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The thermal evolution of isothermal neutron stars is studied with matter both in the hadronic
phase as well as in the mixed phase of hadronic matter and strange quark matter. In our models,
the dominant early-stage cooling process is neutrino emission via the direct Urca process. As a
consequence, the cooling curves fall too fast compared to observations. However, when superfluidity
is included, the cooling of the neutron stars is significantly slowed down. Furthermore, we find that
the cooling curves are not very sensitive to the precise details of the mixing between the hadronic
phase and the quark phase and also of the pairing that leads to superfluidity.
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I. INTRODUCTION

Neutron stars are natural laboratories for physics un-
der extreme conditions with their extremely high densi-
ties, powerful energy emission, large magnetic fields, and
millisecond rotation periods. At the densities near the
surface of such a star, atoms break apart into nuclei and
electrons. At higher densities, the electrons neutralize
with the protons in the nuclei to form neutrons. These
stars thus consist of a large fraction of neutrons and are
supported from gravitational collapse by the neutron de-
generacy pressure, from which the neutron star derives
its name.
However, at high densities the existence of more exotic

particles is expected. These particles are generated by
processes which produce strangeness, such as

n+ n→ n+ Λ0 +K0, (1)

where n is the neutron, Λ0 the Lambda hyperon, and
K0 the strange meson. The strange meson can decay
via various weak processes and the final products, usu-
ally photons and neutrinos, leak out of the star. There-
fore, the reverse process is reduced and some net amount
of strangeness survives in the dense core of the star [1].
It is generally believed that these strangeness carrying
particles, called hyperons, can exist in the center of neu-
tron stars. They coexist with the nucleons as well as the
leptons e− and µ−. The interactions between them are
dominated by the complicated nuclear force whose car-
riers are the mesons. We refer to such a system as the
hadronic phase of matter. The system with only nucle-
ons and leptons, i.e., without hyperons, is referred to as
the nuclear phase of matter.
At even higher densities, as a consequence of asymp-

totic freedom, quarks become deconfined from the
hadrons. Therefore, strange quark matter, which con-
sists of u, d and s quarks, may also exist in the neutron
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FIG. 1: The schematic QCD phase diagram as a function of
temperature T and baryon chemical potential µB . The solid
lines denote first- and second-order phase transitions, whereas
the dashed lines denote smooth crossovers. According to the
typical temperature of a proto-neutron star of T ∼ 1010 K
∼ 1 MeV, the state of matter in the neutron star should be
close to the bottom line, as indicated by the grey thick line.

star core. There may also be a phase-separated mix-
ture of strange quark matter and hadronic matter in a
certain range of densities [2], which we call the mixed
phase. At present, there is still a lot unknown about
the deconfinement phase transition of quarks. The con-
temporary knowledge on matter at high densities and
temperatures is shown by the schematic QCD phase di-
agram in Fig. 1. Since the baryon chemical potential µB

is a monotonously increasing function from the surface
to the center of the neutron star, the µB axis can be
mapped to the stellar radius and the different phases in
the neutron star are explicitly indicated.
Because of the limited knowledge on the state of mat-

ter at high densities and the complexity of the interac-
tions between the particles, many effective models for
matter inside neutron stars have been constructed. In
general, these models supply an equation of state, which
determines the particle composition of the neutron star.
The observation of neutron stars, in turn, constrain these
models. For example, if an equation of state is too soft
it is incapable of supporting a very large stellar mass,
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such that some models become disfavored whenever the
data on the heaviest neutron star is updated. The stel-
lar mass is not the only constraint on the models. The
cooling of neutron stars can be studied from their lu-
minosity as a function of time. A proto-neutron star is
born with a typical temperature larger than 1010 K, after
which it mainly loses its energy by two processes, namely
by neutrino emission everywhere inside the star and by
photon radiation at the surface. In the early stages of
the thermal evolution of the star, neutrino emission is
the dominant cooling effect after which photon radiation
ultimately takes over [3]. Since neutrino emission occurs
everywhere in the neutron star, it provides a probe for
studying the state of matter inside the star.
The most efficient neutrino-emission process is called

the direct Urca (DUrca) process

n→ p+ e− + ν̄e, p+ e− → n+ νe. (2)

This process is only possible if the proton fraction is more
than a certain threshold in order for it to satisfy energy
and momentum conservation [4]. Historically, the proton
abundance in neutron stars was underestimated. In that
scenario, it is reasonable to take into account also the
modified Urca (MUrca) process, where a bystander helps
the momentum conservation, for example

n+ n→ p+ n+ e− + ν̄e, p+ n+ e− → n+ n+ νe,

n+ p→ p+ p+ e− + ν̄e, p+ p+ e− → n+ p+ νe. (3)

Some other processes can have a neutrino emissivity
which is smaller or comparable to the modified Urca pro-
cess, such as neutrino bremsstrahlung and plasmon decay
[3]. However, all of them are negligible whenever the di-
rect Urca channel is open. In the hadronic phase, the
direct Urca processes are quite rich and can be summa-
rized as

b1 → b2 + l− + ν̄l, b2 + l− → b1 + νl, (4)

where b1 and b2 denote two different baryons and l− rep-
resents one of the leptons, e− or µ−.
For strange quark matter, the direct Urca processes

are

d→ u+ l− + ν̄l, u+ l− → d+ νl,

s→ u+ l− + ν̄l, u+ l− → s+ νl, (5)

which are simply the direct Urca processes of the baryons
at the quark level. Inside the neutron star, there is no
threshold for the direct Urca process in quark matter,
since the Fermi momenta of the two quarks and lepton
can always satisfy momentum conservation. As men-
tioned, the neutrino emissivity depends strongly on the
type of matter contributing to the process, such that the
thermal evolution of a star directly probes its composi-
tion. The main goal of this paper is to study the cooling
of neutron stars with different types of equations of state
and try to constrain them by comparing with observa-
tional data.

A large amount of research on the cooling process of
neutron stars has been carried out in the last several
decades, with a strong focus on the nuclear phase of
matter. To the best of our knowledge, a unifying model
covering the low-density nuclear phase to the deconfined
quark phase, consistent with the QCD phase diagram,
has been less thoroughly explored. The strange quark
star composed of strange matter, either with or without
the nuclear crust, has been considered in some papers
[5, 6]. However, the cooling behavior of neutron stars
containing also all hyperons and possibly also a mixed
phase of strange quark matter and hadronic matter, has
not been extensively studied. Two possible reasons for
this can be given. First, the hadronic and mixed equa-
tions of state are rather soft and are continuously being
challenged by new data on heavy neutron stars, such as
PSR J1903+0327 which has M = 1.67±0.01 M⊙ [7] and
PSR J1614−2230 which even has M = 1.97 ± 0.04 M⊙

[8]. Second, the existence of a mixed phase is being ques-
tioned in view of screening and surface effects [9]. With
respect to the first concern, we note that most of the ob-
served neutron star masses still lie below the maximum
mass a hadronic or mixed equation of state can allow for.
According to Ref. [10], most nearby young neutron stars
[11] have masses no bigger than 1.4 M⊙ [12]. Therefore,
at least for the study of the thermal evolution of these
stars, the hadronic or mixed phase can still be of great
importance. In fact, because of the uncertainties in the
interaction between particles at extremely high density,
it is hard to exactly determine the equation of state at
high density. Although the equations of state used in this
paper cannot support neutron stars as massive as those
reported above, we can still use them for a discussion on
medium-mass neutron stars with more complicated com-
positions. As for the stability of the mixed phase, the
arguments are still indecisive. For example, many de-
tails of the surface tension, which strongly influences the
stability calculation, are still uncertain. Although it is
expected that screening and surface effects diminish the
mixed-phase regime, it is far from certain that its exis-
tence can be excluded [13]. The mixed phase can in par-
ticular have significant effects on the cooling behavior,
especially for the heat transport inside the star. How-
ever, we show below that its effect will be less important
after the star has become isothermal, when the thermal
evolution is determined by the heat capacity and neu-
trino emissivity integrated over the whole volume, and
the inner thermal conductivity no longer plays a role.

