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A B S T R A C T

A large part of research on visual working memory (VWM) has traditionally focused on estimating its maximum
capacity. Yet, humans rarely need to load up their VWM maximally during natural behavior, since visual
information often remains accessible in the external world. Recent work, using paradigms that take into
account the accessibility of information in the outside world, has indeed shown that observers utilize only
one or two items in VWM before sampling from the external world again. One straightforward interpretation
of this finding is that, in daily behavior, much fewer items are memorized than the typically reported capacity
limits. Here, we first investigate whether this lower reliance on VWM when information is externally accessible
might instead reflect resampling before VWM is actually depleted. To this aim we devised an online task, in
which participants copied a model (six items in a 4x4 grid; always accessible) in an adjacent empty 4x4
grid. A key aspect of our paradigm is that we (unpredictably) interrupted participants just before inspection
of the model with a 2-alternative-forced-choice (2-AFC) question, probing their VWM content. Critically, we
observed above-chance performance on probes appearing just before model inspection. This finding shows that
the external world was resampled, despite VWM still containing relevant information. We then asked whether
increasing the cost of sampling causes participants to load up more information in VWM or, alternatively,
to squeeze out more information from VWM (at the cost of making more errors). To manipulate the cost of
resampling, we made it more difficult (specifically, more time-consuming) to access the model. We show that
with increased cost of accessing the model (which lead to fewer, but longer model inspections), participants
could place more items correctly immediately after sampling, and they kept attempting to place items for
longer after their first error. These findings demonstrate that participants both encoded more information in
VWM and made attempts to squeeze out more information from VWM when sampling became more costly.
We argue that human observers constantly evaluate how certain they are of their VWM contents, and only use
that VWM content of which their certainty exceeds a context-dependent “action threshold”. This threshold, in
turn, depends on the trade-off between the cost of resampling and the benefits of making an action. We argue
that considering the interplay between the available VWM contents and a context-dependent action threshold,
is key for reconciling the traditional VWM literature with VWM use in our day-to-day behavior.
1. Introduction

In order to perform many everyday actions, it is helpful to maintain
an internal visual representation of task-relevant objects (e.g., knowing
where and in what orientation you left the knife on the counter
while cooking). Maintaining a visual representation of an object is
straightforward when it is within view, but oftentimes objects are (tem-
porarily) out of sight. This occurs, for example, when switching gaze
to another object (you turn to an overboiling pan), or when something
occludes the view (someone covers the knife with a dishcloth). In such
cases, it might be necessary to internally maintain an accurate visual
representation of the object. This maintenance is subserved by visual
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working memory (VWM) (Baddeley & Hitch, 1974). VWM has mainly
been studied as an isolated memory storage, where the focus lay on
finding the maximum capacity of this storage. To this end, most studies
were set up in such way that the task required observers to tax their
VWM maximally. Subsequently probing their memory (in one way or
another) provided a measure of how much information is contained in
VWM (Ma et al., 2014). How VWM is usually employed in our everyday
life, however, is quite different from how it is employed in such studies.
Contrary to typical VWM tasks (where objects are removed and asked
about after some delay), objects in the world usually remain accessible:
they can therefore be inspected and reinspected, simply by reorienting
vailable online 30 January 2023
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towards the object in the external world. Leaving information exter-
nally and retrieving it when desired reduces the need to maximally load
up VWM (Ballard et al., 1995; Van der Stigchel, 2020).

A handful of studies have examined how VWM is employed in such
naturalistic settings (Ballard et al., 1995; Draschkow et al., 2021; Somai
et al., 2020). These studies investigated VWM from a goal-oriented
perspective: the objective was not to force maximal loading of VWM,
but rather to observe how VWM was employed during goal-directed
behavior. These studies mostly make use of so-called copying tasks.
In such tasks, an arrangement of items (commonly referred to as the
“Model”) has to be recreated at another location (see Fig. 1A and
Video S1 - osf.io/g64vz for our implementation). Importantly, during
execution of the task, the Model always remains accessible. Observers
re instructed to pick up items from a separate pool of items (referred
o as the “Resources”) and create a replica of the arrangement of
heir own in the “Workspace”. Researchers applying this paradigm
ypically found that observers inspected the Model relatively often
e.g., they inspected the Model to identify which item to pick up, and
hen inspected the same item in the Model again to determine where

to place it in the Workspace). The frequent (re)inspecting of the Model
was typically interpreted as observers relying only little on their VWM.
More specifically, with a maximum number of items in VWM being
1 or 2, utilization of VWM was deemed minimal compared to typical
estimates of VWM capacity, which hover around 4 four items (Luck
& Vogel, 1997). This discrepancy between potential and actual use of
VWM capacity is indeed striking at face value.

Interpreting exactly how much information is held in VWM based
on the frequency of accessing external information is potentially prob-
lematic, however. The underlying assumption in this interpretation
is that observers put all their VWM content to use and only sample
external information when no applicable information is left in VWM.
Here, we question this assumption that observers resample the ex-
ternal world only after their VWM is totally depleted. Instead, we
argue that there are other factors at play that determine when (and
how often) observers decide to sample external information. One such
factor could relate to the certainty of the VWM content, that is: how
(un)certain is someone of their memory content? Low certainty might
prompt observers to inspect the Model one more time instead of putting
the available information to use. Another factor pertains to the cost
of resampling; when accessing external information is undesirable or
unfeasible, acting based on imperfect information (rather than strength-
ening the imperfect information) might be a more favorable option
than reinspecting the Model. Indeed, previous studies have shown that
increasing the cost of accessing external information resulted in less
frequent sampling (Ballard et al., 1995; Draschkow et al., 2021; Somai
et al., 2020). Together, these considerations lead us to question whether
the frequency of resampling provides an accurate reflection of the
information stored in VWM.

We hypothesize that in copying tasks (such as discussed above)
there is more VWM content present than is measured by copying
behavior alone. To test this hypothesis, we designed a copying task
similar to those used in the studies described above (Ballard et al.,
1995; Draschkow et al., 2021; Somai et al., 2020), but with one crucial
addition to the paradigm: while creating a replica of the Model, ob-
servers were unpredictably interrupted, and the content of their VWM
was probed. Importantly, the interruptions were timed to occur when
observers made an attempt to resample the external information from
the Model (but just before they actually did). Above chance perfor-
mance on these probes would indicate that VWM is not depleted before
sampling, and that more information is present in VWM than what
is inferred from copying behavior alone. This finding would directly
challenge the assumption that observers refer to external information
only when VWM is depleted.

