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ABSTRACT In vivo, cells navigate through complex environments filled with obstacles such as other cells and the extracel-
lular matrix. Recently, the term ‘‘topotaxis’’ has been introduced for navigation along topographic cues such as obstacle density
gradients. Experimental and mathematical efforts have analyzed topotaxis of single cells in pillared grids with pillar density
gradients. A previous model based on active Brownian particles (ABPs) has shown that ABPs perform topotaxis, i.e., drift to-
ward lower pillar densities, due to decreased effective persistence lengths at high pillar densities. The ABP model predicted
topotactic drifts of up to 1% of the instantaneous speed, whereas drifts of up to 5% have been observed experimentally. We
hypothesized that the discrepancy between the ABP and the experimental observations could be in 1) cell deformability and 2)
more complex cell-pillar interactions. Here, we introduce a more detailed model of topotaxis based on the cellular Potts model
(CPM). To model persistent cells we use the Act model, which mimics actin-polymerization-driven motility, and a hybrid CPM-
ABP model. Model parameters were fitted to simulate the experimentally found motion of Dictyostelium discoideum on a flat
surface. For starved D. discoideum, the topotactic drifts predicted by both CPM variants are closer to the experimental results
than the previous ABP model due to a larger decrease in persistence length. Furthermore, the Act model outperformed
the hybrid model in terms of topotactic efficiency, as it shows a larger reduction in effective persistence time in dense pillar
grids. Also pillar adhesion can slow down cells and decrease topotaxis. For slow and less-persistent vegetative
D. discoideum cells, both CPMs predicted a similar small topotactic drift. We conclude that deformable cell volume results
in higher topotactic drift compared with ABPs, and that feedback of cell-pillar collisions on cell persistence increases drift
only in highly persistent cells.
SIGNIFICANCE Knowing how the environment influences cell motility is useful in developing methods to interfere during
disease or in tissue engineering. One factor is the presence of obstacles: in a process called topotaxis single cells move
from a high to a low density of obstacles. Here, we show that a number of cellular properties, namely deformable volume,
contact inhibition of locomotion, and adhesiveness to obstacles, influence the efficiency of topotaxis. Understanding the
differences in these properties between cell types could point to cell sorting mechanisms for tissue engineering, or shed
light on the migratory behavior of immune and cancer cells.
INTRODUCTION

Motile cells moving through tissue encounter many obsta-
cles, such as other cells and the extracellular matrix. How
cells react to the density of obstacles is important for
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many biological processes, such as cancer cells invading
from a dense tumor into looser packed tissues (1,2), immune
cells moving through tissues with different porosity (3,4), or
pathogens such as Plasmodium that migrate through
different tissues throughout their life cycle (5,6). Recently,
various in vitro assays provided experimental evidence
that cells use the topography of their environment to actively
orient themselves (5,7–11). Although topographically
induced cell migration has predominantly been shown for
in vitro environments, it is likely to also play a role in vivo,
as the typical cellular environment contains a rich variety of
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physical structures ranging from the nanometer to milli-
meter scale.

Topotaxis is an excellent umbrella term to describe all
such forms of biased cell migration caused by asymme-
tries in the topography of the cellular environment.
Recently, the term was reintroduced by Park et al. to
describe topographic cell guidance by subcellular pillar
geometries (7). Such assays, with topotactic cues at the
subcellular scale, result in uninterrupted physical feed-
back between the cell body and the topographic asymme-
try, which was shown to result in biased motion for
various configurations (7–10). However, for highly motile
persistent random cell motion, topotaxis can also be
generated by topotactic cues, which span distances
much larger than the typical cell body, as shown by Won-
dergem et al. (12). In these experiments, Dictyostelium
discoideum, a model organism used to study persistent
random cell motion (13), was shown to drift into areas
of lower obstacle density and increased spacing over
long distances. The spacing between subsequent rows of
obstacles (pillars of cell size) was only increased after
multiple cell lengths, introducing changes in topography
at distances beyond the cell size. Hence, in these experi-
ments, the cell body was not in continuous contact with
the topographic asymmetry, in contrast to the nanoscale
and microscale structures described in (7,10). Yet, the
asymmetric pillar grid provided a sufficiently strong topo-
graphic cue to cause a net drift of approximately 5% of
cell speed over large distances, even when exposed to
competing chemotactic cues.

For such long-distance topotaxis to occur, Schakenraad
et al. (14) hypothesized that the drift could be the result
of local differences in the effective persistence of cell mo-
tion, which is continuously modified by various cell-
obstacle interactions. Using active Brownian particles
(ABPs) as a model system for cell motion, they showed
that this is indeed the case. Particle trajectory simulations
in anisotropic pillar fields resulted in local differences in
persistence and to a net topotactic drift (14). Such position-
ally dependent kinesis was first suggested as a contributing
cause for bacterial chemotaxis (15) where cells tumble
more frequently in lower chemoattractant concentrations,
and for observed durotaxis on stiffness gradients (16)
where cells on softer substrates change direction more
slowly than on stiffer substrates. However, the ABP model
underestimates the topotactic effect measured for live cells,
finding a 1% drift compared with particle speed, which is
lower than the 5% observed for Dictyostelium. The ABP
model simulated the cell as an undeformable disk moving
at a constant speed and mediated particle-pillar interactions
through a simple hard-wall force. Both choices allow for a
very intuitive study into the role of persistence in topotactic
drift, but leave out any intricacies posed by the dynami-
cally changing cell body while navigating complex
environments.
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Here, we explore more refined models of cell migration,
and, more specifically, investigate if either the deformable
cell body or more complicated cell-pillar interactions play
a pivotal role in long-distance topotaxis. The cell body
likely influences migration through the obstacle fields, as
the cell needs to undergo various morphological changes
to squeeze through the pores between pillars. Moreover,
when moving through the pillar field, cells are not guided
around pillars at constant velocity by a hard-wall force as
ABPs, but, for example, reorient more similar to contact in-
hibition of locomotion (CIL). To investigate different types
of cell-pillar interactions, and gauge the influence of the cell
body, we tested two different methods of persistent random
motion within the framework of the cellular Potts model
(CPM). The first method is based on the Act model, which
models cytoskeletal rearrangements (17). This actin-
extended CPM allows for emergent, active reorientation,
as the cell cannot extend into a pillar and will be nudged
to repolarize after the interaction, similar to CIL. The sec-
ond method is a hybrid ABP-CPM model, which excludes
any possibility of CIL, as the direction of preferred motion
of the simulated cell changes solely based on an inherent
characteristic persistence time, but irrespective of obstacle
interactions, similar to the ABP model. Although pillars
are unable to alter the inherent persistence in the ABP-
CPM, the simulation does retain any influence of the
deformable cell body on cell migration through the pillar
grid. The parameters of the CPM, and both associated
methods of driving persistent random motion, were empiri-
cally calibrated by measuring D. discoideum migration on
flat surfaces.

The CPM simulations of the two methods of persistence
resulted in a different topotactic response. The ABP-CPM
simulations resulted in more topotactic drift than ABPs
for the same motion parameters, clearly demonstrating
the influence of a deformable cell body on the efficiency
of topotactic response. The Act-CPM simulations exhibited
the most pronounced topotactic drift, which we show can
be attributed to changes in both speed and persistence by
simulating cell motion in pillar grids of constant spacing.
To compare the simulations with experimental data, we
measured the topotactic drift for starved D. discoideum
migrating on the pillar field introduced by Schakenraad
et al. (14), which allows for a continuously changing linear
gradient, contrary to earlier experimental work. Measuring
cell migration on the same lattices used for modeling top-
otaxis ensured a more optimal comparison between exper-
imental and simulated data. The ABP-CPM most closely
matches the experimental topotactic drift, whereas the
Act-CPM slightly overpredicts topotaxis. However, when
normalizing for cell speed, the measured topotactic drift
of D. discoideum sits between the ABP-CPM and Act-
CPM simulated drifts. Finally, we tested the effect of
changing the adhesion energy between cells and pillars.
Changing this adhesion energy has a direct influence on
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the cell speed next to pillars, and thereby topotactic drift,
and equates to varying the surface material of the pillars
in in vitro assays.
MATERIALS AND METHODS

For this study, we have used an experimental setup with live cells and three

computational models. Experimental data from cells on a flat surface were

used to set the model parameters and calibrate the simulations. Topotaxis

caused by gradients of anisotropically placed cell-sized obstacles (pillars)

was investigated in experimental assays, as well as in computational

models.
Live-cell experiments

Cell culture and experiment preparation

For all migration experiments, axenicD. discoideum (Ax2)with a cytoplasmic

green fluorescent protein (GFP) insertion was used (strain HG1694, obtained

fromDr.G.Gerisch,MPI forBiochemistry,Martinsried,Germany).Cellswere

grown at 20�C in HL5 medium, supplemented with 20mg mL� 1 gentamicin

(Gentamycin solution, Merck, the Netherlands) as a selection antibiotic. The

cells were cultured in 100 mm petri dishes (100 mm TC-treated culture dish,

Corning, Corning, New York) and confluency was kept below 70% during

culturing. For visualizing actin polymerization, a LimE-GFP in lim0 cell

line was used (18). These cells were cultured similarly, but with two selection

antibiotics instead, 10 mg mL� 1 gentamycin and 10 mg mL� 1 blasticidin,

necessary to maintain the double mutation (LimE-GFP and Lim0).