The temperature of a neutron star is generally much
smaller than the typical Fermi energy as a consequence
of the very high densities in the star. Therefore, super-
fluidity may play an important role. According to BCS
theory, fermions can form Cooper pairs at low tempera-
tures via an attractive interaction and thereby lower the
energy of the system. The resulting pairs, which obey
Bose statistics, can form a Bose-Einstein condensate and
the system becomes superfluid. Pair formation changes
the single-particle dispersion around the Fermi surface
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and consequently the heat capacity and neutrino emis-
sivity will be influenced. We find that, without superflu-
idity, the cooling of neutron stars is too fast compared
with observations. However, by including the effects of
superfluidity we obtain a more realistic cooling behavior.
The quark phase is usually referred to as an exotic

phase of extremely dense matter, in contrast to the nu-
clear phase or the hadronic phase. Other exotic phases
have also been proposed, among which the pion and kaon
condensates have attracted much attention [14, 15]. How-
ever, the existence of such phases inside the neutron star
is still an open question. On the one hand, with such con-
densates, the equation of state is further softened and
thus the corresponding maximum star mass is reduced
[16], which makes such phases less favored when com-
pared to the observational data of massive stars, as men-
tioned above. On the other hand, for the cooling process,
it was reported that a meson condensate can increase the
neutrino emissivity over the typical modified Urca emis-
sivity by several orders of magnitude [3], but it is still
much less efficient than the direct Urca process. Since in
our calculation the direct Urca process is always present,
such enhancement from the meson condensate has a neg-
ligible effect. Besides, the kaon condensation may even
reduce the pressure and cause the star to collapse into
a black hole [15]. Therefore, considering all the above
arguments, we do not include such meson condensates in
this paper.
The paper is organized as follows, we first introduce

in Sec. II our theoretical framework which includes the
relativistic stellar structure, the unified mean-field model
describing the state of matter inside the star, and the
thermal evolution equations. In Sec. III, we then present
the numerical results for the cooling curves of neutron
stars with the nuclear, hadronic, and mixed equations of
state. Due to the efficiency of the direct Urca process the
cooling is seen to be too fast compared to observations.
Therefore superfluidity is included in Sec. IV and, as a
consequence, the cooling is slowed down and we find a
much better agreement with observations.

II. THEORETICAL FRAMEWORK

At the high densities of importance to neutron stars
the neutrons, protons, and electrons can be considered
to be highly degenerate. In particular, the typical Fermi
temperature of the nucleons is about 1012 K while the
temperature of a proto-neutron star is only 1010 K. This
provides a great theoretical advantage since it makes it
possible to decouple the calculation of the stellar struc-
ture, the nuclear model, and the thermal evolution of the
star. In other words, the thermal evolution of the star
depends on the stellar structure, which in turn is con-
structed from the nuclear model. The nuclear model will
be solved in the zero-temperature limit to give the equa-
tion of state. The stellar structure is then obtained from
Einstein’s equations using this equation of state.

Although many neutron stars have fast rotation rates
and strong magnetic fields, due to the complexity and
richness of these phenomenon they are beyond our
present discussion. In fact, the effect of rotation should
be quite small for most of the neutron stars except for
millisecond pulsars. Therefore, Einstein’s equations are
solved for static stars without magnetic fields. Further-
more, the star interior is approximated by a perfect fluid,
i.e., it is hydrostatic, which is valid as long as the energy
transported by heat conduction is negligible compared
to the total energy. Subsequently, to discuss the thermal
evolution, some properties of the stellar matter, such as
the heat capacities, conductivities, and emissivities, can
be obtained by considering a perturbation of the Fermi
surfaces of the various particles. In the following, we
deal with these aspects of our theoretical framework sep-
arately.

A. The general relativistic profile of a compact star

The space-time metric for a non-rotating, spherically
symmetric star can be written as

ds2 = e2Φ(r)c2dt2 − e2λ(r)dr2 − r2(dθ2 + sin2 θdφ2), (6)

where Φ(r) is the metric function related to the gravi-
tational redshift, exp [−2λ(r)] = 1 − 2Gm(r)/c2r with
m(r) =

∫ r

0 4πr′2ρ(r′)dr′/c2 the gravitational mass en-
closed within the sphere of radius r, G is the gravitational
constant, and c is the speed of light. As a consequence
of the above metric, Einstein’s equations for the case of
a non-rotating, hydrostatic, and spherically symmetric
star reduce to the Tolman-Oppenheimer-Volkoff (TOV)
equations, namely

dΦ(r)

dr
= − 1

ρ(r) + p(r)

dp(r)

dr
, (7)

dp(r)

dr
= − [ρ(r) + p(r)]G[m(r) + 4πr3p(r)/c2]

c2r2
[

1− 2Gm(r)
c2r

] , (8)

where p(r) and ρ(r) are the pressure and energy density
at radius r, respectively. Given an equation of state p(ρ),
the TOV equations can be numerically integrated to pro-
vide the structure of the star. The integration starts at
r = 0 with a given pressure p(0) = pc until p(R) = 0 is
reached, which defines the radius R of the star. Outside
the star, r > R, the metric reduces to the Schwarzschild
form, exp [2Φ(r)] = exp [−2λ(r)] = 1 − 2GM/c2r, where
M = m(R) is the total gravitational mass of the star.
Note that with the help of a local Lorenz transformation
we are always able to apply a locally inertial coordinate
system [17] such that the calculation of the equation of
state is performed in a homogeneously flat background.
Nevertheless, the TOV equations take into account the
effects of general relativity on the structure of the star.
However, to calculate this structure we need to supply a
realistic equation of state for the matter inside a neutron
star.
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B. Effective model for matter in neutron stars

To obtain an equation of state for stellar matter, we
apply an effective nuclear model which includes all rel-
evant kinds of baryons. The interactions between the
baryons are mediated by three types of effective meson
fields, namely the scalar meson σ, the vector meson ωµ

and the isovector meson ~ρµ. The scalar field is coupled
to the derivatives of the baryon field as shown in the
following Lagrangian density [2]:

L =
∑

b

[(

1 +
gσbσ

mbc2

)

ψ̄b

(

i~cγµ∂
µ − gωbγµω

µ

−1

2
gρbγµ~τ · ~ρµ

)

ψb −mbc
2ψ̄bψb

]

+
~∂µσ∂

µσ

2c3

− m2
σσ

2

2~c
− ~ωµνω

µν

4c3
+
m2

ωωµω
µ

2~c
− ~~ρµν~ρ

µν

4c3

+
m2

ρ~ρµ~ρ
µ

2~c
+
∑

l

ψ̄l(i~cγµ∂
µ −mlc

2)ψl, (9)

where c∂0 = ∂/∂t, the summation over b and l is over
all contributing baryon fields ψb and lepton fields ψl,
and in the meson kinetic terms ωµν ≡ ∂µων − ∂νωµ and
~ρµν ≡ ∂µ~ρν −∂ν~ρµ are the antisymmetric field strengths.
The derivative coupling of the σ field was first intro-
duced by Zimanyi and Moszkowski [18] to remove the
problem of a too small or even negative reduced baryon
mass (commonly referred to as the effective mass, how-
ever, this name is used in this paper only for the effective
fermion mass on the Fermi surface) at high density in the
standard Walecka model [19].

This model can be solved within the mean-field ap-
proximation. In this approximation all the meson fields
are replaced by their ground-state expectation values,
which are constants in space-time and their spatial com-
ponents are zero because the system is assumed to be
homogeneous and isotropic. Also the charged compo-
nents of the isospin vector ρ+ and ρ−, whose sources are
the off-diagonal currents of the baryon fields, are zero.
Therefore, only the three constant fields σ, ω0 and ρ03
survive in the Euler-Lagrange equations. In the follow-
ing, we simply denote the last two as ω and ρ. Further-
more, the constant scalar field σ can be absorbed into the
baryon field and the reduced mass by a rescaling, namely

Ψb =
√

1 + gσbσ
mbc2

ψb and m̃b(σ) = mb/(1 +
gσbσ
mbc2

). Notice

that m̃b is positive definite and only approaches zero as
σ → ∞.

In the mean-field approximation the Lagrangian gives

rise to the following field equations:

[

i~cγµ∂µ − gωbγ0ω − 1

2
gρbγ0τ3ρ− m̃bc

2

]

Ψb = 0, (10)

∑

b

gσb〈Ψ̄bΨb〉
(

1 + gσbσ
mbc2

)2 − m2
σσ

~c
= 0, (11)

∑

b

gωb〈Ψ†
bΨb〉 −

m2
ωω

~c
= 0, (12)

∑

b

gρb
1

2
〈Ψ†

bτ3Ψb〉 −
m2

ρρ

~c
= 0, (13)

where τ3/2 gives the expectation value of the third com-
ponent of the baryon isospin I3b. The equation of motion
of the baryons gives the following energy eigenvalue

µb = ǫb = gωbω + gρbI3bρ+
√

~2c2k2b + m̃2
bc

4. (14)

From the above it is clear that the baryon b only exists
when µb − (gωbω + gρbI3bρ) > m̃bc

2. The equation of
motion of the leptons are simply the free Dirac equations
and are not listed here. Thus, the leptons obey the simple
relations of a free relativistic Fermi gas:

nl = fl
k3l
6π2

, µl = ǫl =
√

~2c2k2l +m2
l c

4. (15)

For the expectation value of the baryon field we have

〈Ψ̄bΨb〉 =
fb
2π2

∫ kb

0

m̃bc
2k2dk

√

~2c2k2 + m̃2
bc

4

=
fb
2π2

m̃bc

2~3

[

~kb

√

~2k2b + m̃2
bc

2

−m̃2
bc

2 log

(

~kb
m̃bc

+

√

1 +
~2k2b
m̃2

bc
2

)]

, (16)

and

〈Ψ†
bΨb〉 = nb = fb

k3b
6π2

. (17)

