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Abstract

According to logical theories of meaning, a meaning of an expression can be formalized and encoded
in truth conditions. Vagueness of the language and individual differences between people are a chal-
lenge to incorporate into the meaning representations. In this paper, we propose a new approach to
study truth-conditional representations of vague concepts. For a case study, we selected two natural
language quantifiers most and more than half. We conducted two online experiments, each with 90
native English speakers. In the first experiment, we tested between-subjects variability in meaning rep-
resentations. In the second experiment, we tested the stability of meaning representations over time by
testing the same group of participants in two experimental sessions. In both experiments, participants
performed the verification task. They verified a sentence with a quantifier (e.g., “Most of the gleerbs
are feezda.”) based on the numerical information provided in the second sentence, (e.g., “60% of the
gleerbs are feezda”). To investigate between-subject and within-subject differences in meaning repre-
sentations, we proposed an extended version of the Diffusion Decision Model with two parameters cap-
turing truth conditions and vagueness. We fit the model to responses and reaction times data. In the first
experiment, we found substantial between-subject differences in representations of most as reflected by
the variability in the truth conditions. Moreover, we found that the verification of most is proportion-
dependent as reflected in the reaction time effect and model parameter. In the second experiment, we
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showed that quantifier representations are stable over time as reflected in stable model parameters
across two experimental sessions. These findings challenge semantic theories that assume the truth-
conditional equivalence of most and more than half and contribute to the representational theory of
vague concepts. The current study presents a promising approach to study semantic representations,
which can have a wide application in experimental linguistics.

Keywords: Quantifiers; Computational modeling; Semantics; Decision-making; Individual difference;
Diffusion Decision Model

1. Introduction

Human language is an exceptionally complex phenomenon. The meaning of words and
sentences has been studied from a variety of perspectives, ranging from formal semantics
descriptions through computational simulations to experimental semantics (e.g., Carcassi &
Szymanik, 2021; Deschamps, Agmon, Loewenstein, & Grodzinsky, 2015; Frank & Goodman,
2012; Hackl, 2009; Katsos et al., 2016; Pietroski, Lidz, Hunter, & Halberda, 2009). Formal
semantics analyzes linguistic meaning at an abstract level and studies the logical form and
composition of meanings. One of the challenges to formal semantics are cases when the
meaning boundaries cannot be precisely defined. This is often referred to as vagueness of
meaning. Vagueness is omnipresent in natural language, for example, in the formation of
categories (e.g., Gruenenfelder, 2019; Verheyen & Storms, 2013), meaning of adjectives (see
Solt, 2015, for review), and quantifiers (e.g., Denić & Szymanik, 2022; Solt, 2011).

Vague concepts are challenging to formalize because they apply to a given object only to
a certain degree. Several attempts have been made to formalize vague concepts (e.g., Glöck-
ner, 2006; Gruenenfelder, 2019; Kamp & Partee, 1995). One of the adopted strategies was
to enrich the classical two-valued logic (e.g., Kamp & Partee, 1995) by assigning undefined
truth value to vague concepts. Another (e.g., Glöckner, 2006) was to reject the classical logic
completely and use fuzzy logic (Zadeh, 1983) instead. In this paper, we develop a proposal
that is agnostic to specific logical framework. Moreover, our approach completes the existing
proposals by considering one of the consequences of vagueness—the individual differences
in meaning representations (Verheyen & Storms, 2013). When the members of the categories
belong to them only to a certain degree, different language users can disagree about the
classification criteria. For example, in the domain of categorization, swimming indisputably
belongs to a category of sports, while sleeping does not. In contrast, playing chess or hiking
may raise a controversy. In the domain of quantifiers, one can say “many first-year bachelor
students came to the Introduction to Linguistics lecture” if 180 out of 200 students came and
not many, when only five out of 200 students came. The group of 100 students, in turn, is
more difficult to classify as many or not many.

The goal of the current paper is to propose a modeling approach to meaning representations
of vague concepts. The psychologically realistic model of linguistic behavior must account
for linguistic factors (e.g., the effect of context, vagueness, ambiguity, etc.) and individual
differences in meaning representations. While semantic theories usually elaborate on the for-
mer aspect, they widely ignore the latter. The interpretation of the noisy linguistic behavioral
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data (e.g., accuracy or reaction times) in the context of nuanced predictions of the semantics
theories is often ambiguous. The problem of linking theory and data is a common problem in
cognitive science (Guest & Martin, 2021). Computational modeling can be a solution because
it helps to formalize our theoretical intuitions and make the theories transparent and testable.

Among the existing models of linguistic behavior, the Rational Speech Act (Frank & Good-
man, 2012) has gained increasing attention. The Rational Speech Act model is a Bayesian
model of communication between speaker and listener. It is particularly useful to explain
what kind of linguistic choices speakers make (Martin, 2016). Martin (2016) argued that
the Bayesian approach belongs to the statistical what camp. They explain the distribution of
choices, but they do not explain how the specific choice was made. In this paper, we take a
different perspective and focus on the processing aspects of vague concepts. We argue that
linguistic behavior can be studied using computational models of decision-making.

To model processing aspects of linguistic behavior, we applied a formal model of decision-
making to data from a quantifier verification task. This task is a commonly used paradigm
to test meaning representations (Bott, Augurzky, Sternefeld, & Ulrich, 2017; Clark, 1976;
Deschamps et al., 2015; Just & Carpenter, 1971; Szymanik, 2016; Zajenkowski & Szymanik,
2013). In this type of task, participants have to indicate whether a sentence is “true” or “false”
given an example scenario. Participants base their judgment on the evidence provided (e.g.,
a sentence or picture). Verification is a process of collecting evidence in favor of all deci-
sion options. Once the individual has collected sufficient evidence for one of the decision
options (e.g., the “true” or “false” answer), the decision can be made. Based on participants’
responses, we can reverse engineer the truth conditions they assigned to a specific quanti-
fier. Based on the choices and reaction time data, we can also infer how participants made
their decisions. Following this observation, we show that the performance in the verification
task can be analyzed using computational models of decision-making such as the Diffusion
Decision Model (DDM; Ratcliff, 1978), which is widely used in many cognitive domains out-
side of language (Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, & McKoon, 2016). We
illustrate how this computational model allows us to disambiguate the role various aspects of
meaning play in the subjects’ behavior. Our approach applies to many psycholinguistic tasks
including, but not limited to, lexical decision, inferences, and verification.

Vagueness and individual differences are especially challenging to formal theories speci-
fying the meanings of logical words, such as quantifiers (e.g., most, many, more than half).
The long tradition of formal semantics (Barwise & Cooper, 1981; Mostowski, 1957) specifies
the meaning of quantifiers in a form of rigid truth conditions. However, some natural lan-
guage quantifiers such as many and few and also most are vague (Denić & Szymanik, 2022;
Solt, 2011, 2016). Moreover, one study (Yildirim, Degen, Tanenhaus, & Jaeger, 2016) has
shown individual differences in meaning representations of quantifiers, namely, that speakers
apply many and some to describe different quantities. As a case study, we test the differ-
ences between two natural language quantifiers: most and more than half. We chose these
quantifiers because they have drawn much attention from semanticists in recent years (Cop-
pock & Strand, 2019; Hackl, 2009; Kotek, Sudo, & Hackl, 2015; Lidz, Pietroski, Halberda,
& Hunter, 2011; Pietroski et al., 2009; Register, Mollica, & Piantadosi, 2020; Solt, 2016).
Traditionally, they are treated as truth-conditionally equivalent; however, the behavioral (e.g.,
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Denić & Szymanik, 2022; Hackl, 2009; Ramotowska, Steinert-Threlkeld, van Maanen, &
Szymanik, 2020) and corpus data (e.g., Solt, 2016) showed a number of differences between
them. We show that our modeling strategy and experimental design allow us to disentan-
gle different aspects of meaning, such as semantic representations, vagueness, pragmatics, or
processing, usually confounded in experimental and corpus data. In this way, we exhibit a
systematic approach to infer the meaning of vague concepts from linguistic data and validate
the semantic theories.

Although in this paper we focus mostly on most and more than half, we will show that our
approach can be generalized beyond these two examples by also analyzing data from three
control quantifiers fewer than half, few, and many and investigating the differences between
quantifiers in all DDM parameters. Moreover, we believe that our approach can have a wide
application in the analysis of vague concepts in general. It can be generalized to other vague
concepts because we treat the verification of quantifiers as a decision task, and in an analogous
way, we could treat the categorization of other vague concepts as a decision task as well.

The current paper has the following structure. In the next sections of the introduction, we
will present the linguistic discussion about most and more than half, introduce the DDM, and
our experimental design. Next, we will propose an extended version of the DDM with incor-
porated meaning representations of quantifiers and vagueness. We will present results from
two behavioral experiments and show how our modeling approach can test semantic differ-
ences between most and more than half. Finally, in the discussion section, we will show how
our approach can contribute to the development of the theories of vague concepts. We will
discuss our findings in the context of existing theoretical proposals and show the challenges
to these approaches.

