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A B S T R A C T   

Estimation of the accuracy of diagnostic tests in the absence of a gold standard is an important research subject in 
epidemiology (Dohoo et al., 2009). One of the most used methods the last few decades is the Bayesian Hui-Walter 
(HW) latent class model (Hui and Walter, 1980). However, the classic HW models aggregate the observed in
dividual test results to the population level, and as a result, potentially valuable information from the lower level 
(s) is not fully incorporated. An alternative approach is the Bayesian logistic regression (LR) latent class model 
that allows inclusion of individual level covariates (McInturff et al., 2004). In this study, we explored both classic 
HW and individual level LR latent class models using Bayesian methodology within a simulation context where 
true disease status and true test properties were predefined. Population prevalences and test characteristics that 
were realistic for paratuberculosis in cattle (Toft et al., 2005) were used for the simulation. Individual animals 
were generated to be clustered within herds in two regions. Two tests with binary outcomes were simulated with 
constant test characteristics across the two regions. On top of the prevalence properties and test characteristics, 
one animal level binary risk factor was added to the data. The main objective was to compare the performance of 
Bayesian HW and LR approaches in estimating test sensitivity and specificity in simulated datasets with different 
population characteristics. Results from various settings showed that LR models provided posterior estimates that 
were closer to the true values. The LR models that incorporated herd level clustering effects provided the most 
accurate estimates, in terms of being closest to the true values and having smaller estimation intervals. This work 
illustrates that individual level LR models are in many situations preferable over classic HW models for esti
mation of test characteristics in the absence of a gold standard.   

1. Introduction 

The detection of disease is essential for disease control and disease 
intervention. An ideal situation is to use a perfect diagnostic test with 
both sensitivity (Se) and specificity (Sp) of 100%. However for most 
diseases, there are only imperfect tests available (e.g., Collins and 
Huynh, 2014; Johnson et al., 2019). In the absence of a perfect (gold 
standard) reference test, it is challenging to evaluate diagnostic accuracy 
of the imperfect tests. One of the methods that has often been applied the 
last few decades is Hui-Walter latent class modelling (Hui and Walter, 
1980). This approach links the observed test results from the imperfect 
diagnostic tests to the unobserved (i.e., latent) disease status. Estimates 
of the test sensitivity, specificity and disease prevalence can be obtained 
by using maximum likelihood or Bayesian estimation with one popula
tion or more populations with distinct prevalences (Dohoo et al., 2009). 

One of the limitations of this latent class method is that it aggregates the 
observed test results from the individual level at the population level. As 
a result, potentially valuable information from the lower level(s), such 
as clustering effects within each population and individual level cova
riates, is not incorporated in the model. 

An alternative approach is the logistic regression (LR) latent class 
model which incorporates the true disease status based on imperfect test 
results into a LR model (Magder and Hughes, 1997; McInturff et al., 
2004). The LR latent class model that allows inclusion of multilevel data 
can be considered as an extended version of the classic HW model. This 
approach has been applied under a Bayesian framework in different 
epidemiologic studies (e.g., McInturff et al., 2004; Lewis et al., 2012; 
Koop et al., 2013; Hartnack et al., 2013; Paul et al., 2014; O’Hagan et al., 
2019; Fernandes et al., 2019) and yields not only estimates for test 
characteristics but also estimates for the effect of the risk factors. Studies 
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that used both classic HW and LR approaches showed that LR models 
tended to provide more precise posterior estimates for test sensitivity 
and specificity (Koop et al., 2013; O’Hagan et al., 2019). However in 
empirical examples, evaluation of these two methods with various set
tings of population characteristics can be difficult concerning the 
amount of data collection. Furthermore, assessments of bias and preci
sion of parameter estimates regarding the true value is difficult in 
real-world research, as the true disease status and true test character
istics are unknown. 

In this study, we therefore explored Bayesian classic HW and 
Bayesian individual level LR latent class models with simulated data 
where true disease status and true test properties were known. The main 
objective was to compare the performance of these two approaches in 
estimating test characteristics. Diverse population settings were simu
lated where population prevalence, the herd level clustering structure 
and strength of the risk factor were varied. In addition, we examined the 
performance of LR models in estimating the association between the risk 
factor and the disease. 