In the above equations fi = 2Ji + 1 is the particle de-
generacy, while ki and ǫi are the Fermi momentum and
Fermi energy, respectively.
Since the whole star is considered to be in equilibrium,

the various processes, such as the direct Urca process
in Eq. (2) and those involving the hyperons in Eq. (1),
impose relations between the chemical potentials of the
particles. During these processes the baryon number and
electric charge are conserved, which gives rise to the two
chemical potentials µB and µQ for baryon number and
electric charge, respectively. The chemical potential for
an arbitrary particle with baryon number Bi and charge
Qi, such as a baryon, lepton or quark, can be written as
µi = BiµB+QiµQ. The particle data for all the fermions
used in this paper are listed in Table. I.
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TABLE I: Particle Data [20]. Here, M is the particle mass,
B is the baryon number, J is the spin, I3 is the 3-component
of the isospin, and Q is the charge.

particle M/MeV B J I3 Q/e

p 938.27 1 1/2 1/2 +1

n 939.57 1 1/2 −1/2 0

Λ0 1115.7 1 1/2 0 0

Σ+ 1189.4 1 1/2 1 +1

Σ0 1192.6 1 1/2 0 0

Σ− 1197.4 1 1/2 −1 −1

Baryon ∆++ 1232 1 3/2 +3/2 +2

∆+ 1232 1 3/2 +1/2 +1

∆0 1232 1 3/2 −1/2 0

∆− 1232 1 3/2 −3/2 −1

Ξ0 1315 1 1/2 +1/2 0

Ξ− 1322 1 1/2 −1/2 −1

Ω− 1672 1 3/2 0 −1

e− 0.511 0 1/2 0 −1
Lepton

µ− 105.7 0 1/2 0 −1

u 2.4 1/3 1/2 +1/2 +2/3

Quark d 4.9 1/3 1/2 −1/2 −1/3

s 105 1/3 1/2 0 −1/3

The coupling constants gσb, gωb and gρb for nucleons
can be fitted with data of the interactions at densities
near the nuclear saturation point. However, for hyper-
ons the values are not known. Here the coupling con-
stants are simply chosen to be equal among the differ-
ent baryons [2]. Their values are (gσ/mσ)

2 = 7.487 fm2,
(gω/mω)

2 = 2.615 fm2 and (gρ/mρ)
2 = 4.774 fm2. No-

tice that the ratio of the coupling constant and the cor-
responding meson mass is enough to solve this model,
because we can always rescale the meson fields with their
masses, so the meson mass will not appear in Eqs. (10-
13).

Given the chemical potentials µB and µQ as the in-
put, together with the neutrality condition

∑

i niQi = 0,
Eqs. (10-13) form a set of self-consistent nonlinear equa-
tions which can be solved numerically. With the Fermi
momenta ki of the particles as the output, we can calcu-
late the energy density and the pressure of the hadronic

matter as:

ρH =
∑

b

fbc

16π2~3

[

~kb

√

~2k2b + m̃2
bc

2(2~2k2b + m̃2
bc

2)

−m̃4
bc

4 log

(

~kb
m̃bc

+

√

1 +
~2k2b
m̃2

bc
2

)]

+
1

2~c
(m2

σσ
2 +m2

ωω
2 +m2

ρρ
2)

+
∑

l

flc

16π2~3

[

~kl

√

~2k2l +m2
l c

2(2~2k2l +m2
l c

2)

−m4
l c

4 log

(

~kl
mlc

+

√

1 +
~2k2l
m2

l c
2

)]

, (18)

pH =
∑

b

fbc

48π2~3

[

~kb

√

~2k2b + m̃2
bc

2(2~2k2b − 3m̃2
bc

2)

+3m̃4
bc

4 log

(

~kb
m̃bc

+

√

1 +
~2k2b
m̃2

bc
2

)]

− 1

2~c
(m2

σσ
2 −m2

ωω
2 −m2

ρρ
2)

+
∑

l

flc

48π2~3

[

~kl

√

~2k2l +m2
l c

2(2~2k2l − 3m2
l c

2)

+3m4
l c

4 log

(

~kl
mlc

+

√

1 +
~2k2l
m2

l c
2

)]

. (19)

The relation between the pressure p and the energy den-
sity ρ gives the equation of state, which is shown in Fig. 2,
and is subsequently used in the TOV equations to get
the stellar structure. The particle densities as a func-
tion of baryon density are shown in Fig. 3. Fig. 4 gives
the particle composition inside the maximum mass star
with the hadronic equation of state (M = 1.523 M⊙,
R = 9.72 km). Remember that the model is used to cal-
culate the equation of state for the whole range of the
density, however, this description may not be appropri-
ate near the star surface, i.e., the crust. Nevertheless, the
outer crust only affects low mass stars significantly, while
we are mainly concerned with maximum mass stars. Fur-
thermore, in view of the cooling behavior, the outer crust
has negligible neutrino emissivity compared to the direct
Urca process in the core.
Compared to the hadronic phase, the quark phase is

more easily described. Quark matter is treated as a free
Fermi gas, whereby we assume that asymptotic freedom
has taken effect at the very high densities in the center
of the star. Thus Eq. (15) is also valid for quarks, where
the lepton chemical potential µl is substituted with the
quark chemical potential µq and the degeneracy becomes
fq = 3× (2Jq +1) = 6 because of the extra color degrees
of freedom. The fact that the quark phase has a different
vacuum than the hadronic phase, which has a nonzero
expectation value of the gluon field, can be taken into
account by the so-called bag model. This model adds a
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FIG. 2: The equation of state of the various matter phases.
The difference only appears at high density as is shown more
clearly in the inset, where the dots on the curves indicate the
central densities and pressures of the corresponding maximum
mass stars.
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tron star with the hadronic equation of state.

constant shift called the bag constant Bc to the pressure
and energy density of the quarks, such that

ρq =
∑

q

fq
16cπ2~3

[

~kq

√

~2k2q +m2
qc

2(2~2k2q +m2
qc

2)

−m4
qc

4 log

(

~kq
mqc

+

√

1 +
~2k2q
m2

qc
2

)]

+
∑

l

fl
16cπ2~3

[

~kl

√

~2k2l +m2
l c

2(2~2k2l +m2
l c

2)

−m4
l c

4 log

(

~kl
mlc

+

√

1 +
~2k2l
m2

l c
2

)]

+Bc, (20)

pq =
∑

q

fq
48cπ2~3

[

~kq

√

~2k2q +m2
qc

2(2~2k2q − 3m2
qc

2)

+3m4
qc

4 log

(

~kq
mqc

+

√

1 +
~2k2q
m2

qc
2

)]

+
∑

l

fl
48cπ2~3

[

~kl

√

~2k2l +m2
l c

2(2~2k2l − 3m2
l c

2)

+3m4
l c

4 log

(

~kl
mlc

+

√

1 +
~2k2l
m2

l c
2

)]

−Bc, (21)

where the leptons still contribute because the unequal
masses of the u, d and s quarks result in unequal densities
of these flavors, such that even in the pure quark phase
charge neutrality cannot be satisfied without leptons.
As discussed in the introduction, there could also be a

mixed phase between the hadronic phase and the quark
phase. These two phases are taken to be in equilibrium,
i.e., the two phases have the same temperature (both set
to zero here), pressure, and chemical potentials. Charge
neutrality then determines the volume fraction of these
two phases. For the three possible phases (hadronic,
quark, and mixed) the system will be in the one with the
highest pressure, or equivalently, the lowest grand po-
tential, which determines the phase transition behavior.
According to Eq. (21), the bag constant determines the
scale at which deconfinement sets in. In other words, the
larger the bag constant, the later the quark phase sets in
with increasing density. Throughout this paper the bag
constant is taken to be Bc = 230 MeV/fm3 unless indi-
cated specifically. In Fig. 5 it is shown how the phase
transition takes place between the two phases. Similar to
Fig. 3 for the hadronic phase, the various particle densi-
ties for the mixed phase are shown in Fig. 6 as a function
of baryon density. Fig. 7 shows the particle composition
inside the maximum mass star with the mixed equation
of state (M = 1.479 M⊙, R = 9.81 km).

C. Thermal evolution equations

The equations governing the thermal evolution of a
spherically symmetric star, given by the metric in Eq.
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FIG. 5: The pressure surface of the hadronic phase (dark
gray) and the quark phase (light gray). The thick solid lines
are the neutrality curves in each phase. The thick dashed
curve is the intersection of the two pressure surfaces and shows
when the two phases are in equilibrium. The arrows indicate
how p and µQ change with increasing µB .
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FIG. 6: The particle densities ni/nB versus baryon density
nB for the mixed phase case. The densities of the quarks are
expressed in terms of their baryon densities instead of their
number densities.