Semantic representations: The case of most and more than half

The meaning of quantifiers such as most and more than half can be expressed on the ground
of logical theories of meaning, for example, the Generalized Quantifier Theory (Barwise &
Cooper, 1981; Mostowski, 1957), in the form of truth conditions. For an illustration consider
the following example. The sentence “Most/More than half of the students passed the exam”
is true under one of two conditions: (1) if the number of students, who passed the exam
(|�Students� ∩ �passed exam�|) is greater than half of all students ( 1

2 |�Students�|), or (2) if the
number of students, who passed the exam is greater than the number of students, who did not
pass the exam (|�did not pass exam�|). Following Hackl’s (2009) linguistic analysis, we can
formulate example truth conditions for more than half and most:

1. More than half of the students passed the exam. ↔ |�Students� ∩ �passed exam�| >
1
2 |�Students�|

2. Most of the students passed the exam ↔ |�Students� ∩ �passed exam�| > |�Students�
∩ |�did not pass exam�|

A brief reflection on these two examples leads to the conclusion that the truth conditions of
most and more than half are logically equivalent. The truth value of the sentences with most
or more than half will be the same in every situation. For example, both sentences will be
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false if nine out of 20 students passed or true if 11 out of 20 students passed. Therefore, the
logical theories of meaning predict that these quantifiers are used interchangeably.

Contrary to this claim, there is ample evidence that most and more than half lead to differ-
ent linguistic behavior. These differences have been attributed to verification (Hackl, 2009) or
pragmatics (Solt, 2016). Hackl (2009) postulated that both most and more than half are asso-
ciated with different verification strategies, even though they are logically equivalent. The
expression most (Example 2) is equivalent to the expression more than half (Example 1) in
terms of truth conditions, but they have different linguistic representations, which yield differ-
ent verification strategies. A verification strategy is an algorithm to determine the truth value
of the sentence. The algorithm to verify more than half(A, B) requires the computation of the
intersection of sets A and B (e.g., students who passed the exam) and half of the set of all As
(e.g., half of all students). The algorithm for most(A, B), in turn, is a vote-counting strategy,
which involves tracking whether the number of As that are B is greater than the number of
As that are not B. These two algorithms correspond to different cognitive processes and lead
to different behaviors.

The idea that most and more than half differ in processing was further developed by associ-
ating most with the approximate number system (Lidz et al., 2011; Pietroski et al., 2009; Solt,
2016) and more than half with the precise number system (Solt, 2016). In the approximate
number system, the representations of numbers overlap on the number mental line (Dehaene,
2007). Consequently, the numerocities close to each other are difficult to distinguish. For
example, 49 is difficult to distinguish from 51, but 10 is easy to distinguish from 90. Because
most is processed using the approximate number system, its verification is difficult when the
to-be-compared proportions are close to each other on the number mental line. This means
that participants may be unsure about the true value of the sentence “Most of the As are B” if
the proportion of As that is B is close to half.

The difference in the processing of most and more than half has two consequences. The
first one is related to the pragmatics of most, namely, it is used to describe proportions that
are significantly different (Kotek et al., 2015; Solt, 2016). For example, a corpus study (Solt,
2016) showed that most is not suitable to use in some contexts when the proportion is close to
50% (e.g., “Most of the American population is female” vs. “More than half of the American
population is female”; Solt, 2016, p. 67). Furthermore, Carcassi and Szymanik (2021) support
a pragmatic explanation by embedding it into the computational framework of the Rational
Speech Act (Frank & Goodman, 2012).

The second consequence is that most is a vague quantifier (cf. Denić & Szymanik, 2022;
Solt, 2011, 2016), while more than half has a sharp meaning boundary. Vagueness can relate
to a threshold (Solt, 2015), a cut-off point (e.g., proportion) for which the responses change
the truth value. Solt (2011) postulated that most is a vague quantifier with a fuzzy threshold,
while more than half has sharp meaning boundaries and a 50% threshold. There are individ-
ual differences in thresholds with vague quantifiers (Ramotowska et al., 2020). Specifically,
quantifiers such as many or few have varying usage depending on the speaker (Yildirim et al.,
2016) and a flexible meaning, which can be adjusted to another speaker’s usage (Yildirim
et al., 2016) or learning criterion (Heim et al., 2015), and can be changed during the adapta-
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tion process (Heim, Peiseler, & Bekemeier, 2020). We predict that if most is a vague quantifier,
then we should observe individual differences in its representation.

To summarize, the proposed explanations of differences between most and more than half
fall into two main categories: the processing explanation (e.g., differences in verification
strategies) and the pragmatic explanation (e.g., the context in which most is used). In this
paper, we show that while controlling for processing and pragmatic effects by means of a
computational model and a specific experimental design, we can still observe different lin-
guistic behaviors related to most and more than half. We argue that most and more than half in
fact have different truth conditions. The processing and pragmatic explanations assume that
most and more than half have equivalent truth conditions and that other factors cause different
linguistic behaviors for these quantifiers. However, the previous studies that argued in favor
of these explanations (e.g., Hackl, 2009; Kotek et al., 2015; Solt, 2016) did not explicitly test
the truth-conditional equivalence of most and more than half.

The logical theories give a clear prediction about participants’ behavior concerning most
and more than half. Because we control for both processing and pragmatic factors, partic-
ipants should apply the same truth conditions to classify the given proportion as most or
more than half. Therefore, there should not be any variation between-participants or within-
participants. On the other hand, if the meaning of most is vague, we could expect the between-
participants or within-participants variation in representations of most. More specifically, if
most is a vague quantifier, we can expect participants to differ in thresholds for most and
to possibly change their truth conditions over time. Moreover, we also test an alternative
hypothesis that most has the same truth conditions as more than half, but participants hesitate
about the exact threshold for most. This would lead to observed uncertainty around thresh-
olds rather than a shift in truth conditions. We operationalized uncertainty as longer reaction
times around the threshold. We will show that we can test these hypotheses independently by
mapping truth-conditional meaning and vagueness onto different model parameters.

1.1. Modeling, experiments, and predictions

In the previous section, we identified possible sources of differences between most and
more than half. We argued that the linguistic discussion around these two quantifiers cannot
be decided based on existing experimental (e.g., Hackl, 2009; Kotek et al., 2015; Pietroski,
Lidz, Hunter, & Halberda, 2009) and corpus data (e.g., Solt, 2016). The goal of the current
paper is to model linguistic behavior in a decision-making framework. For our purposes, we
chose the DDM.

1.1.1. DDM
The DDM (Ratcliff, 1978) is a canonical evidence accumulation model (Ratcliff & Smith,

2004; Ratcliff et al., 2016). This class of models assumes that decisions are the outcome of a
gradual accrual of evidence for the various choice options at hand. That is, over time, evidence
accumulates until one of the options surpasses a critical amount of evidence, after which a
decision-maker is assumed to commit to that option.
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Fig. 1. Representation of the Diffusion Decision Model. The accumulation process (the gray zigzag line) starts
in point z (starting point between the decision boundaries) and finishes when one of the decision boundaries
(TRUE/FALSE response indicated by the red horizontal lines) is reached. The parameter a indicates the dis-
tance between decision boundaries (the red, vertical, two-sided arrow). Ter represents non-decision time needed
to encode the stimuli (the first gray rectangle) and to provide a response (the second gray rectangle). v represents
the drift rate. In the model proposed here, the drift rate depends on features of the task (blue arrows), predicting
faster decisions (higher slopes) as well as slower decisions (lower slopes). Reaction times (RT) are the sum of
non-decision time (Ter) and decision time (Td).

The evidence accumulation models are routinely applied in the field of decision-making
(e.g., Donkin & van Maanen, 2014; Miletić & van Maanen, 2019; van Maanen et al., 2012).
The choice alternatives should be understood here as any set of mental representations that
one can select from. The DDM can be used to jointly investigate the proportion of decision
outcomes and reaction times in the tasks in which participants have to choose between two
options (e.g., they have to assess whether the sentence is “true” or “false”). These possible
decision outcomes (in Fig. 1 options TRUE and FALSE) are represented as two boundaries.1

The decision-making process itself can be thought of as a noisy process of evidence accu-
mulation toward one of the boundaries (one example decision process is shown in Fig. 1,
indicated by the gray zigzag line). The model assumes that a decision is reached as soon as
one of the boundaries is crossed, with the time required to reach the boundary called the deci-
sion time (Fig. 1, Td). The time before and after the decision is called a non-decision time
(Fig. 1, Ter), and it includes the time to encode the stimuli and execute the response after
the decision is made. The reaction times are a sum of decision time and non-decision time.
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Because of the noisy accumulation process, the DDM predicts that decision times vary from
trial-to-trial, and consequently it models the full reaction time distribution. Given the specific
shape of the reaction time distribution, the proportion of responses on each of the boundaries,
and the relation between reaction times and choice, the DDM can be used to estimate a set of
parameters that best explains the observed data (Voss, Nagler, & Lerche, 2013).

The parameters that specify the DDM are typically found to match specific cognitive pro-
cessing components (Mulder, van Maanen, & Forstmann, 2014). In this way, various sources
of variability of behavior can be separated. The parameter that expresses the speed of the
accumulation process is called drift rate (v). It can be considered as a general measure of task
performance, task difficulty, cognitive ability, or the speed of information processing (for an
introduction to the DDM, see Voss et al., 2013). The drift rate can reflect multiple cogni-
tive processes. For example, it could correspond to retrieval of the threshold from memory
(Ratcliff, 1978), comparison between threshold and proportion given in the second sentence
(Ratcliff & McKoon, 2018; 2020), or lexical decision (Ratcliff, Thapar, & McKoon, 2010).
The evidence accumulation process starts at one point (z) and finishes when enough evidence
is accumulated toward one of the decision boundaries. The decision boundaries are sepa-
rated by parameter a. Moreover, two parameters, a decision time (Td) and a non-decision time
(Ter), model the duration of reaction times. Additionally, the model allows for the trial-to-trial
variability in the starting point (sz), drift rate (sv) and non-decision time (sTer).

