i.e., the number of mice in which recall 

experiments were performed in this manuscript). Boxplots indicate group median and 25th/75th 

percentiles, whiskers indicate the interquartile range multiplied by 1.5. Outliers are shown as dots. 

 

Supplementary Note 4.5: Phenotype model (Supplementary Figure 4.2h, 

Figure 4.7a-c, Supplementary Figure 4.8) 

In the main text, we argue that the observed drop in DRRFP percentages is due to the 

preferential recruitment of lowly divided cells into subsequent responses. Here, we provide 

support for this proposition by demonstrating that a similar transient drop in DRRFP 

frequencies is observed in mechanistic mathematical models that have a preferential 

recruitment of lowly divided cells into the secondary response. In the modelled T-cell 

responses described below, we consider two major phenotypic subsets; CD27hiKLGR1lo 

(hereafter referred to as TMULT) and CD27loKLRG1hi (hereafter referred to as TTERM). 

For an experiment in which DRRFP label flow is asymmetrical and permanent, the DRRFP 

accumulation in a population can be modelled by equation 4.5; see the cartoon in 

Supplementary Figure 4.8a. We model five phenotypes: clonally expanding activated 

TMULT cells (𝑀𝐴), clonally expanding activated TTERM cells (𝐸𝐴), cycling TMULT cells (𝑀𝐶), 

cycling TTERM cells (𝐸𝐶) and quiescent TMULT cells (𝑀𝑄, 𝑀𝑛𝑄). The variable 𝑀𝑛𝑄 (for newQ) 

keeps track of newly formed quiescent cells to prevent them from becoming re-activated 

during the same expansion phase. These cells become 𝑀𝑄 during the contraction and memory 

phase and can be re-activated during the secondary expansion phase. 

Upon encountering antigen, a naive T cell becomes activated, starts dividing and gives rise to 

a continuum of phenotypically different populations. The phenotype model (Supplementary 

Figure 4.8a) broadly classifies this continuum into the five phenotypes introduced above. An 

activated TMULT can either differentiate into an activated TTERM or can stop dividing and 

become a quiescent TMULT. After the peak of the response, a small part of the activated TMULT 

and TTERM populations becomes cycling TMULT cells and long-lived TTERM cells, respectively. 

During the recall response, we model a scenario in which a fraction of the cells engages in 

renewed expansion. Upon secondary antigen encounter (set at day 86 post primary infection, 

in concordance with the recall experiment presented in Figure 4.6b), the model undergoes a 

second sequence of expansion, contraction, and memory formation. 

To examine the scenario in which lowly divided cells are preferentially recruited, it was 

important to know the division history of cells prior to the re-expansion. We, therefore, 

formulated a division-indexed model (similar to equation 4.4) to track the number of 

divisions of the DRGFP and DRRFP cells of each phenotype over time. The model is described in 

full in the supplementary R codes. For readability we here present a collapsed version of the 
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model, which can be obtained by summing over the division numbers as well as the DRGFP 

and DRRFP cells (compare the full model equations shown in equation 4.6 to the collapsed 

equation in equation 4.5 for a single phenotype, 𝐸𝐴): 

 𝑑𝑀𝐴

𝑑𝑡
= 𝛼(𝑖)𝑟(𝑀𝐶 + 𝑀𝑄) + 2𝜆𝐴𝑀𝐴 − (𝜆𝐴 + 𝑑𝐴 + 𝛿𝐸(𝑡) + 𝛿𝑄(𝑡) + 𝜇𝐶)𝑀𝐴 

 

   

 𝑑𝐸𝐴

𝑑𝑡
= 𝛿𝐸(𝑡)𝑀𝐴 + 2𝜆𝐴𝐸𝐴 − (𝜆𝐴 + 𝑑𝐴 + 𝜇𝐶)𝐸𝐴 

 

   

 𝑑𝑀𝐶

𝑑𝑡
= 𝜇𝐶𝑀𝐴 + 2𝜆𝑀𝑀𝐶 − (𝜆𝑀 + 𝑑𝑀 + 𝛼(𝑖)𝑟 + (1 − 𝛼(𝑖))𝑑𝐶)𝑀𝐶 

 

   

 𝑑𝐸𝐶

𝑑𝑡
= 𝜇𝐶𝐸𝐴 + 2𝜆𝐸𝐸𝐶 − (𝜆𝐸 + 𝑑𝐸 + 𝑑𝐶)𝐸𝐶 

 

   

 𝑑𝑀𝑛𝑄

𝑑𝑡
= 𝛿𝑄(𝑡)𝑀𝐴 − 𝜇𝑄𝑀𝑛𝑄 

(4.5) 

   

 𝑑𝑀𝑄

𝑑𝑡
= 𝜇𝑄𝑀𝑛𝑄 − (𝛼(𝑖)𝑟 + (1 − 𝛼(𝑖))𝑑𝐶)𝑀𝑄 

 

   

 𝛿𝐸(𝑡) = 𝛿𝐸𝑚𝑎𝑥
(1 − 𝑒−𝑒𝑎𝑡𝑒𝑥𝑝)  

   

 𝛿𝑄(𝑡) = 𝛿𝑄𝑚𝑎𝑥
𝑒−𝑚𝑞𝑡𝑒𝑥𝑝  

   

 
𝛼𝑖 = (1 + (

𝑖

ℎ
)

𝑚

)

−1

;  𝑖 = 1, … , 𝑛 
 

where 𝑡𝑒𝑥𝑝 (for time in expansion) is the time since the most recent challenge. The fraction of 

cells that is expected to be re-activated, 0 ≤ 𝛼(𝑖) ≤ 1, is a function of the division number, 𝑖. 

Each phenotype is actually indexed by the number of divisions completed, 𝑖, and is 

subdivided into an unlabelled (DRGFP, 𝐺) and a labelled (DRRFP, 𝑅) subtype. For instance, the 

full division-indexed model for activated TTERM cells is: 

 𝑑𝐸𝐴𝐺𝑖

𝑑𝑡
= 𝛿𝐸(𝑡)𝑀𝐴𝐺𝑖

+ (2 − 𝑝)𝜆𝐴𝐸𝐴𝐺𝑖−1
− (𝜆𝐴 + 𝑑𝐴 + 𝜇𝐶)𝐸𝐴𝐺𝑖

 
 

  (4.6) 

 𝑑𝐸𝐴𝑅𝑖

𝑑𝑡
= 𝛿𝐸(𝑡)𝑀𝐴𝑅𝑖

+ 𝑝𝜆𝐴𝐸𝐴𝐺𝑖−1
+ 2𝜆𝐴𝐸𝐴𝑅𝑖−1

− (𝜆𝐴 + 𝑑𝐴 + 𝜇𝐶)𝐸𝐴𝑅𝑖
 

 

where 𝑝 is the switching probability. A complete list of division-indexed phenotype specified 

equations can be found in the R code. Below, we explain the stepwise parameter estimation 

procedure of this model. 
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Fitting the model and estimating the parameters 

Two phases of immune response were inferred from the experimental data: the expansion 

phase (day 0-6 for the primary response and day 86-90 for the secondary response), and the 

non-expansion phase, i.e., the contraction and memory phases (day 6-86 for the primary 

response and day 90-111 for the secondary response). The percentages of DRRFP cells in 

blood and spleen were found to be highly similar. Additionally, the ratio of the number of 

DRGFP cells in spleen to that in blood was similar across all time points. The blood and spleen 

data were, therefore, fitted simultaneously under the assumption that both compartments are 

well-mixed (Figure 4.7a-c, Supplementary Figure 4.8). 

Our primary interest was to find a realistic division history of all phenotypes on day 86, to 

subsequently test whether the preferential recruitment of lowly divided cells can explain the 

kinetics of labelling rate during recall responses. The number of free model parameters was 

reduced to 6 using a few simplifying assumptions: 

(i) The division rate during the expansion phase is the same for TMULT and TTERM 

cells, 

(ii) The death rate of cells during the expansion phase is negligible, 

(iii) The formation of quiescent cells decreases with time post antigen encounter, 

(iv) The rate at which TTERM cells are formed increases with time (instead of division 

number), 

(v) Only 5% of the activated cells survive after the expansion phase, i.e., 𝜇𝐶 =
𝑑𝐴

19
, and 

(vi) TMULT and TTERM cells maintain constant numbers during the memory phase, i.e., 

𝜆𝑀 = 𝑑𝑀 and 𝜆𝐸 = 𝑑𝐸. 

 

The free parameters were estimated by fitting the collapsed model sequentially to the data 

obtained during the primary expansion and non-expansion phases. First, the initial number of 

cells that were activated among the engrafted cells in blood and spleen, the division rate of 

the activated cells, and the differentiation rate of the activated cells into the different 

phenotypes were estimated using the experimental data obtained during the expansion phase. 

Next, these estimated parameters were used to estimate the division rates of the cycling cells 

from the experimental data obtained during the non-expansion phase. Because the estimation 

of the re-activation function was infeasible, as it would require fitting the full division-

indexed model to the data, this function was tuned manually to obtain an optimal description 

of the data with the full model. The estimated parameters for the best description of the data 

are listed in Table SN4.1. 

Expansion of adoptively transferred DR+ cells is expected to occur after a short delay, 

covering both the time required to identify an antigen-positive APC and to initiate cell 

division after TCR triggering. This delay was fixed to 1 day as our dataset lacked the 

appropriate information for this parameter to be estimated. The loss rate of activated cells 

was fixed to 𝑑𝐴 = 0.3/day. The rate at which the formation of quiescent cells declines was 

tuned such that only 1% of the quiescent population formed during the primary response 

would be DRRFP. As antigen-experience is known to influence secondary memory formation, 
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e.g., the expansion phase occurring on a shorter timescale and a considerably slower 

contraction phase, the rates during the secondary response differ from those during the 

primary response (Masopust et al., 2006). Therefore, 𝑚𝑞 and 𝜇𝐶 were set to 0.5/day and 
𝑑𝐴

4
, 

respectively. 

The maximum rate at which quiescent cells were formed was fixed to different values 

(𝛿𝑄𝑚𝑎𝑥
∈ {0.01, 0.1}) to generate different numbers of quiescent cells (103, 104) at the peak 

of the primary response (day 6) (Figure 4.7a). Unsurprisingly, formation of a larger number 

of quiescent cells during the primary response, resulted in a larger drop in DRRFP frequencies 

during secondary expansion (Figure 4.7b). Higher numbers of quiescent TCM also generated 

secondary responses that were higher in magnitude, providing a better explanation of the data 

(Supplementary Figure 4.8b-d). Three different re-activation functions, signifying either an 

abrupt (fun 1-2) or gradual loss (fun 3) of re-expansion potential based on the number of prior 

divisions, were tested (Figure 4.7a). The experimental data was only congruent with 

scenarios where re-expansion potential was restricted to cells that had undergone limited 

clonal expansion (Figure 4.7a-b). Furthermore, higher numbers of quiescent TCM correlated 

positively with larger drops in DRRFP frequencies upon re-expansion (Figure 4.7b). 

Parameter Description Value Units 

On (1)/Off (0) during 

phases 

Expansion 
Non-

expansion 

𝒕𝒐𝒏 
Time delay before the 

first division 
1 (F) days - - 

𝝀𝑨 
Division rate of activated 

TMULT and TTERM cells 
0.89 /day 1 0 

𝒅𝑨 
The rate at which (re-) 

activated TMULT and 

TTERM cells leave 

circulation 

0.3 (F) /day 

0 1 

𝒅𝑪 1 0 

𝜹𝑸𝒎𝒂𝒙
 

Maximum differentiation 

rate of the activated 

TMULT into quiescent 

TMULT cells 

0.1 (F) /day 1 0 

𝒎𝒒 
The rate at which  

𝛿𝑄(𝑡) changes 
0.25 (F) /day - - 

𝜹𝑬𝒎𝒂𝒙
 

Maximum differentiation 

rate of the activated 

TMULT into activated 

TTERM cells 

2 (F) /day 1 0 

𝒆𝒂 
The rate at which  

𝛿𝐸(𝑡) changes 
0.15 /day - - 
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𝝀𝑴 = 𝒅𝑴 
Division and death rate of 

the cycling TMULT cells 
0.3 /day 1 1 

𝝀𝑬 = 𝒅𝑬 
Division and death rate of 

the cycling TTERM cells 
0.04 /day 1 1 

𝒓 

The rate of re-activation 

of quiescent and cycling 

TMULTs 

1 (F) /day 1 0 

𝒉 
Cut-off of the fraction re-

activated function 
25 (F) - - - 

𝒎 
Slope of the fraction re-

activated function 
30 (F) - - - 

𝑴𝑨𝑮
(𝟎) 

Initial number of naïve 

cells at day 0 

16748.72 

(Spleen) Cells 

(avg.) 
- - 

149.30 

(Blood) 

Table SN4.1: The estimated parameters for the best fit of the phenotype model to the data. The 

parameter values in this table were obtained by fitting the phenotype model to the blood and spleen 

data simultaneously using the pseudorandom-search algorithm (see pseudoOptim) in the modFit 

function of the FME R package (Soetaert and Petzoldt, 2010). F signifies that these parameters were 

set to a fixed value. 

 

Supplementary Note 4.6: Analysis of DivisionRecorder single integration 

frequency 

As the DivisionRecorder is retrovirally introduced into the genome, a fraction of the modified 

cells may carry multiple integrations. As each DivisionRecorder has an independent 

probability of slippage - and hence creation of an in-frame Cre gene - during cell division, 

this means that cells that contain more than 1 integration will have a 'faster clock', resulting in 

the more rapid labelling of these cells. However, as the DivisionRecorder is applied as a 

population-based metric, and conclusions are based on comparison of different timepoints 

and/or different cell populations within individual mice, the presence of a fraction of cells 

with multiple integration events will not influence the interpretation of the obtained data. 

Nevertheless, to minimize variation in the fraction of cells with > 1 integration event between 

experiments, we aimed for a low and standardized transduction efficiency, in which the 

occurrence of multiple integration events will be minor. To determine which fraction of 

single integrations could be expected as a factor of transduction efficiency, Ai9 mouse 

embryonic fibroblasts (MEFs) or ex vivo activated Ai9;OT-I cells were transduced with a 

mixture of 2 retroviruses encoding either GFP or Katushka. The fraction of single and 

double-positive cells could subsequently be used to estimate the relationship between 

transduction efficiency and the percentage of single integrations. This analysis shows that at a 

transduction efficiency of ~ 10-15% (the transduction efficiency used for in vivo 

experiments), approximately 85-90% of the modified cells contain a single integration, and 
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this percentage is comparable between the two cell types assessed (Figure SN4.4). Thus, the 

large majority of switch events we observe in our experiments derives from cells carrying a 

single reporter. 

 

Figure SN4.4: Frequency of multiple retroviral integration events. GFP and Katushka encoding 

retroviruses were mixed 1:1, and subsequently used to transduce either Ai9 MEF cells (a-b) or ex vivo 

activated Ai9;OT-I cells (c-d). Ai9 MEF and Ai9;OT-I cells were assessed for fluorescent protein 

expression at day 7 or 24 hours post transduction, respectively. The percentage of cells carrying a 

single integration was calculated as 100-(2 times the fraction of GFP+Katushka+ cells). a) Gating 

strategy to determine the percentage of GFP+Katushka+ cells within the transduced Ai9 MEF cell 

population. b) Plot depicting the percentage of Ai9 MEF cells carrying a single retroviral integration 

at different transduction efficiencies. c) Gating strategy to determine the percentage of 

GFP+Katushka+ cells within the transduced Ai9;OT-I cell population. d) Plot depicting the percentage 

of Ai9;OT-I cells carrying a single retroviral integration at different transduction efficiencies. 

Depicted data was obtained in a single experiment consisting of two experimental replicated. Dots 

indicate individual samples, lines represent a linear regression fitted to the data points (b,d). 
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Supplementary Note 4.7: Retroviral silencing of the DivisionRecorder does 

not occur 

As the GFP-Cre module of the DivisionRecorder is introduced retrovirally, there is a 

potential risk of retroviral transcriptional silencing or attenuation. Such silencing events could 

influence interpretation of the data, as the fraction of DRRFP cells over DRGFP cells may 

become skewed. As only the GFP-Cre module is retrovirally introduced, whereas the RFP 

reporter that is switched on upon Cre activity is germline encoded, the extent of retroviral 

silencing can be experimentally determined by measuring the occurrence of cells that do 

show RFP expression (and hence did at some point express the GFP-Cre module) but lack 

GFP expression. As depicted in Figure SN4.5, virtually no RFP+GFP- cells are observed 

within recipient mice, either during the acute phase or in the memory phase, demonstrating 

that retroviral silencing is extremely rare. 

 

Figure SN4.5: GFP expression of RFP+ cells. Lm-OVA−infected recipient mice received 20,000 

DR+ cells and the occurrence of GFP−RFP+ cells was assessed in spleen on day 6 and 86 after 

adoptive cell transfer. a) Flow cytometry plot, gated on CD45.2+ cells, depicting RFP and GFP 

expression. b) Fraction of GFP− and GFP+ cells within the RFP+ cell population (𝑛 = 12 mice). 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Replicative history marks functional disparity 
 

 150  
 

Supplementary Tables 

Effector-sig Multipotency-sig 

Id2 Myb 

Ifng Tcf7 

Tbx21 Bach2 

Lgals1 Eomes 

Gzmb Sell 

Prf1 Ccr7 

Prdm1 Il7r 

Klrg1 Bcl2 

Cx3cr1  

Table S4.1: Manually curated effector-associated and multipotency-associated gene signatures. Listed 

in order of appearance (top-to-bottom) in the heatmap depicted in Figure 4.4b. 

 

 

gs_name 
gs_i

d 

gs_p

mid 
gs_exact_source gs_description 

GOLDRATH_EFF_VS_MEMOR

Y_CD8_TCELL_DN 

M3

044 

1649

2737 

GSE1000002_15

82_200_DN 

Genes 

downregulated in 

comparison of 

effector CD8 T cells 

relative to memory 

CD8 T cells. 

GOLDRATH_EFF_VS_MEMOR

Y_CD8_TCELL_UP 

M3

041 

1649

2737 

GSE1000002_15

82_200_UP 

Genes upregulated in 

effector CD8 T cells 

relative to memory 

CD8 T cells. 

GOLDRATH_NAIVE_VS_EFF_C

D8_TCELL_DN 

M3

036 

1649

2737 

GSE1000002_15

80_200_DN 

Genes 

downregulated in 

naive CD8 T cells 

relative to effector 

CD8 T cells. 

GOLDRATH_NAIVE_VS_EFF_C

D8_TCELL_UP 

M3

035 

1649

2737 

GSE1000002_15

80_200_UP 

Genes upregulated in 

naive CD8 T cells 

relative to effector 

CD8 T cells. 

GOLDRATH_NAIVE_VS_MEM

ORY_CD8_TCELL_DN 

M3

039 

1649

2737 

GSE1000002_15

81_200_DN 

Genes 

downregulated in 

naive CD8 T cells 

relative to memory 

CD8 T cells. 
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GOLDRATH_NAIVE_VS_MEM

ORY_CD8_TCELL_UP 

M3

038 

1649

2737 

GSE1000002_15

81_200_UP 

Genes upregulated in 

naive CD8 T cells 

relative to memory 

CD8 T cells. 

KAECH_DAY15_EFF_VS_MEM

ORY_CD8_TCELL_DN 

M3

032 

1252

6810 

GSE1000001_15

79_200_DN 

Genes 

downregulated in 

effector CD8 T cells 

at contraction phase 

(day 15 after LCMV-

Armstrong infection) 

relative to memory 

CD8 T cells (day 

40+ after LCMV-

Armstrong 

infection). 

KAECH_DAY15_EFF_VS_MEM

ORY_CD8_TCELL_UP 

M3

030 

1252

6810 

GSE1000001_15

79_200_UP 

Genes upregulated in 

effector CD8 T cells 

at contraction phase 

(day 15 after LCMV-

Armstrong infection) 

relative to memory 

CD8 T cells (day 

40+ after LCMV-

Armstrong 

infection). 

KAECH_DAY8_EFF_VS_DAY15

_EFF_CD8_TCELL_DN 

M3

025 

1252

6810 

GSE1000001_15

77_200_DN 

Genes 

downregulated in 

effector CD8 T cells 

at the peak 

expansion phase (day 

8 after LCMV-

Armstrong infection) 

relative to effector 

CD8 T cells at 

contraction phase 

(day 15 after LCMV-

Armstrong 

infection). 

KAECH_DAY8_EFF_VS_DAY15

_EFF_CD8_TCELL_UP 

M3

023 

1252

6810 

GSE1000001_15

77_200_UP 

Genes upregulated in 

effector CD8 T cells 

at the peak 

expansion phase (day 

8 after LCMV-
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Armstrong infection) 

relative to effector 

CD8 T cells at 

contraction phase 

(day 15 after LCMV-

Armstrong 

infection). 