If it is true that the frequency of resampling cannot be assumed
to reflect VWM content, then this also casts doubt on another im-
2

portant characteristic of naturalistic VWM use. Previous studies have
shown that increasing the cost of sampling resulted in less frequent
sampling (Ballard et al., 1995; Draschkow et al., 2021; Somai et al.,
2020). The conclusion in those studies is that increasing the cost of
sampling causes observers to load up more information in VWM. We
hypothesize instead, that the reduced number of reinspections when
the cost of sampling is higher do not necessarily imply a higher VWM
load, but could also reflect that a larger portion of the (same amount of)
VWM load is put to use, before observers choose to reinspect the Model
(i.e., they have a stronger tendency to ‘‘give it a try’’). To distinguish
between these two possibilities we also manipulated the sampling cost
in our experiment. A higher sampling cost (in our study) meant it was
more time-consuming to reach the Model. In order to assess whether
observers (1) load up more items in memory, or (2) squeeze out more
items from memory when sampling costs increase, we also manipulated
the moment when VWM content was probed: just before or just after
sampling.

To summarize, in the current study we questioned (1) whether the
number of items that is put to use before resampling the external world
actually reflects the entire content of VWM, and (2) whether increasing
the cost of external sampling leads to either loading up more content or
using a larger portion of available VWM content (or both). To preface
our results: we found that there was a substantial amount of useful
information left in VWM when VWM was probed just before an attempt
to access external information. This indicates that factors other than
merely VWM content play a role in the decision to sample external
information. Furthermore, we found that when the cost of sampling was
increased, observers invested more time to sample external information
(i.e., loading up more), and made more attempts to apply information
before sampling again (i.e., squeezing out more of the available VWM
content). These results show that changing task constraints might not
(only) change the content of VWM, but (also) how it is put to use.
Accordingly, we argue that in understanding and interpreting behavior
in naturalistic VWM tasks, more factors must be considered than merely
the capacity of VWM. To facilitate such interpretations, we conclude
this article by proposing a model to describe behavior in naturalistic
tasks, which require VWM use. This relatively simple model captures
the continuous nature of VWM representations, the certainty of one’s
VWM content, and the cost–benefit analysis underlying the decision to
either act on the available VWM content, or to gather more information
from the external world.

2. Methods

2.1. Participants

Participants were recruited via the online platform Prolific (www.
prolific.co). By applying Prolific’s built-in screening tools we only
included participants who (1) indicated to have normal or corrected-to-
normal vision, (2) indicated to be fluent in English, (3) had an approval
rate higher than 95% and (4) had not taken part in earlier pilot versions
of this experiment. We set out to collect data from 80 participants (40
per between-observer condition). As there were no prior comparable
studies run online to base our sample-size on, we based the current
sample-size on prior experience and practical constrains (task duration,
financial compensation for online participants). We included only par-
ticipants for whom the data of more than 95% (i.e., 46 or more) of the
48 experimental trials was recorded. We included 88 participants to be
able to run certain analyses with at least 40 participants per between-
observer condition (some participants did not encounter a single probe
question in some conditions, providing no relevant data for probe
question analyses). All 88 included participants had completely viable
data for analyses regarding copying strategies. Therefore, we included
all of them for the copying strategy analyses, as we had no justifiable
reason to exclude their data. The experiment complied with all ethical
guidelines set out in the Declaration of Helsinki, and was approved by
the Ethics Committee of the Faculty of Social and Behavioral Sciences
of Utrecht University. The approval is filed under number 21-0297.
The monetary reward for successful completion of the task was (the

equivalent of) 6.25 GBP.
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Fig. 1. Panel A. illustrates the layout of the copying task. The grid on the left, the Model, had to be recreated on the middle grid, the Workspace, by dragging the items from the
rightmost grid, the Resources, and dropping them in the correct cell in the Workspace (also see Video S1 - osf.io/g64vz). Panel B. shows a still from an experimental trial, as seen
by the participants. An opaque black overlay covered the display, and only a circular area was made transparent (fully transparent in the center, but less towards the edges). In
the baseline aperture-speed condition this aperture was continuously centered on the current cursor position (see Video S2 - osf.io/w7zag). In the slow aperture-speed condition,
the aperture moved with a reduced speed across the dark gray area towards the Model on the left (see Video S3 - osf.io/3z8xn). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
2.2. Apparatus and stimuli

The experiment was programmed using the JavaScript libraries
jsPsych (version 6.3.0) (de Leeuw, 2015) and Fabric.js (version 4.3.1;
www.fabricjs.com), and was hosted online on the web service Cogni-
tion (www.cognition.run).

As the current experiment was conducted online, it is likely that
many types of devices and displays were used. We strongly encouraged
participants to conduct the experiment on a laptop or desktop com-
puter with the use of a computer mouse. When asked, all participants
reported that they conducted the experiment on a desktop or laptop
device, and the majority reported that they controlled the cursor with
a computer mouse (some indicated to have used a touchpad).

To account for varying sizes of the displays, we implemented a
calibration procedure to end up with equal stimulus sizes: We asked
participants to hold up a credit card (or any other standard sized card,
commonly 8.56 cm wide) against the screen, and resize a rectangle on
the screen to match the card’s size. If done correctly this procedure
ensured that the experiment was contained in a light gray rectangle of
about 25 cm wide, and 8.5 cm high, and that the stimuli were contained
in 1 by 1 cm white boxes (see Fig. 1A). We refer to the colored polygons
in boxes as items.

The shapes of the stimulus set consisted of 20 polygons adopted
from Arnoult (1956). In addition, we used 20 colors, selected from the
HSLuv (www.hsluv.org) color space. We selected 20 equidistant hues
on the color wheel, with the saturation set to 90% and luminance to
65% (see Fig. 2). Given the various displays (and lighting settings)
participants likely used, the same RGB-values will have inevitably
resulted in different monitor outputs for each participant in terms of
both luminance and hue.