The DDM was successfully applied to model cognitive processes in two domains that are
relevant to the current study: the domain of number cognition (Ratcliff & McKoon, 2018,
2020; Ratcliff, Thompson, & McKoon, 2015) and the domain of individual differences in
linguistics tasks (Pexman & Yap, 2018; Ratcliff et al., 2010; Yap, Balota, Sibley, & Ratcliff,
2012). For example, Ratcliff et al. (2010) found that participants with a lower IQ (Intelli-
gence quotient) score had lower drift rates in a lexical decision task than participants with a
higher IQ. Pexman and Yap (2018) fitted DDM to data from a categorization task (concrete vs.
abstract words) to test the individual differences in semantic processing and decision-making.
They found differences in drift rates between participants with high versus low vocabulary
knowledge. Yap et al. (2012) found an association between DDM parameters (drift rate,
boundaries separation, and non-decision time), performance in a lexical decision task, and
individual differences in vocabulary knowledge. In the domain of number cognition, Ratcliff
et al. (2015) showed that individual differences in accuracy or reaction times in numeracy
tasks are explained by different parameters.

To summarize, evidence accumulation models such as DDM seem to be an excellent tool
to analyze response proportion and reaction time distribution data in linguistic and number
cognition tasks. Moreover, the analysis of the participants’ parameters gives a meaningful
interpretation of individual differences between-subjects. Finally, the flexibility of the evi-
dence accumulation model provides the opportunity to adapt them to different tasks. For these
reasons, DDM also seems ideally suited to the analysis of semantic data as we will illustrate
below.
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1.1.2. Current experiment
To test the equivalence of the truth conditions of most and more than half, we chose a

specific experimental paradigm in which we limited pragmatic and processing differences
between these quantifiers. In our task, participants verified a sentence with most and more
than half against the sentence with a proportion given as a number, for example, 55%. In
Experiment 1, we tested whether the variation of individual thresholds differed between quan-
tifiers. In Experiment 2, we tested the stability of individual thresholds over a 2-week period.

Previous studies in the domain of categorization (e.g., Verheyen, White, & Égré, 2019)
have shown that participants change categorization criteria over time. Experiment 2 intends
to investigate if similar effects can be observed for functional words such as quantifiers. This
is the first study that tests the stability of semantic representations of functional words.

We tested a prediction that follows directly from logical theories. Logical Theories hypoth-
esis: Most will have the same threshold (50%) as more than half for all participants, and the
threshold for both quantifiers will be stable over time.

Moreover, we considered the effect of vagueness. Following the hypothesis that the mean-
ing of most is vague (Denić & Szymanik, 2022; Solt, 2011), we formulated a hypothesis
complementary to the Logical Theories hypothesis. Vagueness hypothesis: Most will have a
greater variation in individual thresholds than more than half, meaning that some participants
will have a higher threshold for most than more than half, and some participants will have
a 50% threshold for both quantifiers. With regard to the stability of thresholds over time,
we considered that more than half should have a stable threshold, and we could observe the
variation in the thresholds for most over time.

Vagueness can result in different thresholds for most, but it could also lead to uncertainty
about the threshold. Because thresholds can vary, participants may be uncertain about their
decision when they verify most against the proportions close to the threshold. The uncertainty
and difficulty of the decision would be reflected in longer reaction times. Therefore, we pre-
dict that under the Uncertainty hypothesis: The speed of verification of most but not more than
half, will be proportion-dependent, meaning that the reaction times for proportions close to
the individual threshold will be longer than for proportions further from the threshold. More-
over, we tested whether the variability in thresholds and vagueness interact. We considered
the logical possibility that (1) most and more than half can have the same 50% threshold,
and yet most is vague, and participants have longer reaction times around 50% proportion;
(2) most can have greater variation in thresholds than more than half and participants have
longer reaction times around the individual threshold; (3) or most can have greater variation
in thresholds and the uncertainty about the threshold depends on the threshold choice. This
analysis was exploratory in nature.

In addition, we investigated other model parameters and quantifiers. We predicted that also
vagueness of many and few should be reflected in model parameters. Following Schlotterbeck,
Ramotowska, van Maanen, and Szymanik (2020), we expected to replicate differences in non-
decision time and drift rate for negative versus positive quantifiers (see the Appendix).
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2. Experiment 12

2.1. Methods

2.1.1. Participants
We tested 90 users of the Amazon Mechanical Turk platform (https://www.mturk.com/).

We included 72 participants (48 male) in our analysis, age: M = 35, SD = 11, range: 22–59.
The sample represented various educational backgrounds: high school graduates (24 partici-
pants), high school graduates who started college (22 participants), and college graduates (26
participants). The subjects received USD 4 in compensation for their participation. The study
was approved by the Ethics Committee at the University of Amsterdam.

2.1.2. Exclusion criteria
We applied two exclusion criteria. First, we excluded fast-guessing participants (11 sub-

jects), whose reaction times were faster than 300 ms for 50% or more responses. Additionally,
we tested whether participants respected quantifier monotonicity, that is, for the quantifiers
most, more than half, and many, we expected the increasing probability of saying “true” with
increasing proportion. The opposite effect was expected for few and fewer than half. We
tested this assumption by estimating random slopes for proportion for each participant (glmer
function in R package lemrTest; Kuznetsova, Brockhoff, & Christensen, 2017). For positive
quantifiers, we excluded participants with negative slopes, and for negative quantifiers, we
excluded those with positive slopes. We excluded a total of six participants based on this
criterion. Finally, we excluded one participant who had participated in a similar experiment
previously.

2.1.3. Design
Participants verified a sentence with a quantifier of the form “Q of the As are B,” where

Q was one of the quantifiers: most, more than half, fewer than half, few, and many (within-
subject) against the sentence with a proportion (“p% of the As are B”) given as a number, for
example, 55%. Because quantifiers differ in a number of properties (Katsos et al., 2016), we
included many, few, and fewer than half for control and generalization purposes.

We decided to use pseudowords in order not to introduce any other variability in mean-
ing beyond different quantifiers. We used Wuggy software (Keuleers & Brysbaert, 2010) to
generate pseudowords from English nouns (As) and adjectives (Bs). We selected 50 pseudo-
adjectives and 50 pseudo-nouns, which a native English speaker indicated sounded like plau-
sible English words. We controlled for the frequency of the original English words. The words
on both final lists had a Zipf value of 4.06 (SUBRLEX-US database, van Heuven, Mandera,
Keuleers, & Brysbaert, 2014). All words on the final lists were six-letter words. We matched
each quantifier with each pair of pseudowords. We presented the trials in random order.

To ensure that we studied the semantic properties of most and more than half, we made two
important choices regarding experimental design. First, we decided to eliminate the potential
differences in processing and verification strategies between the two quantifiers. We chose the
presentation of proportion as a number, and we did not limit the time to make a decision in
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order to enforce the precise processing of the numerosities. In this way, the results obtained
cannot be attributed to the usage of the approximate number system (Dehaene, 1997) during
the verification of most, compared to more than half. We also used pseudowords for As and
Bs to limit pragmatic inferences (van Heuven et al., 2014). Therefore, our participants could
only access the meaning of the quantifiers and proportions.

2.1.4. Procedure
Participants saw two sentences on separate screens. On the first screen, they saw a sentence

with a quantifier and pseudowords A and B: “{most/more than half/many/few/fewer than half}
of the As are B.” To display the first sentence, participants had to press the down arrow key
and keep it pressed as long as they wanted to read the sentence. When they released the
down arrow key, the sentence disappeared. To display the second sentence, they had to press
the down arrow key again (but they did not have to keep it pressed). On the second screen,
participants saw a sentence with a proportion given as a percentage: “p% of the As are B,”
where As and B were the same pseudowords as in the first sentence. The proportion, p%, in
the second sentence was randomly drawn from 1% to 99%, excluding 50%. On this screen,
participants had to decide whether the first sentence was true or false based on the information
from the second sentence by pressing the left or right arrow key (counterbalance between-
subjects). We presented first the sentence with a quantifier and second the sentence with
a proportion because quantifiers had different lengths. This factor could affect the reading
times of sentences with quantifiers and, therefore, the reaction times and the estimation of
DDM parameters.

We randomly chose 25 proportions above and 25 proportions below 50% for more than
half, fewer than half, and most for each participant. Altogether, participants saw 250 trials, 50
trials for each quantifier. The experiment was preceded by a short training block (eight trials).
In the training block, participants saw sentences with the quantifiers some, all, and none. At
the end of the experiment, participants filled in a short demographic survey.

2.1.5. Preprocessing reaction times data
Apart from excluding participants, we also excluded reaction times that were too short or

too long. Before we fitted the DDM, we excluded reaction times shorter than 300 ms and
longer than the group mean + 2SD for each quantifier and each response type (true, false)
separately. In this way, we excluded 2.7% of the trials.

