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A B S T R A C T   

Background: Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden linked 
to lung cancer. In Xuanwei, China, lung cancer rate for nonsmoking women is among the highest in the world 
and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from com-
bustion of smoky (bituminous) coal used for cooking and heating. Epigenetic age acceleration (EAA), a DNA 
methylation-based biomarker of aging, has been shown to be highly correlated with biological processes un-
derlying the susceptibility of age-related diseases. We aim to assess the association between HAP exposure and 
EAA. 
Methods: We analyzed data from 106 never-smoking women from Xuanwei, China. Information on fuel type was 
collected using a questionnaire, and validated exposure models were used to predict levels of 43 HAP constit-
uents. Exposure clusters were identified using hierarchical clustering. EAA was derived for five epigenetic clocks 
defined as the residuals resulting from regressing each clock on chronological age. We used generalized esti-
mating equations to test associations between exposure clusters derived from predicted levels of HAP exposure, 
ambient 5-methylchrysene (5-MC), a PAH previously found to be associated with risk of lung cancer, and EAA, 
while accounting for repeated-measurements and confounders. 
Results: We observed an increase in GrimAge EAA for clusters with 31 and 33 PAHs reflecting current (β = 0.77 y 
per standard deviation (SD) increase, 95 % CI:0.36,1.19) and childhood (β = 0.92 y per SD, 95 % CI:0.40,1.45) 
exposure, respectively. 5-MC (ng/m3-year) was found to be associated with GrimAge EAA for current (β = 0.15 y, 
95 % CI:0.05,0.25) and childhood (β = 0.30 y, 95 % CI:0.13,0.47) exposure. 
Conclusions: Our findings suggest that exposure to PAHs from indoor smoky coal combustion, particularly 5-MC, 
is associated with GrimAge EAA, a biomarker of mortality.   
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1. Introduction 

Household air pollution (HAP) is a major global health burden 
affecting about half of the world’s population (VOLUME 95 Household 
Use of Solid Fuels and High-temperature Frying IARC Monographs on 
the Evaluation of Carcinogenic Risks to Humans WORLD HEALTH OR-
GANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CAN-
CER). Individuals in low- and middle-income countries are exposed to 
HAP through incomplete combustion caused by domestic cooking and/ 
or heating with solid fuels (coal, biomass, wood)(Barone-Adesi, 2012; 
Lan et al., 2002; Sisti and Boffetta, 2012). It is estimated that over 450 
million individuals still use solid fuels in Mainland China(Effects Insti-
tute, 2020), and rural counties such as Xuanwei and Fuyuan experience 
some of the highest lung cancer incidence and mortality rates among 
never-smoking women(Barone-Adesi, 2012; Mumford, 1987; Chapman, 
1988). Individuals in Xuanwei and Fuyuan are exposed to hazardous 
levels of various toxic constituents, such as polycyclic aromatic hydro-
carbons (PAHs) from combustion of smoky (bituminous) coal used for 
cooking and heating in the home (Lan et al., 2002; Mumford, 1987; 
Downward, 2014). 

PAHs are organic compounds that are emitted from the combustion 
of fuels and are known for their carcinogenic and genotoxic character-
istics(Moorthy et al., 2015). We recently found evidence that cumulative 
exposure to PAHs, particularly 5-methylchrysene (5-MC), is strongly 
associated with increased risk of lung cancer in a comprehensive 
epidemiologic study of HAP constituents in Xuanwei(Vermeulen et al., 
2019). However, the mechanisms of HAP in the pathogenesis of lung 
cancer among never-smokers are unclear. 

Epigenetic changes can alter gene expression levels without chang-
ing the underlying DNA sequence. These changes include DNA 
methylation (DNAm) and have been shown to be an important pathway 
through which environmental factors, such as air pollutants, exert their 
effects(Alfano, 2018). Diseases such as lung cancer are often associated 
with epigenetic modifications(Weinhold, 2006; Baglietto, 2017; Fasa-
nelli, 2015), and exposure to environmental toxins may result in 
epigenetic changes, impacting gene expression and disease risk(Breton 
and Marutani, 2014). 

