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M O T I VAT I O N

Chances are that while you are reading this Thesis, you have a phone in
your pocket, while your laptop is probably not very far away. When you get
home in your car, tens of computers will have cooperated to ensure that you
get there safely, that the temperature of the air-conditioning was set correctly
and that your windshield wipers came on as soon as it started raining. If
you use your washing machine to do your laundry tonight, a computer is
controlling the various pumps and motors that wash your clothes. All this
would not be possible without the invention of the integrated circuit: a large
number of miniaturized transistors placed on a single chip. This has allowed
manufacturers to design computers that are increasingly smaller, faster and
less expensive, driving productivity and growth in almost every economic
area. But integrated circuits have a significant drawback: their power usage.
The power used by computers, data centers and network equipment accounts
for 5% of the global energy consumption [6] and 2% of annual greenhouse gas
emmissions [7]. And even though there is now significant effort devoted to
improving the energy efficiency of integrated circuits, there is a fundamental
problem that is hard to overcome: the passage of an electric current through a
conductor—the main working principle behind integrated circuits—produces
heat, an effect known as Joule heating.

Joule heating cannot be completely circumvented, only reduced, and there-
fore a major strategy to decrease the overall heat production is to increase
the density of transistors in a single chip. Since the introduction of dense
integrated circuits in the 1960s, the density of transistors has doubled roughly
every two years, an observation which is known as Moore’s law [8, 9]. However,
all exponential trends must come to and end, which in the case of integrated
circuits is ultimately determined by the physical limit of a transistor, set by
the size of a single atom. We are rapidly approaching this limit [10], signaling
an end to Moore’s law, at least for conventional electronic integrated circuits.
Therefore, new approaches are needed if we want to drive power consumption
down, or equivalently, increase computational power for the same power
consumption.

One of the candidates in the search for alternatives to electronic integrated
circuits is the usage of spin waves as data carriers. Spin waves are local
disturbances of the magnetic moment of a material, as depicted in Fig. 1.
Magnetic moments (or colloquially speaking, spins) are aligned to each other
through an effect known as the exchange interaction. Therefore, disturbing
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2 motivation

Figure 1: A spin wave propagating from left to right. The spin are schematically shown
as arrows, and align to each other through the exchange interaction. The
wave-like motion is indicated by the dashed line.

the left spin will cause the next spin to align to it, and the next spin, and so
on forth, leading to wave-like behavior, hence the name “spin-wave”. A spin
wave can thus propagate through a material, and carry with it information,
making it suitable to design computing devices. Moreover, spin waves are
fast enough to compete with modern electronic processors, since they have
frequencies in the GHz-range, and couple easily to external magnetic fields,
allowing for close experimental control.

Most importantly, there are no moving electrons associated with a spin
wave, and therefore no Joule heating, leading to a drastically lower energy
consumption. However, there is a catch: in actual computational devices spin
waves would have to travel over relatively long distances, moving through a
series of gates in order to perform computational operations. Even relatively
simple numerical tasks can require many of such operations. For example,
adding two one-bit integers can require up to 28 transistors [11], and the signal
carried by the spin waves has to propagate through all these transistors. This
is one of the major challenges associated with spin waves, since a spin wave
is not necessarily conserved and thus cannot travel indefinitely, but decays
after some time. This is the result of interactions with impurities, electrons,
vibrations of the lattice, and other spin waves. It therefore seems likely that any
real device will require the periodic amplification of spin waves, complicating
the design of a real spin wave computer.

In this Thesis, we focus on a possible solution to this problem: making use
of the topological protection that can be found in certain spin wave systems.
Speaking generally, topological protection implies that a spin wave that is
propagating through a material can only interact with other particles in such
a way that its topological charge is conserved. In less technical terms: certain
interactions that would normally lead to damping of the spin wave, are now
forbidden. Importantly, this is a fundamental property of the spin waves, and
is not (easily) violated. Therefore, spin waves can travel over longer distances,
and there is less need for amplification. Besides their highly efficient transport
of spin, topologically-protected spin waves are also of interest for fundamental
reasons. The field of topological insulators—where topological protection
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was pioneered—is principally concerned with electrons, which are fermions.
For fermions, each energy state can only be occupied by one particle, which
has profound implications on their transport properties. Spin waves, on the
other hand, are bosons, which means that more than one spin wave can
occupy an energy state. Topological insulators formed out of bosons are not
as well-studied, since there are only a limited number of bosonic topological
insulators available. Here spin waves could offer useful insights in how bosonic
topological insulators differ from their fermionic counterparts. Specifically, to
what limit the topological protection for nonconserved particles (such as spin
waves) remains is still an open question. Moreover, there is a special class of
topological insulators, the non-Hermitian topological insulators, which are
much easier realized in bosonic systems, since they require the absorption
or emission of particles to and from the environment. Spin waves couple
quite naturally to the environment—in fact, this is what causes the damping
of a spin wave in the first place—and are therefore a good choice to realize
non-Hermitian topological phases.

At this point it is natural to wonder: if spin waves are such a natural fit to
realize bosonic topology, why has this not been experimentally realized yet?
In fact, topological spin waves were first theoretically proposed in 2010 [12],
but experimental verification has turned out to be a real challenge. This is
in part due to the fact that, in contrast to their fermionic counterparts, spin
waves must appear at finite energies. Since in most proposed topological spin
wave systems this corresponds to frequencies in the THz-range, one cannot
straightforwardly excite and detect the topologically-protected spin waves.

This Thesis is therefore primarily concerned with this question: What are
the observable consequences of topological magnetic excitations and how can they be
used for applications on the long term? Since direct detection is not feasible, we
study here a series of alternative approaches to access the effects of topology
in magnetic systems, with a focus on the effect of topology on the transport
properties of spin wave systems.





1
B A S I C S

In this Thesis we are primarily concerned with magnetic insulators, where
finite magnetic moments Si are arranged in a lattice, but which do not support
electrical currents. The finite magnetic moments arise due to ionic shells with
nonzero angular momentum [13], which primarily interact with each other
through the quantum-mechanical exchange interaction, as described by the
Hamiltonian

Ĥex = −1
2 ∑

ij
JijŜi · Ŝj, (1.1)

where Jij is the exchange interaction parameter and Ŝi is the spin angular
momentum operator with quantum number S at site i. The exchange in-
teraction follows from the Pauli exclusion principle, and is thus a purely
quantum-mechanical effect. It is important to note that Eq. (1.1) is only an
approximation, valid in the limit of small overlap between the orbitals forming
the magnetic moments. However, it is applicable for a wide range of materials,
with varying sources of magnetism.

The sign of the exchange parameter Jij determines if it is energetically
favorable for the spins i and j to align (ferromagnetism) or anti-align (anti-
ferromagnetism). In this Thesis we will only be concerned with ferromag-
netism, and throughout the exchange parameter will be positive. Furthermore,
the exchange interaction falls off rapidly as a function of distance, and it is
usually sufficient to only consider exchange interactions between neighboring
magnetic moments.

1.1 classical magnetization dynamics

In order to further illustrate the dynamics of a feromagnet, we consider a
simple Hamiltonian,

Ĥ = −1
2 ∑

ij
JijŜi · Ŝj −

gµB
h̄
H ·∑

i
Ŝi, (1.2)

5



6 basics

considering the exchange interaction and an external magnetic field H .1 Here
g is the gyromagnetic ratio, µB is the Bohr magneton and h̄ is the reduced
Planck constant. The dynamics then follow from the equation of motion in
the Heisenberg picture,

h̄∂tŜi = i[Ĥ, Ŝi] (1.3)

= −Ŝi ×
(

gµB
h̄
H +

1
2 ∑

j
JijŜj

)
. (1.4)

In general, we can write this as

∂tŜi = −Ŝi × Ĥeff; Ĥeff = −
δĤ

h̄δŜi
, (1.5)

where Ĥeff is an effective magnetic field operator. Our main goal here is to find
a classical limit within which we can treat this equation of motion, Eq. (1.5).
We therefore write the equation of motion for the expectation value

∂t
〈
Ŝi
〉
= −

〈
Ŝi × Ĥeff

〉
(1.6)

and want to find the classical limit, i.e., where
〈
Ŝi × Ĥeff

〉
=
〈
Ŝi
〉
×
〈
Ĥeff

〉
holds.

To this end, we will make use of spin coherent states [14] in the Euler-angle
representation, which are defined as rotating the z-axis towards the direction
of the spin at site i,

|g⟩ ≡ ei ∑i ϕi Ŝz
i ei ∑i θi Ŝ

y
i |Sz⟩ , (1.7)

where ϕi, θi are spherical coordinates of the rotation of spin at site i. The spin
coherent states form a complete set, and thus have the resolution of identity2

1̂ =
∫

d[g] |g⟩ ⟨g| . (1.8)

We will continue to work in the classical limit where S → ∞, whilst h̄ → 0,
such that the product of h̄S remains finite. Now within this limit we have that

lim
S→∞
h̄→0

⟨h| Ŝi | f ⟩ = h̄Sĥi δ(ĥi − f̂i) (1.9)

where ĥi, f̂i are the two unit vectors corresponding to the rotation of the
coherent states |h, f ⟩ on site i.

1 In accordance with the (sadly) commonly used practice in magnetism, we will employ CGS units
throughout this Thesis.

2 We have absorbed a normalization constant in the integration measure, because it does not have
an effect on the final result.
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We prepare the system in some coherent state |g0⟩ and find as the equation
of motion

∂t ⟨g0| Ŝi |g0⟩ = −
∫

d[g] ⟨g0| Ŝi |g⟩ ×∑
j
Heff,j ⟨g| Ŝj |g0⟩ , (1.10)

where we have assumed that the effective magnetic field operator can be
written as Ĥeff = ∑jHeff,jŜj and have inserted the resolution of identity,
Eq. (1.8). It is not essential here that the effective magnetic field operator is
first order in spin operators, since for higher order spin operators one can
repeat the procedure outlined here, again inserting the resolution of identity.
We proceed in the classical limit and find

h̄S∂tĝ0,i = −h̄Sĝ0,i × h̄S ∑
j
Heff,jĝ0,j, (1.11)

where we have made use of Eq. (1.9).
Identifying the classical spin as a vector with length h̄S, i.e., Si = h̄Sĝ0,i, we

arrive at the central result:

∂tSi = −Si ×Heff,i; Heff,i ≡ −
δH

h̄δSi
, (1.12)

which is commonly known as the Landau-Lifshitz equation [15], and Heff,i is
called the effective magnetic field. As we have shown here, it is valid only in
the classical limit of large spin. It can also be directly obtained from Eq. (1.5)
by replacing the quantum-mechanical spin operators with classical spins. Note
that some authors prefer to work with the magnetic moment of the spins,
mi = gµBSi, such that the Landau-Lifshitz equation becomes

∂tmi = −γmi ×
δH
δmi

, (1.13)

where γ ≡ gµB/h̄ is the gyromagnetic ratio. This approach has the added
benefit that the effective magnetic field, δH/δmi, actually has the units of a
magnetic field, which is not the case in Eq. (1.12). In this Thesis we work with
the classical spins Si and thus Eq. (1.12) throughout, but both approaches are
of course equivalent.

The Landau-Lifshitz equation (1.12) thus describes the classical dynamics
of a magnet. Here an important observation can already be made: the spins
precess around an effective magnetic field, and their length is conserved. As
was noted before, it is only valid for large spin S. This is typically the case,
since many forms of magnetism originate from some combination of orbital
and spin angular momentum and thus S ≫ 1. Moreover, for ferromagnets
the Landau-Lifshitz equation is only valid for temperatures well below the
Curie temperature, such that thermal fluctuations can be disregarded [16].
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Figure 1.1: The precession of a single spin around an effective magnetic field Heff,
with the direction of the Gilbert damping torque indicated. The dotted lines
indicate the precession, which relaxes the spin to its equilibrium position
along the effective magnetic field.

The Curie temperature is set by the exchange energy scale, which for many
magnetic materials of interest is much larger than kBT at room temperature,
making the Landau-Lifshitz equation of use in a wide range of temperatures.

The Landau-Lifshitz equation does not yet explain the simple experimental
observation that applying an external magnetic field realigns the orientation
of the spins. One therefore expects that there is a damping contribution which
aligns the spins to the direction of the (effective) magnetic field. On basis of
simple phenomenological arguments, Gilbert [17] proposed a damping that
is proportional to the first order time derivative. Inserting this in Eq. (1.12)
results in the celebrated Landau-Lifshitz-Gilbert (LLG) equation

∂tSi = −Si ×Heff,i + αSi × ∂tSi, (1.14)

where α is the dimensionless Gilbert damping parameter. The LLG equation
describes classical spin dynamics, including the effects of damping, and has
been experimentally verified in a wide range of systems. It is of central
importance in this Thesis, and will be the starting point to describe the spin
dynamics in every chapter.

In Fig. 1.1 we illustrate the precession described by the LLG equation (1.14)
for a single spin. The spin starts in a deviation from the direction of the effec-
tive magnetic field Heff and starts to precess around the effective magnetic
field. However, the Gilbert damping will drive the spin towards the effective
magnetic field, eventually relaxing the spin to its equilibrium direction. Typi-
cally, precession frequencies are of the order of GHz in ferromagnets, whilst in
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high-quality magnetic materials, such as the ferromagnetic workhorse Yttrium
Iron Garnet (YIG), α ≈ 10−4 [18]. The relaxation towards equilibrium happens
on a timescale Q/ω, where Q = 1/α is the quality factor. This is Q/ω ≈ 10 µs
for YIG and therefore the excitations are relatively long-lived, proving their
usefulness for applications.

1.2 spin waves

With the LLG equation (1.14) in hand the classical dynamics of the magnetiza-
tion are fully determined. But, in many real systems the dynamics resulting
from the LLG equation are complex and cannot be fully solved analytically.
Looking at the typical behavior of a ferromagnet, we notice however that all
the spins are aligned and we can therefore expect that the dynamics are domi-
nated by small deviations from this uniform state. The resulting excitations are
called spin waves, as was also explained in the Motivation and Fig. 1 therein.

We will now derive the spin waves explicitly, by performing the following
linearization procedure. We start from a simple Heisenberg Hamiltonian of
N localized spins forming a one-dimensional chain, aligned to an external
magnetic field He = H0ẑ, applied along the z-direction,

H = −1
2 ∑

ij
JijŜi · Ŝj − µHe ·∑

i
Ŝi, (1.15)

where Jij = J > 0 for neighboring spins, and zero otherwise, and µ = gµB/h̄.
As was shown in Section 1.1, the classical dynamics are then described by
the LLG equation (1.14). Since in the ground state, all the spins will be
aligned to the external magnetic field, we introduce small deviations from
this uniform state Si = Sẑ as mi = (Si

x + iSi
y)/
√

2S. Inserting this in the LLG
equation (1.14), the magnetization dynamics are given by

ih̄∂tmi = ∑
j

Hijmj; Hij = (h + 2JS)δij − JSδi,i±1, (1.16)

where Hij is the linear spin-wave Hamiltonian, with the Zeeman energy
h ≡ µH0. We introduce the Fourier transform as

mi =
1√
N

∑
k

eik·ri mk, (1.17)

and obtain the final equation of motion for the spin waves

ih̄∂tmk = Hkmk; Hk = h + 2JS− 2JS cos(ka), (1.18)

where a is the lattice spacing, i. e., the distance between neighboring spins and
Hk is the linear spin-wave Hamiltonian in momentum space. Written in this
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form, it is clear that the spin waves are truly waves, with a dispersion given
by 2JS + h− 2JS cos(ka) ≈ h + Jsk2, where we have expanded in small wave
number ka and have defined the spin stiffness, Js ≡ JSa2.

The spin waves as derived here are classical, but can also be quantized,
resulting in magnons. This can be done by simply invoking the canonical
quantization [

mi, m†
j

]
= δij, (1.19)

or more formally, by performing the Holstein-Primakoff transformation [19].
The magnons obey the same dispersion relation as the spin waves, but it is
important to note that the magnon creation (m†) and annihilation (m) operators
act on a bosonic Fock space. Therefore, magnons obey Bose-Einstein statistics,
and magnons and spin waves are not equal in all regards. The two descriptions
are however equivalent when the uncertainty ∆n of the magnon number n
vanishes, which is given by [20]

∆n
n̄

=
1√
n̄

, (1.20)

where n̄ is the mean magnon number. Therefore, in the limit of large mean
magnon number n̄ the uncertainty in the magnon number goes to zero, and
the quantum statistics of the magnons no longer plays a role. Importantly, this
implies that for sufficiently strong driving—such that many magnons with
the same quantum number are excited—the magnons will obey a classical
behavior well described by the Landau-Lifshitz-Gilbert equation. Furthermore,
in thermal equilibrium the mean magnon number is large for magnons with
energies smaller than kBT, where kB is the Boltzmann constant. For these
energies the mean magnon number is therefore given by the Rayleigh-Jeans
distribution which follows from classical equipartition. For high energies
compared to kBT there are however relatively fewer magnons and their Bose-
Einstein statistics play a significant role. In this Thesis we will be interested in
the classical limit, such that the quantum character of the magnons does not
play a role, although we will at times use the fact that in thermal equilibrium
the magnons are well described by the Bose-Einstein distribution function.
We therefore also use the terms spin wave and magnon interchangeably, both
referring to the same magnetic excitation.

1.3 dipole-dipole interaction

Since the spins we consider here are magnetic dipoles, they also interact with
each other through the dipole-dipole interaction,

Hdip = −1
2 ∑

ij;i ̸=j

µ2

|Rij|3
[
3
(
Si · R̂ij

) (
Sj · R̂ij

)
−Si ·Sj

]
, (1.21)
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where Rij is the vector connecting the two spins i, j and R̂ij = Rij/|Rij|.
Since the dipole-dipole interaction is long ranged and dependent on the
relative orientation of the spins, thus also taking into account the boundary, its
implications are also dimension- and shape-dependent. Most prominently, it
will lead to a demagnetization field, which favors configurations such that the
magnetization runs parallel to the surface of the sample. Further specifics of
the dipole-dipole interaction depend on the geometry of the magnetic sample
considered, and we therefore only make a few general comments regarding
its nature here.

Most importantly, the dipole-dipole interaction couples the spin dynamics to
the lattice degree of freedom, as can be seen from the fact that the interaction
depends on the positions Rij of the spins. This implies the existence of a
magnetic anisotropy, where the spins will tend to align with a specific axis,
which is in general dependent on the specific sample geometry. This has two
important implications for the spin waves: the anisotropy will open a gap in
the spin wave spectrum and because of the coupling to the lattice there will be
non-spinconserving processes, which will give rise to an elliptical precession,
where the Sz-component varies during the precession.

Since the dipole-dipole interaction is a long-range interaction, coupling
all spins in the system, the summation in Eq. (1.21) is difficult to perform.
However, the short-range exchange interaction primarily affects the short-
wavelength spin waves, while the dipole-dipole interaction mainly affects
the low-energy long-wavelength spin waves [21–23], and thus at sufficiently
high temperatures it can usually be ignored. In the Chapters 2 and 3 we
are interested in the symmetry breaking that follows from the dipole-dipole
interaction, and therefore have to consider its effects in full.

1.4 microwave antenna excitation

One of the main reasons why spin waves have attracted much attention
is the fact that they easily couple to external magnetic fields, offering a
readily available handle for control. To show this explicitly, we consider the
excitation of spin waves with a local microwave antenna, which generates
a local oscillating Øersted magnetic field by passing an alternating current
through a wire, as shown in Fig. 1.2. This magnetic field extends into the
ferromagnet, where it couples to the spin waves. Here it is important to note
that spin waves typically have frequencies in the GHz-range, which are easily
accessible with modern signal generators.

To describe the microwave antenna we add a local magnetic field hi to the
LLG Eq. (1.14), such that

∂tSi = −Si × [Heff,i + hi] + αSi × ∂tSi, (1.22)
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Figure 1.2: A coplanar waveguide, exciting spin waves with frequency ω and wave
number k = 2π/λ through an oscillating transverse magnetic field, induced
by passing a current through the microwave antennas. In the limit of λ→ ∞,
i.e., if only one of the microwave antennas is used, all spin waves up to
2π/L are excited.

where the spins are aligned to an external magnetic field, and the field hi
induced by a microwave antenna is oscillating transverse to the external mag-
netic field. After performing the linear spin-wave expansion as in Section 1.2,
we obtain the equation of motion in frequency and momentum space,

mk(ω) = Gk(ω)hk(ω), (1.23)

where hk(ω) is the Fourier transform of the transverse components hk =
hx
k + ihy

k and we have introduced the retarded magnon Green’s function—
sometimes also referred to as the spin susceptibility—defined by

G−1
k (ω) = −(1 + iα)ω + Hk. (1.24)

Written in this form, it is clear that a transversely oscillating magnetic field
will excite a magnon wave-packet with frequency ω, the propagation of which
is described by Gk(ω). The opposite effect also exists, where a microwave
antenna converts the magnetic field generated by spin waves traveling in
the magnet to an alternating current, thus allowing both the excitation and
detection of spin waves.

Furthermore, the spatial Fourier transform of the antenna will determine
the shape in k-space of the wave packet. Usually, either one of two approaches
is employed. The first is simply an antenna of width L, which will excite all
modes approximately up to a wave number 2π/L. This is what is used to
theoretically describe the excitation of magnons in Chapter 4. Alternatively,
by designing an antenna with a spacing λ, as shown in Fig. 1.2, the antenna
only excites modes with approximately the wave number k = 2π/λ [24]. This
approach is considered in Chapter 2 in order to distinguish the effects of long-
and short-wavelength spin waves.
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1.5 wave packet dynamics

In this Thesis we are predominantly interested in the dynamics of spins on a
lattice. On a lattice, the eigenstates, |ψnk⟩, of the spin wave Hamiltonian Hk

obey Bloch’s theorem,

⟨r̂|ψnk⟩ =
1√
N

eik·runk(r), (1.25)

where unk is a periodic function with the same periodicity as the lattice. Here
the label n refers to the band index.

The dynamics of the Bloch spin waves then follow from considering a
spin-wave wavepacket in band n, well localized around (rc,kc) in phase
space,

|Ψn⟩ =
1√
N

∑
k

e−ik·rc wnk |ϕnk⟩ , (1.26)

where
wnk = |wnk|ei(k−kc)·Akc (1.27)

is a periodic weighing function. The amplitude determines the range of
wave numbers involved, ∆k, which has to be sharply peaked around kc for
the wave packet to be well defined [25]. The phase factor i(k − kc) ·Akc

carries information about the spatial location of the wave packet and has to
be carefully chosen in order for the wave packet to be localized in space.1

Furthermore, since the wavepacket has to be normalized, ⟨Ψn|Ψn⟩ = 1, we
have that ∑k|wnk|2 = 1.

We will derive the phase Ak by requiring that

⟨Ψn| r− rc |Ψn⟩ = 0, (1.28)

which becomes

⟨Ψn|r− rc |Ψn⟩

=
∫ dr

N ∑
kk′

wnk′w
∗
nkunk′u

∗
nk

∂

∂ik′
ei(k′−k)·(r−rc) (1.29)

= −
∫

Ω
dr ∑

kk′
δkk′w

∗
nku∗nk

∂

∂ik′
[wnk′unk′ ] (1.30)

= −
∫

Ω
dr∑

k

|wnk|2u∗nk
∂unk
∂ik

+ |unk|2w∗nk
∂wnk
∂ik

, (1.31)

where we have used Bloch’s theorem, Eq. (1.25), to replace the eigenfunction
with the periodic functions unk and performed integration by parts2 over k′,

1 Here one might worry that we have already constrained the phase factor to the form i(k− kc) ·
Akc , but this is of course no accident, as will be clear later on.

2 In order to perform the integration by parts, we convert between sums and integrals in the
thermodynamic limit using the relation 1

N ∑k ↔
( a

2π

)d ∫ ddk, where d is the dimension.
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and finally performing the integral over all space. Here
∫

Ω refers to integration
over the first Brillouin zone. We now make use of that fact that: (1) |wnk|2 is
sharply peaked around kc, allowing us to replace k→ kc, and sums to 1; (2)
|unk|2 integrates to 1 over the Brillouin zone and (3) from Eq. (1.27) we have
that ∂kc wnkc = iwnkc k̂c · ∂kcAkc (since |wnk| has a maximum at kc and thus
its derivative vanishes). We therefore obtain that

⟨Ψn| r− rc |Ψn⟩ = i
[∫

Ω
dr u∗nkc

∂unck

∂kc

]
−Akc (1.32)

and thus, in order to have the wave packet well localized at rc, we require that

Akc = i
∫

Ω
dr u∗nkc

∂unkC

∂kc
, (1.33)

which is a quantity known as the Berry connection. It contains information
about the geometric phase of the eigenfunctions, and it will play an important
role in the wave packet dynamics.

The dynamics can be found from the Lagrangian,

L = ⟨Ψnk| ih̄
∂

∂t
|Ψnk⟩ − ⟨Ψnk| Ĥ + U(r) |Ψnk⟩ , (1.34)

= h̄k · ṙ+ h̄k̇ ·Ak − εnk −U(r), (1.35)

where Ĥ is a periodic spin wave Hamiltonian with eigenvalues εnk and we
have included a potential U(r). Since the Lagrangian only depends on kc, rc,
we have dropped the c subscript, and we furthermore assume there are no
interband transitions and thus drop the subscript n.1

We then obtain from the Euler-Lagrange equations the following equations
of motion [26]

ṙ =
1
h̄

∂εk
∂k
− k̇×Ωk, (1.36)

h̄k̇ = −∇rU(r), (1.37)

where Ωk = ∇k ×Ak is a vector called the Berry curvature. From the
equations of motion one can readily see that a non-zero Berry curvature will
induce an anomalous velocity

va
k = −1

h̄
F ×Ωk (1.38)

1 Here it might seem that the Berry connection Ak is the property of a single magnon band, but it
is actually intimately related to interband transitions and will be zero in the presence of a single
band in the system. It can however be conveniently written in this form, where it will affect the
dynamics of a single band.
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due to a force F ≡ −∇U(r). Here one might question the existence of such a
force in the magnon case, but as was shown by Xiao et al. [27], this force need
not be microscopic, but could also be a statistical force, i.e., the presence of
a temperature or chemical potential gradient. In Chapter 3 we will show in
more detail how this can be derived.

The Berry curvature has to be calculated from the eigenfunctions of the
specific spin wave Hamiltonian, and is generally non-zero. However, under
simultaneous inversion and time-reversal symmetry it vanishes. This can be
seen from the fact that under time reversal k flips sign, but Ak is unchanged,
see Eq. (1.33), and thus Ωk = −Ω−k. However, under inversion symmetry
both k and r and thus Ak change sign, implying Ωk = Ω−k. Therefore, under
simultaneous inversion and time-reversal symmetry the Berry curvature must
be zero.

1.6 dynamics of the magnon distribution function

It might seem that the magnon dynamics are fully described by the equations
of motion as derived in Eqs. (1.36) and (1.37), but this situation is misleading.
In any magnetic system there will be higher order interactions between the
spin waves, the spin waves will couple to other (quasi)-particles, such as
phonons and electrons, and will also scatter of impurities. These interactions
are challenging to incorporate in an Hamiltonian formalism, let alone make
progress towards solving it.

It turns out that a precise knowledge of these processes is often not necessary
if all one is interested in are the collective transport properties of a large
number of spin waves. In this case, we can make further progress within a
more phenomenological approach. We consider N spin waves living in the
phase space defined by (r,k), which are distributed as

dN = f (r,k, t) drdk, (1.39)

where f (r,k, t) is a probability density function describing the number of
spin waves, dN, within a phase space volume element drdk. In the absence of
collisions, the phase space volume element drdk is constant, and thus after a
time ∆t we have that

f (r+ ṙ ∆t,k+ k̇∆t, t + ∆t) drdk = f (r,k, t) drdk, (1.40)

where ṙ, k̇ are given by Eqs. (1.36) and (1.37). We now turn to the collisions,
which change the total number of particles over a time ∆t in a space volume
element by

dNcoll = (Γ[ f (r,k, t)]in − Γ[ f (r,k, t)]out)∆t drdk, (1.41)
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where Γ[ f (r,k, t)]in,out are the total rates scattering into and out of spin wave
state (r,k). Here it is important that this approach is only valid if the collisions
are weak, such that the dynamics of the spin waves in between collisions are
still given by the wave packet equations of motion.

Combining Eqs. (1.39) to (1.41) and taking the limit ∆t→ 0 we obtain

∂ f
∂t

+ ṙ · ∇r f + k̇ · ∇k = Γ[ f ]in − Γ[ f ]out, (1.42)

which is known as the Boltzmann equation. It describes the complete evolution
of the probability density of particles, including collisions.

Equation (1.42) might seem relatively simple, but this is deceptive, since
the Γ[ f ]in,out collision terms are not yet specified. Generally speaking they are
non-local and nonlinear operators in f (r,k, t) [28], and thus closed solutions
to the Boltzmann equation are often not available. However, there are certain
assumptions one can make about the collision terms, which make the prob-
lem tractable. Most importantly, one expects the collision terms to relax the
distribution function f toward thermal equilibrium. Since the equilibrium dis-
tribution for spin waves is the Bose-Einstein distribution, we can write down a
simple form, known as the relaxation time approximation, for the collision term

Γ[ f ] =
1
τ
( f − nB) , (1.43)

where τ is the relaxation time and

nB =
1

e(εk−µ(r))/kBT(r) − 1
(1.44)

is the Bose-Einstein distribution with some temperature T(r) and chemical
potential µ(r), which we have allowed to be position dependent in order to
incorporate non-equilibrium setups, such as a temperature gradient. Since
spin waves are not conserved, the chemical potential in equilibrium is zero.
However, out of equilibrium the chemical potential can be non-zero, describing
a long-lived non-equilibrium magnon state.

1.7 diffusion model

We will next apply the relaxation time approximation to an isotropic magnetic
insulator at room temperature, following in large the derivation by Cornelis-
sen et al. [29], but incorporating the anomalous velocity. In this system, there
are a number of collision sources that need to be taken into account: (1)
The magnon relaxation into the phonon bath, parametrized by τmr, which
is approximated by the Gilbert damping at low energies. This will drive the
magnon distribution function to the phonon distribution function, parame-
terized by a temperature Tp. (2) The elastic scattering of magnons off defects,
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parametrized by τel and (3) from each other through magnon-magnon in-
teractions, parametrized by τmm. Both of these processes conserves magnon
number, and therefore on the timescale set by τmc the magnon distribution
function will be driven to a Bose-Einstein function with magnon chemical
potential µm and a magnon temperature Tm, where 1/τmc = 1/τel + 1τmm.
(4) There are also magnon-phonon processes that conserve magnon number,
parameterized by τmp, driving the magnon distribution function to the phonon
distribution function with temperature Tp but with a chemical potential µm,
since the magnon number is conserved in this process.

Therefore, allowing for a finite Berry curvature and thus an anomalous
velocity, we find the Boltzmann equation

∂ f
∂t

+

(
1
h̄

∂εk
∂k

+F ×Ωk

)
· ∇r f =

1
τmc

[
f − nB

(
εk − µm

kBTm

)]
+

1
τmr

[
f − nB

(
εk

kBTp

)]
+

1
τmp

[
f − nB

(
εk − µm

kBTp

)]
(1.45)

where we have left the force F unspecified for now. Here the distributions
functions are chosen to represent the fact that the elastic, magnon-magnon
and magnon-phonon scattering processes conserve magnon number and thus
the scattering processes stop when f approaches a Bose-Einstein distribution
with a finite chemical potential µm. Similarly, the temperatures Tm and Tp are
chosen to express the fact that energy is exchanged with the phonon bath in the
magnon relaxation and magnon-phonon scattering processes. We will allow
the magnon chemical potential to be position dependent, in order to model
the deviations from the equilibrium. In principle, the magnon temperature
could also be position dependent, but for simplicity we will disregard this.