2. Materials and methods 

2.1. Data simulation 

In order to evaluate model performance in a realistic context, we use 
the prevalence properties and test characteristics comparable to para
tuberculosis in cattle (Toft et al., 2005). Data from two regions were 
artificially created with an overall animal disease prevalence of 10% for 
region 1 and 30% for region 2. Both regions contained 20 equal-sized 
herds. Within each herd, there were 100 cows which resulted in 4000 
cattle in total. Two tests with binary outcomes were generated with 
constant test characteristics across regions and herds. Similar to the 
study by Toft et al. (2005), the two tests were conditionally independent 
given the true disease status, with test 1 having a 70% Se and a 99% Sp, 
and test 2 a 75% Se and a 95% Sp. 

On top of the prevalence properties and test characteristics, one 
animal level covariate was added to the data. We chose a binary risk 
factor generated from the Bernoulli distribution with a success proba
bility of 0.30. The true value of the odds ratio (OR) for the risk factor was 
set approximately to 1.5 based on the regression coefficient for the risk 
factor of 0.40. We assumed moderate herd level clustering effects, with 
an intraclass correlation coefficient (ICC) of 0.20. The random herd ef
fects were sampled from a normal distribution with a herd variance of 
0.822 computed from the ICC value by the formula σ2

h/ (σ2
h +

π2/3)where the error variance is fixed and equivalent to π2/3 in a lo
gistic regression model (Hox, 2002). The true disease probability for 
each animal was subsequently calculated using the LR model that 

included the risk factor with known OR (computed from the known 
regression coefficient for the risk factor) and the random herd effects. 
The true binary disease outcome of each animal was then sampled from 
a Bernoulli distribution with its true disease probability. By adjusting 
the value of the fixed intercept of the logistic regression, we set the 
overall animal prevalence for region 1 and region 2 approximately at 
10% and 30% respectively. Fig. 1 presents the distributions of within 
herd prevalences in the two regions for the default data setting. 

2.2. Modelling approach 

For the HW approach, crosstabulations based on the combinations of 
individual animal test results were used as input for the model. Within 
each population, under the assumptions of conditional independence 
and constant test properties across populations, the test result combi
nations of the two tests could be presented in a 2 × 2 contingency table. 
The stratified populations of the 4000 cattle for the HW models in our 
study were defined on the basis of the region ID, the herd ID or the bi
nary risk factor. Table 1 presents an example within one of the two 
populations defined by the region ID. Sensitivity and specificity for test 1 
were denoted as Se1 and Sp1, and for test 2 as Se2 and Sp2. The overall 
animal prevalence of the population in region 1 was denoted p1. The 
probability of each of the four test result combinations was expressed as 
a function of sensitivity, specificity and prevalence of the population. 

An LR mixed model was specified for the multilevel data. When all 
levels of data were incorporated, i.e., region level, herd level and animal 
level, the regression model was expressed as follows: 

logit(pihr) = β0 + β1RFihr + ur + uh  

ur ∼ π
(
0, σ2

r

)

Fig. 1. Within herd prevalences of the 20 herds per region under an intraclass correlation coefficient (ICC) of 0.20 at the herd level: (1a) region 1 with an overall 
animal prevalence of 10%; (1b) region 2 with an overall animal prevalence of 30%. 

Table 1 
Probability of the 4 test result combinations within one population. The prob
abilities were formulated under the assumptions of the HW latent class model. 
Sensitivity of test 1 was denoted Se1 and specificity Sp1, likewise sensitivity of 
test 2 was denoted Se2 and specificity Sp2. The overall animal prevalence of the 
population in region 1 was denoted p1.  

Population 1  

Test 1  

Positive Negative 

Test 2 Positive Se1Se2p1 + (1 − Sp1)(1 − Sp2)(1 − p1) (1 − Se1)Se2p1 +

Sp1(1 − Sp2)(1 − p1)

Negative Se1(1 − Se2)p1 + (1 − Sp1)Sp2(1 −

p1)

(1 − Se1)(1 − Se2)p1 +

Sp1Sp2(1 − p1)
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uh ∼ π(0, σ2
h).