(6), are [21]:

cV
∂(TeΦ)

∂t
= − e−λ

4πr2
∂(Le2Φ)

∂r
− qνe

2Φ − qγe
2Φ, (22)

κ
∂(TeΦ)

∂r
= −Le

λ+Φ

4πr2
, (23)

where cV is the specific heat capacity at constant volume,
κ is the thermal conductivity, qν and qγ are the neutrino
and photon emissivity, respectively. The photon emissiv-
ity qγ is only nonzero on the surface r = R. It is con-

venient to define the redshifted temperature T̃ = TeΦ

inside the star. Similarly, Le2Φ represents the redshifted
luminosity corresponding to the heat current. In order to
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FIG. 7: The particle baryon densities inside the maximum
mass neutron star with the mixed equation of state. Note
that the quarks have baryon number 1/3.

compare with observations, the photon luminosity is of
great importance. Here it is assumed to obey the black
body radiation law Lγ = 4πR2qγ = 4πσR2T 4

s , where

σ = 5.67 × 10−5 erg/cm2K4s is the Stefan-Boltzmann
constant and Ts is the surface temperature. According
to general relativity, an observer at infinity will measure
the gravitationally red-shifted temperature and luminos-
ity. The observational quantities are thus T∞ = Tse

Φ(R)

and L∞ = Lγe
2Φ(R). As is generally accepted, a very

thin layer of the outer crust of the neutron star will act
as a thermal insulator causing the temperature at the sur-
face to be much lower than inside the star. The relation
between the surface temperature and the inner tempera-
ture depends on the chemical composition of this envelop.
We will simply locate such a layer at the surface, neglect-
ing its thickness, and adopt the T∞-T relation given by
Potekhin et al. [22], as shown in Fig. 8, and set T to be
the inside temperature at r = R. Note that the surface
temperature Ts introduced above is the outside temper-
ature at r = R.

The parameters cV , κ, qν and qγ need to be determined
to solve the thermal evolution equations, Eqs. (22) and
(23). The specific heat cV can simply be obtained by
summing up all the contributions of the different fermions
in the model. In the low-temperature approximation,
Fermi-liquid theory gives

cV i =
m∗

i ki
3~2

k2BT, (24)

where kB is Boltzmann’s constant, m∗
i = ~ki/vi is

the effective mass on the Fermi surface, and vi =
dǫi/(~dk)|k=ki

is the Fermi velocity of quasi-particle i.
For leptons the effective mass is easily obtained since
they are described as a free Fermi gas, i.e., m∗

l =
√

~2k2l /c
2 +m2

l = µl/c
2. Similarly for quarks, m∗

q =

µq/c
2. For baryons the effective mass follows from the
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FIG. 8: The T∞-T relation for different numbers of light el-
ements parameterized by η = g214∆Ml/M , where ∆Ml is the
mass of the light elements in the envelop and g14 is the sur-
face gravity in unit of 1014 cm/s2 [22], the different curves
correspond to log η = −∞, −16, −14, −12, −10, −8, −6 and
0 from bottom to top, respectively. These results are for the
maximum mass neutron star with the hadronic equation of
state, where g14 = 2.918.

dispersion relation in Eq. (14)

vb =
dǫb(k)

~dk

∣

∣

∣

∣

k=kb

=
~kb

√

~2k2b/c
2 + m̃2

b

, (25)

such that m∗
b =

√

~2k2b/c
2 + m̃2

b . The effect of interac-
tions is, in the mean-field approximation, only present in
the reduced mass m̃b of the baryons.

The general expression for the neutrino emissivity has
the form qνi = CiT

s, where Ci and s are different con-
stants for each kind of process. For the direct Urca pro-
cess we have s = 6 and for the modified Urca process
s = 8. The difference in the exponents shows the ineffi-
ciency of the modified Urca process since the temperature
T of a neutron star is much smaller than the typical Fermi
temperature TF . The neutrino emissivities for the vari-
ous processes are summarized in Ref. [3]. For the general
baryon direct Urca process, cf. Eq. (4), the emissivity is

qν12l ≈ 1.207× 1025
µlm

∗
b1m

∗
b2

(1 MeV)m2
n

R12T
6
9Θ12l erg/cm

3s,

(26)
where T9 is the temperature in units of 109 K, Θ12l is 1
only if the Fermi momenta of the two baryons b1, b2 and
the lepton l can form a triangle, otherwise Θ12l = 0. The
coefficients R12 vary depending on the baryons involved
in the process. In our mean-field model the maximum
mass star contains massive hyperons up to Ξ, such that
all possible direct Urca processes given in Ref. [23] need
to be included, as listed in Table II. For the quark direct

TABLE II: The coefficients R12 for different direct Urca pro-
cesses [23], denoted by the baryons involved in each process.

np Λ0p Σ−n Σ−Λ0 Σ−Σ0 Ξ−Λ0 Ξ−Σ0 Ξ0Σ+ Ξ−Ξ0

1 0.0394 0.0125 0.2055 0.6052 0.0175 0.0282 0.0564 0.2218

Urca emissivities, we refer to Ref. [24]:

qνudl ≈ 4.773× 1018
~
2c2[(ku + kl)

2 − k2d]µd

1 MeV3 T 6
9 erg/cm3s,

qνusl ≈ 2.552× 1017
~
2c2[(ku + kl)

2 − k2s ]µs

1 MeV3 T 6
9 erg/cm3s,

(27)

where the efficiency of the strange quark channel is re-
duced because it changes strangeness. Since the direct
Urca channels are open, it is not necessary to consider
other neutrino-emission processes.
In the present model, the thermal conductivity κ can-

not be easily obtained since it strongly depends on the
interactions between the particles in the complicated
hadronic phase. For the mixed case, the interface be-
tween the phases may introduce even more uncertainty.
Therefore, the thermal relaxation period inside the star
is not considered here and the calculation simply starts
when the star has become isothermal, as indicated in the
introduction. Because of this simplification the inter-
esting early stage behavior of the cooling cannot be dis-
cussed. This disadvantage may also be one of the reasons
why such hadronic models are not extensively studied.
However, the typical thermal relaxation time is usually
less than a century and most of the available observa-
tional data is of the later stages, i.e., after the star has
become isothermal, such that the results obtained after
the relaxation period has ended are still useful. Conse-
quently, the star will be treated as an isothermal object
with a constant temperature T̃ and the equations are
rather simplified. Instead of two coupled partial differ-
ential equations in Eqs. (22) and (23), we have now only
one ordinary differential equation:

CV
dT̃

dt
= −Qν − L∞, (28)

where the capital letters represent the integrated param-
eters over the volume of the star, namely

CV = 4πT̃
∑

i

∫ R

0

c̄V i(r)e
λ(r)r2

eΦ(r)
dr, (29)

Qν = 4πT̃ s
∑

i

∫ R

0

q̄νi(r)e
λ(r)r2

e(s−2)Φ(r)
dr, (30)

where the T -dependent parts are taken outside of the
radial integral and the temperature-independent prefac-
tors of cV i and qνi are denoted with a bar. The factors
of eΦ(r) in the denominators are a consequence of the
construction of the isothermal temperature T̃ . Note that
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the isothermal temperature does not take into account
the temperature decrease near the surface of the star,
which occurs in a very thin layer close to the surface.
The total heat capacity and the neutrino emissivities

for both the direct and modified Urca processes as a func-
tion of the radial coordinate are shown in Figs. 9 and
10 for the case of a maximum mass neutron star with
the hadronic and mixed equations of state, respectively.
Here “total” means summed over all particles which con-
tribute, but not integrated over the star volume. The
quantities were obtained at T = 109 K, but the values
at different temperatures can be obtained directly from
the temperature dependence of cV and qν . The discon-
tinuities in the emissivity are due to the step functions
in the expressions for the emissivities. These step func-
tions are a consequence of the low-temperature approx-
imation, which does not take into account any further
momentum fluctuations around the Fermi surfaces. Also
qMUrca is calculated only for the nucleon processes shown
in Eq. (3) with the following emissivity [3]:

qνMn ≈ 1.882× 1019
m∗3

n m
∗
p~

2c2kpkl

(1 MeV)µlm3
nmp

T 8
9 erg/cm3s,

qνMp ≈
(

m∗
p

m∗
n

)2
(3kp + kl − kn)

2

8kpkl
ΘMpqνMn, (31)

where the subscriptMn orMpmeans the process is mod-
ified by a bystander neutron n or proton p, and ΘMp is
1 only if 3kp+kl > kn as required by momentum conser-
vation in the Mp process. The modified Urca processes
are only calculated when the nucleon direct Urca pro-
cess is forbidden, since the formulae are only valid in this
case. The small region of overlap where both qDUrca and
qMUrca are nonzero is due to the different thresholds for
the direct Urca processes with electrons e− and muons
µ−.