At room temperature in Yttrium Iron Garnet (YIG), a typical ferromagnetic
insulator, τmc ≪ τη for η ∈ {mr, mp}. Therefore, on the fastest time scale the
system will be driven towards the Bose-Einstein distribution with a magnon
chemical potential µm and magnon temperature Tm, as can also be seen from
Eq. (1.45). We can thus approximate the local distribution as the sum of a drift
term δ f and a local Bose-Einstein distribution

f (r,k, t) = nB

(
εk − µm(r)

kBTm

)
+ δ f (r,k). (1.46)

From the Boltzmann Eq. (1.45) we can then solve for the local drift term
and find

δ f (r,k) = τ
∂nB

(
εk

kBTp

)
∂εk

(
1
h̄

∂εk
∂k

)
· ∇rµm(r), (1.47)
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where 1/τ = 1/τmr + 1/τmp.
Finally, after expanding the collision terms up to first order in magnon

chemical potential and inserting the drift term back in the Boltzmann equation
we obtain

∂t f +∇r · jm = − 1
τmr

∂nB

(
εk

kBTp

)
∂εk

µm, (1.48)

where jm = 1
h̄

∂εk
∂k δ f is the magnon current. Here only the drift term δ f

contributes to the non-equilibrium transport, since by construction the left
and right hand side of Eq. (1.45) cancel for the equilibrium distribution
nB

(
εk−µm(r)

kBTm

)
. Furthermore, we can observe that the Berry curvature does

not (yet) play role in transport. In order to derive its contribution one has
to explicitly consider interband transitions, as we will show in Chapter 3.
Alternatively, one can use the fact that a chemical potential gradient results in
a statistical force, thus replacing F → ∇rµm and adding this to the current,
such that [27]

jm =
1
h̄

∂εk
∂k

δ f + nB

(
εk

kBTp

)
(∇µm ×Ωk). (1.49)

This procedure might seem ad-hoc here, but we will show in Chapter 3 that it
matches (up to some constants) the results of a more rigorous derivation.

Equation (1.48) describes the out of equilibrium response of the magnetic
insulator in terms of a locally varying magnon chemical potential. To be
explicit, we now consider a two-dimensional thin film with a finite Berry
curvature (the same setup as considered in Chapter 3) such that Ωk = Ωk ẑ.1

Ultimately, the observable we are interested in is the magnon spin density,

ρ(r, t) = h̄
∫ d2k

(2π)2 f (k), (1.50)

which, following Eq. (1.48), obeys the continuity equation

∂tρ + ∑
α

∂rα Jα
m =

1
τmr

∂ρ

∂µm
µm, (1.51)

where α ∈ {x, y}, the magnon spin current is

Jα
m = σs∂rα µm + σa

s ∑
β

ϵαβ∂rβ
µm, (1.52)

with ϵαβ the two-dimensional Levi-Cività symbol,

σs = h̄ τ
∫ d2k

(2π)2

∂nB

(
εk

kBTp

)
∂εk

(
1
h̄

∂εk
∂k

)2
(1.53)

1 Note that a finite Berry curvature requires at least two bands, and therefore sums over the bands
are also implied here.
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is the magnon spin conductivity and

σa
s = h̄

∫ d2k
(2π)2 nB

(
εk

kBTp

)
Ωk (1.54)

is the anomalous conductivity. The quantities follow from integrating Eq. (1.48)
over momentum space and multiplying by h̄, analogous to the definition of
the magnon spin density, Eq. (1.50). We can now conclude that a magnon
chemical potential gradient will lead to an anomalous current perpendicular
to the propagation direction induced by the Berry curvature, as can be seen
from the Levi-Cività symbol in the anomalous spin current. However, from
the anomalous conductivity, Eq. (1.54), it is also clear that this description is
not complete, since the anomalous conductivity is independent of τ and there-
fore does not include the magnon relaxation processes. The more complete
derivation in Chapter 3 takes these effects properly into account.

From the combined Eqs. (1.51) and (1.52) we obtain a diffusion equation

∇2
rµm(r) = µm/l2

m, (1.55)

which shows that the magnon chemical potential diffuses over a characteristic
length scale

lm =

√
τmrσs

∂ρ/∂µm
. (1.56)

The diffusion equation (1.55) is isotropic, since ∂β Jα
m = −∂α Jβ

m for α ̸= β, and
therefore does not contain an anomalous current contribution. This is not an
accident, and is related to the fact that the anomalous current is a boundary
effect. To see this, we have to consider the boundary conditions, requiring at
the boundary that the current perpendicular to the sample vanishes, Jm · n̂ = 0,
such that (considering a boundary along the x̂ direction and thus requiring
that Jy

m = 0) (
σs∂ry + σa

s ∂rx

)
µm = 0, (1.57)

which makes it clear that there is an anomalous current at the boundary,
induced by the non-zero Berry curvature of the bands.

1.8 electrical spin injection and detection

We have now described the magnon diffusion within a ferromagnet, but in
order to accurately measure this effect, one also needs to a way to inject and
detect spin, i.e., raise and detect the magnon chemical potential. To this end, a
normal metal (NM) can be employed, where a charge current, jc, will generate
a transverse spin current, js, due to the spin Hall effect [30]. The opposite
effect, the inverse spin Hall effect, will induce a charge current from a spin
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current. These two effects therefore offer a convenient tool to generate and
detect spin currents. The spin Hall effect is related to the anomalous Hall effect,
since it also generates a transverse spin current from an unpolarized charge
current.1 Furthermore, the origin for both effects is the spin-orbit coupling,
which generates an asymmetric deflection of the charge carriers. However, the
spin Hall effect does not require a finite magnetization and is thus present
also in normal metals. Since the spin Hall effect results from the spin-orbit
coupling, heavy metals, such as Platinum, are often employed in order to
obtain large transverse spin currents.

We consider a ferromagnetic insulator interfaced with two normal metals
[31], as indicated in Fig. 1.3. We focus first on the left interface, where there
exists an interfacial exchange coupling between the localized spins in the
magnetic insulator and the itinerant spins in the normal metal, which is
phenomenologically described by

Vint =
∫

dxdx′ V(x,x′)Ŝ(x) · ŝ(x′), (1.58)

where we have assumed the coupling to be isotropic and local to the interface.
Here Ŝ(x) is the spin density in the ferromagnet and ŝ(x) is the spin density
of the electrons in the metal, given by

ŝ(x) =
h̄
2 ∑

σσ′
ψ†

σ(x)σσσ′ψσ′(x), (1.59)

where ψ†
σ(x) and ψσ(x) are the electron creation and annihilation operators

respectively and σ are the Pauli matrices. We assume the spin density in the
magnetic insulator to be classical and the temperature to be small, such that
Ŝ(x) = h̄ss, where s = S/a3 is the spin density per unit cell with volume a3

and s is a unit vector. We can then obtain an interfacial spin current [32]

I int
s = −h̄

g↑↓

4π
S × dS

dt
, (1.60)

where g↑↓ is the spin-mixing conductance. Therefore, a precessing magneti-
zation in the ferromagnetic insulator will pump spins into an adjacent metal,
leading to a spin accumulation in the metal. Furthermore, Onsager reciprocity
implies that the opposite effect is also present, where a spin accumulation in
the metal will lead to a spin pumping over the interface into the ferromagnet.
Since by conservation of angular momentum, the spins ejected by I int

s corre-
spond to a torque −I int

s on the ferromagnet, the LLG equation is modified
to

∂tS = −S ×Heff + (α + αsp)S × ∂tS + αspS × (µ×S), (1.61)

1 An important difference is that the anomalous Hall effect generates a measurable polarized charge
current, whilst in the spin Hall effect a pure spin current is generated, which does not result in a
Hall voltage.
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Figure 1.3: A charge current jc in a normal metal generates a spin current js with
polarization along ẑ, towards the NM|FM interface. Therefore a spin
accumulation builds up at the interface, injecting magnons into the FM
with the spin polarization parallel to the magnetization M . At the right
interface, the opposite process occurs, driving a spin accumulation in the
right normal metal and a spin current. Through the inverse spin Hall effect
the spin current is converted to a charge current, which can subsequently
be detected.

where αsp = h̄g↑↓/4π and µ = µsẑ is the vectorial spin accumulation [33].
Here we have conveniently incorporated the spin-pumping torque due to the
precessing magnetization into an effective Gilbert damping enhancement αsp
[34].

Therefore, through interfacing a normal metal with a ferromagnet one can
inject angular momentum, driving the spins in the ferromagnet, while the
reciprocal process allows for detection of a precessing magnetization. This
thus allows us to consider a setup where magnons are excited coherently
using a microwave antenna, and detected electrically through a normal metal
[35], as used in Chapter 2.

Linearizing the spin pumping across the interface and assuming the re-
sulting magnons to follow the Bose-Einstein distribution, the spin pumping
becomes

jint
s = − h̄g↑↓

2πe2s

∫
dϵ D(ϵ) (ϵ− µs)

[
nB

(
ϵ− µm

kBTm

)
− nB

(
ϵ− µs

kBTe

)]
, (1.62)

where D(ϵ) is the magnon density of states. A full derivation of this spin
current is beyond the scope of this Thesis, but can be found in Refs. [31, 36,
37]. Intuitively, this process can be understood as the scattering of an electron
with spin +h̄/2 of the interface, flipping its spin to −h̄/2 and transmitting
h̄ into the ferromagnet, thus exciting a magnon, as indicated schematically
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in Fig. 1.3. Expanding this up to linear order in the magnon and electron
chemical potential we then find that

jint
s =

3h̄g↑↓

4πe2sΛ3 ζ(3/2) (µm − µs) , (1.63)

where Λ =
√

4π Js/(kBT) is the magnon thermal wavelength. Therefore, a
spin accumulation µs in the normal metal will drive the magnons in the
ferromagnetic insulator out of equilibrium. At the detector the inverse process
occurs, and a chemical potential difference between the ferromagnet and the
normal metal will transmit spin into the normal metal, leading to a spin
accumulation and thus a spin current. This spin current will induce charge
current via the inverse spin Hall, which can subsequently be electrically
measured.

The electrical injection and detection is used in Chapter 3 to propose a
completely electrical detection of the magnon Hall effect. Here it is important
to note that electrical injection and detection is an incoherent effect, exciting
all spin waves with a distribution given by the Bose-Einstein function, whereas
the coherent excitation and detection via microwave antennas excites only
spin waves with a specific frequency and wave number.

1.9 bulk-boundary correspondence

Upon close inspection, we notice that the anomalous conductivity, Eq. (1.54),
depends on the integral of the Berry curvature over the Brillouin zone, weighed
by the Bose-Einstein distribution function. Here there is an important topolog-
ical connection, since the the integral of the Berry curvature, called the Chern
number Cn, over a closed manifold is quantized in units of 2π, i.e., [38]

Cn ≡
1

2π

∫
Ω

d2k Ωn = Z. (1.64)

This implies that the Chern number of a single band n in the Brillouin zone
is quantized, as long as the band is gapped. Furthermore, by adiabatically
changing the Hamiltonian the Chern number cannot be changed without
closing the energy gap. Therefore, we can classify all the Hamiltonians that
can be adiabatically deformed into each other without closing the energy gap
using the Chern number of the energy bands. This has important consequences
when we consider the interface between two Hamiltonians where the bands
have different Chern numbers.

To illustrate this, let us imagine a system where there is a boundary between
a trivial Hamiltonian (all bands have Chern number zero) and a non-trivial
Hamiltonian (the bands have non-zero Chern numbers). The system param-
eters are tuned in such a way that over the boundary there is continuous
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transition between the two phases. Starting at the trivial side of the boundary,
in order for the Chern number to change, the energy gap has to vanish, thus
implying the existence of boundary modes with energies that cross the bulk
band gap. This principle is known as the bulk-boundary correspondence and
it is a topological effect, since it results from the topology of the bands. It
is not only valid for two-dimensional systems with finite Berry curvature
as considered here, but can be found in a wide myriad of systems [39–41].
These boundary states are unique in condensed matter, because they are
required to form at an interface between topologically trivial—including the
vacuum—and non-trivial systems. This implies that any perturbation which
does not change the topology of the system cannot prevent the formation of
the boundary states. Because of this topological property, the boundary states
are remarkably robust against perturbations and are therefore often referred
to as being topologically protected.

We note here that in the diffusive magnon systems as considered in Sec-
tion 1.7 the bulk-boundary correspondence will lead to a finite anomalous
conductivity. Because of the topological protection of the edge states, this
anomalous conductivity is then robust against disorder and other perturba-
tions.

1.10 magnon chern insulator

We now consider the magnon Chern insulator using the Haldane model [42],
which is a simple realization of a system where the bands have a non-zero
Chern number and thus has the topological properties as discussed above. The
Haldane model was first introduced for electrons with a staggered magnetic
field, but for magnons the same model can be realized [43, 44]. The spins are
placed on a honeycomb lattice as indicated in Fig. 1.4, and are described by
the two-dimensional Hamiltonian

H = −1
2 ∑

ij
[JijŜi · Ŝj − Dijẑ ·

(
Ŝi × Ŝj

)
]− h ∑

i
Ŝz

i , (1.65)

where Si are spins with quantum number S located on lattice sites Ri of
a honeycomb lattice. Nearest neighbors experience an exchange coupling,
Jij = J, and next-nearest neighbors are coupled through the Dzyaloshinskii-
Moriya interaction, Dij = −Dji = D. The spins are aligned to an external
magnetic field applied in the z direction, contributing a Zeeman energy h.

The classical dynamics are described by the Landau-Lifshitz-Gilbert equa-
tion (1.14) and we introduce the deviations mi = (Sx

i + iSy
i )/
√

2S around the
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Figure 1.4: The honeycomb lattice of the Haldane model considered
here. The relative sign of the Dzyaloshinskii-Moriya interac-
tion is indicated. The nearest and next-nearest neighbor vec-
tors are δ = [(0,−a/

√
3), (a/2, a/

√
3), (−a/2, a/

√
3)]T , and

ρ = [(a, 0), (−a/2,
√

3a/2), (−a/2,−
√

3a/2)]T respectively.

uniform state, Si = Sẑ. We expand the Hamiltonian, Eq. (1.65), up to the first
nontrivial order in mi, and obtain the quadratic Hamiltonian

H2 = ∑
ij

[
δij

(
h + S ∑

n
Jin

)
− S(Jij + iDij)

]
. (1.66)

We introduce the Fourier transform of the spin-wave operators, mA/B,i =√
2/N ∑k eik·Ri mA/B,k for the sublattices A/B, and obtain the Hamiltonian

Hk = ∑
k

Ψ†
k [(H + 3JS)σ0 + hk · σ]Ψk, (1.67)

where Ψk = (mA,k, mB,k,)
T is the magnon state vector, ση are the Pauli

matrices in the sublattice space, σ is a pseudovector of Pauli matrices and

hk = S ∑
i

−J cos(k · δi)

J sin(k · δi)

2D sin(k · ρi)

 , (1.68)

where δi and ρi are the vectors connecting nearest and next-nearest neighbors
respectively. The magnon dispersion follows as ω±k = H + 3SJ ± |hk|, which
we show in Fig. 1.5a. It is clear that we obtain two bands, separated by a
band gap, which is opened up by the DMI. The Chern number of this model
is quantized1 and in Fig. 1.5a we have indicated the Chern numbers of the

1 Calculating the Berry curvature requires a gauge where the Bloch wave-functions are continuous,
but if only the Chern number is required, it can easily be calculated with the algorithm as
suggested by Fukui et al. [45], which does not require a specific gauge choice.
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Figure 1.5: (a) The bulk spectrum of the magnon Haldane model, with the Chern
numbers Cn indicated. (b) The spectrum of a nanoribbon with zigzag edges
for the magnon Haldane model, with the localization indicated in the
colorscale. D/J = −0.2.

bands. Since the Chern numbers are non-zero and the two bands are gapped,
this system is said to be in a topologically non-trivial phase. From the bulk-
boundary correspondence we thus expect edge modes connecting the two
bands with opposite Chern number.

We show these edge modes explicitly in Fig. 1.5b, by considering the band-
structure of a ribbon, with periodic boundary conditions along one direction
and open boundary conditions along the other direction. The color scale indi-
cates the localization of the eigenvectors associated with the frequencies.1 We
observe the existence of the bulk bands, which are not localized on one side of
the ribbon, and are separated by a bulk band gap. Within the bulk band gap,
there are edge modes connecting the two bulk bands, localized on opposite
sides of the ribbon. There is one left- and one right-moving edge mode, where
the doubling here is due the fact that we have two boundaries: one on the top
and one on the bottom. There is therefore only one edge mode one each side
of the sample, which move in opposite directions, and are therefore chiral.

The edge modes that exist at the boundaries of a Chern insulator are
topologically protected, meaning that as long as the Chern number of the
bands is unchanged the edge states remain. This implies that the edge states
are stable against any perturbation that does not close the bulk energy gap,
since the Chern number can only change through a band closing. Therefore,
the edge states form at any boundary of the Chern insulator, independent of
the specific shape of the edge. Furthermore, the chirality of the edge states

1 The localization is defined as ∥Ψk(rt)∥ − ∥Ψk(rb)∥, where rt,b is the top or bottom half of the
ribbon.
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implies that there are no other states to scatter into, thus increasing the
lifetime of the state. In electronic systems this implies perfectly quantized
conductance,1 but in magnon systems this does not happen because of the
existence of magnon-number non-conserving processes, as parameterized by
Gilbert damping, and the Bose-Einstein statistics.

In most of the magnetic insulators that have been proposed to realize the
magnon Chern insulator [12, 43, 44, 47–49], the energy of the first bulk band
is set by the exchange interaction, and the corresponding frequencies are
in the THz-range. Direct detection and excitation, for example by Brillouin
Light Scattering or microwave excitation and detection is not possible at these
frequencies. The high frequency of the edge modes is one of the main reasons
why the magnon Chern insulator has not been experimentally verified, even
though several candidate materials have been identified [50–52]. We address
this problem further in Chapter 4, by showing that the edge states can be
lowered to zero frequency in a non-equilibrium state.

1.11 further topological magnon phases

The bulk-boundary correspondence is not unique to the magnon Chern in-
sulator, but can be found in a wide range of topological magnon phases
[53–63]. Their defining feature is the existence of a topological invariant, that
can be used to classify their topological phase [64]. The bulk-boundary corre-
spondence then assures the existence of boundary states in the topologically
non-trivial phase. For example, in the one-dimensional Su-Schrieffer-Heeger
(SSH) model, alternating coupling strengths in a chain lead to a bulk band
gap and edge modes within this gap, localized on the ends of the chain [65,
66]. Again, here one can define a topological invariant similar to the Chern
number, which predicts the existence of the edge states, exemplifying the
power of the bulk-boundary correspondence.

Furthermore, concepts of topological order can also be extended to in-
clude the wider class of non-Hermitian systems, which are open and out-of-
equilibrium [67]. With this extension comes a number of striking effects, and
the full implications have most certainly not been exhausted. Most notably, in
specific non-Hermitian topological systems all the modes, not just the edge
modes, can collect at a boundary, leading to a skin-effect which is hyper sen-
sitive to the boundary [68, 69]. Another striking result of the non-Hermitian
topology is the existence of lasing edge modes, where the edge modes are
amplified or damped [70–73].

In the magnon systems that are of interest in this Thesis, non-Hermitian
Hamiltonians are readily available. The ubiquitous Gilbert damping offers

1 The quantization is remarkably exact: in quantum Hall systems, the Hall conductance is quantized
to 1 parts in 109 [46].
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dissipation, whilst the spin-transfer torque can be used to drive or damp
the system, offering on-site control. Furthermore, different non-Hermitian
couplings between sites can be engineered, such as non-reciprocal [74] and
dissipative couplings [75]. In this Thesis we consider two non-Hermitian
topological magnon insulators, in Chapters 5 and 6, where the non-Hermiticity
stems from on-site gain and loss through the spin-transfer torque. Their
central feature is the topological protection of the edge states, which become
spontaneously lasing (Chapter 5) or have an enhanced lifetime (Chapter 6).

1.12 outline

The remainder of this Thesis is outlined as follows. The first two Chapters 2

and 3 are concerned with the topological effects rooted in the dipole-dipole
interaction. We start in Chapter 2 with studying the propagation of spin waves
in obliquely magnetized thin films. In this setup the inversion symmetry is
broken due to the dipole-dipole interaction. We show that a single spin wave
excited by a microwave antenna will induce a transverse spin current, which
can be detected with a normal metal lead. In Chapter 3 we study how the
magnon Hall effect can be detected through electrical injection and detection.
If dipole-dipole interactions are taken into account, the magnons in a ferro-
magnetic thin film have a non-zero Berry curvature. We therefore set up a
diffusion-relaxation model based on the quantum kinetic equations, rigor-
ously deriving Eqs. (1.52) and (1.55), including the anomalous contribution.
From this model we can calculate the Hall coefficient, which we show to be
measurable.

In Chapters 4 to 6 we turn our attention to the topological magnon insulators.
We start with the magnon Chern insulator in Chapter 4, where we address
a major problem in the field of magnon topology: the high frequencies of
the chiral edge modes in magnon Chern insulators. We propose a strategy
to lower these chiral edge states to zero frequency, by considering a non-
equilibrium setup. We show that the spin waves can be excited in the GHz-
range, making them directly experimentally detectable. Next, we study two
different non-Hermitian extensions of topological magnon insulators. We start
with a non-Hermitian extension of a one-dimensional topological magnon
insulator in Chapter 5, realized by coupling an array of spin-torque oscillators.
We focus on the non-linearities inherent in any spin-wave system, and show
that the edge excitations are robust. Furthermore, we incorporate stochastic
fluctuations to model the finite-temperature dynamics in the presence of non-
linearities, and show that the topological edge states exist up to relatively high
temperatures. Finally, we consider in Chapter 6 a non-Hermitian extension
of the magnon Chern insulator, and show that the chiral edge states can be
topologically amplified or damped. This model also exhibits a novel non-
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Hermitian hybrid skin effect, where the edge modes are localized on specific
sides of the lattice, and we propose an experiment to detect this skin effect.
We end with a conclusion and outlook in Chapter 7.



2
E L E C T R I C A L D E T E C T I O N O F U N C O N V E N T I O N A L
T R A N S V E R S E S P I N C U R R E N T S I N O B L I Q U E LY
M A G N E T I Z E D T H I N F I L M S

In a typical experiment in magnonics, thin films are magnetized in-plane and spin waves
only carry angular momentum along their spatial propagation direction. Motivated by the
experiments of Bozhko et al. [76], we show theoretically that for obliquely magnetized thin
films, exchange-dipolar spin waves are accompanied by a transverse spin-current. We propose
an experiment to electrically detect this transverse spin-current with Pt strips on top of a
YIG film, by comparing the induced spin-current for spin waves with opposite momenta.
We predict the relative difference to be of the order 10−4, for magnetic fields tilted at least
30◦ out of plane. This transverse spin-current is the result of the long range dipole-dipole
interaction and the inversion symmetry breaking of the interface.1

2.1 introduction.

Magnons, or spin waves, are able to transport angular momentum over long
distances along their propagation direction [77, 78]. This has opened the way
to novel signal processing devices which could replace conventional electronic
devices [79–81]. In recent years, multiple applications have been explored,
such as wave-based computing [82, 83], three-terminal transistors [84], logic
gates [85, 86] and novel non-linear effects [87, 88].

The manipulation of spin waves is still an ongoing area of research and
a full toolbox for controlling spin waves is yet to be developed [89]. In this
work we consider an alternative approach to control the spin current in a
magnetized thin film: by tilting the magnetic field out of plane. This breaks
the inversion symmetry and allows a spin current to flow transverse to the
propagation direction of the spin waves, transporting angular momentum
along the film normal.

1 This chapter is based on P. M. Gunnink, R. A. Duine, and A. Rückriegel, “Electrical detection of
unconventional transverse spin currents in obliquely magnetized thin films,” Physical Review B
101, 220407(R) (2020). R.A.D. and A.R. conceived the project, P.M.G. performed the calculations
and prepared the manuscript, and A.R. derived the magnetostatic calculations. All authors
contributed to the manuscript.
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This mechanism for generating a transverse spin-current was first proposed
by Bozhko et al. [76], who used a micromagnetic approach to calculate the
exchange spin-current in a thin film of Y3Fe2(FeO4)3 (YIG), without consider-
ing spin absorption at the boundaries. They argued that this spin current is
non-zero if the magnetic field is tilted out of plane. However, this transverse
spin-current can only be detected with an attached spin sink, such as a heavy
metal strip. The interaction with the spin sink influences the physics of the
problem significantly. Moreover, only the transfer of angular momentum by
the exchange interaction was considered. The dipole-dipole interaction is also
capable of transporting angular momentum and therefore needs to be taken
into account for a complete description of this system.

In this work we propose an experiment where the transverse spin-current
in an obliquely magnetized thin film is detected electrically. We consider,
within linear spin-wave theory, a thin ferromagnetic film with two leads
attached, which pick up the transverse spin-current induced by left- and right-
moving spin waves via the inverse spin-Hall effect (ISHE) [90]. A transverse
spin-current would transport more angular momentum into the right spin
sink than into the left spin sink, or vice versa. This is equivalent to the
experimentally harder to realize system with leads attached to the top and
bottom. We propose to compare the spin current picked up by the left and
right lead, in order to exclude any usual spin pumping effects, which are also
present for an in-plane magnetic field [34]. In order to further understand
the origin of the transverse spin-current we show in Appendix 2.A with
a magnetostatic calculation, that the symmetry breaking at the interface is
carried by the dipole-dipole interaction.

2.2 method.

The setup we consider is a thin film of ferromagnetic YIG, where coherent
spin-waves are excited using a coplanar waveguide [24], as depicted in Fig. 2.1.
The wavevector (k) of the excited magnons is controlled by the grating of the
antenna and the frequency (ω) of the excited magnons by the frequency of
the driving field. To the right and left of this antenna two platinum (Pt) leads
are placed which function as spin sinks via the inverse spin-Hall effect and
pick up the transverse spin-current induced by the spin waves with opposite
momenta. The distance between the Pt leads and the coplanar waveguide
is assumed to be such that the signal is strong enough to measure small
variations. Structures with a separation distance of 3 mm are possible [35], but
the magnon diffusion length of λ = 9.4 µm in YIG [77] indicates that shorter
distances would be preferable.
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Figure 2.1: The setup considered in this chapter, with a coplanar waveguide in the
middle, exciting spin waves in two opposite directions in a thin ferromag-
netic film with thickness d. Two heavy-metal leads pick up the spin current
induced by these left- and right-moving spin waves. The magnetic field is
tilted out of plane at an angle ϕH with the plane and the magnetization has
angle ϕM with the plane.

The spin dynamics are governed by the semi-classical Landau-Lifshitz-
Gilbert (LLG) equation:

∂tSi = Si ×
(
− ∂H

∂Si
+ hi(t)−

αi
S

∂tSi

)
, (2.1)

where we describe YIG as a Heisenberg ferromagnet with effective spin S, on
a cubic lattice. Including both the exchange and dipole-dipole interactions our
effective Hamiltonian [91] is

H = −1
2 ∑

ij
JijSi ·Sj − µHe ·∑

i
Si

− 1
2 ∑

ij,i ̸=j

µ2

|Rij|3
[
3
(
Si · R̂ij

) (
Sj · R̂ij

)
−Si ·Sj

]
, (2.2)

where the sums are over the lattice sites Ri, with Rij = Ri −Rj and R̂ij =
Rij/|Rij|. We only consider nearest neighbour exchange interactions, so Jij = J
for nearest neighbours and 0 otherwise. Here µ = 2µB is the magnetic moment
of the spins, with µB = eh̄/(2mec) the Bohr magneton. He is the external
magnetic field, which we take strong enough to fully saturate the ferromagnet.

To the top of the thin film we attach a spin sink to detect the spin waves,
which introduces an interfacial Gilbert damping αL

i , which is only non-zero
for sites at the top interface of the ferromagnet [34]. The total Gilbert damping
is then αi = αB + αL

i , where αB is the bulk Gilbert damping. Furthermore,
hi(t) is the circularly polarized driving field, which we take to be uniform
throughout the film. Within linear spin-wave theory, the LLG has been shown
to be fully equivalent to the non-equilibrium Green’s function formalism [92].
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We consider a thin film, infinitely long in the y, z directions and with a
thickness d = Na in the x direction, where a is the lattice constant and N is
the number of layers. The magnetic field is tilted at an angle ϕH with respect
to the film, as shown in Fig. 2.1. The magnetization is tilted by an angle ϕM,
as determined by minimizing the energy given by Eq. (2.2) for a classical,
uniform spin configuration:

∂

∂ϕM

[
−Ms He cos (ϕM − ϕH)− 2πM2

s cos2 ϕH

]
= 0, (2.3)

where Ms = µS/a3 is the saturation magnetization and He = |He|.
We have two reference frames, one aligned with the thin film as described

above and one where the z axis is aligned with the magnetization M . We
work in the reference frame of the lattice and rotate the spin operators, such
that Si → R−1

y (ϕM)S̄i, where Ry(ϕM) is a rotation around the y-axis by angle
ϕM and S̄i are the rotated spin operators, with the S̄z

i component pointing
along the magnetization M .

We linearize in the deviations from the ground state, bi =
1
2

√
2S(S̄x

i + iS̄y
i )

and assume translational invariance in the yz-plane. The equation of motion
for bi becomes in frequency space:

G−1
k (ω)ψk(ω) = −hk(ω), (2.4)

where k = (ky, kz) and we have introduced the driving field

hk(ω) = (hk(ω), . . . , hk(ω)︸ ︷︷ ︸
N elements

, h∗−k(ω), . . . , h∗−k(ω)︸ ︷︷ ︸
N elements

)T , (2.5)

where hk(ω) = h̄x + ih̄y is the Fourier transform of the rotated driving field.
Furthermore, the magnon state vector is

ψk(ω) =
(
bk(ω, x1), . . . , bk(ω, xN), b∗−k(ω, x1), . . . , b∗−k(ω, xN)

)T (2.6)

and the inverse Green’s function is

G−1
k (ω) = σ3 (1 + iσ3α)ω− σ3Hk, (2.7)

where σ3 = diag(1, . . . , 1,−1, . . . ,−1), α = diag(α1, . . . , αN , α1, . . . , αN) and

Hk =

(
Ak Bk

B†
k Ak

)
, (2.8)

is the Hamiltonian matrix within linear spin-wave theory, with the amplitude
factors [Ak]ij = Ak

(
xi − xj

)
and [Bk]ij = Bk

(
xi − xj

)
. The dispersion is

obtained by diagonalizing the inverse Green’s function (2.4) in the absence of
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damping and spin pumping. The full expressions for the amplitude factors
Ak, Bk and the dispersions for different tilting angles of the magnetic field are
given in Appendices 2.B and 2.C.

From the equation of motion, Eq. (2.4), the total spin-current injected into
the lead is obtained from the continuity equation for the spin:

∂tS̄z
i + ∑

j
Iex
i→j + ∑

j
Idip−dip
i→j = Iα

i + Ih
i . (2.9)

The explicit form of the terms is given in Appendix 2.D. We find a source
and sink term, providing angular momentum via the driving field (Ih

i ) and
dissipating angular momentum to the lattice and the lead via the Gilbert
damping (Iα

i ). There are two ways angular momentum can be transferred
through the film. Firstly, there is a spin current transferring angular momen-
tum between adjacent sites (Iex

i→j), which is driven by the exchange interaction.

The dipole-dipole interaction also transports angular momentum (Idip−dip
i→j ),

but because the dipole-dipole interaction is non-local, angular momentum is
transferred from and to all other sites. It is therefore not possible to write this
as a local divergence and thus as a current. Also note that the dipole-dipole
interaction couples the magnons to the lattice, which means that a non-zero
dipole-dipole contribution is accompanied by a transfer of angular momentum
from and to the lattice.

The measurable quantity is the angular momentum absorbed by the spin
sink in the attached lead, which is proportional to the voltage generated by
the ISHE, and is given by

Iα
L(k, ω) = 2αL Im [b∗k(x1)∂tbk(x1)] . (2.10)

We are interested in the relative difference between the spin currents induced
by the left- and right-moving spin waves in order to show a transverse spin
transport, which we define as

∆(|k|, ω) =
Iα
L(k, ω)− Iα

L(−k, ω)

max
[
|Iα

L(k, ω)|, |Iα
L(−k, ω)|

] . (2.11)

In the next section we consider this quantity in detail.

2.3 results .

The parameters used throughout this work are summarized in Table. 2.1. In
Fig. 2.2 we show the difference between the spin current induced by left- and
right-moving spin waves for different tilting angles of the magnetic field. For
a magnetic field either completely in- or out of plane there is no difference
between the left and right lead (not shown). As we tilt the magnetic field out of



34 unconventional transverse spin currents

Table 2.1: Parameters for YIG used in the numerical calculations in this chapter. Note
that S follows from S = Msa3/µ.