The risk factor at individual level was denoted RFihr and the latent 
underlying disease probability for the observed binary outcome was 
denoted pihr for individual i(i = 1, …, nhr)in herd h(h = 1,…,H) from 
region r(r = 1, 2). The random region effects and the random herd ef
fects were assumed to have a normal distribution with mean zero and 
variance σ2

r for the regions and variance σ2
h for the herds. The disease 

probability of each animal pihr was estimated by the LR mixed model. 
Instead of population level crosstabulations as in HW models, with LR 
models, a crosstabulation was constructed at the individual level. In our 
example with two imperfect diagnostic tests, probabilities of the four 
test result combinations as shown in Table 1 could be expressed with the 
(latent) disease probability of each animal pihr, the sensitivity and 
specificity of the two tests. 

2.3. Analysis of simulated data 

Ten latent class models were specified under the Bayesian framework 
for estimation of the test characteristics. Table 2 presents the specifi
cation for these models. Three HW models were applied, stratifying on 
region ID (HW_r), herd ID (HW_h) and the binary risk factor (HW_RF). 
The crosstabulations for the test result combinations can be found in 
Table A1 of the Supplementary information. These crosstabulations 
were used as input data for the corresponding HW models. Seven LR 
models were specified with one or more levels of data (i.e., individual, 
herd, and population level) incorporated. Comparisons were made be
tween the HW models and their corresponding LR models (e.g., HW_r 
and LR_r) as well as between the seven LR models. 

For parameter estimation, non-informative beta prior distributions 
beta(1, 1) were assigned to all four sensitivity and specificity parameters 
and the region prevalences in both modelling approaches. For the LR 
models, non-informative normal prior distributions with mean 0 and a 
large variance N(0, 1000) were specified for the regression coefficients 
(β0, β1), and non-informative inverse-gamma prior distributions 
inverse-gamma(0.001,0.001) were specified for the variance of the 
random region effects (ur) and random herd effects (uh). Four Markov 
chain Monte Carlo (MCMC) posterior chains were sampled for each 
model using JAGS (Plummer, 2003) called from R (R Core Team, 2016) 
by using the ‘runjags’ package (Denwood, 2016). Within each chain, the 
first 5000 iterations were discarded as the burn-in phase and the sub
sequent 10,000 iterations were saved for parameter inferences. 
Convergence was checked using psrf values and traceplots. Posterior 
distributions were only used after ensuring that convergence was 
reached. 

2.4. Sensitivity analysis with varying population characteristics 

Several sensitivity analyses were performed by varying the popula

tion characteristics of the simulated datasets. In order to investigate the 
impact of the risk factor, animals from the default data setting were 
permuted between the two categories of the risk factor within each re
gion to model a higher OR (i.e., 2.7, 7.4). To examine the effect of herd 
level clustering, animals from the default data setting were permuted 
among the herds within each region resulting in a lower (0.10) or a 
higher ICC (0.30). Further investigations on the size of the region 
prevalences and the difference between the region prevalences were not 
done by permuting the original dataset, but based on new simulated 
datasets, as the overall animal prevalence changed in these settings in 
comparison to the default setting. Impact of the region prevalences was 
evaluated in a lower prevalence range (5%,25%) and in a higher range 
(30%,50%) while keeping the difference between the region prevalences 
20% as in the default setting. The effect of the difference between region 
prevalences was evaluated as well by changing the difference to 10% 
(10%,20%) and 40% (10%,50%). 