2.2. Computational modeling of the verification process

2.2.1. Extended DDM
We fitted the simple DDM (without variability parameters sz, sv, and sTer) to reaction times

and responses data for each participant. It is important to estimate parameters on an individual
level for multiple reasons. The first obvious reason is that individuals might differ in the
parameter estimates, yielding a group estimation procedure difficult to interpret. The second
reason is that because of averaging over individuals, it might appear as if a concept has a vague
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decision threshold, whereas in reality, it has a precise threshold, the location of which varies
across participants. Modeling individuals allows us to disentangle these possible scenarios.

We did not include variability parameters in order to simplify the model and because we
did not expect them to differ between quantifiers. We assumed that the differences in thresh-
old and uncertainty between most and more than half would manifest during the verification
process in the drift rate. We conceptualized the threshold as a proportion for which the drift
rate is zero. A drift rate of zero indicates an indecision. This means that participants are
equally likely to choose either option (e.g., “true” or “false”). At this point, a decision bound-
ary can only be reached because of random fluctuations in the accumulation process and not
because of a drift toward one of the boundaries. For positive quantifiers (most, more than
half, and many), below the threshold, the drift rate will be negative, making a response on
the lower boundary (representing “false”) more likely; above the threshold, the drift rate will
be positive, making a response on the upper boundary (representing “true”) more likely. For
negative quantifiers (few and fewer than half), the relationship between the drift rate direction
(positive vs. negative) and response choice (“true” vs. “false”) is reversed. The speed with
which the drift rate changes from 0 to its maximum value represents the uncertainty between
the response options. If this is low, then the drift rate function is essentially a step function,
but if the uncertainty is large, the drift rate will remain about zero for proportions around the
threshold (Fig. 2). We operationalized these concepts via the generalized logistic function pre-
sented in Fig. 2. The threshold is the midpoint of the logistic function (parameter p0), and the
uncertainty is the growth rate parameter of the logistic function (parameter s). Additionally,
the logistic function defines a maximum drift rate (VU) and a minimum (VL).

2.2.2. Bayesian model averaging
Because one of the goals of our study was to capture individual differences between par-

ticipants, we considered that there might also be individual differences between participants
in terms of which model is best according to Akaike Information Criterion (AIC) values
(Akaike, 1998). Therefore, we decided to use Bayesian model averaging for all DDM param-
eters (Hoeting, Madigan, Raftery, & Volinsky, 1999; Miletić & van Maanen, 2019; Wagen-
makers & Farrell, 2004) rather than parameters from the winning model. Bayesian model
averaging is a method to compute parameters for each participant, taking into account the
weighted average of the parameters from each model.

The weight for model i (wiAIC) is defined using the AIC values (Wagenmakers & Farrell,
2004):

wiAIC = e− 1
2 �i (AIC)

∑K
k=1 e− 1

2 �k (AIC)
(1)

where �i (AIC) = AICi- min(AIC) for each model i.

2.3. Mixed-effects regression modeling

For all linear mixed-effects regression models, we applied the individual Bayesian model
averaged thresholds to each participant’s response data from Experiment 1. For positive
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Fig. 2. Drift rate structure is given as generalized logistic function equation, where VL is the lower asymptote of the
logistic function (minimum drift rate), VU is the upper asymptote of the logistic function (maximum drift rate), s
is the growth rate the logistic function (uncertainty), p is the proportion in the second sentence of each trial, and p0

is midpoint the logistic function (threshold). On the x-axis are shown the proportions that participants saw during
the experiment. On the y-axis are the values of the drift rate v(p). The proportion on the x-axis that corresponds
to the drift rate equals zero is the threshold. The shape of the logistic lines indicates the uncertainty about the
response around the threshold (sharper lines indicate greater certainty). The figure presents the predicted drift rate
v(p) for more than half (blue, solid line) and three possible drift rates v(p) for most. The lightest red, dot-dashed
line shows the threshold for most at 50% and greater uncertainty around the threshold, compared to more than half.
The darkest red, dashed line shows the threshold higher than 50% for most and low uncertainty. The middle red,
dotted line shows the combined effect: the threshold is higher than 50% for most and greater uncertainty around
the threshold, compared to more than half.

quantifiers, we included “false” responses below the threshold and “true” responses above
the threshold in the analyses (inversely for negative quantifiers). To test the Uncertainty
hypothesis, we fitted a linear mixed-effects model (lmer function in lmerTest package in
R; Kuznetsova et al., 2017) with log-transformed (log10) reaction times (in seconds) as
the dependent variable and z-scored proportion, quantifier (most, more than half), response
(“true” or “false”), and their interactions as predictors. We used the “true” response and the
quantifier most as the baseline. For exploratory analysis, we fitted a linear mixed-effects mod-
els (lmer function in lmerTest package in R; Kuznetsova et al., 2017) with log-transformed
(log10) reaction times (in seconds) as a dependent variable and distance from threshold (pro-
portion centered on individual threshold), individual threshold centered on mean threshold,
response (“true” or “false”), and their interactions as predictors for each quantifier. We used
the “true” response as the baseline. We used log-transformation of reaction times to improve
the compatibility of mixed-effects models with their assumptions: normality and homoscedas-
ticity of residuals.
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Table 1
Mean reaction times (RT) in seconds (SD) and proportion of response “true” versus “false” in Experiment 1

True Response False Response

Quantifier RT Response RT Response

Few 1.201 (0.133) 0.39 1.087 (0.134) 0.61
Fewer than half 1.170 (0.186) 0.48 1.064 (0.115) 0.52
Many 1.000 (0.117) 0.57 1.107 (0.122) 0.43
Most 1.044 (0.395) 0.47 1.038 (0.160) 0.53
More than half 0.917 (0.086) 0.50 0.942 (0.092) 0.50

We applied the same procedure of testing the random effect structure for all models. We
tried to maximize the random structure of the model (Barr, Levy, Scheepers, & Tily, 2013).
Therefore, we always included by-subject random intercept and by-subject random slopes if
they improved the model (determined by anova function in R). We included by-item random
intercept if the model was not overfit.

2.4. Results

2.4.1. Descriptive statistics
Table 1 summarizes the mean reaction times and proportion of “true” and “false” responses

for each quantifier. This summary already suggests the differences between most and more
than half. First, the reaction times for more than half are shorter than for most. Second, most
has a greater proportion of “false” than “true” responses, indicating the possible difference in
the threshold. We applied DDM to further explain these effects.

2.4.2. Model fit and comparison
We used R package rtdists to fit DDM, and we estimated the maximum likelihood of DDM

parameters using particle swarm optimization (Clerc, 2006, 2010) on the seconds scale of
reaction times. To identify model parameters, we fixed the diffusion coefficient, which indi-
cates the standard deviation of diffusion process random noise, to a scaling constant of 0.1.

To test which DDM parameters were identical across conditions, we systematically varied
the model constraints. We evaluated each constrained model by assessing AIC values (Akaike,
1998). We used the AIC values to compute the number of participants for whom each model
was the best model (n best) or one of the three best models (n top 3). Based on the individual
AIC values of each participant, we assigned ranks to each model (1 for the best model; 9 for
the worst model). Next, we computed the mean rank for each model (the lower the rank, the
better the model). Model comparison descriptive statistics are summarized in Table 2.

For some parameters (Ter, z, VL, and VU), we observed differences between positive versus
negative quantifiers or, in the case of parameter s, between more than half/fewer than half and
the rest of the quantifiers. We started the parameter estimation process with an unconstrained
model in which all parameters could differ for all quantifiers (Model 1). We then chose Ter

to be the same across negative quantifiers (few and fewer than half) and positive quantifiers
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Table 2
Model comparison in Experiment 1 (k is the number of free parameters in the model; Mean is the mean rank; n
best is the number of participants for whom the given model was the best; n top 3 is the number of participants for
whom the given model was one of the three best models)

Parameters Rank

Model Free Fixed k Mean n best n top 3

1 Ter, a, z, p0, s, VL, VU 35 7.72 1 4
2 a, z, p0, s, VL, VU Ter 32 6.60 3 11
3 z, p0, s, VL, VU Ter, a 28 5.53 4 16
4 p0, s, VL, VU Ter, a, z 25 5.10 4 22
5 p0, VL, VU Ter, a, z, s 22 3.99 14 30
6 p0, Ter, a, z, s, VL, VU 16 4.14 10 31
7 p0, Ter, a, z, s, VL, VU 14 4.39 3 27
8 Ter, a, z, s, VL, VU, p0 12 3.38 16 41
9 Ter, a, z, s, VL, VU, p0 11 4.17 17 34

(many, most, more than half; Model 2). In Model 3, we constrained a parameter to be the
same across all quantifiers. The z parameter was the same across negative quantifiers (few
and fewer than half) and positive quantifiers (many, most, more than half; Model 4). We
constrained parameter s to be the same for fewer than half and more than half and the same
for most, many, and few (Model 5). We also constrained asymptotes parameters VL and VU

(Model 6), in the same way as the Ter and z parameters. Finally, we tested the model with
symmetric VL and VU parameters (Model 7). In Model 8, we constrained p0 parameters for
more than half and fewer than half and in Model 9 also for most.

In addition to model comparison, we also visually investigated the individual participant
model fit and the aggregate Model 7 fit (Fig. 3) by means of the Vincentizing method (Ratcliff,
1979). Fig. 3 presents a cumulative probability of reaction time data separately for “true” and
“false” responses. Each percentile of the data was scaled by the overall proportion of the
“true” or “false” responses. The height of the cumulative distribution shows the proportion
of “true” or “false” responses for each percentile. For example, the responses “true” for few
make up 39% of all responses (see Table 1) and the 0.95 percentile of responses “true” has a
cumulative probability of 0.37 as it covers 95% of “true” responses.

