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Using functional indicators to detect state
changes in terrestrial ecosystems
Highlights
Global climate changes and human
activities are exerting great pressures
on ecosystems, and may cause cata-
strophic collapse of ecosystem states
and services. However, the indicators
that can be used to detect ecosystem
state change remain a key question.

Although emerging evidence suggests
the feasibility of using functional indica-
tors to detect ecosystem state changes,
state-based indicators derived from
Zhongmin Hu ,1,2,* Vasilis Dakos,3 and Max Rietkerk4

Indicators to predict ecosystem state change are urgently needed to cope with
the degradation of ecosystem services caused by global change. With the
development of new technologies for measuring ecosystem function with fine
spatiotemporal resolution over broad areas, we are in the era of 'big data'.
However, it is unclear how large, emerging datasets can be used to anticipate
ecosystem state change. We propose the construction of indicators based on
functional variables (flows) and state variables (pools) to predict future ecosystem
state changes. The indicators identified heremay be useful signals for doing so. In
addition, functional indicators have explicit ecological meanings that can identify
the ecological mechanism that is causing state changes, and can thus be used to
improve ecosystem models.
mathematical theory are conventionally
used.

The increasingly availability of long-term
datasets of ecosystem functions at high
spatiotemporal resolution provides us
with novel opportunities to detect eco-
system state changes.

Ecosystem models simulate ecosystem
biogeochemical cycles. Functional indi-
cators enable us to identify the mecha-
nisms causing state changes, and can
be used to diagnose and improve eco-
system models for predicting long-term
changes in ecosystem functioning as a
consequence of state changes.
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The necessity of detecting state change with functional indicators
As global change causes ecological disruption across the world, ecosystems are at increasing
risk of crossing thresholds, or tipping points (see Glossary), and undergoing a rapid shift from
existing to new states [1,2]. For example, tropical rain forests may transform into savannah
after frequent fire, grasslands become deserts owing to over-grazing or drought stress, and
shallow lakes lose transparency because of human-induced eutrophication [3]. These state
changes are expected to seriously impact on ecosystem services of fundamental importance
to human well-being [4]. Predicting whether ecosystems will experience a state change is
a key challenge in ecology for those concerned about implementing effective adaptation
strategies [5–7].

Ecosystem state changes are mirrored by a change in ecosystem structure, which is also
referred to as a regime shift, state shift, phase transition, state transition, or structure change.
State changes can be categorized as abrupt or smooth. An abrupt ecosystem change may
occur when a tipping point is crossed, resulting in the transition to an alternative state. In this
case, the state change is a catastrophic transition (Figure 1, case 1) [3]. Theory suggests
that the phenomenon of critical slowing down (CSD) will appear when an ecosystem is
approaching a tipping point, and some general indicators based on this phenomenon could be
used as early-warning signals [3,8]. In contrast to catastrophic transitions, ecosystems can
also experience smooth state transitions in which there are no discrete alternative states and
changes are continuous [2] (Figure 1, case 2). It is worth noting that smooth transitions cannot
be predicted using CSD indicators alone [9].

Typically, 'state' variables (e.g., biomass and species abundance) [10] are used to calculate
CSD indicators. The robustness of CSD state-based indicators varies and even fails in some
cases [8], but it is difficult to clarify why. One reason for the difficulty is that such indicators
are derived from general theoretical expectations and, as such, lack a link to explicit ecolog-
ical mechanisms. In real ecosystems, the processes controlling the dynamics of indicators
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Figure 1. Possible trajectories of ecosystem state change. In case 1 (catastrophic transition), the equilibrium curve is
folded backwards. The dashed middle section represents an unstable equilibrium and can be interpreted as the division
between two alternative stable states on the upper and lower branches. Ecosystems abruptly shift to a new state when
environmental conditions pass a threshold (tipping point). The critical slowing down (CSD)-based indicators are developed
to detect state changes of this case. In case 2 (smooth transition), only one equilibrium exists for each condition and the
ecosystem state can be reversed continuously from state B to A.
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can vary with ecosystem type [11], thus conflicting with theoretical predictions. Furthermore,
CSD state-based indicators are difficult to directly connect to ecosystem processes or
ecosystem functions that are described by rates (e.g., carbon, water, and nutrient cycles).
Therefore, constructing indicators that are closely linked to ecological functions is a promis-
ing complementary approach for predicting ecosystem state changes and understanding
the underlying mechanisms. Such an approach might also be useful in identifying smooth
transitions.