In preparation for imaging experiments, cells were harvested by Pipette-

induced flow and collected in a conical tube. To remove the culture

medium, the cells were centrifuged at 1500 rpm for 3 min. In the case of

vegetative experiments, resulting cell pellets were thrice washed using

nonfluorescent buffer (3.6 mM KH2 PO4, 2.9 mM Na2 HPO4 [pH 6.7])

and, after resuspension, transferred onto (un)structured polydimethylsilox-

ane (PDMS) surfaces placed inside an imaging chamber (see obstacle and

flat PDMS surfaces). In the case of starved experiments, a pulsation

procedure was started before imaging instead. Cell pellets were thrice

washed with 17 mM K-Na-phosphate-buffered saline (PBS) (pH 6.0) and

placed on a shaker for 1 h. Then, to induce cAR1 expression, cells were

pulsed with 150 nM cyclic adenosine-monophosphate (cAMP) (Merck,

Amsterdam, the Netherlands) applied in 6 min intervals over 4 h while

shaking. After pulsation, any residual cAMP was removed by centrifuga-

tion and resuspension. Cells were left to shake in a conical tube with

PBS for another 30 min before being loaded onto PDMS surfaces in imag-

ing chambers. For both experiments, cells were left to adhere for 1 h after

insertion into the imaging chamber, leading to a 6–7 h starvation period.

Cell seeding concentrations were kept below 1� 10� 4 mm� 2 to limit

cell-cell interaction and enable study of the migration of individual cells.

Obstacle and flat PDMS surfaces

PDMS (Sylgard 184 Silicon Elastomer Kit, Dow Corning, Midland, Mich-

igan) was mixed 1:10 resulting in a 1.72 MPa stiffness for all surfaces (19).

Flat surfaces were prepared by spin-coated premixed PDMS onto

polished Silicon wafers (Siegert Wafer, Aachen, Germany) and then baked

for 4 h at 110�C. Before spin coating, wafers were silanized by

trichloro(1H,1H,2H,2H-perfluorooctyl) silane deposition under vacuum

(50 mbar) for 1 h to ensure proper PDMS detachment later. Before use,

PDMS was cut, peeled off, and washed with ethanol (70%). For migration

experiments, PDMS was cast around a 250–500 mm thickness; for limE-

GFP imaging, PDMS was cast ultrathin (<50 mm) enabling 100� (working

distance ¼ 130 mm) imaging.

Pillar obstacle fields were prepared using a molding process. The

pillar molds were prepared by two-photon direct laser writing using
the Photonic Professional GT (Nanoscribe, Eggenstein-Leopoldshafen,

Germany). First, a negative of the topotaxis pillar grids (s ¼ 0:01 �
0:03, see pillars section) were designed using Inventor (Autodesk,

Mill Valley, California) and, via a stereolithography format (.stl), im-

ported to DeScribe (Nanoscribe) to prepare for direct laser writing.

Then, two-photon cross-linking was performed using the IP-S resin

(Nanoscribe) deposited on a silicon wafer. Different laser powers and

scan speeds were chosen for bulk and edges of the structure, 27 and

42% (of 140 mW), 10 and 40 mm=min, respectively. To remove excess

resin, molds were developed for 45 min in polyglycidylmethacrylate. Af-

ter blow drying with nitrogen, wafers were silanized as described previ-

ously. To produce the pillar field casts, PDMS was deposited over the

wafer (with mold on top), baked, cut, peeled off, and washed with

ethanol (70%).

PDMS inserts were hydrophilicitized by 15 min of UV/ozone exposure

(UVO-42, Jelight, Irvine, California) and placed inside an imaging slide

(0.8 sticky-Slide I Luer, Ibidi, Gr€afelfing, Germany), to be used immedi-

ately. Before loading cell suspensions, imaging slides were washed with

ethanol and then PBS. To determine the quality of the mold and PDMS

inserts, a cast of each pillar design was imaged using a nanoSEM (FEI/

Thermo Fisher Scientific, Eindhoven, the Netherlands) scanning electron

microscope (SEM). Samples were imaged at 10 kV, with a spot size of

4.0. Before imaging, PDMS structures were coated with 2–8 nm Pt/Pa us-

ing a plasma magnetron sputter coater (208HR, Cressington, Watford,

UK) to enhance conductance.

Live-cell imaging and tracking

Cells were imaged every 8–10 s for experiments on flat PDMS and every

20 s for topotaxis assays. Measurements lasted for 1–3 h and were per-

formed with either 10� or 20� air objectives (Plan Fluor, Nikon, Tokyo,

Japan) on a Nikon Eclipse Ti microscope equipped with a confocal spin-

ning disk unit operated at 10,000 rpm (Yokogawa, Tokyo, Japan). The

cytoplasmic GFP was excited at 488 nm using a solid-state diode laser

(Coherent, Santa Clara, California) supported in an Agilent MLC4 unit

(Agilent Technologies, Santa Clara, California), at reduced intensity

(25% of 2.4 mW) controlled by an Acousto-Optic Tunable Filter. Emis-

sion was filtered by a quad-band fluorescence filter (TR-F440-521-607-

700, IDEX LLC, Rochester, NY). Images were captured using an expo-

sure time of 200 ms by an Andor iXon Ultra 897 High Speed EM-CCD

camera (Andor Technology, Belfast, UK). Images of higher magnification

were produced with the same setup but using different objectives: Fig. 1 E

with 40� air (Plan Fluor, Nikon), limE-GFP; Figs. 1 D and 2 Awith 60�
water (Plan Apo VC, Nikon); Figs. S1 C and A1 A with 100� oil (CFI

Plan Apo, Nikon).

Image tracking was performed using ImageJ (http://imagej.nih.gov/ij/).

Microscopy time-lapse images were contrast and brightness adjusted,

and run through a Gaussian filter (s ¼ 2) to enable optimal cell body

recognition. The ImageJ plugin CellEvaluator was used to determine the

x; y-coordinates of the center-of-mass of each cell body in each frame

(21). By linking all these x; y-positions together, cell trajectories were

obtained.

Empirical measurement of cell area

Fluorescence microscopy images of cell migration experiments on flat

PDMS were used to fit the cell surface area (As) parameter in the CPM.

Frames used for area analysis were chosen sufficiently far apart

(f� 1 ¼ dt ¼ 200 s) to avoid correlations. The two-dimensional (2D) pro-

jection of the cell body was determined using Sobel edge detection, applied

to cytoplasmic GFP images obtained using the 20� air objective (0.657

mm=pix). Brightness and contrast were adjusted to rescale pixel intensities

(i.e., only using the range of 16-bit intensities of GFP signal detected). Im-

age analysis was performed using MATLAB, and the Image Processing

Toolbox (MATLAB v.2019a, The MathWorks, Natick, MA) in particular.

First, edges were detected (Sobel) using an appropriate threshold, then

the resulting binary edge image was dilated, holes were filled, borders
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FIGURE 1 Large-scale topotaxis for highly motile ameboid cell migration (D. discoideum). (A) SEM micrograph of the s ¼ 0:01 pillar field. Scale bar,

100 mm. (B) Same micrograph, but for s ¼ 0:03. (C) Detailed micrograph of pillars (h ¼ 20 mm, d ¼ 10 mm). (D) Actin polymerization hotspots visualized

for a cell migrating through a pillar field. Fluorescence is LimE-GFP expressed in LimE null cells (18,20) after z-projection. Scale bar, 10 mm. See also

Video S1. (E) Bright-field image of a pillar field (s ¼ 0:03) overlaid with the trajectory of a migrating starved D. discoideum cell (free cytoplasmic

GFP in green). Scale bar, 10 mm. (F) Trajectory plot of 113 cells moving on the topotaxis field s ¼ 0:01 during 4 independent measurements. (G) Trajectory

plot of 124 cells moving on topotaxis field s ¼ 0:03 during 4 independent measurements. (H) Comparison of the normalized mean drifts Cvx;yD= Cv0D
measured in all live cell experiments (flat, s ¼ 0:01 and s ¼ 0:03). The error bars are the 95% confidence intervals. During this analysis all randomly

directed drift noise (vx;flat vy;all) was reoriented along the positive axis to align any noise with the signal, and subject any bias in motion to the most rigorous

significance test possible (see materials and methods and Fig. S2). The measured drift increases with an increase in the strength of the gradient s, as is demon-

strated by increasing means. The underlying distributions are nonnormal (see Fig. S2, B and C for normality tests) and therefore the nonparametric Kruskal-

Wallis test was used to perform an overall significance test (p ¼ 0:0024) over the vx and vy values. A post hoc Dunn’s test shows that the topotaxis assays

have a significant drift in the x; y directions, and the strongest gradient has a significantly higher drift than all other experimental configurations. The shallow

gradient s ¼ 0:01 is not significantly different compared with the flat and s ¼ 0:03 configurations (pflat ¼ 0:1;ps¼ 0:03 ¼ 0:3) when all noise is direction-

ally aligned. *p ¼ 0:05, **p ¼ 0:01.
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cleared, and the image eroded (equal to the initial dilation). Then all groups

of nonzero, adjacent pixels forming a cell were identified and properties

(using regionprops), such as the area, extracted.
Models

ABP model

We use the ABP model as described previously by Schakenraad et al. (14).

