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What determines how much one encodes into visual
working memory? Traditionally, encoding depth is
considered to be indexed by spatiotemporal properties
of gaze, such as gaze position and dwell time. Although
these properties inform about where and how long one
looks, they do not necessarily inform about the current
arousal state or how strongly attention is deployed to
facilitate encoding. Here, we found that two types of
pupillary dynamics predict how much information is
encoded during a copy task. The task involved encoding
a spatial pattern of multiple items for later
reproduction. Results showed that smaller baseline
pupil sizes preceding and stronger pupil orienting
responses during encoding predicted that more
information was encoded into visual working memory.
Additionally, we show that pupil size reflects not only
how much but also how precisely material is encoded.
We argue that a smaller pupil size preceding encoding is
related to increased exploitation, whereas larger pupil
constrictions signal stronger attentional (re)orienting to
the to-be-encoded pattern. Our findings support the
notion that the depth of visual working memory
encoding is the integrative outcome of differential
aspects of attention: how alert one is, how much
attention one deploys, and how long it is deployed.
Together, these factors determine how much
information is encoded into visual working memory.

Introduction

Visual working memory (VWM) allows one to
briefly maintain and manipulate visual information.
Fundamental for flexible and intelligent behavior,
VWM has been of great interest within the field of
(cognitive) neuroscience and psychology. When given
the option, participants look at stimuli longer whenever
visual processing is more difficult (Meghanathan, van
Leeuwen, & Nikolaev, 2015; Peterson, Beck, & Wong,
2008). In the context of VWM, it is often implied that
fixation duration on stimuli (directly) reflects encoding
depth (e.g., Draschkow, Kallmayer, & Nobre, 2021;
Somai, Schut, & Van der Stigchel, 2020). Although
gaze position and dwell time may reveal where and how
long participants look, they do not reveal all aspects
of how strongly attention is deployed. For example,
longer dwell times do not necessarily index deeper
processing of the fixated material (Schad, Nuthmann, &
Engbert, 2012). Because pupil size may capture several
overlapping, yet independent, aspects of attention
(Strauch, Wang, Einhäuser, Van der Stigchel, & Naber,
2022), here we propose that pupil size may capture how
strongly attention is deployed during VWM encoding.

One promising pupillary signal that could capture
the degree of encoding is the pupil orienting response
to incoming stimuli. The pupil orienting response is
a constriction that starts around 200 to 300 ms and
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ends around 700 to 1200 ms after stimulus onset. The
constriction amplitude scales with stimulus relevance
(or salience; conspicuity) and has been described as a
marker for the depth of sensory processing (Binda &
Gamlin, 2017; Mathôt & Van der Stigchel, 2015; Naber,
Frässle, Rutishauser, & Einhäuser, 2013; Strauch et
al., 2022). The pupil light response, which coincides
with the orienting response, is indicative of the
encoding strength of differently bright stimuli (Blom,
Mathôt, Olivers, & Van der Stigchel, 2016; Zokaei,
Board, Manohar, & Nobre, 2019). However, stronger
attentional orienting should capture encoding strength
even regardless of brightness, as has been demonstrated
for long-term memory (Naber, Frässle, et al., 2013).
Another relevant factor beyond orienting is alerting,
which is also captured by pupillary dynamics in the
form of baseline pupil size that reflects tonic locus
coeruleus (LC) firing (Aston-Jones & Cohen, 2005;
Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010; Jepma
& Nieuwenhuis, 2011; Joshi, Li, Kalwani, & Gold,
2016; Naber &Murphy, 2020). Following the prominent
adaptive gain theory (Aston-Jones & Cohen, 2005),
the relationship between tonic LC firing (and therefore
baseline pupil size) and task performance follows
an inverted-U relationship. In this framework, very
low and very high tonic LC firing rates are indicative
of drowsiness and exploration/stress, respectively. In
contrast, moderate LC firing rate is linked to optimal
task performance. It is difficult to predict “where” any
data point is positioned along this inverted-U in cases
when participants do not necessarily get drowsy or
stressed during a task. Nevertheless, due to the link
between baseline pupil size and performance on tasks
that require attention (Aston-Jones & Cohen, 2005;
Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 2011),
we expected that baseline pupil size could be linked to
VWM encoding. More specifically, we expected that
smaller baseline pupil sizes accompany deeper VWM
encoding in relatively difficult tasks because participants
are likely on the right side of the inverted-U curve
(toward over-arousal). This prediction would reverse
in simpler tasks, as participants would be generally
under-aroused and thus on the left side of the curve.