KAECH_DAY8_EFF_VS_MEMO

RY_CD8_TCELL_DN 

M3

028 

1252

6810 

GSE1000001_15

78_200_DN 

Genes 

downregulated in 

effector CD8 T cells 

at the peak 

expansion phase (day 

8 after LCMV-

Armstrong infection) 

relative to memory 

CD8 T cells (day 

40+ after LCMV-

Armstrong 

infection). 

KAECH_DAY8_EFF_VS_MEMO

RY_CD8_TCELL_UP 

M3

027 

1252

6810 

GSE1000001_15

78_200_UP 

Genes upregulated in 

effector CD8 T cells 

at the peak 

expansion phase (day 

8 after LCMV-

Armstrong infection) 

relative to memory 

CD8 T cells (day 

40+ after LCMV-

Armstrong 

infection). 

KAECH_NAIVE_VS_DAY15_EF

F_CD8_TCELL_DN 

M3

017 

1252

6810 

GSE1000001_15

75_200_DN 

Genes 

downregulated in 

naive CD8 T cells 

relative to effector 

CD8 T cells at 

contraction phase 

(day 15 after LCMV-

Armstrong 

infection). 

KAECH_NAIVE_VS_DAY15_EF

F_CD8_TCELL_UP 

M3

014 

1252

6810 

GSE1000001_15

75_200_UP 

Genes upregulated in 

naive CD8 T cells 

relative to effector 

CD8 T cells at 
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contraction phase 

(day 15 after LCMV-

Armstrong 

infection). 

KAECH_NAIVE_VS_DAY8_EFF

_CD8_TCELL_DN 

M3

013 

1252

6810 

GSE1000001_15

74_200_DN 

Genes 

downregulated in 

naive CD8 T cells 

relative to effector 

CD8 T cells at the 

peak expansion 

phase (day 8 after 

LCMV-Armstrong 

infection). 

KAECH_NAIVE_VS_DAY8_EFF

_CD8_TCELL_UP 

M3

012 

1252

6810 

GSE1000001_15

74_200_UP 

Genes upregulated in 

naive CD8 T cells 

relative to effector 

CD8 T cells at the 

peak expansion 

phase (day 8 after 

LCMV-Armstrong 

infection). 

KAECH_NAIVE_VS_MEMORY_

CD8_TCELL_DN 

M3

022 

1252

6810 

GSE1000001_15

76_200_DN 

Genes 

downregulated in 

naive CD8 T cells 

relative to memory 

CD8 T cells (day 

40+ after LCMV-

Armstrong 

infection). 

KAECH_NAIVE_VS_MEMORY_

CD8_TCELL_UP 

M3

020 

1252

6810 

GSE1000001_15

76_200_UP 

Genes upregulated in 

naive CD8 T cells 

relative to memory 

CD8 T cells (day 

40+ after LCMV-

Armstrong 

infection). 

Table S4.2: Gene-sets used from the MSigDB collection C7. 

 

 

Ly96 Cd38 Tlr3 Itga5 Fbxo10 Tgfbr2 Prdm2 

Il1rl2 Tlr1 Il12rb1 Il1rap Tgfbr1 Cx3cr1 Prdm16 

Il1rl1 Tlr6 Jak3 Itgb5 Nr4a3 Clec3b Klf3 
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Il18r1 Il12rb2 Il15 Cd86 Fbxo42 Fbxo48 Ezh2 

Il18rap Cd8b1 Il27ra Cd80 Fbxo6 Bcl11a Prdm5 

Cd28 Cd8a Itgb1 Cd200r1 Fbxo44 Havcr2 Tcf7l1 

Cxcr4 Il17ra Il3ra Cd200r4 Tgfbr3 Serpinf2 Foxp1 

Cd55 Klrg1 Il17rd Cd200 Fbxo21 Traf4 Sox5 

Tnfsf4 Cd163 Il17rb Cd96 P2rx7 Lgals9 Klf13 

Sell Cd4 Tox4 Cd47 P2rx4 Fbxo47 Myb 

Xcl1 Cd27 Ltb4r1 Il10rb Bcl7a Lgals8 Foxo3 

Cd247 Tnfrsf1a Gzmc Ifngr2 Bcl7b Serpinb1a Prdm1 

Cd244 Cd9 Gzmb Tnfrsf12a Fbxo24 Serpinb6b Icosl 

Ly9 Klrb1c Tnfrsf10b Cd320 Kdelr2 Serpinb9 Tcf3 

Cd48 Klrb1f Cxcr5 Ly6g5b Gimap8 Serpinb6a Klf16 

Cd84 Cd69 Cd3g Ltb Gimap9 Prr7 Prdm4 

Cd46 Klre1 Cd3d Tnf Gimap4 Tgfbi Socs2 

Il2ra Klrd1 Cd3e Cd2ap Gimap6 Ctla2b Stat6 

Il15ra Klrk1 Il10ra Tnfrsf21 Gimap7 Ctla2a Stat2 

Cd302 Klrc3 Il18 Tnfaip8l1 Gimap1 Fbxo33 Jund 

Ly75 Klrc2 Il20rb Tnfsf9 Gimap5 Serpina12 Klf2 

Itga6 Klrc1 Ccr9 Tnfsf14 Gimap3 Serpina3f Junb 

Itga4 Klri2 Cxcr6 Tnfaip8 Bcl2l13 Serpina3g Tcf25 

Itgav Klra4 Ccr3 Cd74 Clec4a1 Bcl11b Socs4 

Cd82 Klra8 Ccr2 Cd226 Clec4a3 Traf3 Klf12 

Cd44 Klra9 Ccr5 Cd5 Clec4a2 Fbxo4 Dnmt1 

Il1b Klra7 Tnfrsf13b Cd6 Clec4n Fbxo32 Prdm10 

Cd93 Klra3 Cd68 Jak2 Lag3 Lgals1 Tcf12 

Cd40lg Klra2 Tnfsf13os Cd274 Clec2i Nr4a1 Eomes 

Cd99l2 Cd3eap Itgae Tgfbrap1 Clec2g Clec16a Tcf7 

Il2rg Cd79a Tnfaip1 Ctla4 Clec2d Bcl6 Mybbp1a 

Itgb1bp2 Ltbp4 Itga3 Serpine2 Clec12a Fbxo45 Tbx21 

Cxcr3 Cd22 Ccr7 Fbxo36 Bcl2l14 Fbxo40 Socs7 

Tlr7 Il4i1 Ccr10 Pdcd1 Fbxo46 Traf7 Stat3 

Il7 Cd37 Itga2b Bcl2 Bcl3 Fbxo11 Socs3 

Tnfsf10 Il16 Itgb3 Serpinc1 Tgfb1 Fbxo38 Klf6 

Il2 Il18bp Cd79b Fasl Fbxo27 Pdcd1lg2 Sox4 

Tlr2 Il4ra Cd300a Fbxo28 Fbxo17 Fas Klf11 

Cd1d1 Il21r Cd300c2 Tgfb2 Lgals4 Pdcd11 Id2 

Cd5l Cd19 Cd300lf Traf5 Clec11a Mybl1 Klf10 

Il6ra Cd2bp2 Itgb4 Fbxo18 Bcl2l12 Stat4 Tcf20 

Tnfaip8l2 Itgal Cd7 Traf2 Kdelr1 Stat1 Socs1 

Itga10 Itgam Ly86 Traf1 Lat Icos Runx1 
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Cd160 Itgax Cd83 Nr4a2 Bcl7c Klf7 Prdm15 

Cd101 Itgad Cd180 Traf6 Tgfb1i1 Gata3 Prdm9 

Cd2 Cd163l1 Il6st Fbxo3 Fbxo5 Zeb2 Tcf19 

Cd53 Cd151 Gzma Bcl2l11 Fbxo30 Zeb2os Runx2 

Tox Cd81 Gzmk Bcl2l1 Fbxo7 Prdm11 Runx2os2 

Il11ra1 Tnfrsf26 Itga2 Pdcd10 Tgfbr3l Sox12 Runx2os1 

Cd72 Tnfrsf22 Itga1 Serpini1 Fbxo25 Id1 Foxp4 

Tnfsf8 Tnfrsf23 Itgb1bp1 S100a1 Fbxo8 Mybl2 Socs5 

Tlr4 Tnfaip3 Il7r S100a13 Fbxo31 Foxp3 Zeb1 

Itgb3bp Ifngr1 Ly6d S100a3 Lgals3 Foxo4 Gata6 

Jak1 Cd164 Ly6k S100a2 Fbxo34 Klf8 Tcf4 

Tlr12 Cd24a Ly6e S100a4 Bcl2l2 Foxo1 Socs6 

Cd52 Prf1 Ly6i S100a5 Bcl9l Bach2 Klf9 

Tnfrsf1b Itgb2 Ly6a S100a6 Fbxo22 Bach2os Tcf7l2 

Tnfrsf9 Gzmm Ly6c1 S100a11 Fbxo9 Klf4 S1pr1 

Tnfrsf25 Ifng Ly6c2 S100a10 Bcl2a1d Jun Jakmip1 

Tnfrsf14 Ifngas1 Il2rb Bcl9 Bcl2a1a Junos S1pr4 

Tnfrsf4 Cd63 Tnfrsf13c Bcl2l15 Bcl2a1b Runx3 S1pr2 

Tnfrsf18 Tnfsf13b Itgb7 Bcl10 Bcl2a1c Id3 S1pr5 

Table S4.3: Full list of immune-associated genes used in scRNAseq data analysis. 

 

 

Up in ldTCM Up in hdTCM 

Il7r Ccr2 

Stat4 S100a11 

Tcf7 Tbx21 

Klf3 Klrc1 

Foxp1 Il2rb 

Sell Jund 

Itga4 Cd52 

Cd84 Cd48 

Eomes Gzmb 

Ltb Prf1 

Gimap6 Pdcd10 

Cd28 Itgb7 

Serpina3g Cd2 

Xcl1 Cd3g 

Gzmk S100a10 

Gimap7 S100a4 
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Stat1 Cd8b1 
 Lgal1 
 S100a13 
 S100a6 
 Klrk1 
 Ly6c2 
 Klf2 

Table S4.4:  Full gene lists from heatmap depicted in Figure 4.4g in order of appearance (left-to-

right). 

 

 

Positive association Negative association 

Ccnd3 Phf1 Anln Birc5 

Pdk1 Ctdsp1 Ccna2 Ccnb1 

Smarca2 Thrashings Ccne2 Ccne2 

Foxo3 Tef Sgol1 Mcm4 

Ezh1 Dicer1 Pcna Rrm2 

Prdm5 Bcas3 Top2a Cycs 

Ptov1 Ddx3y Mtch2 Slc25a5 

Zfp30 Gabarapl1 H2afz Capza1 

Zbtb20 Gltscr2 Hadhb Idh3a 

Phf1 Itm2a Kpna2 Pgk1 

Il18 Gstk1     

Ddt Chkb     

Ivd Pink1     

Fhl1 Ulk2     

Ndrg2 Dnajb9     

Grina Pfdn5     

Pik3r1 Ctsf     

Fyn Crim1     

Ephx1 Sepp1     

Clstn1 Gabbr1     

Igf2r Rnf167     

Selenbp1 Map1lc3a     

Table S4.5: Quiescent stem cell gene signature as described in Cheung & Rando et al. (Cheung and 

Rando, 2013). 

 

 

Name Sequence 
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EcoRI-[CA]30-

XhoI Top 

AATTCCACACACACACACACACACACACACACACACACACACACACACACACA

CACACACACACAC 

EcoRI-[CA]30-

XhoI Bottom 

TCGAGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT

GTGTGTGTGTGTGG 

EcoRI-out of 

frame spacer-

XhoI Top 

AATTCCGATACCAGCTTAGATCGAAATTGC 

EcoRI-out of 

frame spacer-

XhoI Bottom 

TCGAGCAATTTCGATCTAAGCTGGTATCGG 

EcoRI-[G]24-XhoI 

Top 
AATTCGGGGGGGGGGGGGGGGGGGGGGGGC 

EcoRI-[G]24-XhoI 

Bottom 
TCGAGCCCCCCCCCCCCCCCCCCCCCCCCG 

EcoRI-[G]33-XhoI 

Top 
AATTCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGC 

EcoRI-[G]33-XhoI 

Bottom 
TCGAGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCG 

Table S4.6: DNA sequences of oligonucleotides used to generate synthetic STRs. 

 

 

Antibody Clone 
Compan

y 

Catalog

ue 

number 

Dilluti

on 

used 

Reactivity Application 

anti-CD8α-

PerCP/Cyanin

e5.5 

Clone 

53-6.7 

BD 

Bioscienc

es 

551162 1:200 
Mouse (QC 

Testing) 

Flow cytometry 

(Routinely Tested) 

anti-TCR 

Vb5.1 Vb5.2-

PE/Cy7 

MR9-4 
Biolegen

d 
139508 1:200 Mouse 

Flow cytometry - 

Quality tested 

anti-CD45.2-

Alexa 

Fluor700 

104 
Biolegen

d 
109822 1:200 Mouse 

Flow cytometry - 

Quality tested 

anti-CD27-

Brilliant Violet 

650 

LG.3A10 
Biolegen

d 
124233 1:200 

Mouse, Rat, 

Human 

Flow cytometry - 

Quality tested 

anti-CD27-

Brilliant Violet 

421 

LG.3A10 
Biolegen

d 
124223 1:200 

Mouse, Rat, 

Human 

Flow cytometry - 

Quality tested 

anti-CD27-APC LG.3A10 Biolegen 124212 1:200 Mouse, Rat, Flow cytometry - 
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d Human Quality tested 

anti-KLRG1-

Brilliant Violet 

421 

2F1/KLR

G1 

Biolegen

d 
138413 1:200 

Mouse, 

Human 

Flow cytometry - 

Quality tested 

anti-KLRG1-PE 
2F1/KLR

G1 

Biolegen

d 
138408 1:200 

Mouse, 

Human 

Flow cytometry - 

Quality tested 

anti-CD62L-

Brilliant Violet 

785 

MEL-14 
Biolegen

d 
104440 1:200 Mouse 

Flow cytometry - 

Quality tested 

anti-CX3CR1-

APC 

SA011F1

1 

Biolegen

d 
149008 1:200 Mouse 

Flow cytometry - 

Quality tested 

anti-CD43-

APC/Cy7 
1B11 

Biolegen

d 
121220 1:200 Mouse 

Flow cytometry - 

Quality tested 

anti-IL2-Alexa 

Fluor 647 

JES6-

5H4 

Biolegen

d 
503814 1:200 Mouse 

Intracellular 

Staining for Flow 

Cytometry - 

Quality tested 

anti-IFNγ-

Brilliant Violet 

785 

XMG1.2 
Biolegen

d 
505837 1:200 Mouse 

Intracellular 

Staining for Flow 

Cytometry - 

Quality tested 

anti-TNFα-

Brilliant Violet 

650 

MP6-

XT22 

Biolegen

d 
506333 1:200 Mouse 

Intracellular 

Staining for Flow 

Cytometry - 

Quality tested 

anti-CD107a- 

Alexa Fluor 

647 

1D4B 
Biolegen

d 
121610 1:200 Mouse 

Flow cytometry - 

Quality tested 

anti-CD107b- 

Alexa Fluor 

647 

M3/84 
Biolegen

d 
108512 1:200 Mouse 

Flow cytometry - 

Quality tested; 

Immunocytochem

istry - Verified 

anti-Ki67-

AF647 
B56 

BD 

Bioscienc

es 

561126 1:50 

Human (QC 

Testing), 

Mouse 

(Tested in 

Developme

nt), Rat, 

Rhesus 

(Reported) 

Intracellular 

staining (flow 

cytometry) 

(Routinely Tested) 

anti-CD19- 6D5 Biolegen 115504 1:200 Mouse Flow cytometry - 
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biotin d Quality tested 

anti-CD20-

biotin 

SA275A1

1 

Biolegen

d 
150414 1:200 Mouse 

Flow cytometry - 

Quality tested 

anti-CD4-

biotin 
GK1.5 

Biolegen

d 
100404 1:200 Mouse 

Flow cytometry - 

Quality tested 

Table S4.7: Antibodies used in this study.  

 

Reagent company catalogue number 

Golgiplug BD biosciences 555029 

Golgistop BD Biosciences 554724 

Mouse CD8 lymphocyte 

Enrichment set 
BD biosciences 558471 

Blasticidin InvivoGen ant-bl-1 

IMDM Gibco 12440061 

FCS Sigma F7524-500ML 

penicilin / streptomycin Gibco 15140122 

Glutamax Gibco 35050061 

Fugene Promega E2311 

RPMI Gibco 21875091 

MEM non-essential AA Gibco 11140035 

Sodium pyruvate Gibco 11360070 

IL7 Peprotech 217-17 

Concanavalin A Merck C5275-5MG 

Retronectin Takara T100B 

DNAaseI Roche 4536282001 

Percoll Sigma P4937-500ML 

Celltrace Violet Thermofisher C34557 

PBS Invitrogen 003002 

Cytofix/Cytoperm BD biosciences 554714 

Foxp3/Transcription factor 

kit 
eBiosciences 00-5523-00 

Bovine Serum Albumin (BSA) Fisher Scientific 11413164 

Totalseq-A0301 Biolegend 155801 

Totalseq-A0302 Biolegend 155803 

Totalseq-A0303 Biolegend 155805 

Totalseq-A0304 Biolegend 155807 

Totalseq-A0305 Biolegend 155809 

Totalseq-A0306 Biolegend 155811 

Table S4.8: Commercially available reagents used in the study. 
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Abstract 

The fact that T-cell numbers remain relatively stable throughout life, and that T-cell 

proliferation rates increase during lymphopenia, has led to the consensus that T-cell numbers 

are regulated in a density-dependent manner. Competition for resources among memory T 

cells has been proposed to underlie this ‘homeostatic’ regulation. We first review how two 

classic models of resource competition affect the T-cell receptor (TCR) diversity of the 

memory T-cell pool. First, ‘global’ competition for cytokines leads to a skewed repertoire 

that tends to be dominated by the very first immune response. Second, additional ‘cognate’ 

competition for specific antigens results in a very diverse and stable memory T-cell pool, 

allowing every antigen to be remembered, which we therefore define as the ‘gold-standard’. 

Because there is limited evidence that memory T cells of the same specificity compete more 

strongly with each other than with memory T cells of different specificities, i.e., for ‘cognate’ 

competition, we investigate whether cellular aging could account for a similar level of TCR 

diversity.  

We define cellular aging as a declining cellular fitness due to reduced proliferation (or 

increased death). We find that the gradual erosion of previous T-cell memories due to cellular 

aging allows for better establishment of novel memories and for a much higher level of TCR 

diversity compared to global competition. A small continual source (either from stem-cell-

like memory T cells or from naive T cells due to repeated antigen exposure) improves the 

diversity of the memory T-cell pool, but remarkably, only in the cellular aging model. We 

further show that the presence of a source keeps the inflation of chronic memory responses in 

check by maintaining the immune memories to non-chronic antigens. We conclude that 

cellular aging along with a small source provides a novel and immunologically realistic 

mechanism to achieve and maintain the ‘gold-standard’ level of TCR diversity in the memory 

T-cell pool. 
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Introduction 

It is well-accepted among immunologists that homeostatic mechanisms are crucial in 

regulating immune cell numbers. T-cell homeostasis is the phenomenon by which the T-cell 

population maintains its relatively stable numbers, despite considerable perturbations, such as 

a decline in thymic output with age and repeated exposure to antigenic challenges (Surh and 

Sprent, 2008). The maintenance of CD8+ memory T cells generated during acute immune 

responses is largely cytokine-dependent, although some studies suggest that it also requires 

interaction with major histocompatibility complex (MHC) molecules, albeit without cognate 

antigen (Choo et al., 2010; Freitas and Rocha, 2000; Hashimoto et al., 2019; Ku et al., 2000; 

Surh and Sprent, 2008; Tan et al., 2002; Tanchot et al., 1997). In a lymphopenic host, 

increased homeostatic (density-dependent) T-cell proliferation drives the expansion of 

memory T cells (Murali-Krishna et al., 1999; Tanchot et al., 1997). Homeostasis need not be 

perfect, as in both mice and humans, depleted T-cell pools do not always recover to normal 

levels (Bouvy et al., 2013; Voehringer et al., 2008). Notably, after autologous stem-cell 

transplantation, even patients with reconstituted T-cell pools experienced significantly 

increased T-cell proliferation and loss rates when compared to healthy age-matched controls 

(Baliu-Piqué et al., 2021). These studies highlight our incomplete understanding of the 

homeostatic process. A better understanding of T-cell homeostasis is central to understanding 

the long-term maintenance of immunological memory. 