In this model, a particle is described as a disk of radius Rp at location rðtÞ,
with speed v0 moving in the direction p ¼ ðcos q; sin qÞ which changes ac-
cording to:

dr

dt
¼ v0pþ mF (1)

dq ffiffiffiffiffiffiffiffip

dt

¼ 2Drx; (2)

with m a mobility coefficient, F ¼ FðrÞ the interaction force between par-

ticle and obstacle, x ¼ xðtÞ a random variable with zero mean and time cor-
relation CxðtÞxðt0ÞD ¼ dðt � t0Þ. The rotational diffusion coefficient Dr ¼
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1=tp is the inverse of the persistence time tp of the ABP. The interaction

force F is given by

F ¼
8<
:

� v0
m
ðp$NÞN; if jDr0j%R

0; otherwise;

(3)

with N a unit vector normal to the obstacle surface, jDr0j the

distance between the centers of the particle and the obstacle, and R
the effective particle radius as the sum of the particle and pillar

radius R ¼ Rp þ R0. In our simulations m ¼ 1, and v0 and tp are set

to experimentally determined cell speeds and persistence times.

Rp ¼ 1 mm by default, to represent the size of the nucleus of

D. discoideum (22,23), or is set to 0 mm (no volume) or 1:8 mm, which

is the maximal possible radius to fit through the smallest distance in

the topotaxis grid.

CPM of persistently moving cells

We use the 2D CPM (24) with either of two extensions for modeling persis-

tent cell movement (see sections Act-CPM and ABP-CPM). The CPM

represent cells on a regular square lattice L3Z2. Each lattice site,~q˛L,

is associated with a spin value sð~qÞ˛ f1; 0; � 2g, that assigns the lattice



A

D

C

B

FIGURE 2 Examples of frontal collision with a

pillar of in-vitro-starved D. discoideum and simula-

tions. (A) Starved D. discoideum navigating through

a topotaxis assay. The degree of actin polymeriza-

tion (green) is visualized through fluorescence of

LimE-GFP. (B) Act-CPM simulation: Act levels

are colored from red (Actð q!Þ ¼ MaxAct) to green

(Actð q!Þ ¼ 0). Once the polarized cell hits the

pillar, it loses its polarization, a new Act front ap-

pears, and the cell polarizes again and moves

away from the pillar. (C) ABP-CPM simulation:

the arrow is the preferential direction vector p of

the cell, starting at its center of mass. Once the

cell collides with the pillar, it can only move away

once p points away from the pillar (final frame).

(D) ABP model simulation: the black arrow is the

particle’s directional vector p, the gray line displays

the particle’s trajectory. For particles colliding with

a pillar, the displacement’s component normal to the

pillar surface is lost, resulting in motion away from

the pillar only when p has shifted away from the

pillar. See also Videos S1 and S4.
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site to the cell (sð~qÞ ¼ 1), the medium (sð~qÞ ¼ 0), or a pillar (sð~qÞ ¼
� 2). The cell is represented as the collection of lattice sites marked

with s ¼ 1: i.e., f~q ˛L; j;sð~qÞ ¼ 1g.
Cell motion is modeled by updating the lattice through iterative at-

tempts to extend or retract the cell into neighboring lattice sites. For a

copy attempt, the algorithm selects at random a lattice site ~q and one

of its eight neighbors ~q0. If sð~qÞssð~q0Þ, the algorithm computes

DHtotal, the change in Hamiltonian together with the energy change

due to active forces from the cell’s persistence, which determines the

success of a copy attempt. The Hamiltonian H balances the forces of

cell-medium and cell-pillar interactions, and cell area and cell perimeter

constraints (25):

H ¼
X
~u;~v

Jsð~uÞ;sð~vÞ
�
1 � dsð~uÞ;sð~vÞ

�þ lareaðas � AsÞ2

þlperimeterðps � PsÞ2 (4)

Here, Jsð~uÞ;sð~vÞ describes the adhesion energy between two neighboring lat-

tice sites~u;~v of types sð~uÞssð~vÞ. We set Jpillar;medium ¼ 0 to only take the
adhesion energy between cell and medium (Jcell;medium ¼ 20 (17)) or cell

and pillar (Jcell;pillar , varies) into account. The second and third Hamiltonian

term describes the area and perimeter constraint and penalize deviation of

the cell area as from its target area As and of cell perimeter ps from the

target perimeter Ps. The l values indicate the weight of both constraints.

The probability of a successful copy attempt depends on DH and an

extension-specific DHmotility (see subsections Act-CPM and ABP-CPM)

via DHtotal ¼ DH � DHmotility:

PðDHtotalÞ ¼
�

1 if DHtotal < 0

e�ðDHtotal=TÞ if DHtotal R 0
;

with T denoting the noise in the system that allows for energetically unfa-

vorable copy attempts to be accepted. Model time is expressed in Monte
Carlo steps (MCSs). Within a single MCS, the expectation is that, for

each lattice site, an update has been attempted once. Since we model

only a single cell in a large field, many neighboring lattice site pairs will

not lead to cell movement. We ignore such unfruitful copy attempts by us-

ing a rejection-free algorithm to speed up simulations (26,27).

Act-CPM. To model persistent cells, we use two different extensions of

the CPM. First, we use the Act-CPM (17). It models the actin polymeriza-

tion-driven persistent cell motility (17). Each lattice site ~q has an extra
value, Actð~qÞ, which can range from 0 to MaxAct inside the cell. The Act
value outside the cell is always 0. If the cell has recently made an extension

into~q, Actð~qÞ is set to MaxAct. For every MCS, each nonzero Act value will

be decreased by 1, until 0.

For the Act-CPM, DHmotility ¼ DHAct. In a copy attempt extending the

cell from a lattice site~c into an empty lattice site ~m, we look at the geomet-

ric mean of the Act values in NBð~cÞ, the Moore neighbors of~c that are also

within the cell, such that:

DHActð~c/~mÞ ¼ lAct
MaxAct

 Q
~y˛NBð~cÞ

Actð~yÞ
! 1

jNBð~cÞj:
(5)

For retraction attempts, the sign changes, so DHActð~m/~cÞ ¼ � DHAct

ð~c/~mÞ. As a consequence, the cell is more likely to extend outwards at

areas with high Act values and is less likely to retract from such areas.

This simulates the polarized actin structure of a cell in a phenomenological

way. The two parameters lAct and MaxAct can be tuned to obtain different

cell motilities.