To compare how dwell times and pupil signal
components predict how much information is encoded
into VWM, paradigms are needed that let participants
decide on how long and how intensely to encode
themselves rather than presenting to-be-encoded
items just once for a fixed amount of time (as in
Ballard, Hayhoe, & Pelz, 1995; Draschkow et al.,
2021; Melnik, Schüler, Rothkopf, & König, 2018;
Somai et al., 2020). One such paradigm is the copy
task, wherein participants encode a pattern of stimuli
and subsequently rebuild this pattern elsewhere. The
availability of to-be-copied items is often manipulated
in such tasks. When items remain available externally, it
is arguably beneficial to simply look at the information

again instead of internally storing it (O’Regan, 1992;
Risko & Gilbert, 2016; Van der Stigchel, 2020). Indeed,
accumulating evidence suggests that VWM is likely
used sparsely if task-relevant visual information
remains available in the external world (Ballard et
al., 1995; Draschkow et al., 2021; Melnik et al., 2018;
Sahakian, Gayet, Paffen, & Van der Stigchel, 2023;
Somai et al., 2020). Such paradigms thus provoke shifts
in encoding strategy between conditions. Somai et al.
(2020) employed a copy task in which the to-be-copied
visual information could be resampled from the
environment. The authors investigated whether
participants would opt to store information in VWM
or whether they would choose to resample external
information by making a saccade. To investigate
which factors drive resampling behavior, the cost to
sample from the external world was manipulated by
implementing a variable delay time that had to pass
until the external information could be (re-)accessed
(200-, 1500-, and 3000-ms delays). Participants sampled
external information more often when the cost (in delay
time) of sampling was low but shifted more toward
storing internally when sampling costs were increased.
Together, these studies argue for a continuous trade-off
between external sampling and internal storage that
characterizes natural VWM usage (Ballard et al., 1995;
Draschkow et al., 2021; Melnik et al., 2018; Somai et
al., 2020). However, VWM encoding depth was assessed
using only dwell times, which does not inform about all
aspects of how attention is deployed. Therefore, here
we explore novel pupillometric indicators of encoding
strength.

We reanalyzed data from Somai et al. (2020) with an
emphasis on pupillometry. These data were optimal
for the current analyses on the link between pupil
size and VWM encoding, as participants shifted their
encoding strategy between conditions. Based on the
depth of sensory processing account, we hypothesized
that stronger pupil orienting responses are linked to
deeper VWM encoding. In line with the adaptive gain
theory, small baseline pupil size was hypothesized to be
associated with encoding more information, as the copy
task is a relatively demanding task (i.e., remembering
and reproducing six items).

Methods

Procedure

In total 24 participants took part in the two
experiments reported in Somai et al. (2020). The
experiments were identical apart from the stimuli
that were used; colored shapes (see Figure 1) and
non-verbalizable shapes (Arnoult, 1956) were used
in Experiments 1 and 2, respectively. On every trial,
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Figure 1. Schematic overview of different phases within a single sampling event. Sampling events start whenever participants look at
the left side of the display (eye and yellow gradient indicate gaze). Whenever participants held their gaze position at the left side of
the screen for the entire delay duration (1500 and 3000 ms in the medium and long conditions, respectively), the model was
presented. Upon model onset, participants could encode information into visual working memory. Subsequently, participants built
the model in the response grid on the right using the mouse (see dashed arrow). After building, participants could start the next
sampling event. When all six items had been placed in the response grid, the trial ended (regardless of correct/incorrect placements).
(Adapted from Somai et al., 2020.)

participants had to copy a pattern of six stimuli
presented on the left side of the display. To copy
the pattern, participants dragged items using the
mouse to the response grid on the right side of
the display. Participants were free to look at the
to-be-copied pattern as often and as long as they
wanted. However, to introduce a cost associated
with sampling the to-be-copied pattern, a varying
time delay was introduced. In the short, medium,
and long delay conditions participants had to wait
200, 1500, or 3000 ms before they could sample the
to-be-copied information. Generally, longer delay
conditions led to less sampling and were accompanied
with more and longer encoding into VWM (Somai
et al., 2020). Participants completed 35 trials in each
condition.