Aside from environmental exposures, aging is also considered a 
major risk factor for lung cancer risk, which may act through age-related 
decline in immune function(Derhovanessian et al., 2008); cellular 
senescence(Rodier and Campisi, 2011) and accumulation of DNA dam-
age from carcinogens(López-Otín et al., 2013). As the rate by which 
these changes occur varies across individuals, it is believed that chro-
nological age may not be the ideal marker to capture this variability. 
Epigenetic age acceleration (EAA) calculated from epigenetic clocks is a 
DNAm-based biomarker for aging that has been shown to be highly 
correlated with biological processes underlying the susceptibility to age- 
related diseases, such as lung cancer(Li et al., 2022; Dugué, 2021; Lev-
ine, 2015). 

We recently found that EAA calculated from the GrimAge clock, a 
strong biomarker of mortality, was associated with increased risk of lung 
cancer in a prospective cohort study of never-smoking women in 
Shanghai, China(Rahman et al.). Further, EAA clocks have also been 
correlated with environmental toxins, including PAHs(Li, 2018) and 
particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5)(Nwa-
naji-Enwerem, 2017). To further explore whether DNAm is influenced 
by indoor ambient air pollutants, we investigated the association of 
exposure to combustion emissions from solid fuel and its constituents 
with EAA among never-smoking women from a study in Xuanwei, 
China. 

2. Material and methods 

2.1. Study population and design 

The study population has been previously described in detail(Hu, 

2014; Wong, 2017). Briefly, in the Xuanwei Exposure Assessment Study, 
we collected data on household air pollutants and exposures that may be 
related to the combustion of solid fuels through cooking or heating in the 
home. The study enrolled a total of 163 healthy never smoking women 
between August 2008 and June 2009 from 30 villages across Xuanwei 
and Fuyuan counties in the Yunnan province. The following criteria 
were used to select five households in each village: 1) having a stove that 
utilized solid fuel; 2) the residence was>10-years-old; 3) household used 
the same equipment for cooking or heating for the last 5 years; and 4) 
household included a healthy never-smoking woman aged 20–80 years 
who was responsible for cooking. Two air measurements were taken 24 
h apart and whole blood samples were collected on the second day. 
Written informed consent was provided by all participants. This study 
was approved by the National Cancer Institute Special Studies Institu-
tional Review Board (#06CN092). 

2.2. Solid fuel use 

In-person interviews were conducted by two trained study staff and 
information on demographic, anthropometric and household charac-
teristics was collected. An activity questionnaire was used to record 
women’s household activity during the measurements. The question-
naire collected information on household stove and ventilation type, 
cooking activities, heating practices, type of coal mine that supplied 
household fuel and fuel usage. Fuel used at measurement was catego-
rized as smokeless coal, smoky coal, and wood and/or plant, and fuel 
used during the participant’s childhood was categorized as smokeless 
coal, smoky coal, wood, or mixed fuel (combination of coal, wood and 
plant material). 

2.3. Estimation of individual household air pollutant exposures 

Exposure assessment has been previously described in detail(Ver-
meulen et al., 2019; Hu, 2014; Downward, 2016; Seow, 2016; Rous-
seeuw, 1987). Briefly, measurements of PAHs, PM2.5, black carbon (BC), 
sulfur dioxide (SO2) and nitrogen dioxide (NO2) were collected over two 
sequential 24-hour periods, with about half of subjects visited in a sec-
ond season to allow for seasonal adjustments. PAHs were measured 
using personal and indoor measurements, and particulate matter was 
collected using a 37 mm Teflon filter. Self-reported information on stove 
use, fuel, and mine from which coal was sourced was collected for each 
participant. Supervised stepwise predictive linear mixed-effect models 
were used to predict the annual average exposure of each pollutant and 
applied to self-reported histories of stove and fuel use, treating village 
and individual subject as random effects. Variables used as fixed effects 
in the final predictive model included fuel usage, stove design, room 
volume and season in which measurements were conducted. For each 
model predicting the individual air pollutants, overall goodness of fit 
was determined through the Akaike information criterion (AIC), and the 
ratio of the variance of the predicted values over the variance of the 
observed values (R2) was calculated. The 43 imputed individual air 
pollutants and their corresponding R2 values are listed in Supplementary 
Table 1. 