III. NUMERICAL RESULT

In this section the three different equations of state for
the hadronic matter, the mixed phase of hadronic and
quark matter, and nuclear matter are compared. Since
the maximum masses are not very large for the last two
cases, we concentrate on the star with the maximum al-
lowable mass for each equation of state. The initial tem-
perature is always set as T̃ = 109 K at t = 0, which
corresponds to the time at which the isothermal condi-
tion is reached. As mentioned previously, the thermal re-
laxation period is not included in our calculation, which
is about several decades according to calculations with
nuclear matter [3]. The results are plotted in a loga-
rithmic time scale, such that our results can be shown
directly with most of the observational data even though
the data include the thermal relaxation era of the neutron
stars, that is negligible compared to the age of the stars.
However, this makes it hard to draw a comparison with
the recent observation of the cooling of the Cassiopeia A
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FIG. 9: The total heat capacity (cV ) and the neutrino emis-
sivities of the direct Urca (qDUrca) and modified Urca (qMUrca)
processes inside the neutron star with the hadronic equation
of state at T = 109 K. Here, cV is in units of 1021 erg/cm3K,
qDUrca is in units of 1027 erg/cm3K, and qMUrca is in units of
1019 erg/cm3K.
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FIG. 10: The same as in Fig. 9 but now for the mixed equation
of state.

neutron star [25], which provides direct evidence for the
cooling process. This neutron star is too young and is
believed to have become isothermal quite recently, such
that the thermal relaxation period is not negligible.
In order to avoid confusion, our results always show

cooling curves starting at t = 1 yr, when the result has
become not very sensitive to the initial conditions. In
fact, the effect of the initial temperature is limited to the
very beginning. The higher the initial temperature is,
the faster the dependence dies away, which can be seen
clearly from the asymptotic temperature dependence of
the neutrino-emission dominated era

T̃ =

[

(s− 2)Q0

C0
t+ T̃ (0)2−s

]
1

2−s

, (32)

where C0 and Q0 are the constant coefficients of the T̃ -
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dependent factors in Eqs. (29) and (30). This asymptotic
solution can be easily obtained by dropping the photon
radiation term in Eq. (28) and keeping only the leading
neutrino-emission process with the smallest exponent s.
Note that the exponent s is never smaller than 6 for any of
the neutrino-emission processes. It is quite clear that the
late-time behavior of the neutrino-emission dominated
era is thus completely determined by the coefficients of
the heat capacity and the neutrino emissivity and not by
the initial condition T̃ (0).

For the hadronic equation of state, Fig. 11 shows the
evolution of the temperatures T̃ and T∞, where it can
be seen that the cooling process can be divided into
two stages, namely the neutrino-emission dominated and
photo-radiation dominated era. The two eras can be
clearly seen from the energy loss due to the different pro-
cesses as shown in Fig. 12, where the switch from neutrino
emission to photon radiation occurs at t ≈ 3× 104 yr. In
Fig. 12 the energy emission due to the modified Urca pro-
cesses is also shown demonstratively by considering only
the processes involving the nucleons in Eq. (3). This, of
course, underestimates the energy loss due to the modi-
fied Urca processes, however, the magnitude is expected
to be of the same order. The energy loss by these pro-
cesses is seen to be less than 10−9 of the total energy
loss, such that the modified Urca processes are always
negligible in the present calculation. In Figs. 11 and 12
the T∞-T relation is used with η = 10−10. It is found
that different values of η only slightly change the cooling
process, as shown in Fig. 13, where two groups of cool-
ing curves with extremely large and almost vanishing η
are compared. The difference is that, for the neutrino-
emission dominated era, T∞ can differ by about a factor
of 2 but the inner temperature is almost not influenced.
With less massive elements in the envelop, i.e., smaller η,
the turning point into a photon-radiation dominated era
is a little sharper and the final temperatures are a little
lower. In any case, these effects are not very significant
and can hardly be distinguished with the present accu-
racy of observational data. Without loss of generality,
the value η = 10−10 will be used in this section. Here
we should also point out that the calculation cannot be
carried out after T̃ is smaller than 104 K, because then
the T∞-T relation given in Ref. [22] is no longer valid.

The thermal evolution of the neutron star with the
mixed equation of state is shown in Fig. 14, which is
similar to the purely hadronic case. The straight lines
represent the asymptotic behavior, which are solved us-
ing Eq. (28) by neglecting Qγ or Qν for the neutrino-
emission dominated or photon-radiation dominated era,
respectively. For example, in the neutrino-emission dom-
inated era, for the hadronic equation of state the tem-
peratures scale with time as T̃ ∼ 1.6× 109 (t/yr)−1/4K,
T∞ ∼ 1.1 × 107 (t/yr)−0.602/4K, where the power 0.602
comes from the asymptotic approximation for the T∞-
T relation at low temperature, T∞ ∝ T 0.602. For the
mixed phase, the temperature scalings are just slightly
higher: T̃ ∼ 1.77 × 109 (t/yr)−1/4K, T∞ ∼ 1.13 ×
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FIG. 11: The temperature evolution of the neutron star with
the hadronic equation of state. The solid curve represents
T̃ while the dashed curve represents T∞, with the dotted
straight lines indicating the asymptotic behavior.
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FIG. 12: The energy lost by different processes in the neutron
star with the hadronic equation of state, where the solid curve
is the total energy loss rate, the dashed curve is the energy
loss due to direct Urca neutrino emission, the dotted curve is
due to modified Urca neutrino emission, and the dot-dashed
curve is due to photon radiation.

107 (t/yr)−0.602/4K. This is due to the fact that the ther-
mal parameters, after being integrated over the whole
star, are not quite different for the two cases even though
the stars have different structure and mass. For ex-
ample, for the hadronic case we have CV = 3.331 ×
1039T̃9 erg/K and Qν = 1.227 × 1047(T̃9)

6 erg/s, while

for the mixed phase CV = 2.839 × 1039T̃9 erg/K and

Qν = 7.280× 1046(T̃9)
6 erg/s. To demonstrate the effect

of the mixed phase, the same curves are shown in Fig. 15
with a smaller bag constant ofBc = 170 MeV/fm3, where
we see that it causes a slightly higher temperature. As
pointed out earlier, a smaller bag constant causes the
deconfined phase of quarks to appear at lower densities,
such that the volume of the mixed phase is increased.
In this case we find CV = 2.156 × 1039T̃9 erg/K and
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FIG. 13: The temperature evolution of the neutron star with
the hadronic equation of state with different T∞-T relation.
The solid curves correspond to η = 1 while the dashed curves
correspond to η = 10−20. The upper group is T̃ and the lower
group is T∞.
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FIG. 14: The same as in Fig. 11 but with the mixed equation
of state.

Qν = 2.590 × 1046(T̃9)
6 erg/s. Nevertheless, the total

effect on the cooling process is not drastically changed.
According to these results, we expect that even if the
mixed phase is reduced because of screening and surface
effects, the cooling behavior is not changed considerably.

For the nuclear equation of state, the maximum mass is
1.719 M⊙ with R = 10.04 km and its thermal evolution
is shown in Fig. 16. To summarize, the luminosity for the
three types of equations of state are plotted in Fig. 17,
where a comparison with observational data is also made.
In all three cases the cooling is too fast compared with
the data. The star with the nuclear equation of state
cools a little faster, since the direct Urca processes with
hyperons in the hadronic phase and the mixed phase are
not as efficient as the nucleon direct Urca process [23].
However, the difference is quite small such that it might
be hard to distinguish these different equations of state
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FIG. 15: The same as in Fig. 14 but with Bc = 170MeV/fm3 .
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FIG. 16: The same as in Fig. 11 but with the nuclear equation
of state.

simply by their thermal evolution after the isothermal
condition is reached.

IV. EFFECT OF SUPERFLUIDITY

From the above results, we can see that our neutron
stars cool too fast because the direct Urca process is open
for all the three types of equations of state. An expla-
nation could be that the neutrino emissivity is overesti-
mated by neglecting the possibility of superfluidity. As
pointed out in the introduction, it is generally believed
that superfluidity appears inside neutron stars due to the
attractive part of the nuclear force, for both the nucle-
ons and the hyperons. Due to the presence of an energy
gap ∆, associated with the binding energy of the Cooper
pairs, the number of excitations near the Fermi surface
are suppressed by a factor of exp (−∆/kBT ) when the
temperature is smaller than a certain critical tempera-
ture Tc. Therefore, pairing reduces the heat capacity
and the neutrino emissivity significantly when the star
cools down to temperatures below Tc, thus the cooling
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FIG. 17: The luminosity of neutron stars with different equa-
tions of state, with solid, dashed, and dotted curves repre-
senting the hadronic, the mixed, and the nuclear equation of
state, respectively. The observational data are from Ref. [26],
with the numbers indicating the corresponding stars as: 1 -
RX J0822-4247, 2 - 1E 1207.4-5209, 3 - RX J0002+6246, 4 -
PSR 0833-45 (Vela), 5 - PSR 1706-44, 6 - PSR 0538+2817,
7 - PSR 0656+14, 8 - PSR 0633+1748 (Geminga), 9 - PSR
1055-52, 10 - RX J1856.5-3754, and 11 - RX J0720.4-3125.

behavior is drastically changed. In this section we will
explore the effect of superfluidity to the cooling process
of neutron stars.

A. Superfluidity inside neutron stars

In our present model for neutron stars, there are dif-
ferent fermions, namely the baryons, the leptons, and the
quarks. The typical Tc of baryons is about 0.1− 1 MeV,
which is close to the initial temperature of neutron stars,
such that the superfluidity of baryons is very impor-
tant to the cooling process. As for the leptons, such
as electrons, they could become superfluid due to in-
teractions via phonons, however, the typical Tc is very
small, namely in the order of several kelvin. Hence lep-
ton superfluidity is expected to be unimportant to the
neutron star cooling process. For quarks in the mixed
phase, the gaps can be about 50 − 100 MeV [12], which
is much higher than the typical temperatures of the stars
we are concerned with. The quark contribution will thus
be suppressed more strongly than the baryonic contri-
bution. Without superfluidity the quark contributions
to the heat capacity and the neutrino emissivity were
shown to be of the same order as the baryonic ones, such
that with superfluidity they are completely negligible at
the same stellar temperature. Throughout this section
we thus only consider the contributions to cV and qν of
non-superfluid leptons and superfluid baryons but neglect
those of the superfluid quarks.
Superfluidity not only reduces the neutrino emissivity

but also opens a different channel of neutrino emission
based on the breaking and formation of Cooper pairs. At

temperatures not far below Tc thermal fluctuations can
cause pair break-up into single-particle excitations, which
subsequently reform into pairs. Neutrino emission due to
such processes is quite efficient at temperatures slightly
below Tc and can even surpass the direct Urca process in
some cases [27]. However, its contribution also decreases
dramatically when T becomes small due to the exponen-
tial reduction factor mentioned previously. According to
a similar argument as above, we only need to consider
such neutrino-emission processes involving baryon pairs.