Quantity Value

N 400

a 12.376 Å [93]

S 14.2

4πMs 1750 G [94]

J 1.60 K [23]

αB 7× 10−4 [18]

αL 7× 10−3 [18]

He 2500 Oe

hx, hy 0.01He

plane a small difference becomes visible, which peaks at ∆ = 1.25× 10−4 for
ϕH = 60◦ and 2.5 < k < 12.5 µm−1. As the tilting angle is further increased the
distribution of ∆ shifts slightly, with the most notable change the movement of
the maximum, which moves towards smaller wavevectors. We found that the
relative difference ∆ increases linearly with the bulk Gilbert damping constant.
In order to measure this effect it might therefore be beneficial to use a YIG
thin film with deliberately introduced impurities such as rare-earth ions, to
increase the damping [95], or even use a different ferromagnetic material with
a higher Gilbert damping.

Numerically, we found that the relative difference ∆ is non-zero even when
the exchange coupling is artificially turned off, which indicates that only
the dipole-dipole interaction is responsible for this effect. In Appendix 2.A
we show a full magnetostatic derivation of the eigenmodes for an obliquely
magnetized thin film with only dipole-dipole interactions. Even though the
energies are inversion-symmetric, we find that the eigenmodes explicitly
depend on

kz sin (2ϕM) , (2.12)

which introduces an asymmetry between left- and right-moving spin waves
if the magnetic field is tilted out of plane. A complete description of this
problem also requires the inclusion of the exchange coupling, as was done in
our numerical calculations. However, ignoring the exchange coupling allows
us to demonstrate that the origin of the asymmetry between left- and right-
moving spin waves lies in the the long range dipole-dipole interaction carrying
the inversion symmetry breaking of the interface.
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Figure 2.2: The relative difference ∆ between the spin current induced by left- and
right-moving spin waves, as defined in Eq. (2.11), as a function of k and ω,
for three different tilting angles of the magnetic field. The spin waves travel
parallel to the in-plane projection of the magnetic field, such that k = kẑ. (a)
ϕH = 30◦, ϕM = 18◦, (b) ϕH = 60◦, ϕM = 40◦ and (c) ϕH = 80◦, ϕM = 64◦.
The peak difference is ∆(k = 7.5 µm−1, ω = 4 GHz) = 1.25× 10−4, when
the field is tilted at an angle ϕH = 60◦. For a magnetic field completely in-
or out of plane (not shown) there is no discernible difference.

Bozhko et al. [76] suggested a partial-wave picture to explain the transverse
spin-current. They reason that the profile along the film normal is made up by
two partial waves, which have opposite momenta ±kx and equal frequency
ω if the film is magnetized in-plane, thus cancelling any transfer of angular
momentum or energy. As the magnetic field is tilted out of plane the two
partial waves would, in this picture, no longer have opposite momenta, but
still have the same frequencies. This would then allow for angular momentum
transfer, but not energy transfer. With the magnetostatic calculation we are
able to show that this picture is incomplete: the amplitudes of the two partial
waves are asymmetric, not their momenta. This therefore allows both energy
and angular momentum transfer, which we have confirmed numerically by
evaluating ⟨∂tE⟩.

We found numerically that the region in k-space where the relative difference
∆ is significant has a lower bound related to the thickness of the thin film.
Decreasing the thickness shifts the distribution as seen in Fig. 2.2 towards
larger wavevectors. This can be traced to the fact that the long-wavelength
magnetostatic magnon modes are standing waves, with wavevectors ±kx,
where kx is proportional to kz. The standing waves need to have a wavevector
big enough to fit at least one wavelength into the system, thus requiring that
kz ≳ kL, where kL = 2π/d. The reason for this coupling of the in-plane and
out of plane directions is the long-range nature of the dipole-dipole interaction,
ensuring that within our system the divergence of the magnetic field is zero,



36 unconventional transverse spin currents

4

5

6

7

8

ω
(G

H
z)

0 20 40 60 80

φH (◦)

0.00

0.25

0.50

0.75

1.00

1.25

∆

×10−4

Figure 2.3: Relative difference between the spin current induced by left- and right-
moving spin waves, ∆, as defined in Eq. (2.11), as a function of magnetic
field tilt angle ϕH , for ω corresponding to the lowest mode in the spin-wave
dispersion and fixed k = 7.5 µm−1 (solid line). Also shown is the frequency
of the lowest mode as a function of the tilt angle (dashed line).

i.e., ∇ ·B = 0. The maximum value of ∆ does not change depending on the
thickness of the film, only the location of the maximum. We have confirmed
this numerically for the range 60 ≤ d ≤ 480 nm. For even thinner films the
maximum value of ∆ becomes lower.

Excitation of magnons is only possible for values of ω determined by
the spin-wave dispersion, with a minimum given by the lowest mode. We
therefore show in Fig. 2.3 for fixed k = 7.5 µm−1 the evolution of the relative
spin-current difference ∆ as the magnetic field is tilted out of plane, with a
driving at frequency ω corresponding to the lowest mode in the spin-wave
dispersion. Also shown is the frequency of the lowest mode as a function
of magnetic field tilt angle. It is clear that up to some critical value of the
magnetic field angle ∆ increases linearly, after which it falls off rapidly. It is
also clear that the lowest mode is capable of transferring angular momentum
along the film normal. This is contrary to the statements made by Bozhko
et al. [76], who predicted that the lowest mode, which has an uniform profile,
would not induce a transverse spin-current. This is most likely due to the fact
that in their work only the exchange current is considered, whereas we have
taken all current contributions into account. Another possible explanation
is their expansion in eigenfunctions of the second-order exchange operator,
which might have failed to properly take the dipole-dipole interaction into
account.

The different contributions to the transverse angular momentum transport,
as defined in Eq. (2.9), are shown in Fig. 2.4 for left- and right-moving spin
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Figure 2.4: The different contributions to the transfer of angular momentum along
the film normal, where Ii = ∑j Ii→j for the exchange and dipole-dipole
interaction. The damping plays a negligible role in the transport of angular
momentum, so it is turned off to illustrate the effects of the other contribu-
tions. The thickness of the thin film is reduced to N = 100 in order to better
illustrate the variation through the film. The magnetic field is tilted out of
plane with angle ϕM = 60◦ and the wavevector and driving frequency are
fixed at k = 30 µm−1, ω = 4 GHz.

waves. We have set the bulk and interface damping to zero in order to clearly
show the exchange, dipole-dipole and driving contributions to the transfer
of spins along the film normal. Firstly, we can see that there is a transport of
angular momentum, even in the case of no spin absorption at the boundary,
which agrees with the results by Bozhko et al. [76]. All contributions are zero
in the case of an in-plane magnetic field (not shown)—if no spin sinks are
attached. We can see that every contribution switches sign between left- and
right-moving spin waves, as would be expected from symmetry. From this
figure it is clear that the exchange spin current is not the only way the system
transfers angular momentum. In fact, the contributions from the dipole-dipole
interaction are larger than those of the exchange current. This shows that it is
necessary to consider both interactions in order to gain a full understanding
of the transport of angular momentum in the transverse direction. Also note
that since the dipole-dipole contribution is non-zero there is a finite torque on
the system, which could be measured in a cantilever experiment [96].
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2.4 conclusion and discussion.

In this work we have shown, using microscopic linear spin-wave theory, that
there is a flow of angular momentum, or spin current, along the film normal
in obliquely magnetized thin films. This can be measured using an antenna-
detector setup, where the spin current induced by the left- and right-moving
spin waves will be different, proving the existence of a transverse spin-current.
This effect can be used as a way to manipulate the spin current flowing along
the film normal, for example by controlling the magnetic field angle. We have
also demonstrated that this spin current is the result of the dipole-dipole
interactions in the film, which carry the inversion breaking at the interface.

We have not considered explicitly the interactions of the spin waves with
the lattice. The dipole-dipole interactions couple the magnons to the lat-
tice and therefore angular momentum can be transferred from and to the
phonons, which can also transport angular momentum [97–99]. A more com-
plete description of the system should therefore include these phonon-magnon
interactions, but this is beyond the scope of this article.

2.a magnetostatic calculations

Our goal is to derive the eigenfunctions for the thin film geometry as depicted
in Fig. 2.1 in the main text. We know from the numerics that the dipole-dipole
interaction alone is sufficient to give a transverse spin-current, so we ignore
the exchange interaction in this derivation. This considerably simplifies the
work needed and allows us to find a completely analytical expression for the
eigenfunctions.

We start from the Landau-Lifshitz-Gilbert equation (LLG)

∂tS(x, r, t) = S(x, r, t)×
[
Heff −

α

S
∂tS(x, r, t)

]
, (2.13)

where r = (y, z). The classical ground state is

n̂ =
⟨S⟩

S
= sin ϕM x̂+ cos ϕM ẑ, (2.14)

with the angle ϕM is determined by Eq. (2.3) in the main text. We write the
solution to the LLG as fluctuations on this ground state with

ψ =
1√
2S

(
â+ ib̂

)
·S(r, t), (2.15)

where â, b̂ are orthogonal unit vectors chosen such that by â× b̂ = n̂. The
effective magnetic field is given by

Heff =H +HD; HD =H
(0)
D +∇χ, (2.16)
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where HD is the dipolar field with a static component H(0)
D and a dynamic

component, ∇χ. H is the external field. We transform to Fourier space with
the relations

ψ (x, r, ω) =
∫ d2k

(2π)2 eik·rψ (x,k, ω) , (2.17)

χ (x, r, ω) =
∫ d2k

(2π)2 eik·rχ (x,k, ω) . (2.18)

We only consider the situation where ky = 0, so k = kẑ. Outside the film the
dynamics of the dipolar field are governed by(

−k2 + ∂2
x

)
χ (x,k, ω) = 0, x ≥ d

2
(2.19)

which has solutions

χ (x,k, ω) =

χ
(

d
2 ,k, ω

)
e−|k|(x−d/2), x ≥ d

2 ;

χ
(
− d

2 ,k, ω
)

e|k|(x+d/2), x ≤ d
2 .

(2.20)

The boundary conditions for χ at the top and bottom of the thin film are

∂xχ (x,k, ω)
∣∣∣
x=± d

2∓0+
+ 4πMS

1√
2

[
x̂ ·
(
â− ib̂

)
ψ

(
±d

2
,k, ω

)

+ x̂ ·
(
â+ ib̂

)
ψ∗
(
±d

2
,−k,−ω

)]
= ∓|k|χ

(
±d

2
,k, ω

)
(2.21)

and the bulk equation of motion, for |x| ≤ d
2 is(

k2 − ∂2
x

)
χ (x,k, ω) =

4πMS√
2

[ (
â− ib̂

)
· (ik+ x̂∂x)ψ (x,k, ω)

+
(
â+ ib̂

)
· (ik+ x̂∂x)ψ∗ (x,−k,−ω)

]
. (2.22)

For the magnon field we have the bulk equation of motion[
(1 + iα)ω−H · n̂− 4πMS (x̂ · n̂)2

]
ψ (x,k, ω) + hD (x,k, ω) = 0. (2.23)

This gives the solution

ψ (x,k, ω) = G (ω) hD (x,k, ω) , (2.24)

where
G (ω) =

[
− (1 + iα)ω +H · n̂+ 4πMS (x̂ · n̂)2

]−1
. (2.25)
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For brevity we define

∆G (ω) ≡ G (ω) + G∗ (−ω) . (2.26)

From the bulk equation of motion the solution for the potential is

χ (x,k, ω) = χ+eqx + χ−e−qx, (2.27)

where

q = |kz|
√

a (k, ω)

b (k, ω)
, (2.28)

with

a (k, ω) = 1 + 2πMs∆G (ω) sin2 ϕM, (2.29)

b (k, ω) = 1 + 2πMS∆G (ω) cos2 ϕM. (2.30)

From the boundary conditions in Eq. (2.21) we then have the matrix equation(
(F+ (k, ω) + |k|) eq d

2 (F− (k, ω) + |k|) e−q d
2

(F+ (k, ω)− |k|) e−q d
2 (F− (k, ω)− |k|) eq d

2

)(
χ+

χ−

)
= 0 (2.31)

where

F± (k, ω) = −iπMS∆G (ω) kz sin (2ϕM)

± q
(

2πMS∆G (ω) cos2 ϕM + 1
)

. (2.32)

The solutions for the potential are then

χ+ = −χ−
(F− (k, ω) + |k|)
(F+ (k, ω) + |k|) e−qd (2.33)

which gives for the magnon field

ψ (x,k, ω) = −G (ω)

[
qχ− cos ϕM

(
(F− (k, ω) + |k|)
(F+ (k, ω) + |k|) eqx−qd + e−qx

)

+ ikzχ− sin ϕM

(
− (F− (k, ω) + |k|)
(F+ (k, ω) + |k|) eqx−qd + χ−e−qx

)]
. (2.34)

Because F±(k, ω) depends linearly on kz sin (2ϕM), the eigenfunctions for
magnons travelling in ±kz directions differ whenever sin (2ϕM) ̸= 0. This
behaviour is in agreement with our numerics, which show that the difference
between the transverse spin-current induced by left- and right-moving spin
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Figure 2.5: Spin wave dispersion of a YIG film with thickness d = 400a ≈ 0.48 µm for
increasingly tilted magnetic field. The spin waves travel parallel to the in-
plane projection of the magnetic field, such that k = kẑ. (a) ϕH = ϕM = 0◦,
(b) ϕH = 30◦, ϕM = 18◦, (c) ϕH = 60◦, ϕM = 40◦ and (d) ϕH = 80◦, ϕM =
64◦.

waves vanishes if the magnetization is either completely in- or out of plane.
Ultimately the source of the linear term is therefore the boundary conditions
in Eq. (2.21). Because the dipole-dipole interaction is a long-range interaction
the boundary conditions interact with all the spin-waves in the thin film,
carrying the inversion breaking at the interface. This thus allows a transverse
spin current to flow.

2.b dispersion

We diagonalize the Hamiltonian in Eq. (2.8) in the main text, in the absence of
damping and spin pumping, from which we obtain the spin-wave energies
[100]. The spin-wave spectra are shown in Fig. 2.5 for multiple tilt angles of the
magnetic field, for spin waves propagating parallel to the in-plane projection
of the magnetic field, along the kz direction. The parameters used for these
spectra are summarized in Table. 2.1 in the main text. We show the regime
of wavevectors where both dipole-dipole interactions and the exchange inter-
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action are of roughly equal magnitude. The exchange interaction dominates
for large wavevectors and gives a quadratic wavevector dependence, curving
the bands upwards. For small wavevector the dipole-dipole interaction is the
dominant term in the Hamiltonian, which suppresses the quadratic behavior.
Comparing these dispersion with both the numerical and experimental results
[76] the general shape of the dispersions matches well, and the same shift
down in energy is observed as the magnetic field is tilted.

2.c complete amplitude factors

The amplitude factors in Eq. (2.8) in the main text are (making use of the fact
that Dxx

k + Dyy
k + Dzz

k = 0)

Ak(xij) = ∑
rij

e−ik·rA(xi − xj, r), (2.35)

=δij

[
S ∑

n

(
sin2 ϕMDxx

0 (xin) + cos2 ϕMDzz
0 (xin)

+
1
2

sin 2ϕMDxz
0 (xin)

)
+ cos (ϕH − ϕM) h

]
+ SJk(xij)

+
S
2

[
sin2 ϕMDxx

k (xij) + cos2 ϕMDzz
k (xij) + sin 2ϕMDxz

k (xij)
]

,

Bk(xij) = ∑
rij

e−ik·rB(xi − xj, r), (2.36)

=− S
2

[
(1 + cos2 ϕM)Dxx

k (xij) + (1 + sin2 ϕM)Dzz
k (xij)

− 1
2

sin 2ϕMDxz
k (xij) + i sin ϕMDyz

k (xij)− i cos ϕMDxy
k (xij)

]
,

where

Jk(xij) = J
[
δij
(
6− δj1 − δjN − 2 cos

(
kya
)
− 2 cos(kza)

)
− δij+1 − δij−1

]
(2.37)

and rij = (yij, zij).
The dipole-dipole interaction is written as a tensor

Dαβ
k (xij) = ∑

rij

e−ik·rij Dαβ
ij , (2.38)

where

Dαβ
ij = µ2(1− δij)

∂2

∂Rα
ij∂Rβ

ij

1
|Rij|

. (2.39)
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For small wavevectors the sums in Eq. (2.38) are slowly converging, so we
use the Ewald summation method as outlined by Kreisel et al. [23]. With this
method the sums are split in two parts: one sum over real space and a one
sum over reciprocal space. These sums are much faster to converge. We first
write the sums as a derivative of

Ik(xij) = µ2 ∑
yij ,zij

e−i(kyyij+kzzij)

(x2
ij + y2

ij + z2
ij)

5/2
, (2.40)

such that we have

Dxx
k =

[
∂2

∂k2
z
+

∂2

∂k2
y
+ 2x2

ij

]
Ik(xij), (2.41)

Dyy
k =

[
∂2

∂k2
z
− 2

∂2

∂k2
y
− x2

ij

]
Ik(xij), (2.42)

Dzz
k =

[
∂2

∂k2
y
− 2

∂2

∂k2
z
− x2

ij

]
Ik(xij), (2.43)

Dxy
k = 3ixij

∂

∂ky
Ik(xij), (2.44)

Dxz
k = 3ixij

∂

∂kz
Ik(xij), (2.45)

Dyz
k = 3

∂

∂kz∂ky
Ik(xij). (2.46)

Note the symmetries Dyy
k = Dzz

k (ky → kz, kz → ky) and Dxz
k = Dxy

k (ky →
kz, kz → ky), so we need not derive the full form of all dipolar sums. Then,
after applying the Ewald summation, we have

Dxx
k =

πµ2

a2 ∑
g

(
8
√

ε

3
√

π
e−p2−q2 − |k+ g| f (p, q)

)
(2.47)

− 4µ2

3

√
ε5

π ∑
r

(
|rij|2 − 3x2

ij

)
cos

(
kyyij

)
cos

(
kzzij

)
φ3/2(|rij|2ε),

Dyy
k =

πµ2

a2 ∑
g

(
4
√

ε

3
√

π
e−p2−q2 − (ky + gy)2

|k+ g| f (p, q)

)
(2.48)

− 4µ2

3

√
ε5

π ∑
r

(
|rij|2 − 3y2

ij

)
cos

(
kyyij

)
cos

(
kzzij

)
φ3/2(|rij|2ε),

Dxy
k = i

πµ2

a2 sig(xij)∑
g
(ky + gy) f (p, q) (2.49)

+ i
4ε5/2µ2
√

π
xij ∑

r
sin
(
kyyij

)
cos
(
kzzij

)
φ3/2(|rij|2ε),



44 unconventional transverse spin currents

Dyz
k = −πµ2

a2 ∑
g

(ky + gy)(kz + gz)

|k+ g| f (p, q) (2.50)

+ 4
ε5/2µ2
√

π
∑
r

yijzij sin
(
kyyij

)
sin(kzzij)φ3/2(|rij|2ε),

where

φ3/2(x) = e−x 3 + 2x
2x2 +

3
√

π Erfc
(√

x
)

4x5/2 (2.51)

and q = xij
√

ε, p = |k+ g|/(2√ε) and

f (p, q) = e−2pq Erfc(p− q) + e2pq Erfc(p + q).

The sums are either over the real space lattice or the reciprocal lattice, where
the reciprocal lattice vectors are gy = 2πm, gz = 2πn, {m, n} ∈ Z. ε deter-
mines the ratio between the reciprocal and real sums. We choose ε = a−2, such
that 2pq ≈ 1 and exp[±2pq] converges quickly.

2.d current contributions

In the continuity equation for the angular momentum in the main text, Eq. (2.9),
the explicit form of the terms is

Iα
i (k, ω) = 2αi Im [b∗k(xi)∂tbk(xi)] , (2.52)

Ih
i (k, ω) = −

√
2S Im [hib∗k (xi)] , (2.53)

Iex
i→j(k, ω) = i

(
1− δij

)
SJk

(
xij
)

b∗k (xi) bk
(
xj
)

, (2.54)

Idip−dip
i→j (k, ω) = i

[ (
1− δij

)
Adip
k

(
xij
)

b∗k (xi) bk
(
xj
)

(2.55)

− Bk

(
xij
)

2
b−k (xi) bk

(
xj
)
+

B∗k
(
xij
)

2
b∗k (xi) b∗−k

(
xj
) ]

,

where Adip
k

(
xij
)
= Ah=J=0

k

(
xij
)
, i.e., only the contributions from the dipole-

dipole interaction. Note that Bk

(
xij
)

already includes only dipole-dipole
interactions.
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T H E O RY F O R E L E C T R I C A L D E T E C T I O N O F T H E M A G N O N
H A L L E F F E C T I N D U C E D B Y D I P O L A R I N T E R A C T I O N S

We derive the anomalous Hall contributions arising from dipolar interactions to diffusive
spin transport in magnetic insulators. Magnons, the carriers of angular momentum in these
systems, are shown to have a non-zero Berry curvature, resulting in a measurable Hall effect.
For yttrium iron garnet (YIG) thin films we calculate both the anomalous and magnon spin
conductivities. We show that for a magnetic field perpendicular to the film the anomalous
Hall conductivity is finite. This results in a non-zero Hall signal, which can be measured
experimentally using Permalloy strips arranged like a Hall bar on top of the YIG thin film.
We show that electrical detection and injection of spin is possible, by solving the resulting
diffusion-relaxation equation for a Hall bar. We predict the experimentally measurable Hall
coefficient for a range of temperatures and magnetic field strengths. Most strikingly, we show
that there is a sign change of the Hall coefficient associated with increasing the thickness of
the film.1

3.1 introduction

One of the earliest successes of the concepts of geometry and topology in
condensed matter was the explanation of the anomalous Hall effect in terms
of the Berry phase. The anomalous Hall effect was therefore a stepping stone
for further understanding of geometrical and topological effects, such as the
quantum Hall effect [101]. Since it is a geometrical effect, the anomalous Hall
effect is not restricted to electronic systems. Indeed, it has also been observed
for other types of carriers, such as phonons and photons [102–104]. Since spin
waves, or magnons, are the carriers of angular momentum in ferromagnets,
the question thus naturally arises if a magnon analogue of the anomalous Hall
effect can also exist. Continuing the analogy with the anomalous Hall effect,
the magnon Hall effect could lead to further understanding of topology in
magnonic systems.

1 This chapter is based on P. M. Gunnink, R. A. Duine, and A. Rückriegel, “Theory for electrical
detection of the magnon Hall effect induced by dipolar interactions,” Physical Review B 103,
214426 (2021). R.D. and A.R. conceived the project, P.M.G. performed the calculations and
prepared the manuscript and A.R. derived the diffusion equations. All authors contributed to the
manuscript.
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Previously, a thermal magnon Hall effect has been proposed, where magnons
are the heat carriers. First predicted for chiral quantum magnets [12], it was
subsequently observed in Lu

2
V

2
O

7
[105, 106]. In these systems the chiral

nature of the spin waves provides the time-reversal symmetry breaking that is
necessary for a finite anomalous Hall response. For forward volume magneto-
static spin waves in a thin-film ferromagnet a thermal magnon Hall effect has
also been proposed [107, 108], where the dipole-dipole interaction provides the
required symmetry breaking. A transverse thermal Hall conductivity has also
been calculated for this system [109], but has not yet been measured experi-
mentally. This is most likely due to the small transverse thermal conductivities
predicted for the most commonly used insulating ferromagnet, yittrium iron
garnet (YIG) [105]. Moreover, phonons also contribute to the thermal Hall
effect, and it might therefore be hard to disentangle the contributions of the
two heat carriers. An effort has been made by Tanabe et al. [110] to excite spin
waves using a coplanar waveguide and measure the temperature gradient
perpendicular to the propagation direction. However, they were only able to
measure a transverse temperature gradient in the unsaturated regime, which
can therefore not directly be attributed to magnons.

Recent advances have shown that it is possible to electrically inject and
detect spin waves using metallic leads [77]. This has opened the way to
electrically measure the magnon Hall effect. However, a complete picture
of the interaction between the electrical detection and the Hall effect is still
lacking. Electrical detection via metal strips can significantly modify magnon
transport properties [111], and it is not clear if a finite magnon Hall response
can still survive. In this chapter we therefore develop a theory for the electrical
detection of the magnon Hall effect in order to determine if the magnon Hall
effect can be measured electrically.

We numerically calculate the Hall response, using the diffusion-relaxation
equation for magnons in a Hall bar geometry, as depicted in Fig. 3.1. In order
to determine the magnitude of the expected Hall response two contributing
factors need to be calculated: (1) the magnon spin and anomalous conductivi-
ties and (2) the boundary conditions which incorporate the electrical detection.
We numerically calculate these using a microscopic description. Starting from
the Keldysh quantum kinetic equations [112], we derive the equation of mo-
tion of the magnon distribution function to leading order in a semiclassical
expansion in gradients. This allows us to separate the spin diffusion and
anomalous Hall contributions to the spin current.

This chapter is ordered as follows. We first discuss the specific Hall geometry
required to measure a finite magnon Hall effect in Sec. 3.2. Next, in order to
determine the magnitude of the magnon Hall effect we derive the equations
of motion for the spin density in Sec. 3.3. We also show how the equations of
motion have to be modified if a metallic lead is interfaced with the system,
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Figure 3.1: The Hall bar with electrical injection and detection of spin currents using
Permalloy strips on top of YIG. Spin current is injected by the Py strip 1,
and is detected by the strips 2, 3 and 4. The colorscale shows the diffusion of
the magnon chemical potential throughout the film, obtained by solving the
diffusion-relaxation equations as described in Sec. 3.3.2. The Hall bar has
size M×M, and the Py detectors and detectors have size La × Lb, where
Lb ≪ La. The magnetic field is oriented out of plane, as shown in Fig. 3.2,
where also the interface between the YIG and the Py is shown in more
detail.

in order to detect or inject spins. From the equation of motion we derive a
diffusion-relaxation equation, which fully describes the magnon diffusion
and relaxation in the Hall bar geometry, including boundary conditions. In
Sec. 3.4 we show how the conductivities and damping can be numerically
evaluated and we discuss results for a typical thin film of YIG. In Sec. 3.5 we
solve the diffusion-relaxation equation numerically and present our results
for a YIG Hall bar, where spin waves are injected and detected electrically. A
summary and conclusion are given in Sec. 3.6. In the appendices 3.A-3.E we
give a more detailed derivation of the quantum kinetic equations for general
bosonic systems, and more details regarding the diffusion-relaxation equation
and the Hamiltonian.
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Figure 3.2: The considered geometry, with the magnetic field pointing slightly off the
ẑ-axis, as explained in the main text. The Py strip on top of the YIG has a
charge current I running parallel to the film, which induces a spin current
Js such that there is an accumulation of spin at the interface between the
YIG and the Py.

3.2 setup

First, we discuss the experimental setup necessary to measure a magnon Hall
effect electrically. We consider a Hall bar geometry, as shown in Fig. 3.1. There
are four terminals, formed by metal strips on top of a YIG thin film. The
strips act as injectors and detectors of spin currents. Magnons are injected at
terminal 1 and diffuse through the film. They are then detected at terminals
2, 3 and 4. By comparing the detected currents at terminals 2 and 4 a Hall
signal can be measured. Note that in electronic Hall experiments terminal 3 is
necessary in order for a current to flow, but in our case we have only included
it for completeness.

The Berry curvature is only non-zero if either time-reversal or inversion
symmetry is broken [38]. Breaking these symmetries can be achieved by
applying a magnetic field perpendicular to the plane, which leads to forward
volume modes, as was previously suggested by Matsumoto and Murakami
[107]. Conventionally, one would use the spin Hall effect (SHE) in the metal
strips to excite magnons in the YIG film [77]. However, the polarization of the
spin current induced by the SHE is always in-plane [113] and can therefore
not excite forward-volume modes in the YIG film. Instead, we propose to
use ferromagnetic Permalloy (Py) strips. If a charge current flows through
the Py strip, the anomalous spin Hall effect (ASHE) induces a spin current
polarized parallel to the magnetization of the Py strip, as shown in Fig. 3.2.
For sufficiently large external magnetic fields the magnetization of the Py
strips and the YIG will both be aligned to the external field. This spin current
can therefore excite magnons in the YIG film. However, the spatial direction
of the spin current is Js ∼ I ×M , where I and M are the charge current
and magnetization respectively [114, 115]. Therefore, if the magnetic field
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is oriented along the ẑ direction and the charge current flows along the ŷ
direction the spin current flows along the x̂ direction. In other words, the spin
current in the Py strip flows parallel to the YIG film and can therefore not
enter it to excite magnons. However, one can tilt the magnetic field slightly
off-axis, i.e. off the ẑ-axis, as depicted in Fig. 3.2. The spin current induced by
the ASHE then gains an out-of-plane component and is able to excite magnons
in the YIG [115]. At the detectors the opposite process, the inverse ASHE,
converts a spin current in a measurable charge current.

3.3 method

In this section we consider the microscopic Hamiltonian for a thin film of YIG
and derive the equations of motion for the spin density. The formalism that
we use, however, is completely general and can be applied to any bosonic
Hamiltonian with anomalous coefficients.

We consider a thin film of YIG, with N layers, of thickness d = Na, with a
magnetic field perpendicular to the film. We include both the dipole-dipole
and exchange interaction, which gives us a full description of the spin wave
dynamics. We apply a Holstein-Primakoff transformation to the Hamiltonian,
retain terms up to second order, and Fourier-transform along the x, y directions.
We can then write the quadratic part of the Hamiltonian as

Hk = ∑
k

(
b†
k bk

)(Ak Bk

B†
k Ak

)(
bk

b†
−k

)
, (3.1)

where b†
k = (b†

k(z1), ..., b†
k(zN)) are the creation operators for magnons with

the two-dimensional wave vector k and Ak and Bk are N × N matrices with
N the number of internal degrees of freedom within a unit cell, which is
in our case equivalent to the number of layers. More details are found in
Appendix 3.E. We evaluate the dipole-dipole interaction using the Ewald
summation method [23]. This allows us to accurately compute the magnon
spectrum, even at long wavelengths, where conventional summing methods
are slow [116], but where we do expect the Berry curvature to be large [108].
From the anomalous coefficients Bk, which are due to the dipole-dipole
interaction, it is clear that spin is not conserved. The dipolar interactions
couple the magnons the the lattice, which therefore acts as a spin sink and/or
source.

We note that the anomalous coefficients in the Hamiltonian create a squeezed
magnon state, which is not an eigenstate of the spin in the z-direction [117].
Between a metallic lead and the magnetic system there is thus an interface of
a squeezed (the YIG) and a spin state with definite spin in the z-direction (the
metallic lead). This leads to corrections to the spin current over the interface,
which we show in more detail in Sec. 3.3.1.
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In a bosonic system with anomalous coefficients, the Bogoliubov-de Gennes
(BdG) Hamiltonian Hk is diagonalized by a para-unitary transformation [100],
such that

T †
kHkTk = Ek; T †

k νTk = ν, (3.2)

where

Ek = diag
[

E1
k, ..., EN

k , E1
−k, ..., EN

−k
]

,

ν = diag [1, ..., 1,−1, ...,−1] ,

and Tk is a para-unitary transformation matrix of size 2N × 2N. Note that we
only have N distinct bands, since the bands n and n + N are related to each
other via the para-unitary structure.

In order to derive the equations of motion we perform the gradient expan-
sion of the Hamiltonian. We first define the Berry connection (suppressing the
k-label from here onwards)

Aα = iνT †ν (∂kα
T ) , (3.3)

where α ∈ (x, y). Numerically, we calculate the Berry connection using the
component-wise form

Aα
nm = −i

[
T † (∂kα

H) T
]

nm
En − νnνmEm

, n ̸= m, (3.4)

where n, m = 1, ..., 2N. This form also makes it clear that the Berry connection
increases close to band crossings.

From the Berry connection we define the Berry curvature for the n-th band
as

Ωαβ
n =

(
∂kα

Aβ − ∂kβ
Aα
)

nn

= i
(

Aα Aβ − Aβ Aα
)

nn
(3.5)

The Berry curvature satisfies the sum rule ∑n Ωαβ
n = 0, where n is summed

over all 2N bands. We note that these definitions for the Berry phase and
curvature are equivalent to those given by Shindou et al. [118], who were
the first to consider the topology of magnons, and also to those of Lein and
Sato [119], who showed rigorously that the concept of the Berry phase can be
applied to BdG-type Hamiltonians.