2.5. Model comparisons 

Within each data setting, posterior estimates for the test sensitivity 
and specificity of the two tests were obtained for the ten Bayesian latent 
class models presented in Table 2. As in veterinary epidemiology, pos
terior results are often summarized by means of posterior median and 
the 95% credible interval, in our study, we adopted the same approach 
for presenting our results. The difference between the posterior median 
and the true parameter value is referred to as the bias of the estimate and 
the width of the 95% posterior credible interval is referred to as the 
precision. Note that the terms bias and precision are thus used while 
evaluating just one synthetic dataset. Investigating different settings 
with one simulated dataset per setting is not uncommon (see, for 
instance, Mulder et al., 2009) and, in the context of our study, serves the 
purpose of making mutual comparisons between estimation methods on 
the same data. As such we are interested in the relative performance of 
different potential models for the estimation and not so much in the 
absolute performance. Furthermore, posterior estimates for the regres
sion coefficient of the risk factor were evaluated in all data settings for 
the four LR models that included the risk factor. 

3. Results and discussion 

The HW and LR modelling approaches were first examined in the 
default setting, followed by sensitivity analyses with varying population 
characteristics. Posterior estimates for test sensitivity and specificity of 
the two tests are graphically summarized in separate plots. The vertical 
lines in the plots represent the true values of the four test properties. The 
horizontal intervals represent the 95% posterior credible intervals, and 
the squares within the interval represent the posterior medians. The first 
six models (above the dashed line) incorporated either only region, herd 
or the risk factor using the HW and LR approach. The last four LR models 
included two or all three levels of data. 

For the sensitivity analyses, in order to compare between various 
data settings, results from the default setting are added to the plots, with 
the grey bars displaying the 95% credible intervals and the grey squares 
representing the medians. Numeric summaries for the results are 
available in Tables A2-A7 of the Supplementary information. 

Please note, again, that we use the terms bias and precision to refer to 
estimation results from a single dataset. Therefore, the results cannot be 
interpreted as the absolute bias and variance of the estimators. Instead, 
the results provide a measure for how close the estimates are to the true 
values and how precise the estimates are in terms of the precision 
(range) of the 95% posterior credible intervals and inform us about the 
relative performance when comparing the different modeling 
approaches. 

In this simulation study, we compared the two methods under data 
settings with different population characteristics and we modelled 
conditionally independent diagnostic tests. This is a limitation of our 

Table 2 
Ten Bayesian latent class models to estimate the sensitivity and specificity of two 
imperfect tests. The region level is subscripted as r, the herd level as h and RF 
represents the risk factor.   

Model specification 
HW model  
HW_r two equal-sized populations defined by region ID 
HW_h 40 equal-sized populations defined by herd ID 
HW_RF Two unequal-sized populations defined by the binary RF 
LR model  
LR_r logit(pihr) = β0 + ur 

LR_h logit(pihr) = β0 + uh 
LR_RF logit(pihr) = β0 + β1RFihr 
LR_r_h logit(pihr) = β0 + ur + uh 
LR_RF_r logit(pihr) = β0 + β1RFihr + ur 

LR_RF_h logit(pihr) = β0 + β1RFihr + uh 
LR_RF_r_h logit(pihr) = β0 + β1RFihr + ur + uh  
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study and future studies may explore these questions in the context of 
conditionally dependent diagnostic tests. 

Model convergence checks showed that for the default setting all psrf 
were below 1.1. However, for some parameters in the other settings this 
was not the case. We rerun these models with more iterations (for each 
chain, 10,000 burn-in followed by 50,000 for inference) to obtain 
acceptable psrf values and also monitored the traceplots of the suspect 
parameters to ensure that all reported estimates were reliable. All 
inspected traceplots showed proper convergence and the parameter 
estimates did not substantially change with increased iterations. 

3.1. Default data setting 

Fig. 2 presents the posterior estimates for the default setting. This 
figure clearly shows that all ten models provided less biased and more 
precise estimates for test specificities than for test sensitivities. This was 
in line with the fact that there was less data available to estimate 
sensitivity than there was to estimate specificity as the overall animal 

prevalences were lower than 50% within the two regions (10%,30%). In 
addition, the test specificities were much higher (Sp1 = 99%, Sp2 =

95%) than the test sensitivities (Se1 = 70%,Se2 = 75%). 
Further, for all estimates from the ten models, the true values were 

located within the 95% credible intervals. One can see that for the first 
six models, which only included region, herd or risk factor, the credible 
intervals for the LR models were narrower than the corresponding HW 
models, with the LR model that incorporated only herd level clustering 
effects (LR_h) showing the best precision. It is notable that the HW and 
LR models that only incorporated data on the risk factor produced wide 
credible intervals. The strikingly poorer performance of these two 
models relative to the other eight models led to further investigation on 
the risk factor regarding the sample sizes and prevalence characteristics 
of the populations defined by the risk factor (see 3.6). 