Ecosystem functions comprise the ecosystem processes that cycle materials (e.g., carbon and
nitrogen) and transmit energy through the ecosystem [12]. They underpin many aspects of
ecosystem services that humans depend upon, such as the provision of food and freshwater,
regulation of atmospheric composition, and erosion prevention. Numerous ecological compo-
nents crucially depend on ecological processes, and monitoring these processes can therefore
serve as a proxy for many other ecosystem properties. The development of new technologies
(e.g., eddy covariance instrumentation [13] and satellite-based measurements of ecosystem
metabolism [14]) has facilitated the expansion of databases containing measurements of
real-time ecosystem functions (e.g., flows of carbon, water, and nutrients in terrestrial ecosystems).
These datasets may offer an opportunity to quantify ecosystem resilience and to detect state
changes [15]. Although some studies have attempted to use CSD function-based signals to
identify ecosystem state changes [16–18], questions remain about their reliability as indicators
for this type of ecological change. We first propose a theoretical basis for using indicators of
ecosystem functions to detect state changes for catastrophic and smooth transitions, and
compare the reliability of this approach to that of CSD state-based indicators. Second, using
vegetated terrestrial ecosystems as an example, we summarize several candidate functional
indicators already used by terrestrial ecosystem ecologists. Third, we outline the advantages
of using functional indicators to detect ecosystem state changes and discuss future research
priorities in this area.
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Glossary
Alternative state: more than one
ecosystem stable state can exist under
the same environmental conditions.
Autocorrelation: the degree of
similarity between the values of the same
variables over successive time intervals.
Catastrophic transition: also known
as a critical transition, an abrupt,
irreversible state change when an
ecosystem passes a critical threshold.
Climatic sensitivity: the degree to
which an ecosystem function responds
to variations in climatic factors.
Critical slowing down (CSD): a
phenomenon that is expected to occur
when a system approaches a tipping
point. CSD takes place when the
dominant eigenvalue, characterizing the
return rate to equilibrium upon small
perturbations, approaches zero at
0.2pt?>tipping points. At an intuitive
level, CSD can be understood from a
ball-in-a-basin diagram. The slope of the
basin represents the rate of change and,
close to the tipping point where the
basin of attraction becomes shallower,
return to equilibrium following small
perturbations will become slower.
Ecosystem function: a general term
that includes stocks of materials (e.g.,
carbon, water, mineral nutrients) and
rates of processes involving fluxes of
energy and matter between trophic
levels and the environment. Important
ecosystem functions include primary
production, evapotranspiration,
decomposition of dead matter, and
nutrient recycling.
Ecosystem structure: the biophysical
architecture of an ecosystem, which is
implicitly determined by the plant
species composition in terrestrial
ecosystems.
Resilience: the ability of an ecosystem
can tolerate disturbances without
shifting to a qualitatively different state.
CSD occurs when resilience declines
and the ecosystem approaches a critical
transition.
State change: changes in ecosystem
physical components and quality which
are mirrored by changes in ecosystem
structure. This is also referred to as
regime shift, state shift, phase transition,
state transition, or structure change.
Tipping point: marks the abrupt shift
between contrasting ecosystem states
(broadly termed regime shifts) when
environmental conditions cross a
specific threshold.
Theoretical test of detecting state change with functional indicators
Because their magnitudes and variabilities are determined by ecosystem structure, terrestrial
ecosystem functions (i.e., flows of materials within ecosystems or between ecosystems and
the surrounding environment) vary with the composition of vegetation in an area. We hypothesize
that metrics relating multiple terrestrial ecosystem functions (e.g., water-use efficiency, transpira-
tion fraction) (Table 1), as well as those that relate ecosystem functions and environmental
conditions (e.g., climatic sensitivity, precipitation-use efficiency) (Table 1), remain relatively
constant if the ecosystem structure is fixed. Conversely, changes in ecosystem structure are
mirrored by changes in metrics of function–function and function–environment relationships.
Thus, it may be possible to detect ecosystem structural change (i.e., state change) by quantifying
the dynamics of function–function relationships and function–environment relationships. Because
many functional variables of interest (i) are sensitive to changes in environmental conditions,
(ii) vary faster than state variables, and (iii) are often readily observable using new technologies,
they offer great promise as signals of ecosystem state change.