Finally, we used AIC values to compute weights for each model and weighted averaged
parameters (Bayesian model averaging; Hoeting et al., 1999; Table 3 and Fig. 4). The large
variation in best model fit (see Table 2) supports our choice to use Bayesian model averaged
parameters. Fig. 5 shows the example drift rates for Model 7. The drift rates for more than
half and fewer than half are steeper and have lower variability in thresholds (proportion for
which v(p) = 0) than drift rates of other quantifiers.

2.4.3. Logical Theories and Vagueness hypotheses
We systematically constrained model parameters (see Table 2) and we compared the AIC

(Hoeting et al., 1999) to determine which model had a better balance between goodness-of-
fit and model complexity (Pitt & Myung, 2002). In order to test the Logical Theories and
Vagueness hypotheses, we constrained parameter p0 = 50% for more than half, fewer than
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Fig. 3. Defective cumulative density plots show the average fit of Model 7. For this visualization, we plot the mean
5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, and 95% percentiles over participants, scaled by the proportion
of “true” and “false” responses, separately for the data and Model 7 prediction.

half, and most and compared this model to the model with p0 as a free parameter (Model
7, see Table 2). The Logical Theories hypothesis predicts that the constrained model will be
preferred for all quantifiers, while the Vagueness hypothesis predicts this only for more than
half and fewer than half.

In the first step, we constrained p0 for more than half and fewer than half. We found that the
constrained model was preferred over the model with p0 as a free parameter by 57 out of 72
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Fig. 4. Violin plots representing the distributions of Bayesian model averaged parameters (Model 1 to Model 9)
for all five quantifiers (fth is fewer than half and mth is more than half).
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Table 3
Summary for model mean (SD) parameters after Bayesian model averaged (Model 1 to Model 9) using Akaike
Information Criterion

Quantifier p0 s VL VU a z Ter

Few −0.34 197 −0.17 0.18 0.23 0.52 0.45
(0.27) (283) (0.07) (0.07) (0.05) (0.07) (0.12)

Fewer than half −0.02 461 −0.15 0.17 0.22 0.51 0.45
(.12) (345) (0.06) (0.06) (0.05) (0.06) (.12)

Many −0.17 203 −0.21 0.21 0.23 0.54 0.42
(0.32) (286) (0.08) (0.06) (0.05) (0.05) (0.11)

Most 0.10 196 −0.23 0.21 0.23 0.54 0.42
(0.22) (280) (0.09) (0.07) (0.05) (0.06) (0.11)

More than half 0.006 456 −0.23 0.21 0.23 0.54 0.42
(0.06) (346) (0.07) (0.06) (0.05) (0.05) (0.11)

Table 4
Summary of the model testing Uncertainty hypothesis in Experiment 1

Effect Estimate t value p-value

intercept −0.0002 −0.01 .99
prop −05 −6.76 <.001
quant −06 −5.66 <.001
resp 0.01 1.21 .23
prop:quant 0.04 3.80 <.001
prop:resp 0.11 10.42 <.001
quant:resp 0.02 1.12 .26
prop:quant:resp −0.07 −4.69 <.001

Note. prop = proportion; quant = quantifier; resp = response.

participants. Next, we constrained the p0 parameter for most as well. The model fitted better
for 41 out of 72 participants. These results therefore support the Vagueness hypothesis: Only
some participants had a 50% threshold for most, and the variation in thresholds was higher
for most than more than half. This difference can be observed in Fig. 5, which shows a greater
variability for most than more than half in drift rates for the model with p0 as a free parameter
(Model 7).

2.4.4. Uncertainty hypothesis
Next, we tested the Uncertainty hypothesis (see model summary in Table 4 and the com-

parison of regression models in the Appendix). We applied the individual Bayesian model
averaged thresholds to each participant’s response data and included the “true” responses
above the threshold and “false” responses below the threshold in the analysis for most and
more than half. As expected, we found a significant effect of proportion (ß = −0.05; t =
−6.76; p < .001) and a significant proportion-quantifiers interaction (ß = 0.04; t = 3.80;
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Fig. 5. Drift rates in Experiment 1 for Model 7. Darker lines indicate mean drift rate and lighter lines indicate
individual drift rates. Individual participants’ threshold p0 is the proportion on the x-axis for which drift rate v(p)
on the y-axis is equal to zero. The scale parameter s indicates the steepness of the drift rate function.

p < .001). In addition, we found that most was verified more slowly than more than half (ß =
−0.06; t = −5.66; p < .001). This finding supports the Uncertainty hypothesis that verifica-
tion of most is proportion-dependent. The relationship between proportion and reaction times
is illustrated in Fig. 6. Most was verified slower when the proportion presented in the second
sentence was close to the individual threshold of a participant. In contrast, no change in the
speed of verification was observed for more than half.

 15516709, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13234 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [24/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 of 39 S. Ramotowska et. al / Cognitive Science 47 (2023)

Fig. 6. RTs as a function of proportion for most versus more than half (mth). Each triangle represents mean RTs
for proportions below the individual threshold (“false” response), and each dot represents proportions above the
individual threshold (“true” response). Dashed, red lines represent regression lines for most, and solid, blue lines
represent more than half.

2.4.5. Effect of threshold on reaction times
Finally, we tested whether the choice of the individual threshold affects the speed of the

verification process. We applied the individual Bayesian model averaged thresholds to each
participant’s response data and included the “true” responses above the threshold and “false”
responses below the threshold in the analysis for most, many, and more than half (opposite
for few and fewer than half). This analysis was exploratory in nature. We expected the selec-
tion of the threshold to affect the verification process of quantifiers with various possible
representations such as many, few, and most. We fitted linear mixed-effects models to data
from each quantifier separately.

More than half and fewer than half: We tested the effect of the individual threshold on
reaction times (see Table 5). For both quantifiers, we found that the effect of the threshold
was not significant: more than half (ß = −0.009; t = −1.45; p = .15), fewer than half (ß =
0.003; t = 0.77; p = .44). As predicted, we did not find evidence that the choice of threshold
affects the speed of verification in more than half and fewer than half.

Most: For most, we found a significant effect of threshold (ß = 0.006; t = 2.32 p < .05) and
threshold-distance interaction (ß = −0.0002; t = −3.03; p < .01; see Table 5). As expected,
the verification of most was affected by the choice of threshold.

Many and few: For many, we found close to significance level 0.05 effect of threshold (ß =
−0.003; t = −1.93; p = .056) and no significant threshold-distance interaction (ß = 0.0001;
t = −0.25; p = .80; see Table 5). For few, we found close to significance level 0.05 effect
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Table 5
Summary of the models estimates testing the effect of threshold

Effect
More than

half
Fewer than

half Most Few Many

intercept −0.06*** 0.02 0.003 0.10*** 0.003
Dist −0.0004. −0.00003 −0.002*** 0.004*** −0.002***
Thr −0.009 0.003 0.006* −0.004 −0.003
Resp 0.03** −0.006 0.02 −0.05*** 0.04**
Dist:thr −0.0002** −0.0002** −0.00001
Dist:resp 0.001*** −0.001** 0.004*** −0.005*** 0.004***
Thr:resp 0.009*** −0.002 0.0001 −0.0006
Dist:thr:resp 0.0002** 0.0002** −0.0001*

Note. dist = distance; thr = threshold; resp = response
***p < .001; **p <.01; *p < .05.

of threshold (ß = −0.004; t = −1.90; p = .06) and significant threshold-distance interaction
(ß = −0.0002; t = −2.75; p < .01; see Table 5).

To summarize, we found the effect of threshold for most and close to the significance level
of 0.05 effect of threshold for few and many, but we did not find this effect for quantifiers
with sharp meaning boundaries. This finding gives moderate support to the hypothesis that
the speed of the verification depends on the choice of threshold.

3. Experiment 2

The goal of the second experiment was to test the within-subject stability of truth-
conditional representations over time. We tested participants in two sessions separated by
2 weeks and estimated the DDM parameters from the data from both sessions. Next, we
tested if the threshold parameter was the same across the sessions indicating the stable mean-
ing representations. We predicted that meaning representations should be stable for more than
half and fewer than half, and we considered that they might change for vague quantifiers. In
addition, we tested other DDM parameters to test the stability of model estimates over time.

3.1. Methods

3.1.1. Participants
We recruited 89 participants via the Prolific platform (https://www.prolific.co/), and 72 par-

ticipants completed both sessions. We included 64 participants (46 female, see Section 3.1.2.)
in the final sample. Participants were 32 years old on average (SD = 9, range: 18–60) and rep-
resented the following educational backgrounds: attending high school or high school grad-
uates (five participants), high school graduates, who started college (six participants), and
college graduates (53 female). Participants were paid 7.5£ per h. The study was approved by
the Ethics Committee at the University of Amsterdam.
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3.1.2. Exclusion criteria
We used the same exclusion criterion as in Experiment 1. We excluded participants if they

met one of the criteria in at least one testing session. We excluded three fast-guessing par-
ticipants and four participants who failed to meet the monotonicity criterion. In addition, we
excluded one participant who was not a native English speaker.

