

Computational Thinking and Mathematical Thinking

Sylvia van Borkulo¹, Maria Kallia², Paul Drijvers¹, Erik Barendsen², Jos Tolboom³

¹ Utrecht University, contact person Sylvia van Borkulo (s.vanborkulo@uu.nl), ² Radboud University, ³ SLO

Background

In technology-rich mathematics education, mathematics teachers nowadays experience two related challenges: fostering both *mathematical thinking* (**Figure 1**), central in the new Dutch mathematics curricula, and *computational thinking* (**Figure 2**), stressed in the Dutch informatics curriculum and the curriculum.nu reform.

Research Question How can a teaching-learning strategy, focusing on the use of digital tools, support 16-17 years old pre-university students in developing computational thinking skills related to mathematical thinking in pure and applied mathematics courses?

Delphi Study on Aspects Computational Thinking A group of 9 teachers and 16 researchers agreed on the following aspects characterizing computational thinking in mathematics education:

abstraction
decomposition
pattern recognition
algorithmic thinking
modelling
logical thinking

Aimed Results

- Theory-informed, practiceoriented list of key elements of computational thinking related to mathematical thinking;
- Empirically validated learning activities for upper secondary pre-university education students;

References

- Barr, V. and Stephenson, C., 2011. Bringing computational thinking to K-12: what is Involved and what is the role of the computer science education community?. *Inroads*, 2(1), pp.48-54.
- Drijvers, P. (2015). Denken over wiskunde, onderwijs en ICT. Inaugurele rede. Utrecht: Universiteit Utrecht.
- Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Exploring the science framework and NGSS: Computational thinking in the science classroom. *Science Scope*, *38*(3), 10.
- Weintrop D, Beheshti E, Horn M, et al. (2016) Defining computational thinking for mathematics and science classrooms. *J Sci Educ Technol.* 25(1): 127-147.

- Instruments to assess the related learning outcomes;
- Teacher guide on learning activities targeting computational thinking and mathematical thinking using digital tools;
- Policy document to inform upcoming curriculum reform.

Consortium	Utrecht University Paul Drijvers Sylvia van Borkulo	Radboud University Erik Barendsen Maria Kallia	SLO Jos Tolboom	Christelijk Gymnasium Sorghvliet, The Hague Carina van Amerongen	Lyceum Ypenburg, The Hague Wim Caspers	Willem de Zwijger College, Bussum Juan Dominguez
				Harens Lyceum, Haren Fetske Zwaga	Rijnlands Lyceum, Oegstgeest John Val	