To test the feasibility of using functional indicators to detect ecosystem change, the dynamics of
several functional indicators (Table 1) were reproduced along an aridity gradient before a critical
transition using the water-limitation model developed by Rietkerk et al. [19,20] (Box S1 in the
supplemental information online). As the results in Box 1 show, CSD function-based indicators
are as reliable as CSD state-based indicators in detecting critical transitions before a tipping
point. In addition, other functional indicators (e.g., water-use efficiency, transpiration fraction,
and precipitation-use efficiency) may be useful signals of upcoming critical and smooth state
transitions. More information about the applications and relevance of these indicators in ecosystem
ecology can be found in Box 2.

Promising indicators of state change
CSD function-based indicators
Consistent with theory [8,21], variance, autocorrelation, and skewness estimated from
a state variable (i.e., plant biomass) increase abruptly before the critical transition occurs (see
Figure IC in Box 1). Similarly, variance, autocorrelation and skewness calculated using a
function variable (i.e., net primary productivity, NPP) exhibit similar temporal trajectories (see
Figure IE in Box 1). This suggests that CSD function-based indicators may be of use in detecting
catastrophic state changes.

Previous work provides empirical support for the usefulness of these indicators as signals of state
change. Hu et al. [16] found that indicator values calculated using NPP peaked in the transition
zone between a desert and grassland, consistent with theoretical expectation. Liu et al. [17]
developed a robust early warning system for forest mortality based on temporal autocorrelation
of a vegetation index, a proxy for NPP.

Indicators of ecosystem function–environment relations
Climatic sensitivity
Studies have found that NPP is more sensitive to inter-annual variations in precipitation in drier
ecosystems than in wetter ecosystems, both at regional and continental scales [22,23]. That is,
the precipitation sensitivity of NPP increases steadily with climate aridity. These findings suggest
that precipitation sensitivity may signal smooth state changes driven by directional precipitation
change. After changing the maximum growth rate parameter (Box 1 for explanation), the Rietkerk
model reproduced the correlation between precipitation sensitivity and climate, producing a
signal that identified smooth state transitions along the aridity gradient (Figure S1 in the supplemental
information online).
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Table 1. Functional indicators used for detecting state changes in terrestrial ecosystemsa

Category Indicator Definition Usage Caveat Case study

CSD function-based
indicators

Variance,
autocorrelation,
skewness,
recovery rate, etc.

Instead of state variables,
functional variables (e.g., NPP
or GPP) are used to construct
CSD indictors for predicting
catastrophic state change

Increase in variance,
autocorrelation skewness,
and recovery rate etc.
when approaching the
tipping point

Context information such as
driver characteristic, soil,
climate, and temporal scale
may affect robustness [18]

[16–18,38]

Function–environment
relationship (the
indicators are
constructed from the
relationships between
environmental factors,
e.g., precipitation, and
ecosystem functions)

Climate sensitivity
(here precipitation
sensitivity is used
as an example)

Slope of the
environment–function
relationship or the relative
response of ecosystem
function to an environmental
change [22]

Increase in precipitation
sensitivity when ecosystem
shifts from forest to
grassland, and to desert

Interactions of other
environmental factors may
strengthen or weaken the
sensitivity

[16,22,30,39]

Precipitation-use
efficiency (PUE)

Ratio of vegetation
productivity to annual
precipitation [23]

Lower PUE in degraded
ecosystems or
lower-complexity
ecosystems

Intraspecies physiological
flexibility may cause temporal
variations in PUE without
state change

[24,40,41]

Function–function
relationship (the
indicators are
constructed from the
relationships between
ecosystem functions)