Now we are able to derive the equations of motions for general bosonic
systems with non-zero anomalous coefficients. As noted, this is applicable
to the magnons described here, but also for other bosonic systems, such as
phonons and photons [104, 120], where geometrical effects are also known. We



3.3 method 51

start from the quantum kinetic equations in the Keldysh formalism, which are
derived by performing a Wigner transformation and expanding the gradients
up to first order [112]. Moreover, we assume damped quasiparticles in (local)
thermal equilibrium. We have relegated the details of this calculation to
Appendix 3.A and will only state the equation of motion for the spin density
sz(r, t) here, which is given by

∂tsz +∇ · Js = Γsµm, (3.6)

where we have only kept terms up to first order in the magnon chemical
potential µm. Here, Γs describes the relaxation rate of the magnons. The spin
current Js is written component-wise as

Jα
s = σs∂rα µm + σH

s ∑
β

εαβ∂rβ
µm, (3.7)

where σs is the magnon spin conductivity, σH
s is the Hall conductivity and εαβ

is the two-dimensional Levi-Cività symbol. The Berry curvature only affects
the magnon Hall conductivity σH

s , and bands with a greater Berry curvature
contribute to a larger Hall conductivity. From the Keldysh formalism the
coefficients σs, σH

s and Γs can be calculated using the microscopic Hamiltonian,
by integrating the relevant quantities over the entire Brillouin zone. We show
the details of this calculation in Appendix 3.E. We consider a clean system
in the low-temperature limit, such that the dominant damping source is the
Gilbert damping [33]. Moreover, we disregard heat transport, since long-range
magnon transport is dominated by the magnon chemical potential [29].

The complete magnon dynamics are thus given by Eq. (3.6), where we
calculate the transport coefficients using the microscopic Hamiltonian. We
therefore do not have to rely on fitting parameters, but only on experimentally
measurable quantities.

3.3.1 Metallic lead

In order to model the electrical detection and injection, we consider a metallic
lead interfaced with the YIG film, as shown in Fig. 3.2. As a result of this
interface the equations of motion have to be modified, such that we have at
the interface between the magnet and the metallic lead that

∂tsz (r, t) +∇ · Js = Γsµm + Aµm + Bµe + C, (3.8)

where µe is the electron spin accumulation in the lead. We show the detailed
derivation of this correction and the coefficients A, B and C in Appendix 3.C.
The correction Aµm, with A > 0, describes the relaxation of the magnons into
the metallic lead. Bµe is the injection of spin driven by the chemical potential
in the metallic lead.
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The constant C is related to the fact that the magnons are squeezed, whereas
the spins in the metallic lead are not squeezed. The main correction is a
constant injection of angular momentum into the YIG, even with zero chemical
potential in the Py lead, which is a characteristic feature of elliptic magnonic
systems [121]. The source of this spin current is the lattice, which couples to
the magnons via the dipole-dipole interaction. The constant C is therefore
zero in the absence of dipolar interactions. There are also corrections due to
dipolar interactions to the constants A and B, which are of less importance.
In absence of these corrections we would have A = −B, such that the spin
current is zero when µe = µm [29]. With the metallic lead modelled, we now
have all the necessary parts for a full description of the dynamics of magnons
in a Hall bar.

3.3.2 Diffusion-relaxation

We now write down the full diffusion-relaxation equation, which we solve
numerically to give the full description of the Hall bar, including electri-
cal injection and detection. Since the Hall conductivities enter through an-
tisymmetric terms in the current, see Eq. (3.7), these drop out in the final
diffusion-relaxation equation, which becomes

σs∇2µm = Γsµm. (3.9)

The Hall conductivities only appear in the expressions for the boundary
conditions, where we require that the normal component of the current
vanishes, i.e. that Js · n̂ = 0 at the edges of the film if there is no metallic lead
present, where n̂ is the normal vector to the boundary. To measure a finite
Hall response we consider a Hall bar setup, as shown in Fig. 3.1. The Hall
response can then be measured between terminals 2 and 4. As far as we are
aware, there are no analytical solutions for such a geometry. We therefore
numerically solve the diffusion-relaxation equation, Eq. (3.9).

Specifically, we solve the diffusion-relaxation equation on the square 0 ≤
x ≤ M and 0 ≤ y ≤ M, where the diffusion is given by Eq. (3.9). We use a
Finite Element Method, with a symmetric square grid, implemented in the
FreeFEM++ software [122]. At the open boundaries we require that Js · n̂ = 0.
At the injector and detectors we have the boundary condition Js · n̂ = Jint

s (µm),
where the interface current Jint

s is a function of the magnon chemical potential
at the interface µint

m and includes the contributions A, B and C as discussed in
Sec. 3.3.1. We give the full form of Jint

s in Appendix 3.D. We then define the
total spin current injected or detected at Py strip i as Ii =

∫
∂Si
Js · n̂ds, where

∂Si is the interface between the Py and the YIG.
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Figure 3.3: The spin diffusion length lm for a thin film of YIG with thickness N=75, for
varying magnetic field strength. The corresponding Hall angle is shown in
Fig. 3.4a.

3.4 hall angle and diffusion length

With the full description of the transport coefficients complete, we now numer-
ically evaluate these using the microscopic Hamiltonian. We have relegated the
derivation of these coefficients to Appendix 3.B. The parameters used in this
chapter are shown in Table 3.1. We only consider the low-temperature regime
T < 2 K, since at higher temperatures we expect other damping mechanisms
besides the Gilbert damping to play a role. Moreover, one might expect the
ferrimagnetic branches in the YIG dispersion relation to be relevant at room
temperature [123], which are not captured in our model.

First, we show the results for the spin diffusion length, ℓm =
√

σs/Γs, for a
film of thickness N = 75 in Fig. 3.3. The diffusion length peaks for low tem-
peratures, and converges to a constant value in the high temperature regime.
This can be explained by the energy dependence of the Gilbert damping: for
low temperature only the lowest energy bands contribute, which have the
lowest Gilbert damping, since the damping is proportional to energy. The
drop-off of the diffusion length at low temperature and high magnetic field is
explained by the fact that the temperature is not high enough to occupy the
first band, and there is thus no transport possible. At elevated temperatures
we compare the spin diffusion length to a simple model that only considers
the lowest exchange band of YIG, from which the spin diffusion length is

estimated as lm ≈ 4
√

J/3kBTMsα2
G [29]. We expect this approximation to be

only valid for relatively high temperatures, where the higher exchange bands
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Table 3.1: Parameters for YIG used in the numerical calculations in this chapter. Note
that S follows from S = Msa3/µ, where µ = 2µB is the magnetic moment of
the spins, with µB the Bohr magneton. We are not aware of any values of the
parameters µe and αIF for a YIG|Py interface and have therefore assumed
values that are equivalent to the YIG|Platinum interface. Since the injection
and detection is described in linear response, their exact values do not affect
the final results.

Quantity Value

a 12.376 Å [93]

S 14.2

4πMs 1750 G [94]

J 1.60 K [23]

αG 10−4 [18]

αIF 10−2 [18]

µe 8 µV [29]

are occupied, and for thicker films. We therefore compare this approximation
with our calculations at T = 2 K and find that lm ≈ 35 µm, whereas our
numerical model found lm = 55 µm for N = 150 and H = 1800 Oe. Moreover,
as is evident from Fig. 3.3, our numerically calculated diffusion length also
scales as 1/

√
T. For different thicknesses (not shown here) the behaviour and

order of magnitude of the spin diffusion length is similar.
Next, we consider the Hall angle, θH = σH

s /σs. We compare two films with
thicknesses N = 75 and N = 150 in Fig. 3.4. It is clear that the Hall angle
peaks for small temperature, and tends to a lower constant value for higher
temperature. The complete drop-off at T = 0 is explained by the fact that there
are no magnons thermally excited at zero temperature. In order to further
explain these results we first need to focus on the Berry curvature for these
thin films, since the Berry curvature is directly related to the Hall conductivity
in this system. We therefore show the Berry curvature Ωyz

n of the n-th band in
Fig. 3.5 for these two films. We can see that the Berry curvature is largest for the
lowest band, which we therefore expect to dominate transport. Furthermore,
in the dipolar regime, at small wavevectors, the Berry curvature is largest.
This explains the temperature dependence of θH we observe in Fig. 3.4. At
low temperatures the dipolar magnons dominate transport, and they have
a large Berry curvature. Furthermore, the exchange bands naturally have a
larger contribution to transport than the dipolar magnons (not shown here).
As the temperature increases, the ratio between the exchange and dipolar
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Figure 3.4: The Hall angle θH = σH
s /σs for two different film thicknesses, (a) N = 75

and (b) N = 150. The shaded area indicates the error, which results from a
slowly converging integral over the Brillouin zone.

magnons shift towards the exchange magnons, increasing the magnon spin
conductivity, but not the Hall conductivity.

For the film with thickness N = 150, shown in Fig. 3.4b, the Hall angle
is negative for low magnetic field. Here the shaded region indicates the
error from integrating the Berry curvature Ωn over the Brillouin zone. The
larger errors can be explained from the behaviour of the Berry curvature
close to band crossings, as shown in Fig. 3.5b. The Berry curvatures grows
at band crossings—but never diverges, since none of the bands are ever
degenerate. This can also be seen from Eq. (3.4), where it is clear that the Berry
connection matrix and therefore the Berry curvature of the band n is inversely
proportional to the energy gap. Integrating such a function is numerically very
costly, and we only reach the precision as indicated by the shaded region. The
avoided band crossings in the dispersion, which lead to an increased Berry
curvature, are only present for thicker films (N ≳ 150). The results for the
Berry curvature can directly be compared to the Berry curvature as obtained
by Okamoto and Murakami [124], who showed the same behaviour as we
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Figure 3.5: The Berry curvature Ωyz
n per band for the forward-volume modes of a thin

film with (a) N = 75 and (b) N = 150 layers, and a magnetic field strength
H = 1800 Oe. Note the more complicated Berry curvature structure for
N = 150, which is not present for the N = 75 thin film and is due to the
band crossings. We also note that the Berry curvature is negative for certain
bands for N = 150, but for none for N = 75.
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have shown for the N = 150 film, with an enhanced Berry curvature at the
band crossings and a negative Berry curvature for some of the higher bands.

The negative Hall angle can be explained from the negative Berry curvature,
which is present for N = 150, but not for N = 75, as was shown in Fig. 3.5. This
sign switch of the Hall angle is similar to what was observed by Hirschberger
et al. [125] in measuring the thermal Hall effect in a Kagome magnet.

For the forward volume modes, the magnetic field acts as a way to introduce
a finite energy shift of the bands. This can be used to explain the behaviour
of the spin diffusion length as shown in Fig. 3.3. A higher magnetic field
reduces the diffusion length, since by shifting all the bands the magnetic field
changes which bands are occupied and therefore contribute. For the Hall
angle, θH , the magnetic field dependence is more complicated, at least for
smaller magnetic fields. As a function of magnetic field strength, the Hall
angle rises rapidly, until it peaks for a field of strength ∼ 2400 Oe, after which
it drops again. For higher fields, the magnetic field essentially shifts the ratio
between which type of magnons contribute at a given energy: the exchange or
the dipolar magnons. This does not explain the low magnetic field behaviour
though, since we expect this behaviour to be (roughly) linear. Further research
is needed to understand this in more detail.

Since we have determined that thickness plays a role in the Hall effect
of YIG, we also show the results for a fixed magnetic field, with increasing
thickness in Fig. 3.6. It can clearly be observed that the Hall angle increases
for thicker films. However, one should be aware that this is still assuming that
there is no diffusive transport along the film normal, i.e. the spin diffusion
length is larger than the film thickness. The spin diffusion length for YIG thin
films at the temperature range considered here has not yet been measured,
but for T = 30 K it is roughly 5 µm [126], which would make our description
valid for thin films up to N = 5000.

We have now calculated the transport coefficients σs, σH
s and Γs. Not dis-

cussed in the main text are the coefficients A, B and C that govern spin
injection at the metallic lead interface, which we show in App. 3.C. Next, we
solve the diffusion-relaxation equation, in order to determine if the magnon
Hall effect can be measured electrically.

3.5 diffusion in the hall bar

Experimentally, the main observable is the difference between the spin currents
detected by terminals 2 and 4. We define a Hall coefficient as the signal
difference between detectors 2 and 4,

∆I =
I2 − I4

I2 + I4
. (3.10)
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Figure 3.6: The Hall angle θH for H = 2600 Oe, as a function of temperature and
for varying thicknesses. We were not able to numerically calculate θH for
thicker films, so it is not clear if the Hall angle will continue to increase.

In order to confirm that a non-zero Hall angle θH results in a finite ∆I we
numerically solve the diffusion-relaxation equation. We choose M = 8 µm,
La = 3 µm and Lb = 0.1 µm, which are the same dimensions used by Das et al.
[115] to measure the planar Hall effect in YIG. The distribution of the chemical
potential for a typical system is shown in Fig. 3.1. The chemical potential
diffuses through the film and gets picked up by the three detectors. Note that
the difference between the currents picked up by detectors 2 and 4, i.e. ∆I, is
too small to be visible on the color scale of Fig. 3.1.

We then calculate the Hall coefficient ∆I for N = 75 and show the results
in Fig.3.7. These results can be compared to the Hall angle, θH , in Fig. 3.4a.
From this comparison it is clear that the Hall angle θH is directly related to
the Hall coefficient ∆I. We see little to no effect from the magnon relaxation,
since the spin diffusion length is much longer than the size of the Hall
bar. Most importantly, there are no (large) corrections from interface effects
due to the electrical injection and detection. This is also the case for different
thicknesses. We therefore conclude that the magnon Hall effect can in principle
be measured electrically in a Hall bar geometry.

3.6 conclusion and discussion

We have derived and calculated the anomalous Hall conductivity for magnons
in a thin film of YIG, using a microscopic model. Furthermore, we have shown
that a non-zero anomalous Hall conductivity results in a measurable signal in
a Hall bar setup and can be measured electrically. The magnon Hall effect has
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Figure 3.7: The Hall coefficient ∆I, which follows from the numerical solution to the
diffusion-relaxation equation for a Hall bar geometry. The thickness of the
film is N = 75 and this can therefore be directly compared to the Hall angle
θH in Fig. 3.4a. From this comparison it is clear that a Hall response can be
measured, and that θH is a direct predictor of ∆I.

previously only been measured thermally in materials with a Dzyaloshinskii-
Moriya spin-orbit interaction [105], but with a Hall bar setup as discussed
here this magnon Hall effect could also be measured electrically in YIG.

Using realistic parameters we have calculated the size of the expected Hall
angle, and its dependency on temperature and magnetic field. Moreover,
we have shown that for thicker films of YIG, there is a sign change in the
Hall angle as a function of the magnetic field, which would be a strong
experimental indicator of the magnon Hall effect.

The presented method can be applied to any bosonic system with anomalous
coefficients to determine anomalous transport properties. In fact, the physical
origin of the anomalous transport properties discussed here are the dipole-
dipole interactions, which are universally present in any magnetic system. As
such, this method can be applied to a wide range of magnetic materials.

In order to measure this effect it is possible to use the fact that the sign
of the Hall angle switches as the field is reversed. Therefore, by comparing
measurements with opposite field, the anomalous contributions can be isolated.
This is especially useful since the spin diffusion and relaxation means that the
distance between the injector at lead 1 and the detectors at leads 2 and 4 is
critical.

As was shown by Takahashi and Nagaosa [127] and Okamoto et al. [128], for
magnetoelastic waves the Berry curvature is enhanced at the crossing of the
magnon and phonon branches. This could therefore serve to further enhance
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the magnon Hall effect discussed here. The inclusion of magnon-phonon
coupling on our formalism is left for future chapter.

3.a quantum kinetic equations

In this appendix we derive the equation of motion for the spin density of a
bosonic Hamiltonian. We start from the quantum kinetic equations:(

ϵ̂− νĤ
)

ĜK = νΣ̂KĜA + νΣ̂RĜK; (3.11)

ĜK (ϵ̂− Ĥν
)
= ĜRΣ̂Kν + ĜKΣ̂Aν, (3.12)

where ϵ̂ = δ (r− r′) δ (t− t′) ih̄∂t′ , Σ̂R/A/K and ĜR/A/K are the retarded,
advanced and Keldysh self-energies and Green’s functions, hats indicate
matrices in space and time and ν = diag[1, . . . , 1,−1, . . . ,−1]. We apply a
Wigner transformation, defined as

A (r, t;p, ε) =
∫

dr′
∫

dt′ Â
(
r+

r′

2
, t +

t′

2
; r− r

′

2
, t− t′

2

)
e−i(k·r′−ωt′)

and expand up to first order in h̄, such that we have (suppressing all labels
from here on)(

ε− νH − νΣR +
ih̄
2

∂t +
i
2

ν
(
∇p H

)
· ∇r

)
GK = νΣKGA; (3.13)

GK
(

ε− Hν− ΣAν− ih̄
2
←−
∂ t −

i
2
←−∇ r ·

(
∇p H

)
ν

)
= GRΣKν, (3.14)

where we assume that the Hamiltonian does not depend explicitly on position
or time, i.e. H (r, t;k, ω) = H (k) and have used arrows to indicate to which
function the derivative applies, if there are ambiguities.

Furthermore, we define a covariant derivative as

Dkα
E ≡ T † (∂kα

H) T = ∂kα
E + iEAα − iνEνAα. (3.15)

We introduce the transformed Green’s functions and self-energies

gR/A/K = T −1GR/A/K
(
T †
)−1

; σR/A/K = T †ΣR/A/KT ,

and assume damped quasiparticles in (local) thermal equilibrium, such that

σR/A (k, ω) = ∓iν [Γmm (k, ω) + Γmr (k, ω)] ; (3.16)

σK (r;k, ω) = −2iΓmm (k, ω) Fn (r, ω)

− 2iΓmr (k, ω) Fµm=0
n (r, ω) , (3.17)
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where

Γη
mn (k, ω) = δmn ×

γη (k, ω) 1 ≤ n ≤ N,

γη (−k,−ω) N + 1 ≤ n ≤ 2N,

with η ∈ {mr, mm} representing the magnon relaxation processes (which do
not conserve spin) and magnon-magnon interactions (which conserve spin)
respectively. The distribution function is defined as

Fmn (r, ω) = δmn ×

 fB (r, ω) 1 ≤ n ≤ N,

fB (r,−ω) N + 1 ≤ n ≤ 2N,

where fB = coth
(

h̄ω−µm
2kBT

)
is the symmetrized Bose-Einstein distribution. The

distribution function Fµm=0
n (r, ω) describes the relaxation of magnons to the

lattice. For brevity, we write Γn (k, ω) = Γmr
n (k, ω) + Γmm

n (k, ω).
The retarded and advanced Green’s functions are then given by

gR/A =
δnm

νn (h̄ω± iΓn)− En
. (3.18)

For the Keldysh Green function we first solve the diagonal component of the
distribution function, fn ≡ ih̄

2 gK
nn, using the difference between Eqs. (3.11) and

(3.12), such that

∂t fn + ∑
α

∂rα jα
n = −2

Γmr
n
h̄

[
fn −

h̄Γn

(h̄ω− νnEn)
2 + Γ2

n
Fµm=0

n

]

−2
Γmm

n
h̄

[
fn −

h̄Γn

(h̄ω− νnEn)
2 + Γ2

n
Fn

]
, (3.19)

where the current density

jα
n =

νn

h̄
(∂kα
En) fn + νn

i
4 ∑

m ̸=n

[
(Dkα
E)nm gK

mn + gK
nm (Dkα

E)mn

]
, (3.20)

has contributions from the off-diagonal components.
We now assume that there is local thermal equilibrium, and thus that the

local distribution function fn can be described by small corrections δ fn on
top of the thermal equilibrium. This is possible because the spin conserving
processes (represented by Γmm) are much faster than the non-spin-conserving
processes (represented by Γmr). Thus, we disregard the Fµm=0

n term in Eq. (3.19)
and make the ansatz

fn =
h̄Γn

(h̄ω− νnEn)
2 + Γ2

n
Fn + δ fn, (3.21)
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where δ fn is at least one order higher in gradients. In a steady state (such that
∂t fn = 0) we further note that from Eq. (3.19) it is clear that

∑
α

∂rα jα
n = −2

Γn

h̄

(
δ fn +

Γmr
n

(h̄ω− νnEn)
2 + Γ2

n

(
Fn − Fµm=0

n

))
. (3.22)

This can then be solved up to first order in gradients by inserting the ansatz,
Eq. (3.21), into the current density, Eq. (3.20), and using the fact that gK

nm is
one order higher in gradients and can thus be discarded. Then we find

δ fn = −νn h̄
2

(∂kα
En)

1

(h̄ω− νnEn)
2 + Γ2

n
(∂rα Fn)

− h̄Γmr
n

(h̄ω− νnEn)
2 + Γ2

n

(
Fn − Fµm=0

n

)
. (3.23)

In order to find gK
nm we consider the sum of Eqs. (3.11) and (3.12) and find

for m ̸= n that

[2h̄ω− νnEn − νmEm + i (Γn − Γm)] gK
nm =

− i
2 ∑

α
∑

l

[
νn (Dkα

E)nl

(
∂rα gK

lm

)
− νm

(
∂rα gK

nl

)
(Dkα
E)lm

]
. (3.24)

It is convenient to proceed in the quasiparticle limit (limΓn→0+ ), where

lim
Γ→0+

fn = πδ (ω− νnEn/h̄) Fn (ω) + δ fn. (3.25)

We now use the fact that gK
nm is one order higher in gradients than fn, and as

such for m ̸= n can write

gK
nm =

1
h̄

iπ
νmEn − νnEm

∑
α

∂rα (Dkα
E)nm×[

νmδ (ω− νnEn/h̄) Fn (ω) + νnδ (ω− νmEm/h̄) Fm (ω)
]
, (3.26)

where we have used the diagonal components fn to rewrite Eq. (3.24), only
keeping terms up to first order in gradients. Using the definition of the
covariant derivative in Eq. (3.15) we now write the current as

jα
n = νn (∂kα

En)πδ (ω− νnEn/h̄)
[

Fn −
Γmr

n
Γn

(
Fn − Fµm=0

n

)]
− 1

2Γn h̄ ∑
β

(∂kα
En)

(
∂kβ
En

)
πδ (ω− νnEn/h̄) ∂rβ

Fn

+
iπ
4 ∑

m ̸=n
∑
β

(νnνmEm − En)
(

Aα
mn Aβ

nm − Aβ
mn Aα

nm

)
×

∂rβ
[νnδ (ω− νmEm/h̄) Fm + νmδ (ω− νnEn/h̄) Fn] , (3.27)
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such that we now have a full description of the equation of motion, Eq. (3.19)
for the distribution function of the magnons. Note that the first term in
Eq. (3.27) will be zero if integrated over, due to inversion symmetry.

We continue with the spin density, which is defined as

sz (r, t) = − ih̄
4

Tr
[

ĜK
]

,

= − ih̄
4

∫ ddk

(2π)d

∫ dω

2π
Tr
[
T †T gK

]
, (3.28)

such that

∂tsz (r, t) =
1
2

∫ ddk

(2π)d

∫ dω

2π ∑
n

(
T †T

)
nn
×[

∑
α

∂rα jα
n + 2

Γmr

h̄

(
fn −

h̄Γn

(h̄ω− νnEn)
2 + Γ2

n
Fµm=0

n

)]
, (3.29)

where we have only kept terms up to first order in gradients. Since the
processes described by Γmm always conserve spin and because we assume
them to approximately conserve momentum, we furthermore disregard all
terms related to Γmm, such that Γn = Γmr

n . Its inclusion up to this point was
however necessary, since without it a local thermal equilibrium cannot be
properly defined and a current density cannot be expressed in terms of the
magnon chemical potential.

3.b coefficients

From here on, we assume Gilbert damping for the magnon relaxation process,
such that γmr (k, ω) = 2αG h̄ω [33], where αG is the bulk Gilbert damping
parameter. With the generic equation of motion, Eq. (3.29), we now derive
the equation of motion up to linear order in the magnon chemical potential,
giving

∂tsz (r, t) + ∑
α

∂rα Jα
s = Γsµm, (3.30)

where Jα
s = σαα∂rα µm + ∑β σαβ∂rβ

µm, with

σαα = − 1
32h̄αGkBT

∫ d2k

(2π)2 ∑
n

(
T †T

)
nn

(∂kα
En)

2

En
csch

[ En

2kBT

]2
, (3.31)

σαβ =
1

32kBTh̄

∫ d2k

(2π)2 ∑
n,m;
m ̸=n

(νn(T †T )nn + νm(T †T )mm)×
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(νnνmEm − En)Ωαβ
m csch

[ En

2kBT

]2
, (3.32)

Γs = −
1

2kBT

∫ d2k

(2π)2

∫ dω

2π ∑
n

(
T †T

)
nn
×

(2αG h̄ω)2

(h̄ω− νnEn)
2 + (2αG h̄ω)2 csch

[
νn h̄ω

2kBT

]2
. (3.33)

Here we have disregarded the Γmm term, since magnon-magnon scattering
preserves momentum and should therefore not contribute to the magnon
spin conductivity σαα. We then have σs = σxx = σyy and σH

s = σxy, since the
system is rotationally invariant.

In order to calculate these coeffiencts we diagonalize the Hamiltonian H
with a paraunitary matrix T , which also gives the energies E . Moreover, we
construct ∂kα

H, such that we calculate the Berry phase and subsequently the
Berry curvature using Eq. (3.4). These terms are further shown in Appendix 3.E.
We can then integrate the coefficients σH

s , σs and Γs over the entire Brillouin
zone, where we use the translation invariance to employ the one-dimensional
Gauss–Kronrod quadrature formula, which also gives an error estimate. These
results are shown in Sec. 3.4.

3.c metallic lead

We now consider how the equation of motion for the spin density has to be
modified if a metallic lead is interfaced to the ferromagnet. Attaching a metallic
lead, the self-energies are modified such that ΣR/A/K = ΣR/A/K

bulk + ΣR/A/K
IF ,

with

ΣR/A
IF (r, t;k, ω) = ∓iαIF (h̄ω− νµe) , (3.34)

ΣK
IF (r, t;k, ω) = 2ΣR

IFFe (ω) , (3.35)

where

Fe (r, ω) = δnm ×

coth
[

h̄ω−µe
2kBT

]
1 ≤ n ≤ N,

coth
[−h̄ω−µe

2kBT

]
N + 1 ≤ n ≤ 2N,

(3.36)

and αIF is the interfacial Gilbert damping. The equation of motion for the spin
density, Eq. (3.29), is then modified to ∂tsz +∇ · J s = Γs + ΓIF

s , where

ΓIF
s = −1

4

∫ ddk

(2π)d

∫ dω

2π
Tr
[
T †νΣK

IFT gA − T †νΣK
IFT gR

+ T †νΣR
IFT gK − T †νΣA

IFT gK
]
. (3.37)
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Noting that, up to lowest order in the interfacial coupling, the Green’s func-
tions gR/A/K are unchanged by the interfacial self-energies, we can further
write this as (in the quasiparticle limit)

ΓIF
s =

αIF

2h̄

∫ ddk

(2π)d Tr
[
T † (E − µe) T F (νE)− T †ν (E − µe) Fe (νE) T ν

]
. (3.38)

We again keep only terms linear in µm and µe, such that we can write ΓIF
s =

Aµm + Bµe + C, with

A =
αIF

4h̄kBT

∫ d2k

(2π)2 Tr

[
T †ET csch

[ E
2kBT

]2
]

; (3.39)

B = −αIF

2h̄

∫ d2k

(2π)2 Tr

[
T †T coth

[ E
2kBT

]

− 1
2kBT

E csch
[ E

2kBT

]2
+ coth

[ E
2kBT

]]
; (3.40)

C =
αIF

2h̄

∫ d2k

(2π)2 Tr
[(
T †ET − E

)
coth

[ E
2kBT

]]
. (3.41)

3.d boundary conditions

With the equation of motion for the spin density completely determined, we
can now consider the boundary condition for the spin density in the Hall bar
geometry. For the metal strips we assume a thin strip, where La ≪ Lb and the
long side Lb interfaces the Hall bar, as shown in Fig. 3.1. Then the detector
can be described by Eq. (3.8), with the boundary condition that the current at
its interface with the main region is continuous. Thus we have,∫

∂Si

dsJs · n̂ =
∫

Si

dS [(Γs + A)µm + Bµe + C] , (3.42)

where Si is the area of detector i. Note thate for the detectors µe = 0. We now
Taylor expand the chemical potential in the detector strip perpendicular to
the interface, and integrate over the short side of the strip, keeping only terms
linear in La, which gives the boundary condition∫

∂Si

dsJs · n̂ = La

∫
∂Si

ds [(Γs + A) µm + Bµe + C] , (3.43)
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where we have required that Js · n̂ = 0 at the other three sides of the detector.
The boundary condition can now be identified as

Js · n̂ = Jint
s (µm), (3.44)

where
Jint
s (µm) = La [(Γs + A) µm + Bµe + C] . (3.45)

3.e hamiltonian

In order to determine the dynamics of the magnons in the YIG, we describe
this system using the Heisenberg spin Hamiltonian [91]

H = −1
2 ∑

ij
JijSi ·Sj − µHe ·∑

i
Si

− 1
2 ∑

ij,i ̸=j

µ2

|Rij|3
[
3
(
Si · R̂ij

) (
Sj · R̂ij

)
−Si ·Sj

]
, (3.46)

where the sums are over the lattice sites Ri, with Rij = Ri −Rj and R̂ij =
Rij/|Rij|. We only consider nearest neighbour exchange interactions, so Jij = J
for nearest neighbours and 0 otherwise. Here µ = 2µB is the magnetic moment
of the spins, with µB = eh̄/(2mec) the Bohr magneton. He is the external
magnetic field, which we take strong enough to fully saturate the ferromagnet.

We apply the Holstein Primakoff transformation up to quadratic order,

S+
i =

√
2Sbi; S−i =

√
2Sb†

i ; Sz
i = S− b†

i bi (3.47)

to the Heisenberg spin Hamiltonian, Eq. (3.46), and apply the Fourier transfor-
mation in the xy-plane, introducing k = (kx, ky). The coordinate system used
is summarized in Fig. 3.2 in the main text. We can now write the quadratic
part of the Hamiltonian in the basis (bk(z1), ..., bk(zN), b†

−k(z1), ..., b†
−k(zN))

T

as

Hk =

(
Ak Bk

B†
k Ak

)
, (3.48)
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where the amplitude factors are

Ak(zij) = ∑
rij

e−ik·rA(zi − zj, r),

= δij

[
h + S ∑

n
Dzz

0 (zin)

]

− S
2

[
Dyy
k (zij) + Dxx

k (zij)
]
+ SJk(zij), (3.49)

Bk(zij) = ∑
rij

e−ik·rB(zi − zj, r),

= −S
2

[
Dxx
k (zij)− Dyy

k (zij) + iDxy
k (zij)

]
, (3.50)

where

Jk(zij) = J[δij(6− δj1 − δjN − 2 cos(kxa)− 2 cos
(
kya
)
)− δij+1 − δij−1], (3.51)

rij = (xij, yij) and Dαβ
k (zij) describes the dipole-dipole interaction.

For the Berry curvature we need to calculate ∂kα
Hk, where α ∈ (x, y). This

is given by

∂kα
Hk =

(
∂kα
Ak ∂kα

Bk

∂kα
B†

k ∂kα
Ak

)
, (3.52)

where

∂kα
Ak(zij) = −

S
2

[
∂kα

Dyy
k (zij) + ∂kα

Dxx
k (zij)

]
+ 2SJa sin(kγa), (3.53)

∂kα
Bk(zij) = −

S
2
[∂kα

Dxx
k (zij)− ∂kα

Dyy
k (zij) + i∂kα

Dxy
k (zij)], (3.54)

For the dipolar sums we apply the Ewald summation method, as previously
developed by Kreisel et al. [23], and find

Dzz
k (zij) =

πµ2

a2 ∑
g

(
8
√

ε

3
√

π
e−p2−q2 − |k+ g| f (p, q)

)
(3.55)

−4µ2

3

√
ε5

π ∑
r

(
|rij|2 − 3z2

ij

)
cos

(
kxxij

)
cos

(
kyyij

)
φ3/2(|rij|2ε);

Dyy
k (zij) =

πµ2

a2 ∑
g

(
4
√

ε

3
√

π
e−p2−q2 − (ky + gy)2

|k+ g| f (p, q)

)
(3.56)

−4µ2

3

√
ε5

π ∑
r

(
|rij|2 − 3y2

ij

)
cos

(
kxxij

)
cos

(
kyyij

)
φ3/2(|rij|2ε);

Dxy
k (zij) = −

πµ2

a2 ∑
g

(ky + gy)(kx + gx)

|k+ g| f (p, q) (3.57)
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−4
ε5/2µ2
√

π
∑
r

yijxij sin
(
kxxij

)
sin
(
kyyij

)
φ3/2(|rij|2ε),

where

φ3/2(x) = e−x 3 + 2x
2x2 +

3
√

π Erfc
(√

x
)

4x5/2 (3.58)

and q = zij
√

ε, p = |k+g|/(2√ε) and f (p, q) = e−2pq Erfc(p− q)+ e2pq Erfc(p+
q). The sums are either over the real space lattice or the reciprocal lattice, where
the reciprocal lattice vectors are gx = 2πm, gy = 2πn, {m, n} ∈ Z. ε deter-
mines the ratio between the reciprocal and real sums. We choose ε = a−2,
such that 2pq ≈ 1 and exp[±2pq] converges quickly. Note that Dxx

k from the
symmetry Dyy

k = Dxx
k (kx → ky, ky → kx). Taking the derivatives w.r.t. kx and

ky we find

∂ky Dzz
k (zij) =

πµ2

a2 ∑
g

(
16p
√

ε

3
√

π
e−p2−q2 ∂p

∂ky
+ p2

√
ε

∂ f
∂ky

+
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2
√

εp
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)

+
4µ2

3

√
ε5

π ∑
r

yij

(
|rij|2 − 3z2

ij

)
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(
kxxij

)
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(
kyyij

)
φ3/2(|rij|2ε);

∂ky Dyy
k (zij) = −

πµ2

a2 ∑
g

(
8p
√

ε

3
√

π
e−p2−q2 ∂p

∂ky
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(
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)2
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∂ f
∂ky

+
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)
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√
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(
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)
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(
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)
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∂kx Dyy
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πµ2
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∂ky Dxy
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√
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∑
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(
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)
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(
kyyij

)
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where

∂p
∂kα

=
kα + gα

4εp
;

∂ f
∂kα

=
kα + gα

4pε

(
2qe2pq Erfc(p + q)− 2qe−2pq Erfc(p− q)− 4√

π
e−p2−q2

)
and the remaining terms follow from symmetry, by swapping ky ↔ kx.