ABP-CPM. The ABP-CPM is a hybrid method between a CPM model

extension (28) and the ABP model (14). Like the ABP model, the cell

has a direction p ¼ ðcos q; sin qÞ. Cell movement along this direction is

favored. For each copy attempt extending the cell, the angle a between

the resulting displacement of the center of mass and p is computed, and re-

sults in DHmotility ¼ DHpersistence like in (28):

DHpersistence ¼ lpersistence$cosðaÞ: (6)

For updating q, we use the same differential equation as in (14) (see

Eq. 2):

dq

dt
¼

ffiffiffiffiffi
2

tp

s
xðtÞ: (7)

Here, tp stands for the persistence time, and xðtÞ is a stochastic white noise
term, modeled by a Gaussian distribution with mean 0 and variance s2 ¼

2 Dt
tp
. The term Dt couples the time of Eq. 7 to the MCS, and we choose

Dt ¼ 0:1tp. At initialization, the cell is assigned a q from a uniform

random distribution. We update q each MCS. Different cell motilities can

be obtained by tuning the parameters tp and lpersistence.
Biophysical Journal 122, 2791–2807, July 11, 2023 2795
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Pillars

We utilize two different pillar grids: a regularly spaced pillar grid and a

pillar grid with a topotaxis gradient. The regularly spaced grids are defined

by the distance between pillar centers d and the pillar radius R. The topo-

taxis grid is defined as by Schakenraad et al. (14). It consists of three

different parts: a regularly spaced part on the left of the field, a part with

a gradient in pillar distance in the middle, and another regularly spaced

part on the right. The pillar gradient in the middle is defined by the

following set of pillar centers P,
P ¼

8>>><
>>>:
ðx; yÞ˛R2

���������
x ¼ d

1 � e� s ðesn � 1Þ þ d

2
and

y ¼ d

�
mþ 1

2

�
esn; with n;m˛Z

9>>>=
>>>;
; (8)
where d is the distance between pillar centers at the origin ð0; 0Þ, the
center of the field. This gives a gradient in the horizontal axis with

parameter s defining the steepness. The two regularly spaced grids at

the left and right of the gradient part of the grid with respective pillar

spacings dmin and dmax ¼ 2d � dmin limit the gaps between pillars to

get too small or too big. Table 1 gives an overview of all grid

measurements.

In the CPM, a lattice site~x is assigned to a pillar if it is within a distance R
from one of the pillar centers. Pillar lattice sites have s ¼ � 2, so as not

to be confused with the s values of the medium or cells. As pillars are static,

copy attempts into a pillar site are not allowed. However, copy attempts

from a pillar site into a cell site ~q are allowed, although, in this case, not

sð~qÞ ¼ � 2 but sð~qÞ ¼ 0 is copied. This allows the cells to retract from

the pillars and can be seen as medium flowing back in between cell and

pillar from the third dimension, which we do not model explicitly. The

interaction energy Jcell;pillar can be adjusted to represent adhesive or repul-

sive pillar surfaces. In this work, Jcell;pillar ¼ Jcell;medium, such that pillar

adhesion is neutral in respect to adhesion to the medium, unless stated

otherwise.

Establishing baseline motility

To quantitatively compare the topotaxis of simulated cells to

D. discoideum cells, we tried to find parameters such that the simulated

cells behave the same as the starved and vegetative D. discoideum cells

on a flat PDMS surface without any pillars (Figs. S1 and A1). For the

ABP model, we set v0 and tp directly to the experimentally determined

values (see trajectory analysis). For the CPMs, we changed the motility

parameters lAct and MaxAct , and lpersistence and tp, to fit to the experimental

data.

The experimental data used for fitting the motility parameters are: the

surface area, instantaneous speed, effective diffusion coefficient, and persis-
TABLE 1 Pillar gradient grid parameter values for the

experimental and simulation setup

Symbol Description

Experiment CPM

(mm) (px) (mm)

R pillar radius 5 10 5.3

h pillar height 18 5 2 N/A

d pillar center distance at origin 16.8 32 16.8

dmin pillar center distance left cap 13.6 26 13.7

dmax pillar center distance right cap 19.9 38 20.0

s gradient steepness 0.01, 0.03 0.01–0.09
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tence time. The surface area and speed were used to determine the length

and timescale of the CPMs. The effective diffusion coefficient and persis-

tence time had equal weights in our least-squares objective. Using a hill-

climbing algorithm with multiple restarts, we obtained a shortlist of

possible parameter values. The 15 best parameter sets were then scored

10 more times to obtain the best parameter set. The resulting effective diffu-

sion coefficients and persistence times are shown in Tables 2 and A1. The

optimal parameters are shown in Tables 3 and A2, and were used for further

simulations.
Trajectory analysis

Cell trajectories recorded on flat and pillar PDMS surfaces were analyzed

with an in-house MATLAB code (v.2019b). The instantaneous velocities

v, persistence times t, and diffusion constants D extracted for the flat trajec-

tory data by this analysis were used to calibrate the CPMs and ABP simu-

lations. Dying or otherwise immotile cells (see (12)) and insufficiently long

trajectories (flat n< 100, topotaxis n< 30) were discarded for analysis, to

prevent noise in mean-squared displacement (MSD) values at long lag

times.

The displacement of the cell between frames was found by rðtÞ ¼
RðtþDTÞ � RðtÞ, where RðtÞ are the vectors described by the x;y-coordi-
nates of the cell center in each image. The instantaneous velocity of each

cell was estimated using the time-averaged velocity between frames,

CvðDTÞDT ¼ 1

n � 1

Xn� 1

k ¼ 1

jRðtkÞ � Rðtk � DTÞj
DT

: (9)

Here, the trajectory time tk is discretized by the constant frame rate of the

camera, tk ¼ k$DT, with k ¼ 0;.;n, DT ¼ 10 s or 20 s, and where n is
the number of frames in a trajectory. The ensemble average of each exper-

iment (and simulation) was obtained by taking the mean of all v per exper-

iment. For the experimental trajectories, the time-averaged MSD was used:

CDr2
�
tlag
�
DT ¼ 1

n � m

Xn�m

k ¼ 1

�
R
�
tk þ tlag

� � RðtkÞ
�2
: (10)

In this expression, m represents the lag time multiple under consideration

tlag ¼ mDT. The time-averaged MSDs were averaged over all N trajec-
tories per lag time, and subsequently fit to F€urth’s formula,

MSDðtÞ ¼ 2v20tt � 2v20t
2
�
1 � e� t=t

�
: (11)

From this fit the characteristic persistence times (t) and effective diffusion

constants (Deff ) for both vegetative and starved D. discoideum cells moving

on flat PDMS were extracted and used to fit the CPMs and ABP model.

To determine the persistence time in the simulation, we computed the

ensemble-averaged MSD of N ¼ 1000 simulated cells (CPMs) or

N ¼ 10; 000 particles (ABP model):

CrðtÞ2D ¼ 1

N

XN
i ¼ 1

ðRðt0 þ tÞ � Rðt0ÞÞ2: (12)



TABLE 2 Cell motility properties for starvedD. discoideum on a flat PDMS surface, the resulting properties for the ABP simulations,

and best fits for the Act-CPM and ABP-CPM

Experimental ABP Act-CPM ABP-CPM

Length equivalent 1 px (mm) – – 0.525 0.525

Time equivalent 1 MCS (s) – – 0.373 0.574

Speed (mm/s) 0.197 5 0.001 0.193 5 0.000 – –

Area (mm2) 110.4 5 45.1 – – –

Effective diffusion (mm2/s) 1.82 5 0.68 1.77 5 0.04 1.76 5 0.08 1.87 5 0.08

Persistence time (s) 91.98 5 0.98 92.0 5 1.7 89.30 5 2.22 89.89 5 3.33

Cellular properties enhance topotaxis
Here, t0 ¼ 0 for the ABP simulations and t0 ¼ 120MCS for both CPMs to

allow for an initialization period for the Act-CPM. We then fitted to CrðtÞ2D
F€urth’s formula (Eq. 11) for the ABP trajectories, or the adapted F€urth’s for-

mula for the CPM trajectories

MSDðtÞ ¼ 4DTtþ 2v20tt � 2v20t
2
�
1 � e� t=t

�
; (13)

which describes the MSD of a persistent random walk with translational

noise (29). Here, t is the persistence time, v0 the constant speed, and DT
is the translational diffusion caused by thermally induced fluctuation, which

is inherent in the CPM. The corresponding effective diffusion constants are

described by Deff ¼ 1
2
v20t (ABP) or Deff ¼ DT þ 1

2
v20t (CPMs). However,

we obtained Deff independently from Eq. 13 by fitting the MSD of a Brow-

nian particle

MSDðtÞ ¼ 4Deff t; (14)

to Eq. 12 for tR 2000 MCS (CPMs) or tR 900 s (ABP):

For flat and topotaxis assays of the experimental and simulated trajec-
tories, migratory drift (vx;y) was calculated by averaging over all displace-

ments of all trajectories,

Cvx;yD ¼ 1

n � 1

Xn� 1

i ¼ 1

ðRðti þ dtÞ � RðtiÞÞ (15)

where n is the total number of displacements measured. For the simulated

topotaxis assays, we performed 1000 single-cell CPM simulations or
10,000 ABP model simulations for each parameter setting. To measure top-

otactic drift vx we computed the mean velocity in the x-direction with Eq.