The last four LR models that included two or all three levels showed 
smaller credible intervals in comparison to the first six models except for 
the LR_h model. Posterior estimates from LR models that incorporated 
herd level clustering effects (i.e., LR_h, LR_r_h, LR_RF_h, LR_RF_r_h) all 

Fig. 2. Summary plots for posterior estimates of the test characteristics under the default data setting. Two regions contain in total 4000 cattle, with each region 
consisting of 20 equal sized herds and each herd consisting of 100 cows. The overall animal prevalences for the two regions are 10% and 30% respectively, and the 
intraclass correlation coefficient (ICC) at the herd level is 0.20. A binary animal level risk factor is present with success probability 0.30 and is associated to the true 
disease status with an odds ratio (OR) 1.5. True test characteristics are represented by the grey vertical lines. Ten Bayesian latent class models are specified, with 
three Hui-Walter (HW) models stratifying on region ID (r), herd ID (h) and the risk factor (RF) and seven logistic regression (LR) models incorporating data on one or 
more levels (i.e., region, herd, animal level). 

Fig. 3. Summary plots for posterior estimates of the evaluation of effect of strength of the association between the animal level risk factor and the disease on test 
sensitivity and specificity estimation. The animal level risk factor is binary and has success probability 0.30. The upper panel (3a) presents odds ratio (OR) = 2.7 
(β1 = 1) and the bottom panel (3b) presents OR = 7.4 (β1 = 2). The grey squares and bars represent results from the default data setting OR = 1.5 (β1 = 0.4). See 
Fig. 2 for further details of the population characteristics. 
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showed similar bias and precision. 
The difference in precision from the HW and LR models was also 

observed in other studies that applied both methods. In the study by 
Koop et al. (2013) for instance, when evaluating the test performance of 
bacteriological culture and somatic cell counts for subclinical intra
mammary infection in Dutch goats, authors observed narrower posterior 
credible intervals from the LR models in comparison to the HW model. 
In addition, the LR model that included most risk factors (i.e., 3) pro
vided the narrowest credible intervals. Likewise O’Hagan et al. (2019) 
also reported that the LR model with risk factors showed narrower 
credible intervals than the HW model for sensitivity and specificity es
timates of the single intradermal comparative cervical tuberculin test 
and post-mortem examination for bovine tuberculosis in cattle from 
Northern Ireland. 

3.2. Effect of different associations between the risk factor and disease 

We further investigated the impact of a stronger association between 
the risk factor and disease on the estimates of test characteristics. Bias 
and precision of the posterior estimates from each model are presented 
in Fig. 3. For models that only incorporated data on region level or herd 
level, results remained the same as those from the default dataset. This 
was expected, as for this sensitivity analysis animals simulated under the 
default setting were permuted between the two categories of the risk 
factor but remained in the same regions and herds. 

For the HW model that defined populations on the basis of the risk 
factor, estimates were less biased and more precise when the regression 
coefficient for the risk factor increased from 0.40 (default) to 1, and from 
1 to 2. A possible explanation for this finding was that populations 
stratified by the risk factor had more distinct population prevalences, 
when the risk factor had a stronger association with the disease status. 
Similar improvement was seen in the LR model that only included the 
risk factor. This may be because more variance of the data was explained 
at the animal level by the risk factor when the regression coefficient is 
stronger. 