Data processing

All data processing and analyses were performed
in Python 3.9.7 (Python Software Foundation,
Wilmington, DE) and R 4.0.3 (R Foundation for
Statistical Computing, Vienna, Austria). All data and
scripts necessary to perform the analyses here are openly
available at https://osf.io/ckty7/. Pupil size data were
analyzed in line with recommendations from Strauch
et al. (2022). Pupil size and gaze position data were
recorded from the left eye using an EyeLink 1000 with
a sample rate of 1000 Hz (SR Research, Mississauga,
ON, Canada). Only trials in which all items were placed
correctly were included in the analyses (11.37% of the
trials were excluded). Because dwell times were too
short to allow for reliable pupil size estimates in the
short condition, only trials from the medium and long
wait conditions were included in the current analyses
(see below).

Pupil size metrics and dwell time were computed per
sampling event using the following procedure. First,
a sampling event was defined whenever participants
looked at the left half of the display until the model
was presented (see Figure 1). Second, dwell time was
calculated as the time until gaze position shifted (back)
toward the right side of the display for at least 100
ms. Third, because behavioral data concerning item
placements per sampling event (and thus intermittent
placement accuracy) were unavailable in the current
data, we used build duration as a proxy for encoding
depth. For the current analysis, build duration was
calculated by determining the time participants
remained on the right side of the screen after dwell time
ended. Build durations ended whenever gaze position
shifted (back) toward the left side of the display for 100
ms consecutively or if the trial ended after building (i.e.,
whenever the sixth item was placed). In total, valid dwell
times and build durations could be calculated for 2778
sample events. Importantly, the number of correctly
placed items in the response grid for a given sampling
event strongly correlated with build duration, as we
verified with open data from Sahakian et al. (2023)
(ρ = 0.89, p < 0.001; see Supplementary Materials
for more details). It should be noted that, whenever
incorrect placements are also considered, build duration
is associated with incorrect placements and not with
correct placements. This means that build duration is
not a valid measure of encoding depth in every single
situation. Nevertheless, the correlation between correct
placements and build duration supports the notion that
longer build durations were strongly associated with
encoding more visual information in the current data,
in which no incorrect placements occurred.

For every sampling event we also determined baseline
pupil size and the amplitude of the pupil orienting
response. Baseline pupil size was calculated by using
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Figure 2. Overview of differences between the two delay conditions (medium = 1500 ms; long = 3000 ms). (A–C) Boxplots showing
the differences in dwell time, build duration, and baseline pupil size between conditions collapsed across both experiments. Black
dots represent mean values per participant. Lines are drawn to visualize within-subject differences. (D) Pupillary responses between
the two conditions collapsed across experiments. The light gray shadings indicate where pupil response components were selected.
In the first shading, the median pupil size was computed as a measure of baseline pupil size. The median pupil size in the second
shading was used to calculate the amplitude of the orienting constriction response. *p < 0.05, **p < 0.01, ***p < 0.001.

the median pupil size 100 ms before model onset (–100
to 0 ms) (Figure 2A). Before calculating orienting
amplitudes, pupil size data were subtractively baseline
corrected using baseline pupil sizes. Subsequently,
orienting response amplitudes were calculated by
calculating the median pupil size between 500 and 1000
ms after model onset. To ensure that our pupil size
estimates were not affected by gaze angle errors, only
sampling events during which participants looked at the
model grid (up to 2° deviation from the grid) for at least
1000 ms after model onset were considered (57.34%
of sample events included; M = 66.38, SD = 22.35
samples events per participant); this is also why the
short condition was omitted from the current analyses.
Note that, due to relatively short periods without eye
movements in the data, it was not feasible to analyze
an effort-related pupil dilation response because this
response takes 2 to 3 seconds to occur (Beatty, 1982;
Strauch et al., 2022).

Data analysis

For statistical analyses, linear mixed-effects (LME)
models were used with a significance threshold of
t > 1.96, corresponding to α = 0.05. Models were
selected using recommendations from Barr (2013),
methodological grounds, and Akaike information
criterion (AIC)-based selection. We modeled the
random slopes for the variable delay condition in every
LME model to limit type 1 errors (Barr, 2013).