By taking into account superfluidity, the dominant
neutrino-emission process is no longer simply determined
by the density, which is crucial for the threshold of the
direct Urca process, but also depends on the reduced tem-
perature τ = T/Tc. However, it is still true that the mod-
ified Urca process can be neglected as long as the direct
Urca process is open, since the modified Urca process in-
volves more particles and is more strongly suppressed due
to the energy gaps of all superfluid participants. Thus we
again do not consider the modified Urca process since the
direct Urca process is always open in our study. Accord-
ing to Ref. [27] electron-electron bremsstrahlung becomes
a dominant process when all baryons are strongly super-
fluid at low temperature. So for a correct estimate of the
neutrino emission at low temperatures we also include
lepton-bremsstrahlung processes. Based on the discus-
sion above, in order to include the effect of superfluidity
we should recalculate cV and qν for all baryons, neglect
those of the quarks in the mixed phase, keep the lepton
contributions unchanged, and also include the newly in-
troduced neutrino emission due to baryon pair break-up
and lepton bremsstrahlung. We next discuss these effects
separately.

To describe the superfluidity of the particles, it is nec-
essary to specify the type of pairing. At low density,
the singlet-state nuclear interaction is attractive, while
at higher densities it becomes repulsive. It is believed,
however, that the triplet-state interaction still provides
an attractive channel at high densities, such that triplet-
state pairing is expected in the core of the neutron star.
This transition happens around the nuclear saturation
density n0 = 0.16 fm−3. The proton pairing is usually
taken to be in the singlet channel, even in the stellar
core, due to their low concentration. However, in our
model, as seen from Figs. 4 and 7, the densities of neu-
trons and protons in the core are quite close to each other,
namely np ∼ 0.2− 0.3 fm−3 and nn ∼ 0.4 fm−3. It thus
seems that both the protons and the neutrons should
form triplet-state pairs. The hyperons, which can also
become superfluid, are usually taken to pair in the sin-
glet channel. But in our model there are some hyperons,
e.g. Λ0, which can have densities comparable to the neu-
trons and protons. As was discussed earlier, the details
of the interactions between the hyperons are not well es-
tablished and thus there are some ambiguities in dealing
with hyperons with largely varying densities. For the
singlet-state pairing of neutrons, protons [26], and Λ0’s
[28] the results of many models largely agree on the order
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of magnitude of the pairing gaps and their density depen-
dence. As discussed, triplet-state pairing is of great in-
terest to our model, however, there is little known about
this kind of pairing except for the case of neutrons for
which it is still highly model dependent. In fact, the ex-
istence of triplet-state pairing inside neutron stars is still
uncertain. According to observations of the cooling neu-
tron stars, it seems necessary to have all baryons in the
superfluid state. For example, the effect of superfluidity
on the thermal evolution of neutron stars with hyperons
in the core has been studied by Schaab et al. [29], which
only included the singlet-state pairing of Λ0 at low densi-
ties but did not include the triplet-state pairing of Λ0 at
high densities and ignored the pairing of other hyperons.
The cooling was found to be too fast for heavy stars since
not all the direct Urca processes were suppressed.

To estimate the effect of superfluidity, we make the
simplifying assumption that, regardless of the density,
the neutrons, protons, and Λ0’s pair in the triplet chan-
nel, the remaining hyperons pair in the singlet channel,
and the critical temperatures of all the baryons are taken
to be equal. Equating all critical temperatures of the
various baryons is consistent with our model, since all
baryons couple equally to the meson fields. Although our
pairing mechanism seems quite crude, we expect that, at
least qualitatively, the effect of pairing on the thermal
evolution of the star will be taken into account. To dis-
cuss our simplifications, we first need to go into the de-
tails of how the specific heat and neutrino emissivity are
reduced by superfluidity.

1. Reduction factor

The new expressions for cV or qν are easily obtained by
multiplying the original expressions by a reduction factor
Rc or Rq. These reduction factors are functions of the
reduced temperature τ and also depend on the type of
superfluidity considered. A rather systematic calculation
of these reduction factors has already been carried out
(see review [27] and references therein). In general, the
different types of triplet-state pairing can be represented
by the projections mJ = 0,±1,±2 of the total angular
momentum. We only present the most studied mJ = 0
case, which is denoted as type-B pairing. Singlet-state
pairing is referred to as type A. By introducing the di-
mensionless variables τ = T/Tc and v(τ) = ∆(T )/kBT ,
the properties of superfluidity can be described indepen-
dent of Tc. Numerical fits for the energy gap are given
by

vA =
√
1− τ

(

1.456− 0.157√
τ

+
1.764

τ

)

, (33)

vB =
√
1− τ

(

0.7893 +
1.188

τ

)

, (34)
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FIG. 18: The reduction factors Rc (solid curves) and Rq

(dashed curves) for different types of superfluidity, where
type-A (thick curves) is always lower than type-B (thin
curves) pairing. Notice the jump of Rc at τ = 1. The dotted
curve represents R2

qB used for the direct Urca process where
both baryons are superfluid and have the same Tc. Also RqAA

[30] (dot-dashed curve) and R2
qA (thick dot-dashed curve) are

shown for comparison.

and v ≡ 0 at τ > 1. The reduction factors for cV are

RcA =

(

0.4186 +
√

1.014 + 0.2510v2A

)2.5

× e1.456−
√

2.120+v2

A , (35)

RcB =

(

0.6893 +
√

0.6241 + 0.07975v2B

)2

× e1.934−
√

3.740+v2

B . (36)

Notice that RcA = 2.426 and RcB = 2.188 are greater
than 1 at τ = 1, such that the specific heat is discon-
tinuous as the temperature falls below Tc. The neutrino
emissivity for the direct Urca process is different if both
or only one of the two involved baryons is superfluid. For
the case with only one superfluid baryon

RqA =

(

0.2312 +
√

0.5911 + 0.02068v2A

)5.5

× e3.427−
√

11.74+v2

A , (37)

RqB =

(

0.2546 +
√

0.5556 + 0.01649v2B

)5

× e2.701−
√

7.295+v2

B . (38)

Generally, type-A pairing always has a stronger reduction
effect than type B, as shown in Fig. 18.
The reduction factor for the case where both particles

are superfluid is not simply the product of the two reduc-
tion factors of each particle, due to different phase-space
restrictions. This was pointed out in Ref. [30], where
the authors presented the numerical fits for the reduc-
tion factors for the AA and BA cases. Here the cases are
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distinguished by the type of pairing (A or B) of the neu-
trons and protons, labeled as AA, BA or BB, where the
first letter signifies the type of pairing for the neutrons
and the second the pairing type for the protons. We do
not present their complicated expressions here. The most
important factor we need is for the BB case, which as far
as we know has not been explicitly calculated yet. There-
fore, we use RqB(τ1)RqB(τ2) instead of RqBB(τ1, τ2) for
those direct Urca processes with both baryons paired in
the triplet-state, which we refer to as the standard set-
ting. Furthermore, we even use this expression for all

the direct Urca processes with two superfluid baryons,
independent of the pairing type. Therefore, the effect of
superfluidity on the emissivity for the BB-type process is
expected to be overestimated [27]. On the other hand,
since the above substitution is also applied to the n, p
and Λ0 at lower densities and other hyperons, which are
supposed to pair in the singlet channel, the suppression
will be underestimated in these cases. The errors in these
two approximations thus work in opposite direction and
roughly reduce the total error of our calculation. The re-
duction factors of the direct Urca process with two super-
fluid baryons are compared in Fig. 18. It is seen that their
differences can become very large for T ≪ Tc. However,
in this case the reduction factors are extremely small and
the lepton-bremsstrahlung processes are expected to be
dominant, such that in this regime any ambiguity due to
the type of pairing is expected to be unimportant.