4
Z E R O - F R E Q U E N C Y C H I R A L M A G N O N I C E D G E S TAT E S
P R O T E C T E D B Y N O N - E Q U I L I B R I U M T O P O L O G Y

Topological bosonic excitations must, in contrast to their fermionic counterparts, appear at
finite energies. This is a key challenge for magnons, as it prevents straightforward excitation
and detection of topologically-protected magnonic edge states and their use in magnonic
devices. In this work, we show that in a non-equilibrium state, in which the magnetization is
pointing against the external magnetic field, the topologically-protected chiral edge states in
a magnon Chern insulator can be lowered to zero frequency, making them directly accessible
by existing experimental techniques. We discuss the spin-orbit torque required to stabilize
this non-equilibrium state, and show explicitly using numerical Landau-Lifshitz-Gilbert
simulations that the edge states can be excited with a microwave field. Finally, we consider a
propagating spin wave spectroscopy experiment, and demonstrate that the edge states can be
directly detected.1

4.1 introduction

Over the past decade, it has become clear that the concepts of topological
band theory cannot only be applied to electrons [39, 42], but also to a whole
range of other (quasi)-particles, encompassing photons [129, 130] and col-
lective bosonic modes in quantum condensed matter systems like phonons
[131], plasmons [132, 133], and magnons [64]. Among the latter, topological
magnon systems, such as magnon Chern insulators [12, 43, 44, 47–49, 118,
134], magnon spin Hall insulators [53–55], magnon Dirac semimetals [56,
57], magnon Weyl semimetals [58, 59], and higher-order topological magnon
insulators [60–62] are especially of interest because they couple to external
magnetic fields providing an exceptional handle for control. Arguably, the
most fundamental of these phases is the magnon Chern insulator, which
supports chiral edge states that could be used as fault-tolerant spin-wave
current splitters and interferometers [63, 118] and for highly efficient spin

1 This chapter is based on P. M. Gunnink, J. S. Harms, R. A. Duine, and A. Mook, Zero-frequency chi-
ral magnonic edge states protected by non-equilibrium topology, (Feb. 13, 2023) arXiv:2302.06597. A.M.
conceived the project, R.A.D. and J.S.H. introduced the non-equilibrium states and P.M.G. per-
formed the calculations and prepared the manuscript. All authors contributed to the manuscript.
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transport robust against backscattering at moderate disorder [135, 136]. Multi-
ple magnetic materials have been predicted to be magnon Chern insulators
from their bulk band structure obtained by inelastic neutron scattering experi-
ments [50–52, 137]. However, the hallmark chiral edge states have to date not
been directly observed. Alternatively, as a direct probe of bulk band topology
Raman scattering has been proposed [138].

This lack of evidence for chiral bosonic edge states is strongly tied to the fun-
damental difference between fermion topological insulators and their bosonic
analogs. Since bosonic collective excitations do not obey a particle number
conservation law, their mathematical description relies on the Bogoliubov-de-
Gennes formalism, which comes with a doubled particle space. As a result,
the topologically-protected edge states have to appear at finite frequencies
above the first bulk band [118, 139, 140]. For magnon Chern insulators, this
means the edge states have energies set by the magnetic exchange energy
scale, which is typically meV [51, 141]. The corresponding frequency is in the
THz-range, which is beyond the reach of experimental tools, such as Brillouin
Light Scattering or microwave excitation and detection.

In this work we propose a method to lower the topologically-protected chiral
edge states in magnon Chern insulators to zero frequency, such that they are
easily accessible by microwave techniques. This is achieved by considering
magnon excitations on top of a uniform magnetization that is pointing against
the applied external magnetic field, as opposed to considering excitations on
top of a magnetization parallel to the magnetic field, as shown in Fig. 4.1(a-b).
In such a non-equilibrium setup, the magnon excitations decrease the energy
of the system, allowing us to tune the frequency of the edge modes to zero
frequency. Since the non-equilibrium state is energetically unstable, it has to
be rendered dynamically stable, which is achieved by an appropriate spin-
orbit torque. Using numerical Landau-Lifshitz-Gilbert simulations we show
that the edge modes can be excited at low frequencies, and are topologically
protected against backscattering. Finally, we consider a propagating spin-wave
spectroscopy (PSWS) experiment with two antennas, and demonstrate that
the edge modes can be directly detected at gigahertz frequencies, even in the
presence of disorder.

4.2 model

We consider a two-dimensional magnetic system of localized spins Si with
length S on two sublattices (denoted A and B), subject to an external mag-
netic field H with strength H0 and orientated along the z-axis, such that
H = H±ẑ, where we have introduced H± ≡ ±H0. After linearizing the spin
Hamiltonian H in fluctuations around a uniform state we find a two-band
spin-wave Hamiltonian. We assume the spin-wave Hamiltonian to realize a
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Figure 4.1: Strategy for generating zero-frequency chiral magnonic edge states in a
magnon Chern insulator ferromagnet (FM), comparing the equilibrium
(a,c,e) with the non-equilibrium (b,d,f) situation, with the uniform magneti-
zation (see arrows) and magnetic field H± aligned parallel and anti-parallel,
respectively. In the non-equilibrium case, the magnetization is stabilized by
spin-orbit torques originating from the adjacent heavy metal (HM) layer.
(c,d) Bulk magnon band structure with indicated Chern numbers, Ω1,2.
(e,f) Magnon band structure of an armchair edge ribbon. The colorscale
of the eigenfrequencies indicates the edge localization and dashed lines
denote the bulk band gap. In equilibrium, H+/(JS) = 0.1, the edge states
lie at high frequencies, but they are lowered down to zero frequency in
non-equilibrium, H−/(JS) = −2.75.
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magnon Chern insulator, exhibiting topologically non-trivial magnon bands,
and topologically-protected chiral edge states whose dispersion run across the
bulk band gap. The edge states therefore have a finite energy, which cannot
be lower than that of the first bulk band [118, 139, 140].

The central thesis of this work is that we can use a non-equilibrium state with
the magnetization pointing against the external magnetic field to lower the
edge states down to zero frequency. We thus consider the state Si = Sẑ, whilst
H = H−ẑ. We refer to the case of H = H+ as the equilibrium, and H = H−
as the non-equilibrium. The non-equilibrium state is unstable and will thus
relax to the equilibrium state in the presence of dissipation—such as Gilbert
damping—with the magnetization parallel to the applied magnetic field. A
spin-orbit torque is therefore necessary to render the energetically-unstable
situation dynamically stable. Experimentally, this could be accomplished by
interfacing the ferromagnetic insulator (FM) with a heavy metal (HM), as
indicated in Fig. 4.1(b), such that the spin Hall effect generates a transverse
spin current in the HM, injecting spin into the FM 1.

The spin dynamics are governed by the semiclassical Landau-Lifshitz-
Gilbert (LLG) equation

∂tSi = Si ×
(
− ∂H

∂Si
+

α

S
∂tSi +

Js

S
Si × ẑ

)
, (4.1)

where α is the Gilbert damping and we allow for the system to be driven by a
spin-orbit torque, Js. We now expand the LLG Eq. (4.1) in deviations m±A/B,i =

(Sx
A/B,i ∓ iSy

A/B,i)/
√

2S around the uniform state, SA/B,i = Sẑ, where m±A/B,i
refer to excitations for the equilibrium state, H = H+, and non-equilibrium
state, H = H−, on the sublattices A/B. After introducing the Fourier trans-
form of the spin-wave operators, m±A/B,i =

√
2/N ∑k eik·Ri m±A/B,k, the LLG

Eq. (4.1) can be written as a Bogoliubov-de-Gennes (BdG) like equation in
momentum space,

i(τ0 + iατz)∂tΨ
±
k = (τzH±k + i Jsτ0)Ψ

±
k , (4.2)

where τη are the Pauli matrices in particle-hole space and we have introduced
the magnon state vector Ψ±k = (m±A,k, m±B,k,m

±∗
A,−k, m±∗B,−k)

T in particle-hole
space.

We first determine the stability criterion for the non-equilibrium state,
which can be found by solving the BdG-like Eq. (4.2) up to zeroth order in
k and up to first order in the dissipative terms, α and Js. We then find that
ω0,± = H± − i(αH± − Js). For stability, we require that Im[ω0,±] < 0, which
in equilibrium, where H = H+ > 0, means that the system is stable in the

1 Because of the specific geometry considered here, where the magnetization is perpendicular to
the plane, one would need to make use of the anomalous spin Hall effect in a ferromagnetic
heavy metal, such as permalloy [114].
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absence of spin-orbit torque. In non-equilibrium, where H = H− < 0, we
require that Js ≥ αH and thus the non-equilibrium state can be rendered
dynamically stable with a sufficiently large spin-orbit torque.

Although our general method is valid for any magnon Chern insulator, we
now explicitly consider the well-known magnon Haldane model [43, 44], the
details of which we review in Appendix 4.A. In the magnon Haldane model,
the Dzyaloshinskii-Moriya interaction (DMI) opens the topological gap.

In the absence of dissipation, α = Js = 0, we obtain two sets of two spin
wave solutions to Eq. (4.2), as a result of the particle-hole symmetry. However,
this doubling is not a physical effect and merely the result of the fact that
we represent the spin waves using complex scalar fields [142]. We can thus
choose to only work with one branch of the solutions and we then obtain two
bands with dispersion relations

ω±k,1 = H± + 3JS + |hk|, ω±k,2 = H± + 3JS− |hk|, (4.3)

where J is the exchange constant and hk comprises the details of the magnon
Haldane model, further discussed in Appendix 4.A. We show this bulk dis-
persion in Fig. 4.1(c-d), comparing equilibrium and non-equilibrium. In equi-
librium, we obtain only states with positive frequencies, whereas in non-
equilibrium, where H = H− < 0, the bands are shifted down in frequency,
and we now obtain states with negative frequencies. The negative frequency
modes have opposite handedness compared to the positive frequency modes,
and thus rotate counterclockwise, whereas the positive frequency modes rotate
clockwise. They also carry opposite angular momentum. The shift down in
frequency can be explained from the fact that in non-equilibrium the effective
magnetic field δH/δSi is pointing against the magnetization, thus lowering
the frequency of the modes. We refer the reader to a full discussion about the
particle-hole symmetry and its implications to Appendix 4.C, where we also
discuss the stability and band structure in the presence of magnetic anisotropy.

The topological invariant for this system, the Chern number of the band
n, is now defined as 2πΩn = ∑k εij∂ki

An
j , where An

j = i ⟨Ψn
k| σ3 |∂kj

Ψn
k⟩ is

the Berry connection [2, 118, 119] and Ψn
k is the n-th eigenstate. In the bulk

band structure, Fig. 4.1(c-d), we have indicated the Chern number, ±1, for the
two bands. In equilibrium, the two bands have opposite Chern number and
therefore there are topologically-protected chiral edge modes connecting the
two bands. In non-equilibrium, the Chern number of the bands is preserved,
and since one band is shifted down to negative frequency, we therefore expect
the edge modes connecting the two bulk modes to cross zero frequency.

To further illustrate the topological nature of the edge states, we show
the bandstructure of a ribbon, 16 unit cells wide, with armchair edges in
Fig. 4.1(e-f), and indicate the edge localization in the colorscale. We have
chosen compensated boundaries, such that the edge coordination number, i.e.,



76 zero-frequency magnonic edge states

the number of nearest neighbors, is equal to the bulk coordination number,
and discuss the case of uncompensated boundaries in the Appendix 4.D. In
equilibrium, we obtain topologically-protected edge states, as can be seen
from their localization and their dispersion crossing the bulk band gap, and
they thus have a finite frequency. In non-equilibrium the edge states remain,
but are lowered in frequency and in fact cross zero frequency. We still have one
forward-moving mode localized on one side of the ribbon, and a backward-
moving mode on the other side. However, there are forward- and backward-
moving edge modes with both positive and negative frequencies, and thus
opposite handedness.

4.3 numerical verification of the edge modes

To verify the existence of the edge states at low frequencies, we numerically
solve the LLG Eq. (4.1), including Gilbert damping and the spin-orbit torque
needed to stabilize the non-equilibrium setup. This allows us to capture the
full dynamics, in particular nonlinearities that are not included in linear spin-
wave theory. We describe the specifics of the simulations used in Appendix 4.E
and show the resulting dynamics in Fig. 4.2. We focus on the non-equilibrium
dynamics, and use the same parameters used to calculate the bandstructure
in Fig. 4.1(c,f), and set α = 10−3 and Js = αH−. A spin wave is excited with
positive frequency ω0/JS = 0.7, Fig. 4.2(a-c), and negative frequency ω0/JS =
−0.7, Fig. 4.2(d-f), at one single edge site using a transversely oscillating
magnetic field with frequency ω0. We show the spin-wave amplitude, defined
as the deviation of the spins from the z-axis,Mi(t) ≡ 1− Sz

i (t).
For both positive and negative excitation frequency, an edge mode is excited,

which travels clockwise around the system. Its topological stability due to
the absence of backscattering is proven by its bypassing of the defect in
the upper left corner, where three edge spins are missing. Importantly, the
excitations with opposite frequency have an opposite handedness, i.e., the
individual spins rotate in the opposite direction in the (x, y)-plane and thus
carry opposite angular momentum. This is in sharp contrast to the equilibrium
situation, in which all magnons have the same chirality and carry the same
angular momentum. Experimentally, this difference could be accessed by
means of time-resolved spin pumping [35], because the pumped spin current
Is(t) ∝ ẑ · (Si(t) × Ṡi(t)) [123] and the resulting spin-Hall voltage are a
direct probe of handedness and, hence, of the topological negative-frequency
excitations. To illustrate this, we show the pumped spin current, Is(t), for a
site on the edge in Fig. 4.2(g). Is(t) is opposite between positive and negative
excitation frequencies, showing that the excitations carry opposite angular
momentum. Moreover, the arrival times of opposite excitation frequencies
differ, which we attribute to the different group velocity of the excited modes.
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Figure 4.2: Spin dynamics simulation of a finite-size system in non-equilibrium, re-
vealing the time evolution under a local excitation pulse with (a-c) positive
and (d-f) negative frequency at ±ω0, respectively. The chiral propagation
direction of the edge modes is indicated by the arrow. The system starts
in a uniform state, S = Sẑ, and is continuously excited at one single site
at the left edge, circled in (a,d). (a-c) Snapshots of the time evolution of
the spin-wave amplitude Mi(t) for a positive excitation frequency, +ω0.
(d-f) Same as (a-c) but for a negative excitation frequency, −ω0. (g) The
pumped spin current Is(t) for a site on the edge. The dashed vertical lines
correspond to the times at which the snapshots in (a-f) are taken.

This difference in group velocity can also be seen from the asymmetry of
the band structure with respect to ω = 0, Fig. 4.1(f), and is tuneable by
varying the magnetic field. Finally, we observe that the absolute magnitude
of Is(t) is larger for negative-frequency excitations. This is explained by the
Gilbert damping, αω, having the opposite sign for negative frequency modes
compared to their positive frequency counterparts.

4.4 propagating spin wave spectroscopy

A central goal in the field of magnon topology is the transport of angular
momentum by topologically protected edge states in magnonic devices [89].
Since usual frequencies of the edge states are in the THz range, these cannot
be excited using conventional microwave antennas. However, in the non-
equilibrium setup, the edge states extend to zero frequency, and are therefore
easily accessible. We thus consider a propagating spin wave spectroscopy
(PSWS) experiment [143], where two antennas are placed a distance d from
each other. One antenna excites spin waves, which are picked up by the
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second antenna after traveling through the film (see the inset of Fig. 4.3 for a
device illustration). We consider a nanoribbon 10 unit cells wide, with length
d, orientated such that the edges are of the armchair type, which corresponds
to the dispersion shown in Fig. 4.1(e,f).

In the excitation antenna, the Oersted field oscillating with frequency ω
excites all possible spin waves with the frequencies ±ω. Specifically, we model
the excitation field by adding a local magnetic field term, ∂tSi|exc = Si × hi,
to the LLG Eq. (4.1), expand in deviations m±i , and numerically solve the
resulting equation of motion to lowest nontrivial order in m±i in position and
frequency space. The second antenna is sensitive to the total microwave power,
which we define as the transmission S(ω) ≡ ∑i∈Rp |mi(ω)|2, where Rp are
the sites connected to the pickup antenna. We also model a concentration w of
defects by removing spins, in order to capture the topological protection of
the edge modes. The details of this calculation are discussed in Appendix 4.F.
We also consider three additional types of disorder in Appendix 4.G in order
to show that the robustness of the zero-frequency edge states is not dependent
on the specific disorder considered in the main text.

We show the resulting transmission in Fig. 4.3(a-b), comparing the equilib-
rium and non-equilibrium states, and the topologically trivial state, D = 0, and
non-trival state D/J = −0.2, where D is the strength of the DMI. We choose
α = 10−2 and stabilize the non-equilibrium state with a spin-orbit torque,
Js = αH. We first focus on the equilibrium state, H+/JS = 0.1, and simulate
finite disorder, w = 0.05, i.e., 5% of all sites have a defect. In Fig. 4.3(a),
we observe a broad peak in transmission at frequencies in the topologi-
cally nontrivial bulk band gap for D/J = −0.2. This feature is absent for
D = 0, proving that it is an effect of the non-trivial topology because the
backscattering-immune edge states enable transmission while the bulk state
transmission is suppressed.

Turning now to the topologically nontrivial non-equilibrium state, H−/JS =
−2.75 and D/J = −0.2, where the edge state lies around zero frequency
[cf. Fig. 4.1(f)], we see that transmission instead peaks around zero frequency.
Again, we find a clear distinction with the topologically trivial case, D = 0,
where transmission is suppressed at low frequencies at finite disorder. An
important feature of the zero-frequency edge states is their higher transmission
compared to the equilibrium edge states. This we attribute to the Gilbert
damping, αω, being proportional to frequency and thus lower for the zero-
frequency edge states.

The transmission follows an exponential decay as a function of distance,
i.e., S(d, ω) ∝ exp(−d/λ(ω)), where the decay length λ(ω) is a function of
the excitation frequency. We therefore fit the transmission over a range of
separation distances 20a < d < 200a (a lattice constant) and obtain an estimate
for the the decay length, λ(ω), which we show as a function of excitation
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Figure 4.3: Propagating spin wave spectroscopy experiment as sketched in the inset,
with edge modes excited by one antenna traveling through the film and
picked up by the second antenna. (a-b) The transmission at finite disor-
der, w = 0.05, and a fixed distance d = 200a, as a function of excitation
frequency ω, for the equilibrium state (H = H+) and the non-equilibrium
state (H = H−) for the topologically trivial state, D = 0 and non-trivial
state D/J = −0.2. Transmission is calculated with a finite Gilbert damping
and a stabilizing spin-orbit torque for the non-equilibrium state. (c-d) The
corresponding decay length of the transmission. The dashed and dashed-
dotted lines indicate the bottom and top of the bulk band gap.

frequency, ω, in Fig. 4.3(c-d). We observe that the decay length reflects the
topological protection of the edge states, peaking when the edge states are
excited. Furthermore, the decay lengths are much larger for D/J = −0.2
compared to D = 0, reflecting the robustness against disorder of the edge
states. Most importantly, in non-equilibrium, in the limit ω → 0 the decay
length increases, which is in stark contrast with the equilibrium state, where
the finite gap induced by the magnetic field blocks transmission.

4.5 discussion and conclusion

We have shown that by considering the magnetic excitations on top of a non-
equilibrium state, stabilized by spin-orbit torques, we can effectively lower the
frequency of topologically-protected chiral magnon edge modes. We obtain
edge states with negative and positive frequency and we have confirmed
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their existence by numerically solving the Landau-Lifshitz-Gilbert equation,
showing their stability and robustness against defects. Furthermore, we have
shown that in a propagating spin wave spectroscopy experiment, the edge
modes can be directly detected.

In Appendix 4.H we provide estimates for the required strength of the
external magnetic field and spin-orbit torque for specific material choices.
Here we note that in general the magnetic fields and spin-orbit torque, αH−,
are proportional to the frequency of the edge mode in equilibrium. It would
therefore be beneficial to consider this non-equilibrium state in a topological
magnon crystal, where the frequencies of the edge modes is set by dipolar
interaction, which is in the range of GHz [118, 144]. An alternative approach
would be to look at the transient regime, by first aligning to system to an
external magnetic field, and then reversing the direction of the applied field.
For a short transient period one would then observe the same features as
discussed here, but after some time the system would relax to equilibrium.

Our strategy can be used to lower other topological magnon excitations to
zero frequency. Specifically, magnon Weyl semimetals would be an interest-
ing prospect because zero-frequency Weyl points and associated topological
surface states could come with the same transport anomalies as their finite-
frequency counterparts [54, 145, 146]. Beyond magnons, it will be exciting
to explore similar ideas for other bosonic Chern insulators, such as those
formed by photons [129] or phonons [147, 148]. In these bosonic systems,
non-equilibrium is accessible through external pumping, analogous to the
spin-orbit torque used in this work. Finally, we note that non-equilibrium
incoherent Hall-type transport [105, 149, 150] could be of interest because
low-frequency edge states could potentially dominate transport.

4.a haldane model

In this work we consider the magnon Haldane model [43, 44], described by
the two-dimensional Hamiltonian

H = −1
2 ∑

ij
[JijSi ·Sj − Dijẑ ·

(
Si ×Sj

)
]−∑

i
[H±Sz

i − Ky(S
y
i )

2], (4.4)

where Si are spins of length S located on lattice sitesRi of a honeycomb lattice,
as indicated in Fig. 4.4. Nearest neighbors experience an exchange coupling,
Jij = J, and next-nearest neighbors are coupled through the Dzyaloshinskii-
Moriya interaction (DMI), Dij = −Dji = D. The spins are aligned to an
external magnetic field, H±, applied in the z direction, contributing a Zeeman
energy. We also consider an anisotropy with strength Ky, which will lead to
elliptical precessions.
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Figure 4.4: The honeycomb lattice of the Haldane model considered here. The relative
sign of the Dzyaloshinskii-Moriya interaction is indicated.

Furthermore, because we require a spin-orbit torque to stabilize the non-
equilibrium state, there will be a current flowing in-plane in the heavy metal.
This current will induce an Oersted field, affecting the spin dynamics. Assum-
ing the current to flow along the x-direction, we have an additional torque in
the LLG-equation (4.1):

∂tSi
∣∣
Oe = −Si × HOeŷ, (4.5)

where HOe is the strength of the Oersted field. After linearization—which
we will perform next—this torque can included in the effective spin-wave
Hamiltonian.

We introduce the deviations mi
± = (Sx

i ∓ iSy
i )/
√

2S around the uniform
state, Si = Sẑ, where m±i refer to excitations for the equilibrium state
(H = H+) and non-equilibrium state (H = H−). We expand the Hamilto-
nian, Eq. (4.4), up to the first nontrivial order in mi

±, and obtain the quadratic
spin-wave Hamiltonian

H2 = ∑
ij

[
Aijm±∗i m±j +

1
2

Bij

(
m±i m±j + m±∗i m±∗j

)]
, (4.6)

where

Aij = δij

(
H± + HOe + KS + S ∑

n
Jin

)
− S(Jij + iDij); (4.7)

Bij = δij(HOe + KyS), (4.8)

and we have included the current-induced Oersted contribution to the spin-
wave dynamics.
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We introduce the Fourier transform of the spin-wave operators, m±A/B,i =√
2/N ∑k eik·Ri m±A/B,k for the sublattices A/B respectively, and obtain the

Hamiltonian

Hk = ∑
k

Ψ±
†

k

[
(H± + HOe + KyS + 3JS)σ0τ0

+ (HOe + KyS)σ0τ1 + (hk · σ)τ0
]
Ψ±k , (4.9)

where Ψ±k = (m±A,k, m±B,k,m
±∗
A,−k, m±∗B,−k)

T is the magnon state vector, ση are
the Pauli matrices in the sublattice space, τη are the Pauli matrices in particle-
hole space, σ is a pseudovector of Pauli matrices and

hk = S ∑
i

−J cos(k · δi)

J sin(k · δi)

2D sin(k · ρi)

 , (4.10)

where δi and ρi are the vectors connecting nearest and next nearest neighbors,

δ = [(0,−a/
√

3), (a/2, a/
√

3), (−a/2, a/
√

3)]T , (4.11)

ρ = [(a, 0), (−a/2,
√

3a/2), (−a/2,−
√

3a/2)]T . (4.12)

The spin dynamics are now described by the LLG-equation (4.1) in the main
text, and after linearization we obtain the BdG-like equation, which has two
sets of solutions. Choosing the solutions with positive norm, we find that
(disregarding anisotropy and the Oersted field)

ω±k,1 = H± + 3JS + |hk|, ω±k,2 = H± + 3JS− |hk|. (4.13)

In absence of DMI, the two bands touch at the Dirac points (K = (4π/3a),
K ′ = (2π/3a, 2π/

√
3a)), but a non-zero DMI opens up a gap at these points.

The dispersion at the Dirac points is given by ω±K,1 = ω±K ′ ,1 = H± + 3JS +

3
√

3DS and ω±K,2 = ω±K ′ ,2 = H± + 3JS − 3
√

3DS. The opening of the gap
implies a non-trivial topology, as can be shown by calculating the Chern
number of the bands [45]. This gap remains topological in non-equilibrium,
as discussed in the main text.

4.b anisotropy

We now briefly discuss the effect of the effective anisotropy, K ≡ HOe + KyS,
on the results obtained in the main text, where we have incorporated the
effects of the current-induced Oersted field into the effective anisotropy. The
anisotropy we consider yields elliptical precession, as can also be seen from
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Figure 4.5: The magnon bandstructrure in the presence of anisotropy, K/JS = 0.1.
Where the edge states cross zero frequency we obtain an exceptional line.

the Hamiltonian, Eq. (4.4). Firstly, this has implications for the spin wave
solutions up to first order in the dissipative terms, α and Js, and up to zeroth
order in k, which now become

ω0,± =
√
(H± + K)2 − K2 − i[α (H± + K)− Js]. (4.14)

Therefore, the stability criterion is also changed and in order to have Im[ω0,−] <
0 in non-equilibrium, we require that

−Js ≥ max[−α(H− + K), K]. (4.15)

There are thus now two requirements: the spin-orbit torque has to overcome
the Gilbert damping and the instability created by the anisotropy (giving
elliptical precession). We note that in the Haldane model we consider here the
magnetic field is orientated perpendicular to the plane, and there is therefore
no ellipticity induced by the shape anisotropy. The only possible source of
anisotropy is therefore the magnetocrystalline anisotropy, in addition to the
anisotropy resulting from the current-induced Oersted field.

In the presence of anisotropy, we also observe the existence of an exceptional
line where the edge states cross zero frequency, as shown in Fig. 4.5. This
exceptional line, a region in k-space where Im[ωk] ̸= 0 and Re[ωk] = 0,
is related to the same instability induced by anisotropy in the bulk system.
It is thus present even in the absence of dissipation. However, it is a local
instability at the edges of the system, and will therefore only lead to a local
canting of the spins, which we have confirmed to be small with numerical
LLG simulations. This canting will be counteracted by the applied spin-orbit
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torque, and therefore the system could always be stabilized with a strong
enough spin-orbit torque. However, because the instability occurs at finite k,
it is not straight-forward to accurately determine the strength of the spin-orbit
torque required. Finally, because of this canting the linearization procedure
we apply is technically no longer valid, because we assume a uniform state
to introduce the fluctuations. However, because we expect the canting to be
small, we also expect the errors introduced by linearizing around a uniform
state to be small. We therefore disregard the effects of anisotropy in the main
text.

4.c particle-hole symmetry

As discussed in the main text, there are two sets of solutions to the BdG-like
equation (4.2), due to the particle-hole symmetry (PHS), which implies that
τx(H± + iαω∗τz + i Jsτ0)τx = −(H± − iαωτz + i Jsτ0)

∗. This implies that if ω
is an eigenfrequency of H± with eigenvector Ψ = (u v)T then −ω∗ is an
eigenfrequency with eigenvector (v∗ u∗)T . These two modes have opposite
norm, defined as ∥Ψ∥ = ⟨Ψ| σz |Ψ⟩ [142]. Note that we have chosen the
orientation of the deviations, m±i , dependent on the sign of the magnetic field
in order to obtain this definition of the norm.

Because of the doubling, it is sufficient to only consider one set of solutions.
In the main text, we choose to only consider the set of solutions with positive
norm, which means that out of equilibrium we naturally obtain negative
frequencies. Alternatively, one can also choose to work with only positive
frequencies, and both positive and negative norms. One can even include
both positive and negative norms as well as frequencies, and take care of the
double counting with a factor 1

2 .
In equilibrium, one set of solutions has positive norm and only positive fre-

quencies, and the second set with negative norm has only negative frequencies.
Therefore, only considering the positive-norm modes in equilibrium is equiva-
lent to only considering positive frequencies, as is common practice. However,
when we consider spin-wave excitations on top of the non-equilibrium state,
there may be positive-norm states with negative frequency, and negative-norm
states with positive frequency. Here we therefore have to consider the full
frequency range, including negative frequencies.

Upon quantization of the excitations, one naturally obtains magnons and
antimagnons, defined as having respectively a positive and negative product
of frequency and norm. Similar to particles and holes, the antimagnons also
carry opposite spin compared to the magnons. This thus implies that the
negative frequency excitations as shown in the main text become antimagnons
upon quantization, and carry negative angular momentum. Classically, which
is what we consider in the main text, this corresponds to excitations having
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Figure 4.6: The nanoribbon bandstructure for uncompensated boundaries.

opposite chirality. For a further discussion on the magnon and antimagnons
we refer the reader to Harms et al. [142].

4.d uncompensated boundaries

In this work, we have always considered compensated boundaries, such that
the edge coordination number, i.e., the number of nearest neighbors, is equal
to the bulk coordination number. This is implemented through substituting

S ∑
n

Jin → 3SJ (4.16)

in the linearized Hamiltonian, Eq. (4.8). In a real system this is not the case,
and the effective field acting on edge sites will be lower. The edge excita-
tions are thus lowered in frequency, but this does not affect the topological
character of the edge modes. For completeness, we also show here the main
results with uncompensated boundaries: the bandstructure for an armchair
nanoribbon and the transmission and decay length, in Figs. 4.6 and 4.7. From
the bandstructure we observe that the features as discussed in the main text
are still present, with the edge modes crossing zero frequency. There are
however small modifications to the specific dispersion of the edge mode, but
from the transmission and decay length results we can conclude that these
are insignificant. Furthermore, the main difference between the compensated
and uncompensated boundaries appears for the equilibrium state, and the
non-equilibrium state is barely affected, as can be seen from comparing Fig. 4.3
in the main text and Fig. 4.7 in this supplementary material.
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Figure 4.7: The transmission and decay length for uncompensated boundaries. Com-
pare to Fig. 4.3 in the main text.