First, we investigated differences among the delay
conditions in dwell time, build duration, baseline
pupil size, and orienting response amplitudes.
These models included both main effects of delay
Condition and Experiment, with an R formula
of Outcome ∼ Condition + Experiment + (1 +
Condition|Participant). Based on AIC selection for all
models, the interaction term between Condition and
Experiment was not included in these analyses.
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Next, we tested how the ocular metrics predicted
build duration on a sample-by-sample event basis. To
account for possible differences between experiments,
we added all interaction terms between Experiment
and the ocular metrics; AIC-based model selection
also indicated that including these terms significantly
improved the fit (see Supplementary Materials). We
also included Condition as a covariate in the model
to determine whether potential effects were driven
by the different variable delay conditions, with an
R formula of Build duration ∼ Baseline pupil size
x Experiment + Orienting response × Experiment
+ Dwell time × Experiment + Condition + (1 +
Condition|Participant). Whenever interaction terms
were found to be significant, these were explored further
with separate LME models per experiment, with an
R formula of Build duration ∼ Baseline pupil size +
Orienting response + Dwell time + Condition + (1 +
Condition|Participant).

Results

Orienting and dwell time reveal encoding
strategy

Somai et al. (2020) reported that participants shifted
strategies between the medium and long conditions.
More specifically, participants sampled the model
grid less often, but sampled longer when the cost
of accessing external information was higher (β =
1.64 ± 0.57, t = 2.88, p = 0.008) (Figure 2A). Here,
we extended this finding by also showing that build
durations were longer when sampling costs were high
(β = 0.33 ± 0.15, t = 2.09, p = 0.048) (Figure 2B).
Neither build duration nor dwell time differed between
experiments significantly (t < 0.55, p > 0.59). Together,
this reflected a shift toward deeper or more encoding
in VWM when time is at stake due to increased delays
during resampling efforts. Next, we investigated whether
the pupil orienting response and baseline pupil size
differed among conditions and were therefore linked to
shifts in encoding strategy (Figure 2).

Baseline pupil size did not differ between conditions
(β = 8.97 ± 35.49, t = 0.25, p = 0.800), implying that
the shift in strategy was not reflected in baseline arousal
levels (Figure 2C). However, baseline pupil size was
larger in the second experiment, which was likely due
to the darker stimulus material used in this experiment,
leading to dilation of the pupil (β = 1312.68 ± 214.87,
t = 6.11, p < 0.001). The pupil orienting constriction
response (Figure 2D) was more pronounced in the long
delay condition than in the medium delay condition
(β = 59.53 ± 10.79, t = 5.52, p < 0.001) and did not
differ significantly between experiments (β = 23.44 ±

28.38, t = 0.83, p = 0.417). Note that the initial (small)
dilation around ∼50 to 200 ms after model onset can
only be driven by factors occurring before model onset
because the pupil reacts to changes in visual input with
a latency of at least 200 ms. Control analyses in which
orienting responses were calculated by subtracting
the maximum pupil size 0 to 300 ms after cue onset
from the minimal pupil size in the 500- to 1000-ms
window show that this limited dilation did not drive
the difference in orienting response amplitudes between
conditions or the other results (analysis not reported).
Already within 500 to 1000 ms after model onset, up to
several seconds before the actual building commenced,
the pupil orienting response revealed a shift in strategy
between conditions, where the intensity of attention
was adjusted dynamically.

Pupil orienting, baseline pupil size, and dwell
time predict encoding depth across sample
events

In addition to the differences between conditions,
naturally, differences between trials—and over sampling
events—were apparent. Next, we asked whether
fluctuations in encoding depth (build duration) across
and within trials could be predicted from the preceding
pupil orienting response, baseline pupil size, and
dwell time. An LME model collapsed across data of
both experiments was fit to investigate this, with an
R formula of Build duration ∼ Baseline pupil size
× Experiment + Orienting response × Experiment
+ Dwell time × Experiment + Condition + (1 +
Condition|Participant).