15, using the equivalent of dt ¼ 20 s intervals for all cell or particle tracks,

and n all time steps in which the cell or particle was in the gradient part of

the pillar grid. To subject the measured drift distributions (Eq. 15) to the

most rigorous statistical evaluation possible, each randomly oriented noise

expected in the isotropic directions (vflat and vy) was oriented along the di-

rection of expected drift þx during analysis. After the live-cell measured

drift distributions were found to be nonnormal by Kolmogorov-Smirnov

and Lelliefors testing, the Kruskal-Wallis test by ranks (a ¼ 0:05) was
TABLE 3 Parameter values of the best fits for the starved

Dictyostelium cells for both the Act-CPM and ABP-CPM

Parameter Starved

T 20

As 400

larea 50

Ps 313

lperimeter 1

Jcell;medium 20

Act-CPM

lAct 129

MaxAct 37

ABP-CPM

lpersistence 159

tp 30
used to determine whether samples originated from different distributions.

To determine pairwise statistical significance, a post hoc Dunn’s test was

used on independent groups (either vx or vyvalues).
RESULTS

Starved D. discoideum cells show topotactic drift
increasing with gradient steepness

Before investigating the physical origin of topotaxis through
multiple in silico models, topotactic drift was first experi-
mentally (re)confirmed in square pillar lattices with a
continuously changing pillar density. Although earlier
work already focused on long-range topotactic drift for
ameboid motility in fields of anisotropically placed cell-
sized obstacles, the drift in these experiments was measured
on trigonally arranged pillar fields with a discontinuous
gradient (12) instead of a square lattice with a continuous
gradient. The square pillar lattice with a continuous gradient
was later introduced in (14), and provides a more well-
defined approach to studying gradient-dependent differ-
ences in topotactic response. Contrary to using experimental
data from previous experiments, measuring cell migration
on the same lattices used for modeling topotaxis ensures a
more optimal comparison between experimental and simu-
lated data. Fig. 1 A–C shows SEM micrographs of the
new square PDMS pillar grids used for cell motility exper-
iments here, which were produced using soft photolithog-
raphy techniques similar to earlier work (see materials and
methods for details). The pillars were placed according to
Eq. 8, as introduced in (14), and their overall design param-
eters are shown in Table 1.

The s ¼ 0:01 and s ¼ 0:03 gradient pillar fields (see
Fig. 1 A and B) were chosen as suitable benchmarks for
measuring the topotactic response of starved D. discoideum
on the new pillar gradients. Measuring topotaxis on steeper
gradients (s > 0:03) was found to be experimentally unfeasi-
ble, as these grids produce few and short trajectories in com-
bination with sparse cell seeding, and very gradual gradients
(s � 0:01) are expected to result in low drifts, possibly
within experimental error. The cells navigated smoothly be-
tween the pillar obstacles (Figs. 1 D, E, and 2 A; Video S1)
during migration experiments (0–3 h). Cell movement was
imaged using fluorescent confocal microscopy and tracked
using image analysis (Fig. 1 E, also see live-cell imaging
and tracking). The experiments yielded more than 100
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trajectories per pillar gradient, plotted centered in Fig. 1, F
and G. To analyze long-range topotaxis of the cells, the drift
of the cell center in both the x and y direction (vx and vy) was
calculated from cell tracks in the gradient (Fig. 1 H and
Eq. 15). To subject the measured drift in the anisotropic as-
says to the most rigorous evaluation with respect to the
experimental noise, the randomly directed drifts (flat and
vy) were aligned with the direction of the spatial gradient
þx before any significance testing during analysis. The
cell trajectories have a significant drift in the positive x di-
rection (i.e., toward sparser pillar densities) for both pillar
gradients compared with the corresponding vy in the
gradient. In addition, the mean drift increases with gradient
steepness s, and although only the steepest gradient yields a
significantly different drift with respect to all other orienta-
tions, the s ¼ 0:01 drift is significant to all other directions
for randomly oriented noise (as seen by using the raw data,
see Fig. S2).

The fluorescence time-lapse microscopy of starved
D. discoideum migrating on flat PDMS served as a control
for the topotaxis data, but also served as the baseline data
necessary to empirically calibrate the input parameters
required for CPM simulations. The motility of the cells on
flat PDMS (Fig. S1 and Video S2) yielded the base mean
cell area (Fig. S1 D), mean speed (Fig. S1 E), persistence
time (Fig. S1G), and diffusion constant (Fig. S1H), summa-
rized in Table 2, necessary as initial input to generate CPM
trajectories. In general, the experimental data show that
starved D. discoideum cells are highly motile compared
with other cell types (30), and move persistently randomly
with a relatively similar speed and persistence time across
the cell population for long measurement times (31). The
cell area and perimeter are equally similar over time and
population, even though the cells continuously grow and
retract pseudopods (see Fig. S1 and (32)).

The ABP, Act-CPM, and ABP-CPM simulations applied
in this study require different sets of input parameters. ABPs
are fully defined by a constant speed v0 and persistence time
tp, whereas CPM simulations require an input target cell
area As, cell perimeter Ps, and to set the persistence param-
eters l and MaxAct or tp, need an input diffusion constant D
and persistence time tp to calibrate motility. Furthermore,
the time and spatial resolution of the CPM system was set
by comparing the typical cell area and speed of
D. discoideum with the time and length scale of MCS sim-
ulations (see Table 2 for possibilities). In silico cell motion
was fit to represent experimental motion by weighing up ob-
servables extracted from simulated trajectories to those
gathered from experimental trajectories (via the same pro-
cedures, i.e., equal frame rate and computational method).
The ABP simulations were simply set by using the experi-
mentally determined mean cell speed and persistence
time, which resulted in only slightly slower and less-diffu-
sive motion (Table 2). In the case of CPM simulations, how-
ever, the observables were compared through a fitting
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procedure (see models for details) to obtain a best match
to experimental motility. The MCS parameter values used
for Act-CPM (lAct and MaxAct) and ABP-CPM (lpersistence
and tp) are shown in Table 3, with the corresponding
motility properties shown in Table 2. See Video S3 for
example, simulations of both systems on a flat substrate.
Overall, the data summarized in Table 2 indicate that we
achieved a close match between simulated and experimental
trajectory observables for all three models on flat surfaces.
Method of persistence affects topotactic capacity
of cells

After confirming topotactic drift in square pillar grids with a
continuous spatial gradient, and calibrating the simulations
of persistent random cell motion with experimental data, we
turned to an extensive in silico investigation of cell-sized
obstacle topotaxis. Fig. 2 summarizes how the various simu-
lated cell bodies respond to obstacles and provides compar-
ison with a representative cell-pillar interaction of starved
D. discoideum. The ameba has a single actin front before in-
teracting with a pillar (green, Fig. 2 A, 0–18 s), which splits
into two upon collision (Fig. 2 A, 18–41 s). One of the two
newly formed actin fronts becomes the dominant side dur-
ing the collision, which then guides the entire cell body
around the pillar (Fig. 2 A, 63–117 s). The Act-CPM cell-
pillar interaction follows a similar, CIL-like mechanism of
navigating around obstacles (Fig. 2 B). After colliding
with a pillar, the cell temporarily loses actin polarization
(Fig. 2 B, 75 s), and then repolarizes in a new direction
(Fig. 2 B, 118–192 s). The ABP-CPM and ABP pillar colli-
sions develop very differently, as these cells or particles al-
ways propagate via a self-dictated desired direction of
motion; therefore, pillar interactions never alter their
(inherent) persistence (Fig. 2, C and D). For these models,
the pillars act as areas of excluded volume, unable to alter
intrinsic persistence, and only guide the cells around the
pillar wall through the velocity component of the cell that
does not point directly at the pillar center. The two ABP
simulations react differently to the same method of unal-
tered persistence. The ABP particles always remain in mo-
tion, gliding past pillar walls (Fig. 2 D, 90–150 s), whereas
the inclusion of a cell body for ABP-CPM can lead to pro-
longed stationary states through cell-pillar embraces. More-
over, the ABP-CPM cells remain longer in contact with the
pillar and rotate further around the pillar than the Act-CPM
cells (Fig. S6).

Example trajectories of ABP- and Act-CPM simulations
are shown in Fig. 3, A–F (Video S4) for three different gra-
dients. Act-CPM trajectories (Fig. 3, A–C) do not penetrate
the dense side of the grid as much as ABP-CPM cells
(Fig. 3, D–F). The mean population displacements (CxðtÞD
and CyðtÞD, Fig. 3, G and H) show that there is drift along
the x axis for all gradient steepness (s), indicating that the
simulated cells perform topotaxis in both models.
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FIGURE 3 Trajectories of starved simulated cells and means of x and y coordinates over time for different gradient steepness parameter (s) values. (Top

row) Act-CPM example trajectories: (A) s ¼ 0:01, (B) s ¼ 0:03, (C) s ¼ 0:09. (Middle row) ABP-CPM examples: (D) s ¼ 0:01, (E) s ¼ 0:03, (F) s ¼
0:09. Starting location is marked with a black cross and the depiction of a cell. Each trajectory has its own color. (Bottom row) Mean x and y coordinates over

time for gradient steepness s corresponding to the gradients shown in the rows above. (G) Act-CPM. (H) ABP-CPM.