3.1.3. Design
We used the same design as in Experiment 1.

3.1.4. Procedure
The stability experiment had the same number of trials as Experiment 1, and it was also

preceded by a short training block. After completing the experiment, participants filled in
a brief demographic survey. We simplified the procedure from Experiment 1. Participants
had to press the K key on their keyboard to move to the first screen, containing a sentence
with a quantifier, but they did not have to keep the K key pressed. To move to the second
screen, containing a sentence with proportion, participants had to press the K key again. To
provide a response (“true” or “false”) they had to press the J or L key (counterbalanced across
participants). Participants did the experiment twice. The proportions presented in the second
sentence and the order of the trials were randomized across sessions. The second session was
held in the third week after the first session.

3.1.5. Preprocessing reaction time data
We used the same preprocessing procedure as in Experiment 1. We excluded 4.4% of the

trials in the first session and 2% in the second session.

3.2. Computational model

We applied Model 7 from Experiment 1 to data from both sessions (Table 7 shows mean
parameters). We chose this model because it included all the constraints, which highlighted
differences between positive and negative quantifiers and between vague and quantifiers with
sharp meaning boundaries quantifiers but had the threshold parameter-free.

3.3. Results

3.3.1. Descriptive statistics
We summarize the descriptive statistics in both sessions (Table 6). We observed similar

patterns to those observed in Experiment 1: We found shorter reaction times for more than half
than most and larger proportion of “false” responses for most. We also noticed that participants
were faster in the second session, which indicates a learning effect.

3.3.2. Model fit and model parameters
Fig. 7 shows that Model 7 from Experiment 1 also has a good fit to the data from both

sessions in Experiment 2. Table 7 shows that parameter estimates are also comparable to
those found in Experiment 1.
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Fig. 7. Defective cumulative density plots show the average fit of Model 7 to data from Session 1 (a) and Session 2
(b). For this visualization, we plot the mean 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, and 95% percentiles
over participants, scaled by the proportion of “true” and “false” responses, separately for the data and Model 7
prediction.
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Table 8
Bayes factors for paired t tests for parameter estimates between sessions

Quantifier p0 s VL VU a z Ter

Few 0.14 0.41 71 71 0.63 0.39 0.15
Fewer than half 0.16 0.19 71 71 0.63 0.39 0.15
Many 0.17 0.41 1106 1106 0.63 0.15 0.16
Most 0.22 0.41 1106 1106 0.63 0.15 0.16
More than half 0.17 0.19 1106 1106 0.63 0.15 0.16

Note. The Bayes factors were the same if the parameters were constrained across quantifiers: s was the same
for more/fewer than half and the same for most, many, and few; VL and VU were symmetric (VL = -VU); a was the
same for all quantifiers; z and Ter were the same for positive and the same for negative quantifiers.

3.3.3. Stability of thresholds
The Logical Theories hypothesis predicts that thresholds should be stable over time. The

Vagueness hypothesis allows variation in thresholds for most. To test these hypotheses, we
performed Experiment 2 in which participants repeated the same experiment in two sessions
2 weeks apart.

To compare each parameter between the sessions, we used a Bayesian paired t test (R
function ttestBF from BeyesFactor library; Morey, 2018). We chose to use a Bayesian statistic
because we wanted to quantify evidence for the null hypothesis. The Bayesian t test indicates
the relative likelihood of a difference in parameter estimates between sessions, expressed by
the Bayes factor. A large Bayes factor suggests that there is a systematic parameter difference
between the sessions, whereas a Bayes factor less than one provides evidence for the absence
of a difference, suggesting a stable parameter across the sessions. We started by testing the
stability of the threshold parameters (Table 8). We predicted that the threshold for more than
half and fewer than half should be stable over time at 50%. We considered that thresholds for
other quantifiers might differ between sessions.

We found that the Bayes factor for most was 0.22 and for more than half 0.17, which indi-
cates evidence in favor of the null hypothesis (no difference between parameters between
sessions). In particular, the Bayes factor for individual threshold parameters was below 0.33
for all quantifiers, which indicates substantial evidence in favor of the null hypothesis (Jef-
freys, 1961). These results speak in favor of thresholds stability.

We also tested the stability of other DDM parameters between two experimental sessions
(Table 8). In general, the model parameters were stable across sessions, apart from VL and VU

parameters. We tested whether participants accumulated evidence faster in the second ses-
sion, by computing the maximum speed of evidence accumulation in both sessions, which
was operationalized as the distance between asymptotes (VU – VL) and tested the difference
in distance between sessions (Bayesian paired t test, R function ttestBF from BayesFactor
library; Morey, 2018). We found substantial evidence in favor of the hypothesis that partic-
ipants speed up the evidence accumulation process in the second session for positive quan-
tifiers (BF = 1106 ± 0%) and for negative quantifiers (BF = 71 ± 0%). This difference
can be explained in terms of the training effect, consistent with previous literature that found
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Table 9
Correlations of Diffusion Decision Model parameters between Sessions 1 and 2.

p0 s VL VU a z Ter

Few 0.48*** 0.03 0.55*** 0.55*** 0.77*** 0.04 0.53***
Fewer than half −0.05 −0.17 0.55*** 0.55*** 0.77*** 0.04 0.53***
Many 0.47*** 0.03 0.51*** 0.51*** 0.77*** 0.31* 0.46***
Most 0.63*** 0.03 0.51*** 0.51*** 0.77*** 0.31* 0.46***
More than half 0.002 −0.17 0.51*** 0.51*** 0.77*** 0.31* 0.46***

Note. Some parameters were constrained between quantifiers (see the modeling section 3.2), and therefore the
correlations were the same, df = 62.

***p < .001; **p <.01; *p < .05.

that training effects are reflected in increased drift rates (Dutilh, Krypotos, & Wagenmak-
ers, 2011; Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009; Petrov, van Horn, &
Ratcliff, 2011).

3.3.4. Correlation of parameters between sessions
In addition, we correlated the thresholds parameters across sessions (Table 9 summarizes

all correlations). The correlations between thresholds for vague quantifiers (most, many,
and few) were moderate and significant (Fig. 8). The correlations between thresholds for
quantifiers with sharp meaning boundaries (more than half and fewer than half) were close
to zero (Fig. 8). Although this pattern of results seems counterintuitive, the very low correla-
tions for more than half and fewer than half between thresholds reflect the very low variation
in thresholds for these quantifiers. The correlations for a, Ter, VL, VU, and z (for positive
quantifiers) parameters were moderate or high (Table 9).

4. Discussion

In this paper, we modeled the processing of vague concepts by means of a computational
model of decision-making. We chose the quantifier verification task and two widely discussed
quantifiers—most and more than half—for our case study. We used the DDM to distinguish
different meaning aspects such as truth-conditional representation and vagueness. Our model
accounted for vagueness by assuming a noisy decision process and individual differences in
meaning representations by estimating parameters for each participant. We tested the predic-
tions of logical theories about truth conditions of most and showed that these theories need an
extension to account for individual differences in representations of most. In the discussion,
first, we will summarize the main findings (Section 4.1 ) and interpret the revealed differences
in representations of most and more than half (Section 4.2). Next, we will attempt to link our
findings to a broad discussion about vague concepts (Section 4.3). Finally, we will discuss the
limitations of this study and suggest future directions (Section 4.4).
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Fig. 8. Scatterplots from Experiment 2 showing correlations of thresholds between Sessions 1 and 2: more than
half (mth) (r(62) = .002; p = .99), fewer than half (fth) (r(62) = −.05; p = .72), most (r(62) = .63; p < .001),
many (r(62) =.47; p < .001), and few (r(62) = .48; p < .001).

4.1. Main findings

In Experiment 1, we tested two competing hypotheses: Logical Theories hypothesis and
Vagueness hypothesis. The former hypothesis proposes that most has a truth-conditionally
equivalent representation to more than half. The latter, in turn, claims that most is a vague
quantifier with variable thresholds. Our modeling results support the Vagueness hypothesis
and reveal substantial individual differences in the thresholds for most. The model with the
threshold parameter p0 constrained to 50% for most fitted better than the model with uncon-
strained p0 only for some participants. This finding suggests that most is vague and sensitive
to individual differences. In the next step, we tested the Uncertainty hypothesis. Vague quan-
tifiers are more difficult to verify because participants may not be sure about the exact thresh-
old. We observed that the verification of most is proportion-dependent, and participants ver-
ify most slower around the 50% proportion. This finding supports the hypothesis that most is
a vague concept. In the exploratory analysis, we tested whether for vague quantifiers (most,
many, and few) participants verified the proportions around the threshold slower (distance
effect) because they were uncertain about the threshold. We found support for this prediction
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in the reaction times analysis and in modeling, as reflected by a difference in the s parameter
between quantifiers. Moreover, we investigated if the speed of verification depends on the
choice of the threshold (threshold effect). The results were equivocal, and the threshold effect
did not fully replicate (see Supplementary Materials).

In Experiment 2, we tested the stability of the threshold parameter and other parameters of
the DDM. The thresholds were stable over time. In addition, we found strong evidence for a
learning effect.