4.e landau-lifshitz-gilbert simulations

We consider a 10× 10 unit cell structure and solve the Landau-Lifshitz-Gilbert
(LLG) equation (4.1) in the main text, and include a transverse magnetic field,
∂tSi|exc = −δin Si × hi(t), where

hi(t) = fe(t) h0 (cos(ω0t), sin(ω0t), 0)T (4.17)

at one edge site n, with strength h0/S = 10−6 and frequency ω0/JS = 0.7.
Here fe(t) = exp

(
−(t− b)2/2c2) is an envelope function which slowly turns

the pulse on and off, since turning on the excitation pulse instantaneously
will excite a range of spurious frequencies. We choose b = 25 and c = 10.
We thus excite only a specific frequency ω0 and only one edge mode with
a specific handedness. At t = 0 the system is in the uniform state, Si = Sẑ.
We set D/J = −0.2, such that we are in the topologically non-trivial regime.
In non-equilibrium, there are edge modes close to zero frequency, and we
thus expect to excite one of those edge modes. We also choose to work with
compensated boundaries, and therefore apply a magnetic field of strength JS
to all edge sites with only two neighbors.

Since we also want to determine the stability of the system, we consider
both Gilbert damping, α = 10−3 and the spin-orbit torque Js = αH− needed
to render this state stable. The snapshots in the main text, Fig. 4.2, show



4.F transmission 87

the spin-wave amplitude, defined as the deviation of the spins from the z-
axis, Mi(t) ≡ 1− Sz

i (t). The three missing atoms in the top-left corner are
modeled by applying a large on-site magnetic field, rendering them effectively
inaccessible to spin-waves.

4.f transmission

We model the excitation field induced the nanoantenna by adding to the
LLG equation (4.1) in the main text, a local Oersted field oscillating with
frequency ω parallel to the propagation direction, ∂tSi|exc = δinSi × hexc,
where hexc = b0 cos ωt x̂. We expand in deviations mi

± = (Sx
i ∓ iSy

i )/
√

2S
and after Fourier transforming to frequency space we obtain the following
equation of motion in position space,

G−1(ω)Ψ(ω) = h(ω). (4.18)

Here Ψ(ω) = [m1, . . . , mN , m∗1 , . . . , m∗N ]
T is the spin wave state vector, h(ω) =

[h1(ω), . . . , hN(ω), h∗1(ω), . . . , h∗N(ω)] is the Fourier transform of the circular
components hi(ω) = (hx

i ∓ ihy
i )δi∈Ra of the excitation field, which is only non-

zero for the sites Ra connected to the antenna. The inverse magnon propagator
is given by [135]

G−1(ω) = τzσ0ω + τ0σ0(αω− Js)− τzA, (4.19)

where σ and τ are the Pauli matrices defined in the sublattice and magnon/an-
timagnon space respectively, and A was defined in Eq. (4.8). Note here that
the transmission is calculated after linearization in deviation from a uniform
state, and therefore anisotropy has to be excluded, since this will lead to a
finite canting of the spins, as discussed in Sec. 4.B. However, we expect that
after linearization around this canted state the inverse magnon propagator
will be close to the one obtained after linearziation around a uniform state,
and thus only a small error is introduced.

Specifically, we are interested in the signal generated by the pickup antenna,
which is sensitive to the total microwave power S(ω) = ∑i∈Rp |mi(ω)|2 of
the sites Rp connected to the pick-up antenna. By using the solution of the
linearized LLG (4.18), mi(ω) = ∑j Gij(ω)hj(ω), we can write this as

S(ω) = Tri∈Rp

[
G(ω)H(ω)G†(ω)

]
, (4.20)

where H(ω) = diag[|h(ω)|2] and the trace is performed over the sites Rp
which are connected to the pick-up antenna. Here it is important to note
that the antenna is placed perpendicularly to the propagation direction, as
shown in the inset of Fig. 4.3 in the main text. The Oersted field generated by
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Figure 4.8: The transmission for increasing disorder w, as a function of excitation
frequency, in equilibrium (H+/JS = 0.1), comparing the topologically
trivial (D = 0) and non-trivial (D ̸= 0) phases. The bottom and top of the
bulk band gap is indicated by the dashed and dashed-dotted gray lines. The
sharps dips in transmission, which are most prominent for zero disorder,
are the result of the absence of modes with that specific frequency.

the antenna will induce a transverse magnetic field, cos ωt x̂, and thus will
excite both positive and negative frequencies, as can be readily seen by taking
the Fourier transform of this excitation field. Therefore, both positive and
negative frequency spin waves are excited. In order to account for this, we
have summed over both positive- and negative-norm solutions by tracing over
the entire particle-hole space, for only positive frequency. This is equivalent
to considering both positive and negative frequencies, and only the positive
norm, as was also explained in Sec. 4.C, and is done for numerical simplicity.
Because both positive and negative frequencies are excited, we show the
absolute frequency of the bulk band throughout this work. For excitation
frequencies below the bottom of the absolute bulk gap two edge modes with
positive and negative frequency can be excited, whilst between the bottom
and top of the absolute bulk gap only one edge mode with positive frequency
exists.

We add a large on-site magnetic field to wN randomly chosen lattice sites,
where N is the total number of lattice sites and w ∈ [0, 1] is the disorder con-
centration. This large magnetic field makes these sites effectively inaccessible
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for the spin waves. We average over multiple realizations of the disorder until
we reach convergence.

We will discuss here the transmission for the equilibrium state, in order
to show that this formalism captures the topological protection of the edge
modes. We show the transmission for increasing disorder in Fig. 4.8. We can
clearly see that for increasing disorder levels, the bulk modes are suppressed,
while the edge modes, which lie in the bulk band gap, are unaffected. This
can also be seen by comparing to the topologically trivial phase, where D = 0,
which does not contain such edge states, to the topologically non-trivial phase,
D/J = −0.2. From the magnitude of the transmission of the edge states in
the bulk band gap for increasing disorder, we also observe that the edge
modes are barely affected by the increasing disorder level. This we can thus
attribute to the topological protection of the edge modes, which disallows
backscattering. We can therefore conclude that the transmission of spin waves
in the bulk band gap, in presence of a finite disorder level, is a good indication
of topologically protected edge modes.

We observe that there are fluctuations in the transmission signal as a func-
tion of frequency inside the gap in Fig. 4.3. We propose that these fluctuations
are related to a combination of the Gilbert damping and variations in the
group velocity of the edge modes, combined with the presence of defects.
The topological protection implies that the edge modes will travel around
the defects, similar to the effect shown in Fig. 4.2. Therefore, the total path
traveled and thus the passage time of the modes increases also, which causes
them to be damped out further by the Gilbert damping. There are further
variations because the group velocity is not constant across the gap and there-
fore modes with different frequencies have different passage times. The dip
in transmission in the middle of the band gap is most likely the result of the
disorder creating a mid-gap impurity band in Chern insulators [151]. We also
note that the Gilbert damping scales as αω0, which reduces the signal for
larger frequencies. We have furthermore confirmed that the results as shown
in Fig. 4.3 have converged as a function of disorder ensemble size, and they
are therefore not artifacts of the disorder sampling.

4.g additional sources of disorder

In any real system there can be a wide variety of disorder. We therefore
consider here three further sources of disorder, in addition to the defects
as described in the main text: a random on-site magnetic potential, drawn
from the uniform distribution [− β

2 ,+ β
2 ]; fluctuating bond strengths, such that

J → J + δJ, where δJ is drawn from the uniform distribution [−∆J
2 ,+∆J

2 ]; and
non-uniformity in the heavy metal|ferromagnet interface, modeled by adding
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Figure 4.9: Transmission in the non-equilibrium state for four types of disorder: (a)
defects with concentration w, (b) random on-site magnetic fields parameter-
ized by the distribution width β, (c) fluctuating bonds parameterized by the
distribution width ∆J and (d) non-uniform spin-orbit torque, parameterized
by the distribution width ∆µ. The dashed and dashed-dotted lines indicate
the bottom and top of the bulk band gap.

local fluctuations δµ to the applied spin-orbit torque drawn from the uniform
distribution [−∆µ

2 ,+∆µ
2 ], such that Js → Js + δµ.

We show the results for all four kinds of disorder in Fig. 4.9 for the non-
equilibrium state. A full study of the effects of disorder is beyond the scope of
this Supplementary Material, but we can draw the important conclusion that
the zero-frequency edge states in non-equilibrium can be measured through
a propagating spin wave spectroscopy experiment, at moderate levels of
disorder.

4.h estimation of energy scales

It is useful to consider here the energy scales of real materials, in order to
determine what strength of magnetic field would be required to lower the
frequency to a accessible level. In order to push the edge modes down to zero
energy, we need to apply an opposite magnetic field equal to the bulk gap in
the absence of a magnetic field. As a rule of thumb, a magnetic field of strength
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H = 1 T corresponds to an energy gµBH of approximately 0.1 meV ≈ 0.1 THz
(assuming a g-factor of 2).

The edge states in CrI
3
, a prominent topological magnon insulator candidate,

have energies ∼10 meV [51], and would therefore require very large magnetic
fields (100 T), making it not the best candidate to realize the zero-energy edge
state as proposed here. Alternative candidates would be the kagome lattice
ferromagnet Cu(1,3-bdc), where the topological excitations have energies
∼1 THz [50] or the YIG|Fe magnonic crystal as proposed by Shindou et al.
[118], where (depending on the specific implementation), the edge modes
have energies ∼35 GHz. Even though these two systems are not realizations of
the honeycomb Haldane model, the non-equilibrium state should still exhibit
low energy topological edge modes, although the specific dispersion of the
edge modes might be different.

The spin-orbit torque strength required to stabilize the non-equilibrium
state is Js = αH−. Therefore, when a strong magnetic field is required to lower
the edge states to zero energy, the spin-orbit torque required is also large.
The specific strength of the spin-orbit torque in real systems will depend
on the specifics of the heavy metal|ferromagnet bilayer system, such as the
interface roughness, the spin Hall angle of the heavy metal used and the
Gilbert damping of the ferromagnet. It is however clear that here it would
also be beneficial to have as small a spin-orbit torque as possible, to prevent
unwanted side-effects such as heating and structural deformations.





5
N O N L I N E A R D Y N A M I C S O F T H E N O N - H E R M I T I A N
S U - S C H R I E F F E R - H E E G E R M O D E L

We numerically determine the robustness of the lasing edge modes in a spin-torque oscillator
array that realizes the non-Hermitian Su-Schrieffer-Heeger model. Previous studies found
that the linearized dynamics can enter a topological regime in which the edge mode is driven
into auto-oscillation, while the bulk dynamics are suppressed. Here we investigate the full
non-linear and finite-temperature dynamics, whose understanding is essential for spin-torque
oscillators-based applications. Our analysis shows that the lasing edge mode dynamics persist
in the non-linear domain for a broad range of parameters and temperatures. We investigate
the effects of perturbations relevant to experimental implementations and discuss which ones
might be detrimental to the stability of the lasing edge mode. Finally, we map our model
onto a photonic model. Our analysis has the potential to shed light onto the dynamics of a
plethora of non-Hermitian systems with non-linearities.1

5.1 introduction

The application of topology to condensed matter systems has been profoundly
fruitful on both theoretical and experimental fronts and has lead to the dis-
covery of a wide range of new phenomena and materials [39]. Recently, con-
siderable effort has been devoted towards the exploration of non-Hermitian
systems [152, 153] with active gain and loss. A framework for addressing
non-Hermitian topological phases has been provided by the growing field of
topological theories of non-Hermitian systems [154–157].

Recent works have shown that the bulk-boundary correspondence [158],
which is the cornerstone of topology in Hermitian systems, also holds for
specific non-Hermitian systems [159], although not in general [160–162]. Some
systems also exhibit a non-Hermitian skin effect, where even the bulk modes
can be very sensitive to boundary conditions [68]. Nevertheless, the existence

1 This chapter is based on P. M. Gunnink, B. Flebus, H. M. Hurst, and R. A. Duine, “Nonlinear
dynamics of the non-Hermitian Su-Schrieffer-Heeger model,” Physical Review B 105, 104433

(2022). R.A.D. conceived the project and P.M.G. performed the calculations and prepared the
manuscript. All authors contributed to the manuscript.
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of non-Hermitian edge modes has been shown in a variety of systems, such
as microring resonators [70, 71, 163] and electrical circuits [164–166].

One of the most striking properties of non-Hermitian topological phases is
the co-existence of lasing edge modes, i.e. edge states with gain-like dynamics,
with a purely real bulk spectrum. Most importantly, these modes are topologi-
cally protected [155] and can therefore be useful in applications, since they
are robust against disorder. In photonics these lasing modes have been used
to build a single-mode laser stable against perturbations [167].

The majority of developments in non-Hermitian topological insulators have
been in the field of photonics [168–171], where gain and dissipation can be
readily tuned. Recent works have also unveiled non-Hermitian topological
phases in mechanical [172, 173], electrical [164–166, 174] and magnetic systems
[175–177]. Here we focus on magnetic systems, in which the loss is inherently
present due to coupling of the magnonic excitations to the lattice and whose
dynamics can be driven using spin-transfer torques. Due to the tunability
of gain and loss, magnetic systems might represent a nearly ideal system to
explore non-Hermitian phenomena.

Specifically, we consider the topology of the one-dimensional (1D) array of
spin-torque oscillators (STOs) as shown in Fig. 5.1, building on the work of
Flebus et al. [66]. Spin-torque oscillators are current-driven magnetic nanopil-
lars, whose magnetization dynamics are determined by the balance of spin
current injection and intrinsic (Gilbert-like) dissipation [178]. It has been ex-
perimentally shown that the coupling between STOs arranged in an array
can be tuned [179, 180]. Flebus et al. [66] have shown that, by modulating the
coupling between STOs and the local spin injection, the array can be driven
into the topological phase of the non-Hermitian Su-Schrieffer-Heeger (SSH)
model [65], known to host lasing edge states [72, 73]. However, STOs also
exhibit strong non-linear effects, such as a non-linear frequency shift [178]. Fur-
thermore, thermal fluctuations have also been shown to introduce significant
noise into these systems [181]. In this chapter, we aim to investigate in detail
how non-linearities and thermal fluctuations affect the topological character
of a 1D array of STOs, in order to assess the experimental feasibility of this
setup. Our results can be straightforwardly generalized to the realization of
this model in photonic systems, which also exhibit non-linear and stochastic
dynamics, making our work of interest to a broader audience.

This chapter is organized as follows: in Sec. 5.2 we start by introducing
our model and we analyze its topological properties. In Sec. 5.3, we discuss
in detail the numerical simulations deployed to investigate the non-linear
dynamics at finite temperatures. We present the results of our simulations for
a wide range of parameters in Sec. 5.4 and we identify the parameter regions
where the lasing edge mode is realized. In Sec. 5.5 we show how our model
is similar to previous implementations of the non-Hermitian SSH model in
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...

Figure 5.1: Schematic illustration of the model considered in this chapter. The array
of STOs is represented as a 1D lattice with a two-sublattice (A and B) unit
cell. The STOs are connected via a metallic spacer that mediates an intra-
cell (Ji, Gi) and inter-cell ( J̃i, G̃i) complex nearest-neighbor hopping. The
inset shows a possible experimental realization of the STOs array, with the
stacking of contact|fixed layer|spacer|free layer|contact. The magnetic
layers extend throughout the array, and spin waves excited by one STO can
reach and dissipatively couple the neighboring STOs.

photonic systems. A summary and conclusion are given in Sec. 5.6. Finally, we
discuss the details of our numerical and analytical calculations in, respectively,
Appendix 5.A and 5.B.

5.2 system

We consider an array of 2N STOs that realize the non-Hermitian SSH model, as
shown in Fig. 5.1. A STO consists of a magnetic polarizing layer separated from
a magnetic free layer by a thin spacer. An external magnetic field H = H0ẑ

sets the equilibrium direction of the magnetic order parameter m of the
free layer. The polarizing layer converts a DC current into a spin current Js,
which, in turn, exerts a spin-transfer torque on the magnetic order parameter
m. The loss and gain dynamics of the ferromagnetic order parameter m
associated with each nanopillar is described by the Landau-Lifshitz-Gilbert
(LLG) equation as [178]

∂tmη,i|0 = ωη,iẑ ×mη,i + αη,imη,i × ∂tmη,i + Jsη,imη,i × (mη,i × ẑ), (5.1)

where i labels the unit cells and η = A, B. Here, ωη,i = γη,i(H0 − 4πmz;η,i)
is the ferromagnetic resonance frequency, γη,i is the gyromagnetic ratio and
Mη,i the saturation magnetization. αη,i ≪ 1 is the Gilbert damping parameter
that captures the relaxation of the macrospin Kittel mode. The last term is the
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spin-transfer torque exerted by the spin current Jsη,i on the magnetic order
parameter.

We consider three kinds of intra (inter)-cell couplings between the STOs.
Firstly, we account for the Ruderman-Kittel-Kasuya-Yosida (RKKY)-type ex-
change, parameterized by the frequencies Ji ( J̃i). Secondly, there is a dissipative
coupling Gi (G̃i), which is mediated by spin pumping through the spacer
layers [75]. The exchange and dissipative couplings only couple the nearest
neighbors, as indicated in Fig. 5.1. These two coupling were already intro-
duced in Ref. [66]. Additionally, in this chapter we also introduce the dipolar
couplings between the STOs, which affect the non-linear dynamics [182, 183].

The dynamics of the coupled array are then described by

∂tmA,i|coup = −mA,i ×
(

JimB,i + J̃i−1mB,i−1
)

− GimB,i × ∂tmB,i − G̃i−1mB,i−1 × ∂tmB,i−1

−ΩdmA,i × ∑′

η,j

3x̂
(
x̂ ·mη,j

)
−mη,j

r3
Aη,ij

, (5.2)

∂tmB,i|coup = −mB,i ×
(

JimA,i + J̃imA,i+1
)

− GimA,i × ∂tmA,i − G̃imA,i+1 × ∂tmA,i+1

−ΩdmB,i × ∑′

η,j

3x̂
(
x̂ ·mη,j

)
−mη,j

r3
Bη,ij

, (5.3)

where ∑′ indicates that the sum excludes the self-interaction. The dipolar
interaction is parametrized by Ωd = γη,iVeffη,i/a3, where Veffη,i is the effective
volume of a STO and a is the separation distance between STOs, which we
assume to be constant. rηη,i′ j = Rηη,i′ j/a is the normalized distance between
STOηi and STOη′ j. Here we have incorporated terms proportional to the
Gilbert-like on-site damping of the Gi, G̃i couplings into the Gilbert damping,
i.e. αA,i = αη,i + Gi + G̃i and αB,i = αη,i + Gi + G̃i−1. In what follows we
assume identical unit cells and drop the dependency on the unit cell index i,
unless stated otherwise, such that ωη,i = ω, αη,i = α + G + G̃, Ji = J, J̃i = J̃,
Gi = G and G̃i = G̃. Furthermore, we assume spin-current injection only on
sublattice A, i.e. Js,B = 0, Js,A = Js.

The equations of motion for this system are then given by Eqs. (5.1-5.3),
which can be linearized around the equilibrium direction of the magnetic
order parameter. We write mη,i = (mx

η,i, my
η,i, 1) and neglect terms that are

second order in the fluctuations from equilibrium. We then introduce the
complex variable 2mη,i = mx

η,i − imy
η,i and invoke the Holstein-Primakoff trans-

formation [19] mη,i(t) = ⟨ηi⟩e−iωt, where ηi = ai, bi are second-quantized
operators annihilating magnons at sublattice η and obeying bosonic commu-
tation relations. From the corresponding Heisenberg equation of motion we
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can identify the effective quadratic magnon Hamiltonian, which we will use
next for topological classification.

The non-linear character of the equations of motion means that the Hamil-
tonian should also contain higher order interactions. The on-site dynamics,
i.e. Eq. (5.1), would introduce on-site interaction terms, and the exchange
interaction would result in quartic and higher order interactions terms be-
tween neighboring spins. How these interaction terms affect the topology
is still an unanswered question [184, 185]. We therefore only consider the
quadratic Hamiltonian to determine the topological properties. However, in
our numerical simulations we do take into account the non-linearities of the
equations of motion, thus capturing the full dynamics resulting from the
higher order interaction terms.

Our starting point is the PT (parity-time) symmetric case, analyzed as well
by Flebus et al. [66]. Here Js = 2αω and Ωd = G = G̃ = 0. In this regime, the
system hosts two edge modes with energies Re E−ω = 0 and Im E ̸= 0 for
|J| < | J̃|. The PT -symmetry indicates the system is invariant under combined
parity (swapping site A with B and vice versa) and time reversal (t → −t)
operations [152, 153]. We assume the strength of the dissipative coupling and
the dipole-dipole interactions to be small compared to ω, and treat them
as perturbations. We note here that we do have access to the full (including
non-linear) dynamics that result from the dissipative and dipolar coupling and
only treat them as perturbations in the topological analysis. In the simulations
that follow we describe the full dynamics of the system, including dissipative
and dipolar couplings.

The Hamiltonian of the PT -symmetric model is

Hi = ω
[

a†
i ai + b†

i bi

]
+ i (JsA − αω) a†

i ai

− iαωb†
i bi − J

[
a†

i bi + h.c.
]

− J̃
[

a†
i bi−1 + h.c.

]
,

(5.4)

for i ̸= 1, N, with open boundary conditions

Hj = ω
[

a†
j aj + b†

j bj

]
+ i (JsA − αω) a†

j aj

− iαωb†
j bj − J

[
a†

j bj + h.c.
]

− J̃
[
b†

j al + h.c.
]

,

(5.5)

where j = 1, N and l = 2, N − 1. The full Hamiltonian, including the dissipa-
tive and dipole-dipole coupling, is given in Appendix 5.B.

We first briefly discuss the phase diagram, which captures the linear dynam-
ics. For a full discussion the reader is referred to the earlier work of Flebus
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et al. [66]. The topological nature of the edge modes can be characterized by
a global complex Berry phase [72], i.e., an integer that predicts the number
of pairs of edge modes. The complex Berry phase can be found to be one for
|J| < | J̃|, signaling the presence of topologically protected edge states.

Furthermore, the system has an exceptional point at | J̃ ± αω| = |J|, where
the system transitions from the PT -unbroken into the PT -broken regime
[72]. In the PT -unbroken regime the edge state spectra come as complex-
conjugated pairs, while the the bulk spectrum is purely real. Thus, the edge
mode with positive imaginary energy starts lasing, while the bulk modes re-
main inactive. In the PT -broken regime the bulk modes also become complex
valued, such that they also will start lasing spontaneously. In order to isolate
the dynamics of the lasing edge mode we therefore require |J| < | J̃ − αω|, i.e.
to be in the PT -unbroken regime.

When dissipative couplings G, G̃ are present, all bulk modes will have a non-
zero imaginary component, since the system is no longer PT -symmetric. The
edge mode is still well defined and separated in energy from the bulk modes.
However, because all bulk modes have a non-zero imaginary component, these
modes can start lasing as well, as was also noted by Flebus et al. [66]. We note
that chiral-inversion (CI) symmetry protects the stability of the edge states
[186], such that the topologically protected edge modes are now present for
|J − iGω| < | J̃ − iG̃ω|. Since in almost all experimental realizations of the
setup discussed here the dissipative coupling will be much weaker than the
RKKY-type coupling, the system will most likely still be in the topologically
non-trivial regime.

For the dipole-dipole interactions we note that the dipolar fields are PT -
invariant, and thus the bulk spectrum will remain real. However, long-range
interactions are typically not captured by topological classifications [187], and
it is unclear from the linearized model alone how the long-range dipolar inter-
action will affect the lasing edge modes. This will be investigated numerically
in the next section.

As was noted before, the phase diagram only captures the linear behavior
of the STO array. In the STO array considered here, the STOs are easily driven
into the non-linear regime [66, 188]. Non-linearities therefore need to be taken
into account when describing this topological array. Thus, we proceed to
investigate the full non-linear dynamics numerically.

5.3 simulations

We numerically simulate the system described by Eqs. (5.1-5.3), using the
parametrization outlined in Appendix 5.A. This parametrization maps the
magnetic order parameter mη,i to the microwave power pη,i (which is experi-
mentally measurable) and the azimuthal angle ϕη,i. The thermal fluctuations
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are taken into account by using a stochastic field, the strength of which is cho-
sen such that an isolated STO reaches thermal equilibrium [181]. We note that
this noise will equilibrate the whole array to 2N individual STOs in thermal
equilibrium, since the couplings between STOs are not taken into account in
the equilibration. However, we assume couplings to be weak compared to the
on-site dynamics (i.e. J, J̃ ≪ ω), making this a valid approximation. The noise
is thus chosen to have zero mean and a second-order correlator

⟨ fη,i(t) fη′ ,j(t
′)⟩ = 0;

⟨ fη,i(t) f ∗η′ ,j(t
′)⟩ = 2δi,jδη,η′Dη,i

(
pη,i
)

δ
(
t− t′

)
,

(5.6)

where Dη,i(p) is a diffusion coefficient that characterizes the noise amplitude,
which has to be taken to be dependent on pη,i in order to correctly describe
the stochastic dynamics of a non-linear oscillator. The explicit form of Dη,i(p)
is reported in Appendix 5.A.

In order to integrate the resulting stochastic differential equation we use the
Euler-Heun algorithm as implemented in the DifferentialEquations.jl package
[189]. As initial conditions we take the phase ϕη,i to be uniformly and randomly
distributed between 0 and 2π and the power pη,i to be distributed according
to the equilibrium Boltzmann distribution

Peq ∝ exp
[
−2λη,i

kBT
pη,i

]
, (5.7)

where λη,i is a scale factor relating the dimensionless oscillator power p and
the oscillator energy.

Since this system is inherently stochastic, both from the initial conditions and
the thermal fluctuations, we collect statistics by running every configuration
of parameters NR times. The main observable we are interested in is the
number of lasing modes, where a lasing mode is defined as any mode that
has power pη,i ≥ ϵp0, where p0 is the steady-state power of a single oscillator
[178]. We let the system run for a time tend and choose ϵ = 0.9 to account
for the fluctuations around the equilibrium power of a STO. Our stochastic
simulations may not capture all possible processes, such as rare low probability
events, in a single run. However, by running multiple ’trajectories’ we can
gather statistics and gain insight into the behavior of the system. This is also
true of experimental runs, where the number of lasing modes will vary in
any one realization of the experiment. We will discuss this problem in greater
detail in Sec. 5.4.2, where we also show how the experimental observation
times should be chosen.
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Figure 5.2: Three types of behavior of the system, with J̃ = −0.025/4πγM, J/ J̃ = 0.5,
kBT/λ = 10−5 and G = Ωd = 0. (a) Only the edge mode starts lasing,
while all the bulk modes are suppressed. (b) No modes start lasing within
the specified time frame. (c) Both the edge modes and bulk modes start
lasing. The simulation is run for 4πγMt = 105, which for a typical STO
with 4πγM = 10 GHz is equal to 10 µs.

5.4 results

In this section, we present the results from the simulations described in Sec. 5.3.
Unless stated otherwise, we set α = 10−2, ω/4πγM = 0.5, Js,A = 2αω, Js,B = 0
and G = Ωd = 0, such that we are in the PT -symmetric regime and work
with an array of N = 10 unit cells. We run the simulations of Eqs. (5.1-5.3)
for 4πγMt = 105, which for a typical STO with 4πγM = 10 GHz corresponds
to 10 µs and collect statistics over NR = 100 runs. We are interested in two
main observables: whether the edge mode starts lasing, and how many bulk
modes also start lasing. It is worth noting that since the B-sites dynamics are
suppressed because they are not directly driven, we only have N possible
lasing modes. We choose kBT/λ in the range 10−6 to 10−4, with the latter
corresponding to room temperature for a typical STO [178].

In Fig. 5.2 we show three typical examples of the system dynamics. The
system is initially in thermal equilibrium, and at t = 0 the spin-torque current
is turned on for all A-sites. Fig. 5.2a show the case where after some time the
left-most mode starts lasing at the steady-state power for a single oscillator,
whilst the dynamics of the bulk modes are suppressed. Alternatively, no
modes can start lasing at all (Fig. 5.2b), which we will discuss further in
Sec. 5.4.2. We also observed the lasing of bulk modes together with the edge
mode, as shown in Fig. 5.2c. In this specific example the bulk mode starts
lasing shortly after the edge mode. We have not investigated this timing
further, but it seems likely that a lasing edge mode could also excite bulk
modes close to the edge. Moreover, we also observed cases where bulk modes
start lasing later in time, seemingly independent of the lasing of the edge
mode.
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Since all three cases are possible, we further explore the parameter space,
and focus on the amount of lasing modes as an observable. We note that in all
of the cases discussed here we never observed a lasing bulk mode without a
lasing edge mode. This is a direct result of the topology of the array.

As discussed before, the system hosts a lasing topological edge state for
−1 < J/| J̃| < 1. We thus show the average number of lasing bulk (dashed line)
and edge (solid line) modes as a function of J/| J̃| for different temperatures in
Fig. 5.3. The transition from the topological to the trivial regime at J/| J̃| = −1
is affected by the temperature. For low temperatures the transition is sharper
than for high temperatures. However, at high temperatures the system still
exhibits signs of a non-Hermitian topological insulator (suppressing of the
bulk modes, with only a single lasing edge mode), even if the system is in the
trivial phase, i.e. if |J| > | J̃|.

As was previously discussed, the system has broken PT -symmetry when
| J̃ − αω| < |J| < | J̃ + αω|, where multiple modes will start to lase. In Fig. 5.3
the PT -broken regime is indicated by the shaded area and it is easy to see
that more bulk modes start lasing. For higher temperatures more bulk modes
will start to lase. We remark here that these simulations were only run for a
fixed time tend, and therefore not all modes might have started lasing yet. We
return to this issue in Sec. 5.4.2.

The number of lasing bulk modes also increases as a function of temper-
ature. Instead of a sharp transition at the exceptional point (EP), there is a
transitional regime, due to the non-linear and stochastic effects. This indi-
cates that, depending on the operating temperature, it is necessary to stay
further away from the EP than one might initially expect. Specifically for
this parameter set it would mean choosing |J| ≪ | J̃ + αω|, such that there
are no unwanted bulk contributions from the PT -broken regime. The fact
that the PT -broken regime extends further then expected might also have
implications for applications using the exceptional point, such as enhanced
sensing [190, 191] and encircling the exceptional point [192].

5.4.1 Sensitivity to perturbations

We now consider three main perturbations present in any experimental real-
ization of the system: (1) the dissipative coupling modulated by spin-waves
traveling in the metallic spacer layer, (2) the dipole-dipole coupling between
the macrospins of the STOs and (3) variations in the parameters of the indi-
vidual STOs.

We first consider the inter (intra)-layer dissipative coupling G (G̃), induced
by the metallic spacer layer. This coupling is known to synchronize STOs [183].
Since it is modulated by the metallic spacer layer it can be tuned to an extent,
e.g. by choosing a spacer layer with a certain spin relaxation. It is also possible
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Figure 5.3: Average number of lasing bulk (dashed line) and edge (solid line) modes
as a function of |J|, for different temperatures. The PT -broken regime is
indicated by the shaded region. Note that these simulations were only run
for 4πγMt = 105 and this is therefore only a snapshot of the number of
lasing modes. The error bars show the 95% confidence interval.

to choose a STO nano-pillar geometry in which the metallic spacer layer does
not extend in-between the STOs and therefore no spin waves can propagate,
thus suppressing the dissipative coupling [178].

We vary the dissipative coupling G = Gi = G̃i, the results of which are
shown in Fig. 5.4a. We note here that even though the dissipative coupling
breaks the PT -symmetry, the edge modes are still protected by CI-symmetry.
When G/| J̃| > 10−3, first the bulk modes are suppressed. This can be at-
tributed to the increased overall dissipation in the system, suppressing the
bulk excitations. When G/| J̃| > 0.05 the edge modes are also suppressed,
which again can be attributed to the increased overall dissipation. This result
thus suggests that it is desirable to design a system where the dissipative
coupling is weak, such as by using the nano-pillar geometry. However, a
small dissipative coupling might be beneficial, effectively suppressing the bulk
excitations, while allowing the edge modes to lase.

Next, we discuss the dipole-dipole coupling, which is present in any mag-
netic system. It has also been known to synchronize the precession in STOs
[183]. The dipolar coupling strength can be controlled by the spacing between
the STOs. We vary the dipolar coupling strength Ωd/4πγM for different tem-
peratures, as shown in Fig. 5.4b. For small Ωd we see no changes, and only for
Ωd/4πγM > 10−3 the bulk modes will start to lase. For STOs of typical dimen-
sions 10× 10× 10 nm and a separation distance 10 nm, Ωd/4πγM ≈ 10−3.