In order to track what part of the experimental display participants
were looking at in this online study, we implemented a cursor-directed
3

Fig. 2. The twenty shapes and twenty colors that were combined to create the stimuli
in the experiment. Given 20 shapes and 20 colors, we could create 400 unique stimuli.
For each trial, a random selection (without replacement) of four shapes and four colors
was used to create 16 unique stimuli. From this pool of 16 stimuli, 6 were randomly
selected (with replacement), and randomly positioned in the Model grid for each trial.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

aperture in our task (Anwyl-Irvine et al., 2021). Effectively, this meant
that a black overlay covered the view of the display, and only a circular
area surrounding the location of the cursor was made transparent (see
Fig. 1B and Video S2 - osf.io/w7zag). The transparency followed a
Gaussian function: it was maximally transparent at the center and less
transparent at the edges. The size of the aperture was set to be just
large enough to make the whole Model visible at once. Specifically,
the radius of the aperture was set to 9% of the width of the light
gray experiment rectangle, and the standard deviation of the Gaussian
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function (for the transparency) was set to half the size of the aperture’s
radius. The experience of the participant is similar to looking around
in a darkened environment using a focal flashlight.

To modulate the cost of sampling we manipulated the speed of
the aperture to make it more time-consuming to reach the Model. In
he slow aperture-speed condition, the aperture moved with a reduced
peed across the dark gray band towards the Model (but not slowly
ack towards the Workspace; see Video S3 - osf.io/3z8xn). In the slow
perture-speed condition the aperture crossed the dark gray border in
pproximately 1.67 s, while in the baseline aperture-speed condition
he aperture moved synchronously with the cursor (i.e., there was no
dditional delay).

.3. Procedure

Prior to starting the experimental trials, we presented a video ex-
laining the task, asked demographic questions, and asked participants
o complete two practice trials: one without and one with the overlay
nd aperture. To complete an experimental trial, participants needed
o recreate a model grid (Model for short) by dragging and dropping
tems from the resources grid (the Resources) onto the workspace grid
the Workspace) using the cursor. While an item was hovered above
he Workspace, the nearest grid cell was highlighted in yellow. When
n item was released on the correct cell, it snapped to the center of the
ell; when released on an incorrect location the item shot back to its
riginal location in the Resources.

Occasionally, participants were interrupted during a trial, and had
o answer a two-alternative forced choice (2-AFC) question (see Fig. 3).

e refer to these questions as “probe questions” (or “probes” for short).
hese probe questions showed one highlighted grid cell in an empty
odel grid, and required participants to indicate which of two items
as located in this cell of the Model of the current trial. Of the two
iven alternatives, one was the correct item, and the other item was
hosen from the Resources of the current trial. The probed item (or
ore specifically: the item’s location) was randomly chosen to be one

f theModel items which had not yet been copied in theWorkspace. Par-
icipants answered the probe question by placing their chosen item in
he highlighted cell, and by indicating how confident they were about
heir choice. They could choose from the following options to indicate
heir confidence: “completely confident”, “fairly confident”, “somewhat
onfident”, “slightly confident”, “not at all confident”. Importantly,
robe questions could be initiated at two different time points: For
alf of participants probe questions could occur when they tried to
nspect (i.e., move the aperture towards) the Model, but before actually
eeing the Model (specifically, when the aperture’s center crossed the
ight border of the dark gray band; see Video S2 - osf.io/w7zag).
or the other half of participants, probe questions could occur after
odel inspection, when participants moved the aperture towards the
orkspace, but before actually reaching the Workspace (specifically,

when the aperture’s center crossed the left border of the dark gray band;
see Video S3 - osf.io/3z8xn). To ensure that the probe questions always
occurred unpredictably, there was a 1/6th chance of one occurring
every time the aperture crossed the specified border (i.e., this was
either immediately before a Model inspection, or immediately after a
Model inspection). One exception to this rule was that a probe question
could only occur after the Model was inspected at least once in every
new trial, in order to prevent a question about a Model that was never
seen. Note that the initiation of the probe questions was randomly
determined (and not predetermined), because it is unknown—a priori—
how often a participant will inspect the model. We therefore did not
control the number of probe question per trial, per condition, or per
participant. Participants were instructed to prioritize performing the
copying task and not to focus on these probe questions too much;
they were advised to simply answer the questions to the best of their
4

knowledge whenever they occurred.
2.4. Experimental design

The main factor of interest in the current experiment was the cost
to reach the Model for inspection. We manipulated this factor within-
observer by adding a condition where it was more time-consuming
to reach the Model. Participant completed 48 trials in two blocks of
24 trials. One block comprised only baseline aperture-speed trials, the
other only slow aperture-speed trials. The block order was counterbal-
anced across participants. We opted to block aperture-speed conditions
such that participants could settle on a consistent strategy for each
aperture-speed condition.

Furthermore, we ensured that the manipulation of when probe
questions could occur was balanced across participants: for half of the
participants probe questions could only occur just before inspecting the
Model, and for the other half of the participants probe questions could
only occur just after inspecting the Model.

We were interested in several outcome measures and, in particular,
how these were modulated by an increase in the cost to reach the
Model. First and foremost, we were concerned with the performance
on the probe questions just before Model inspection. More specifically,
whether the accuracy for these questions was above chance. If so,
that would show that an attempt to (re)sample the Model does not
imply that visual working memory is depleted of useful information.
Furthermore, we were interested in measures which informed us about
the copying-strategies employed by participants. These measures were
(1) the number of Model inspections per trial, (2) the duration of a
single Model inspection, and (3) the number of errors (i.e., incorrect
lacements) per trial. These measures were informative about the
trategies that participants chose to perform the task, and how their
trategies were affected by the increased cost of sampling. Additionally,
hese measures allowed us to check whether the cost manipulation of
ur online task yielded (at least qualitatively) comparable results as
revious lab-based studies (Draschkow et al., 2021; Somai et al., 2020).
inally, we were interested in how the cost manipulation affected the
erformance on probe question both before and after sampling.

.5. Analysis

We conducted all our analyses using Bayesian statistics with the
ASP software using the default priors wherever relevant for con-
ucting Bayesian statistics, and always setting the seed value to 1
or reproducibility (JASP Team, 2022). We opted to use the labels
uggested by Kass and Raftery (1995) for the interpretation of Bayes
actors.