2.4. Derivation of cluster prototypes 

To account for the strong correlation between individual pollutants, 
we derived exposure prototypes by clustering as previously described 
(Vermeulen et al., 2019). Briefly, a hierarchical cluster analysis identi-
fied clusters of the 43 individual air pollutants, for which we used 
standard Euclidean distances and the complete linkage method to 
determine the cluster sequence. The number of clusters exacted was 
based on the silhouette score(Aryee, 2014), where a larger number of 
clusters was favored to better resemble the individual pollutants 
belonging to each cluster. A cluster prototype score for each of the 
clusters was derived using the first component score coefficient of a 
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principal component analysis, and each score was mean centered and 
scaled. Clusters were derived for different exposure timepoints, 
including current (i.e., at measurement), childhood (i.e., age 0–18) and 
cumulative exposures (i.e., lifetime). Six cluster prototypes were 
generated for current pollutant exposure, including a cluster of 31 PAHs 
(PAH31), a cluster of BC and 6 PAHs (BC & PAH6), a cluster of PM2.5 and 
retene (PM2.5 & RET), as well as individual clusters for NO2, SO2 and 
Naptho(2,3,k)fluoranthene (NkF). Five cluster prototypes were gener-
ated for childhood exposure, including a cluster of 33 PAHs (PAH33), a 
cluster of PM2.5, RET, BC and 4 PAHs (PM2.5, RET, BC & PAH4), as well 
as individual clusters for NO2, SO2 and NkF. Lastly, six cluster pro-
totypes were generated for cumulative exposure, including a cluster of 
36 PAHs (PAH36), a cluster of BC, NO2 and PM2.5, (BC, NO2, & PM2.5), 
as well as individual clusters for dibenzo(a,l)pyrene (DlP), RET, NkF. A 
list of constituents included in each cluster is outlined in Supplementary 
Table 1. 

2.5. DNA extraction and methylation measurements 

Leukocyte genomic DNA was extracted from a sample of blood 
collected on the second visit. DNA was extracted from whole blood using 
standard procedures. Bisulfite-converted DNA samples were random-
ized across Infinium HumanMethylation450 BeadChip by Illumina ac-
cording to the manufacturer’s protocol (San Diego, CA, USA) and DNAm 
levels at > 485,000 cytosine-phosphoguanine (CpG) sites were quanti-
fied. IDAT files generated from Illumina were processed in R using the 
minfi package(Tian, 2017). We used the ChAMP pipeline(Fortin, 2014) 
for quality control using default parameters. We removed samples that 
performed poorly based on detection p-values < 0.01 or with intensities 
< 10.5. We checked for concordance between predicted and annotated 
sex. Lastly, we used functional normalization to remove technical vari-
ability(Horvath, 2013). 

2.6. Calculation of epigenetic aging biomarkers 

We calculated clocks and EAA using the Horvath online calculator 
(https://dnamage.genetics.ucla.edu/) for the following DNA methyl-
ation clocks: the Horvath Pan Tissue(Horvath, 2018), Horvath Skin- 
Blood(Hannum, 2013), Hannum Blood(Levine, 2018), PhenoAge(Lu, 
2019), and GrimAge(Horvath, 2016) clocks. We derived the outcome of 
interest, EAA, as the residuals resulting from regressing each clock on 
the chronological age of each participant, where a positive EAA indi-
cated that the estimated epigenetic age is higher than the chronological 
age, suggesting increased biological aging. We also tested Intrinsic EAA 
(IEAA) and Extrinsic EAA (EEAA), representing intrinsic cellular aging 
and age-related changes in blood cell counts derived from the Horvath 
Pan Tissue and Hannum Blood clocks, respectively(R: a language and 
environment for statistical computing). 