The LME model showed that the pupil orienting
response (β = 0.003 ± 0.0001, t = 4.04, p < 0.001),
baseline pupil size (β = 0.0009 ± 0.0003, t = 2.53, p
= 0.014), and dwell time (β = 0.10 ± 0.01, t = 7.29,
p < 0.001) significantly predicted the subsequent
building duration (Figure 3). Notably, Condition did
not significantly predict build duration in this model,
meaning that these effects were not driven by the
differences in delay time (β = 0.04 ± 0.12, t = 0.34, p
= 0.736). These findings show that stronger orienting
responses predicted longer build durations. This
relatively fast (and often ignored) pupil response thus
revealed how much one will encode into VWM, which
is in line with the depth of sensory processing account
(Binda & Gamlin, 2017; Mathôt & Van der Stigchel,
2015; Strauch et al., 2022). For the first time, to the
best of our knowledge, we are reporting a physiological
marker (namely, the pupil orienting response) that
reveals changes in the depth of encoding during a
shift from external sampling to internal storing. Even
preceding the pupil orienting response, a relatively small
baseline pupil size significantly predicted longer build
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Figure 3. Ocular metrics predict encoding depth. (A) Pupil orienting amplitude, (B) baseline pupil size, and (C) dwell time predict build
duration. Transparent lines are linear regression fits to data per participant. Thick lines show the relationship between the ocular
metrics and build duration pooled over all trials (error bars reflect bootstrapped 95% confidence intervals). Transparent lines indicate
individual participants. Solid lines and dashed lines indicate Experiments 1 and 2, respectively. For visualization, robust z-scores are
plotted (non-transformed plots can be found in the Supplementary Materials). Robust z-scores were computed by subtracting the
median and subsequently dividing by the median absolute deviation for each variable per participant (see Rousseeuw & Hubert,
2011). *p < 0.05, ***p < 0.001.

durations, seconds before building even commences.
This finding is potentially compatible with the adaptive
gain theory (Aston-Jones & Cohen, 2005), wherein
tonic LC firing and thus baseline pupil size are linked
to task performance. When baseline pupil sizes were
relatively small, this approached the “peak” of the
inverted-U, whereas participants may have been highly
aroused whenever their pupils were relatively large
during baseline, leading to worse performance. Because
the copy task is a quite effortful task (i.e., remembering
and placing six items) (see Robison & Unsworth, 2019),
it is likely that the arousal levels of participants were
indeed positioned on this “right” side of the inverted-U
curve. Finally, in line with previous work, longer dwell
times were linked with storing more visual information
in VWM (Draschkow et al., 2021; Somai et al., 2020).
Together, these results show that ocular metrics reflect
not only where and how long attention is deployed but
also how strongly it is deployed, as well as the current
attentional state, and together these attentional aspects
determine how much is encoded into VWM.

Next, we examined the interaction terms to
determine possible differences between experiments
(see Figure 3). The link between dwell times and build
duration was even stronger in Experiment 2 than in
Experiment 1, as evidenced by the interaction term (β =
0.09 ± 0.03, t = 3.54, p < 0.001). Dwell time remained
a significant predictor in both experiments (Experiment
1: β = 0.10 ± 0.01, t = 6.67, p < 0.001; Experiment 2:
β = 0.19 ± 0.02, t = 9.83, p < 0.001). The interaction
between orienting and experiment was also significant
(β = 0.003 ± 0.0008, t = 3.33, p < 0.001), meaning
that orienting predicted building durations differently
well across experiments (Experiment 1: β = 0.003 ±

0.0008, t = 3.91, p < 0.001; Experiment 2: β = 0.0001
± 0.0003, t = 0.41, p = 0.683). Although not significant
for Experiment 2 in isolation, orienting amplitudes
did significantly predict build duration as a main
effect collapsed across both experiments, arguing for
a relationship between the two. Together, this argues
in favor of a predictive effect of the pupil orienting
response amplitude on build duration. The main
effect of experiment as well as the interaction between
baseline pupil size and experiment were not significant
(t < 1.3, p > 0.21), indicating that the predictive effect
of baseline pupil size on build duration did not differ
between experiments and that build duration in general
did not differ between experiments.