Ecosystem-level
water-use
efficiency (WUE)

The ratio of vegetation
productivity to ecosystem
evapotranspiration [42]

Lower WUE in degraded
or lower-complexity
ecosystems

High intraspecies variations in
plant water-use strategy may
make ecosystem WUE
variable within the same
ecosystem type [43]

[42,44]

Transpiration
fraction (T/ET)

The ratio of plant transpiration
to whole ecosystem
evapotranspiration [27]

Lower T/ET in degraded
or lower-complexity
ecosystems

Intraspecies physiological
flexibility may cause temporal
variation in T/ET without state
change

[26]

aAccording to the availability of the case studies, the examples given are mostly terrestrial ecosystems in arid regions where water limitation is the key stress. Therefore, the
functional indicators addressed are mostly centered around water or precipitation.
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Precipitation-use efficiency
Because vegetation productivity in arid ecosystems is tightly coupled to precipitation,
precipitation-use efficiency (PUE) – the ratio of productivity to precipitation – remains relatively
constant over time [23]. However, changes in the composition of an ecosystem plant community
induce changes to the precipitation–NPP relationship, resulting in variations in PUE. Therefore,
PUE may be useful for identifying both smooth and critical ecosystem state changes. The
Rietkerk model produced a gradual decrease in PUE with aridity (see Figure IG,H in Box 1),
which is consistent with the field observations described in Box 2.

Alternatively, increasing precipitation is associated with enhanced PUE. Ecosystems experienc-
ing higher rates of precipitation support more extensive vegetation, which reduces runoff and
promotes infiltration and retention of water in the soil. Soil moisture retention increases the portion
of precipitation available to support plant growth, thereby increasing PUE. This mechanism is also
supported by field observations which show a positive correlation between PUE and vegetation
cover driven by the biomass–retention feedback loop [24].

Indicators of ecosystem function–function relationships
Ratio of plant transpiration to evapotranspiration
The ratio of plant transpiration to evapotranspiration (T/ET) describes the fate of precipitation
entering an ecosystem (i.e., water loss due to uptake by vegetation vs loss due to runoff or evap-
oration from the soil). In natural ecosystems, T/ET varies with ecosystem type, and differences in
T/ET between forests, grasslands, and arid shrublands suggest that this ratio declines with
increasing aridity (Figure S2A in the supplemental information online). Further supporting this
relationship, Wang et al. [25] found a sharp decline of T/ET from grassland (0.8) to desert (0.3)
Trends in Ecology & Evolution, December 2022, Vol. 37, No. 12 1039
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in drylands in Northwest China. Moreover, it is widely observed that T/ET correlates positively
with plant aboveground biomass [26], demonstrating the importance of positive feedback
between plant biomass and soil water retention. The Rietkerk model predicted a gradual
decrease of T/ET with aridity based on this positive feedback (see Figure IG,H in Box 1),
which is consistent with the field observations described above. Together, these findings
support that change in T/ET is driven by positive feedback, and that this indicator is useful as
a signal of state change.
Box 1. A case study on the use of ecosystem functional indicators

To test our hypothesis that ecosystem functional indicators can signal ecosystem state changes, we adopted the theoret-
ical model of Rietkerk et al. [19,20] to simulate the temporal trajectories of the indicators in the cases of both catastrophic
and smooth state changes. This model simulates how plant biomass and productivity change with increasing aridity in
water-limited ecosystems. The model captures the positive feedback between plant biomass and water infiltration as
themechanism that causes a catastrophic transition with increasing aridity, in other words less plant biomass→ less water
infiltrates into soil for plant growth → less plant biomass. The model has successfully reproduced the abrupt ecosystem
state change observed in arid regions [20]. We calculated critical slowing down (CSD) indicators, namely variability, lag-
one autocorrelation, and skewness, with both simulated plant biomass (CSD state-based) and vegetation productivity
(CSD function-based). We treat the CSD indicators calculated using vegetation productivity as functional indicators
because they are metrics derived from ecosystem functions. In addition, we also calculated other functional indicators:
precipitation sensitivity of vegetation productivity, precipitation-use efficiency, plant transpiration fraction, and ecosystem
water-use efficiency (WUE) (see Table 1 in main text). We set model experiments by reducing precipitation along a
decreasing precipitation gradient, and variations in the indicators before the ecosystem collapse were regarded as signals
of smooth change (Figure I). We considered abrupt changes in the indicators when approaching the tipping point to be
signals of catastrophic change.