Regarding the probe questions before sampling, we determined
or each participant the proportion of correct responses and, using

Bayesian one-sample t -test, tested whether the average proportion
orrect responses was higher than chance (0.5 for the current task).
urthermore, we tested whether the proportion of correct responses
iffered between the two probe timing conditions (before versus after

sampling) using a Bayesian independent samples t -test. For these
analyses we used data of the 80 participants who encountered at least
one probe question in each aperture-speed condition.

Next, we analyzed and compared the three outcome measures of the
copying task described above (i.e., number of Model inspections, Model
inspection durations, and number of erroneous item placements) in the
two aperture-speed conditions for each participant. For each measure
we performed a Bayesian repeated measures analysis of variance (RM
ANOVA), to test whether there was a difference between the two means
in the baseline aperture-speed condition and the slow aperture-speed
condition (within-observers). The factor probe timing was included
to account for possible systematic differences in strategy that could
emerge as a result of the different probe timings (before or after
Model inspection, manipulated between-observers). For these analyses
of copying strategies we used data of all 88 included participants.
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Fig. 3. Example of a probe question. One grid cell was highlighted, and the participant was asked to indicate which of the two items belonged to that cell in the Model of the
current trial, and to indicate how confident they were that their choice was correct. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Finally, to test for the interaction between sampling cost (high and
low) and probe timing (just before or just after sampling) on probe
question performance, we performed a Bayesian RM ANOVA. Here we
used again the data of those 80 participants, who encountered one or
more probe question in each aperture-speed condition.

For all Bayesian RM ANOVAs we performed an analysis of effects
across matched models (Mathôt, 2017). This analysis compares models
that contain the effect in question to equivalent models stripped of the
effect. Here, the “Inclusion Bayes Factor” (𝐵𝐹𝑖𝑛𝑐𝑙) reflects the amount of
evidence specifically for the (main or interaction) effect in question. We
have uploaded the complete statistical results (e.g., model comparisons
for RM ANOVAs, etc.) on the OSF-platform, which can be accessed via
the link: osf.io/pkxdc/.

3. Results

3.1. VWM content before and after sampling

As a consequence of our design choices (and participants’ sampling
behavior), probe questions were not equally distributed across par-
ticipants and experimental conditions. In the baseline aperture-speed
condition participants encountered on average 15.91 (SD = 9.13) probe
questions, and in the slow aperture-speed condition the average was
8.58 (SD = 5.33). Regarding the accuracy on the probe questions just
before sampling (in the baseline aperture-speed condition) we found
that participants answered, on average, 73% (SD = 17) of the probe
questions correctly (see Fig. 5). We found decisive evidence (𝐵𝐹+0 =
4.51×107) that this accuracy was higher than chance (which was 50%).
A higher than chance accuracy when probed before Model inspection
suggests that there was at least some information in VWM when the
decision was made to retrieve information by inspecting the Model. The
accuracy on probe questions (again, in the baseline aperture-speed con-
dition), but just after sampling, was on average, 82% (SD = 11). There
was substantial evidence (𝐵𝐹10 = 9.35) that the accuracies between
the probe timing conditions (i.e., before versus after sampling) differed.
This difference suggests that the VWM load was higher after sampling
the model than before sampling the model (which is unsurprising, but
serves as a sanity check for the usefulness of the probe questions in
measuring differences in VWM load).
5

3.2. Copying strategies

3.2.1. Sampling frequency
We found that, on average, participants made 4.83 (SD = 2.08)

Model inspections per trial in the baseline aperture-speed condition,
while they made 2.66 (SD = 1.12) Model inspections per trial in the
slow aperture-speed condition (see Fig. 4). As there were always six
items to be copied, participants correctly placed ( 6

4.83 =) 1.24 items
per Model inspection in the baseline aperture-speed condition, and
( 6
2.66 =) 2.26 items per Model inspection in the slow aperture-speed

conditions. The analysis of effects (across matched models) showed
decisive evidence (𝐵𝐹𝑖𝑛𝑐𝑙 = 1.12 × 1016) that aperture-speed condition
modulated the number ofModel inspections. Qualitatively and quantita-
tively, these results are in line with previous findings of object copying
tasks: Roughly one item is copied per Model inspection under “normal”
viewing conditions, and this number almost doubles when accessing
the Model is made more costly (Somai et al., 2020). Furthermore, we
found no evidence for a main effect of probe timing (𝐵𝐹𝑖𝑛𝑐𝑙 = 1.16), and
substantial evidence against an interaction effect of probe timing and
aperture-speed (𝐵𝐹𝑖𝑛𝑐𝑙 = 0.27) on the number of Model inspections. The
absence of these effects of probe timing merely show copying strategy
was not affected by the timing of the probe questions (before or after
a Model inspection).

3.2.2. Sampling duration
Regarding the durations of Model inspections, we found that in the

baseline aperture-speed condition, participants on average inspected
the Model for 3.09 s (SD = 2.57) before returning to the Workspace.
In the slow aperture-speed condition, they took 6.20 s (SD = 3.34)
per Model inspection (see Fig. 4). Again, the analysis of effects (across
matched models) showed decisive evidence (𝐵𝐹𝑖𝑛𝑐𝑙 = 8.77 × 1020)
that the mean duration of each Model inspection was modulated by
aperture-speed conditions. Clearly, participants took more time to in-
spect the Model when accessing it was made more difficult. As was the
case for the number of model inspections, there was no evidence that
probe timing affected Model inspection durations (𝐵𝐹𝑖𝑛𝑐𝑙 = 0.37), and
there was substantial evidence against an interaction effect of probe
timing and aperture speed (𝐵𝐹𝑖𝑛𝑐𝑙 = 0.28) on the Model inspection
durations. This indicates that the timing of the probe questions did not
influence the sampling durations in any way.