Pupillary dynamics predict encoding precision

The analyses described above show clear links
between pupillary dynamics and build duration, which
is a proxy for the number of encoded items. Baseline
pupil size and the pupil orienting response are thought
to reflect the depth of encoding and therefore not only
the number but also the precision of what is encoded
that should be captured by these pupillary components.
To address this directly, we reanalyzed data from Zhou,
Lorist, and Mathôt (2022). We first provide a summary
of the task and results from the original paper and
subsequently describe our two novel analyses.

Briefly, participants remembered prototypical or
non-prototypical colors (e.g., blue or between blue and
green) at differing set sizes (one, two, three, or four
colors) and ultimately reported the hue of a memorized
color on a color wheel. Zhou et al. (2022) showed an
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Figure 4. Pupil size reveals the precision of VWM encoding.
Error bars reflect the standard error of the mean. Horizontal
lines at the bottom indicate significant differences. Dark purple
and light purple reflect p < 0.01 and p < 0.05, respectively.

interaction between set size and prototypicality on
pupil size. More specifically, with increasing set sizes
participants relied more on categorical representations
for non-prototypical colors. Participants likely stored
categorical instead of continuous representations at
the highest set size to lower the effort necessary to
complete the task (at the cost of precision). Here, we
instead assessed whether baseline pupil size and the
pupil orienting response can predict the precision of
VWM encoding. To this end, we conducted two lines
of analysis. First, we investigated if and when precision
was reflected in the pupil. Second, we adopted a similar
approach as in the main analyses and tested whether
pupillary dynamics predict the precision of encoding
on a trial-by-trial basis.

To determine whether and if so when the pupil
captures the precision of VWM encoding, we analyzed
pupil size over time. If the pupil would capture how
precisely items are encoded into VWM, pupil size
should differ depending on how accurate participants
responded at the end of a trial. Trials (7267 in total)
were split into three precision groups: precise (≤15°
error), intermediate (>15 and ≤30° error), and
imprecise (>30° error).1 We predicted pupil size over
all timepoints (LME for every 10 ms) based on the
precision groups. Random slopes and fixed effects of
set size, prototypicality, and their interaction were
also added to the model to exclude the possibility
that these factors were driving potential pupil effects,
using an R formula of Pupil size ∼ Precision group
× Set size × Prototypicality + (1 + Set size ×
Prototypicality|Participant). Pupil size indeed reflected
the precision of the encoded material (p < 0.05,
480–1410 and 1470–1930 ms from stimulus onset)
(Figure 4). More specifically, smaller response errors
were associated with stronger orienting responses, as
the effect was strongest 600 to 1000 ms after stimulus

onset. We also observed the pattern reported in Zhou et
al. (2022). The full three-term interaction did not reach
significance at any of the timepoints, indicating that the
interaction between set size and prototypicality was not
modulated by precision (t <1.5, p > 0.14).

Second, because the pupil orienting response was
clearly associated with the precision of encoding,
we asked whether pupillary dynamics could capture
the depth of encoding on a trial-by-trial basis. To
this end, we tested whether baseline pupil size and
the pupil orienting response could idiosyncratically
predict the precision of the upcoming response on
a trial-by-trial basis. Based on the findings from the
main analyses, we expected that smaller baseline pupil
sizes and stronger pupil orienting responses predict
smaller response errors (i.e., more precise encoding).
Baseline pupil size and orienting response amplitudes
were computed as for the copy task data (median pupil
size between –100 and 0 ms and from 500 to 1000 ms
from stimulus onset, respectively). These pupil
outcomes were used to predict response error on a
trial-by-trial basis. We adopted a similar approach as in
the analysis over time, as here random slopes and fixed
effects of set size, prototypicality, and their interaction
were again included in the model, with an R formula
of Response error ∼ Baseline pupil size + Orienting
response + Set size × Prototypicality + (1 + Set size ×
Prototypicality|Participant). Higher set sizes strongly
predicted larger response errors (β = 5.78 ± 0.52, t
= 11.08, p < 0.001), whereas prototypicality and the
interaction term between set size and prototypicality did
not reach significance (t < 1.15, p > 0.25). Supporting
and extending our aforementioned findings, we found
that baseline pupil size (β = 0.002 ± 0.0008, t = 2.22,
p = 0.026) and the orienting response both predicted
VWM precision (β = 0.004 ± 0.0018, t = 2.21, p =
0.027) on a trial-by-trial basis. More specifically and in
line with our hypotheses, smaller baseline pupil sizes
and stronger orienting constrictions predicted smaller
response errors and thus more precise encoding into
VWM.