Plant biomass declined linearly with a decrease inmean annual precipitation until precipitation was lower to 50mm/year. At
this point, plant biomass abruptly decreased to zero (Figure IA). The CSD state-based indicators derived from biomass
warned of the approaching ecosystem collapse (i.e., abrupt increases in the indicators occurred immediately before the
tipping point) (Figure IC). For example, the variability of biomass varies in a narrow range of 0.33–0.46 (mean 0.37,
dimensionless) before the catastrophic change, but abruptly jumped to 0.52, 0.57, 0.69, 0.8 when approaching the
tipping point. CSD function-based indicators based on net primary productivity (NPP) gave a similar warning as the
CSD state-based signals (Figure IE). The other functional indicators – precipitation-use efficiency (PUE), productivity
sensitivity to inter-annual variations in precipitation, the ratio of transpiration to evapotranspiration (T/ET), and ecosystem
WUE – also dropped abruptly when the tipping point approached (Figure IG). In addition, most of these functional
indicators exhibited directional and accelerating decreases along the aridity gradient; however, precipitation sensitivity
was relatively constant before abruptly decreasing (Figure IG).

We also compared the performance of the indicators in the case of smooth state changes (right panels in Figure I,W0 = 0.8
in Equation 5 of Box S1 in the supplemental information online). The results suggest that plant biomass linearly declines
with decreases in mean annual precipitation and was close to 0 when approaching the extinction point (Figure IB). Except
for autocorrelation, the CSD state-based indicators exhibited abrupt increases before the extinction point, in contrast to
their relative stability before the extinction point (Figure ID). Similarly, all the CSD function-based indicators also exhibited
relative stability preceding abrupt increases that signaled a trajectory toward the extinction point (Figure IF). For the other
functional indicators, except sensitivity, all exhibit directional decrease across the entire aridity gradient (Figure IH),
suggesting their usefulness as indicators of smooth change before the extinction point. These results suggest that the
CSD function-based indicators are as useful as CSD state-based indicators for predicting abrupt state change before
the tipping or extinction point. The non-CSD functional indicators can also track the smooth change before the tipping
point and extinction point.

Note that the model predicts relatively constant precipitation sensitivity along the rainfall gradient before the extinction of
plant biomass (Figure IG,H), which is inconsistent with the behavior of other indicators. We speculated the reason might
be that the model considers plant maximum growth rate (gmax in Equation 3 in Box S1 in the supplemental information
online) as a constant without integrating changes in this physiological parameter associated with climate conditions. In
nature, community-level growth rate is driven by plant community composition, which varies along a climate gradient
and favors species with appropriate water-use strategies. To test this speculation, we used linearly increasing gmax with
precipitation instead of the original constant value in the model, yielding a steady increase of sensitivity with precipitation
decline, consistent with observations our speculation (Figure S1 in the supplemental information online).
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Figure I. Trajectories of plant biomass (A,B), CSD state-based indicators calculated with plant biomass
(C,D), and CSD function-based indicators calculated with net primary productivity (NPP) (E,F) and
other functional indicators (G,H) with aridity. The left panels illustrate the dynamics of the indicators in the case
of a critical transition, and the right panels illustrate the dynamics in the case of a smooth transition. Detailed
explanations for the model producing the trajectories and the indicators are given in Box S1 in the supplemental
information online. T/ET and ecosystem WUE illustrate the same trajectory (G,H) because T and NPP were
calculated with the same algorithm of soil water in the theory model (Equations 3 and 4 in Box S1 in the
supplemental information online). All the CSD indicators are dimensionless and the unit is g.mm−1 for PUE, WUE,
and sensitivity.