https://osf.io/pkxdc/
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Fig. 4. The results for the three copying strategy measures. Panels A., B, and C. respectively show the participant means of the number of Model inspection inspections per
trial, the duration of single inspections, and the number of incorrect placements per trial. These measures are split across the two probe timing conditions, the two aperture-speed
conditions, and both conditions together in the three columns. The results of Bayesian repeated measures ANOVAs (inclusion Bayes factors (BF𝑖𝑛𝑐𝑙) for analyses of effects across
matched models) are shown with symbols above the plots. BFs larger than 3 are marked with asterisks (∗), signifying substantial (or more) evidence in favor of the effect in
question; BFs between 0.3 and 3 are marked with the null sign (ø), signifying no conclusive evidence in favor of or against the effect; BFs smaller than 0.3 are marked with
circled dots (⊙), signifying substantial (or more) evidence against the effect. In all plots, the small (blue, red and gray) dots represent individual participants’ means, the large
dots represent group means, and the error bars represent (bootstrapped) 95% confidence intervals. The violin plots (i.e., kernel density plots) show the spread of the participants’
means. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2.3. Errors

On average, participants made about 1.18 (SD = 0.54) errors per
trial in the baseline aperture-speed condition, while they made about
2.22 (SD = 1.40) errors per trial in the slow aperture-speed condition
(see Fig. 4). Here too, the analysis of effects (across matched models)
showed decisive evidence (𝐵𝐹𝑖𝑛𝑐𝑙 = 1.71 × 109) that there was a main
effect of aperture-speed condition. More errors in the high sampling
cost condition indicated that participants made more attempts to put
VWM contents to use. Taking into account the number of Model in-
spections, we find on average that participants made ( 1.184.83 =) 0.24
errors per inspection in the baseline aperture-speed condition, while
they made ( 2.222.66 =) 0.83 errors per inspection in the slow aperture-speed
condition. This means that more than 3 times as many errors were made
per inspection in the slow aperture-speed condition compared to the
baseline condition. Also for the number of errors, there was no evidence
for a main effect of probe timing (𝐵𝐹𝑖𝑛𝑐𝑙 = 0.55) and no evidence for an
effect of the interaction of probe timing and aperture speed condition
(𝐵𝐹𝑖𝑛𝑐𝑙 = 0.35). This indicates that there was no evidence that the
timing of the probes affected the number of errors that participants
6

made during a trial. c
3.3. VWM content before and after sampling depending on sampling cost

To reiterate, the probe question performance in the baseline aperture-
peed condition: the accuracy on probes before Model inspection was
3% (SD = 17), while after Model inspection the accuracy was 82%
SD = 11). The probe question performance in the slow aperture-speed
ondition was 75% (SD = 17) before sampling, while after sampling the
ccuracy was 85% (SD = 11). The analysis of effects (across matched
odels) showed strong evidence (𝐵𝐹𝑖𝑛𝑐𝑙 = 62.41) that there was a main

ffect of probe timing, showing that—unsurprisingly—participants had
higher accuracy on probe trials just after model inspection compared

o just prior to model inspection. We found no evidence, however, for a
ain effect of aperture-speed condition (𝐵𝐹𝑖𝑛𝑐𝑙 = 0.52) and substantial

vidence against an interaction effect of probe timing and aperture
peed condition (𝐵𝐹𝑖𝑛𝑐𝑙 = 0.23). These results do not provide conclusive
vidence in favor of (or against) the hypothesis that more information
s loaded up in VWM, or that VWM is being depleted more, in the
igh compared to low sampling cost condition. As such, we have no
vidence that participants loaded up more information in VWM in
he high sampling cost condition, despite inspection durations being
early twice as long as in the low sampling cost condition. At the
ame time, we have no evidence either that participants had less VWM
ontent left when they decided to reinspect the Model in the high
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Fig. 5. The performance on probe questions. Panel A. shows the proportion of correct responses on probe questions only in the baseline aperture-speed condition split across the
two probe timing conditions. The results of a Bayesian one-sample t -test (testing whether the proportion correct responses on probes before sampling is higher than the chance
level of 0.5) and of a Bayesian two-samples t -test (testing whether the performance on the probes is different in the two probe timing conditions) are shown with symbols above
the plots. Bayes factors larger than 3 are marked with asterisks (∗), signifying substantial (or more) evidence in favor of the effect in question; Bayes factors between 0.3 and 3
are marked with the null sign (ø), signifying no conclusive evidence in favor of or against the effect; Bayes factors smaller than 0.3 are marked with circled dots (⊙), signifying
substantial (or more) evidence against the effect. Panel B. shows the performance on the probe questions, split across the two probe timing conditions, the two aperture-speed
conditions, and both conditions together. The results of Bayesian repeated measures ANOVAs (inclusion Bayes factors for analyses of effects across matched models) are shown
with symbols above the plots following the convention described above. In all plots, the small (blue, red and gray) dots represent individual participants’ means, the large dots
represent group means, and the error bars represent (bootstrapped) 95% confidence intervals. The violin plots (i.e., kernel density plots) show the spread of the participants’ means.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
sampling cost condition, despite participants making almost twice as
many errors (i.e., squeezing out more information from VWM) as in
the low sampling cost condition.

3.4. Alternative load and squeeze measures

While the probe questions were sensitive enough to answer one
important question in this study: “Is there information left in VWM
before an inspection?”, they were not sensitive enough to conclusively
answer the second main question of this study: “Was more information
encoded in VWM (‘loading’) or was more information applied from
VWM (‘squeezing’) when sampling cost were higher?”. Therefore, we
devised two post hoc measures based on copying behavior that can
directly address this question. For the measure of how much informa-
tion was loaded in VWM after a Model inspection, we took the number
of successive correct placements immediately after Model inspection.
To elaborate, we argued that a placement sequence (directly after an
inspection) such as ‘Correct–Correct–Incorrect–Incorrect’ (which would
have a load of 2) results from a better representation of the Model and
a higher VWM load than the placement sequence ‘Correct–Incorrect–
Incorrect–Correct’ (which has a load measure of 1, even though it has
the same number of correct and incorrect placements). With this new
measure for VWM load after sampling, we found decisive evidence
(𝐵𝐹10 = 2.19 × 108) that the load is higher in the slow aperture-speed
condition (Mean = 2.00, SD = 0.91) than in the baseline aperture-
speed condition (Mean = 1.32, SD = 0.68; see Fig. 6A). This result
7

suggests that generally more information was loaded up in VWM when
the cost of sampling was higher (and when inspection durations were
longer, as reported earlier). Note that this reasoning is based on the
assumption that the items with the best representations are attempted
first (one might reason instead that the best items are kept for last). To
verify that the best remembered items were placed first, we computed
the proportion of correct placements for every Nth placement after a
Model inspection. We indeed found that the first placement has the
highest proportion of correct placements (Mean = 0.88 SD = 0.07), and
the proportion of correct placements decreases with every successive
placement: there was decisive evidence (𝐵𝐹𝑖𝑛𝑐𝑙 = 3.74 × 1015) for a
main effect of ordinal placement (see Fig. 6B). This finding confirms
that participants attempt to place their best representations first and
then work their way down towards the worst representation.