2.7. Statistical analysis 

We assessed the association between categorical fuel types at each 
exposure time point and EAA biomarkers using generalized estimating 
equations (GEE) accounting for repeated measurements. We set 
smokeless coal use as the reference category for fuel type used at mea-
surement and fuel used at childhood. We further used GEE to assess the 
association between each exposure cluster, 5-methylchrysene (5-MC) 
(an individual PAH constituent that has been found to have the strongest 
association with lung cancer risk in previous studies in Xuanwei inde-
pendent of other PAHs (Vermeulen et al., 2019)) and each EAA 
biomarker. All models were adjusted for chronological age, county 
(Xuanwei or Fuyuan), body mass index (BMI; kg/m2), education (no 
education, attended elementary school, graduated elementary school, 
attended middle school or higher), and socioeconomic status (SES; no 
luxury items and at least one luxury item such as a bicycle, sewing 
machine, radio, watch, phone, motorcycle, TV set or tractor). We ran 

additional GEE models assessing the association between exposure 
clusters and EAA clocks, while also mutually adjusting for all clusters 
within the exposure period. To separate the effect of early life exposure 
from smoky coal use on EAA, we derived an adulthood exposure (age ≥
18) to 5-MC by subtracting the childhood exposure from the cumulative 
exposure to 5-MC and including both exposures in a model to obtain 
their independent effect on EAA clocks. 

Sensitivity analyses were conducted using linear regression by 
restricting analyses to measurements at initial visit only. We conducted 
additional sensitivity analyses to further adjust all models for exposure 
to environmental tobacco smoke (ETS), as well as for season. Informa-
tion on exposure to ETS was collected by asking participants if anyone in 
their smoked tobacco in their household before and after marriage. We 
categorized early life exposure and ever exposure to ETS if a family 
member smoked before marriage, and if a family member smoked before 
and/or after marriage, respectively. Season was determined based on 
the date the measurement was conducted and categorized into spring, 
summer, fall and winter. P-values < 0.05 were considered statistically 
significant. All analyses were performed using the R statistical software 
(Gao, 2022) (version 4.2.2). 

3. Results 

3.1. Study population 

The characteristics of the study population are shown in Table 1. A 
total of 106 subjects had available self-reported fuel type, imputed 

Table 1 
Characteristics of the Xuanwei Exposure Assessment study participants with 
available methylation data (N = 106).   

Na (%) 

Age (years), Mean (SD) 56.2 (15.0) 
BMI (kg/m2), Mean (SD) 22.0 (3.46) 
County  

Xuanwei 53 (50.0 %) 
Fuyuan 53 (50.0 %) 

Education  
No school 72 (67.9 %) 
Attended elementary school 17 (16.0 %) 
Graduated elementary school 13 (12.3 %) 
Attended middle school or higher 4 (3.8 %) 

Socioeconomic status  
No luxury items 53 (50.0 %) 
At least 1 luxury item 53 (50.0 %) 

Exposure to environmental tobacco smoke  
No 5 (4.7 %) 
Yes 99 (93.4 %) 
Missing 2 (1.9 %) 

Fuel type at measurementb  

Smokeless coal 13 (12.3 %) 
Smoky coal 82 (77.4 %) 
Wood and/or plant 11 (10.4 %) 

Childhood fuel type  
Smokeless coal 4 (3.8 %) 
Smoky coal 43 (40.6 %) 
Wood 9 (8.5 %) 
Mixed fuelc 50 (47.2 %) 