All CD8+ memory T cells compete for the same cytokines. Interestingly, the maintenance of 

chronic immune responses to persisting pathogens is not only dependent on their interaction 

with cognate antigen (Virgin et al., 2009), but also on the same cytokine(s) that the memories 

from acute responses depend on (Baumann et al., 2018; Block and Jameson, 2021; Cupovic 

et al., 2021; Hashimoto et al., 2019; Sandalova et al., 2010; Virgin et al., 2009). Due to the 

dependence of all memory T cells on the same resource(s), every new immune response 

disrupts the homeostatic balance. Responses with superior proliferative capacity (e.g., due to 

a higher affinity for a resource) outcompete other responses dependent on the same resource 

(De Boer and Perelson, 1994; Hogan et al., 2013; Ku et al., 2001; Yates et al., 2008). This 

competition among memory T cells from different immune responses leads to moderate to 

severe attrition of existing memory T cells, and has been noted multiple times using both 

repeated vaccinations with heterologous viruses, as well as in prime-boost immunization 

strategies in mouse experiments (Huster et al., 2009; Schmidt and Harty, 2011; Selin et al., 

1999; Vezys et al., 2008; Welsh and Selin, 2009). Early studies have postulated this attrition 

to be an effect of limited ‘space’ by showing that the total memory T-cell pool remained 

constant in size after consecutive infections (Selin et al., 1999; Welsh and Selin, 2009). 

Interestingly, a few recent studies report an increase in the total memory T-cell pool upon 

successive infections (Huster et al., 2009; Vezys et al., 2008), suggesting weaker attrition of 

existing memories, leading to a more diverse memory T-cell repertoire. 

The mechanisms governing the maintenance of T-cell memory remain unclear. Mathematical 

modelling studies have assumed that memory T cells undergo global and cognate 

competition, concepts that correspond to well-studied ideas of inter-species and intra-species 
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competition for resources in ecology. In mouse models, competition for cytokines, antigens, 

and ‘space’ in antigenic or survival niches, have been held responsible for the attrition of 

existing memory T cells (Borghans et al., 1999; Cupovic et al., 2021; Freitas and Rocha, 

2000; Kedl et al., 2000; Selin et al., 1999; Siracusa et al., 2017; Welsh and Selin, 2009; Yates 

et al., 2005). Competition for cytokines or physical niches leads to a non-cognate, i.e., 

‘global’, form of competition between memory T cells (Freitas and Rocha, 2000; Siracusa et 

al., 2017). Conversely, antigen-dependent competition, is confined to all cells that recognize 

the same cognate antigen (we refer to this as ‘cognate’ competition) (Borghans et al., 1999; 

Callard et al., 2003; De Boer and Perelson, 1994, 2013b; Kedl et al., 2000). Low-level 

reactivation by cognate antigens has been suggested to have a positive effect on memory T-

cell maintenance and homeostasis (Fraser et al., 2013; Masopust et al., 2006; Welsh and 

Selin, 2009; Yates et al., 2005). Several mathematical modelling studies have discussed the 

implications of global and cognate competition (Borghans et al., 1999; Callard et al., 2003; 

De Boer and Perelson, 1994, 2013b; Gaimann et al., 2020; Mayer et al., 2019; Yates et al., 

2005). It was shown that global competition leads to competitive exclusion of all but the T-

cell clone with the highest affinity for the resources the cells are competing for (De Boer and 

Perelson, 1994; Gaimann et al., 2020). Global competition can be further regulated by 

cognate competition, even in the presence of persistent antigenic stimulation, due to 

competition among memory T cells sharing the same specificity (Borghans et al., 1999; De 

Boer and Perelson, 1994, 2013b; Mayer et al., 2019). Other modelling studies showed that 

fratricide among memory T cells crowding around the same antigen-presenting cells (APCs) 

can give rise to cognate competition among them, due to Fas-FasL mediated apoptosis, which 

provides a mechanism through which memory T-cell pools can be regulated (Callard et al., 

2003; Yates et al., 2005). Therefore, succinctly put, most current literature exploring the 

mechanisms underlying memory T-cell homeostasis fits in either the global or the cognate 

competition framework. 

In this article, we propose cellular aging as an alternative mechanism that may play a role in 

T-cell homeostasis. That cells age is irrefutable (DiLoreto and Murphy, 2015; Mays Hoopes, 

2010; Mittelbrunn and Kroemer, 2021). For instance, cellular aging has implications in 

cancer (“Handb. Immunosenescence,” 2020; Mays Hoopes, 2010; Mittelbrunn and Kroemer, 

2021; Thoma et al., 2021), and vaccination of the elderly is affected by the poor 

responsiveness of their aged T cells (Ferrando-Martínez et al., 2011; Goronzy and Weyand, 

2019; “Handb. Immunosenescence,” 2020; Haynes and Swain, 2012; Lanfermeijer et al., 

2020; P. Chou and B. Effros, 2013; Szabo et al., 2000). Yet, due consideration has not been 

given to the aging of cells in models of memory T-cell homeostasis. Traditionally, models of 

T-cell homeostasis assume that cells can perform an infinite number of cell divisions, and are 

bounded only by the resources available at the time (Yates et al., 2005). However, a cell’s 

inherent division and loss rates change over time due to age, differentiation stage and division 

history (Akondy et al., 2017; Baliu-Piqué et al., 2022; Bresser et al., 2022; Rane et al., 2018; 

Reynaldi et al., 2019; Vibert and Thomas-Vaslin, 2017). We, therefore, investigate the role 

that cellular aging may play in homeostasis and the long-term maintenance of T-cell memory. 



Chapter 5: Cellular aging and memory T-cell homeostasis 
 

 165  
 

We start with a review of the existing global and cognate competition models of T-cell 

homeostasis, and later move on to explore the additional effect of cellular aging on the 

maintenance of memory T cells. Throughout the article, we use previously described 

attributes of the memory T-cell pool (e.g., attrition of existing memories and expanding 

population size) as guides to ascertain the suitability of these three different models in 

generating realistic memory T-cell pools. We demonstrate that, contrary to our intuition, 

cellular aging helps maintain memory T-cell diversity for extended periods of time. Further, 

we observe that a small source, from either stem-cell-like memory T cells or from naive T 

cells, together with cellular aging is sufficient to maintain a diverse memory T-cell repertoire 

that is robust to the presence of dominant competitors (e.g., chronic immune responses to 

persistent pathogens). We also discuss the potential disadvantages of longevity of memory T 

cells, and the effect of cellular aging on the phenotypic composition of the memory T-cell 

pool. 

 

Models of memory T-cell maintenance 

Three different mathematical models for the maintenance of memory T cells were defined. 

To keep the models simple, we considered three elements: (a) a source into the memory T-

cell population (if any), (b) the most fundamental processes of any population of cells, i.e., 

cell division and cell death, and (c) the resources that have been demonstrated to be essential 

for the maintenance of memory T cells, i.e., cytokines such as IL-15, and antigens (for 

chronic responses). We consider both acute and chronic immune responses, where all 

memory T cells depend on the same homeostatic cytokine(s). 

 

Global competition model 

The cytokines, 𝐶 (concentration, in mol/L), have a steady source, 𝜎 (in mol/L/day), from the 

stromal cells located across the body of a host (Cui et al., 2014; Krishnamurty and Turley, 

2020). Although there are other, transient sources of cytokines during inflammation, stromal 

cells are the major contributors during homeostatic circumstances (Block and Jameson, 2021; 

Cui et al., 2014; Nitta and Takayanagi, 2021). These cytokines are either utilized by memory 

T cells in a fixed amount, 𝜖, during each cell division, or are degraded at a rate 𝛿/day 

(equation 5.1a). The dependence of all memory T cells on the same growth resource 

(cytokines), 𝐶, gives rise to global competition among the cells. The sizes of the memory T-

cell populations, 𝑀𝑖, in a host having experienced 𝑛 different antigen-specific immune 

responses are given by (equation 5.1b, Figure 5.1a): 

 𝑑𝐶

𝑑𝑡
= 𝜎 − 𝛿𝐶 − 𝜖

𝐶

ℎ + 𝐶
∑ 𝑝𝑖𝑀𝑖

𝑖

 
(5.1a) 

   

 𝑑𝑀𝑖

𝑑𝑡
=  𝑠𝑖 +  𝑝𝑖𝑀𝑖

𝐶

ℎ + 𝐶
− 𝑑𝑖𝑀𝑖 

(5.1b) 
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where 𝑖 = 1, … , 𝑛 (here 𝑛 is the number of unique antigens encountered sequentially), and ℎ 

is the cytokine concentration at which the homeostatic (i.e., density-dependent) proliferation 

rate is half-maximal. Cells of immune response 𝑀𝑖 have a death rate 𝑑𝑖, and a maximal 

homeostatic proliferation rate 𝑝𝑖 (also referred to as the fitness). The source term, 𝑠𝑖, defines 

the daily influx of memory T cells, which could be either from infrequent divisions of stem-

cell-like memory T cells in the bone marrow, or from antigen-driven expansion of naive T 

cells (only for chronic responses) (Snyder et al., 2008; Utzschneider et al., 2018). T cells 

downregulate their T-cell receptors after interactions with cytokines and are thus ‘non-

greedy’ consumers of cytokines (Gao et al., 2015). Therefore, cytokine consumption was 

modelled to be proportional to proliferation of the memory T-cell population (equation 5.1).  

The effective homeostatic division rate of memory T cells was set by a saturation function of 

the global cytokine concentration. An inverse dependence of the death rate on the cytokine 

concentration would give similar qualitative results (simulations not shown). 

We assume that the timescales for production and degradation of cytokines are much faster 

than the timescales for division and death of memory T cells. Therefore, we consider the 

cytokines to be in quasi-steady state (equation 5.2): 

 
𝐶 =

−(ℎ + 𝛾 ∑ 𝑝𝑖𝑀𝑖𝑖 − 1) + √(ℎ + 𝛾 ∑ 𝑝𝑖𝑀𝑖𝑖 − 1)2 + 4ℎ

2
 

(5.2) 

The cytokine concentration was normalized to its maximal concentration (i.e., we set 
𝜎

𝛿
= 1), 

and 𝛾 =
𝜖

𝛿
 was set to 10−6 so that the size of the memory T-cell pool was in the order of 107. 

 

Cognate competition model 

Global competition due to sharing of growth resources leads to competition between different 

immune responses. Cognate competition defines the competition among the memory T cells 

generated during the same immune response, i.e., cells sharing the same antigen specificity 

(but not necessarily the same T-cell receptor). For ‘acute’ immune responses to pathogens 

that are eliminated, cognate competition has been proposed to follow from limited ‘space’ in 

specific survival niches in the bone marrow (Sercan Alp et al., 2015), or from limited 

availability of cross-reactive antigens (Borghans et al., 1999; Callard et al., 2003; Kedl et al., 

2000). Allowing for both global and cognate competition (Figure 5.1b), the memory T-cell 

pools resulting from 𝑛 different immune responses can be given by: 

 𝑑𝐶

𝑑𝑡
= 𝜎 − 𝛿𝐶 − 𝜖

𝐶

ℎ + 𝐶
∑

𝑝𝑖𝑀𝑖

1 + 𝛽𝑖𝑀𝑖
𝑖

 
(5.3a) 

   

 𝑑𝑀𝑖

𝑑𝑡
= 𝑠𝑖 +

𝑝𝑖𝑀𝑖

1 + 𝛽𝑖𝑀𝑖

𝐶

ℎ + 𝐶
− 𝑑𝑖𝑀𝑖 

(5.3b) 
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for 𝑖 = 1, 2, …, 100 antigens, and where all memory T cells specific for antigen 𝑖 are 

considered to have a similar affinity for that antigen. 

This extends the global competition model (equation 5.1) with a cognate competition 

parameter, 𝛽𝑖, defining the size of the 𝑀𝑖 population at which its division rate halves (which 

happens when 𝑀𝑖 = 1/𝛽𝑖). All other parameters remain the same, i.e., we have in fact added 

an intra-specific competition term to the global competition model. As ℎ was estimated 

before (Mugwagwa, 2010), the parameter 𝛽𝑖 was used to tune the relative strength of the 

global and cognate competition. Note that global competition weakens as ℎ → 0 and that 

cognate competition declines as 𝛽𝑖 → 0. Again, due to the very different turnover timescales 

of cytokines and memory T cells, the cytokines were assumed to be in quasi-steady state: 

 

𝐶 =

− (ℎ + 𝛾 ∑
𝑝𝑖𝑀𝑖

1 + 𝛽𝑖𝑀𝑖
𝑖 − 1) + √(ℎ + 𝛾 ∑

𝑝𝑖𝑀𝑖

1 + 𝛽𝑖𝑀𝑖
𝑖 − 1)

2

+ 4ℎ

2
 

(5.4) 

 

 

Cellular aging model 

The properties of a cell may change with cell division. It is well-known that telomere 

shortening during division stunts a cell’s ability to divide forever (De Boer RJ, 1998; 

Goronzy et al., 2006; Hayflick and Moorhead, 1961). However, in the global and cognate 

competition models, the cells have a constant fitness (𝑝𝑖) and, by not aging, can expand 

indefinitely. To account for cellular ageing, we rewrote the global competition model 

(equation 5.1) into a division-indexed model, where we used 𝑗 = 1, … , 𝑚, for the number of 

divisions a cell has completed (i.e., 𝑗 is the ‘generation’ number of a cell, and 𝑚 is the 

maximal number of divisions it can go through, which is commonly referred to as the 

‘Hayflick limit’). In our simulations, 𝑚 = 100 was chosen to be large enough so that in 

practice a cell never reaches its Hayflick limit. The model for the number of cells specific to 

antigen 𝑖 in the 𝑗th division, 𝑀𝑖,𝑗 (see Figure 5.1c), is given by: 

 𝑑𝑀𝑖,𝑗

𝑑𝑡
= 𝑠𝑖,𝑗 + 2𝑝𝑖,𝑗−1𝑀𝑖,𝑗−1

𝐶

ℎ + 𝐶
− 𝑑𝑖𝑀𝑖,𝑗 − 𝑝𝑖,𝑗𝑀𝑖,𝑗

𝐶

ℎ + 𝐶
 

(5.5a) 

   

 𝑝𝑖,𝑗 =
𝑝𝑖,1

1 + (𝑗/𝑘)5
 (5.5b) 

where 𝑝𝑖,𝑗 is the maximal homeostatic division rate of cells specific for antigen 𝑖 that have 

completed 𝑗 divisions; 𝑘 = 25 marks the generation number where 𝑝𝑖,𝑗 = 𝑝𝑖,1/2; and 𝑀𝑖 =

∑ 𝑀𝑖,𝑗𝑗  defines the total number of cells in the 𝑖th immune response. For the special case 

where the division rates remain independent of the division number, i.e., when 𝑝𝑖,𝑗 = 𝑝𝑖 (i.e., 

𝑘 → ∞), this model is identical to the global competition model (it would only track the 
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division histories of cells). Otherwise, division rates decline with the division number 

(equation 5.5b, Figure 5.1d). 

Since in the scenarios with a source, each memory T-cell population was assumed to be 

seeded every day with 𝑠𝑖 cells, we described their division history with a Poisson distribution, 

i.e., 

 
𝑠𝑖,𝑗  = 𝑠𝑖

𝜇𝑗𝑒−𝜇

𝑗!
 

(5.6) 

 

Here, 𝜇 is the average generation number of a population. It is defined as 𝜇 = 2λτ, where τ is 

the typical length of the expansion phase (in days), and λ = 2/day is the rate of division 

during the expansion phase (De Boer and Perelson, 2013a). Two variations of the age-

distribution of the source were modelled: ‘young’ cells (𝜇 = 1 , or τ = 0.25 days, i.e., cells 

that became quiescent after having completed one division, on average, during the expansion 

phase) or ‘old’ cells (𝜇 = 20 , or τ = 5 days, i.e., cells that divided extensively throughout 

the expansion phase). For simplicity, the T-cell death rate was kept the same across division 

numbers. Qualitatively similar results were found when implementing an increase in the 

death rate with increasing division number (simulations not shown). However, as less 

differentiated cells possess a higher expansion potential (Geginat et al., 2003; Hinrichs et al., 

2009), we chose to decrease the division rate with the division number. 

 

Chronic responses 

To model chronic responses, we introduced extra terms specific to only chronic responses. As 

chronic responses are subject to additional proliferative signals due to their interaction with 

antigen (Yates et al., 2008), chronic immune responses have an additional maximal antigen-

driven proliferation rate, 𝜌𝑖, and a cognate (antigen-driven)-competition parameter, 𝑔𝑖. The 

models allowing for chronic responses are, therefore, extensions of the models defined above. 

In case of chronic immune responses, the global and cognate competition models described 

by equations 5.1 and 5.3 are extended with a second proliferation term: 

 
+

𝜌𝑖𝑀𝑖

1 + 𝑔𝑖𝑀𝑖
 

(5.7a) 

 

The cellular aging model requires two terms to achieve a similar extension: 

 
+

2𝜌𝑖,𝑗−1𝑀𝑖,𝑗−1

1 + 𝑔𝑖𝑀𝑖
−

𝜌𝑖,𝑗𝑀𝑖,𝑗

1 + 𝑔𝑖𝑀𝑖
 

(5.7b) 

 

with 
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 𝜌𝑖,𝑗 =
𝜌𝑖,1

1 + (𝑗/𝑘)5
 (5.7c) 

 

The cognate competition parameter, 𝑔𝑖, defines the strength of the cognate competition 

among memory T cells specific for antigen 𝑖. Notice that the antigen-driven proliferation rate 

follows the same cellular aging function as the homeostatic (density-dependent) proliferation 

rate. 

 

Parameter choices 

For a fair comparison across the models, we used the same parameter values throughout this 

manuscript. CD8+ memory T cells were found to be maintained at steady state with an inter-

mitotic interval of ~50 days in an adoptive transfer experiment of LMCV-specific CD8+ 

memory T cells into naive mice after being CFSE labelled (Choo et al., 2010). Reports of in-

vivo deuterium labelling of non-specific CD8+ memory T cells supported this time scale by 

showing that the CD8+ memory T-cell pool is renewed, on an average, every ~ 66 days 

(Baliu-Piqué et al., 2022). Therefore, the death rate of memory T cells, 𝑑𝑖, was set to 

0.02/day, irrespective of the immune response. The maximal homeostatic proliferation rate, 

𝑝𝑖, of 0.5/day and the coefficient for global competition, ℎ, of 10−5 were estimated based on 

temporal data of murine memory CD8+ T cells (Mugwagwa, 2010). As all cells in the models 

have the same expected life span of 50 days, and differ only in their maximum homeostatic 

proliferation rate, 𝑝𝑖, we also refer to this proliferation rate as the ‘fitness’ of the immune 

response. Disparate immune responses differ in their fitness values. In the simulations, the 

fitness values were drawn from a normal distribution with a mean of 0.5 and a standard 

deviation of 0.05. The effective proliferation rate decreases as the memory T-cell pool 

increases and will approach 𝑑𝑖 = 0.02 when the memory of a particular response is at steady 

state. The coefficient for cognate competition, 𝛽𝑖 (in the cognate competition model) and 𝑔𝑖 

(for chronic responses), were set to be 10−6 and 5 × 10−5 for all 𝑖, respectively, so that the 

total mouse memory CD8+ T-cell pool was realistically in the order of 107 cells. 

 

Simpson’s Diversity Index 

Simpson’s diversity index has many variations. Here, we used a variation that provides an 

intuitive interpretation of the diversity in the memory T-cell pool. The index, based upon the 

relative abundances, 𝑓𝑖 =
𝑀𝑖

∑ 𝑀𝑖𝑖
⁄ , of all immune responses, gives an indication of the 

effective number of immune responses in a population. The index is defined as 

 1

∑ 𝑓𝑖
2𝑛

𝑖=1

 
(5.8) 
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A memory T-cell pool with an index of 𝑛 denotes a pool with 𝑛 evenly abundant immune 

responses whereas an index of 1 denotes a scenario with a single, dominant immune response 

in the pool of immune responses. 

 

Results 

Three models of homeostasis were formulated based on the different competition schemes: 

global competition (Figure 5.1a), cognate competition (Figure 5.1b) and cellular aging 

(Figure 5.1c, see the Models section). The global and cognate competition models are 

conventional models differing only in the absence or presence of intra-specific competition 

among memory T cells, respectively. The cellular aging model is a novel variant of the global 

competition model, which we propose as an alternative because there is limited evidence for 

cognate (intra-specific) competition among memory T cells. As this manuscript focuses on 

the long-term maintenance of the memory T-cell pool, we abstained from modelling the short 

expansion phase after an antigenic challenge. Instead, in all the simulations, we assumed that 

after the introduction of each antigen, the memory T-cell pool is expanded with a random 

number of cognate memory T cells (drawn from a normal distribution centred around 105 

with a 10% standard deviation), to model the beginning of a new memory phase. The 

simulations below reflect CD8+ T cells in a representative mouse (i.e., parameter values used 

are specific to mice). 