5.4 results 103

10−3 10−2 10−1

G/|J̃ |

0

2

4

#
m

o
d

es

(a) kBT/λ
10−4

10−5

10−6

Edge

Bulk

10−5 10−4 10−3 10−2

Ωd/4πγM

0

2

4

#
m

o
d

es

(b)

10−6 10−5 10−4 10−3

σω

0

2

4

#
m

o
d

es

(c)

Figure 5.4: Average number of lasing bulk (dashed line) and edge (solid line) modes for
different perturbations that will always be present in any realistic system.
The error bars show the 95% confidence interval. Here J̃ = −0.025/4πγM,
J/ J̃ = 0.5. (a) As a function of the strength of the dissipative coupling
G = Gi = G̃i, which is mediated by the spacer layers between the STOs. (b)
As a function of the dipole-dipole coupling strength Ωd/4πγM, which can
be tuned by the spacing between the STOs (c) As function of the variation
of the individual FMR-frequency ωη,i, chosen from a normal distribution
with mean ω/4πγM = 0.5 and standard deviation σω .



104 non-hermitian su-schrieffer-heeger model

Our results indicate a lower bound on the spacing between STOs in order to
avoid activation of the bulk lasing modes due to the dipole-dipole interaction.

In any experimental setup there will be small variations between the in-
dividual STOs. Since the system considered here is only -symmetric if the
dissipation is balanced with the driving, even small variations in any parts of
the STO array involved in the driving and dissipation processes will break the
PT -symmetry. Since the topological classification of this system is based on
the PT -symmetry, it is useful to consider the effect of breaking this symmetry.

In order to model spatial disorder we consider an array with small variations
in the individual frequencies ωi, by assuming they are normally distributed
with standard deviation σω and mean ω. If the local spin-transfer torque
is kept constant at Js = 2αω throughout the array, the system is no longer
PT -symmetric. This spin-injection model corresponds to setup in which a
single current source, rather than individual ones, are used to inject spin
angular momentum into the STOs. The number of lasing modes is shown in
Fig. 5.4c, where it is clear that as the variance is increased, more bulk modes
start lasing. The disorder we introduce breaks the PT -symmetry, and the edge
states are no longer topologically protected. The bulk modes are therefore
no longer suppressed and can start lasing. We have also modeled the case
where Js,i = 2αωi, i.e. where the STOs are individually driven. This did not
affect the results, indicating that it is not just the PT -symmetry within one
unit cell, but rather the PT -symmetry of the complete array that protects
the edge states. The robustness of non-Hermitian topological states against
disorder is still poorly understood. From the linear dynamics we know that if
a variance σω is introduced the bulk modes also gain a non-zero imaginary
component and will therefore start lasing or be suppressed. This is thus in
essence not a non-linear or stochastic effect, in contrast to the other effects
discussed previously.

We thus conclude that the non-Hermitian SSH chain can be experimentally
realized using STOs, but care needs to be taken to control the dissipative
coupling, dipolar interactions and the variations between STOs.

5.4.2 Nucleation

The processes that we consider in this chapter are fully stochastic, and so is
the lasing of the edge mode: there is a finite probability that the edge mode
will start lasing. It is therefore possible that even in the topological phase, the
edge mode might only start lasing at time scales longer than the experimental
observation time. Motivated by this consideration, we thus investigate here
the nucleation times of the lasing edge modes.

As before, we prepare our system in thermal equilibrium, and turn on the
spin current at t = 0. We only consider the RKKY-type coupling, and set
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Figure 5.5: The average time for the edge mode to start lasing, for different ratios J/| J̃|.
These simulations are all in the unbroken PT -regime. For a typical FMR
frequency 4πγM = 10 GHz these times are in the order of 0.01 ms to 1 ms.
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G = G̃ = Ωd = 0. In Fig. 5.5 we show the temperature dependence of the
time at which the edge mode starts lasing, for different ratios J/| J̃|. We have
chosen the ratio J/| J̃| such that we are in the unbroken PT regime and we
only expect the edge state to start lasing.

It is clear that the time until the edge mode starts lasing follows an exponen-
tial distribution as a function of temperature. Moreover, for lower intra-cell
coupling J, the average time decreases. This observation can be explained in
terms of overcoming an energy barrier. The probability of the edge mode to
start lasing is

P1 ∝ exp
[
− ∆E

kBT

]
, (5.8)

where ∆E is the energy difference between the state with no modes lasing and
the state with a lasing edge mode, which is directly related to the coupling
strength J.

The nucleation problem also illustrates that the finite runtimes inherent
with numerical simulations might not be representative of experiments. Since
the nucleation is a stochastic process, it is possible that for longer runtimes,
such as seconds, all modes will start lasing. In order to have robust isolated
edge modes, these devices might therefore be limited to shorter runtimes (on
the order of µs), especially at higher temperatures. The opposite problem of
course also exist, where one has to wait a long time for the edge mode to
start lasing. The nucleation time can however be tuned with the exchange
coupling, as is shown in Fig. 5.5. The inherent stochastic nature of this device
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could make it useful for stochastic computing, which relies on systems with
inherent randomness [193, 194].

5.5 comparison to photonic systems

The array of STOs considered here shares many similarities with the photonic
microring resonators experimentally realized in Ref. [163]. The linear dynamics
of the magnetic excitations considered in this model are closely related to the
dynamics of the photonic excitations in the microring resonators. Both models
realize the non-Hermitian SSH model as described by Eq. (5.4). Moreover,
their non-linear dynamics are similar, as we show next.

The dynamics of the microring resonator array are, up to second order in
the (normalized) electric modal field amplitudes aη

n, described by [195]

∂taA
n = −iΩaA

n − γ− σA

(
1− |aA

n |2
)
+ iκ1aB

n + iκ2aB
n−1,

∂taB
n = −iΩaB

n − γ− σB

(
1− |aB

n |2
)
+ iκ1aA

n + iκ2aA
n+1,

(5.9)

where Ω is the lasing mode frequency, γ is the mode loss, ση is the mode
gain and κ1,2 are the coupling constants. Thus, we can draw a direct analogue
between the two systems, by identifying γ as the constant part of the Gilbert
damping (γ = αω), the lasing mode frequency Ω as the precession frequency
(Ω = ω) and the mode gain as the spin current contribution (ση = Js,η). One
distinction is the linear coupling κ1,2, whereas the RKKY coupling between
the STOs is non-linear. However, we note that up to first order in pi the
RKKY coupling is linear as well. In order to fully describe the dynamics of
the microring resonators the carrier density also has to be taken into account.
However, for timescales longer than the time-response of the laser, typically
a few nanoseconds [196], the carrier dynamics can be disregarded and one
obtains Eq. (5.9).

Most importantly, both systems have saturated gain. This feature is inherent
to many driven non-Hermitian system, if the driving is limited in some way.
We do note that the non-linear contributions to the precession and Gilbert
damping that are present in STO systems are not present in photonics. The
phase diagram, as presented in Fig. 5.3, might thus be different for the photonic
system.

In this chapter we have considered three perturbations: dissipative cou-
plings, dipole-dipole interactions and variations in the FMR-frequency, as
shown in Fig. 5.4. Dissipative coupling can also be present in photonic systems,
but when employing evanescent coupling is usually negligible [197], indicat-
ing that it is less relevant for photonic implementations of the non-Hermitian
SSH chain. The long-range dipole-dipole interaction has no photonic analogue,
but variations in the parameters are inevitably present in photonic systems.
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Non-linear effects are a common feature of many experimental realizations
of non-Hermitian systems. Our results are therefore applicable beyond STO
arrays to other non-Hermitian topological phases.

5.6 conclusion and discussion

In conclusion, we have shown that the lasing topological edge states can be
successfully accessed using STOs in a realistic non-Hermitian SSH array. We
have considered both non-linear and stochastic dynamics, to determine if
an experimental implementation of this model is feasible. Firstly, we found
that the lasing edge mode is robust in the presence of a wide range of
temperatures and perturbations, provided that we are in the topological
regime. This occurs despite various perturbations breaking the PT-symmetry
of the original Hamiltonian such that topological protection is not guaranteed.
Our result is important for ensuring that the lasing edge mode can be probed in
an experiment. Secondly, we found that even though the system is topological
in the linear regime, in which no bulk modes should start to lase, non-linear
and stochastic effects can still access these bulk modes, reducing the usefulness
of the topologically protected edge modes. We have explored the transition
between the PT -unbroken and PT -broken regimes, which is not a sharp
transition. Instead, we find a regime around the exceptional point where more
bulk modes will start to lase.

Moreover, we have considered three kinds of perturbations that can naturally
be present in this array and have shown in which regime the topology of the
system is unaffected. We hope that these results can be used to guide future
experiments. We find that at a given temperature and for equal strength of
the perturbative term, the perturbation that mostly affects the dynamics of
bulk modes is the variation in the parameters of the individual STOs. This
might complicate the experimental realization of the STO array, and will be
an inherent complication in any physical realization of a non-Hermitian SSH
model, where variations are more likely. Finally, we have shown that there is
a finite nucleation time, after which the edge state will start lasing.

Interactions between STOs as considered here are not easily tunable, since
they depend on the spacing between the STOs [183]. Moreover, STOs cannot be
brought arbitrarily close together because of Joule heating [198]. To circumvent
this problem, one could couple the STOs using strip-line antennas above each
STO, controlled by the microwave current generated at the adjacent STO [199].
This more direct method has the advantage that the signal could be electrically
amplified, thus allowing control over the coupling strength. Even though this
coupling has a different physical origin, the conclusions as presented in this
chapter will still hold.
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5.a numerical implementation

A single STO η in unit cell i can be parametrized with the complex amplitude
cη,i(t) [178]

mη,i = Mη,i


√

1− pη,i

(
cη,i + c∗η,i

)
√

1− pη,i

(
icη,i − ic∗η,i

)
1− 2pη,i

 , (5.10)

where pη,i = |cη,i|2 and Mη,i is the magnetization length. The Langevin
equation of motion then becomes

dcη,i

dt
+ iωη,i

(
pη,i
)

cη,i + Γ+
η,i
(

pη,i
)

cη,i − Γ−η,i
(

pη,i
)

cη,i = fη,i(t), (5.11)

where

ωη,i (p) = ω + 2p, (5.12)

Γ+
η,i (p) = ωη,iαη,i

(
1 +

(
2/ωη,i − 1

)
p
)

, (5.13)

Γ−η,i (p) = Js;η,i (1− p) , (5.14)

where the superscript ± indicates loss/gain and fη,i(t) is a complex field,
representing the thermal fluctuations. The stochastic field is a phenomenologi-
cal description of all thermal processes and chosen to have zero mean and a
second-order correlator

⟨ fη,i(t) fη′ ,j(t
′)⟩ = 0,

⟨ fη,i(t) f ∗η′ ,j(t
′)⟩ = 2δi,jδη,η′Dη,i

(
pη,i
)

δ
(
t− t′

)
,

(5.15)

The diffusion coefficient Dη,i(p) has to be taken dependent on p such that the
system tends to thermal equilibrium. This is done by deriving the Fokker-
Planck equation from the Langevin Eq. (5.11) and finding a physically-
consistent solution [181]. For a single STO this is

Dη,i(p) = Γ+
η,i(p)

kBT
λη,iωη,i(p)

, (5.16)

where λη,i is a scale factor relating the dimensionless oscillator power p
and the oscillator energy, which is λη,i = Veffȷ,iMη,i/γη,i for our choice of
parametrization.

As initial conditions we choose cη,i =
√

p0eiϕ, where ϕ is randomly chosen
between 0 and 2π and p0 is drawn from a thermal equilibrium distribution
Peq for an ensemble of isolated STOs

Peq ∝ exp
[
−2λη,i

kBT
pη,i

]
. (5.17)
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For the array as considered in the main text, the equation of motion is given
by

∂tcA,i = fSTO(cA,i)cA,i

+ Ji f J(cA,i, cB,i) + J̃i−1 f J(cA,i, ci−1,B)

+ Gi fG(cA,i, cB,i) + G̃i−1 fG(cA,i, ci−1,B)

+ Ωd ∑′

η,j

fdip(cA,i, cη,j)

r3
Ai,η j

, (5.18)

∂tcB,i = fSTO(cB,i)cB,i

+ Ji f J(cB,i, cA,i) + J̃i f J(cB,i, ci+1,A)

+ Gi fG(cB,i, cA,i) + G̃i−1 fG(cB,i, ci+1,A),

+ Ωd ∑′

η,j

fdip(cB,i, cη,j)

r3
Bi,η j

, (5.19)

where f J(cη,i, cη′ ,j), fG(cη,i, cη′ ,j) and fdip(cB,i, cη,j) are the RRKY, dissipative
and dipolar couplings between STOη,i and STOη′ ,j. These are given by

fSTO = −i(ωη,i + 2pη,i) + Js,η,i(1− pη,i)− αη,iωη,i(1 + (2/ωη,i − 1)pη,i),

f J =
i

2
√

1− pη,i

{
cη′ ,j(2− 3pη,i)

√
1− pη′ ,j − 2cη,i

√
1− pη,i

+ cη,ic∗η′ ,j(4cη′ ,j

√
1− pη,i − cη,i

√
1− pη′ ,j)

}
,

fG =
cη′ ,jωη′ ,j

1− pη,i

{
−
√

1− pη′ ,j

√
1− pη,i + c∗η′ ,j(2cη′ ,j

√
1− pη′ ,j

√
1− pη,i − cη,i)

− 2cη′ ,j pη′ ,j(
√

1− pη′ ,j

√
1− pη,i + cη,ic∗η′ ,j)

}
,

fdip =
i√

1− pη,i

{
cη,i(1− 2pη′ ,j)

√
1− pη,i + 2c2

η,ic
∗
η′ ,j

√
1− pη′ ,j

−
√

1− pη′ ,j
(
1− 3cη,i Re[cη,i]

)
(cη′ ,j − 3 Re[cη′ ,j])

}
.
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5.b hamiltonian

The full Hamiltonian is given by H = ∑i Hi + HG
i + Hdip

i , where Hi is given
in Eq. (5.4) and

HG
i = iGω

[
a†

i bi + h.c.
]
+ iG̃ω

[
a†

i bi−1 + h.c.
]

, (5.20)

Hdip
i = Ωd ∑

η

η†
i ηi + ∑′

η′ ,j

η†
i η′ j + 3η†

i η′†j + 3ηiη
′
j

2r3
ηi,η′ j

 , (5.21)

with η, η′ = a, b and the ∑′ indicates that the sum excludes self-interactions
(i.e. i = j, ν = η). The boundary conditions are then given by Eq. (5.5) and

HG
j = iGω

[
a†

j bj + h.c.
]
+ iG̃ω

[
b†

j al + h.c.
]

. (5.22)
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E L E C T R I C A L C O N T R O L O F C H I R A L E D G E S TAT E S I N T H E
N O N - H E R M I T I A N M A G N O N C H E R N I N S U L AT O R

Non-Hermitian topological phases offer an enticing framework to further engineer and
manipulate robust edge modes, building on the already extensive field of Hermitian topology.
In this chapter we show that the chiral edge states in the magnon Haldane model can be
electrically manipulated by including a sublattice-dependent spin-orbit torque. This creates
an effective non-Hermitian magnon Chern insulator, which exhibits the hybrid skin-effect,
where the edge modes are localized on one side of the sample. We discuss its implications
under periodic boundary conditions and demonstrate that this effect leads to an amplification
or damping of the edge modes in a finite-size system through numerical Landau-Lifshitz-
Gilbert simulations. Finally, we consider a transport setup where spin waves are excited with
a microwave field and detected with a normal metal lead, and show that the amplification is
robust against disorder.1

6.1 introduction

Non-Hermitian Hamiltonians are an effective description of a system that
is open to the environment, forming a convenient and simple framework to
treat environmental effects [200]. In general, non-Hermitian Hamiltonians
possess complex eigenvalues and biorthogonal eigenmodes, both of which are
not found in Hermitian systems. From a practical standpoint, non-Hermitian
systems also offer additional handles for control [201]. Recently, non-Hermitian
extensions of topological systems have come under much investigation, where
topological phases are realized in non-Hermitian systems, which can have
profound effects on the topological properties [154–156]. Two of the most
notable of these effects are the topological non-Hermitian skin-effect, where
the eigenmodes are extremely sensitive to boundary effects [68, 69], and the
existence of lasing edge modes [163, 167]. These effects are not just interesting
for fundamental reasons, but could also be of use in applications [202].

Magnon systems offer an attractive platform to realize non-Hermitian topo-
logical phases, since a wide variety of environmental couplings can be engi-

1 R.A.D. and P.M.G. conceived the project and P.M.G. prepared the manuscript. Both authors
contributed to the manuscript.
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Figure 6.1: (a) The spins on a honeycomb lattice realizing the magnon Haldane model
through the next-nearest neighbor Dzyaloshinskii-Moriya interaction (DMI).
The spin-orbit torque is chosen such that it has the opposite sign between
sublattices A and B. (b) The zigzag edge as a one-dimensional chain, with
the direction of the DMI and the gain and loss indicated. The amplified
A-sites in combination with the DMI result in a hybrid skin-effect, where
the edge modes pile up at the left boundary.

neered in magnon systems, such as (non-)local dissipation [32, 34, 75, 201,
203], non-reciprocal couplings [74] and local pumping through a spin-orbit
[204–206] and spin-transfer torque [207, 208]. Furthermore, various topological
magnon phases have been proposed, such as magnon Chern insulators [12,
43, 44, 47–49, 118, 134], magnon spin Hall insulators [53–55], magnon Dirac
[56, 57] and Weyl [58, 59] systems. Of these, central to the field of magnon
topology is the magnon Chern insulator, because it requires no additional
symmetries [38], and its one-dimensional chiral edge modes could enable
highly efficient spin transport [135, 136].

In this chapter we expand on the topological properties of the magnon
Chern insulator by considering a sublattice-dependent spin-orbit torque. This
extends the magnon Chern insulator to an effective non-Hermitian system,
resulting in a topological amplification of the chiral edge states for a specific
edge geometry. This paves the way forward for further on-chip manipulation
of spin waves, offering an efficient scheme for the direct electrical control of
propagating spin waves.

The remainder of this chapter is organized as follows. We first discuss the
non-Hermitian magnon Haldane model in Section 6.2, demonstrating the
effect of the spin-orbit torque on the linear spin-wave spectrum. In Section 6.3
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we show that the magnon density in a finite-size system can be controlled
through the spin-orbit torque. Next, in Section 6.4 we show using numerical
Landau-Lifshitz-Gilbert simulations how an excited magnon mode can be
amplified or damped. Finally, we consider a transport setup including disorder
in Section 6.5 and we end with a conclusion and outlook in Section 6.6.

6.2 non-hermitian magnon chern insulator

We consider the well-known magnon Haldane model [43, 44] as shown in
Fig. 6.1(a), which is a prototypical model of the magnon Chern insulator. We
consider the addition of a spin-orbit torque, which we take to be sublattice-
dependent. The spin dynamics are then described by the Landau-Lifshitz-
Gilbert equation

∂tSi = Si ×
(
− ∂H

∂Si
− α

S
∂tSi +

αsp

S
Si ×µi

)
, (6.1)

where α = α0 + αsp is the sum of the Gilbert damping α0 and the interface
Gilbert damping enhancement αsp [34]. The Hamiltonian is

H = −1
2 ∑

ij
[JijSi ·Sj − Dijẑ ·

(
Si ×Sj

)
]− H0 ∑

i
Sz

i , (6.2)

where nearest neighbors experience an exchange coupling, Jij = J, and next-
nearest neighbors are coupled through the Dzyaloshinskii-Moriya interaction
(DMI), Dij = −Dji = D. The spins are aligned to an external magnetic field
applied in the z direction, contributing a Zeeman energy H0. Furthermore,
µi = µi ẑ is the spin accumulation in the normal metal attached to site i, taken
such that

µi =

+µ i ∈ A
−µ i ∈ B

(6.3)

changes sign between sublattices A and B. We refer to µ as the spin bias
throughout this chapter. Since in the specific magnon Haldane model we
consider the spins are orientated perpendicular to the plane, the spin Hall
effect would not lead to a transverse spin current and a spin accumulation
at the normal metal|ferromagnet interface. Instead, the anomalous spin Hall
effect has to be used [114, 115]. We note here that one could also choose a
spin-orbit torque that only affects one of the sublattice sites, which would
result in the same topological features as we will discuss in this chapter. For
completeness, we discuss this setup in App. 6.A, and continue in this chapter
with the symmetric spin-orbit torque as shown in Eq. (6.3).
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We linearize the LLG Equation (6.1) in deviations mi = (Sx
i + iSy

i )/
√

2S
from the uniform state Si = Sẑ, apply the Fourier transform of the spin-
wave operators, mA/B,i =

√
2/N ∑k eik·Ri mA/B,k and obtain the following

equation of motion,
i(1 + iα)∂tΨk = HkΨk, (6.4)

where we have introduced the effective non-Hermitian Hamiltonian

Hk = (H + 3JS)σ0 + hk · σ + iγσz. (6.5)

Here Ψk = (mA,k, mB,k,)
T is the magnon state vector, σ is a pseudovector of

Pauli matrices ση and

hk = S ∑
i

−J cos(k · δi)

J sin(k · δi)

2D sin(k · ρi)

 , (6.6)

where δi and ρi are the vectors connecting nearest and next nearest neighbors.
We have incorporated the spin-orbit torque in the Hamiltonian, resulting
in an effective imaginary mass iγσz, where γ ≡ αspµ, which renders the
Hamiltonian non-Hermitian.

The stability of this system can be determined by solving Eq. (6.4) for
k = 0 and up to first order in the dissipative terms, α and γ. We then find
that ωk=0 = H + 3JS− iαH −

√
9J2S2 − γ2, and thus the system is stable if

γ2 < 9J2S2. At γ2 = 9J2S2 there is an exceptional point, signaling a phase
transition [209]. We focus in this chapter on the stable regime, and choose
γ < 3JS. Furthermore, we will work with compensated boundaries, such that
the edge coordination number, i.e., the number of nearest neighbors, is equal
to the bulk coordination number.

The Chern number Cn of the n-th band is still well-defined in the presence
of the imaginary mass γ, and we find C1 = −1 and C2 = 1, if D ̸= 0 and
|γ|/JS < 1 [210]. Therefore, from the bulk-boundary correspondence we
expect that in the topologically non-trivial phase there exist chiral edge modes
for open boundary conditions. However, the finite imaginary mass γ plays
an important role in the character of the chiral edge modes, resulting in an
enhanced lifetime and localizing the modes on one side of the sample [211].
This can be seen by considering the zigzag edge as a one-dimensional chain, as
shown in Fig. 6.1(b). We have indicated the direction of the DMI and the gain
and loss on the A and B sites. The left-moving modes are mainly formed on
the A-sites, as can be seen from the direction of the DMI, which is also where
the gain is applied. Under open boundary conditions, this will thus lead to
a hybrid skin-effect, due to imbalance of gain and loss in combination with
the DMI, and the edge modes are localized on one side of the sample [212,
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Figure 6.2: The bandstructure for a zigzag (a) and armchair nanoribbon (c) and the
corresponding spatially asymmetric part of the eigenmodes ∆|ψ|2 circled in
red (b, d). The colorscale indicates the lifetime correction τ′ induced by the
spin bias µ/J = 1. The lifetimes of the left- and right-moving edge mode
in the zigzag nanoribbon are enhanced and reduced respectively, whereas
in the armchair nanoribbon the edge modes exhibit the hybrid skin-effect.
There are bulk lifetime corrections for both the zigzag and armchair edges,
but the latter are too small to be visible on the colorscale.

213]. Under periodic boundary conditions, there is no skin-effect, but instead
the left-moving modes are amplified compared to the right-moving modes.
The skin-effect here is hybrid, since it only occurs for the edge modes, while
the bulk modes are not localized, a variation on the higher-order skin-effect
[214, 215]. The hybrid character can be explained from the fact that the DMI
cancels in the bulk, but it does not for the edge. We stress here that both the
hybrid skin-effect and the lasing are two sides of the same coin and simply
manifest differently under open and periodic boundary conditions.

The effects as discussed here are fundamentally due to the fact that the DMI
does not cancel at the zigzag edge, which is not the case for the armchair case
and thus there are no amplified states for the armchair edges. To show the
difference between zigzag and armchair edges we consider a nanoribbon with
either zigzag or armchair edges under periodic boundary conditions in Fig. 6.2.
We show the lifetime correction, τ′ ≡ Im[ϵ]− αω, defined as the difference
between the actual lifetime, Im[ϵ], and the Gilbert damping contribution, αω,
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where ϵ is the complex energy obtained from diagonalizing the effective non-
Hermitian Hamiltonian and ω = Re[ϵ]. We show both the dispersion, with
the corrected lifetime as the colorscale, and the localization of the edge modes.
We choose S = 1, D/J = 0.2, α0 = 5× 10−3 and αsp = 5× 10−3.

For the zigzag edges, Fig. 6.2(a), the left-moving modes have an increased
lifetime, while the right-moving modes have a reduced lifetime. This therefore
indicates that a left-moving mode is amplified relative to a right-moving mode.
The bulk modes also have lifetime corrections and therefore in the limit of
zero Gilbert damping, the edge modes will not start lasing spontaneously,
in contrast to parity-time symmetric non-Hermitian topological insulators
[216]. However, the edge states are topologically protected and are thus robust
against disorder, whilst the bulk modes do not enjoy such protection. We
therefore expect that in any system with a realistic disorder the bulk mode
lifetime correction will be reduced, whilst the edge modes remain protected.
We will show the effects of disorder in more detail in Section 6.5.

We show the spatially asymmetric part of the eigenmodes, defined as
∆|ψ|2 ≡ |ψt|2 − |ψb|2, where ψt,b are the top and bottom parts of the eigen-
modes, corresponding to the energies indicated by the red dot in Fig. 6.2(b).
The eigenmodes are localized symmetrically on either the top or the bottom
of the nanoribbon, which is unchanged from the Hermitian case. There is
therefore no skin-effect for the zigzag nanoribbon, which is to be expected
since we have imposed period boundary conditions along the zigzag edge
and thus there is no imbalance of gain and loss.

In contrast, the left- and right-moving modes of the armchair nanoribbon,
Fig. 6.2(c) are not amplified or damped. There are small lifetime corrections
to the bulk modes—too small to be visible in this color scale—but again we
do not expect these corrections to be robust against disorder. However, the
eigenmodes, Fig. 6.2(d), are both localized asymmetrically on the top of the
ribbon. Not shown here are the bulk modes, but we have confirmed that
these do not exhibit this asymmetric localization. This is therefore a hybrid
skin-effect, which can be explained from the geometry of the nanoribbon,
since now the zigzag edge is oriented along the open boundary direction.
Therefore, the same reasoning as applied before to the 1D zigzag chain hold,
and a hybrid skin-effect appears for the edge modes.

6.3 finite-size system

Having established the hybrid skin-effect and lasing under periodic bound-
ary conditions in the non-Hermitian magnon Chern insulator, we now turn
our attention to a finite-size system. We first demonstrate that the hybrid
skin-effect can be measured in a finite-size system at finite temperature, by
probing the magnon density ⟨ni(ω)⟩ ≡ ⟨mi(ω)m∗i (ω)⟩. Specifically, we add
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to the LLG equation (6.1) a stochastic magnetic field hi, modeling thermal
fluctuations, which will be fixed by the fluctuation-dissipation theorem (FDT).
After performing the same linearization as before, we obtain for a finite-size
system

∑
j

G−1
ij (ω)mj(ω) = h0

i (ω) + hsp
i (ω), (6.7)

where h0/sp
i (ω) is the Fourier transform of the circular components h0/sp

i =

hx
i + ihy

i of the stochastic magnetic field, where we take into account the
fluctuations related to the bulk Gilbert damping (h0

i ) and to the interfacial
spin-pumping (hsp

i ). The inverse magnon propagator is given by

G−1
ij (ω) = −δij(1 + iα)ω + Hij, (6.8)

where Hij is the effective non-Hermitian Hamiltonian in real space. At finite
temperatures, the stochastic magnetic field hi(ω) has to be chosen such that
⟨hi(ω)⟩ = 0 and ⟨h0/sp

i (ω)h0/sp
j (ω′)∗⟩ = 2πδ(ω−ω′)R0/sp

ij (ω), where

R0
ij(ω) = δij

4α0ω/S
eω/kBT − 1

; R
sp
ij (ω) = δij

4αsp(ω− µi)/S
e(ω−µi)/kBT − 1

(6.9)

are covariance matrices determined by the quantum-mechanical FDT to ensure
agreement with the quantum-mechanical linear spin-wave theory for magnons
[92, 217, 218]. This allows us to accurately incorporate the thermal population
of the magnons, including the fluctuations stemming from the interface of the
ferromagnet with the normal metal inducing the spin-orbit torque. Here it is
important to note that in order for the system to be stable in the presence of
fluctuations we require that µi < H, i.e., the spin accumulation in the attached
normal metal cannot be larger than the lowest magnon band. In order to
maximize the effects for the small systems as considered here we choose
µ/J = ±1, but in real systems we expect the effects to also be sufficiently
large for smaller spin bias.

We show the magnon density,

⟨ni(ω)⟩ =
{

G(ω)
[
R0(ω) + Rsp(ω)

]
G†(ω)

}
ii

, (6.10)

for a frequency in the gap in Fig. 6.3(d-f), at a temperature T/J = 0.8, compar-
ing the Hermitian (µ = 0) and the non-Hermitian case (µ ̸= 0) and the effect
of switching the sign of spin bias µ. Choosing the frequency in the gap ensures
that we only get contributions from the edge modes. This firstly manifests it-
self in the localization on the edges for both the Hermitian and non-Hermitian
case. Secondly, the imaginary mass induces a hybrid skin-effect, increasing
the magnon density on one side of the system, as can be seen by comparing
the magnon density between µ/J = ±1. This localization can be switched
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Figure 6.3: For a finite-size system: (a) The eigenfrequencies ω and the lifetime cor-
rection τ′. The edge modes are shown in red and the excitation frequency
ω0/J = 3.9 used in (b-f) is indicated by a cross. (b) The injected spin current
at the top left corner (solid line) and the top right corner (dashed line),
after injection of a pulse at frequency ω0 at the bottom left corner. (c) The
magnon density, ⟨ni(ω0)⟩, at the top left corner site for increasing temper-
ature, showing the hybrid skin-effect. (d-f) The magnon density at finite
temperature T/J = 0.8 for µ/J = −1, 0 and +1 respectively.

with the sign of µ, as shown here, or the sign of the DMI. Since the latter is
not easily experimentally accessible, we focus in this chapter on the spin bias,
which can be directly electrically controlled.

The temperature dependence of the hybrid skin-effect is shown in Fig. 6.3(c),
where we show the magnon density of the top left corner site, as a function
of temperature. The difference in magnon density for different values of the
spin bias µ, which is a measure of the hybrid skin-effect, is more prominent
for higher temperature. This can be attributed to the larger occupation of
the high-frequency edge states at higher temperatures, making the hybrid
skin-effect more pronounced.

In Fig. 6.3(a) we show the eigenvalues of this system, with the edge modes
indicated in red. We do not observe the enhanced lifetime of the chiral edge
modes, since we have two zigzag edges of the same length, but oppositely
oriented. Therefore, any mode which is amplified on the top zigzag edge, will
be damped on the bottom zigzag edge, thus nullifying each other. Instead,
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as we have discussed before, the topology induced by the imaginary mass is
reflected in the hybrid skin-effect.

6.4 numerical llg simulations

The magnon density as shown in Fig. 6.3(d-f) is calculated within linear spin-
wave theory, and thus does not take into account the full non-linear dynamics.
Since for finite µ the magnon density increases (compare the colorbar scalings
in Fig. 6.3(d-f)), we expect the non-linear effects to be significant. We there-
fore also perform numerical LLG simulations on the same finite-size system,
exciting an edge mode at t = 0 at the bottom left site with a frequency ω0 in
the gap, such that an edge magnon is excited. The excitation is performed
using a local transversely oscillating magnetic field he = b0 cos ω0t x̂, which
is pulsed for one period. In Fig. 6.3(b) we show the pumped spin current,
Is(t) ∝ S × ∂tS at the indicated corner sites, representing the angular momen-
tum injected in a (fictitious) normal metal lead. We initialize the system in the
uniform state Si = Sẑ, and solve the LLG equation (6.1) numerically at T = 0.