Following this same line of reasoning, we can use the number of
placement attempts after the aforementioned streak of correct place-
ments as a measure of ‘squeezing’. We reasoned that more attempts
after an incorrect placement implies a tendency to apply more VWM
content (albeit of a lesser quality). To illustrate with the previous
two examples, the sequence ‘Cor. - Cor. - Incor. - Incor.’ would have
a squeeze measure of 2, while the sequence ‘Cor. - Incor. - Incor. -
Cor.’ would have a squeeze measure of 3. The results showed decisive
evidence (𝐵𝐹10 = 2.69 × 1016) that there were more attempts after the
initial streak of correct placements in the slow aperture-speed condition
(Mean = 1.59; SD = 0.85), than in the baseline aperture-speed condition
(Mean = 0.55; SD = 0.52; see Fig. 6C). This result shows that when
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Fig. 6. Data of the post hoc analyses for alternative measures for load and squeeze measures. Panel A. shows the number of successive correct placements immediately after
ampling, separately for the baseline and slow aperture-speed conditions. Panel B. shows the proportion of correct placements for the Nth placement after inspection, separately for
he two aperture-speed conditions. The dashed dark-gray line represents the expected performance for placements which are based on knowledge of the location and one feature
either color or shape) of the item in question (i.e., 1/4). The dotted line represents the expected performance if only the location of an item was known (i.e., 1/16). Panel C.

shows the number of placement attempts after the initial streak of correct placements (i.e., the number of placements following those of Panel A.). Note that the streak of incorrect
placements is independent of the streak of correct placements, since the total length of the sequence is unbound. Panel D. shows the proportion of correct squeeze placements (the
placement sequences of Panel C.) for the two aperture-speed conditions. The dashed and dotted lines represent the same as in panel B. In all plots, the small connected (blue and
red) dots represent individual participants’ means, the large dots represent group means, and the error bars represent (bootstrapped) 95% confidence intervals. The violin plots
(i.e., kernel density plots) show the spread of the participants’ means. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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the cost of sampling was higher, more attempts were made to put the
available VWM information to use.

An implicit assumption here was that the ‘squeeze’ placements were
based on information in VWM, rather than being pure guesses. To verify
that this was indeed the case we computed the proportion of correct
‘squeeze’ placements. The data showed that participants on average
indeed had a relatively high proportion of correct placements when
squeezing: 0.30 (SD = 0.13) in the baseline aperture-speed condition,
and 0.40 (SD = 0.14) in the slow aperture-speed condition (see Fig. 6D).
This performance is much higher than would be expected if placements
were pure guesses (i.e., pure chance level is approximately 0.04). We
even found strong evidence (𝐵𝐹+0 = 34 and 𝐵𝐹+0 = 20.02 × 1014,
for the baseline and slow aperture-speed conditions respectively) that
performance is better than what would be expected if a placement was
based on knowledge of an item’s location and one feature (i.e., the
color or shape), which was 0.25. As such, even the attempts after an
initial streak of correct placements, are based on quite strong useful
information in VWM. Taken together, when sampling costs increase,
participants tend to both load up more information in memory (i.e., en-
code more items), and squeeze out more information from memory
(applying less certain items) before resampling the model.

4. Discussion

In the current study, we investigated the use of visual working mem-
ory (VWM) in a naturalistic setting in which relevant visual information
remained externally available for reinspection. Our primary goal was to
examine whether the amount of information put to use from VWM is an
8

accurate index of the full amount of information stored in VWM. We
therefore implemented a copying task in which the content of VWM
was infrequently probed with a 2-alternative forced choice (2-AFC)
question when an attempt was made to sample information from the
external world. Our results show that, under these circumstances, VWM
actually contains more information than is put to use in a goal-oriented
task requiring VWM usage (such as the copying task). This finding
implies that less VWM content is utilized than is initially encoded, and
therefore also implies that the amount of information that is utilized is
a poor index of VWM load. One important consideration about probe
question performance is that any information sufficient to perform
above-chance on a probe question (e.g., knowing only the color), is
also useful information for the copying task (i.e., knowing an item’s
color provides a fourfold increase in the chance of selecting the correct
item). Put differently, to perform above chance on the probe question,
a participant needs some information about the model. In turn, any
nformation about the model is useful knowledge when deciding, for
xample, which item to pick up or where to place it. Indeed, our data
hows that participants did act on partial or imperfect information,
ince participants regularly made incorrect placements. A second aim
as to test a prediction stemming from the following observation in
aturalistic VWM use: when the cost of sampling external information
ncreases, external information is sampled less often (Draschkow et al.,
021; Somai et al., 2020). We reasoned that less frequent sampling
ould be due to (1) encoding more information with each sample, or
2) applying a larger portion of what is encoded. Note that specifically
he latter hypothesis was warranted by our primary finding (i.e., not all
WM content is applied before resampling). The data show that when
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the sampling cost was higher, participants spent more time viewing
the Model during each inspection (suggesting they attempted to encode

ore information in VWM), in line with observations from earlier
tudies (Draschkow et al., 2021; Somai et al., 2020). Interestingly,
ur data also show that participants made more errors when the cost
f sampling was higher. More errors suggest that participants indeed
ried harder to put more of the VWM content to use, and that VWM
hould have been depleted more. Despite the clear difference in strategy
e.g., longer inspections and more errors), we found no conclusive
vidence that the probe question performance was modulated by the
ost of sampling. Both when probes occurred before sampling, and
hen probes occurred after sampling, we did not find (conclusive)
vidence in favor of a different performance in the low sampling cost
ondition versus the high sampling cost condition. This was surprising,
s a similar probe performance after sampling would suggest that
WM contained a similar amount of information in the high versus

ow sampling cost condition. It would be equally surprising if there
as a similar probe performance before sampling, because this would

suggest that information in VWM was depleted to a similar extent in
the high versus low sampling cost condition. In contrast, two post hoc
analyses of the copying behavior did provide definitive conclusions
where the probe question analyses did not. When we took the number
of successive correct item placements immediately after sampling as
a measure for VWM load, the data showed that more information
was encoded when sampling cost was higher. Also, when we took the
number of (either correct or incorrect) placements following this first
streak of correct placements as a measure for how much information
was squeezed out of VWM, we found that, in the high sampling cost
condition, more VWM content was depleted before resampling.

