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Introduction to circular data

Circular data is data that is measured in angles or directions, as degrees or radians. Circular
data differ from linear data in the sense that circular data are measured in a periodical
sample space. For example, an angle of 1◦ is quite close to an angle 359◦, although linear
intuition suggests otherwise.
Circular data θi (i = 1, . . . , n) can be modeled with the von Mises distribution

M(θ | µ, κ) =
1

2πI0(κ)
exp {κ cos (θ − µ)} ,

with mean direction µ and concentration κ, where I0(·) represents the modified Bessel
function of the first kind and order zero.
Our goal is to analyze von Mises based models in a Bayesian way, to include linear and
dichotomous covariates, and to develop hypothesis tests.

●

0 radians

Mean direction = 1.983 radians

To predict the circular outcome by linear covariates, we consider the classic model

M(θ | µi, κ) =
1

2πI0(κ)
exp {κ cos (θ − µi)} , (1)

µi = β0 + g(βTxi), (2)

where
� β0 is a circular intercept

� β is a vector of regression coefficients.

� g(·) is a link function, we choose the commonly used g(x) = 2 tan−1 x

� x are standardized linear covariates
We consider a Bayesian analysis of this model, and propose three extensions.

Including group differences

Including group differences as dichotomous predictors in x causes the
analysis to depend on the chosen reference group.
For a dichtomous predictor d, let the coefficient be δ, the model is

µi = β0 + g(βTxi + dδ),

which means the prediction line is ’shifted’, because it is centered around
g(0) for d = 0 and g(δ) for d = 1.

As shown below, this means the entire analysis depends on the reference
category, which is undesirable.

Instead, we propose to treat the group difference separately, so that we
have

µi = β0 + δTd + g(βTxi+),

which solves the problem.
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Fig. 1: Original labels
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Fig. 2: Reversed labels
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Fig. 3: µi = β0 + δdi + g(βxi)

Priors

Straightforward priors are available for most of the model:

� The von Mises part of the model has a conjugate prior

p(β0, κ | δ,β) ∝ I0(κ)−c exp [R0κ cos(β0 − µ0)] ,

which is uninformative if we take c = 0, R0 = 0.

� Because of the bounded nature of the circle, β0 and δ have natural priors
in the form of the circular uniform distribution.

However, the shape of the likelihood for β is not concave, and features non-zero
asymptotes, as shown at the top here. This has been discussed in the literature,
and is dealt with in frequentist optimization by trying many starting values and
monitoring convergence.
The Bayesian paradigm provides a great solution here, by either a weakly infor-
mative prior or a subjective prior.
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Our solution
If
∑K
k=1 |βk| > 1.5, the majority of the probability mass of the data is on

the semi-circle opposite of the group intercept (β0 + δTd), which is not likely
in practice. This expectation can be translated to a weakly informative prior
distribution.
So, the prior is chosen to be

βk ∼ N(0, 1) ∀k = 1, . . . , K,

where N(µ, σ2) denotes the Normal distribution with mean µ and variance σ2.
It can be seen that the problematic asymptotes are solved in the picture on
the bottom. In neither case the posterior is log-concave, which might make
optimization difficult, but which MCMC methods handle well.

Bayesian hypothesis tests using the Bayes factor

Equality constrained hypotheses
Consider two hypotheses about some model parameter γ,

H0 : γ = γ0, H1 : γ ∈ Ωγ, (3)

where Ωγ is the sample space of γ. The Bayes factor for this hypothesis
is given by

BF01 =
p(D | H0)

p(D | H1)
. (4)

For the Savage-Dickey density ration, we use the fact that under some
conditions,

p(D | H0)

p(D | H1)
=
p(γ = γ0 | D,H1)

p(γ = γ0 | H1)
,

which is a ratio of the posterior and prior probability of γ0 under model
H1.
One remark to be made is that this method is only valid if the nuisance
parameters between the two hypotheses serve the same purpose.

Inequality constrained hypotheses
Researchers often have directed (one-sided) hypotheses, which may be
specified by using inequality constraints.
For some model parameter γ, a simple hypothesis to evaluate could be

H0 : γ > γ0, H1 : γ < γ0.

In order to quantify our belief in these hypotheses, we employ an en-
compassing hypothesis Hunc : γ ∈ Ωγ, from which an MCMC sample

γ = {γ(1), . . . , γ(Q)} is obtained. Then, assuming the encompassing
prior does not favor either hypothesis, it can be shown that the Bayes
factor for H0 versus H1 is given by

BF01 =

∑Q
s=1 I

(
γ(s) ∈ Ωγ|H0

)
∑Q
s=1 I

(
γ(s) ∈ Ωγ|H1

), (5)

where I(·) is an indicator function, and Ωγ|Hs is the admitted sample
space for γ under hypothesis Hs. Note that for more complex models, we
need to take the ’complexity’ into account, which denotes the proportion
of the prior in agreement with a hypothesis.
Using the inequality constrained hypothesis approach, it is easy to assess
the model

µ1 > µ2 > µ3

versus its complement, which contains all other orderings.

Bayes factors from a simulation study for the regression model (one lin-
ear predictor), ANOVA model (two dichotomous grouping variables) and
ANCOVA model (one dichotomous grouping variable, four linear predic-
tors) are shown below.

Regression ANOVA ANCOVA
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From 5000 simulation, with true coefficients .05, the Bayes factors per-
form adequately.

Discussion

� The Bayesian approach provides a promising way to draw inference
from circular data. Usual approaches are based on large sample
or high concentration approximations or bootstrap approaches for
simple models. Our approach does not need such approximations,
and provides a new direction for circular data analysis of GLM-type
models.

� In extensive simulations (not shown on this poster) performance was
shown to be good.

� The model provides one approach to modeling circular data, but
extensions to more flexible models, including additional parameters
or a hierarchical structure are within reach.
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