4.2. Most versus more than half

The logical theories make a strong and clear prediction about the meaning representation
of most, which should be truth-conditionally equivalent to more than half. The empirical
data (Kotek et al., 2015; Solt, 2016) showed that most is used and verified differently than
more than half. These patterns of results have been explained in multiple ways (Carcassi &
Szymanik, 2021; Hackl, 2009; Pietroski et al., 2009; Solt, 2016). None of these explanations,
however, considered the difference in truth conditions between most and more than half. After
controlling for pragmatic and processing effects, and accounting for vagueness and individual
differences, we observe a difference in threshold between most and more than half, which is
attributable to an inequivalence in truth conditions. Our results question the typical formula-
tion of truth conditions for most on the basis of logical theories. Recall the example in the
Introduction section. If most has a truth condition formulated as in Example 2, then it should
also have a 50% threshold, like more than half. Solt (2016) claimed that most has a truth con-
dition as in Example 2, but it is preferably used with higher proportions. In order to be judged
as most, the proportion of As that is B has to be “significantly” higher than a proportion of
As that is not B. This happens because most is represented on a semi-ordered scale, on which
the proportions are compared using the approximate number system. More than half is repre-
sented on a ratio scale, on which proportions can be compared precisely. For the approximate
comparison, the proportions have to be “significantly” greater to be distinguished from each
other.

In the current study, we used an experimental paradigm, which makes this explanation
unlikely. First, in our experiment, participants had to compare precise proportions given as a
number. The scale on which they represented proportions was the same for both quantifiers.
It was a ratio scale. Moreover, as the numbers were precise and there was no time pressure,
there was no reason for participants to use the approximate number system for most. Taking
this into account, we endorse the conclusion that the difference between most and more than
half in our experiment is due to differences in meaning representations rather than process-
ing strategies. More specifically, we claim that for both quantifiers, participants compared
the given proportion to their internal threshold, but for more than half, this threshold was
50%, while for most, it varied between participants. The meaning representation of most is,
therefore, similar to the representation of the proportional many. When participants verify the
proportional many, they compare the given proportion to the threshold (Partee, 1988). For
both most and many, the threshold varied between-participants.
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In addition to testing the between-participants variability in truth conditions of most, we
also evaluated their stability over time. Previous studies (Verheyen et al., 2019) showed that
semantic categories change over time. Our study is the first study that addressed the stability
of semantic representations of functional words such as quantifiers. We showed that partic-
ipants’ truth conditions are stable over a short period. Verheyen et al. (2019) suggested that
the inter-individual differences relate to stable differences between groups that apply differ-
ent categorization criteria. For example, the level of education (Verheyen & Storms, 2018) or
individual traits (Verheyen, Dewil, & Égré, 2018) affect the choice of category criteria. Fur-
ther studies need to explain the cause of the inter-individual variation in thresholds for vague
quantifiers.

In both Experiment 1 and its replication (see Supplementary Materials), we found that
most, but not more than half, was verified slower when the proportions were close to 50%
proportion. Our modeling data reflected the effect of proportion on verification of most. We
discovered that most and more than half differ in the s parameter (see the Appendix), which
we interpreted as a measure of uncertainty about the threshold. The s parameter models the
steepness of the drift rate curve. For more than half, the drift rate had the shape of a step-
like function, which indicates that the evidence accumulation process was equally fast for all
proportions. For most, in turn, the drift rate has a smoother shape indicating a slower evidence
accumulation process around the threshold. Our data support the predicted drift rates in Fig. 2:
the blue, solid line for more than half and higher threshold and greater uncertainty for most
(dotted, red line). The modeling of the s parameter shows that most is more akin to many than
more than half.

Our exploratory analysis showed that the choice of threshold might affect reaction times
for vague quantifiers (most, many, and few). In the case of vague quantifiers, this analysis
also showed that participants were faster when the verified proportion was further from their
threshold than when it was close. We should consider these findings with caution because the
effect did not fully replicate (see Supplementary Materials).

By presenting proportion as a number, we ruled out the processing explanation of differ-
ences between most and more than half. By using pseudowords, we limited the pragmatic
effects. Nonetheless, one could argue that participants constructed a context for the experi-
ment, especially because they had to verify the context-dependent quantifiers such as many
and few. Although we cannot completely rule out this possibility, we argue that this is not
very likely. First, participants did not assign any meaning to pseudowords (indicated by a
very small amount of variance explained by by-item random intercepts, see the Appendix).
Second, the second experiment shows stable threshold parameters for all quantifiers indicat-
ing that participants probably did not construct contexts ad hoc.

We believe that our experimental paradigm controlled well for the contextual effects. How-
ever, the question remains if the individual differences in the threshold for most could be due
to individual differences in the pragmatics skills of participants, for example, in the sensitiv-
ity to pragmatic strengthening. Previous studies have shown (e.g., Spychalska, Kontinen, &
Werning, 2016) individual differences in the availability of the pragmatically enriched repre-
sentations in the case of the quantifier some. The logical responders interpret some according
to its truth conditions (some can possibly mean all), while pragmatic responders interpret
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some as some but not all. Contrary to this example, we think the differences between most
and more than half are unlikely caused by pragmatic strengthening. In a similar experimental
paradigm, Denić and Szymanik (2022) tested the pragmatic strengthening hypothesis directly
and showed that it cannot explain the higher threshold for most. Our findings are consistent
with this result.

4.3. Theories of vague concepts

Having discussed the main findings, in this section, we will take stock of how our results fit
the literature about vague concepts. First our modeling results revealed two sources of vague-
ness: individual variability in thresholds and uncertainty around thresholds. We separated
their effect by using different model parameters p0 and s and estimating these on an indi-
vidual participant level. Following the literature on vagueness and categorization, we suggest
that these two types of vagueness could be interpreted as criterial and degree vagueness (Ver-
heyen, Droeshout, & Storms, 2019). Criterial vagueness is a disagreement between partici-
pants about the criteria or conditions to classify a given object into a given category (Verheyen
et al., 2019). Degree vagueness, in turn, means that individuals agree about the classification
criterion but disagree to what extent the given object satisfies this criterion (Verheyen et al.,
2019). For example, one can believe that an abstract painting cannot be considered a piece of
art because art should imitate reality (criterial vagueness). In contrast, this person can con-
sider two realistic paintings as art but to a different extent depending on how well they imitate
reality (degree vagueness). Both types of vagueness can cause between-participants variation
in semantic categorization (Verheyen & Storms, 2013, 2018). We suggest that the variability
in thresholds may be interpreted as criterial vagueness and uncertainty as degree vagueness.
The application of different thresholds resembles the usage of different categorization criteria.
The uncertainty about the threshold shows that the decision of whether the given proportion
is above or below the threshold is harder for vague concepts.

Several theoretical frameworks have been developed to study the structure of mental repre-
sentations of vague concepts. The multiple definitions model (Gruenenfelder, 2019) proposes
that participants store in memory multiple definitions of a vague concept. In the domain of
quantifiers, this would mean that participants store in memory multiple thresholds for each
quantifier. During the verification process, one of the thresholds is sampled and compared
to the proportion given in the experiment. What is challenging for this theory is to provide
a sampling mechanism for the thresholds. For example, in our study, participants may have
sampled the thresholds uniformly or they may have had a specific probability distribution over
thresholds. The former scenario would result in a variability in thresholds from trial-to-trial
and the latter would guarantee the more stable threshold across the trials. Another challenge
to the multiple definitions model would be to account for our findings in the parameter s.
The value of s parameter for vague quantifiers indicated that the reaction times around the
threshold are slower. However, the multiple definitions model does not directly predict the
reaction time difference. Under the assumption that participants store a set of thresholds in
their memory and sample one threshold in each trial, there is no reason why they would verify
slower the proportions closer to the threshold. Finally, our results on the stability of thresholds
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over time could be explained by the multiple definitions model if we assume that participants
sample certain thresholds with higher probability or if they sample uniformly from a large set
of thresholds.

An alternative account, the partial model, was proposed by Kamp and Partee (1995).
They used partial models to formally account for vagueness. Considering this account in the
domain of quantifiers, we suggest that participants have a single threshold (a proportion) and
intermediate ranges of proportions around the threshold with an undefined truth value. For
example, let us consider a participant with a threshold equal to 50% and an intermediate
region between 45% and 55%. The definition of the threshold can be extended in the range
of the intermediate region by using partial models. The partial models are defined as fol-
lows: downward from the threshold by subtracting 1 in each step (49–50; …; 45–50), upward
from the threshold by adding 1 in each step (50–51; …; 50–55), and both sides from the
threshold by subtracting 1 and adding 1 (49–51; …; 45–55). Next, for a specific threshold
and each proportion in the intermediate region, we can compute the proportion of comple-
tions, meaning the ratio of partial models that contain this proportion to the models that do
not contain this proportion. In our example, all partial models contain the threshold, but only
two out of five partial models contain the proportion (47%). The proportion of completions
provides a mechanism explaining the uncertainty about choices that are missing in the mul-
tiple definitions model. However, the partial model does not provide any explicit prediction
about the reaction times. Moreover, this approach originated from studies on categorization
and assumes the existence of prototypes. Our modeling approach is agnostic to the porotype
theory.

To summarize, in this paper, we provided a novel framework to study vague concepts that
made it possible to separate different sources of vagueness. We suggested interpreting the two
sources of vagueness as criterial and degree vagueness. Moreover, we sketched the proposal
on how to link our model with existing accounts to vagueness in a domain of categorization:
the multiple definitions model and the partial model. We also showed that both theories need
further specifications to make predictions about the reaction times data. The contribution of
this paper is to encourage further development of both theories that would enable to test them
against each other.