Current exposure to 5-MC, Mean (SD) 8.13 (4.14) 
Childhood exposure to 5-MC, Mean (SD) 5.14 (2.81) 
Cumulative exposure to 5-MC, Mean (SD) 266 (2.81) 

Abbreviations: SD, standard deviation; BMI, body mass index; 5-MC, 5- 
methylchrysene. 

a A total of 106 subjects with available methylation data, out of which 23 have 
repeated measurements. 

b Values represent fuel type at first visit. 
c Mixed fuel types include unspecified coal, plant, beehive, and a mix of fuel 

types (e.g., wood and smokeless coal). 
d104 participants had data imputed for 5-MC, out of which 22 had repeated 

measurements. Units are per ng/m3-year. 
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individual air pollutants, and methylation data, 23 of which had 
repeated measurements. The mean chronological age was 56.3 (stan-
dard deviation (SD) = 15.0) years and the mean BMI was 22.0 (SD =
3.46) kg/m2. Half of the women resided in Xuanwei county (50.0 %), 
half had at least 1 luxury item (50.0 %), and most women did not 
graduate from elementary school (83.9 %) and were exposed to ETS 
(93.4 %). The majority of women used smoky coal at measurement 
(77.4 %) and almost half used smoky coal during childhood (40.6 %). 

We observed strong pairwise correlations (r > 0.92) among all esti-
mates of epigenetic age assessed in this study, as well as between all 
aging markers and chronological age (r > 0.93), suggesting these bio-
markers perform well in our study population (Supplementary Fig. 1A). 
Both GrimAge and the Skin-Blood clock had the highest correlation (r =
0.96) with chronological age and all epigenetic aging markers were 
strongly correlated with each other (r > 0.93). Further, we observed low 
to moderate pairwise correlations (r < 0.59) among all the residual es-
timates of epigenetic age calculated in relation to chronological age 
(Supplementary Fig. 1B). 

3.2. Associations between categorical fuel type and EAA clocks 

We found greater GrimAge EAA comparing smoky coal use to 
smokeless coal use for current (β = 1.84 years, (y), 95 % confidence 
interval (CI): 0.59,3.09, P-value = 0.004) and childhood (β = 4.14 y, 95 
% CI: 1.63, 6.64, P-value = 0.001) exposure (Table 2). No other mea-
sures of EAA were associated with categorical fuel type exposure (P- 
value > 0.05). 

3.3. Associations between exposure clusters, 5-methylchrysene and EAA 
clocks 

To disentangle which PAHs are driving the association between 
smoky coal and EAA, we tested exposure clusters. In models adjusted for 
demographics characteristics only, we observed an increasing relation-
ship between current exposure clusters PAH31 (β = 0.77 y per standard 
deviation (SD) change, 95 % CI: 0.36, 1.19, P-value = 3E− 04), BC & 
PAH6 (β = 0.72 y per SD, 95 % CI: 0.21, 1.23, P-value = 0.006) and 
GrimAge EAA (Fig. 1A, Supplementary Table 2). Similarly, we observed 
an increasing relationship between childhood exposure clusters PAH33 
(β = 0.92 y per SD, 95 % CI: 0.40, 1.45, P-value = 0.001) and PM2.5, 
RET & PAH5 (β = 0.72 y per SD, 95 % CI: 0.27, 1.18, P-value = 0.002), 
cumulative exposure clusters PAH36 (β = 1.12 y per SD, 95 % CI: 0.63, 
1.60, P-value = 6E− 06), BC, NO2 & PM2.5, (β = 0.92 y per SD, 95 % CI: 
0.24, 1.60, P-value = 0.008), NkF (β = 0.62 y per SD, 95 % CI: 0.15, 
1.10, P-value = 0.01) with GrimAge EAA (Fig. 1B & C, Supplementary 
Table 2). Childhood exposure cluster PAH33 was also associated with 
increase in PhenoAge EAA (β = 1.01 y per SD, 95 % CI: 0.19,1.82, P- 
value = 0.015). We found a similar pattern in analyses assessing the 
association between exposure clusters and EAA clocks mutually 
adjusting for clusters within the same exposure time (Supplementary 
Table 3). 