These reanalyses of the data from Zhou et al.
(2022) further support the idea that distinct aspects
of attention, as reflected in baseline pupil size and
the orienting response, predict the depth of VWM
encoding. We show that not only the quantity but also
the quality of VWM representations are revealed by
pupillary dynamics that underlie distinct aspects of
attention.

Discussion

Until now, VWM encoding depth has often been
measured using spatiotemporal properties of gaze,
such as gaze position and dwell time, which indicate
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where and how long people look (Ballard et al., 1995;
Draschkow et al., 2021; Melnik et al., 2018; Somai et
al., 2020). Yet, it has remained unclear how strongly
attention is deployed leading up to and during VWM
encoding. Here, we found pupillary dynamics in
reanalyzed data (Somai et al., 2020; Zhou et al., 2022)
to be linked to VWM encoding depth. More specifically,
not only dwell times on to-be-encoded items but also
the pupil orienting response and baseline pupil size
were predictive of how long people took to copy a
pattern of items from VWM, which reflects how much
information was encoded into VWM, even within
trials. Moreover, we show that not only the amount but
also the quality of the representations is reflected in
pupillary dynamics.

The pupil orienting response and baseline pupil size
are driven by distinct neural underpinnings (reviewed
in Strauch et al., 2022). The pupil orienting response
is controlled by a superior colliculus (SC)-centered
network, which includes the frontal eye fields and
anterior cingulate cortex (Strauch et al., 2022). In line
with this, microstimulation of SC in primates causes
(covert) attentional orienting (Müller, Philiastides, &
Newsome, 2005) and changes in pupil size (Wang &
Munoz, 2021). Thus, the current results imply that
stronger orienting to the to-be-copied stimuli through
SC enhances the depth of sensory processing, which
in turn may boost VWM encoding. Moreover, the
current findings show that not only the quantity but
also the quality of representations are reflected in the
orienting response. In contrast, baseline pupil size is
thought to reflect tonic LC firing (Gilzenrat et al.,
2010; Jepma & Nieuwenhuis, 2011; Joshi et al., 2016;
Naber & Murphy, 2020), which indexes the current
arousal state (Strauch et al., 2022). Compatible with the
adaptive gain theory (Aston-Jones & Cohen, 2005), we
observed that smaller baseline pupil size 100 ms prior to
model onset could predict how much was subsequently
encoded into VWM on a sample-by-sample basis.
This is line with our additional finding that smaller
baseline pupil size predicted more precise VWM reports
(also see Galeano-Keiner, Pakzad, Brod, & Bunge,
2023). However, as stated earlier, it is complicated to
determine “where” any given data point lies along
the inverted-U relationship between LC firing rate
and task performance. It is therefore possible that in
other situations opposite or quadratic relationships are
found. Given that baseline pupil size precedes encoding,
tonic attentional alerting may reflect how prepared one
is to start encoding.

Pupil size can inform about aspects of several,
if not all, cognitive processing steps of VWM use,
including encoding, maintenance and selection. Our
results show that baseline pupil size before encoding
already informs how much one will ultimately encode.
Previous work demonstrated that, if stimuli differ in
brightness, pupil size can reveal how strongly items are

encoded (Blom et al., 2016) by leveraging the following
phenomenon: The pupil constricts when (covertly)
attending bright stimuli and dilates when attending
dark stimuli (Binda, Pereverzeva, & Murray, 2014;
Hustá, Dalmaijer, Belopolsky, &Mathôt, 2019; Mathôt,
Linden, Grainger, & Vitu, 2013; Naber, Alvarez, &
Nakayama, 2013). Therefore, a stronger modulation
of the pupil light response to the brightness of a given
stimulus is linked to deeper encoding of said stimulus
(Blom et al., 2016). We add to this by showing that
the pupil orienting response shows how strongly one
deploys attention, which predicts how much and how
precisely one encodes more generally, even regardless of
brightness.