To realize the effect of the three different mechanisms on the immune dynamics over a 

simulated mouse’s lifetime, we recorded and compared model simulations over 1000 days 

(Figure 5.2). To this end, the host was successively exposed to 100 different antigens that 

gave rise to 100 acute immune responses with different fitness levels (see Models for 

details). The 100 antigens were introduced over 1000 days in 10-day time intervals from day 

0 until day 990. The number of an immune response marks the time point at which (and 

antigen by which) it was triggered. For example, immune response 𝑀𝑖 was triggered by 

antigen 𝑖 on day 10 × (𝑖 − 1). 

 

Under global competition, the memory T-cell pool is dominated by a single 

immune response 

The cytokine IL-15 is thought to be necessary for the expansion and maintenance of all 

memory T cells, thereby leading to global competition between the cells (De Boer and 

Perelson, 1994), irrespective of their antigen specificity (Figure 5.1a; see Models). In such a 

setting, the immune memory to the first encountered antigen, 𝑀1, in a new-born mouse, 

expanded to fill up the memory T-cell pool almost entirely, simply by the virtue of being the 

only immune response depending on the abundantly available growth factor (Figure 5.2a). 

The size of 𝑀1 increased, unabated, until the death in the population balanced the reduced 

growth of the population due to the depleted cytokine availability (i.e., 𝑝1
𝐶

ℎ+𝐶
= 𝑑1 = 0.02). 
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𝑀1 started to decline only when the mouse was exposed to enough antigens of comparable, or 

higher, fitness (𝑀2, 𝑀6, 𝑀71). Nevertheless, 𝑀1 dominated the memory T-cell pool almost 

throughout the entire lifetime of the mouse, because the rate of exclusion was very slow. At 

steady state, the actual division rate of the memory T cells with the highest fitness was close 

to their death rate 𝑑𝑖 = 0.02. The division rate of memory cells with 10% lower fitness 

(corresponding to the standard deviation of our distribution) would then be 10% lower, 

leading to a net loss rate of just 0.002 per day. With a half-life of about a year, it would 

therefore take longer than the lifespan of a mouse to lose a large population of specific 

memory T cells, even for T cells with a relatively low fitness. 

 

Figure 5.1: Mechanisms of homeostatic maintenance of memory T cells. The cartoons of the (a) 

global competition, (b) cognate competition, and (c) cellular aging models showing the memory T-

cell pool with two immune responses, 𝑀1 and 𝑀2. The different immune responses can have different 

division rates, 𝑝𝑖, and death rates, 𝑑𝑖, and share the same cytokines, 𝐶. On top of the competition for 

shared global resources (cytokines) (a), the cells of an immune response either compete with cells of 

the same specificity, leading to cognate competition (b) or lose their potential to divide with each cell 

division because of cellular aging (c). The cellular aging function shows the drop in the relative 

fitness of a T-cell population as it divides (d). 

 

The establishment of new memories became challenging when the memory T-cell pool was 

nearly saturated. Immune responses with low fitness (e.g., 𝑀41) declined immediately upon 

introduction, due to the competitive pressure exerted by existing, fitter, immune responses 
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(Figure 5.2a). Interestingly, even though existing immune responses went through attrition 

upon exposure to new antigens, the total memory T-cell pool showed modest growth over 

time (Figures 5.2a and S5.1a). This early signature of an increasing memory T-cell pool is in 

line with observations from previous studies on specific antigen-free laboratory mice (Huster 

et al., 2009; Vezys et al., 2008). In the very long run, global competition for cytokines 

dictated the survival of only the fittest immune response (Figure S5.1b). Although such a 

scenario is disconcerting, competitive exclusion of less fit immune responses need not be 

achieved in a mouse’s lifetime (Figure 5.2a), as long as cells are relatively long-lived (>50 

days), and fitness differences are small. 

 

Figure 5.2: Cellular aging improves the diversity of the memory T-cell pool. Comparison of the 

three mechanisms for homeostatic maintenance of memory T cells showing the temporal dynamics 

(Panels a, d, and g); the distribution of the sizes of all memory T-cell responses at day 1000, along 

with their expansion (blue) or contraction (red, indicated by the vertical bars) with respect to their 

initial value (indicated by the open circles) i.e., 𝑀𝑖(1000) − 𝑀𝑖(10 × (𝑖 − 1)), as well as their 

maximal homeostatic proliferation rate (indicated by the shading of the filled circles) (b, e, and h); 

and the Simpson’s diversity index of the T-cell repertoire over time (c, f, and i). The models were 

simulated for 1000 days. In panels a, d and g, the thickness of the coloured lines denotes the fitness of 

the immune response. The dashed lines in panels b, e and h depict the size of the total memory T-cell 

pool on day 1000. In these simulations, the memory T-cell pool consists of acute immune responses 

only. 

 

The snapshot of the total memory T-cell pool on day 1000 revealed a clear positive 

dependence of the size of an immune response on its maximal homeostatic proliferation rate, 

𝑝𝑖 (Figure 5.2b). However, 𝑀1 occupied the largest share (24%) of the memory T-cell pool 

even with a relatively low 𝑝𝑖, as it was the first immune response. Similarly, the fittest 
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immune response, 𝑀71, formed only a meagre 1% of the total memory T-cell pool, as it was 

triggered very late in the mouse’s life (on day 700). Therefore, under global competition, the 

size of an immune response is determined not only by its maximal homeostatic proliferation 

rate but also by the time at which it was generated. The Simpson’s diversity index (see 

Models) offers a measure of the diversity of a population by considering both the number and 

the disparity in the sizes of its constituents. The diversity in the memory T-cell pool barely 

increased over the course of the mouse’s lifetime, evolving from a repertoire with a single 

immune response on day 0 to one with about 10 dominant responses, and 90 small responses, 

on day 1000, where the largest immune response made up as much as 24% of the total 

memory T-cell pool (Figure 5.2c). Therefore, global competition gives rise to a skewed 

memory T-cell pool in which the immunity of a host weakens over time due to the loss of less 

fit immune responses. 

 

Figure 5.3: A small source helps to achieve the gold-standard diversity within the memory T-cell 

pool. The dynamics of the cellular aging model along with a source from either a young (upper row) 

or an old population (lower row). Legends as in Figure 5.2. The memory T-cell pool was generated 

by acute immune responses only. 

 

Cognate competition leads to an evenly distributed memory T-cell pool 

Co-existence of multiple species is a well-known phenomenon in ecology. In a stable 

environment, co-existence can be achieved through intra-specific competition. Based on this 

idea, previous studies in immunology have suggested the presence of specific competition 

among the cells participating in the same immune response, because they bind similar (cross-

reactive) antigens (Borghans et al., 1999; Freitas and Rocha, 2000; Yates et al., 2005). In this 

section, we study a similar cognate competition model (despite a lack of experimental 
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support), which employs competition among cells of an immune response on top of the 

global competition among all cells in the memory T-cell pool (Figure 5.1b; see Models). 

The additional dependence on cognate resources introduced a strict limit on the size of an 

immune response. Despite considerable expansion, cognate competition prevented 𝑀1 from 

taking over the memory T-cell pool, by limiting its size (Figures 5.2d and S5.1d). In contrast 

to what happened in the global competition model, the cytokine was now not depleted (not 

shown), as inflation of 𝑀1 was avoided. So, upon exposure to new antigens, all new immune 

responses expanded initially, irrespective of their maximal homeostatic proliferation rate. 

These expansions came at the expense of the existing immune responses but contributed to 

the growth of the total memory T-cell pool (Figure S5.1d). On day 1000, the memory T-cell 

pool was composed of many similarly-sized immune responses (Figure 5.2e), all of which 

(except 𝑀41) eventually reached non-zero steady state sizes that were proportional to their 

fitness levels (Figure S5.1e). The immune response with the lowest fitness, 𝑀41, declined 

after a short bout of expansion, as its reduced homeostatic proliferation rate (due to global 

resource sharing) was lower than its death rate (Figure S5.1e). The size distribution of the 

immune responses showed a much stronger dependence on the values of their maximal 

homeostatic proliferation rate (Figure 5.2e), and therefore the size of each immune response 

depended much less on the time at which the response was generated. In contrast to what was 

observed in the global competition model, the Simpson’s diversity index of the total memory 

T-cell pool showed an impressive increase over time to a diverse immune repertoire, in which 

the largest immune response consisted of only 2% of the total memory T-cell pool (Figure 

5.2f). 

Notably, cognate competition among cells of an immune response gives rise to a highly 

diverse memory T-cell repertoire. Such a repertoire is beneficial, as it offers better protection 

to the host over its lifetime than the very skewed repertoire that was obtained with the global 

competition model. Therefore, we refer to the cognate competition model as the ‘gold-

standard’ in the long-term homeostatic maintenance of almost all memories. 

 

Immune memories are sustained for longer periods due to cellular aging 

The cognate competition model gave rise to a diverse memory T-cell pool by limiting the size 

of the individual immune responses. Although competition in antigenic niches has been 

hypothesized (Agenés et al., 2008; Borghans et al., 1999; Freitas and Rocha, 2000; Yates et 

al., 2005), experimental evidence for cognate competition in the memory T-cell pool is 

scarce. Instead, some experimental observations have shown that interactions with cognate 

resources (antigens) are not required for the survival of memory T cells (Freitas and Rocha, 

2000; Murali-Krishna et al., 1999). Therefore, seeking for alternative mechanisms, we 

hypothesized that cellular aging of T cells may limit the growth of individual memory 

responses, and thereby generate a diverse memory T-cell repertoire. Here, we discuss the 

ramifications of cellular aging, in conjunction with global competition as the homeostatic 

mechanism, on the maintenance of the memory T-cell pool (Figure 5.1c; see Models). 
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The unabated expansion of the first immune response, 𝑀1, was indeed prevented by cellular 

aging (Figure 5.2g). Continued antigen exposures resulted in the growth of the total memory 

T-cell pool, while existing immune responses underwent 1) moderate erosion due to new 

antigen exposures (Figure S5.1g), and 2) major attrition due to cellular aging (Figure 5.2g). 

The limited consumption of cytokine by the existing immune responses allowed new immune 

responses to expand. However, on the long term all immune responses eventually declined 

(Figure 5.2g), as they were lost due to cellular aging (Figure S5.1h). Interestingly, the 

maximal homeostatic proliferation rate hardly influenced the size distribution of the immune 

responses (Figure 5.2h). Rather, the sizes were largely determined by the time at which the 

responses were generated. The most recent responses made up the majority of the memory T-

cell pool, as the older a response was, the more it was eroded. The diversity within the 

memory T-cell pool was much larger than in the global competition model but was only half 

of that achieved in the cognate competition model (Figure 5.2i). The largest immune 

response on day 1000 occupied a mere 6% of the memory T-cell pool, compared to the 

inflated 24% in the global competition model. Therefore, although the cellular aging model 

improves upon the global competition model, it cannot generate a memory T-cell pool as 

diverse as the ‘gold-standard’ memory T-cell pool that results from cognate competition. 

 

A small source into an aging population helps to maintain a diverse 

memory T-cell pool 

Multiple studies in the recent past have described subsets of memory T cells that have 

superior potential to generate other memory T-cell subsets (Gattinoni et al., 2011). This self-

sustaining population is sometimes referred to as the stem-cell-like memory T-cell 

population. Stem-cell-like memory T cells, generated during an acute response and residing 

in stromal niches in the bone marrow, could act as a slow but steady source into the 

circulating memory T-cell populations. We have seen that cellular aging can limit the 

expansion of the early memory populations, thereby reducing competition, but that the 

memory T-cell pool suffers in the long run, due to the eventual loss of all memories by 

cellular aging. The presence of a lowly-divided stem-cell-like source for each immune 

response would circumvent this issue. Importantly, this memory-maintaining source could 

also originate from circulating memory T cells due to repeated infections, from cross-

reactions with other antigens, or from activation of new naive T cells (in case of persistent 

antigens). 

Indeed, if each immune response had a small source (𝑠𝑖 = 100 cells/day), none of the 

immune responses would be lost in the long-term (Figure 5.3). As the division history of the 

source might affect the memory T-cell repertoire, we evaluated two different scenarios: one, 

where the source population turned quiescent early in the expansion phase (‘young’ source, 

having completed 1 division on average), and the second, where the source population had 

divided as much as the circulating cells before becoming quiescent (‘old’ source, having 

completed an average of 20 divisions). A young source sustained the growth of early immune 

responses for longer periods of time compared to an older source (Figures 5.3a and 5.3d). 
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Remarkably, the size distribution of the memory T-cell pool was completely different in both 

cases (Figures 5.3b and 5.3e). The presence of a young source resulted in a pool dominated 

(in size) by earlier immune responses, whereas a source from an older population favoured 

the prevalence of recently generated immune responses. This effect was due to a difference in 

the ‘effective source’. Although both scenarios have the same source of 100 cells/day, the 

source from a younger population contributes more daughter cells because of their higher 

homeostatic proliferation rate. When the source population is old, it expands less and makes 

for a smaller effective source to the existing memories. Hence, with an old source the later 

immune responses expand more, due to weaker competition from existing immune responses, 

compared to the scenario with a young source. Even with such a stark difference in the 

immune profiles, the diversity within the memory T-cell pool was comparable in both 

scenarios, as none of the immune responses were lost (Figures 5.3c and 5.3f). The 

Simpson’s diversity index revealed that the diversity achieved by adding a stem-cell-like 

source to the cellular aging model was comparable to the ‘gold-standard’ diversity achieved 

with the cognate competition model. Notably, the presence of a source in the global 

competition model failed to improve its diversity, suggesting that adding a small source is not 

a trivial solution to maintaining the diversity of a population (figure not shown due to its 

similarity to Figure 5.2a-c). Therefore, we propose that a source into an aging population is a 

viable alternative to the cognate competition model. 

The distribution of the division number in the memory T-cell pool of the global competition 

model in the absence of cellular aging, i.e., when 𝑝𝑖,𝑗 = 𝑝𝑖, showed a large disparity in the 

average generation number of the immune responses, with early responses having divided 70 

times on average, compared to an average of 25 divisions for recent responses (Figure 5.4a). 

The very first response (like all other responses) had gone through 25 divisions when seeded 

in the beginning of the memory phase, and subsequently accumulated 50 more divisions 

throughout the mouse’s life (Figure 5.4b). Even though the cells of the first immune 

response accrued more divisions with time, the size of the first response declined over time 

due to global competition from successive immune responses (Figures 5.4b and 5.2a). The 

disparity found in the division distribution of the memory T-cell pool dropped considerably 

in the presence of cellular aging (Figure 5.4c). Cellular aging promoted the dominance of 

recent immune responses, even though they had divided less (Figures 5.4c and 5.2h). The 

number of divisions accrued by an immune response over a mouse’s lifetime was also 

significantly lower due to cellular aging (Figure 5.4d). A continuous source reduced the 

disparity in the division distribution within the memory T-cell pool even more (Figures 5.4e 

and 5.4g). The average generation number of the first immune response on day 1000 was 

lower compared to that on day 0 when the source was from a younger population but was 

higher than that on day 0 in case of an older source (Figures 5.4f and 5.4h). Therefore, a 

small source counteracts the exhaustion of a population by cellular aging and the division 

history of the source determines the distribution of the division history within the memory T-

cell pool. 
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Figure 5.4: The distribution of division numbers in the memory T-cell pool is determined by the 

age of the source population. Comparison of the distribution of division numbers of all immune 

responses on day 1000 (Panels a, c, e, and g), and the division history of the first immune response 

over time (Panels b, d, f, and h), for different mechanisms. The red line plots the average generation 

number of an immune response. The grey and black shades show the number of cells at different 

division numbers. The green dotted line marks the starting division number of the first immune 

response. In these simulations the memory T-cell pool consists of acute immune responses only. 

 

A source into an aging T-cell population maintains immune memories in 

the long-term even in the presence of chronic responses 

Our discussion until now has focused on a memory T-cell pool containing 100 memories to 

pathogens that were eliminated during the ‘acute’ immune response. However, chronic 

immune responses to pathogens (or antigens) that persist, may pose a big challenge in 

maintaining the diversity of the memory T-cell pool, due to their sometimes inflationary 

properties (Virgin et al., 2009). We assessed whether our novel model, with a memory T-cell 

pool going through cellular aging in the presence of a source, could maintain T-cell diversity 

under the competitive pressure from chronic T-cell responses. We considered a host that 

generated 95 acute responses and 5 chronic responses, even though only 1% of all infections 

are estimated to lead to chronic responses (Virgin et al., 2009). Chronic responses are 

maintained in part by homeostatic proliferation due to IL-15, and partly due to repeated 

stimulation by persistent antigen (see Models). 
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Figure 5.5: Chronic immune responses lower the long-term diversity of the memory T-cell pool. 

The dynamics of the cellular aging model along with a source from either a young source (upper row) 

or an old source (lower row). Legends as in Figure 5.2. The memory T-cell pool consists of both 

acute and chronic immune responses. 

 

Chronic responses expanded to occupy a higher proportion of the memory T-cell pool than 

acute responses (Figure 5.5). The immune dynamics of the 95 acute responses were not 

severely affected by the addition of 5 chronic responses (compare Figures 5.3a and 5.3d 

with Figures 5.5a and 5.5d). Exposure to chronic antigens expanded the total memory T-cell 

pool, and the heightened competition reduced the sizes of the acute responses somewhat. The 

division histories and the prevalence patterns of the immune responses hardly changed 

(compare Figures 5.3b and 5.3e with Figures 5.5b and 5.5e, and S5.2). Like before, the 

division history showed that the memory T-cell pool became younger with time in the 

presence of a young source, which resulted in the prevalence of early immune responses. 

However, the diversity of the memory T-cell pool declined markedly in the presence of 

chronic responses as the largest immune response now made up only about 10% of the total 

memory T-cell pool (Figures 5.5c and 5.5f). The cellular aging model along with a source, 

thus, provides a robust mechanism for the long-term maintenance of memory T cells, even 

though the diversity in the memory T-cell pool suffers from the presence of chronic 

responses. 
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Long-lived memory T cells lower the diversity of the memory T-cell pool 

Circulating memory T cells have been shown to be relatively short-lived (Baliu-Piqué et al., 

2018), while memory in itself is long-lived (Cendón et al., 2022; “Panum on Measles: 

Observations Made During the Epidemic of Measles on the Faroe Islands in the Year 1846 

(A translation from the Danish) - PMC,” n.d.). In an attempt to understand why memory T 

cells are relatively short-lived, we studied how the lifespan of memory T cells influences the 

diversity of memory T-cell repertoires. In our models, the attrition of existing memories was 

due to the relatively short lifespans of memory T cells. We examined whether memory T 

cells with longer lifespans would allow for higher diversity in the memory T-cell repertoires. 

To precisely underline the influence of memory T-cell lifespan (without the effect of a 

source) on the diversity of the memory T-cell repertoire, we only considered the three basic 

mechanisms: global competition, cognate competition, and cellular aging, without any 

source. The model characteristics were compared considering a scenario where memory T 

cells lived 10 times longer than their estimated lifespans, i.e., 𝑑𝑖 = 0.002/day (Figure S5.3). 

The temporal dynamics corroborated the previous conclusions: 𝑀1 filled up the memory T-

cell pool under the influence of global competition, while this was strongly and moderately 

constrained in the cases of cognate competition and cellular aging, respectively (Figures 

S5.3a, S5.3d and S5.3g). Notably, none of the cases showed the loss of any immune 

response (Figures S5.3b, S5.3e and S5.3h). The degree of inflation of an immune response 

clearly correlated with how early the response was generated. More importantly, the levels of 

TCR diversity in the memory T-cell pool were a lot lower when compared to the 

corresponding cases with short-lived memory T cells (Figures S5.3c, S5.3f and S5.3i). When 

memory T cells were long-lived, the diversity in the global competition and cellular aging 

models barely improved over time, whereas the index for the cognate competition model was 

half of that with short-lived memory T cells. 

Although maintenance of all encountered immune responses may be advantageous, the 

inflation of early memories might pose significant challenges for the efficient protection of a 

host. The recall response to a recent antigen is expected to be delayed when the probability of 

finding cognate memory T cells decreases due to the presence of inflated early responses in 

the pool. A considerable delay in the recall response to a large infection may even be 

detrimental (Huster et al., 2009). Therefore, surprisingly, storing immunological memory in 

short-lived memory T cells may be more beneficial, as short-lived memory T cells allow for 

higher diversity in the memory T-cell pool. 