Trends in Ecology & Evolution
Ecosystem water-use efficiency
For a specific ecosystem, plant productivity and ecosystemwater consumption (i.e., evapotrans-
piration) should be well balanced as a consequence of natural selection. This implies that ecosys-
temwater-use efficiency (WUE) for an ecosystem type should be relatively constant (Figure S2B in
the supplemental information online and Box 2). Studies have demonstrated that ecosystem
Trends in Ecology & Evolution, December 2022, Vol. 37, No. 12 1041

Image of &INS id=
CellPress logo


Box 2. Meaning and application of functional indicators in global change ecology

CSD function-based indicators

The three indicators (i.e., variability, autocorrelation, and skewness of NPP) are widely investigated as the indicators of
ecosystem stability [45,46], resilience [40], and asymmetry of climatic responses [31,45], respectively, in the field of global
change ecology. For example, asymmetry of NPP is widely adopted to clarify how NPP responds to climate anomalies
[45]. The explicit meanings of these indicators make it easy to clarify the ecological mechanism underlying the dynamics
of the indicators, as well as to link them to ecosystem models [16,47,48].

Climatic sensitivity

Climatic sensitivity quantifies how an ecosystem function responds to variations in climatic factors (here, precipitation). To
quantify climatic sensitivity, widely used approaches include regressing climatic factors with an ecosystem function
(e.g., NPP), using a linear function, or calculating the relative function response in comparison to environmental change
[49]. A steeper slope or larger response indicates a higher sensitivity [30,49]. For example, spatial variations in the precip-
itation sensitivity of vegetation productivity have been investigated to predict how changes in precipitation may affect the
stability of vegetation productivity [22,23].

Precipitation-use efficiency (PUE)

PUE, or rainfall-use efficiency, is conventionally quantified as the ratio of NPP to annual precipitation [23]. Higher PUE
suggests that the ecosystem can take advantage of precipitation for plant growth more efficiently. Several studies suggest
that the variations in PUE are the consequences of changes to plant community composition. For example, Hu et al. [24]
found a continuous increase in PUE along a spatial precipitation gradient in temperate grasslands of Inner Mongolia, and
this spatial variation could be largely explained by changes in plant community structure. Similarly, long time-series of
satellite photographs (1990–2011) in the same region showed an overall increase in PUE in the degraded grasslands
[41]. This trend mainly reflects reestablishment of plant communities resulting from the implementation of national ecolog-
ical restoration projects. Similarly, Bernardino et al. [50] identified the tipping points of ecosystem state transitions in global
drylands with long-term time-series PUE datasets.

Ecosystem water-use efficiency (WUE)

Ecosystem WUE is the ratio of primary productivity to evapotranspiration. Measurements taken by global flux towers
illustrate distinct magnitudes of ecosystem WUE among ecosystem types (Figure S2 in the supplemental information
online). A study in the arid region of northern China illustrated an abrupt decline of WUE from 2.8 kg H2O g−1C (forest)
to 1.5 kg H2O g−1C (grassland) within the 400–500 mm precipitation climatic isocline boundary situated between
semi-humid and arid zones [44].

Trends in Ecology & Evolution
primary productivity and evapotranspiration are closely coupled in most terrestrial ecosystems,
supporting the idea of a conservativeWUE [27]. Themechanism underlying this coupling includes
processes occurring within the leaf stomata, and all are driven by external environmental factors in
the same direction. The Rietkerk model produced gradual changes in WUE during both a smooth
and catastrophic state change to a non-vegetation state (see Figure IG,H in Box 1). This suggests
that ecosystem WUE is promising for signaling smooth and catastrophic transitions.

Advantages of functional indicators
Data availability
The development of new technologies has resulted in the proliferation of large datasets that
aggregate measurements taken over extended periods of time. Instruments such as eddy covari-
ance towers make long-term in situ observations that are compiled into large global databases
(https://fluxnet.org/data); extensive measurements of ecosystem function (e.g., vegetation
productivity, water and energy fluxes) have also been collected via remote sensors or satellites
(https://modis.gsfc.nasa.gov/data) and aggregated into databases. The abundance of easily
accessible information can be used to construct functional indicators, thereby enabling quantifi-
cation of ecosystem function resilience [14,15,28].