Generally, our findings relating to copying strategies and strategy
changes (when sampling becomes more costly) are in line with previous
studies employing copying tasks in particular (Ballard et al., 1995;
Draschkow et al., 2021; Somai et al., 2020), and with the literature
on cognitive offloading in general (Hu et al., 2019; Risko & Gilbert,
2016). As the name already suggests, cognitive offloading refers to the
act of reducing the cognitive demand of a task or activity: using a
spoken navigation tool when driving a car, or going through a (readily
accessible) shopping list one item at a time when doing groceries. In
tasks where putting less tax on (visual) working memory is a viable
option, observers prefer to do so (Risko & Dunn, 2015). In the current
study frequent sampling can very well be interpreted as a cognitive
offloading strategy: copying items one at a time (thus sampling often)
puts less cognitive demand on VWM. Note that the act of sampling
comes at a cost, since sampling takes time and effort (e.g., redirecting
attention, making an eye or body movement, etc.). When deciding what
to do next, observers therefore need to weigh the benefit of cogni-
tive offloading against the cost of sampling the external world. Our
results show that participants indeed engaged in cognitive offloading,
by sampling approximately one time for each item that they copied.
Our results also show a marked decrease in cognitive offloading when
sampling was made more costly (i.e., copying multiple items at a time
when sampling costs were higher). This implies that the task context
determines how worthwhile observers consider cognitive offloading to
be.

With this study we add two important new findings to our under-
standing of goal-oriented VWM use. Using a naturalistic task setting,
in which relevant information remains externally available, we first
show that observers often reinspect the external world despite still
having relevant information available in VWM. In other words, the
frequency of sampling from the outside world does not necessarily
reflect the amount of information that is stored in VWM. This finding
has important implications for future studies employing copying tasks
and other similar paradigms. When interpreting copying behavior, or—
more generally—any other (goal-oriented) actions based on VWM,
researchers should consider how much information might actually be
9

in VWM and which part of that information is put to use. Second, we
show three distinct changes in strategy when retrieving task-relevant
information becomes harder: observers (1) sample less frequently from
the external world, but (2) spend more timing doing so, and (3) make
more attempts to put VWM content to use (thus leading to more errors).
This third change of strategy is particularly interesting, as it has not
received much interest in VWM research, yet has a potentially large
effect on estimates of VWM capacity. In line with the theory of resource
models of VWM (Bays & Husain, 2008; Ma et al., 2014; Wilken & Ma,
2004), we suggest that errors made in VWM tasks are not the result of
random guessing. Rather, as we showed in a post hoc analysis, when
the task becomes harder, the number of errors increase as actions are
based on more noisy or uncertain information.

To capture VWM use during goal-directed behavior (such as in
the copy-task, employed here), we propose a theoretical model that
describes how we act based on task context and certainty of VWM
content during day-to-day behavior. We model certainty of VWM repre-
sentations as a continuous function across stimulus space (i.e., feature
dimensions like location, color, shape, etc.). A similar type of modeling
of VWM content is also applied by the target confusability competition
(TCC) model of visual memory (Schurgin et al., 2020), and other
continuous resource models of VWM (Bays & Husain, 2008; Ma et al.,
2014; Wilken & Ma, 2004). The novelty of our proposed model lies in
the addition of a flexible, context-dependent decision threshold, which
we call an ‘‘action threshold’’ (see Fig. 7). This action threshold allows
to model what information in VWM is acted on and what information
is not. The threshold reflects what information is deemed worthwhile
to act on, given the current situation. If the certainty of a VWM
representation surpasses the action threshold, that piece of information
will be put to use. If the certainty is below the action threshold, it
will not be put to use. The action threshold we describe is reminiscent
of the criterion of signal detection theory (Banks, 1970; Macmillan &
Creelman, 2004). Much like the criterion, the action threshold deter-
mines how liberally (or conservatively) a decision is made to utilize
information. From this model it becomes evident that there can be
information which can be reported upon (forced) request, but might not
be put to use when unfavorable in a certain task context. This model
also explains how in some situations, given the same VWM content,
one can act differently. For example, if one’s action threshold is high,
only very certain information will be put to use. This might be the case
when sampling new information from the world is relatively easy: an
effective strategy then (which does not tax VWM too much) would be to
sample very often and only act on very certain information, lowering
the chance of errors. Conversely, when their action threshold is low
(e.g., because sampling information from the world is costly), observers
might adopt a more liberal tendency to put VWM content to use, even
when information is very uncertain. Acting on less certain information
would consequently lead to more errors. This is precisely what we
found experimentally: frequent sampling, with few errors when cost of
sampling was low; but less sampling and more errors when sampling
costs were high. In situations where a response is forced (where there is
no possibility to improve VWM before responding), the action threshold
is lowered completely, and essentially any information (no matter how
weak) will be applied. In such cases, the model becomes equivalent
to the TCC model (Schurgin et al., 2020). Our proposed model also
generalizes to all other situations where actions or decisions are based
on (working) memory. In all such cases, the expected cost and benefits
are weighed to produce an appropriate threshold for the required
certainty of information for it to be worthwhile to act on. To promote a
more intuitive understanding of our model, we metaphorically describe
our model as an inundated landscape (take another look at Fig. 7). We
believe that this metaphor facilitates reasoning and discourse about
VWM-guided behavior, by visually capturing the key aspects of our
model (i.e., certainty of VWM content and the action threshold).