 

Discussion 

Here, we showed that cellular aging in the presence of a source population is a mechanism by 

which long-term maintenance of a diverse memory T-cell pool can be achieved. It preserves 

acute as well as chronic immune responses in the long-term and generates a diverse memory 

T-cell repertoire comparable to the gold-standard level of diversity generated with cognate 

competition. Whereas the occurrence of cognate competition is poorly supported by 
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experimental evidence, the presence of both cellular aging and a source (from stem-cell-like 

memory T cells, re-activated memory T cells, cross-reactive memory T cells or newly 

activated naive T cells) are widely accepted. Therefore, we propose that a source into an 

aging population is an immunologically viable alternative to the cognate competition model. 

The global competition model is prone to competitive exclusion of all but the fittest immune 

response. Using division and death rates of murine memory CD8+ T cells, we showed that 

although competitive exclusion may not be seen in the lifetime of a mouse, global 

competition would lead to unrealistically skewed memory repertoires. Moreover, the slow 

exclusion of memory T-cell responses in our simulations was due to the small differences in 

the fitness values of the different immune responses. If the fitness values of the immune 

responses were to differ more than the 10% standard deviation considered in our simulations, 

the size disparity in the memory T-cell pool would be even higher. 

The cellular aging model improves upon the global competition model by limiting the size of 

each self-renewing memory population, which reduces the competition among them. A 

source into an aging memory T-cell pool sustains the diversity of the memory T-cell 

repertoire in the long-term. A young source favours the frequency of early memory 

responses, while an old source causes recent responses to be more prevalent. The memory T-

cell pool eventually turns younger due to the presence of a young source. This could present a 

potential explanation for the observation that reconstituted T-cell pools have higher 

proliferation rates after autologous stem-cell transplantation (Baliu-Piqué et al., 2021) as the 

highly-divided circulating memory T cells were replaced with lowly-divided memory T cells. 

Moreover, if the acquisition of different memory T-cell phenotypes were correlated with the 

division history of a cell, cellular aging would have exciting implications. For example, 

following the linear differentiation pathway (Henning et al., 2018), the absence of a source 

would predict the accumulation of effector memory T cells over time, whereas the presence 

of a source would suggest the accumulation of central memory T cells after multiple 

infections. Previous studies addressing repeated vaccinations (Souquette and Thomas, 2018) 

have shown diverging results. Some studies showed the enrichment of memory T cells with 

an effector memory phenotype (Masopust et al., 2006; Minervina et al., 2022), whereas other 

studies showed the accumulation of central memory T cells after multiple rounds of 

heterologous, viral vaccinations (Huster et al., 2009). Similar effects of sustained, chronic 

responses on the phenotypes of both bystander and specific memory T cells have also been 

discussed (Barnstorf et al., 2019; Snell et al., 2018). Further, the declining fitness of immune 

responses in older hosts can explain their impaired response to vaccinations (Wherry et al., 

2005). In view of such observations, it is extremely interesting to study the mechanisms 

underlying the phenotypic distribution in memory T-cell pools, and thereby the erosion of 

protective immunity with age. 

In absence of a source, an aging population will eventually be lost. The timescale of this 

extinction is much longer than the lifetime of a mouse. Interestingly, erosion of early 

memories could be beneficial for a host to maintain memory and mount responses against 

recently encountered pathogens, as the relative proportion of recently generated memory T 

cells would increase. In a changing natural environment, the probability of getting re-exposed 
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to a pathogen is probably higher for recently encountered pathogens than for those 

encountered early in life. Therefore, maintenance of recent memories could be beneficial. 

Along similar lines, we also showed that long-lived memory T cells, or lack of regulation 

(due to competition or aging) early in life, would lead to a loss of diversity in the memory T-

cell pool due to inflation of early memories. Virtual memory T cells are memory-phenotype 

cells that originate from naive T cells due to homeostatic proliferation in the absence of 

cognate antigen (Akue et al., 2012; Sosinowski et al., 2013). If virtual memory T cells would 

be highly inflated due to lack of competition early in life, and/or due to long lifespans, they 

would severely impair the efficacy of the memory T-cell repertoire against natural infections. 

Many laboratory protocols, just like our simulations, use fixed time intervals between antigen 

introductions, a scheme that is, of course, rather artificial. In reality, a mouse’s exposure to 

antigens is truly a random event. Statistically, random events follow a Poisson distribution, 

where the time between two consecutive events is exponentially distributed. Therefore, a 

mouse in its natural environment will be exposed to most unique antigens early on in its life 

and to relatively fewer novel antigens in its twilight years. For our models, simulations of this 

real world scenario led to considerably different results from the simulations presented here 

(Figure S5.4). When emulating the real world scenario, the first immune response, 𝑀1, did 

not take over the memory T-cell pool in any of the models, due to competition with multiple 

other immune responses generated early in life. The snapshots of the memory T-cell pool on 

day 1000 showed a more marked attrition of immune responses, under the influence of global 

competition and cellular aging but not under cognate competition (Figure S5.4). If anything, 

our simulations showed that random antigenic exposure accelerates the competitive dynamics 

and reduces the diversity of the memory T-cell repertoire. 

Although our simulations were primarily based on murine parameters, the concerns and 

results discussed here are also applicable to humans. The expected lifespan of human 

circulating memory CD8+ T cells is close to 200 days (Akondy et al., 2017), which is 4 times 

longer than that in mice. However, the lifespan of a human is 30 times longer than that of a 

mouse. Thus, based upon our global competition model, one would expect early immune 

responses to be competitively excluded during a human’s lifetime. Both cognate competition 

and cellular aging with a source would alleviate this problem, the latter providing a more 

immunologically sound mechanism. Unfortunately, we are not aware of any literature on the 

effects of cellular aging of memory T cells that could be used to test the prediction of our 

novel model. Single-cell sequencing studies have described the change in the memory T-cell 

repertoire with age (Mogilenko et al., 2021). However, these studies have focused on the age 

of the host rather than the age of the cell, making a comparison of these results and our 

predictions speculative. Recent studies using the Cre-recombinase technology (Bresser et al., 

2022; Reynaldi et al., 2019) do provide an avenue that could be exploited to delineate the age 

of the cell from the age of its host. Such dedicated experiments would be required to test the 

predictions of the cellular aging model. 

Barring a few studies (Xu et al., 2016), IL-7 is often implicated in the homeostatic 

maintenance of memory as well as naive T cells (Gao et al., 2015; Sercan Alp et al., 2015; 

Tan et al., 2002). The competition between naive and memory T-cell populations through IL-
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7 has not been taken into account in this study. As the production of new naive T cells 

declines with age (den Braber et al., 2012; Tong et al., 2020), reduced competition for IL-7 

could alleviate some of the ‘global’ competitive pressure on the memory T-cell pool, leading 

to a larger memory pool size, but not to an alteration in the distribution of clone sizes (i.e., 

not to a different memory T-cell repertoire). Similarly, a temporal change in the source of 

homeostatic cytokines (IL-15, IL-7, etc.) e.g., due to aging, would affect the global 

competition among memory T cells and change the pool size but not the repertoire. IL-15 is 

produced by multiple tissues (e.g., bone marrow, heart, lung, kidney, thymic epithelium) and 

cell types (e.g., monocytes/macrophages, blood-derived dendritic cells) (Fehniger and 

Caligiuri, 2001) that are subject to alterations throughout a host’s life. Since the lifespan of 

circulating memory T cells has a time scale of months in mice, the division rate is expected to 

average over such spatial heterogeneities. In our model, the source is considered to be either 

from naive T cells due to new or recurrent challenges, or from stem-cell-like memory T cells. 

As the exposure to antigens is random, the source from naive T cells could be stochastic. 

Further, newly generated stem-cell-like memory T cells in the bone marrow could either 

increase the source to an immune response (in case of a recurrent infection) (Radbruch et al., 

2021; Siracusa et al., 2018), or decrease the source (due to competition among memory T 

cells for the limited number of stromal niches) (Chang and Radbruch, 2021; Di Rosa, 2016b). 

Thus, the source need not be constant. It would be interesting to study such model variations 

in future studies and to quantify their effect on the long-term maintenance of the memory T-

cell pool. 

The cellular aging model, like existing models for the maintenance of memory T cells, 

presents a simplified view of the memory T-cell pool and its maintenance. However, unlike 

the current gold-standard based on cognate competition, cellular aging is well-supported. 

Therefore, this manuscript puts forth a realistic mechanism that might underlie the observed 

long-lived large diversity of the CD8+ memory T-cell repertoire despite the relatively short 

lifespan of CD8+ memory T cells. 
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Supplementary Information 

 

Figure S5.1: Global competition leads to the loss of all but the fittest immune response. 

Comparison of the three mechanisms (global competition, cognate competition, and cellular aging) 

for homeostatic maintenance of memory T cells focusing on the short-term (first 100 days in Panels a, 

c, and e) and long-term (10,000 days in Panels b, d, and f) temporal dynamics of a murine memory T-

cell pool. The memory T-cell pool consists of acute immune responses only. 

 

Figure S5.2: Adding chronic responses hardly changed the division distributions. Comparison of 

the division distributions of all memory T-cell populations on day 1,000, and the division history of 
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the first memory T-cell population over time. The red line plots the average generation number of an 

immune response. The grey and black shades show the number of cells at different division numbers. 

The green dotted line marks the starting division number of the first immune response. The memory 

T-cell pool consists of both acute and chronic immune responses. 

 

Figure S5.3: Memory T-cell pools with long-lived memory T cells are barely diverse. Comparison 

of three mechanisms (global competition, cognate competition, and cellular aging, without any 

source) for homeostatic maintenance of long-lived memory T cells. The expected lifespan of the 

memory T cells was set to 500 days (which is 10 times longer than their estimated lifespans (Choo et 

al., 2010)). The memory T-cell pool consists of acute immune responses only. 
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Figure S5.4: Random antigen exposure aggravates the loss of immune memories due to intense 

competition. Comparison of three mechanisms (global competition, cognate competition, and cellular 

aging, without any source) for homeostatic maintenance of memory T cells when most novel 

pathogens appear early in life. The delay between antigen exposures was exponentially distributed, 

mimicking the random exposure to antigens in real life. The memory T-cell pool consists of acute 

immune responses only. 
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We raised a few important questions in the introduction to this thesis. Questions that 

motivated this journey into understanding the formation and longevity of the memory T (TM)-

cell pool. This thesis holds the (partial) answers to those questions. As the previous chapters 

in this thesis are fairly mathematical, we start this chapter by reiterating the immunological 

insights. We also take this opportunity to discuss the results of all the chapters together and 

their contrasts or similarities with other published studies. 

 

Question 1 Do cells of an inflationary TM-cell response that is maintained during a chronic 

infection live longer than those of a non-inflationary TM-cell response? (Chapter 1) 

It has been suggested that the inflationary property of the MCMV-specific TM-cell pool is due 

to the accumulation of long-lived TM cells (Wallace et al., 2011). We used tetramers for 

ie2SL, ie2KNL and m45SL, three well-known MCMV epitopes that generate TM-cell pools 

with high, medium, and low inflationary properties, respectively, to study this claim. 

Interestingly, even though the sizes of the tetramer+ (i.e., epitope-specific) TM-cell 

populations differed considerably between mice infected with different viruses expressing 

one of these three epitopes, the average per capita production rates of the tetramer+ TM cells 

were similar in all cases. Further, these estimates were not significantly different from the 

estimated average per capita production rates of the bulk TM-cell populations in the 

respective mice, as well as in non-infected (i.e., control) mice. We calculated the death rates 

of the different tetramer+ cells by combining the estimated average per capita production 

rates (from deuterium labelling experiments) with the net increases observed in the 

population sizes of the tetramer+ sub-populations. The expected lifespans (i.e., the reciprocal 

of the calculated death rates) of bulk TM cells and tetramer+ cells were very similar: ~65 days 

for TM cells; ~73 days, ~54 days, and ~68 days for tetramer+ cells in ie2SL, ie2KNL, and 

m45SL-immunized mice. Therefore, we did not find any relationship between the 

inflationary characteristics of a TM-cell pool and the lifespan of its corresponding TM cells. 

 

Question 2 How can the label gain rate of a population of cells be higher than its label loss 

rate? (Chapter 2) 

CD8+ tetramer+ TM cells in MCMV-infected mice (Chapter 1) and promyelocytes 

(neutrophil precursors) in healthy humans generated labelling data that were unexpected for a 

population of cells at steady state, i.e., the estimated average per capita production rate was 

higher than the estimated loss rate. If the population of interest were heterogeneous, these 

estimates would intuitively suggest that cells become longer-lived upon division. However, 

we found that a model where cells become transiently quiescent upon division (i.e., a 

temporally heterogeneous model) was not sufficient to explain the observed differences in the 

data. Instead, we propose two separate, alternative mechanisms that can explain why the label 

gain rates were higher than the label loss rates in these two specific cases. In the case of 

CD8+ TM cells, the higher estimate of the label gain rate may have been due to the expansion 

of the TM-cell population, violating the steady state assumption. As the population expands, 
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the relative contribution of label from the source to the per capita production rate becomes 

smaller over time, resulting in a slower accrual and loss of label over time. The relatively 

high label gain rate of neutrophils, in contrast, was most likely due to prolonged (10 hours 

instead of 5.5 hours) availability of deuterium within the cells in the body of labelled 

individuals. Due to the sparsity of data points around the peak, i.e., the first data point was at 

day one, such a longer availability of label can easily be misinterpreted as faster gain of label 

over an assumed shorter labelling period (5.5 hours), giving rise to a higher estimated label 

gain rate relative to the label loss rate. 

 

Question 3 Does a population’s label gain rate truly reflect its average turnover rate? 

(Chapter 3) 

 The rate at which a population of cells gains label is generally thought to reflect its 

turnover rate. We show that strictly speaking this is only true if the population of interest is 

either solely maintained by proliferation (i.e., does not have a source of cells from a precursor 

population), or if the precursors of the population of interest turn over rapidly. Thus, 

whenever it is not safe to make these assumptions, it becomes essential to know the dynamics 

of the precursors to infer a reliable estimate of the population of interest’s true turnover rate 

solely from the rate at which the population of interest gains label. Depending on the true 

turnover rates of both the precursors and the population of interest, there can be four different 

scenarios for the estimated label gain rate, only two of which reflect the true turnover rate of 

either the precursors or the population of interest. In the other two scenarios, the estimated 

label gain rate is determined by the true proliferation and turnover rates of both the precursors 

and the population of interest. Importantly, we found that in three out of the four scenarios, 

the estimated gain rate is lower than the true turnover rate of the population of interest. 

 

Question 4 Are the protective potential and division history of a TM cell related? (Chapter 4) 

 Naive T (TN) cells expand to form TM cells and TE cells upon encountering a 

pathogen. Effector T (TE) cells are lost after the end of the immune response while TM cells 

persist and protect against subsequent pathogen encounters. However, TM cells are 

phenotypically heterogeneous, and not all TM cells are equally protective. We show that in 

addition to the phenotype, the division history of a TM cell plays an important role in 

determining its protective ability during subsequent challenges. Central memory T (TCM) 

cells, a phenotypic sub-population that is credited to have superior protective abilities, in fact, 

form a heterogeneous cell population with respect to its division history. TCM cells can be 

broadly classified into lowly divided and highly divided cells. Lowly divided TCM cells that 

form a small sub-population (~ 20%) of the TCM cell population are highly enriched in 

quiescence-related genes, have superior expansion capabilities and are largely responsible for 

mounting subsequent immune responses to a pathogen. The larger sub-population (~ 80%) of 

TCM cells that have undergone many more divisions hardly expands upon pathogen re-

encounter. Phenotype of a T cell remains important as effector memory T (TEM) cells, which 
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lay in between lowly divided and highly divided TCM cells in terms of their division history, 

do not expand upon encountering the pathogen again. 

 

Question 5 Are the relatively short lifespans of TM cells compatible with a diverse TM-cell 

pool? (Chapter 5) 

 Competitive exclusion is a phenomenon that naturally occurs when cells or organisms 

are competing for a common growth or survival factor. This raises the question how TM cells, 

which are all dependent on a shared pool of cytokines, build up a diverse repertoire without 

outcompeting each other. If TM cells were quiescent and sufficiently long-lived, they would 

not be lost due to competition for growth factors. However, since TM cells are relatively 

short-lived, our simulations confirm that less fit TM-cell clones gradually erode over time, 

which reduces the total TCR diversity of the TM-cell pool. Interestingly, the simulations also 

show that competitive exclusion slows down if cells age with cell division, resulting in an 

increase in the diversity of the TM-cell pool. In such a cellular aging scenario, the presence of 

a small source prevents the loss of TM-cell clones due to competitive exclusion and maintains 

the diversity of the TM-cell pool in the long-term. Although the presence of long-lived TM 

cells (even in absence of a source) would also prevent competitive exclusion of TM cells, we 

show that in such a case the TM-cell pool would have an extremely low diversity, as the early 

clones do not erode upon the establishment of new clones and continue to dominate. 

Therefore, short-lived TM cells can maintain a long-term, diverse TM-cell pool, if they age 

with division and are fed by a source. 

 

Generation of memory T cells 

In the introduction, we highlighted the debate around the three different differentiation 

pathways posited to underlie the development of TM cells: the circular, the linear and the 

branched differentiation pathways. Although we did not resolve this debate entirely in this 

thesis, the data and mathematical modelling in Chapter 4 suggest that the formation of 

different T-cell subsets follows a branched differentiation pathway. 

The linear and branched differentiation pathways propose that the differentiation of TEM cells 

from TCM cells occurs during the expansion phase, whereas the circular differentiation 

pathway proposes that TEM cells differentiate into TCM cells during the memory phase 

(Henning et al., 2018). We, therefore, believe it is important to distinguish between these 

phases when discussing TM-cell differentiation pathways. After all, it is a bit strange to 

classify CD27hiKLRG1lo activated T cells during the expansion phase as ‘memory’ T cells 

and use this classification to argue in favour of a linear differentiation pathway. Similarly, 

referring to activated T cells in the expansion phase as ‘effector’ T cells due to their cytotoxic 

activity would make the circular differentiation pathway an obvious consequence of the 

terminology. In our proposed scheme of TM-cell generation, we, therefore, clearly distinguish 

between the expansion and memory phases of an immune response. 
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The proposed memory T-cell generation pathway 

In the mathematical model proposed in Chapter 4, TN cells get activated upon recognition of 

a pathogen, bringing about the expansion phase of an immune response. Throughout the 

expansion phase, these activated T cells divide rapidly (at a rate of ~ 1/day, see SI of 

Chapter 4), differentiate and switch phenotypes (Figures D.1 and S4.8a). Some of the 

dividing, activated T cells stop dividing and form quiescent T cells, while the rest continue to 

divide rapidly. The T cells that continue to divide can switch their phenotype by up- or down-

regulating several genes. Although we describe the dynamics of two populations 

(CD27hiKLRG1lo and CD27loKLRG1hi) in Chapter 4, it is important to keep in mind that our 

mathematical model is a simplified representation of the heterogeneity within the dividing 

pool of activated T cells, which, in reality, is probably made up of a continuum of 

phenotypes. We further proposed that, during the memory phase of the immune response, 

these two dividing populations give rise to CD27hiKLRG1lo and CD27loKLRG1hi cycling TM 

phenotypes, respectively, and that the quiescent T cells that were generated during the 

expansion phase form a CD27hiKLRG1lo quiescent subset in the TM-cell pool (Figures D.1 

and S4.8a). 

 

Inferences from the late memory phase 

According to the circular differentiation pathway, the TE cells in the late memory phase, or 

TEM cells de-differentiate into canonical, TCM cells during the memory phase (Henning et al., 

2018; Youngblood et al., 2017). In contrast, it has also been reported that TCM cells 

differentiate into TEM cells during the memory phase (Caccamo et al., 2005), which is 

reminiscent of the claims of a linear differentiation pathway during the expansion phase of an 

immune response (Henning et al., 2018). The data in Chapter 4 do not provide any evidence 

of TCM cells differentiating into TEM cells, or vice versa, TEM cells de-differentiating into TCM 

cells during the memory phase. If TEM cells were to differentiate into TCM cells after the peak 

of the response, the division rate of TCM cells would have to be even faster than the current 

estimated division rate (which is 0.3/day) to attain the observed high average division number 

of cells in the TCM-cell pool (see SI of Chapter 4). We regard this unlikely because, during 

the memory phase, the average turnover rate of the whole TM-cell pool (i.e., TCM and TEM 

cells combined) estimated using the Division Recorder construct (Chapter 4) was already 

markedly higher than that found in deuterium labelling studies (Chapter 3 and (Westera et 

al., 2013)) and CFSE experiments (Choo et al., 2010) (see the section Maintenance of 

memory T cells for further discussion on the different lifespan estimates). On the other hand, 

if TCM cells were to differentiate into TEM cells during the memory phase, the average 

division number of the TEM-cell pool would have increased more than the marginal increase 

observed in the TEM-cell pool (Chapter 4). Our collective data, therefore, suggest that the 

generation of TM cells does not invariably follow a circular or linear differentiation pathway 

during the memory phase, although TE cells are formed from TM cells upon successive 

challenges. However, based on the data in Chapter 4, we cannot exclude the possibility that 
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a small fraction of the TCM-cell population differentiates into TEM cells and/or that a small 

fraction of the TEM-cell population de-differentiates into TCM cells. 