Defining populations on the basis of risk factors should be done with 

caution for HW models. Results of this sensitivity analysis indicated the 
necessity of checking the strength of the association between the risk 
factor and the disease status when using the HW approach. Posterior 
estimates of the HW model were less biased and more precise when the 
individual level risk factor had a stronger association with the disease. In 
veterinary epidemiology, individual level risk factors such as history of 
mastitis in previous lactations for bovine mastitis (Jamali et al., 2018) 
and body condition score for ketosis in cows (Vanholder et al., 2015), 
herd level risk factors such as direct cattle importation for para
tuberculosis (Rangel et al., 2015) and herd size for bovine tuberculosis 
(Bessell et al., 2012) are found to have relatively strong association with 
the respective diseases within the target populations (ORs ranging from 
2.06 to 19.22). However, Toft et al. (2005) pointed out that defining 
populations based on individual level biological risk factors such as age 
may violate the HW model assumption of constant test characteristics 
across the stratified populations due to for instance cross reactions. 
Higher level geographic risk factors such as zip-code and veterinary 
practices that result in populations with distinct prevalences are often 
preferred as stratifiers. Based on results of this sensitivity analysis, we 
recommend researchers to choose the LR approach when risk factors are 
available. 

3.3. Effect of strength of herd level clustering (ICC) 

In Fig. 4, results from datasets with varying strength of herd level 
clustering effects are presented. Animals simulated under the default 
setting were permuted between herds but remained in the same regions 
and risk factor categories. Therefore, the models that did not incorporate 
herd level clustering effects produced the same results as the default 
dataset. For models that incorporated herd level effects, when the ICC 
was reduced from the default 0.20 to 0.10 (4a), posterior estimates were 
slightly more biased and less precise. However, LR models that incor
porated herd level effects as well as the risk factor and/or the region 
effects showed still reasonable estimates. When the ICC increased from 
the default 0.20 to 0.30 (4b), the bias of the posterior estimates was 
similar to the default setting but the precision increased slightly. 

Fig. 4. Summary plots for posterior estimates of the evaluation of effect of strength of intraclass correlation coefficient (ICC) at the herd level on test sensitivity and 
specificity estimation. The upper panel (4a) presents ICC = 0.10 and the bottom panel (4b) presents ICC = 0.30. The grey squares and bars represent results from the 
default data setting ICC = 0.20. See Fig. 2 for further details of the population characteristics. 
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In veterinary epidemiology, herd level clustering effects have been 
computed for various infectious diseases and ICC values are found to 
vary from 0.04 (Anaplasma marginale in cattle) to 0.42 (bovine viral 
diarrhea in cattle), and most diseases have an ICC below 0.20 (Dohoo 
et al., 2009). Results in this sensitivity analysis suggest that it might still 
be useful to include herd level clustering effects in the latent class 
models for the estimation of diagnostic test characteristics even when 

the ICC value is relatively low. 

3.4. Effect of different values for region prevalences 

Fig. 5 summarizes the effect of varying the overall animal preva
lences of the two regions while keeping the difference constant. For this 
analysis, two new datasets were generated as the region prevalences 

Fig. 5. Summary plots for posterior estimates of the evaluation of the size of region prevalences on test sensitivity and specificity estimation. The upper panel (5a) 
presents lower region prevalences (5%,25%) and the bottom panel (5b) presents higher region prevalences (30%,50%). The grey squares and bars represent results 
from the default data setting (10%,30%). See Fig. 2 for further details of the population characteristics. 

Fig. 6. Summary plots for posterior estimates of the evaluation of the difference in region prevalences on test sensitivity and specificity estimation. The upper panel 
(6a) presents 10% difference (10%,20%) and the bottom panel (6b) presents 40% difference (10%,50%). The grey squares and bars represent results from the default 
data setting (10%,30%). See Fig. 2 for further details of the population characteristics. 
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were changed in comparison to the default dataset. When the region 
prevalences were reduced from the default 10% and 30% to 5% and 25% 
(5a), the precision for test sensitivities worsened whereas the precision 
for test specificities improved. In contrast, when the animal prevalences 
of the regions were increased from the default setting to 30% and 50% 
(5b), the precision for test sensitivities improved and for test specificities 
worsened. This is expected, because when the animal prevalence is 
lower, there is less information available in the data to estimate test 
sensitivity. Likewise when the animal prevalence is higher, the amount 
of information for estimation of test sensitivity increased. 