Cellular properties enhance topotaxis
Compared with the fully controllable simulations, the
in vitro experiments come with additional challenges, such
as random cell seeding, population heterogeneity, and
variations in recorded trajectory durations. Therefore, com-
parisons between the two systems are best made using time
and population averages (Fig. 4, A–C). The drift velocity in
the direction of the gradient (vx, Fig. 4 A) increases as a
function of steepness for the trajectories of both the experi-
mental data and all models. The models have a mean drift
proportional to the gradient steepness, as described for
ABPs by Schakenraad et al. (14), but there is a clear differ-
ence between the ABP and CPM simulations: CPMs show a
higher increase in drift than the ABP model and, further-
more, the Act-CPM is most effective at performing topo-
taxis. When directly comparing the topotactic drift
between simulations and D. discoideum, the ABP-CPM pre-
dictions are closest to the experimental data, with Act-CPM
drifting more, and the ABP model underestimating ameboid
topotaxis. In the case of ABPs, there is a small effect of par-
ticle size on the topotactic drift (Rp ˛ f0;1;1:8g, see Fig. S3
for more details).

Directly comparing the unnormalized topotactic drift vx
assumes that the base motile response across all the investi-
gated systems does not differ in a gradient versus on a flat
substrate, or, for that matter, as a function of gradient steep-
ness. However, earlier work by Schakenraad et al. suggest
that this might not be the case. The mean instantaneous ve-
locity CjvinsjD, an often used indicator of base cellular
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FIGURE 4 Topotactic drift and instantaneous speed of starved parameter set against gradient steepness s. Each orange or blue data point represent the

average of 1000 simulations. Error bars indicate 97.5% confidence interval (CI). (A) Topotactic drift vx. (B) Instantaneous speed CjvinsjD. The dotted line de-

picts the instantaneous speed of starved cells in the absence of pillars. (C) Relative topotactic drift vx=CjvinsjD).
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motility (33,34), is affected by pillar distance and, since
cells in steeper gradient encounter different pillar distance
more quickly, their instantaneous velocity can vary across
different gradients. The CjvinsjD is shown in Fig. 4 B for the
experimental and simulated data, and develops differently
for each model. The mean speed of ABPs, D. discoideum,
and ABP-CPM cells drops with increasing gradient steep-
ness, although at different rates, whereas the Act-CPM tra-
jectories gain motility as a function of steepness. Overall,
the instantaneous velocities always drop when compared
with movement on flat substrates, but D. discoideum fea-
tures a larger decrease in speed than the simulated cells.
To properly compare the topotactic response across all the
investigated systems, the drift must be normalized to the
mean instantaneous velocity to account for the overall, dis-
similar drop in motility on pillar substrates, and for any dif-
ferences in speed response to varying the gradient steepness.
Normalizing the topotactic drift (vx=CjvinsjD, Fig. 4 C) in-
creases the distinction between ABP and CPM cells, high-
lighting the influence of cellular volume on cell-sized
obstacle topotaxis, and also positions the experimental top-
otactic response between the two CPM simulations.

Summarizing the in silico results so far, the inclusion of a
dynamic cell body in the CPMs clearly influences the over-
all topotactic response, and provides a more accurate esti-
mation of the topotactic drift measured for D. discoideum
in vitro than ABP simulations. Especially the comparison
between ABP and ABP-CPM highlights this finding, as
the two models share the exact same method of generating
persistence, but the pillar collisions ensue differently for
ABP-CPM through the inclusion of a dynamic cell body,
which seems to temporarily decrease motility during pillar
interactions (Fig. 2). In the case of Act-CPM, the CIL-like
pillar interaction may disrupt persistence (or motility)
most, which seems to translate into the strongest topotactic
drift. If cell-pillar interactions indeed cause different de-
creases in motility or persistence, this is important, as
obstacle-induced disruptions of motion can lead to the emer-
gence of topotaxis through the anisotropy in pillar density
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along the direction of the gradient. A positionally dependent
difference in persistence leads to a net population drift in the
direction of the gradient (see (14,16)). In the next section we
investigate if the model with the strongest topotactic
response, in this case Act-CPM cells, is indeed accompanied
by the largest difference in obstacle-induced disruption of
persistence or motility along the gradient axis.
Cell-pillar interactions aremost disruptive for Act-
CPM persistence

Inspired by Novikova et al. (16), Schakenraad et al. (14)
attributed topotaxis to changes in effective persistence
length leff ¼ veff$teff as a function of position on the
gradient axis. They argued that the increase in pillar density
in the direction of the gradient leads to longer persistence
lengths during movement, and therefore causes drift in the
direction of the gradient. Here, we extend the results of
Schakenraad et al. by calculating the same observables of
persistent random motion for the Act-CPM and ABP-CPM
systems that were previously determined for ABPs. First,
the diffusion constant Deff was calculated by a fit of the sec-
ond moment of Brownian motion in two dimensions (Eq.
14) to the ensemble-averaged MSD (Eq. 12) of the trajec-
tories at long lag times, i.e., during the diffusive regime of
persistent random motion. Subsequently, the persistence
time teff was determined by fitting the full ensemble-aver-
aged MSD to F€urth’s equation for persistent random motion
(Eq. 11 for the ABP model, and corrected for noise by an
extra translational diffusion term for the CPMs, Eq. 13,
see materials and methods). As a final step, the instanta-
neous velocities veff were measured by computing CjvinsjD
for each pillar configuration, and subsequently used to deter-
mine the associated persistence lengths (leff ). In general, the
data were well fit by the theoretical curves for F€urth and
Brownian MSDs, with the exception of the recorded trajec-
tories on the pillar grids with d ¼ 13:1 mm, where the cell
bodies were mostly stuck at their starting unit cell, leading
to strong subdiffusive behavior.
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FIGURE 5 Normalized effective parameters of

the persistent random walk in regular pillar grids

for the Act-CPM, ABP-CPM, and ABP model

with the starved parameter settings. (A) Effective

diffusion coefficient Deff normalized by the diffu-

sion coefficient of starved simulations on an empty

field as a function of the distance d between pillar

centers. (B) Effective persistence time teff normal-

ized by the persistence time of starved simulations

on an empty field as a function of d. (C) Effective

instantaneous speed veff normalized by the instanta-

neous speed of starved simulations on an empty

field as a function of d. (D) Effective persistence

length leff ¼ veffteff normalized by the persistence

length of starved simulations on an empty field as a

function of d. Error bars indicate 97.5% CI.

Cellular properties enhance topotaxis
Fig. 5 shows the effective motility parameters, or key ob-
servables for persistent random motion as a function of
pillar distance, of both the CPMs and ABP model, normal-
ized to the motility of each system on a flat substrate. The
effective diffusion coefficient Deff , persistence time teff ,
instantaneous speed veff , and persistence length leff all
increase as a function of increasing pillar distance, and satu-
rate to the corresponding values measured on flat substrates
(D0, t0, v0, and l0). The speed veff is a measure of the magni-
tude of the velocity vector, and thereby motility, where the
persistence time teff contains information on both the direc-
tion and rate of motion; hence, it functions as an indicator
for general persistence (35). The effective speed of CPM
cells decreases faster than ABPs for small pillar spacings,
but does not exhibit a very pronounced difference between
the Act-CPM and ABP-CPM. On the contrary, the effective
persistence time of the two types of CPM is very dissimi-
lar—the Act-CPM simulations have much shorter persis-
tence times than ABP-CPM tracks at small pillar spacings.
Hence, the ABP-CPM system is mainly affected by a
decrease in motility, while Act-CPM is affected by both a
decrease in persistence and the overall decrease in motility.