2. New neutrino emission processes due to superfluidity

The neutrino emissivity associated with Cooper pair
break-up is given by [31]

qCνb = 1.17× 1021Nν
m∗

b~kb
m2

nc
abF (v)T

7
9 erg/cm3s, (39)

where Nν = 3 is the number of neutrino flavors, ab is
a numerical factor from the electroweak neutral currents
and depends on the quark composition of the baryon and
the pairing type. As far as we know, no calculation has
been carried out which included the triplet-state pairing
of Λ0. We simply use aΛ = an, considering that the quark
composition of Λ0 is similar to the neutron with one d
quark replaced by one s quark, while their contributions
to the neutral current are the same. This treatment is
different from the approximation in Ref. [32], where the
contribution from quarks other than u and d is neglected.
This may cause some uncertainties, but what matters in
the cooling process is the order of magnitude of each
process. Since ab appears as a multiplier rather than
an exponent in Eq. (39), such an inaccuracy will not be
magnified during the calculation. In fact, we will see
that due to the assumption of a uniform Tc, the neutrino
emission associated with Cooper pair break-up is always
negligible compared to the direct Urca process even if the
suppression due to superfluidity is included. The factor

TABLE III: The factor ab of the neutrino emissivity due to
the Cooper pair break-up of the various particles [31]. Notice
that we take the coefficient of Λ0 to be the same as n, which
differs from Refs. [31, 32].

triplet-state singlet-state

baryon p n Λ0 Σ± Σ0 Ξ0 Ξ−

ab 3.18 4.17 4.17 1.17 0 1 0.0064

ab for the various baryons used in the calculation is shown
in Table III.
The function F (v) plays the same role as the reduction

factor and is fitted in Ref. [31] to:

FA =(0.602v2A + 0.5942v4A + 0.288v6A)

(

0.5547+

√

0.1983 + 0.0113v2A

)1/2

e2.245−
√

5.04+4v2

A , (40)

FB =
1.204v2B + 3.733v4B + 0.3191v6B

1 + 0.3511v2B

(

0.7591+

√

0.05803 + 0.3145v2B

)2

e0.4616−
√

0.2131+4v2

B .

(41)

Furthermore, the neutrino emissivity due to the lepton-
bremsstrahlung process ee is given by [33]

qeeν = 2.089× 1011
~cke

1MeVys
T 8
9 erg/cm3s, (42)

where ys is a dimensionless parameter representing the
effect of screening in the plasma, ys = ksc/2ke, with ksc
the screening wavenumber. This wavenumber is obtained
for the case of static screening in the limit of zero tem-
perature [34] by the Thomas-Fermi expression:

k2sc =
4e2

π~2
(
∑

l

m∗
l kl +

∑

b

m∗
bkbZb), (43)

where the summation over b is over all charged baryons,
and Zb represents the effect of superfluidity on the
baryons. Since lepton bremsstrahlung only becomes
important if all the baryons are highly superfluid, for
which Zb becomes negligibly small compared to the lep-
ton terms, we can simply omit the terms related to the
baryons. Subsequently, ys is simplified to

ys =

√

αµQ

∑

l kl
π~ck2e

, (44)

where α is the fine-structure constant. Other pro-
cesses involving non-relativistic muons are calculated in
Ref. [33]. In our model the muons are relativistic, so we
adopt the similarity criterion [3] and get

qeµν = 4
kµ
ke
qeeν ; qµµν =

k2µ
k2e
qeeν . (45)
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FIG. 19: The neutrino emissivities of the various processes at
different temperatures. The solid curve is for the direct Urca
process, the dashed curve for the triplet-pair break-up pro-
cess, the dotted curve is for the singlet-pair break-up process,
while the dot-dashed curve for the lepton-bremsstrahlung pro-
cess. The vertical dashed line at τ = 1 indicates the onset of
superfluidity of all baryons. The emissivities are calculated at
the central density of the maximum mass neutron star with
the hadronic equation of state and Tc = 109 K.

To summarize, in Fig. 19 we present the neutrino emis-
sivities of the discussed processes as a function of reduced
temperature τ after the inclusion of superfluidity. Due
to our assumption of equal Tc, the emissivity associated
with Cooper pair break-up is always about 5 orders of
magnitude smaller than for the direct Urca process. This
agrees qualitatively with the result in Ref. [27] for the
equal Tc case of nuclear matter. For the neutron star with
the mixed equation of state, the situation is similar since
the leading contribution of triplet-state paired baryons
changes very little. In fact, we can always neglect the
contribution to the neutrino emissivity associated with
Cooper pair break-up.
Finally, it should be pointed out that superfluidity can

also affect the equation of state. However, the equation
of state used in the TOV equations is an integral over
all states in momentum space and it is expected that the
effect of the energy gap at the Fermi surface is very small
for very high densities. Therefore, we can still use the
stellar structure obtained from the previous unaffected
equation of state. Again, we only present the results
from the maximum mass star for each type of equation
of state.

B. Numerical results

The calculation of the thermal evolution of the star
is similar to the case without superfluidity, but now the
coefficients CV and Qν in Eqs. (29) and (30) include the
temperature-dependent reduction factors. Note that the
relevant parameter for the thermal evolution is T̃ rather

than T , such that the reduction factors are functions of
τ(r) = T̃ e−Φ(r)/Tc, which is not constant throughout
the star if we use a constant Tc. This radial dependence
should be included in the integration of Eqs. (29) and
(30). Since the τ dependence of the reduction factor is

nonlinear, the variables T̃ and r cannot be separated,
which means that the numerical integration must be car-
ried out at each instance to solve the differential equa-
tion, cf. Eq. (28). To circumvent this we introduce an
additional approximation by taking Tce

Φ(r) a constant,
such that the reduced temperature τ is constant inside
the star. This decouples τ and r in Eqs. (29) and (30),
which means we do the radial integration only once.
Then Eq. (28) is independent of the radial coordinate
and the reduction effect is represented by several extra
τ -dependent terms in the coefficients. As is well known,
the critical temperature Tc is a function of the density,
however, the dependence is often uncertain. Because of
the discrepancies between the pairing models, it is even
unclear whether Tc for each type of baryon increases or
decreases with baryon density in the range of interest.
In fact, setting Tc = const throughout the star also im-
plies some kind of density dependence because the baryon
density changes with the radius. In other words, as an
ansatz, Tce

Φ(r) = const is as reasonable as Tc = const,
even though the former seems unnatural because of its
dependence on the macroscopic stellar structure. We use
the former ansatz first because of its simplicity. Later
we make a comparison between these two ansätze. In
any case, e−Φ(r) only varies smoothly and monotonically
around 2, for example, from about 2.2 at r = 0 to about
1.4 at r = R for the maximum mass neutron star with
the hadronic equation of state, so we expect the difference
between these two ansätze will not be of several orders
in magnitude.

In the numerical calculation with the first ansatz, we
set Tce

Φ(r) = T̃ (0) = 109 K such that the baryons are
superfluid from the start. This implies we have Tc ≈
2.2× 109 K at the central density while Tc ≈ 1.4× 109 K
near the surface. If, however, T̃ (0) were to be set higher,
the reduction factors would at first not take effect and the
direct Urca process would thus quickly reduce T̃ down to
Tc after which it would be suppressed due to the onset of
superfluidity and the cooling slowed down. This process
takes only several seconds. On the other hand, if T̃ (0)
would have been slightly lower, for example, above 0.1Tc,
then in the beginning the superfluid suppression would
not be very strong and the direct Urca process could
still cool the star to low temperature, i.e., the highly su-
perfluid regime, within one year. Since the isothermal
assumption we used here is virtually a later stage behav-
ior, given a reasonable Tc and the well-accepted range
of T̃ (0) of neutron stars, the result we presented in this
section depends little on the accurate values of the tem-
perature. As before, we take the neutron star with the
hadronic equation of state as the basic example, then we
study the stars with the mixed and nuclear equation of
state.
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FIG. 20: The luminosity of a neutron star with the hadronic
equation of state. The solid, dot-dashed, dashed, and dotted
curves are for η = 10−9, 10−11, 10−13, and 10−17, respectively.
The observational data are again shown for comparison.

We find several general properties of the cooling be-
havior of stars containing superfluid matter from the nu-
merical results. One obvious difference with the non-
superfluid case is the shape of the cooling curve. Since
the neutrino-emission processes, which dominate the
early stage cooling, are strongly suppressed with decreas-
ing temperature, the temperature stays high for a longer
time and the shift to the photon radiation era takes place
at higher temperatures. In contrast to the large slope
in the non-superfluid case, we find a rather slowly de-
creasing plateau around T̃ ∼ 108 K and T∞ ∼ 106 K,
followed by a much sharper turn to the photon radia-
tion stage as can be seen in the following figures. An-
other difference can be seen in that the parameter η in
the T∞-T relation plays a more significant role. Because
the neutrino-emission processes are suppressed due to su-
perfluidity, photon radiation becomes more important at
higher temperatures and the dependence on how the in-
ner temperature is screened by the surface layer becomes
more visible. We present the luminosity curves with dif-
ferent η in Fig. 20, where we see that the observational
data favor moderate values of η. In the following, we
usually use η = 10−13.