The performance of the models regarding bias and precision from the 
dataset with region prevalences 5% and 25% was comparable to the 
default setting. This indicates that HW and LR approaches are robust if 
one of the populations has a low prevalence, as long as the difference 
between the population prevalences is distinct. The LR models that 
incorporated herd level clustering effects showed again the least biased 
and the most precise posterior estimates in comparison to other HW and 
LR models. 

3.5. Effect of the difference between region prevalences 

Fig. 6 contains results of the ten models for data settings where dif
ference between the animal prevalences of the two regions was changed 
from 20% to 10% or 40%. These results were also based on two new 
datasets as the region prevalences were changed from the default 

dataset. When the region prevalences were changed from the default 
(10%, 30%) to (10%, 20%) (6a), precision of the estimates for test 
sensitivities from all models worsened, whereas precision of the esti
mates for test specificities improved. This was due to less data available 
to estimate sensitivity than to estimate specificity as the overall animal 
prevalence was smaller than in the default setting. However, when the 
region prevalences were changed from the default (10%, 30%) to (10%, 
50%) (6b), precision of the estimates for test sensitivities from all models 
improved, whereas precision of the estimates for test specificities 
worsened. 

It is unclear based on the results of this sensitivity analysis, whether 
the change in model performance that included region information 
(HW_r, LR_r, LR_r_h, LR_RF_r, LR_RF_r_h) was fully due to the change in 
the prevalence difference between the two regions. In the next section 
we further investigated the effect of different population prevalences 
and sample sizes on model performance. 

3.6. Difference in population prevalences and sizes based on the risk 
factor 

In the sensitivity analyses we presented above, it is clear that HW and 
LR models with only the risk factor showed the largest bias and the worst 
precision (Figs. 2–6). In order to grasp whether results from these two 
models were influenced by unequal population sizes, we simulated one 
more dataset where the success probability of the binary risk factor was 

Fig. 7. Summary plots for posterior estimates of the test characteristics with the binary risk factor sampled from success probability 0.50 with an odds ratio of 1.5. 
Two regions contain in total 4000 cattle, with each region consisting of 20 equal sized herds and each herd consisting of 100 cows. The grey squares and bars 
represent results from the default data setting with success probability 0.30 for the risk factor. See Fig. 2 for further details of the population characteristics. 

Table 3 
The prevalences and sample sizes of the two stratified populations based on the individual level risk factor within each data setting.   

Population prevalence 
(population size) 

Difference between prevalences Figure number 

RF = 0 RF = 1 

Default  18.0% (2760)  24.2% (1240)  
6.2% 

Fig. 2 

β1 = 1  15.6% (2760)  29.4% (1240)  
13.8% Fig. 3a 

β1 = 2  11.1% (2760)  38.8% (1240)  
27.7% Fig. 3b 

ICC = 0.10  18.0% (2760)  24.2% (1240)  
6.2% 

Fig. 4a 

ICC = 0.30  18.0% (2760)  24.2% (1240)  
6.2% 

Fig. 4b 

Region prevalences = (5%, 25%)  13.7% (2798)  18.5% (1202)  
4.8% 

Fig. 5a 

Region prevalences = (30%, 50%)  37.5% (2826)  46.0% (1174)  
8.5% 

Fig. 5b 

Region prevalences = (10%, 20%)  13.9% (2813)  17.9% (1187)  
4.0% 

Fig. 6a 

Region prevalences = (10%, 50%)  28.3% (2761)  34.1% (1239)  
5.8% 

Fig. 6b 

RF success probability = 0.50  17.2% (1933)  22.5% (2067)  
5.3% 

Fig. 7  
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changed from 0.30 (default) to 0.50. With success probability 0.50, the 
difference between the sample sizes of the two risk factor categories was 
minimal. 