Both the deformable cell body and the additional disrup-
tion of persistence are key ingredients in enlisting a stronger
topotaxtic response than measured for active particles.
So far, the CPM models were calibrated to starved
D. discoideum movement, which typically has a persistence
length larger than the cell body. However, when the persis-
tence length of the system is shortened, one expects the
contribution of obstacle-induced disruption of persistence
to the topotactic drift to decrease, and both types of CPM
motility likely result in the same drift. To test this hypothe-
sis, we calibrated the CPM models to represent vegetative
D. discoideum, which have a much shorter persistence
length than their starved counterparts (see appendix A in
the supporting material, and Videos S5–S7 for details).
Both CPMs predict some topotactic drift (Fig. A3), more
than the ABP model, but five times smaller than for the
starved simulations. More interestingly, however, there
was no clear difference between the two CPM simulations.
The cell simulations in regularly spaced grids show that
there is indeed a much smaller difference in effective persis-
tence times as a function of pillar spacing, especially for
pillar fields spaced apart 16:3 mm or more (Fig. A5). Sum-
marizing, the deformable cell body of CPMs impairs cell
speed more during cell-pillar interactions when compared
with hard particles, such as ABPs, and enhances topotactic
drift. Secondly, methods of motility that are more suscepti-
ble to obstacle-induced disruption of persistence lead to
even higher topotactic response, as the comparison of Act-
CPM and ABP-CPM shows. Finally, setting simulations of
vegetative and starved cells side by side shows that, for
persistence lengths much shorter than the average cell diam-
eter, any differences in persistence generation hardly
contribute to the net topotactic drift, except for the narrow-
est of pore sizes.
Pillar adhesion influences cell motility and
topotactic response

Up to this point, cell-medium and cell-pillar interactions
were treated equally in the CPM simulations as the adhesion
energies of both components of the cell environment were
chosen the same (Jcell;pillar ¼ Jcell;medium). However, this
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might not properly reflect the response of starved
D. discoideum to the pillar walls. For one, the live-cell ex-
periments led to a much larger drop in cell speed when
going from featureless surfaces to pillar assays compared
with the simulations (Fig. 4 B). Moreover, previous work
(12) has shown that the ameba occasionally explore the ver-
tical pillar walls, which leads to temporary stationary states
in persistent cell motion when next to pillars, not unlike the
Act-CPM CIL-like interaction between cells and pillars.
Drops in speed, lingering behavior next to obstacles, or
pillar guidance may be simulated by varying the adhesion
energy of pillars relative to the surrounding flat medium
Jpillar;mediumsJcell;medium. During all simulations the cell-me-
dium adhesion energy was kept positive and constant
(Jcell;medium ¼ 20, see Table 3). Lowering the cell-pillar
adhesion energy relative to the cell-medium energy
(Jpillar;medium < Jcell;medium) promotes occupying lattice sites
next to pillars, and thereby encourages cell-pillar adhesion,
while discouraging movement into empty medium.
Conversely, increasing cell-pillar adhesion energy impedes
occupying lattice sites next to pillars, discouraging cell-
pillar adhesion and encouraging movement away from pil-
lars into empty medium.
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FIGURE 6 Trajectories of starved simulated cells and mean x and y coordinate

example trajectories: (A) Jcell;pillar ¼ � 60, (B) Jcell;pillar ¼ � 30, (C) Jcell;pillar
60, (E) Jcell;pillar ¼ � 30, (F) Jcell;pillar ¼ 50. Starting location is marked with

(Right column) Mean x and y coordinates over time of 1000 independent simul
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To investigate the effect of modifying the adhesion en-
ergy of cell-pillars relative to the surrounding medium, we
varied the adhesion parameter � 60< Jcell;pillar < 50 around
our initial choice Jcell;medium ¼ Jcell;pillar in a topotaxis grid
with gradient steepness s ¼ 0:03. Examples of simulated
cell tracks for more adhesive pillars Jcell;pillar < 0 and repel-
ling pillars Jcell;pillar > Jcell;medium are shown in Fig. 6. Clearly,
decreasing Jcell;pillar (Fig. 6, A, B, D, and E) reduces overall
cell displacement in the pillar field, more so for Act-CPM
cells than ABP-CPM cells, whereas increasing Jcell;pillar
(Fig. 6, C and F) does not seem to affect cell displacement
at first sight (compared with Jpillar;medium ¼ Jcell;medium, see
Fig. 3, B and E). The mean coordinates over time (Fig. 6,
G and H) show that the Act-CPM loses its topotactic drift
for low Jcell;pillar but not for high Jcell;pillar. The ABP-CPM
is less affected by high pillar adhesiveness, as it still displays
topotactic drift at Jcell;pillar ¼ � 30.

To further investigate topotaxis for different adhesion en-
ergies of pillars, we quantified the topotactic drift vx and
instantaneous velocity CvinD as a function of the difference
in adhesive energy between pillars and the medium
(Jcell;pillar � Jcell;medium). The topotactic drift of Act-CPM
cells has a sigmoidal relation to Jcell;pillar � Jcell;medium,
G

H

s over time for different pillar adhesion energy Jcell;pillar. (Top row) Act-CPM
¼ 50. (Bottom row) ABP-CPM example trajectories: (D) Jcell;pillar ¼ �
a black cross and the depiction of a cell. Each trajectory has its own color.

ations for (G) Act-CPM and (H) ABP-CPM.
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whereas the drift vx of ABP-CPM increases approximately
linearly as a function of Jcell;pillar. Where the drift of the
ABP-CPM population seems to keep increasing as a func-
tion of adhesion energy, even beyond its neutral value
(Jcell;pillar � Jcell;medium ¼ 0), the drift of Act-CPM trajec-
tories quickly plateaus when Jcell;pillar > Jcell;medium. Further-
more, high cell-pillar attraction (Jcell;pillar � 0) has a large
effect on the overall motility of Act-CPM cells, as both drift
and instantaneous velocity quickly drop to zero for negative
adhesion energies (Fig. 7 B). Hence, lowering the adhesion
energy between cells and pillars can be utilized to model the
stationary states in 2D-projected in vitro cell trajectories,
and accompanying drop in speed, that occurs when
D. discoideum explore the vertical pillar walls. The ABP-
CPM response in speed is similar to that of Act-CPM, but
the cells lose less motility overall at very low cell-pillar
adhesion energies; both models seem to share an optimum
at Jcell;pillar ¼ 10.

The initial aim of varying the cell-pillar adhesion en-
ergy was to gauge the effect of the parameter on the
strength of topotactic response of the two CPM simula-
tions. In short, decreasing cell-pillar energy negatively af-
fects topotactic drift, and an increase of energy beyond
Jcell does not affect Act-CPM trajectories, but does
enhance the Act-ABP drift. As a final step, we compare
the observables of the D. discoideum trajectories
with the data for the range of adhesion energies investi-
gated (shown in green in Fig. 7, A–C). The topotactic drift
vx and speed CjvinsjD of the models match the experimental
data for different adhesion energies, but never at the same
energy for both observables (e.g., at Jcell;pillar ¼ � 50 for
vx and Jcell;pillar ¼ � 70 for CjvinsjD for Act-CPM). The
normalized drift vx=CvinD, which scales the topotactic
response to the base motility of the system, matches the
Act-CPM at Jcell;pillar � Jcell;medium ¼ � 20, where the
ABP-CPM simulations never provide a good fit. Hence,
the relative topotactic drift can be approximated using
Act-CPM simulations, although it overestimates the base
motility of the live-cell data. Overall, the cell-pillar adhe-
sion energy alters cell speed, but lowering speed comes at
a cost of decreased topotactic drift, and the adhesion en-
ergies at which the experimental values match the observ-
ables vx, jvinsj or vx=jvinsj are very different between the
two CPM simulations.
A CB
DISCUSSION

In this study, topotactic drift was measured for starved
D. discoideum in square lattices of cell-sized pillar obstacles
with continuously changing gradients in pillar density. To
gain further insight into the underlying physical principles
that yield this kind of long-range topotactic drift, the exper-
imental results were followed up by three types of cell sim-
ulations in the same anisotropic pillar fields. Topotaxis was
simulated using two different CPMs and, to compare with
previous work, were accompanied by ABP simulations
with the same parameters. The two CPMs modeled persis-
tent random cell motion through two distinct methods of
persistence: the Act model with emergent CIL, and an
ABP-CPM hybrid, which leaves pillar obstacles without
the capacity to alter the inherent persistence of the cells.
The motion of simulated cells was matched to the type of
persistent random motion of D. discoideum by fitting the
model parameters to the experimental results on flat
PDMS, providing a way to perform order of magnitude
comparisons between live-cell and simulated data. The
CPM cells had topotactic drifts on a par with the live-cell
data, contrary to ABP simulations, which have a much lower
topotaxis efficiency. Generally, both the experiments and
simulations showed that rising pillar-gradient steepness lin-
early increases topotactic drift, although there are large dif-
ferences in the origin and strength of the topotactic response
of the three models.
Persistence-driven cellular topotaxis is primarily
affected by changes in persistence time

Active Brownian motion on a plane experiencing increasing
and decreasing persistence length in opposing directions
was previously shown to result in a net drift (16). As undi-
rected cell motility is similar to active Brownian motion at
long measurement times (36,37), positionally dependent
differences in persistence length are proposed to be a key
ingredient of long-range topotaxis (14). In topotaxis simula-
tions by Schakenraad et al., ABPs glide past pillar walls and
lose the part of the velocity vector that points in the direction
of the pillar center, and thereby some persistence length.
Therefore, a gradient in pillar density leads to either larger
or smaller losses of velocity depending on gradient position,
FIGURE 7 Topotactic drift and instantaneous

speed of starved parameter set against adhesion

preference Jcell;pillar � Jcell;medium. For all points

Jcell;medium ¼ 20. Each data point represents the

average of 1000 simulations, error bars indicate

97.5% confidence interval. The line with the shaded

area represents the experimental data with 97.5%

confidence interval. (A) Topotactic drift vx . (B)

Instantaneous speed CjvinsjD. (C) Relative topotactic
drift vx=CjvinsjD.
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which, in turn, leads to a net topotactic drift. Cells are not
spherical particles, however, and obstacle-induced ABP top-
otaxis was shown to be accompanied by a much lower
normalized drift than measured for highly motile ameba in
anisotropic cell-sized pillar fields (12). The difference be-
tween both systems is likely caused by the capacity of
cell-pillar collisions to influence the intrinsic persistence
of the cells, whereas ABPs are merely deflected by pillar
walls, always maintaining their inherent constant speed
and persistence.