Here some other general properties are summarized.
First, we find that the heat capacity cV of the baryons is
quickly reduced as a consequence of superfluidity. Start-
ing from t ≈ 1 yr, the heat capacity is completely dom-
inated by the lepton contribution, such that the pair-
ing type of the baryons is seen to be of no importance
to the heat capacity. Second, as was already shown in
Fig. 19, neutrino emission via Cooper pair break-up is
always negligible compared to the direct Urca process.
We also find that the role of lepton bremsstrahlung in
the cooling process is negligible since in the later stages
when it dominates the neutrino emission, photon radi-
ation has already become the dominant cooling effect.
Therefore, the cooling process is determined only by the
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FIG. 21: The energy lost by the various processes in the neu-
tron star with the hadronic equation of state, where the thick
solid curve is the total energy loss rate, the thin solid curve
is for the direct Urca process, the two dot-dashed curves are
for the Cooper pair break-up processes with the upper one
for the triplet-state pairing and the lower one for the singlet-
state pairing, the dotted curve is for lepton bremsstrahlung,
and the dashed curve is for photon radiation.
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FIG. 22: The temperature evolution of the neutron star with
the hadronic equation of state. The various curves represent
different pairing types. The solid curves are for our standard
setting, the dotted curves are when all baryons pair in the
singlet-state, and the dashed curves are also for singlet-state
pairing but with the reduction factor RAA replaced by R2

A.
As before, the upper group is T̃ and the lower group is T∞,
respectively.

direct Urca process and photon radiation. The various
energy loss rates are shown in Fig. 21. Third, the direct
Urca process depends on the type of pairing. However,
this dependence is quite moderate. We show the differ-
ent cooling curves for the various pairing types in Fig. 22.
For singlet-state pairing, we see that neutrino emission is
more strongly suppressed and the resulting temperature
is slightly higher than the other types of pairing. This
result confirms that the cooling behavior is not strongly
dependent on the type of pairing of the baryons.
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By comparing Fig. 20 and Fig. 17, we see that the lu-
minosity curves in the superfluid case are much closer
to observations than in the non-superfluid case. How-
ever, the curves do not agree with all the observational
data except for the younger stars, namely number 1-5.
This mismatch may lie in some important mechanisms
which are neglected in the present calculation. For ex-
ample, the magnetic field of the neutron star can affect
the photon radiation at the surface [12] such that it no
longer obeys the standard black-body radiation law and
shift the photon-radiation era to a later time [35]. This
reduction of photon radiation also decreases the luminos-
ity, which is unfavorable according to the cooling curves
shown in Fig. 20. However, there are some known heat-
ing mechanisms which are not considered here, for exam-
ple, due to magnetic field energy and rotational energy
(for more details, see Ref. [12] and references therein),
such that the temperature and the luminosity can re-
main higher. Besides, note that sources such as number
10 and 11 may be old magnetars. As a consequence, the
age estimates may not be correct, and the cooling his-
tory may be anomalous. Both are a result of the decay
of the strong magnetic field: age estimates assume mag-
netic braking of rotation with a constant magnetic field,
whereas the decay of the magnetic field results in heating
of the neutron star [36]. We discuss these issues in future
work.

Now we discuss the second ansatz, Tc = const. Since
e−Φ(r) > 1, if we set Tc = T̃ (0) = 109 K we will have
a lower Tc than in the previous ansatz and the baryons
will not be superfluid everywhere inside the star at t = 0.
To make a proper comparison between the two, we set
Tc = 1.9×109 K, where the extra factor 1.9 is the middle
value of e−Φ(r) inside the star (the outer value is taken at
r = 7 km rather than at the surface since the direct Urca
process starts around here, see Figs. 9 and 10). With
this value of Tc, at t = 0, the baryons near the sur-
face are superfluid while those in the core are not, since
τ = T̃ e−Φ(r)/Tc is bigger in the core. Nevertheless we
expect the integrated results will be comparable to those
of the previous ansatz. As a comparison, in Fig. 23, CV

and Qν are shown for these two ansätze. We see that
the difference between the two increases with decreas-
ing temperature and only becomes significant when their
values are very small. Therefore, it is not surprising to
find that their cooling curves are similar, as is shown in
Fig. 24. The two curves are quite close except that the
second ansatz has a little lower luminosity, because with
Tc = const the higher temperature in the core delays the
suppression of the direct Urca process, such that the to-
tal cooling rate is larger in the beginning. Furthermore,
the result of the ansatz Tc = 109 K mentioned above is
also shown, where we can see that the high cooling rate
due to the direct Urca process remains for a longer time
and the luminosity is even more reduced after the neu-
tron star has become completely superfluid. Here we see
again that different initial conditions have little influence
on the later-stage behavior.
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FIG. 23: The temperature dependence of CV (solid curves for
the singlet-state pairing contribution and dashed curves for
the triplet-state pairing contribution) and Qν (dotted curves)
calculated with the two different ansätze for Tc in the neutron
star with the hadronic equation of state. For each quantity,
the thick higher curve is for Tc = const and the thin lower
curve is for Tce

Φ(r) = const, respectively.
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FIG. 24: The luminosity calculated with two different ansätze
for Tc in the neutron star with the hadronic equation of state.
The solid curve is for Tce

Φ(r) = 109 K and the dashed curve is
for Tc = 1.9× 109 K, respectively. For comparison, the result
with the ansatz Tc = 109 K is shown by the dotted curve.
The observational data are again shown.

Finally, we briefly present the results for the neutron
stars with the mixed and nuclear equation of state. For
the nuclear case, we always take the neutrons and pro-
tons to pair in the triplet channel. The general argu-
ments still apply, i.e., we only need to consider the direct
Urca process and the photon radiation as the dominant
cooling mechanisms. Without too much difference, the
simple ansatz Tce

Φ(r) = const will be used. The cool-
ing behavior is mainly determined by the heat capacity,
the direct Urca neutrino emissivity, and the photon ra-
diation. These three parameters are not quite different
among the various equations of state, even including the
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FIG. 25: The luminosity of the neutron stars with the vari-
ous equations of state with the effect of superfluidity included.
The solid, dashed, and dotted curves represent the hadronic,
mixed, and nuclear equation of state, respectively. The ob-
servational data are again presented.

effect of superfluidity. The dominant contribution to the
heat capacity is due to the leptons. The direct Urca
process is dominated by the triplet-state paired baryons
which make up the majority of the star and are less af-
fected by superfluidity. The photon radiation is again
just black-body radiation. Therefore, we expect that the
cooling process should be similar in these three cases,
whose luminosity curves are shown in Fig. 25. Compared
to Fig. 17, besides the overall increase in the luminosity as
previously discussed, there is some difference in the order
of magnitude of the luminosity among these three equa-
tions of state. With superfluidity, the nuclear case always
has the largest luminosity, which is due to the higher lep-
ton fraction in the star. We find that the heat capacity of
the leptons in the neutron star with the nuclear equation
of state is about twice as large as that for the star with
the hadronic or mixed equation of state. This larger lep-
ton heat capacity becomes significant when the baryons
(and the quarks) are highly superfluid. As can be seen in
Eq. (28), the larger the heat capacity is, the higher the
corresponding temperature should be. This explains the
largest luminosity of the nuclear case in Fig. 25. Another
difference is that, with superfluidity, the luminosity of the
mixed case is always smaller than that of the hadronic
case, while for the non-superfluid case as in Fig. 17, there
is no such clear order. The reason also lies in the effect
of superfluidity on the heat capacity, since in the mixed
case the quark contribution is strongly suppressed due
to superfluidity and completely neglected during our cal-
culation. Of course, the neutrino emissivity from quarks
is also reduced, but the reduction in the heat capacity
is relatively stronger. This is because, without super-
fluidity, quarks contribute less to the neutrino emissivity
than baryons, but their contribution to the heat capacity
is comparable.

V. CONCLUSION AND DISCUSSION

We have carefully compared the thermal evolution
of different types of neutron stars, namely with the

hadronic, the mixed phase of hadronic and strange quark
matter, and the nuclear equation of state. We find that
the direct Urca process is open in all of these cases and
thus results in relatively fast cooling behavior. Although
the details concerning the heat capacity and neutrino
emissivity can be rather different in these cases, the cool-
ing curves are quite similar after the stars become isother-
mal. However, the behavior in the early stages before the
stars become isothermal could be significantly different,
but such a study requires the knowledge of the thermal
conductivity of these complex systems. The geometrical
structure of the mixed phase is also expected to play an
important role, although no decisive conclusion has yet
been drawn.

As we have seen, the fast cooling in the non-superfluid
case did not agree with observations. In order to rem-
edy this discrepancy, superfluidity was introduced, which
significantly reduces the efficiency of the direct Urca pro-
cess as well as the heat capacity. The resulting cooling
curve is much closer to the observational data. We also
found that the particular pairing type of the superfluid
baryons is not very important to the thermal evolution
of the star. The thermal evolution after the star becomes
isothermal is not strongly dependent on the initial tem-
perature of the star or on the critical temperature related
to superfluidity, as long as they are within reasonable
ranges. The robustness of the results with superfluidity
is quite helpful in order to remove the uncertainties con-
cerning baryon superfluidity at high density. Note that
the cooling process is almost completely determined by
the direct Urca process and photon radiation even after
including the effects due to superfluidity. The cooling
curves of the neutron stars with the three equations of
state are still quite similar when superfluidity is included.
We expect that a calculation including the magnetic field
and rotation gives an even better agreement with the
observational data. Besides, since our nuclear model is
geared originally towards nuclear matter near the satu-
ration point, a further improvement of it may play an
important role in getting a better agreement with the
observations. By incorporating the properties at higher
densities, e.g., the coupling constants for hyperons, it is
possible to get cooling curves covering most of the obser-
vational data, as in Ref. [12].
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