 

Figure D.1: Our proposed scheme of the development of T cells follows a branched 

differentiation pathway. 

 

The data in Chapter 4 showed that TCM cells (defined as CD27hiKLRG1lo cells) are 

heterogeneous in the number of divisions they have gone through, which is in line with our 

model, in which the TCM-cell pool consists of a quiescent and a cycling subset. Our modelling 

suggested that about 20% of the TCM-cell pool, i.e., the quiescent or lowly divided TCM cells, 

had divided much less than the TEM cells, while the majority (i.e., ~ 80%) of TCM cells were 

highly divided, and kept on dividing rapidly (much faster than the TEM cells) after the 

resolution of the infection. Consequently, the division history of the cells, as measured during 

the late memory phase of the response, showed that TCM cells, on average, had completed 
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many more divisions than TEM cells (Chapter 4). However, if the TCM-cell pool were 

assumed to be homogeneous, the finding that TCM cells had divided more than TEM cells 

could be misinterpreted as evidence for highly-divided TEM cells de-differentiating into TCM 

cells during the memory phase, which would be in line with the circular differentiation 

pathway (Henning et al., 2018; Youngblood et al., 2017). It is, therefore, important to take the 

heterogeneity in the division history within the TM-cell pool into account. 

 

Inferences from the expansion phase 

The linear differentiation pathway would predict that the average division number of 

activated T cells with a memory-phenotype (i.e., CD27hiKLRG1lo T cells) at the end of the 

expansion phase would be lower than that of activated T cells with an effector-phenotype 

(i.e., CD27loKLRG1hi T cells). In contrast, in the branched differentiation pathway, memory- 

and effector-phenotype activated T cells can undergo a similar number of divisions during the 

expansion phase, highlighting a key difference between the predictions of these pathways. 

The data in Chapter 4 show that the average division numbers of memory- and effector-

phenotype activated T cells during the expansion phase are similar, and thus, provide 

evidence in favour of the proposed branched differentiation pathway during the expansion 

phase. 

Several studies supporting the existence of a linear differentiation pathway have shown that 

the acquisition of effector markers (for example, TOX) and loss of quiescence markers (like 

TCF1) are gradual processes (Gonzalez et al., 2021; Kratchmarov et al., 2018; Soerens et al., 

2023). Interestingly, the branched differentiation pathway is compatible with these 

observations as long as the quiescent TCM-cell population is not too large, as the gene 

expression profile of quiescent TM cells is similar to that of TN cells (Chapter 4). Our 

estimates that the quiescent TM-cell pool occupies ~ 10% of the total TM-cell pool is, 

therefore, compatible with the observed progressive change in the phenotype of TM cells 

(Soerens et al., 2023). 

 

TCF1: a surface marker associated with stemness 

Several studies have tracked the expression of various transcription factors or the methylation 

of CpG sites over time to distinguish between the various differentiation pathways in TM-cell 

development (Akondy et al., 2017; Henning et al., 2018; Youngblood et al., 2017). However, 

most of these techniques rely on processes that are reversible. For example, surface markers 

like CD62L can be re-expressed and CpG sites can be demethylated upon cellular 

differentiation (Akondy et al., 2017; Youngblood et al., 2017). Recent studies have, therefore, 

focused on the transcription factor TCF1, the loss of which has been claimed to be 

irreversible and thus, inheritable (much like the Division Recorder module, see SI of 

Chapter 4 and Box 1 for the similarities in the mathematical description) (Beltra et al., 2020; 

Kratchmarov et al., 2018; Lin et al., 2016; Nish et al., 2017). TCF1 is associated with cellular 
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quiescence, stemness and multipotency (Chapter 4, (Escobar et al., 2020; Kratchmarov et al., 

2018; Pais Ferreira et al., 2020; Wen et al., 2021)). It is thought to be highly expressed in 

less-differentiated, stem-like TM cells, which replenish the circulating TM-cell pool after acute 

as well as during chronic immune responses (Kratchmarov et al., 2018; Welten et al., 2020). 

Current interpretations, based on TCF1, suggest that the TM-cell generation follows a linear 

or a branched differentiation pathway. These conclusions hinge on the assumption that the 

expression of TCF1 is lost asymmetrically and irreversibly, which has primarily been inferred 

from dilution dye (CFSE/CTV) experiments and the imaging of a few cells sampled from a 

large population (Lin et al., 2016; Nish et al., 2017). It is important to test whether data from 

dilution dye experiments are sufficient to infer the asymmetric and irreversible loss of TCF1 

expression. For this, we digitized three different datasets (two published (Lin et al., 2016; 

Nish et al., 2017) and one unpublished, which was kindly provided by Rafi Ahmed) using the 

‘Plot Profile’ tool from the software ‘FiJi’ (Schindelin et al., 2012) (see Beatrice Guastella’s 

Masters’ thesis (Beatrice Guastella, A. C. Swain, 2020)). 

The mathematical models that we used to analyse the TCF1 expression data are similar to the 

models that we used in the Division Recorder study, as both markers are thought to be 

inheritable and asymmetrically transferred to the next generation of cells (see Box 1). We 

have tested several permutations of reversibility and symmetry of TCF1 expression (see 

Figure D.2) using the digitized datasets (Beatrice Guastella, A. C. Swain, 2020). However, 

there are several challenges with this approach. The parameters of the mathematical models 

were not always identifiable, perhaps due to the relatively sparse data. Further, digitization of 

the figures from the experiments may have introduced noise in the analysed data. For 

instance, we were surprised to find TCF1lo cells already in the first three divisions (Beatrice 

Guastella, A. C. Swain, 2020), contradicting the claim that TCF1lo cells are formed only after 

the first three divisions (Lin et al., 2016). Further studies dedicated to determining the 

reversibility and symmetry of TCF1 expression are essential to reliably comment on the 

differentiation pathways of TM cells based on their expression of TCF1. 

 

Box 1 

Model for irreversible and asymmetric loss of TCF1 expression 

This box presents the mathematical model for the loss of TCF1 expression, in the case where 

TCF1 is irreversibly and asymmetrically lost. This describes only one out of all possible 

permutations of reversibility and symmetry in the loss of TCF1 expression (see (Beatrice 

Guastella, A. C. Swain, 2020) for in-depth descriptions of all the models). To observe the 

similarity between this model and the Division Recorder model, compare equation D.1 to the 

first two lines of equation 4.4. 

Consider a population of TCF1hi TN cells that get activated by encountering an antigen and 

divide at a per capita rate of 𝜆/day and die at a per capita rate of 𝑑/day. Expression of TCF1 

can be lost asymmetrically upon division, i.e., upon division, a TCF1hi cell will make one 
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TCF1hi daughter cell, while the other daughter cell can either lose TCF1 expression with a 

probability 𝑝, giving rise to a TCF1lo cell, or maintain TCF1 expression with a probability 

(1 − 𝑝), and giving rise to another TCF1hi cell (Lin et al., 2016). If the loss of TCF1 

expression is irreversible and asymmetric, then the dynamics of TCF1hi (𝐻) and TCF1lo (𝐿) 

cells can be expressed in terms of the following ordinary differential equations: 

𝑑𝐻

𝑑𝑡
= 𝜆𝐻 + (1 − 𝑝)𝜆𝐻 − (𝜆 + 𝑑)𝐻 

(D.1) 

𝑑𝐿

𝑑𝑡
= 𝑝𝜆𝐻 + 2𝜆𝐿 − (𝜆 + 𝑑)𝐿 

The above model (equation D.1) was extended to a division-indexed form (see (Beatrice 

Guastella, A. C. Swain, 2020) and SI of Chapter 4) to describe the data from dilution dye 

experiments. This system of equations can also be modified to model different permutations 

of reversibility and symmetry of TCF1 expression loss (see (Beatrice Guastella, A. C. Swain, 

2020) for detailed description of the different models). 

 

Figure D.2: Schematic for propagation of TCF1 expression. The solid arrows depict the processes 

modelled in equation D.1, while the dashed arrows are other possible processes. 

 

Maintenance of memory T cells 

An effective TM-cell pool must be long-lived and diverse. We showed that TM cells have to 

be relatively short-lived for a diverse TM-cell repertoire to be maintained, as the diversity of 

the TM-cell pool suffers if individual TM cells are long-lived (Chapter 5). However, under 

the threat of competitive exclusion, short-lived TM cells can only be sustained long-term in 

the presence of long-lived or self-sustaining precursors (Chapter 5). During chronic 

responses (for example, against MCMV), TCF1+ stem-like TM cells are thought to act as a 

constant source of cycling TM cells due to persistent stimulation (Welten et al., 2020). We 

found that after an acute response, the quiescent subset of TM cells that expands on successive 

pathogen encounter is also TCF1+ (Chapter 4). Our simulations confirmed that if such 

quiescent TM cells divide sporadically into short-lived TM cells, the resulting small source of 
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short-lived TM cells can sustain the diversity of the TM-cell pool in the circulation (Chapter 

5). 

Surprisingly, we found that the small, quiescent TM-cell pool orchestrates successive immune 

responses, while the short-lived, cycling TCM and TEM cells that make up ~ 90% of the TM-

cell pool hardly expand on re-stimulation (Chapter 4, see Figure D.3). This curious 

characteristic of the immune system may reflect its safeguards against losing precious 

memory. By storing the ‘real’ memory in long-lived quiescent TM cells (in circulation, see 

Chapter 4, or in bone marrow (Okhrimenko et al., 2014)), the immune system may avoid or 

at least slow down the competitive exclusion of these TM cells. It would be more difficult to 

avoid competitive exclusion and to maintain the diversity of the TM-cell pool if memory was 

only stored in proliferating (self-sustaining) TM cells. It is tempting to speculate that stem-like 

TM cells may help to avoid competitive exclusion of TM-cell clones by tuning their own 

differentiation rate. Such regulation of differentiation has been proposed for hematopoietic 

stem cells (HSCs) during tissue (re-)generation (Lander et al., 2009), where downstream 

tissues provide feedback signals to HSCs, which can increase or decrease the differentiation 

rate of HSCs. In such a scenario, stem-like TM cells specific for an epitope would need clone-

specific (cognate) signals from the circulating cognate TM cells. Such cognate signals, 

however, have not yet been identified. Importantly, it is unlikely that successive immune 

responses in the Division Recorder study originated from TN cells that failed to become 

stimulated during the previous response, as the TCR of all the transferred OT-1 T cells had 

the same high affinity for the peptide, suggesting high (and uniform) recruitment of these 

cells during an immune response (Leube et al., 2022). 

Although it is now well-established that circulating TM cells are short-lived (Borghans et al., 

2018), the estimates of their expected lifespans vary across studies. For example, the 

(deuterium) labelling curve of MCMV-specific TM cells could be explained equally well by a 

population of TM cells that have an expected lifespan of ~ 65 days (Chapter 1) or by a 

growing population of long-lived TM cells (Chapter 2). The expected lifespan of TM cells in 

mice in homeostasis was previously estimated to be ~ 25 days in a deuterium labelling study 

(Westera et al., 2013) and ~ 50 days in a dilution dye experiment (Choo et al., 2010). Using 

the Division Recorder construct and mathematical modelling, we found that OT-1 TM cells 

can be broadly divided into three sub-groups: cycling TCM cells, which make up ~ 45% of the 

circulating TM-cell population and have an expected lifespan of ~ 3 days (i.e. a turnover rate 

of 0.3/day), TEM cells, which make up ~ 45% of the circulating TM-cell population and have 

an expected lifespan of ~ 25 days (turnover rate = 0.04/day), and quiescent TCM cells, which 

make up ~ 10% of the circulating TM-cell population (see SI of Chapter 4). Thus, the 

average expected lifespan of OT-1 TM cells was estimated to be roughly 7 days (calculated as 

the inverse of the average of the turnover rates) using the Division Recorder construct, which 

is much lower than the 25 days (Westera et al., 2013) and 50 days (Choo et al., 2010) that 

were previously estimated. Disturbingly, the averaging method itself affects the estimated 

expected lifespan because the average lifespan of a kinetically heterogeneous population can 

be calculated in two ways: 1) as the weighted average of the turnover rates, which is then 

converted into lifespans, or 2) as the weighted average of the lifespans of the sub-populations. 
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Using the latter method, the estimate of the expected lifespan of TM cells from the Division 

Recorder study would be much longer than 7 days, as it would strongly depend on the long 

expected lifespan of the quiescent TCM cells. 

The discrepancies in the estimated expected lifespans of TM cells could be due to: 

1. different experimental conditions, for example, deuterium labelling was done either 

under homeostatic conditions or during a chronic infection (Chapters 1-3), the 

dilution dye experiments were done with endogenous T cells in BALB/c mice or with 

P14 cells in C57BL/6 mice (Choo et al., 2010) and OT-1 cells were used in the 

Division Recorder experiments (Chapter 4); 

2. different experimental techniques, for example, deuterium is incorporated into the 

DNA of a cell (Hellerstein and Neese, 1992), while components of the cytoplasm are 

fluorescently stained in dilution dye experiments (Parish, 1999), and a fluorescent 

protein is expressed in Division Recorder experiments (Yang and Hughes, 2001); and 

3. different assumptions, for example, the assumption of steady state as in Chapter 1, as 

opposed to the non-steady state analysis in Chapter 2, or the assumption of 

heterogeneity in the kinetic heterogeneity model versus the explicit source model as 

noted in Chapter 3. Considering the heterogeneity of the TM-cell pool could lead to 

different conclusions, which was also highlighted in the previous section Generation 

of memory T cells. 

To truly understand the maintenance of the TM-cell pool, it is important to understand the 

differences in the estimated expected lifespans of TM cells. One way to move towards a 

unified understanding of TM-cell maintenance is by analysing (datasets of) multiple markers 

simultaneously, so that the reliability of the estimates can be strengthened. For example, 

taking along measurements of cell numbers and of the percentage of cells that are Ki67+ over 

time, when analysing deuterium labelling of a population that is not at steady state, would 

provide additional information about (and/or put constraints on) the size of the population 

and the proportion of cells that are actively dividing (Gossel et al., 2017; Hogan et al., 2017). 

Datasets on the percentage of Ki67+ cells, unfortunately, do not provide much additional 

information about the dynamics of the population if the population of interest is at steady 

state, as a fixed fraction of cells divide when a population is at equilibrium (see the general 

discussion of Vera van Hoeven’s PhD thesis (“Lymphocyte dynamics in healthy and 

lymphopenic conditions (2015) | www.narcis.nl,” n.d.) for an in-depth discussion). 

Although the exact lifespan of cycling TM cells remains uncertain, the evidence for their 

relatively short lifespan is numerous and convincing. Through our simulations, we discovered 

a benefit of the short lifespans of cycling TM cells and propose that cellular aging is an 

immunologically viable mechanism through which the long-term diversity of the TM-cell 

repertoire could be maintained. 
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Overcoming the age gap: a cell versus a cell population 

Very recently, Masopust and colleagues, in an impressive decade-long study (Soerens et al., 

2023), showed that TM cells retain their expansion capabilities and protective abilities even 

when stimulated 51 times over 10 years. Incredibly, TM cells of the original mouse outlived 

the mouse itself by many mouse lifetimes, as cells that were transferred from the original 

mouse after the tertiary infection continued to respond and expand upon 48 re-stimulations in 

16 new congenic mice. At first sight, these findings seem to conflict with two of the concepts 

proposed in this thesis, namely 1) that most TM cells do not expand upon successive 

infections (Chapter 4), and 2) that TM cells age upon division (Chapter 5). 

Masopust’s experiments do not exclude the possibility that the expansion of the TM-cell pool 

could be due to a small stem-cell-like subset among the transferred TM-cell population (as 

shown in Chapter 4). Along the same lines, recent studies showed that upon secondary 

infection new CD103+ tissue-resident TM cells were formed from CD103- precursor 

populations, instead of from expansion of existing CD103+ tissue-resident TM cells (Fung et 

al., 2022; von Hoesslin et al., 2022). Masopust and colleagues also concluded that their data 

do not reject the presence of stem cells (Soerens et al., 2023). Interestingly, they showed that 

TM cells expressed medium levels of TCF1, which is associated with stemness of T cells, 

even after 48 expansions. Therefore, it remains possible that the expansion of the TM-cell 

pool was due to the participation of a subset of, and not all, TM cells. 

Hayflick limit proposes that cells, after 50-60 divisions, can no longer divide due to the 

erosion of their telomeres (Hayflick, 1965; Hayflick and Moorhead, 1961). Does the finding 

that T cells can go through many more divisions than the Hayflick limit (Soerens et al., 

2023), then, argue that a T cell does not age upon division? Interestingly, Soerens et al. 

(Soerens et al., 2023), showed that the telomere length of expanded TM cells remained 

comparable to that of TN cells even after 33 challenges. This is in contrast to previous studies 

among healthy individuals in which TM cells had consistently shorter telomeres than TN cells 

(Rufer et al., 1999; Weng, 2008; Weng et al., 1995). A recent study showed that the telomere 

length of some T cells is extended, before clonal expansion, by the transfer of telomeric DNA 

from antigen presenting cells to T cells in the immunological synapse (Lanna et al., 2022). 

This would increase the number of divisions clonally expanding T cells can go through. 

Further, the enzyme telomerase, which extends telomeres, is activated during synaptic 

stimulation (Akbar et al., 2004). This suggests that T cells can prevent the erosion of their 

telomeres and, in turn, extend their ability to divide and prevent cellular aging during clonal 

expansion, but do erode their telomeres, and hence age, during homeostatic cell divisions. 

Several independent lines of evidence suggest that T cells age and lose their proliferative 

capabilities during homeostasis. Telomerase activation of T cells declines progressively with 

repeated immune-synaptic interactions (Boraschi et al., 2013; Goronzy and Weyand, 2013; 

Plunkett et al., 2007; Weng et al., 2009), resulting in shortening of telomeres during T-cell 

division. Proliferation capability of T cells is associated with their telomere lengths (Lanna et 

al., 2022). In line with this, we showed a clear negative correlation between the division 

history and the proliferative capabilities of T cells (Chapter 4). Further, TN cells can expand 
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considerably more than more differentiated TM cells (Hinrichs et al., 2009). Therefore, our 

assumption that T cells age with cell division during homeostasis is supported by several 

studies, and is not inconsistent with the finding that T cells do not lost their expansion 

potential upon repeated antigenic stimulation (Soerens et al., 2023). 

It is difficult to follow single cells and their progenies over a long period of time. Most 

studies addressing the aging of the immune system, therefore understandably, focus on either 

the age of the host (Reynaldi et al., 2019; Rudd et al., 2011) or the average age of the cell 

population (Reynaldi et al., 2019; Soerens et al., 2023), and not on the age of the individual 

cells (like in Chapter 5). Over the years, a few studies have followed the progeny (or family) 

of single cells over time (Gerlach et al., 2013; Marchingo et al., 2016; Minervina et al., 

2022). These techniques could be used to address questions about the age of individual cells. 

Excitingly, indirect evidence for cellular aging can also be attained by testing the population 

level predictions of mathematical models. The Division Recorder system can be harnessed to 

bridge the age gap of a cell and the age of a population of cells. For instance, if the average 

generation number of a clone or of several clones in the repertoire can be tracked over time 

using a Division Recorder system, this can then be compared with the changes in the average 

generation number over time, as predicted by the cellular aging model (see Figures 5.4 and 

S5.2). 