We investigated the influence of including a deformable
cell body and changing the method of motility on
obstacle-induced changes in the persistence of cell motion.
Each of these two factors generally exacerbate changes in
persistence length, and thereby topotactic drift, for persis-
tent random cell motion through a pillar gradient, but affect
the speed or persistence time differently (Fig. 8). Specif-
ically, comparing the ABP and ABP-CPM shows that the in-
clusion of a dynamic cell volume alone is not enough to
substantially change persistence time as a function of pillar
distance. However, including cell volume does cause a drop
in effective speed through the more complex pillar interac-
tions such as the cell body embrace of pillars. Moving on to
the second factor, when obstacle collisions are allowed to
FIGURE 8 Persistence-driven cellular topotaxis results from decrease in

effective speed and persistence times in pillar environments. D. discoideum

shows a drift toward sparser pillar densities in a pillared grid, which we

simulated using three models. An ABP model explained this drift as persis-

tence driven, with decreased effective persistence length at short pillar dis-

tances due to a drop in effective speed, but does not suffice to describe the

magnitude of topotactic drift in experiments. The addition of deformable

cell volume in the ABP-CPM results in a larger decrease in effective speed

and a decrease in persistence time at short pillar distances, and hence a

higher topotactic drift. With its emergent persistent motion, the Act-CPM

shows similar changes in effective speed as the ABP-CPM and, moreover,

shows a large decrease of effective persistence time at small as well as at

larger pillar distances, resulting in the highest topotactic drift.
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alter incident persistence through using different methods
of motility, it does lead to substantial changes in persistence
time, as contrasting the Act-CPM and ABP-CPM simula-
tions shows. The Act-CPM CIL cell-pillar interactions
lead to a large loss of incident cell polarization, which al-
lows for sharper turns upon collision than the ABP-CPM,
which stays more in line with the incident direction of mo-
tion. The different methods of motility lead to a large differ-
ence in persistence time, although, interestingly, the speed
measured during the Act- and ABP-CPM simulations is
very similar. The difference in persistence time between
the CPMs disappears when the persistence length is
decreased beneath the cell diameter (realized by tuning sim-
ulations to vegetative D. discoideum instead), and the addi-
tional contribution of the method of persistence vanishes
from the topotactic drift.

The reorientation of cells upon obstacle collision has also
been the subject of other studies (38–40). In an experiment
with fish keratocytes, actin flow was disturbed upon colli-
sion with an obstacle, making the keratocyte change direc-
tion (38). Modeling studies also indicate that intracellular
molecular dynamics are important in cell reorientation
upon collision. In Nishimura et al. (39), the change in actin
retrograde flow plays an important role in the formation of a
new protrusion after collision with a wall, allowing the cell
to move away from the wall. In Campbell and Bagchi (40),
many different cell behaviors after collision were observed
in an immersive boundary method with reaction-diffusion
equations on the cell surface. They observed 1) ‘‘freezing’’
when the cell did not have new pseudopods for a short while
after collision, 2) ‘‘doubling back’’ when the cell returned in
the direction it came from, and 3) ‘‘tug of war’’ when mul-
tiple new pseudopods competed for leading the cell’s new
direction.
Comparing cells on silicon and in silico

Although our primary aim was identifying the key ingredi-
ents that uplift ABP topotaxis to cellular topotaxis in cell-
sized pillar fields, the method of in-vitro-inspired CPM sim-
ulations applied here also has a potential to help discover
useful obstacle assays in the future. By first measuring
cell motion experimentally on a flat surface, then fitting
CPM model parameters to match that motion, and finally
predicting the response of cells to an obstacle configuration,
the method can serve to predict the response of other cells to
different obstacle designs. Using simulations instead of
gathering data on in vitro assays, can speed up the design
processes of new assays that aim to guide cell motion by ob-
stacles or obstacle adhesiveness to, for example, achieve cell
sorting or promote tissue regeneration.

In setting up such simulations, one should strive to mini-
mize any differences between the computational and live-
cell results. In this work, we explored if cell-pillar adhesive-
ness is at the root of the discrepancy in instantaneous speed
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between the experiment and the model and if it can be ex-
ploited to more accurately model the measured ratio be-
tween base motility (speed) and topotactic drift of the
experimental data. The instantaneous speed of the simulated
cells in both CPMs could be lowered by decreasing the cell-
pillar adhesion energy, i.e., by increasing cell-pillar attrac-
tion. However, the motility of Act-CPM cells decreases
much quicker than in the case of ABP-CPM, where the un-
altered base persistence is capable of breaking the cell free
from pillar contact. Cell displacement decreases at low
adhesion energy leading to a reduced overall topotactic
response in both simulations. Conversely, the simulations
respond differently to increasing cell-pillar adhesion energy
beyond that of the medium, as Act-CPM topotactic drift
quickly plateaus to a constant value and ABP-CPM keeps
rising at increased energy. It was possible to obtain the
same normalized drift as the experimental data by varying
the adhesion energy of Act-CPM simulations; however,
the concurrence is reached at a slightly different magnitude
of the instantaneous velocity and drift.

Despite including a cell body, alterable persistence and
pillar adhesion energy delivered the same normalized topo-
tactic drift, our simulations were unable to reproduce the gen-
eral loss of motility measured for the ameba. The simulations
likely do not fully capture the dimensionality and chemo-
tactic intricacies of the in vitro assay. Experimental observa-
tion show that D. discoideum cells sometimes crawl up a
pillar, mainly displacing their center of mass vertically.
They can also move through narrower pillar distances than
our CPM simulations by spreading their volume vertically.
Although vertical displacement is not modeled directly in
the 2D CPM, the weight of the area and perimeter constraint
can be seen as a measure of 3D flexibility. Yet, 3D versions of
the CPM could be used also to compare with experiments on
3D grids. Such grids could either have a confining floor and
ceiling, or extended pillars reducing floor and ceiling confine-
ment effects. Next, starved D. discoideum secrete and
degrade cAMP (41), which acts as a chemoattractant and pro-
motes chemokinesis. Obstacle configurations may nontri-
vially influence local cAMP concentrations, for example,
between pillar domains. Studies have shown that chemotaxis
can assist in guiding cell movement around large obstacles
(42) or through mazes (43). Furthermore, self-secreted che-
moattractants can also trap cells within containing environ-
ments such as dead ends in mazes (44). The effect of
chemical sensing in a field with a high density of obstacles
as well as its effect in topotaxis are still open for study.

Whether topotaxis plays a role during cell migration
within multicellular organisms, such as during metastasis
or the immune response, remains unclear. There are two ma-
jor differences with the model system considered here and
(metazoan) cells migrating through tissue. The first differ-
ence is the influence of the extracellular matrix, which
allows cells to actively deform and remodel their surround-
ings, but also allows for cell adhesion, leading to a more dy-
namic interaction with obstacles, obstacle density, and
adhesion-dependent motility modes (45–47). The second
major difference is the relatively large and rigid nucleus
of (mammalian) cells in tissue compared with the ameba
D. discoideum and, as such, was not explicitly taken into ac-
count in our models. However, the presence of very small
pores does force the cell to not only deform itself but also
the nucleus to a large degree, which could (drastically) alter
the effective speed and persistence of the cell. Experimental
and modeling studies have already provided some insights
into the role of nuclear mechanics in squeezing through
pores on motility after passage through a pore (48–50),
and shown that navigation in 3D obstacle fields is heavily
influenced by cell deformability and matrix porosity
(40,51), and that matrix deformation and remodeling by
migrating cells introduces a nonlinear dependency of persis-
tence time on fiber length and matrix density (52) is neces-
sary for invasion of the lamella (53), and locally stiffens the
matrix up multiple cell radii (54). Further experimental and
modeling efforts are needed to study how these aspects
interact with topotaxis in tissues.
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