After excitation, the edge modes travels around the system, arriving at the
first detector after some characteristic time which is set by the group velocity
of the excited mode. At the first detector, the edge mode has only traveled
through an armchair edge, and is therefore not amplified, and the signal
strength is unaffected by the spin-orbit torque and neither is the arrival time.

However, at the second detector the edge mode has now traveled through a
zigzag edge, and therefore it is amplified. This amplification is clearly reflected
in the signal strength Is, which is increased for µ > 0 and is decreased
for µ < 0 relative to the reference signal with µ = 0. This shows that the
amplification or damping is dependent on the sign of µ, reflecting the lifetime
enhancement we observed under periodic boundary conditions, shown in
Fig. 6.2, and the hybrid skin-effect, shown in Fig. 6.3(d-f). The arrival times
are unaffected, since the group velocity is unchanged by the finite imaginary
mass.

6.5 transport

The chiral edge states in the magnon Chern insulator are particularly interest-
ing, because they can be utilized for highly efficient spin transport [135]. We
therefore consider here a setup where spin transport through the zigzag edges
can be electrically controlled, even in the presence of disorder. We consider
a setup as shown in Fig. 6.4, where magnons are excited with a microwave
antenna on the left, and detected with a normal metal strip on the right. We
thus add an excitation field, hexc

i = h(cos(ω0t), sin(ω0t), 0) to the sites in
contact with the microwave antenna, with strength h and frequency ω0. The



120 electrical control of magnonic chiral edge states

Figure 6.4: The transport setup considered in Section 6.5, where magnons are excited
at the left antenna, and are detected through spin pumping into a normal
metal lead on the right.

excited spin waves travel through the system, and are picked up by a normal
metal lead. The imaginary mass is only non-zero in the middle of the film,
such that the detection and excitation is performed in the Hermitian phase of
the magnon Chern insulator.

The observable in this system is the total spin injected in the right lead,
which can be obtained from the continuity equation ∂t⟨Sz

i ⟩ = 0 [135]. At
finite temperature there will also be spin injected in the lead because of the
thermal population of the magnons, but this effect can easily be subtracted
experimentally. We thus focus on the zero temperature limit, T = 0, where the
current injected into the right lead is given by

I(ω0) = αIF

∫ dω

2π ∑
i∈IF

{
ωG(ω)H(ω)G†(ω)

}
ii

, (6.11)

where [H(ω)]ij = hexc
i (ω)hexc

j (ω) = h2δ(ω−ω0)δi∈antenna, the summation is
over all lattice sites in contact with the right lead and αIF is the interfacial
Gilbert damping enhancement of the normal metal lead. We set αIF = 1 in
order to minimize the reflection of spin waves.

One key feature of topological edge modes is their robustness against
disorder. We therefore implement disorder in our discrete lattice model, by
adding a large on-site magnetic field to randomly chosen lattice sites, which
makes them effectively inaccessible the magnons. We select randomly a set of
wN lattice sites, where N is the total number of lattice sites and 0 < w < 1 is
the disorder concentration, and we average over multiple realizations, thus
modeling disorder. These wN sites do not have an applied spin-orbit torque,
i.e., µi = 0, such that these sites behave like defects. This kind of disorder
represents a specific defect concentration w. We calculate transport through a
zigzag nanoribbon of length d/a = 200, since for the zigzag edges we have
observed the amplification of the edge modes in Section 6.4. In the calculations
that follow, we always consider a finite disorder level of w = 0.05, in order to
illustrate the topological protection of the edge modes.

We show the resulting spin current injected in the right lead in Fig. 6.5
for µ/J = ±1 and µ = 0, for the topological trivial (D = 0) and non-trivial
(D/J = 0.2) system. In the topologically trivial case, D = 0, there is no



6.5 transport 121

2 3 4 5 6 7

ω0/J

10−13

10−11

10−9

I
(ω

0
)/
J

D/J = 0.2

D/J = 0

µ/J = +1

µ/J = 0

µ/J = −1

D/J = 0.2

D/J = 0

µ/J = +1

µ/J = 0

µ/J = −1

Figure 6.5: The injected spin current in the right lead, I(ω0), as a function of excitation
frequency ω0, at a fixed distance d/a = 200, comparing the topologically
trivial (D = 0) and topologically non-trivial (D/J = −0.2) case and the
effects of µ.

notable amplification of the signal for µ/J = ±1 compared to µ = 0. However,
for the non-trivial case, D ̸= 0, we observe an amplification or damping,
depending on the sign of the spin bias, µ, in direct agreement with the
numerical Landau-Lifshitz-Gilbert simulations as shown in Fig. 6.3(b). This
amplification or damping is strongest for excitation frequencies in the gap
and we thus attribute this to amplification or damping of the topologically-
protected edge modes. In turn, this can be related to the lasing of the edge
modes under periodic boundary conditions and the resulting hybrid skin-
effect under open boundary conditions. Moreover, since we have included a
finite disorder level, we draw the conclusion that the amplification is robust
against disorder. As can be seen from comparing the bulk and edge transport,
at a finite disorder level the amplification or damping of the bulk modes is
strongly suppressed, and can be effectively ignored.

We now investigate the distance dependence of the amplified signal in
Fig. 6.6 by defining an amplification factor ∆I ≡ I+µ − I−µ as the difference
in signal between opposite signs of µ. We first observe that the signal car-
ries much farther for excitation frequencies in the gap, as is to be expected
from the topological protection of these modes, since the finite disorder sup-
presses the transport of the bulk modes. The amplification is furthermore
strongest for the excitation frequencies low in the band gap, which can be
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Figure 6.6: For D/J = 0.2 and µ/J = 1, the current I(ω0) as a function of distance, d,
and excitation frequency, ω0. The solid lines indicate the bulk band gap, and
the dashed and dotted-dashed lines indicate the edge and bulk frequency
for which we show the amplification in Fig. 6.7.

explained from the fact that the damping rate within the Gilbert damping
description is proportional to frequency, thus suppressing the transport at
higher frequencies.

Having thus identified that at finite disorder the edge modes are amplified,
whilst the bulk modes are suppressed, we now turn our attention to the effect
of increasing the spin bias on an excitation frequency low in the band gap,
compared to a bulk frequency. We choose ω0/J = 3.3 as edge frequency and
ω0/J = 2.4 as bulk frequency, as also indicated by the dashed and dotted-
dashed line respectively in Fig. 6.6, and show the injected spin current as
a function of distance for increasing values of µ, in Fig. 6.7. The decay of
the signal is exponential, but is reduced as a function of µ. Furthermore, this
reduction is constant as a function of distance, which can be explained from the
fact that the normal metal is attached throughout the entire film. Furthermore,
the signal for a bulk frequency excitation follows a much stronger decay
compared to the edge excitation, even for µ = 0. This is a result of the
topological protection, which renders the edge modes robust against the
applied disorder. Furthermore, the bulk mode is amplified much more weakly
compared to the edge mode, which can also be seen from Fig. 6.6.

6.6 conclusion and discussion

In conclusion, we have shown in this chapter that the chiral edge states in
the magnon Haldane model can be electrically controlled through applying a
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Figure 6.7: The amplification factor ∆I(ω0) ≡ I+µ− I−µ, for varying strengths of µ as a
function of distance d. We compare a frequency ω0/J = 3.3 in the gap (solid
lines) and a bulk frequency ω0/J = 2.4 (dashed lines). These frequencies
are also indicated by respectively the dashed and dotted-dashed line in
Fig. 6.6. The amplification of the bulk modes is negligible, and therefore
only the µ/J = 1 result is visible.

spin-orbit torque. For the zigzag edge geometry this results in an amplification
of the edge modes and the hybrid skin-effect, which we have confirmed using
numerical Landau-Lifshitz-Gilbert simulations. Furthermore, we have shown
this enhanced transport to be robust against disorder within the linear spin-
wave theory formalism, indicating that amplification over large distances is a
possibility.

Throughout this chapter we have chosen µi < H in order to ensure stability
of the fluctuations. Increasing the spin accumulation beyond the energy of
the lowest band causes an accumulation of magnons, which is not described
by the linear spin-wave theory considered in this chapter. In the presence
of certain non-linear effects this can lead to large-amplitude precessions or
Bose-Einstein condensation [33]. The non-linear interaction between the edge
and bulk magnons remains however an open question and it is therefore not
clear what the effects of µi > H would be.

In order to realize the sublattice-dependent spin-orbit torque as considered
in this chapter, we propose to make use of the buckled honeycomb structure of
certain ferromagnetic Van der Waals materials [219]. Because of the buckling,
the A-sites will couple more strongly to a normal metal layer above the
ferromagnet, while the the B-sites will couple more strongly to the layer below.
Through the applied voltage on the top and bottom metal layers the setup as
discussed in this work can be realized.
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Figure 6.8: The amplification for the asymmetric spin-orbit torque only applied on the
A-sites, with µ/J = 1. We have chosen the color-scaling identical to Fig. 6.6,
showing that the amplification is weaker with the asymmetric spin-orbit
torque.

The excitation frequencies required to access the chiral edge modes in
most of the proposed realizations of the magnon Chern insulator are in the
THz-range [51, 141], which cannot be accessed with conventional microwave
antennas. This problem might be circumvented by employing the recently
proposed antiferromagnetic spin-torque oscillator [220]. These spin-torque
oscillators can be driven into the THz regime, and have the right geometry to
excite magnons in the Haldane model we consider.

In this chapter, we have explicitly considered the magnon Haldane model,
and more work is needed to fully understand if the results obtained here are
general for any magnon Chern insulator. Specifically, it would be of interest if
the same amplification can be obtained in the proposed topological magnonic
crystals [118, 144], since these would offer exquisite control over the edge
geometry.

6.a asymmetric spin-orbit torque

In this Appendix we consider the case where the spin accumulation is non-zero
on the A-sites only,

µi =

µ i ∈ A
0 i ∈ B

, (6.12)
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which might be experimentally more feasible, since it only requires a single
normal metal layer. In what follows, we assume for simplicity that the Gilbert
damping enhancement αsp is still present on all sites—such that α = α0 + αsp
is constant throughout the system—but this is not a necessary requirement.
After linearization, we obtain the same equation of motion (6.4), but with
iγσz → iγδAA, such that there is only an imaginary mass on the A-sites. The
long-wavelength excitations are then, up to first order in the dissipative terms,
ωk=0 = H − i(αH − γ/2) and thus the system is only stable if γ/2 < αH.
There are therefore now two stability requirements: αspµ/2 < αH and µ < H.

We choose µ/J = 1, which fulfills both stability requirements since H/J =
1.1, and show the amplification of the spin current for the asymmetric setup
in Fig. 6.8. We can clearly observe the same amplification of the topological
edge states. Thus, the same robust amplification of the chiral edge modes can
be achieved. Furthermore, by comparing Figs. 6.6 and 6.8, which share the
same color-scaling, we can conclude that the amplification is weaker for the
asymmetric setup.
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C O N C L U S I O N A N D O U T L O O K

The central purpose of this Thesis has been to further the study of topology
in magnonic systems. To this end, we have considered a range of magnonic
systems in which topology plays a central role. We first considered the sym-
metry breaking at the interface of a ferromagnetic thin film in Chapter 2. The
carrier of this symmetry breaking is the long-ranged dipole-dipole interaction.
Intuitively, this can be understood from the demagnetization field arising from
the dipole-dipole interaction, which minimizes the magnetic field lines outside
of the thin film. Since the magnetic dipoles are pushed out of the plane by
the external magnetic field, extra external fields are formed at the interface
of the thin film and the vacuum, breaking the symmetry. Using microscropic
calculations we have shown that there is a transverse spin current associated
with the symmetry breaking, which can be measured with a heavy-metal lead.

The dipole-dipole interaction can lead to a magnon Hall effect if the mag-
netic field is applied perpendicular to the plane of a ferromagnetic thin film,
which we studied in Chapter 3. Again, the dipole-dipole interaction breaks
the symmetry, equipping the magnons with a finite Berry curvature. At the
edges of the sample there is therefore a magnon edge current, which circulates
around the sample. We have shown that therefore there is a magnon Hall
effect that can be measured using electrical injection and detection.

If in a system with the magnon Hall effect a gap is opened a magnon
Chern insulator may be realized. Here the magnon edge modes cross the
bulk gap, and are topologically protected. However, they typically have high
frequencies, making them inaccessible to experiment. To solve this problem we
have proposed a general strategy to lower the edge modes to zero frequency
in Chapter 4, by using a non-equilibrium state. In this state the bulk modes
are gapped out, whereas the edge modes have zero frequency.

Magnonic systems can also be used for the realization of a non-Hermitian
topological insulator, the subject of Chapters 5 and 6. In Chapter 5 we con-
sidered the non-Hermitian Su-Schrieffer-Heeger model, realized by coupling
spin-torque oscillators. In this chapter we showed that the lasing edge mode
dynamics persist in the non-linear domain. This model also serves as a clear
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example as to how non-Hermitian topology and magnonic systems are a
natural fit.

Finally, in Chapter 6 we explored a non-Hermitian extension of the Chern
insulator, showing that the chiral edge states can be robustly electrically
controlled using a spin-orbit torque. This manifested itself in two effects: (1)
edge states can be localized on one side of the sample, leading to a hybrid
skin-effect and (2) the transport through these modes can be amplified or
damped. Both the sign and the magnitude of these effects can be controlled
through the spin-orbit torque.

In this Thesis we have therefore shown how topology plays a central role
in magnonic systems and can be studied through various out-of-equilibrium
techniques. This can in part be attributed to the dipole-dipole interaction,
which is ubiquitous in ferromagnets and will therefore introduce topological
effects in a wide range of magnonic systems. Furthermore, we have shown that
magnetic systems offer an ideal platform to engineer an impressive variety of
magnonic topological phases, including non-Hermitian topological phases.

outlook

Topology in magnonic systems remains relatively unexplored, which can
in part be attributed to the high frequencies of the edge modes. The non-
equilibrium state we have proposed in Chapter 4 is one possible solution, and
the results obtained for the magnon Chern insulator can be easily generalized
to other topological magnon phases. Of particular interest would be a magnon
Weyl semimetal [54, 145, 146], since zero-frequency Weyl points would dom-
inate the transport response. Moreover, it would be of interest to consider
these non-equilibrium states in non-Hermitian topological phases, essentially
combining Chapters 4 and 6. In such a setup one would obtain zero-frequency
edge modes which can be electrically controlled. Especially the incoherent
transport response in this system would be well worth exploring.

The strategy used in Chapter 4 to obtain zero-frequency edge modes is
general for any bosonic system and could perhaps be generalized to other
bosonic Chern insulators, such as those realized by photons [129]. Even though
these photonic systems do not suffer from the problem of the inaccessibility
of the edge modes, they might be an ideal platform to further investigate
the novel physics associated with the low-frequency edge modes, such as the
concurrent existence of positive and negative frequency edge modes.

An alternative solution to the problem of the high frequency of the edge
modes could come from magnetic meta-materials, where the magnetization is
artificially created through modern fabrication techniques such as patterning
[118, 144]. The energy scales of these magnetic meta-materials is set by the
dipole-dipole interaction instead of the exchange interaction, and thus the
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edge states sit at easily accessible GHz-frequencies. There are still many open
questions regarding the topology in these meta-materials and it remains
unclear if they can actually be experimentally realized. Specifically, a complete
microscopic description of the dipole-dipole interactions—including the short-
wavelength limit—is lacking, which could be remedied by employing the
same Ewald summation technique as in Chapters 2 and 3. This would also be
useful to explicitly verify the Chern number, which requires an integration
over the entire Brillouin zone and thus over all wave numbers.

The field of non-Hermitian topological insulators has grown considerably in
the past decade, uncovering novel topological phases [154]. These phases are
not only protected by non-Hermitian symmetries [155], but also exhibit a wide
range of previously unknown phenomena, such as the non-Hermitian skin
effect and lasing edge modes. Magnon systems might be a perfect candidate
to realize much of these non-Hermitian phases, since the magnons couple
naturally to the environment. Gain is easily introduced through spin-transfer
and spin-orbit torques, which are now a standard part of the magnetic toolbox,
and loss is always present, as parameterized by the Gilbert damping. Through
engineering the gain and loss, magnonic systems can be made parity-time
(PT) symmetric [175, 221], and thus have a purely real spectrum, although the
Hamiltonian is non-Hermitian [153]. The PT-symmetry in magnetic systems
has been studied in Chapter 5 and gave rise to topologically protected lasing
edge modes in a one-dimensional chain. Here it remains an open question
how the PT symmetry can be generalized to higher dimensions [216], where
the lasing edge modes can be used for transport without spurious bulk
contributions.

By tuning the gain and loss one also naturally obtains an exceptional point
(EP) in PT-symmetric systems, where both the eigenvectors and eigenmodes
coalesce into a single point on the Riemann surface [222]. At an EP the
spectrum is extremely sensitive to perturbations, which would make it an
ideal sensor [190]. However, this would require keeping the system precisely
at the EP, which might prove difficult under real world conditions, since the
system has to be protected against unwanted perturbations, such as thermal
fluctuations. If an EP could be harnessed as a magnetic sensor, it might be
possible to accurately detect a single magnon, similar to how photomultiplier
tubes can detect a single photon.

Another potential application is to encircle an EP in parameter space by
varying two parameters, such that after a full rotation the system returns to
the same parameter state. Because of the topological structure of the Riemann
surface at the EP the system ends up on a different eigenmode and eigenvalue
branch [192, 223], which can be harnessed for asymmetric mode switching
[224]. The encircling of the parameter space would require close control over
the Hamiltonian, something which is readily available in magnetic materials.
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For example, the external magnetic field and the local spin-orbit torque can
be electrically controlled, the anisotropy can be varied through experimental
techniques [225, 226] and the coupling between two magnetic systems can
be modulated through the thickness of the Ruderman-Kittel-Kasuya-Yosida
coupling layer [227–229]. With these techniques, an exceptional point can be
encircled by a magnon wave-packet moving through a spatially modulated
Hamiltonian in a waveguide setup [224].

The existence of the PT-symmetry also naturally leads to the question if
this PT-symmetry can be broken. In fact, in a simple two-mode setup the
PT-symmetry breaks when the system goes through the EP [175], signaling
a dynamical phase transition. Beyond the EP we then obtain unstable dy-
namics, which can be stabilized by the non-linear interactions, leading to
novel dynamical phases [209, 230]. These phases are particularly interesting
to engineer magnetic nano-oscillators with large-amplitude oscillations and a
large frequency range [178, 231, 232], but are also of interest for more funda-
mental reasons, uncovering the relations between non-linearities and EPs [233].
Magnetic systems might offer here an ideal platform to realize and investigate
these relations.

Beyond gain and loss, various non-local environmental couplings have been
proposed in magnetic materials, such as unidirectional [74] and dissipative
couplings [32, 34, 75, 201, 203]. These couplings could be used to engineer a
wide range of non-Hermitian topological phases [155]. From an application
perspective these phases are particularly interesting, since they can be used
to further manipulate and control the topologically protected edge modes, as
shown in Chapter 6.

Topology in magnetic systems thus has a large potential, not just for fun-
damental reasons, but also for application purposes. By considering also
non-Hermitian systems the topological features can be further extended and
controlled. The possibilities have most certainly not been exhausted and many
more avenues remain to be explored.



T O P O L O G I S C H E S P I N G O LV E N R A K E N U I T E V E N W I C H T

In dit hoofdstuk wordt een Nederlandse samenvatting gegeven van de belangrijkste resultaten
van het Proefschrift.

Iedere computerchip produceert warmte. Iedereen die wel eens een lap-
top voor langere tijd op schoot heeft gehad, weet dat maar al te goed. De
warmteproductie functioneert effectief als een begrenzer, want als de com-
puterchip de warmte niet kwijt kan, wordt de rekensnelheid teruggeschroefd.
Een computerchip die minder warmte produceert is dus gelijk een snellere
en energiezuinigere computerchip. En energiezuinigere computers zijn hard
nodig, want computers en datacenters zijn verantwoordelijk voor minstens 5%
van het globale energieverbruik.

alternatieve computers

Er is daarom veel interesse in alternatieven voor de conventionele comput-
erchip. Een van de mogelijkheden is het gebruik van spingolven, ook wel
magnonen genoemd. Dit zijn uitwijkingen van de microscopische magnetis-
che momenten—de spins—in een magnetisch materiaal, die zich als golven
voortbewegen, zoals schematisch weergegeven in figuur 1. Een spingolf kan
worden gebruikt om informatie mee te transporteren en is dus geschikt om
een computer mee te verwezenlijken. Met een belangrijk voordeel: spingolven
vereisen geen elektrische stroom en zijn daarom significant energiezuiniger.

Maar hier lopen we tegen een nieuw probleem aan,want spingolven zijn
geen behouden deeltjes en dus na een tijd is de spingolf uitgedoofd. Dit komt
omdat als de spingolf botst, bijvoorbeeld op een imperfectie, een roostertrilling
of een andere spingolf, er impulsmoment wordt overgedragen aan het kristal-
rooster. Dit zorgt ervoor dat de spin golven uitdoven, wat het ontwerpen van
een spingolfcomputer vermoeilijkt.

Figuur 1: Een spingolf bestaat uit afwijkingen van de individuele spins (zwarte pijlen)
in een magneet, die zich als een golf door het materiaal bewegen.
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Kader 1: Magnonics
Het gebruik van spingolven om informatie te verwerken wordt Magnon-
ics genoemd [234]. Hierbij zijn spingolven de informatiedragers. Het is
dan mogelijk om de klassieke elektronische computer één-op-één na te
bouwen, waarbij de spingolven de rol van bits spelen—een 1 of 0. De
uitdaging is dan om de spingolven zo te manipuleren zodat er berekenin-
gen mee kunnen worden uitgevoerd. De tweede mogelijkheid is om
gebruik te maken van het golfkarakter van de spingolven. Hiermee repre-
senteren de spingolven geen bits meer, maar is de informatie opgeslagen
in de structuur van de golf. Bepaalde wiskundige computeroperaties zijn
hiermee zeer efficiënt uit te voeren, zoals de Fouriertransformatie. Ook is
het mogelijk om spingolven in te zetten voor neuromorfische computers—
waarmee het brein wordt nagebootst. Hiermee zijn op een efficiënte
manier neurale netwerken mee door te rekenen. Met de huidige revolutie
in kunstmatige intelligentie, die mede mogelijk is gemaakt door grote
neurale netwerken, heeft deze onderzoeksrichting natuurlijk een boost
gekregen. Deze alternatieve invalshoeken worden ook wel onconventioneel
rekenen genoemd, omdat er geen bits meer aan te pas komen zoals in
conventionele computerchips. Ook al is deze techniek flink sneller voor
bepaalde operaties zoals een neuraal netwerk of een Fouriertransformatie,
het is wel moeilijker om alle functies van een computer na te bootsen.
Onconventionele rekenmethodes zullen dus waarschijnlijk altijd moeten
worden gebruikt in combinatie met een elektronisch computercircuit. Is de
snelheidswinst echter voldoende dan is het gebruik natuurlijk interessant.

Een mogelijke oplossing hiervoor is het gebruiken van spingolven die een
topologisch karakter hebben, analoog aan de Möbiusband in figuur 2. De
topologische objecten zijn nu de banen door het materiaal die de spingolven
kunnen volgen. In bepaalde kristalroosters vormen deze banen eenzelfde
Möbiusband [235]. Deze spingolven noemen we dan ook “topologisch”. Ze
hebben de bijzondere eigenschap dat bepaalde botsingen niet meer zijn toeges-
taan en kunnen dus over langere afstanden bewegen zonder uit te doven.
Dat maakt topologische spingolven erg interessant om te gebruiken in een
mogelijke spingolfcomputer.

topologische transporteffecten

Topologische effecten zijn meetbaar door het systeem uit evenwicht te brengen
en te kijken naar de resulterende respons. Iets minder ingewikkeld gezegd:
door een transportexperiment. De magneet begint in evenwicht en nu slaan
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Figuur 2: Een Möbiusband, die je maakt door een papieren strip 180 graden te draaien
en aan elkaar te plakken. De Möbiusband heeft maar één zijde: een balletje
dat begint te rollen over de band komt vanzelf terug op zijn beginpositie,
maar heeft wel alle kanten van het papier geraakt. Bij een gewone papieren
strip is dit niet mogelijk en dus zijn deze twee voorwerpen topologisch
gezien verschillend. Figuur gebaseerd op Sketchplanations.com.

we aan één zijde de magneet aan, waardoor spingolven ontstaan die zich door
de magneet gaan bewegen.

Het topologische effect vertaalt zich erin dat de spingolf die wordt aangesla-
gen, niet recht op zijn doel af gaat, maar een rotatie meekrijgt. Intuïtief kan dit
worden vergeleken met een tafeltennisspeler, die met een goede backhand het
balletje kan laten spinnen. Het balletje beschrijft nu niet meer een rechte baan,
maar wijkt af naar links of rechts. Analoog hieraan heeft een topologische spin-
golf een afwijking naar links of rechts. Een eenvoudig experiment—tenminste,
eenvoudig theoretisch te beschrijven—om de topologische eigenschappen te
meten is door een vierpuntsmeting te doen, zoals weergegeven in figuur 3.
Links worden spingolven aangeslagen en het verschil tussen de bovenste en
de onderste detector is dan het resultaat van de topologische afwijking. De
rechter detector functioneert hier als referentiesignaal.

Het experiment zoals hierboven beschreven klinkt wellicht simpel, maar is
niet eenvoudig uit te voeren. Dit komt omdat de spingolven continue botsen.
Al deze botsingen zorgen ervoor dat de aangeslagen spingolf verstrooid raakt
en zo wordt ook de afwijking uitgesmeerd. Om een topologisch effect te zien
moeten de spingolven dus worden gemeten na een zeer korte afstand, omdat
ze dan nog maar weinig botsingen hebben ondergaan.



134 samenvatting

Figuur 3: Een vierpuntsmeting, waarmee de topologische afwijking van de spingolven
te meten is. Op plek 1 worden spingolven geïnjecteerd, waarna deze gemeten
worden op plekken 2, 3 en 4. Als er een verschil tussen 2 en 4 wordt gemeten
dan komt dat door de topologische afwijking van de spingolven. De detectie
op plek 3 functioneert als een referentiesignaal. De kleurschaal geeft de
lokale concentratie spingolven weer en de kleurschakeling betekent dus dat
er diffusie plaats vindt. Gebaseerd op Figuur 3.1 uit Hoofdstuk 3.

Het is echter ook mogelijk om de diffusie van spingolven te meten—zie
kader 2. In deze situatie kijken we juist naar wat er gebeurt na heel veel
botsingen. Tussen die botsingen in bewegen de topologische spingolven zich
zoals we hebben beschreven en hebben dus een afwijking naar links of rechts.
We kunnen ons daarom het volgende experiment voorstellen. Eerst wordt
lokaal de concentratie spingolven verhoogd. Door diffusie verspreidt deze
verhoging zich als een olievlek uit over de rest van het systeem, en kan worden
gemeten in een vierpuntsopstelling. Wij hebben laten zien in Hoofdstuk 3 dat
als de spingolven een topologisch karakter hebben, dit zich vertaald in een te
meten verschil tussen de bovenste en onderste detector.

Kader 2: Spingolfdiffusie
Voor typische spingolfsystemen zijn de meest voorkomende botsingen
juist die botsingen met andere spingolven, waarbij het totale aantal sp-
ingolven behouden blijft, maar wel energie wordt uitgewisseld [29]. Dat
betekent dat een spingolf heel vaak botst met een groot aantal andere
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spingolven, voordat het botst op iets anders. Vanuit de statistische ther-
modynamica weten we dat hierbij de spingolven zich op deze manier
verdelen volgens een thermische distributie. Op een korte tijdschaal wordt
de energie dus constant genivelleerd. Maar omdat het totaal aantal spin-
golven behouden blijft, kan er wel diffusie plaatsvinden. Een lokaal hoge
concentratie spingolven kan zich zo verspreiden over het systeem. De
diffusie kan over lange afstanden plaatsvinden en wordt niet gelimiteerd
door de botsingen van de spingolven, wat een groot voordeel is.

niet-evenwichtstoestand

Er is nog een verbazingwekkend effect geassocieerd met de topologische
spingolven, naast de rotatie zoals hierboven beschreven. Dit topologische
effect—dat voor het eerst ontdekt werd in elektronensystemen—heeft een
nogal contra-intuïtieve uitwerking: het zorgt ervoor dat er op de randen
van het systeem extra toestanden ontstaan. Deze randtoestanden hebben een
bijzondere eigenschap, want het is niet mogelijk ze te vernietigen door op de
rand een stukje materiaal weg te halen. Dit is in schril contrast met de gewone
spingolftoestanden die zich midden in het materiaal bevinden, want deze
worden verstrooid door een missend stukje materiaal of andere onzuiverheden.
Een topologische randtoestand beweegt zich er echter gewoon omheen en is
dus zeer robuust. We noemen dit ook wel de topologische bescherming.

Er is echter een probleem: in de meeste materialen die mogelijk topologische
spingolfmaterialen zijn, bevinden de topologische spingolven zich op te hoge
frequenties, rond de terrahertz. Dat maakt het erg moeilijk om met ze te
werken en topologische spingolven zijn dus ook nog niet direct gemeten. In
Hoofdstuk 4 hebben we een mogelijke strategie voorgesteld om toch de topol-
ogische spingolven te kunnen gebruiken, door ze te verlagen in frequentie.
Hier kunnen we gebruik maken van een handige eigenschap van spingolfsys-
temen: ze zijn makkelijk extern te beïnvloeden. Dat maakt het mogelijk om
een niet-evenwichtstoestand te ontwerpen, waarbij de spins recht tegenover
een extern magneetveld staan. Normaal gesproken zouden in zo’n situatie de
spins zich omdraaien om parallel aan het externe veld te staan. Door middel
van een extern krachtmoment op de spins—in dit geval uitgeoefend door
een metallische laag—is het echter mogelijk om deze situatie te stabiliseren,
resulterend in lage-frequentie topologische spingolven. Dit is exemplarisch
voor spingolfsystemen: deze bijzondere niet-evenwichtstoestanden zijn relatief
gemakkelijk te realiseren omdat spingolfsystemen eenvoudig te manipuleren
zijn.
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Figuur 4: Het aanslaan van een spingolf met positieve (a-c) en negatieve (d-f) frequentie
ω0. De kleurenschaal in de panelen geeft de lokale sterkte van de spingolf
weer op drie opeenvolgende tijden. Het laatste paneel (g) geeft de rotatiericht-
ing van een spin op de rand weer, die wisselt van richting afhankelijk van of
we een positieve of negatieve frequentie gebruiken. Figuur 4.2 uit Hoofdstuk 4.

De niet-evenwichtstoestand leidt tot nog een ander opvallend resultaat. Het
blijkt dat er nu in één systeem topologische spingolven met een positieve en
een negatieve frequentie simultaan kunnen bestaan. Een negatieve frequentie
betekent hier dat de individuele spins tegen de klok in draaien, in plaats van
met de klok mee zoals bij een positieve frequentie. Beide spingolven hebben
nog steeds dezelfde topologische eigenschappen, dus ze bewegen allebei over
de rand en zijn topologisch beschermd. We laten dit zien in figuur 4, met
een simulatie van twee spingolven met positieve (bovenste rij) en negatieve
(onderste rij) frequentie. Een mogelijke toepassing van deze positieve en
negatieve frequentie spingolven zou als bits in een spingolfcomputer kunnen
zijn, waarbij de positieve en negatieve frequentie een 1 en een 0 representeren.

toekomst

Het veld van topologische spingolven staat feitelijk nog maar in de kinder-
schoenen. Een belangrijke stap is het experimenteel realiseren van een sp-
ingolfsysteem met topologische randtoestanden. Met een dergelijk systeem
zou het mogelijk zijn om een aantal belangrijke voorspellingen van de theorie
te toetsen, zoals de topologische bescherming. Is er een topologisch spin-
golfsysteem gevonden, dan is de volgende stap het realiseren van nieuwe
niet-evenwichtstoestanden. In dit artikel hebben we een voorbeeld gegeven
van wat mogelijk is, maar er zijn nog veel meer niet-evenwichtstoestanden met
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interessante effecten. Hierdoor kunnen we ook meer leren over het samenspel
tussen topologie en niet-evenwichtseffecten, iets wat maar beperkt mogelijk is
in andere systemen. En al deze kennis zou zich uiteindelijk kunnen vertalen in
een praktische toepassing: de energiezuinige spingolfcomputer, mede mogelijk
gemaakt door topologische spingolven.
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