Our proposed model can also elegantly reconcile the discrepancy
between typical estimates of maximum VWM capacity (i.e., about 4

items), and the much lower VWM capacity utilized (about 1–2 features)
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Fig. 7. The proposed model describing visual working memory (VWM) usage, based on
certainty of information and an “action threshold”. This action threshold describes the
minimal level of certainty of information that is deemed sufficient to warrant action.
The action threshold depends on a balance between costs (of sampling or action) that
depend on the current task context and constraints (but is independent of memory
strength). To illustrate this framework, a basic case is provided in the figure above:
After inspecting the positions of three items in an external stimulus, the memory of
their locations can be visualized as a continuous function, where the certainty of
items is plotted across the locations (the curve in green; metaphorically referred to
as a mountainous landscape). If the certainty surpasses the action threshold (in blue;
metaphorically referred to as the sea level), that piece of information will be put to
use. Conversely, if the certainty remains below the action threshold, no action will
follow (and observers might opt to resample the external world instead). In summary,
the peaks of the certainty landscape that rise above sea level (i.e., the islands) are
acted upon, whereas submerged hills are not. Depending on task settings the sea level
might rise or fall, thereby submerging islands or exposing submerged hills respectively.

as reported in goal-oriented paradigms. Paradigms designed to measure
VWM capacity usually encourage observers to load up VWM maximally,
and—more importantly—probe the VWM contents with forced-choice
responses. From the perspective of our model, the forced nature of these
paradigms causes the action threshold to be lowered completely, so that
any information that is available in VWM—no matter how uncertain—
is acted on. This results in a high estimate for VWM load or capacity.
In contrast, in goal-oriented (or naturalistic) paradigms, the amount of
information that is loaded up in VWM, and whether or not it is utilized,
depends on the observer’s cost–benefit analysis. In the latter paradigms
some content will be acted upon, while some content will remain below
threshold and will therefore not be reflected in self-initiated behavior.
This in turn can result in lower estimates of VWM use, while VWM load
is potentially just as high as in forced-choice paradigms. Considering an
action threshold can thus resolve the diverging estimates of VWM load
in different paradigms. In terms of the inundated landscape metaphor:
The goal-oriented paradigms (Ballard et al., 1995; Draschkow et al.,
2021; Somai et al., 2020) only count the number of islands rising above
sea level, disregarding any landscape hidden below sea level. Typical
forced-choice paradigms that measure maximum capacity however,
disregard the presence of a sea level altogether, and treat the entire
mountain landscape equally, irrespective of whether hills rise above sea
level or not. At the risk of repeating ourselves, we stress the relevance
of simultaneously considering both the landscape and the sea level
(i.e., the VWM content and the action threshold) in understanding
working memory use during day-to-day behavior.

Reflecting on the probe questions, we remark that it is curious that
the performance was not affected by the cost of sampling. We observed
that when the cost of sampling increased, participants made half the
number of inspections to copy one Model, which effectively means they
copied twice as many items per inspection. Being able to apply more
information per inspection can either be explained by loading up more
in VWM beforehand (soaking up more information), or applying more
10
from VWM (squeezing out more information), or both. Since the probe
question performance is a direct measure of VWM content, we expected
that an increased sampling cost would produce better performance
on probe question after sampling (if more was soaked up), or worse
performance before sampling (if more was squeezed out). Surprisingly,
we found neither. We think the most parsimonious explanation is that
the measure of VWM content (i.e., probe question performance) was not
sensitive enough to detect an effect of the cost of sampling. Although
more probe questions might have yielded more conclusive results, the
number of probe question was constrained by several necessary choices
in the experimental design: First, initiation of probe question, either
immediately before or immediately after inspection, was purposefully
set to be determined at random on an inspection-by-inspection basis
(because it was unknown—a priori—how often a participant would
inspect the model). Therefore, it was impossible to attain a fixed
number of probes per participant or per condition. Second, including
too many probe questions would have interfered with the main task
performance. Finally, limitations imposed by reasonable task durations
and financing online participants restricted us from collecting much
more probe question data. Yet, it should be noted that the probe
question accuracy was sensitive enough to measure a difference in
VWM content before sampling compared to after sampling (reflecting
that—unsurprisingly—participants put VWM content to use while they
performed the task). As such, the probe questions were sensitive enough
to pick up on relatively large changes in VWM content, but might be
not sensitive enough to pick up on more subtle changes in VWM content
caused by a change in sampling cost. To rule out that small numbers
of probe questions per participant might have impacted our results, we
redid the probe question analyses including only those participants who
encountered at least 5 or at least 10 probe questions per condition. The
results of these analyses (which can be found at: osf.io/pkxdc) yielded
the same conclusions as the results reported above, which reassured us
that our results for this analysis were not affected by the choice for a
particular inclusion threshold.

Another potential issue regarding the probe questions is that par-
ticipants might have adapted their copying behavior, because they
anticipated these questions and wanted to perform well on them. This
issue is indeed inherent to any paradigm with such probes. We tried to
minimize this undesired effect by (1) explicitly instructing participants
that only the main task was relevant and needed to be prioritized,
(2) keeping the number of probe questions low, and (3) ensuring the
probe questions appeared completely unpredictably. When asked about
the probe questions afterwards the majority of participants indicated
to have put either no or little effort in changing their strategy just
to perform well on the probe questions. Nevertheless, we suggest that
future studies might want to consider more sensitive and less disruptive
methods of probing VWM content during naturalistic VWM tasks.

5. Conclusion

Our findings showed that there was more information in VWM
than was put to use when studying VWM in a naturalistic task in
which visual information always remained available for inspection.
Furthermore, we showed that when sampling was made more costly,
the copying strategy changed in three distinct ways: (1) information
was sampled less frequently, (2) information was inspected longer,
and (3) more attempts were made to use whatever information was in
VWM before sampling again. Using measures for VWM load, derived
from copying actions, we found that when sampling became more
costly, more information was loaded up in VWM and more information
is squeeze out of VWM. We argue that actions in such naturalistic
VWM tasks are based on the certainty of information currently in
memory, and on a cost–benefit analysis of ‘‘acting on what is currently
known’’ versus ‘‘improving the internal information’’. Our findings also
highlight that, to better understand how VWM is employed in real
life, human behavior needs to be investigated in paradigms that both

https://osf.io/pkxdc/
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track the actions and reveal the contents of VWM. In order to advance
our understanding of VWM-guided behavior, we propose a model that
parsimoniously captures the continuous nature of VWM, as well as the
influence of task context—which determines what part of VWM content
is put to use, and what part is not.
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