 

Figure D.3: Maintenance of memory T cells during the memory phase. The homeostatic TM-cell 

pool is maintained by proliferation of short-lived TM cells, and by a small source of short-lived TM 

cells from sporadically dividing, long-lived TM cells in the bone marrow. The source of short-lived TM 

cells balances the loss of these cells from the circulation. Quiescent TM cells are capable of rapidly re-

generating all phenotypes of TM cells, while short-lived TCM and TEM cells hardly divide upon re-

encountering a pathogen. 
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Concluding remarks 

This chapter presented our current view on the life of a TM cell from its birth (generation, 

Figure D.1) to its death (maintenance, Figure D.3). We also discussed old and recent 

experiments that shed light on these processes, and whether these experiments are consistent 

with our view. Here, at the end, we will summarize the factors that make it difficult to build a 

coherent view of the generation pathway and the maintenance mechanism of TM cells: 

• The absence of an accepted standard definition of various T-cell subsets. Since the 

discovery of different T-cell subsets, studies have continuously updated the definition 

of these subsets. For example, stem-like TM cells were first identified as a subset of 

antigen-experienced T cells with naive-signatures, expressing high levels of CD95 

(Gattinoni et al., 2011). Later studies have used TCF1 (Lin et al., 2016) or CD62L 

(Soerens et al., 2023) as identifiers for stem-like TM cells. The impact of such 

definitions is clearly illustrated by the fact that studies that have focused on CD62L 

have concluded that TM-cell generation follows a circular differentiation pathway 

(Akondy et al., 2017; Youngblood et al., 2017), whereas studies that have focused on 

TCF1 have concluded a linear or branched differentiation pathway underlying TM-cell 

generation (Lin et al., 2016; Nish et al., 2017). Further, TCM and TEM subsets that were 

first differentiated on the basis of CCR7 expression (Sallusto et al., 1999), have also 

been characterized on the basis of CD62L, TCF1 (Pais Ferreira et al., 2020), CX3CR1 

(Gerlach et al., 2016) or CD27 and KLRG1 (Chapter 4) expression. The expression 

of these markers does not necessarily correlate with each other, underscoring the 

difficulty in comparing different studies. In fact, there is considerable heterogeneity in 

CD62L and CX3CR1 expression when TCM and TEM subsets are identified on the 

basis of CD27 and KLRG1 expression (Figure S4.2d). It is, therefore, important to 

come to a unified definition of T-cell subsets. 

 

• The scarcity of mathematical theories. Defining T-cell subsets based on cell surface 

markers is tricky, as there are thousands of surface markers, and T cells may gradually 

change the expression levels of these markers upon migration through the body, 

during cell division and during cellular aging. We have shown that the division 

history of T cells is a good predictor of their functional properties (Chapter 4). If T 

cells could be isolated based on their division history, this may provide an alternative 

way to identify T-cell subsets. Interestingly, the study design of Chapter 4 was based 

on a mathematical theory (Weber et al., 2016) that proposed an unambiguous way of 

determining the division history of a population. Unlike in physics, experimental 

studies in immunology are hardly ever motivated by mathematical theories. We 

believe that the development of well-supported mathematical theories and modelling 

studies will provide novel approaches to study the heterogeneity of T-cell populations 

and to decode their differentiation pathways and maintenance mechanisms. 

 

• The scarcity of corroborative studies. Advancement in the field of immunology is 

extremely fast. Many studies tackling interesting questions are published every 
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month. The results of such studies do not always match, however. For example, the 

pathway that underlies the generation of TM cells and the expected lifespan of TM 

cells are still subject of intense debate. Further, researchers studying the effect of 

serial vaccinations or infections on the diversity of the TM-cell pool (Selin et al., 1999; 

Vezys et al., 2008) and its phenotypic composition (Huster et al., 2009; Vezys et al., 

2008) find contradictory results. Although several hypotheses for these differences 

have been proposed (Vezys et al., 2009; Welsh and Selin, 2009), they have not yet 

been tested. Studies comparing different vaccination strategies (Masopust et al., 2006) 

and exploring the differences in experiments addressing the same questions (Westera 

et al., 2013) are rare. We believe such corroborative studies are important to provide a 

coherent picture of T-cell biology. 

Future studies that address the above-mentioned issues should resolve these ambiguities and 

would help to gain a system-level understanding of the generation and maintenance of the 

TM-cell pool. 
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Summary 

 

Our immune system protects us from new pathogens as well as from the ones that we have 

already encountered. This immune memory is stored in memory T cells. Memory T cells are 

generated in large numbers from naive T cells (i.e., T cells that have never seen a pathogen). 

They are in a higher state of activation than naive T cells and are, thus, capable of faster and 

much more efficient control of an infection. Although memory T cells have been proposed to 

be long-lived (lifespan of years in humans), they have always been found to live for only a 

few months. This has given rise to postulates that long-lived memory T cells perhaps result 

from specific conditions (infections), and/or reside in particular anatomic locations (for 

example, bone marrow or skin). Unravelling the fundamental behaviour of memory T cells, 

including when they are generated, the events throughout their life, and their lifespan will be 

invaluable, for example, in developing more robust and reliable vaccines. 

It is notoriously difficult to study memory T cells without disturbing their natural dynamics 

within a host. The most natural state-of-the-art technique is to label the DNA of memory T 

cells to be able to track them in their natural environment; very much like the police flag the 

IMEI numbers of criminals’ phones to track them. Labelling cells generally involves either 

switching existing atoms with atoms of different weights (for example, during deuterium 

labelling in Chapters 1, 2 and 3, hydrogen is replaced by deuterium, which is heavier than 

hydrogen), or marking cells with a fluorescent colour. For example, in Chapter 4, the 

population of interest had a fluorescent green colour and upon division cells acquired a 

fluorescent red colour. The labelling information of memory T cells over time is invaluable in 

deducing their behaviour. Our goal, in the last few years, has been to follow these labelling 

trails of memory T cells to sketch out the details of their generation and maintenance 

mechanisms. 

It is known that pathogens trigger naive T cells to divide rapidly. In Chapter 5, we show that 

there is considerable heterogeneity in the number of divisions expanding T-cell populations 

go through. We found that this heterogeneity in the division history of the cells determines 

their functional capabilities. Memory T cells with a short division history respond 

aggressively to successive stimulation by the same pathogen and are responsible for 

regenerating the immune response. Conversely, memory T cells that have gone through many 

divisions hardly divide upon re-encountering the pathogen, and perhaps only form a first line 

of defence through surveillance. 

Interestingly, the memory T-cell pools generated by different pathogens also differ in their 

characteristics. After most viral infections, the number of memory T cells generated are 

maintained at roughly the same level throughout life. For some viruses, however, the memory 

T-cell pool keeps on expanding in size. Such memory T-cell populations are called 

inflationary and can have detrimental effects on other antigen-specific memory T cells, 

presumably because memory T cells compete for the same resources to survive. Although 

such inflationary T-cell pools were thought to be a result of accumulation of long-lived T 
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cells, we show (in Chapter 1) that even the cells of inflationary memory T-cell pools live on 

average for only a couple of months, comparable to the lifespan of other memory T cells. 

The analysis of the ink (or label) trails left behind by memory T cells is anything but 

straightforward. We devote Chapters 2 and 3 of this thesis to highlight a few challenges. As 

cells do not change their behaviour during labelling and de-labelling, the trails for cells taking 

up the label and later losing it, is expected to be symmetrical. In Chapter 2, we share multiple 

unusual datasets where the trails are not symmetric, and we present two possible 

interpretations for which we could also provide experimental evidence. We show that the 

expected symmetry of the trails is broken when the population that is being tracked is either 

expanding in size (for example, inflationary memory T cells), and when the label remains 

available from alternate sources (for example, neutrophils gain label for 4 additional hours 

after the deuterium has been washed away). In Chapter 3, we show that the estimates of 

memory T-cell lifespans using different models could differ several fold. Using mathematical 

proofs and through the analysis of a couple of published datasets, we point out that the 

expected lifespan of cells in a population can easily be mis-estimated if the relative 

contribution of label from the source population is not considered. Therefore, it is extremely 

important to know the contribution of label from the source while analysing the labelling 

trails of cell populations. 

Finally, in Chapter 5, we discuss the diversity and longevity of the memory T-cell pool as a 

whole, not just that of the individual cells. Above, we reported that individual memory T cells 

are expected to live for a relatively short period of time (a couple of months). As all memory 

T cells are thought to depend on the same resources, they naturally compete with each other 

for survival, eventually resulting in a decline in the diversity of the memory T-cell pool. We 

show, using numerical simulations, that this competition among memory T cells and the loss 

of diversity can be avoided if cells ‘age’ when they divide (that is, if they divide more slowly 

after every division). As a consequence, the size of a memory T cell’s progeny remains 

limited, which in turn reduces the competitive pressure on other memory T cells. 

Interestingly, we show that cellular aging cannot avoid the loss of diversity in the memory T-

cell pool if individual memory T cells are long-lived (a couple of years). 

Across the chapters in this thesis, we provide insights into the mechanisms around the 

generation and maintenance of memory T cells, using experiments and simulations alike. We 

present not only instances where modelling plays a complementary role to confirm and 

cement our understanding of the experimental data (Chapter 4), but also instances where 

modelling is strictly essential as it exposes the missing links in our intuition (Chapters 1-3, 5). 

This thesis, thereby, also highlights the value of the cross-talk between experimental and 

theoretical immunology. 
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Samenvatting 

 

Ons immuunsysteem beschermt ons zowel tegen nieuwe ziekteverwekkers als tegen de 

ziekteverwekkers die we al eerder zijn tegengekomen. Dit immunologisch geheugen wordt 

opgeslagen in geheugen-T-cellen. Geheugen-T-cellen worden in grote aantallen gegenereerd 

uit naïeve T-cellen (d.w.z. T-cellen die nog nooit een ziekteverwekker hebben gezien). Ze 

zijn in een hogere staat van activatie dan naïeve T-cellen en zijn daardoor in staat om een 

infectie sneller en veel efficiënter onder controle te krijgen. Hoewel vaak wordt verondersteld 

dat geheugen-T-cellen minstens even lang leven als naïeve T-cellen (d.w.z. jaren in mensen), 

hebben meerdere onderzoeken gevonden dat ze maar een paar maanden leven. Dit heeft 

aanleiding gegeven tot het idee dat langlevende geheugen-T-cellen het gevolg zijn van 

specifieke omstandigheden (infecties), en/of zich op bepaalde anatomische locaties bevinden 

(bijvoorbeeld in het beenmerg of in de huid). Het ontrafelen van het fundamentele gedrag van 

geheugen-T-cellen, inclusief wanneer ze worden aangemaakt, de gebeurtenissen tijdens hun 

leven en hun levensduur, zal van onschatbare waarde zijn voor bijvoorbeeld de ontwikkeling 

van robuustere en betrouwbaardere vaccins. 

Het is erg moeilijk om geheugen-T-cellen te bestuderen zonder hun natuurlijke dynamiek 

binnen een gastheer te verstoren. De meest natuurlijke techniek bestaat uit het labelen van het 

DNA van T-geheugencellen om ze in hun natuurlijke omgeving te kunnen volgen, net zoals 

de politie de IMEI-nummers van telefoons van criminelen markeert om ze te kunnen volgen. 

Het labelen van cellen houdt over het algemeen in dat bestaande atomen worden vervangen 

door atomen met een ander gewicht (in de hoofdstukken 1, 2 en 3 wordt waterstof vervangen 

door deuterium, dat zwaarder is dan waterstof) of dat cellen worden gemarkeerd met een 

fluorescerende kleur. In hoofdstuk 4 heeft de populatie van belang een fluorescerende groene 

kleur en bij deling kregen de cellen een fluorescerende rode kleur. De informatie die we 

krijgen door gelabelde T-geheugencellen te volgen over de tijd is van grote waarde bij het 

afleiden van hun gedrag. Ons doel in de afgelopen jaren was het volgen van deze labeling-

paden van geheugen T-cellen, om zo inzicht te krijgen in hun generatie- en 

onderhoudsmechanismen. 

Het is bekend dat pathogenen naïeve T-cellen aanzetten tot snelle deling. In hoofdstuk 5 laten 

we zien dat er grote verschillen zijn in het aantal delingen dat groeiende T-celpopulaties 

doormaken. We ontdekten dat deze heterogeniteit in de delingsgeschiedenis van de cellen 

hun functionele vermogen bepaalt. Geheugen T-cellen met een korte delingsgeschiedenis 

reageren agressief op opeenvolgende stimulatie door dezelfde ziekteverwekker en zijn 

verantwoordelijk voor het regenereren van de immuunrespons. Geheugen-T-cellen die veel 

delingen hebben doorgemaakt, delen zich daarentegen nauwelijks wanneer ze de 

ziekteverwekker opnieuw tegenkomen en vormen wellicht alleen een eerste verdedigingslinie 

door middel van surveillance. 

Interessant is dat de geheugen-T-celpopulaties die door verschillende ziekteverwekkers 

worden gegenereerd, ook verschillen in hun karakteristieken. Na de meeste virusinfecties 
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blijft het aantal geheugen-T-cellen dat wordt aangemaakt ongeveer gelijk gedurende het hele 

leven. Bij sommige virussen blijft de geheugen-T-celpool echter in omvang toenemen. 

Dergelijke geheugen-T-celpopulaties worden inflatoir genoemd en kunnen nadelige effecten 

hebben op andere antigeen-specifieke geheugen-T-cellen, vermoedelijk omdat geheugen-T-

cellen concurreren om dezelfde signalen voor overleving. Hoewel gedacht werd dat 

dergelijke inflatoire T-celpopulaties het resultaat zijn van accumulatie van langlevende T-

cellen, laten we (in hoofdstuk 1) zien dat zelfs de cellen van inflatoire geheugen-T-

celpopulaties gemiddeld maar een paar maanden leven, vergelijkbaar met de levensduur van 

andere geheugen-T-cellen. 

De analyse van de inkt- (of label-)sporen die geheugen-T-cellen achterlaten is allesbehalve 

eenvoudig. We wijden hoofdstukken 2 en 3 van dit proefschrift aan het belichten van enkele 

uitdagingen. Omdat cellen hun gedrag niet veranderen tijdens het labelen en de-labelen, 

wordt verwacht dat de sporen van cellen die het label opnemen en later weer verliezen 

symmetrisch zijn. In hoofdstuk 2 presenteren we meerdere ongebruikelijke datasets waarbij 

deze paden niet symmetrisch zijn en stellen we twee mogelijke interpretaties voor waarvoor 

we ook experimenteel bewijs kunnen leveren. We laten zien dat de verwachte symmetrie van 

de paden wordt doorbroken wanneer de populatie die wordt gevolgd groeit (bijvoorbeeld 

inflatoire geheugen-T-cellen) en wanneer het label beschikbaar blijft uit andere bronnen 

(neutrofielen krijgen bijvoorbeeld nog 4 uur lang label nadat de aanvoer van deuterium is 

gestopt). In hoofdstuk 3 laten we zien dat de schattingen van de levensduur van geheugen T-

cellen op basis van verschillende modellen behoorlijk kunnen verschillen. Met behulp van 

wiskundige bewijzen en door de analyse van een paar gepubliceerde datasets, laten we zien 

dat de verwachte levensduur van cellen in een populatie gemakkelijk verkeerd kan worden 

geschat als de relatieve bijdrage van label uit de voorloper-populatie niet wordt meegenomen 

in de analyse. Het is daarom uiterst belangrijk om de bijdrage van het label van de voorlopers 

te kennen bij het analyseren van de labelingtrajecten van celpopulaties. 

Tot slot bespreken we in hoofdstuk 5 de diversiteit en levensduur van de geheugen-T-

celpopulatie als geheel, niet alleen die van de individuele cellen. Hierboven vermeldden we al 

dat individuele geheugen-T-cellen een relatief korte verwachte levensduur hebben (een paar 

maanden). Omdat alle geheugen-T-cellen afhankelijk zijn van dezelfde signalen, concurreren 

ze van nature met elkaar om te overleven, wat uiteindelijk resulteert in een afname van de 

diversiteit van de geheugen-T-celpopulatie. We laten met behulp van numerieke simulaties 

zien dat deze competitie tussen geheugen-T-cellen en het verlies aan diversiteit kan worden 

voorkomen als cellen 'ouder' worden wanneer ze delen (dat wil zeggen, als hun 

delingssnelheid na elke deling langzamer wordt). Als gevolg hiervan blijft de grootte van het 

‘nageslacht’ van een geheugen-T-cel beperkt, wat op zijn beurt de competitieve druk op 

andere geheugen-T-cellen vermindert. Interessant genoeg hebben we gevonden dat cellulaire 

veroudering het verlies van diversiteit in de geheugen T-cel-populatie niet kan voorkomen als 

individuele geheugen-T-cellen lang leven (een paar jaar). 

In de hoofdstukken van dit proefschrift verschaffen we inzicht in de mechanismen rond de 

generatie en instandhouding van geheugen-T-cellen, waarbij we zowel experimenten als 

wiskundige modellering gebruiken. We presenteren niet alleen gevallen waarin modellering 
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een aanvullende rol speelt om ons begrip van de experimentele gegevens te bevestigen en te 

versterken (hoofdstuk 4), maar ook gevallen waarin modellering strikt noodzakelijk is omdat 

het de ontbrekende schakels in onze intuïtie blootlegt (hoofdstukken 1-3, 5). Dit proefschrift 

benadrukt daarmee ook de waarde van de kruisbestuiving tussen experimentele en 

theoretische immunologie. 
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ସୋରୋାଂଶ 

ଆମର ପ୍ରତରିକ୍ଷୋ ପ୍ରଣୋଳୀ ଆମ ୟ ନୂତନ କ୍ଷତ ିୋର  ଜୀବୋଣୟ ରୟ  ତଥୋ ଆକମ ପୂବବରୟ  ସୋମନୋ  ରଥିିବୋ କରୋଗରୟ  ରକ୍ଷୋ 
 ରଥିୋଏ | ଏହ ି ପ୍ରତରିକ୍ଷୋ ପ୍ରଣୋଳୀର ଅନୟଭବ ଶରୀରର ସ୍ମତୃ ି ‘ଟ’ି କ ୋଷକର ସୋଇତୋ କହୋଇ ରହଥିୋଏ | ସ୍ମୃତ ି ‘ଟ’ି 
କ ୋଷଗୟଡ ି ବହୟ ସାଂଖ୍ୁୋକର ଅନୟଭବ ନଥିବୋ ‘ଟ’ି କ ୋଷ (କସମୋକନ କ କବ କରୋଗ ପ୍ରତକିରୋଧ  ଯୟଦ୍ଧ କର ଭୋଗ କନଇ 
ନଥୋନ୍ତ)ି ରୟ  ଜନମ କନଇଥୋଏ | ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷ ମୋକନ ଅନଭିଜ୍ଞ ‘ଟ’ି କ ୋଷ ଅକପକ୍ଷୋ ଅଧି  ସକ୍ରିୟ ଅବସ୍ଥୋକର ଥୋନ୍ତ ିଏବାଂ 
ଏହପିର ିଏ  ସାଂକ୍ରମଣର ଶୀଘ୍ର, ଅଧି  ଦକ୍ଷ ନୟିନ୍ତ୍ରଣ  ରବିୋକର ସମଥବ ଅଟନ୍ତ ି| ଯଦଓି ସ୍ମୃତ ି‘ଟ’ି କ ୋଷଗୟଡ ି ଦୀର୍ବସ୍ଥୋୟୀ 
(ଅକନ  ବଷବ ଧର ିମୋନବ ଶରୀର କର) କବୋଲି ପ୍ରସ୍ତୋବ ଦଆିଯୋଇଛ,ି କସମୋକନ ସବବଦୋ ମୋତ୍ର  ଛି ିମୋସ ବଞ୍ଚନ୍ତ ିକବୋଲି 
ଜଣୋ ପଡଛି ି | ଏହୋ ବଶିବୋସ ସଷୃ୍ଟି  ରଛି ିକଯ ଦୀର୍ବସ୍ଥୋୟୀ ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷଗୟଡ ି କବୋଧହୟଏ ନରି୍ଦ୍ଦଷି୍ଟ ଅବସ୍ଥୋ (ସାଂକ୍ରମଣ) ରୟ  
ଆସଥିୋଏ, ଏବାଂ/ ମିେୋ ଶରୀର ର ନରି୍ଦ୍ଦଷି୍ଟ ଅଙ୍ଗ କର ରହଥିୋଏ (ଉଦୋହରଣ ସ୍ୱରୂପ, ଅସ୍ଥି ମଜ୍ଜୋ ଏବାଂ ଚମବ କର) | ସ୍ମୃତ ି ‘ଟ’ି 
କ ୋଷଗୟଡ ିର କମୌଳ ି ଆଚରଣ ୟ ଆବଷି୍କୋର  ରବିୋ, ତତ୍ ସହତି କସମୋନଙ୍କର ସଷୃ୍ଟି ପ୍ରକ୍ରିୟୋ, ଜୀବନସୋରୋ ର ର୍ଟଣୋ, 
ଏବାଂ ଜୀବନ ୋଳ ସମେନ୍ଧତି ଜ୍ଞୋନ ଏ  ଅମୂଲୁ ଅଧ୍ୟୟନ | ଯୋହୋ ମୋନବ ସମୋଜ ଲୋଗି ଅଧି  ଉପକଯୋଗୀ ଏବାଂ 
ନଭିବରକଯୋଗୁ ଟ ିୋ ବ ିୋଶର ମୋଇଲ୍ ଖ୍ୟଣ୍ଟ ସୋବୁସ୍ତ କହବ | 