We observed an increasing monotonic relationship between 5-MC 
and GrimAge EAA for current (β = 0.15 y, 95 % CI: 0.05, 0.25, P- 
value = 0.003), childhood (β = 0.30 y, 95 % CI: 0.13, 0.47, P-value =
4.7 × 10− 4) and cumulative exposure (β = 0.006 y, 95 % CI: 
0.003,0.009, P-value = 2.9 × 10− 4) (Fig. 2, Supplementary Table 2). In 
analyses separating the effect of childhood and adulthood exposure to 5- 
MC, we observed an association between childhood 5-MC and GrimAge 
EAA (β = 0.02 y, 95 % CI: 0.004,0.03, P-value = 0.01), while the as-
sociation between adulthood exposure to 5-MC and GrimAge EAA was 
null (β = − 0.001 y, 95 % CI: − 0.009,0.006, P-value = 0.73). Linear 
regression analyses restricting to initial measurements, as well as ana-
lyses further adjusting for season, early life exposure and ever exposure 
to ETS yielded similar results (Supplementary Table 4). Ta
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4. Discussion 

To investigate the relationship between coal combustion emissions, 
their constituents, and epigenetic aging, we conducted analyses in an 
epidemiologic study with detailed exposure assessment among never- 
smoking women in rural China. We observed an association between 
current, childhood and cumulative PAH clusters, and greater GrimAge 
EAA, a strong biomarker for mortality. Further, we found that exposure 
to 5-MC, an individual PAH constituent selected a priori, was positively 
associated with GrimAge EAA. While we had limited sample size, we 
also observed an association between current use of smoky coal as well 
as childhood exposure, with greater GrimAge. To our knowledge, this is 

the first study to find a link between indoor coal combustion emission 
constituents and epigenetic aging. 

The GrimAge clock includes data from 1,030 CpGs that are associ-
ated with health-related plasma proteins, sex and chronological age, as 
well as smoking pack-years, which may be particularly relevant to un-
derstanding the GrimAge associations in our analyses (Cardenas, 2022). 
GrimAge has been shown to be a predictor of lifespan, including for 
never-smokers(Jones, 2012), as well as to be associated with time to any 
cancer(Oberdoerffer and Sinclair, 2007). Notably, we recently found 
that the GrimAge clock was associated with increased risk of lung cancer 
in a prospective cohort study among never-smoking women in China 
(Rahman et al.). Further, greater GrimAge EAA is strongly associated 

Fig. 1. Associations between clusters for current (A), childhood (B) and cumulative (C) exposures derived from imputed individual air pollutants and epigenetic age 
acceleration. Estimates represent change in years of epigenetic age acceleration due to increase in 1 standard deviation for each cluster and were derived using 
generalized estimating equations adjusting for age, county, body mass index, education, and socioeconomic status. Estimate values are available in Supplementary 
Table 2. 

Fig. 2. Associations between current (A), childhood (B) and cumulative (C) exposure to 5-methylchrysene and epigenetic age acceleration. Estimates represent 
change in years of epigenetic age acceleration and were derived using generalized estimating equations adjusting for age, county, body mass index, education, and 
socioeconomic status. Estimate values are available in Supplementary Table 2. 
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with air pollutants such as PM2.5(Horvath, 2013) and smoking(Fraga 
and Esteller, 2007),which is not surprising given its incorporation of 
pack years in the training data. Interestingly, this biomarker might 
indeed reflect PAH exposure and risk among never smoking participants 
as highlighted in our study. 