After encoding, during maintenance, pupil dilation
scales with the amount of information stored in (V)WM
(Beatty, 1982; Kahneman, 1973; Robison & Unsworth,
2019; Strauch et al., 2022). Recently, Robison and
Unsworth (2019) reported larger pupil dilations
whenever more items were subsequently correctly
answered in a VWM task (but this may not necessarily
extend to VWM precision; see Galeano-Keiner et al.,
2023).

We hypothesize that the pupil orienting response and
these later dilatory components reflect distinct aspects
of attention (Strauch et al., 2022). Although it is not
unlikely that these components are linked to another
to some degree, we posit that orienting reflects the
encoding and that the later dilation reveals the amount
of maintained information.

Because pupil dilation indicates how much is
stored, researchers also investigated whether the pupil
could reveal the content of information stored in
VWM. Initial attempts that tagged items with distinct
brightnesses showed that pupil size does not reveal the
overall brightness of retained information (Blom et al.,
2016). Although the overall brightness could not be
uncovered, pupillometric studies employing retro-cues
have investigated whether shifts of internal attention
can be tracked. In retro-cue paradigms, participants are
cued to internally attend a specific piece of information
maintained in VWM (i.e., during maintenance), which
shows a robust benefit on VWM task performance
(Souza & Oberauer, 2016; van Ede & Nobre, 2023).
Shifts of internal attention elicited by retro-cues to
bright stimuli constrict the pupil, whereas internally
attending dark stimuli cause pupil dilation (Hustá et
al., 2019; Zokaei et al., 2019). To summarize, pupil
size is a versatile marker of many cognitive processing
steps of VWM, reflecting encoding, maintenance, and
selection.

When can pupillary dynamics be more informative
about VWM encoding depth than dwell time? Although
dwell time predicted encoding depth more strongly
than pupil size dynamics in our analysis of the
data from Somai et al. (2020), this may not always
be the case. First, in situations where one’s mind
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wanders (i.e., blankly staring at the stimuli), pupil
size likely outperforms dwell time as a predictor of
encoding depth. Dwell time alone cannot capture
the disengagement of attention in such situations,
but pupillometry provides insights into the ongoing
cognitive processes (Unsworth & Robison, 2018).
Second, participants do not get the choice of how long
they can fixate to-be-encoded stimuli in many existing
VWM paradigms, as stimuli are often presented for
a limited and fixed time (Van der Stigchel, 2020), as
was the case in Zhou et al. (2022). In such cases, dwell
time cannot serve as a viable index of VWM encoding,
but the orienting response and baseline pupil size
could still capture how deeply information is encoded.
Third, pupillary dynamics are relatively early signals
of encoding depth. In contrast to dwell time, baseline
pupil size predicts encoding depth even before stimulus
presentation, and the pupil orienting response reveals
encoding depth already within ∼700 ms of stimulus
onset.

A potential limitation of the current study is that
a proxy (namely, build duration) is used for VWM
encoding depth. It could be argued that build duration
is linked to VWM encoding depth following a negative
relationship: More vivid VWM representations could
lead to shorter build durations because more vivid
representations may make copying the pattern easier.
However, a reanalysis of data from a highly similar
task (Sahakian et al., 2023) indicates that an increased
build duration is strongly linked to more correctly
placed items; this positive relationship was found
for all participants (see Supplementary Materials).
Furthermore, the predictive effects of baseline pupil size
and the pupil orienting response on VWM performance
were conceptually reproduced and extended in another
dataset (Zhou et al., 2022). Thus, build duration serves
as a viable index of VWM encoding depth in the current
study.

What determines how much one encodes into
VWM? In line with previous work (Ballard et al., 1995;
Draschkow et al., 2021; Melnik et al., 2018; Sahakian
et al., 2023; Somai et al., 2020), the availability of the
information in the external world drives this. Of course,
how much is encoded ultimately also depends on one’s
VWM capacity (Luck & Vogel, 2013). Nonetheless, this
does not tell the whole story. Our findings show that,
driven by separate aspects of attention, spatiotemporal
dynamics of gaze and pupil size jointly index how
much is ultimately encoded. We posit that how much
one encodes into VWM is the integrative outcome
of different aspects of attention: one’s alertness, how
strongly attention is deployed, and how long it is
deployed.

Keywords: visual working memory encoding,
pupillometry, orienting, alerting, precision, internal-
external memory trade-off
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