Explicit ecological meaning
Most of the functional indicators discussed here have explicit ecological meanings (Box 2) that are
defined by the ecosystem processes that modulate their behavior. Thus, ecologists can use
1042 Trends in Ecology & Evolution, December 2022, Vol. 37, No. 12
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Outstanding questions
What functional indicators can be
used to predict state changes in
ecosystems that are constrained by
factors other than water shortage
(e.g., tundra, tropic rainforests, and
aquatic ecosystems)?

Can functional indicators be used to
understand or predict positive feedback
mechanisms and their role in state
changes?

Which are the important functional
indicators that are, and are not,
successfully represented by ecosystem
models?

How canmodeled functional indicators
be improved such that forecasting
of ecosystem state changes also
improves?
these meanings to construct a framework for predicting the robustness and behavior of various
indicators under changing environmental conditions. Ecosystem biogeochemical models
simulate ecosystem functions on daily to decadal timescales. Through the application of these
functional indicators, it might be feasible to test and improve the ability of models to detect the
long-term dynamics of ecosystem functions that accompany state change.

It is important to note that these indicators have been intensively investigated in the field of eco-
system ecology, especially against the background of global climate change [16,22,23,29–31].
Note that some environmental and biotic factors may interfere with the robustness of the indica-
tors (Table 1 for caveats). Measures should be taken to exclude the interfering effects before
using the indicators to detect state changes.

Future research priorities
Applications in other ecosystem types
The ecosystems addressed in this paper are mostly water-limited grassland ecosystems, and
the state changes occurring within them are primarily driven by variations in water availability.
However, other ecosystem types experience state changes driven by a diversity of limiting
factors, and applying functional indicator analysis to these ecosystem types will require the
identification of these factors and the construction of corresponding functional indicators. For
example, nutrient availability/uptake is the key factor of ecosystem transition in eutrophication-
induced phytoplankton blooms and in some types of desertification. In these cases, nutrient-
related functional indicators (e.g., nutrient-use efficiency, nutrient sensitivity) could be used to
detect ecosystem state changes. Expanding the use of functional indicators to predict state
changes in other ecosystem types should be a research priority.

Linkage with ecosystem models
Ecosystem models (e.g., CLM [32], OCHIDEE [33], CABLE [34]) simulate ecosystem biogeo-
chemical cycles, the hydrological cycle, and energy flows, and can be coupled to climate models
to predict the effects of global change on ecosystem functioning. Although not uncommon in
aquatic systems [35,36], simulations that integrate climate change-induced state change into
terrestrial ecosystem models are limited. For models to predict long-term changes in ecosystem
function, the mechanisms that cause state changes need to be well-reproduced in ecosystem
models. Models can be evaluated based on how well they capture the dynamics of the functional
indicators. To achieve this, it may be necessary to investigate the parameters and modules that
control the dynamics of the functional indicators. In addition, positive feedback loops are key
factors that drive abrupt ecosystem state change. Although most positive feedback loops are
integrated into ecosystem models, whether they accurately reflect the intensity of real-world
feedback that drives state change is unclear. Therefore, comparing the strength of the positive
feedback in model predictions to empirical observations via functional indicators may be a useful
assessment of howwell these processes are integrated into themodel. For example, models may
underestimate water–nitrogen–productivity feedback and thus underestimate the precipitation-
sensitivity of vegetation productivity [37]. Indirect factors induced by climate change may also
affect the strength of the key types of positive feedback that govern state change and should
also be considered.

Concluding remarks
New technologies are now delivering large real-time datasets of ecosystem functions. To take
advantage of this wealth of data, we propose the construction of indicators based on functional
variables in addition to state variables, as well as the use of their dynamics to detect state changes
in terrestrial ecosystems. Because functional-based indicators have explicit ecological meanings
Trends in Ecology & Evolution, December 2022, Vol. 37, No. 12 1043
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and are connected to ecological processes, they are more readily interpretable for assessing the
risk of state change than are state-based indicators. Future research priorities (see Outstanding
questions) include the development of functional-based indicators for different ecosystem types,
as well as the use of ecosystemmodels to test and describe the long-term changes that precede
critical or smooth state changes.
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