There has been a growing body of evidence showing that DNAm, an 
epigenetic modification that plays a major role in gene regulation and 
genomic stability (Christensen, 2009) is closely related to aging(Esteller, 
2008; Schadt, 2009; Ruiz-Hernandez, 2015; Wong et al., 2019; Wong 
et al., 2021) and is associated with various age-related diseases, such as 
cancer(Blechter, 2023). Given that DNAm may be influenced by envi-
ronmental factors, epigenetic age may reflect environmentally induced 
effects on aging- a major risk factor for cancer (Schadt, 2009). Exposure 
to air pollutants, an environmental risk factor for lung cancer, generates 
oxidative stress resulting from the release of reactive oxygen species and 
induces chemical damage to DNA, which may alter DNAm and expres-
sion patterns, leading to adverse health effects (Ruiz-Hernandez, 2015). 
Our results suggest that this highly accurate clock, GrimAge, is sensitive 
to ambient exposures, including during childhood, a sensitive develop-
mental window. 

We previously found that lifetime smoky coal users had a nearly 100- 
fold increased risk of lung cancer mortality compared with lifetime 
smokeless coal users(Barone-Adesi, 2012), and that the increased risk 
was especially pronounced in early life exposure (Wong et al., 2019). 
Further, to identify the specific components of smoky coal that poten-
tially drive this excess risk, we previously identified a cluster of PAHs 
related to lung cancer risk, with 5-MC having the strongest association 
(Vermeulen et al., 2019). Subsequently, we found that coal combustion 
emissions, and particularly 5-MC, are associated with urinary mutage-
nicity (Wong et al., 2021) and markers of genomic instability, such as 
mitochondrial DNA(Wong et al., 2017) and Alu retroelement copy 
number (Blechter, 2023)). Similarly, in our current study we observed 
that women using smoky coal and exposed to PAHs, in particularly 5- 
MC, have accelerated epigenetic aging. Notably, we found that early 
life use of smoky coal had a greater effect on EAA compared to adult use 
of smoky coal, and that the effect of childhood exposure to 5-MC on 
current measure of EAA is independent of more recent exposure. This 
finding is consistent with our case-control (Vermeulen et al., 2019; 
Wong et al., 2019) and cohort studies (Portengen et al., 2023), which 
showed that exposure to cumulative 5-MC before the age of 18 was 
associated with a higher lung cancer risk compared to adulthood 
exposure. Taken together with a previous study linking exposure to air 
pollutants with epigenetic age,(Li, 2018) our findings suggest that 
exposure to PAHs, in particular during childhood, may be a contributor 
to accelerated aging. 

Our study has a number of strengths. First, the subjects in the study 
had comprehensive personal air monitoring, which we used to predict 
exposure using robust statistical methods, limiting the potential for 
exposure misclassification. Additionally, the study population was only 
composed of never smoking Chinese women, which removes potential 
confounding due to sex, race/ethnicity, and cigarette smoking. This 
study also has limitations. The sample size for certain comparisons was 
limited (e.g., smoky vs. smokeless coal), which reduced our statistical 
power to detect modest to small associations. However, given the potent 
carcinogenicity of smoky coal, out a priori expectation is that we would 
potentially see strong biologic effects for biomarkers relevant to cancer 
etiology and mortality, such as GrimAge. Further, there may be residual 
confounding from other sources of air pollution. However, we were able 
to conduct sensitivity analyses incorporating ETS, one of the major po-
tential confounders, and found that the associations between HAP and 
GrimAge EAA remain. 

In summary, we observed greater GrimAge EAA for never-smoking 
women exposed to PAHs from using smoky coal for cooking and heat-
ing in the home. To our knowledge, this is among the first epidemiologic 
studies to suggest that exposure to indoor air pollutants may be associ-
ated with accelerated epigenetic aging. The mechanisms underlying the 

associations between HAP exposure with EAA, as well as the relation-
ship between HAP-related EAA and downstream health outcomes, 
warrant further investigation. 
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