ଏ  ପୀଡତି ମଧ୍ୟକର ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷଗୟଡ ି ର ପ୍ରୋ ୃତ ି ଗତଶିୀଳତୋ ୟ ବୁୋର୍ୋତ ନ ର ିଅଧ୍ୟୟନ  ରବିୋ  ଠନି ଅକଟ | 
ସବୟଠୋରୟ  ପ୍ରୋ ୃତ ି ଅତୁୋଧୟନ ି କ ୌଶଳ କହଉଛ ି ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷଗୟଡ ିର ଡ.ିଏନ.ଏ  ୟ କସମୋନଙ୍କର ପ୍ରୋ ୃତ ି 
ପରକିବଶକର ଚହି୍ନଟ  ରବିୋ ୟ ସକ୍ଷମ କହବୋ; କଯମିତ ି କପୋଲିସ୍ ଅପରୋଧୀ ୟ ଧରବିୋ ପୋଇଁ ତୋଙ୍କ କ ୋନ୍ ର 
ଆଈ.ଏମ୍.ଈ.ଆଈ ନମେର  ୟ ଚହି୍ନଟ  ରନ୍ତ ି| କ ୋଷଗୟଡ ିୟ ଚହି୍ନଟ  ରବିୋ ଲୋଗି ସୋଧୋରଣତଃ ଉପସ୍ଥିତ ଅଣୟ ୟ କଗୋକଟ ଭୋରୀ 
ଅଣୟ ସହତି ପରବିର୍ତ୍ତତି  ରୋଯୋଏ (ଉଦୋହରଣ ସ୍ୱରୂପ, ଅଧ୍ୟୋୟ ୧, ୨ ଏବାଂ ୩ କର ଡୟିୟକଟରୟିମ୍ କଲବଲ୍  ରବିୋ 
ସମୟକର ହୋଇକରୋକଜନ୍ ଡୟିୟକଟରୟିମ୍ ଦ୍ୱୋରୋ ବଦଳୋଯୋଇଥୋଏ, ଯୋହୋ ହୋଇକରୋକଜନ୍ ଠୋରୟ  ଭୋରୀ),  ମିେୋ କ ଲୋକରୋକସଣ୍୍ଟ 
ରଙ୍ଗ ସହତି କ ୋଷଗୟଡ ିୟ ଚହି୍ନଟ  ରୋଯୋଏ (ଉଦୋହରଣ ସ୍ୱରୂପ, ଅଧ୍ୟୋୟ ୪ କର, ବଚିୋରଧିନ କ ୋଷଗୟଡ ିର କ ଲୋକରୋକସଣ୍୍ଟ 
ରଙ୍ଗ ସବୟଜ ଥିଲୋ, କ ୋଷଗୟଡ ିର ବଭିୋଜନ ପକର ଲୋଲ୍ ରଙ୍ଗ  ୟ ରୂପୋନ୍ତରତି କହଲୋ) | ସମୟ ସହତି ସ୍ମୃତ ି ‘ଟ’ି 
କ ୋଷଗୟଡ ିର ସୂଚନୋ କସମୋନଙ୍କ ଆଚରଣ ଜୋଣିବୋକର ସହୋୟ  ହୟଅନ୍ତ ି| ଆମର ଉକର୍ଦ୍ଦଶୁ, ଗତ  ଛି ିବଷବ ମଧ୍ୟକର, ସ୍ମତୃ ି
‘ଟ’ି କ ୋଷଗୟଡ ିର ଚହି୍ନ ଅନୟସରଣ  ର ିକସମୋନଙ୍କର ଉତ୍ପୋଦନ ଏବାଂ ରକ୍ଷଣୋକବକ୍ଷଣ ପ୍ରଣୋଳୀ ଉପକର ଗକବଷଣୋ  ରବିୋ 
| ଏ ଥିସସି୍ କର ଆକମ କସହ ିପ୍ରୟୋସ  ରଛିୟ | 

ଏହୋ ଜଣୋ କଯ କ୍ଷତ ିୋର  ଜୀବୋଣୟଗୟଡ ି ଅନଭିଜ୍ଞ ‘ଟ’ି କ ୋଷଗୟଡ ିୟ ସୋାଂର୍ୋତ ି ଭୋକବ କର ବଭିୋଜନ  ରବିୋ ପୋଇ ଁ
ଆକ୍ରମଣ  ରଥିୋନ୍ତ ି | ଅଧ୍ୟୋୟ ୫ କର ଆକମ କଦଖ୍ୋଉଛୟ କଯ, ବସି୍ତୋରତି ‘ଟ’ି କ ୋଷର ବଭିୋଜତି ସାଂଖ୍ୁୋକର ଯକଥଷ୍ଟ 
କଭଦଭୋବ ଅଛ ି | ଆକମ ଜୋଣିଲୟ  କଯ କ ୋଷଗୟଡ ିର ବଭିୋଜନ ଇତହିୋସକର ଏହ ିକଭଦଭୋବ କସମୋନଙ୍କର  ୋଯବୁ ୋରତିୋ 
ନରି୍ଣ୍ବୟ  କର | ଅଳ୍ପ ବଭିୋଜତି ସ୍ମୃତ ି‘ଟ’ି କ ୋଷଗୟଡ ି ସମୋନ କ୍ଷତ ିୋର  ଜୀବୋଣୟ ୟ ସମ୍ମୟଖ୍ୀନ  ରିବୋ ମୋକତ୍ର ଆକ୍ରମଣୋତ୍ମ  
ଭୋବକର ପ୍ରତକି୍ରିୟୋ  ରନ୍ତ ି ଏବାଂ ପ୍ରତରିକ୍ଷୋ ପ୍ରକ୍ରିୟୋ ୟ ପୟନଃ ନମିବୋଣ  ରନ୍ତ ି | ଅପରପକକ୍ଷ, ଅକନ  ବଭିୋଜତି ସ୍ମୃତ ି ‘ଟ’ି 



ସୋରୋାଂଶ 

 

 233  
 

କ ୋଷଗୟଡ ି ପୟନବବୋର ଆକ୍ରମଣର ସମ୍ମୟଖ୍ୀନ କହବୋ ପକର ବଭିୋଜତି ନ କହୋଇ କ ବଳ ନୀରକି୍ଷଣ ମୋଧ୍ୟମକର ପ୍ରତରିକ୍ଷୋ ର 
ପ୍ରଥମ ଧୋଡ ିଗଠନ  ରନ୍ତ ି| 

କ ୌତୟ ହଳର ବଷିୟ, ବଭିିନ୍ନ କ୍ଷତ ିୋର  ଜୀବୋଣୟ ଦ୍ୱୋରୋ ଉତ୍ପନ୍ନ ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷଗୟଡ ି ମଧ୍ୟ କସମୋନଙ୍କର ଗୟଣକର ଭିନ୍ନ | 
ଅଧି ୋାଂଶ ସାଂକ୍ରୋମ  କରୋଗ ର ସାଂକ୍ରମଣ ପକର, ସଷୃ୍ଟି କହୋଇଥିବୋ ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷଗୟଡ ିର ସାଂଖ୍ୁୋ ଜୀବନସୋରୋ ପ୍ରୋୟ 
ସମୋନ ସ୍ତରକର ପରଚିୋଳତି ହୟଅନ୍ତ ି| କ କତ  ଜୀବୋଣୟ ଲୋଗି ତଥୋପି ସ୍ମୃତ ି‘ଟ’ି କ ୋଷଗୟଡ ି ଆ ୋରକର ବସି୍ତୋର  ରବିୋକର 
ଲୋକଗ | ଏହପିର ିସ୍ମୃତ ି ‘ଟ’ି କ ୋଷ ସାଂଖ୍ୁୋ ୟ ଇନ୍-କ ଲସନୋରୀ  ୟହୋଯୋଏ ଏବାଂ ଅନୁ ଆଣ୍ଟକିଜନ୍-ନରି୍ଦ୍ଦଷି୍ଟ ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷ 
ଉପକର କ୍ଷତ ିୋର  ପ୍ରଭୋବ ପ ୋଇପୋକର, ସମ୍ଭବତଃ ଏହ ି ୋରଣ ରୟ  ସ୍ମୃତ ି‘ଟ’ି କ ୋଷଗୟଡ ି ବଞ୍ଚବିୋ ଲୋଗି ସମୋନ ଉତ୍ସ ପୋଇଁ 
ପ୍ରତଦି୍ୱନ୍ଦ୍ୱିତୋ  ରନ୍ତ ି | ଯଦଓି ଏହପିର ି ଇନ୍-କ ଲସନୋରୀ ‘ଟ’ି କ ୋଷଗୟଡ ି ଦୀର୍ବସ୍ଥୋୟୀ ‘ଟ’ି କ ୋଷର  ଳୋ ଳ କବୋଲି 
ବକିବଚନୋ  ରୋଯୋଏ, ଆକମ କଦଖ୍ୋଇଅଛୟ (ଅଧ୍ୟୋୟ ୧ କର) କଯ ଇନ୍-କ ଲସନୋରୀ ସ୍ମୃତ ି‘ଟ’ି କ ୋଷଗୟଡ ି ମଧ୍ୟ ହୋରୋହୋର ି
ମୋତ୍ର ଦୟଇମୋସ ବଞ୍ଚନ୍ତ,ି ଯୋହୋ   ିଅନୁ ସ୍ମୃତ ି‘ଟ’ି କ ୋଷଗୟଡ ିର ଜୀବନ ୋଳ ସହତି ତୟ ଳନୀୟ | 

ସ୍ମୃତ ି‘ଟ’ି କ ୋଷଗୟଡ ି ଦ୍ୱୋରୋ ଛୋଡ ିଯୋଇଥିବୋ ସୁୋହୀ ( ମିେୋ କଲବଲ୍) ଚହି୍ନଗୟଡ ିର ବକିେଷଣ ସରଳ ଅକଟ |  ଛି ିଆହେୋନ ୟ 
କଦଖ୍ୋଇବୋ ୟ ଆକମ ଏହ ିଥିସସି୍ ର ଅଧ୍ୟୋୟ ୨ ଏବାଂ ୩  ୟ ଉତ୍ସଗବ  ରଛିୟ | କଯକହତୟ  କଲବଲ୍ ଏବାଂ ଡ-ିକଲବଲ୍  ରବିୋ 
ସମୟକର କ ୋଷଗୟଡ ି କସମୋନଙ୍କର ଆଚରଣକର ପରବିର୍ତ୍ତବନ  ରନ୍ତ ି ନୋହିଁ, କଲବଲ୍ ଗ୍ରହଣ  ରୟ ଥିବୋ ସମୟ ର ଏବାଂ 
ପକର ଏହୋ ୟ ହରୋଇବୋ ସମୟ ର ଚହି୍ନଗୟଡ ି ସମୋନ କହବ କବୋଲି ଆଶୋ  ରୋଯୋଏ | ଅଧ୍ୟୋୟ ୨ କର, ଆକମ ଏ ୋଧି  
ଅସୋଧୋରଣ ଡୋଟୋକସଟ୍ ଉପସ୍ଥୋପନ  ରଛିୟ କଯଉଁଠୋକର ଚହି୍ନଗୟଡ ି ସମୋନ ନୟକହଁ, ଆକମ ମଧ୍ୟ ଦୟଇଟ ି ସମ୍ଭୋବୁ ଉର୍ତ୍ତର 
ଉପସ୍ଥୋପନ  ରଛିୟ ଯୋହୋ ପୋଇଁ ଆକମ ପରୀକ୍ଷୋମୂଳ  ପ୍ରମୋଣ ପ୍ରଦୋନ  ରପିୋରଛିୟ  | ଆକମ କଦଖ୍ୋଇଛୟ କଯ ଚହି୍ନଗୟଡ ିର 
ଆଶୋ  ରୋଯୋଉଥିବୋ ସମୋନତୋ ଭୋଙି୍ଗଯୋଏ କଯକତକବକଳ ଚହି୍ନତି ସାଂଖ୍ୁୋ ଆ ୋରକର ବସି୍ତୋରତି ହୟଏ (ଉଦୋହରଣ ସ୍ୱରୂପ, 

ଇନ୍-କ ଲସନୋରୀ ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷ), ଏବାଂ କଯକତକବକଳ କଲବଲ୍ ବ ିଳ୍ପ ଉତ୍ସରୟ  ଉପଲବ୍ଧ ରହଥିୋଏ (ଉଦୋହରଣ ସ୍ୱରୂପ, 

ନଉିକରୋ ିଲ୍ ଡୟ ୁକଟରୟିମ୍ ବନ୍ଦ କହବୋ ର ୪ ର୍ଣ୍ଟୋ ପକର ବ ି କଲବଲ୍ ପ୍ରୋପ୍ତ  କର) | ଅଧ୍ୟୋୟ ୩ କର, ଆକମ ବଭିିନ୍ନ 
ମକଡଲ୍ ବୁବହୋର  ର ି କଦଖ୍ୋଇଛୟ କଯ, ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷ ମୋନଙ୍କର ଜୀବନ ୋଳର ଆ ଳନ ଅକନ  ଗୟଣ ଭିନ୍ନ 
କହୋଇପୋକର | ଗୋଣିତ ି ପ୍ରମୋଣ ବୁବହୋର  ର ି ଏବାଂ ପ୍ର ୋଶତି ଦୟଇଟ ି ଡୋଟୋକସଟର ବକିେଷଣ ମୋଧ୍ୟମକର, ଆକମ 
ସୂଚୋଇ କଦଉଛୟ କଯ ଉତ୍ସ ସାଂଖ୍ୁୋରୟ  କଲବଲ୍ ର ଆକପକି୍ଷ  ଅବଦୋନ ୟ ବଚିୋର ନ କଲ ଏ  କ ୋଷର ସାଂଖ୍ୁୋକର 
କ ୋଷଗୟଡ ିର ଆଶୋ  ରୋଯୋଉଥିବୋ ଜୀବନ ୟ ଭୟ ଲ୍ ଆ ଳନ  ରୋଯୋଇପୋକର | କତଣୟ, କ ୋଷଗୟଡ ିର କଲକବଲିାଂ ଚହି୍ନ 
ବକିେଷଣ  ରବିୋକବକଳ ଉତ୍ସରୟ  କଲବଲ୍ ର ଅବଦୋନ ଜୋଣିବୋ ଅତୁନ୍ତ ଗୟରୟ ତ୍ୱପୂର୍ଣ୍ବ | 

କଶଷକର, ଅଧ୍ୟୋୟ ୫ କର, ଆକମ କ ବଳ କଗୋଟଏି ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷର ନୟକହଁ ବରାଂ କ ୋଷ ସମୂହ ର ବବିଧିତୋ ଏବାଂ 
ଦୀର୍ବୋୟୟତୋ ବଷିୟକର ଆକଲୋଚନୋ  ରଛିୟ | ଉପକର, ଆକମ ଜଣୋଇଛୟ କଯ କଗୋଟଏି ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷ ଅକପକ୍ଷୋ ୃତ ସ୍ୱଳ୍ପ 
ସମୟ (ଦୟଇମୋସ) ବଞ୍ଚବିୋର ଆଶୋ  ରୋଯୋଏ | କଯକହତୟ  ସମସ୍ତ ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷଗୟଡ ି ସମୋନ ଉତ୍ସ ଉପକର ନଭିବରଶୀଳ 
କବୋଲି ଚନି୍ତୋ  ରୋଯୋଏ, କସମୋକନ ବଞ୍ଚବିୋ ପୋଇଁ ସ୍ୱଭୋବ ି ଭୋବକର ପରସ୍ପର ସହତି ପ୍ରତଦି୍ୱନ୍ଦ୍ୱିତୋ  ରନ୍ତ,ି  ଳସ୍ୱରୂପ ସ୍ମୃତ ି‘ଟ’ି 
କ ୋଷଗୟଡ ିର ସାଂଖ୍ୁୋ ଓ ବବିଧିତୋ ହ୍ରୋସ ପୋଏ | ସୋାଂଖ୍ୟୁ  ଅନୟ ରଣ ବୁବହୋର  ର ିଆକମ କଦଖ୍ୋଇଛୟ କଯ ସ୍ମୃତ ି ‘ଟ’ି 
କ ୋଷଗୟଡ ି ମଧ୍ୟକର ଏହ ି ପ୍ରତକିଯୋଗିତୋ ଏବାଂ ବବିଧିତୋ ନଷ୍ଟ ୟ ଏଡୋଇ ଦଆିଯୋଇପୋକର ଯଦ ି କ ୋଷଗୟଡ ି ବଭିୋଜତି 



ସୋରୋାଂଶ 

 

 234  
 

କହକଲ ‘ବୟସ୍କ’ କହୋଇଯୋନ୍ତ ି(ଅଥବୋତ୍ ଯଦ ିକସମୋନଙ୍କ ପ୍ରକତୁ  ବଭିୋଜନ ପକର ତୋଙ୍କ ବଭିୋଜନ ଗତ ି ମ କହୋଇଯୋଏ) | 
 ଳସ୍ୱରୂପ, ଏ  ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷ ବାଂଶର ଆ ୋର ସୀମିତ ରହଥିୋଏ, ଯୋହୋ ଅନୁ ସ୍ମୃତ ି ଟ ି କ ୋଷଗୟଡ ି ଉପକର 
ପ୍ରତକିଯୋଗିତୋମୂଳ  ଚୋପ ୟ ହ୍ରୋସ  ରଥିୋଏ | କ ୌତୟ ହଳର ବଷିୟ, ଆକମ କଦଖ୍ୋଇଛୟ କଯ କ ୋଷର ବୋଦ୍ଧବ ୁ ସ୍ମୃତ ି ‘ଟ’ି 
କ ୋଷଗୟଡ ିର ବବିଧିତୋ ନଷ୍ଟ ୟ ଏଡୋଇ ପୋରବି ନୋହିଁ ଯଦଓି ବୁକି୍ତଗତ ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷଗୟଡ ି ଦୀର୍ବସ୍ଥୋୟୀ (ଅକନ  ବଷବ) 
ରହଥିୋନ୍ତ ି| 

ଏହ ି ଥିସସି୍ ର ଅଧ୍ୟୋୟଗୟଡ ିକର, ଆକମ ପରୀକ୍ଷଣ ଏବାଂ ଗୋଣିତ ି ପ୍ରଣୋଳୀ ବୁବହୋର  ର ି ସ୍ମୃତ ି ‘ଟ’ି କ ୋଷଗୟଡ ିର 
ଉତ୍ପୋଦନ ଏବାଂ ରକ୍ଷଣୋକବକ୍ଷଣର ଯୋନି୍ତ୍ର  କ ୌଶଳ ବଷିୟକର ସୂଚନୋ ପ୍ରଦୋନ  ରଛିୟ | ଆକମ କ ବଳ କସହ ି
ଉଦୋହରଣଗୟଡ ି ଉପସ୍ଥୋପନ  ରୟ ନୋହଁୟ , କଯଉଁଠୋକର ପରୀକ୍ଷୋମୂଳ  ତଥୁ ବଷିୟକର ଆମର ବୟଝୋମଣୋ  ୟ ନଶିି୍ଚତ ଏବାଂ 
ଦୃଢ  ରବିୋ ପୋଇଁ ମକଡଲିାଂ ଏ  ସାଂପକୃ୍ତ ଭୂମି ୋ ଗ୍ରହଣ  ରଛି ି (ଅଧ୍ୟୋୟ ୪),  ନି୍ତୟ  ଏପର ି ମଧ୍ୟ ଉଦୋହରଣ କଦଇଛୟ 
କଯଉଁଠୋକର ମକଡଲିାଂ ଜରୟ ରୀ ଅକଟ  ୋରଣ ଏହୋ ଆମର ଅନ୍ତଃ ରଣ କର ଲୟ କ୍କୋୟିତ ତଥୁ ଗୟଡ ିୟ ପ୍ର ୋଶ  ରଥିୋଏ 
(ଅଧ୍ୟୋୟ ୧-୩, ୫) | ଏହ ି ଥିସିସ୍ ପରୀକ୍ଷୋମୂଳ  ଏବାଂ ତତ୍ତ୍ୱଗତ ପ୍ରତରିକ୍ଷୋ ଶକି୍ତ ମଧ୍ୟକର ତ ବ ବତି ବ ର ମୂଲୁ ୟ ମଧ୍ୟ 
ଆକଲୋ ତି  କର | 
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