4.4. Limitations and future directions

We also note a few limitations of this study. First, we did not find a single model that would
fit best for all participants. In our analysis, we account for this fact by including Bayesian
model averaged parameters. However, we cannot conclude that differences between represen-
tations of most and more than half in threshold (p0 parameter) and uncertainty (s parameter)
are the only possible sources of inter-individual variations. Second, although we obtained a
good model fit, we noticed that the model sometimes failed to predict long reaction times. The
worse model fit for long reaction times is not surprising because long reaction times are rare
and, therefore, difficult to predict accurately; however, in our experiment, long reaction times
mostly drove the proportion effect. Third, we notice that our regression models did not meet
all mixed-effects model assumptions even after log-transformation of the reaction time vari-
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able. Finally, we did not replicate all the thresholds effects on reaction times. Therefore, we
can only draw a limited conclusion about the relationship between the speed of verification
and truth-conditional representation.

It goes without saying that further studies are needed to better understand the nature of
mental representations of vague concepts. Here, we only outline a few possible future direc-
tions in the context of our results. First, our findings suggest that most and more than half have
different truth-conditional representations. This finding is challenging for logical theories of
meaning. A new, full-fledged proposal of the semantics of most goes beyond the scope of this
paper. Denić and Szymanik (2022) made an initial attempt to formulate semantics of most as
vague quantifier.

Second, we argued in this paper for individual differences in semantic representations of
vague quantifiers. Our modeling results support this claim but do not explain the origin of
the individual differences. Participants may have different thresholds for vague quantifiers
because of differences in linguistic experience or education (Verheyen & Storms, 2018). Indi-
vidual differences in linguistic behavior may be caused by individual differences in other
cognitive abilities (Kidd, Donnelly, & Christiansen, 2018), for example, working memory
(Zajenkowski, Szymanik, & Garraffa, 2014) or executive functions (Zajenkowski & Szy-
manik, 2013). Moreover, in a different experimental paradigm, for example, picture sen-
tence verification task, participants could also use different verification strategies (Talmina,
Kochari, & Szymanik, 2017), which, in turn, could affect the uncertainty and threshold param-
eters of our model. For example, we would predict that participants who use less precise strat-
egy (e.g., based on the approximate number system) have a lower value of the s parameter. We
suggest investigating the mechanistic explanations (e.g., in terms of verification strategies) of
the differences in semantic representations of most and more than half and correlation expla-
nations (e.g., in terms of other cognitive functions and abilities) in future experiments.

5. Conclusion

The current study shows that computational modeling is necessary to understand complex
linguistic behavior. Our modeling data showed apparent differences between most and more
than half and also between negative and positive quantifiers (see the Appendix). This finding
indicates that we can formulate testable hypotheses about the DDM parameters to answer
other linguistic questions beyond the current case study. For example, Schlotterbeck et al.
(2020) linked the difference in non-decision time with an extra step in the verification of
negative quantifiers and drift rate with difficulties in processing negative quantifiers. Further-
more, the starting point can model the response bias in different contexts. The DDM with
implemented approximate number system model (Ratcliff & McKoon, 2018) could be used
to test how quantifiers interact with different cognitive systems (e.g., approximate and pre-
cise number systems) and how verification changes with changing task demands (Register
et al., 2020). To conclude, we presented a novel approach to systematically study linguistic
phenomenon as the decision-making process.
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Note

1 In literature, decision boundaries are sometimes called decision thresholds. In this paper,
we reserve the notion of threshold to semantic representations of quantifiers, and to avoid
confusion, we use the term “decision boundaries” to refer to options between which
participants choose.

2 Data and analysis scripts are available at: osf.io/d5xm8
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Schlotterbeck, Milica Denić, and Fausto Carcassi for the discussion and comments on the
early draft of this manuscript.

Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing
the impartiality of the research reported.

References

Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In K. G. Parzen E.
& K.Tanabe (Eds.), Selected papers of Hirotugu Akaike (pp. 199–213). New York: Springer. https://doi.org/10.
1007/978-1-4612-1694-0_15

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis
testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.
2012.11.001

Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4(2),
159–219. https://doi.org/10.1007/BF00350139

Bott, O., Augurzky, P., Sternefeld, W., & Ulrich, R. (2017). Incremental generation of answers during the com-
prehension of questions with quantifiers. Cognition, 166, 328–343. https://doi.org/10.1016/j.cognition.2017.
05.023

Carcassi, F., & Szymanik, J. (2021). ‘Most’ vs ‘More Than Half’: An alternatives explanation. Proceedings of the
Society for Computation in Linguistics, 4, 334. https://scholarworks.umass.edu/scil/vol4/iss1/30

Clark, H. H. (1976). Semantics and comprehension. The Hague: Mouton & Co. B. V.
Clerc, M. (2006). Particle swarm optimization. New York: Wiley. https://doi.org/10.1002/9780470612163
Coppock, E., & Strand, L. (2019). Most vs. the most in languages where the more means most. In A. Aguilar-

Guevera, J. Pozas Loyo, & V. Vázquez Rojas Maldonado (Eds.), Definiteness across languages (pp. 271–417).
Berlin: Language Science Press.

Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press.

 15516709, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13234 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [24/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1016/j.jml.2012.11.001
https://doi.org/10.1016/j.jml.2012.11.001
https://doi.org/10.1007/BF00350139
https://doi.org/10.1016/j.cognition.2017.05.023
https://doi.org/10.1016/j.cognition.2017.05.023
https://scholarworks.umass.edu/scil/vol4/iss1/30
https://doi.org/10.1002/9780470612163


S. Ramotowska et. al / Cognitive Science 47 (2023) 35 of 39

Dehaene, S. (2007). Symbols and quantities in parietal cortex: Elements of a mathematical theory of number
representation and manipulation. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorimotor foundations
of higher cognition (pp. 526–574). Oxford, England: Oxford University Press. https://doi.org/10.1093/acprof:
oSo/9780199231447.003.0024
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Supplementary Material

Appendix

Uncertainty hypothesis—Regression model comparison
To test the effect of proportion on reaction times for most in comparison to more than half,

we tested the random structure of the mixed-effects regression model. In the first step, we
included by-subject and by-item random intercepts. While participants were likely to vary in
reaction times, we expected the small random effect of item because we used pseudowords.
We found that the model with by-subject and by-item random intercepts did not significantly
improve model fit, compared to a model with only by-subject random intercept (χ2(1) =
0.64; p = .43). This supports our assumption that participants did not analyze the meaning of
pseudowords.

The model comparison revealed that the best model includes by-subject random slope for
quantifier (χ2(2) = 24.76; p < .001). The by-subject random slope for response (χ2(2) =
19.90; p < .001), and by-subject random slope for proportion (χ2(2) = 12.95; p = .002)
improved model fit less. In the next step, we included by-subject random slope for response
(χ2(3) = 20.94; p = .0001). The model with three random slopes was overfit.

Effect of threshold on reaction time—Regression model comparison
More than half and fewer than half: For more than half, we included only by-subject and

by-item random intercepts because a random slope for a response did not improve the model
(χ2(2) = 4.24; p = .12), and a model with a random slope for distance did not converge.
For fewer than half, we included by-subject and by-item random intercepts and by-subject
random slope for response (χ2(2) = 14.42; p = .001). The model with by-subject random
slope for distance did not converge.

Most: For most, we included by-subject random slope for response (χ2(2) = 18.05; p =
.0001). The model with by-subject random slope for distance did not converge. We did not
include by-item random intercept because the model was overfitted and the intercept did not
explain any variance.

Many and few: For many, the best random effect structure included by-subject random
intercept only (the models with by-subject random slopes for response did not improve fit
(χ2(2) = 3.37; p = .19) and for distance did not converge). We did not include by-item random
intercept because the model was overfitted and the intercept did not explain any variance.
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For few, we included by-subject random slope for response (χ2(2) = 16.55; p = .0003).
The model with by-subject random slope for distance did not converge. We did not include
by-item random intercept because the model was overfitted and the intercept did not explain
any variance.

Additional findings
In addition to testing the main hypotheses, we also found differences in other DDM param-

eters between quantifiers. We tested these differences using Bayesian model averaged parame-
ters. We compared only the pairs of parameters that were not constrained between quantifiers.

First, we found that more than half had a higher s parameter than most (Fig. 4, t(71) =
−5.08; p < .001; mean difference −259.39). This finding was expected. We found a propor-
tion effect on reaction times for most but not more than half. This effect is also reflected in
our modeling results in the difference in the s parameter.

Second, we also found a difference between positive and negative quantifiers in the
Bayesian model averaged non-decision times parameters. We found that non-decision time
was longer for fewer than half than more than half (t(71) = 5.81; p < .001; mean difference
0.03) and longer for few than many (Fig. 4, t(71) = 5.70; p < .001; mean difference 0.03).
Furthermore, we found significant difference between the Bayesian model averaged starting
point for more than half and fewer than half (t(71) = −2.61; p = .01; mean difference −0.03)
and approached significance for many and few (t(71) = −1.97; p = .053; −0.03). The start-
ing point for positive quantifiers (more than half, many) was higher than the starting point for
corresponding negative quantifiers (fewer than half, few).

Finally, we also tested the distance between drift rate asymptotes (distance = VL – Vu). The
distance was greater for positive quantifiers than negative quantifiers: more than half versus
fewer than half (Fig. 4, t(71) = 11.87; p < .001; mean difference 0.11), many versus few
(Fig. 4, t(71) = 5.51; p < .001; mean difference 0.07). These findings indicate that the DDM
can be useful to capture many properties of natural language quantifiers.
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