Estimates from the HW_RF and LR_RF models became slightly better 
regarding bias but worse regarding precision compared to the default 
setting (Fig. 7). These results verified that unbalanced sample sizes of 
the stratified populations were not the main cause of the relatively poor 
precision of posterior estimates from the models. In order to further 
understand the impact of population prevalences and population sample 
sizes on posterior estimates for test characteristics, we listed the values 
of prevalences and sample sizes of populations stratified by the risk 
factor from all data settings. Table 3 shows that in the setting with the 
risk factor sampled from the success probability 0.50, the sample sizes 
were indeed similar, however the population prevalence difference was 
reduced from the default 6.2–5.3%. In fact, for most data settings, when 
we split the data on the basis of the risk factor, population prevalence 
differences were below 10%, with the exception of the two settings 
where the regression coefficient for the individual level risk factor was 
relatively strong (corresponding to an OR of 2.7 and 7.4 respectively). 

The effect of a small population prevalence difference on large posterior 
estimate credible intervals was also reported in Johnson et al. (2019). 

However, it is still possible that the unbalanced sample sizes of the 
stratified populations also played a role in the poor performance of the 
HW and LR models that only used the risk factor information. Future 
studies should further investigate the effect of unbalanced population 
sample sizes on HW and LR modelling approaches. 

3.7. Estimates of the regression coefficient 

In order to obtain the estimate of the association between the indi
vidual level risk factor and disease, we examined the posterior results of 
the regression coefficient from the LR models that included the risk 
factor. In Fig. 8, one can see at the upper panel (8a), the true regression 
coefficient value was changed from 0.40 to 1 and 2, with 0.40 presenting 
the default setting. Results showed that the LR model without herd level 
clustering effects incorporated (LR_RF, LR_RF_r) tended to underestimate 
the association between the risk factor and the disease. This phenome
non has been shown before and was explained by Hedeker and Gibbons, 

Fig. 8. Summary plots for posterior estimates 
of the regression coefficient β1 of the risk factor 
in different data settings from four Bayesian 
logistic regression latent class models that 
either include risk factor only, or include risk 
factor and region and/or herd level effects. The 
binary risk factor at the animal level has success 
probability 0.30. The first panel (8a) presents 
estimates from data settings that have true β1 
values of 0.4 (default setting), 1 and 2, corre
sponding to odd ratios (OR) of 1.4, 2.7 and 7.4 
respectively. The following panels 8b to 8d 
present results from data settings that have true 
β1 value of 0.4 but with either different intra
class correlation coefficient (ICC) at the herd 
level or different region prevalences. The grey 
squares and bars represent results from the 
default setting.   
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2006). Estimates for the regression coefficients of covariates from a 
fixed-effects LR model tend to be closer to zero than those resulted from 
a mixed-effects (i.e., random effects) LR model. Estimates from the 
fixed-effects are considered “population-averaged” which indicate the 
effect of covariates averaging over the population (in our example, over 
the herds), whereas estimates from the mixed-effects LR model are 
“cluster-specific” since they are conditional on the random clustering 
effects. Results in this study showed that in datasets with moderate 
clustering effects (ICC = 0.20), when the association between the risk 
factor and the disease status was weak, population averaged and cluster 
specific posterior estimates for the regression coefficient of the risk 
factor were similar regarding bias and precision. However, when the 
association was stronger, the cluster specific estimates were much less 
biased in comparison to the population averaged estimates. 

The panels 8b to 8d showed six data settings with other population 
characteristics, but always with a default regression coefficient of 0.40. 
Performance of the four LR models on estimation of the association 
between the risk factor and the disease was similar across various set
tings, with the exception of the one with low overall animal prevalence 
(i.e., 5%, 25%). The deviation of the estimates in this setting might be 
caused by a lack of information on the association between the risk 
factor and the disease status from region 1 as the prevalence was only 
5%. 

4. Conclusion 

HW and LR latent class models are two approaches to estimate test 
characteristics when the true disease status is unknown and when there 
is no gold standard. We show that LR models applied in a setting of two 
conditionally independent tests are more precise in posterior estimates 
across various settings, with the LR models that incorporated herd level 
clustering effects presenting the least biased and most precise estimates. 
Results also revealed that stratifying data on the basis of an individual 
level risk factor for the HW modelling approach can be problematic, 
unless one is certain that the association between the risk factor and the 
outcome is strong. Altogether, this work shows that LR models are in 
many situations the preferable alternative to HW models to estimate test 
characteristics in the absence of a perfect reference test. 
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